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It is probably true that most of us, if we
think at all about the people who established
Yellowstone National Park in 1872, tend to see
them as being essentially like us, only rather
stupid. We see them primarily as being at the
opposite end of Yellowstone history, totally
deprived of all the things we have learned in
the past 127 years.

This attitude toward our ancestors probably
guarantees that 100 years from now our de-
scendants will be justified in thinking the
same about us. Yellowstone’s founders were not
just dumbed-down versions of us. They inhab-
ited a remarkably different world and re-
sponded to cultural and natural environments
we seem hardly to understand today. A few
examples should make the point.

First, in 1872 the Industrial Revolution was
accomplishing the urbanization and mechaniza-
tion of society. Both changes swiftly divorced
people from daily contact with nature. Think
of it—after thousands of years, suddenly large
numbers of people no longer depended, on a
daily basis, on animal power. They no longer
saw and handled animals as part of life’s most
local routines. They no longer expected or
required any kind of behavior from nonhuman
beings with whom they had grown up.

Historians have traced the increasing popu-
larity of a long-existing humane movement to
these momentous changes. People now had
the luxury of caring about the treatment and
well-being of animals, in part because they no
longer had to count on those animals for soci-
ety’s most miserable chores.

Second, in 1872 there were very few adult
American memories that were not struggling
with or fleeing from personal horrors of the
Civil War. This was a societal trauma unlike
anything the nation had experienced before,
or would experience later. Those of us living
today probably cannot comprehend the mag-
nitude of the nation’s post-traumatic stress in
that first post-war generation.

Third, in 1872 these same people were
caught in the first shock waves of the Darwin-
ian revolution. The Origin of Species was pub-
lished in 1859, and The Descent of Man
appeared the year before Yellowstone was cre-
ated.

In this unprecedented intellectual, emo-
tional, and cultural turmoil, it is hard to imag-
ine a generation in greater need of Yellow-
stone, except perhaps our own. But each gen-
eration has its own set of needs, and Yellow-
stone has been responsive to all of them. Per-
haps the most important and least understood
among those needs are those related to human
values. We tend to think of national parks as
being good for things we can define, such as
recreation and commerce. We are much less
comfortable, especially those managers among
us, considering the spiritual and emotional
aspects of Yellowstone; successful manage-
ment of public lands is generally defined as
numbers: recreational visits per year, regional
income generated by tourist dollars, board
feet of lumber, tons of ore extracted. This is
unfortunate, for although it is true that Yellow-
stone undeniably has been one of the world’s
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WHAT IS NATURAL? PHILOSOPHICAL ANALYSIS
AND YELLOWSTONE PRACTICE

Paul Schullery1

EDITOR’S NOTE.—The following remarks were Paul Schullery’s introduction to a roundtable discussion presented
during the 5th Biennial Scientific Conference on the Greater Yellowstone Ecosystem, held 11–13 October 1999 in Yel-
lowstone National Park. His remarks serve a second purpose in this issue of the WESTERN NORTH AMERICAN NATURALIST,
as they set the stage for and introduce the remaining articles, all of which are papers, presentations, or addresses from
that conference. The 1999 Yellowstone Biennial Conference was entitled “Exotic Organisms in Greater Yellowstone:
Native Biodiversity Under Siege.” Mr. Schullery is a resource naturalist with the National Park Service in Yellowstone.

1PO Box 168, Yellowstone National Park, WY 82190.
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foremost “natural laboratories” (to use an early
phrase applied to the park) and that it indeed
has been a similarly important laboratory of
ideas, it is also true that human values under-
lie all other roles Yellowstone plays in our cul-
ture.

Consider those people who established Yel-
lowstone National Park in 1872. Whatever their
knowledge and ignorance of geology or ecology,
think of their values and then of ours. They
killed predators on sight and poisoned carcasses
of ungulates in hopes of additional random
killing. Without much thought or premedita-
tion, they disenfranchised the native humans
of the Yellowstone region. They desperately
wanted to improve the Yellowstone landscape
in countless ways most modern Yellowstone
enthusiasts do not even know were discussed:
an elevator to the foot of the Lower Falls of
the Yellowstone River; railroad tracks to the
geyser basins and beyond; roads through the
Thorofare, over Bighorn Pass, around Yellow-
stone Lake; a system of dams in the Bechler
country. They piped water from hot springs for
commercial bathhouses; they trashed scores of
aquatic ecosystems that had taken thousands of
years to evolve; they turned wild bears into
garbage dump clowns. In these and many other
ways, they changed the place. They did not do
these things because they were stupid (though
some of them certainly were, just as some of
us are). They did them because their view of

nature, and of their relationship with it, was
substantially different from our own. Most of
them did not see these things as wrong; most
of us do. They did not have our values, but
that does not mean they were without values.

Yellowstone has weathered our stumbling
efforts to apply human values to wilderness
settings in surprisingly good shape, but it would
be foolish to think that we, at the beginning of
the 21st century, have arrived at some finished
form of the national park. National parks are
institutions that must always adjust. The test
of an institution’s success over the long haul is
how responsive it remains to the changing
needs of the society that created it. The test of
a society over the long haul is its ability to
change its institutions only enough to keep
them true to whatever high impulses led to
their creation in the first place. Yellowstone
tests us just as rigorously as we test it.

This conference on the Greater Yellow-
stone Ecosystem gives us an opportunity to
consider where we are today in this very com-
plicated and often painful process of revising
our understanding of national parks. Nonnative
species provide us with a host of stimulating
case studies that do more than perplex policy
makers and managers. They reach deeply into
our belief systems; they expose the rawest
emotional underpinnings of the institution to
the often unkind light of day. Best of all, they
make us think.
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There is considerable debate about how we
should characterize exotic species (Scherer
1994, Woods and Moriarty 2001). Controversy
concerning the negative evaluation of exotics
is also significant (Pollan 1994, Throop 2000).
In Yellowstone National Park these conceptual
and valuational issues make a difference for pol-
icy and management. This paper provides sug-
gestions for how we should define and evalu-
ate exotic species, with particular reference to
exotics in the greater Yellowstone region.

DEFINING EXOTICS

Exotic species are defined in many differ-
ent—even contradictory—ways. The definition
I propose aims to separate the distinct strands
typically woven into this concept while still
capturing most of our fundamental intuitions
about exotics. I suggest that we define an
exotic species as one that is foreign to an eco-
logical assemblage. In contrast to a native
species, an exotic species is one that has not
significantly adapted to resident biota or to
local abiotic conditions, and—perhaps more
importantly—resident species have not signif-
icantly adapted to it. When an exotic first
arrives, it will not yet have exerted selective
pressure on local species, nor will it have re-
sponded to selective pressure from the resident

species or local abiotic conditions. Once this
process of “evolutionary accommodation be-
tween newcomer and residents” (Westman
1990) has begun, the exotic species starts the
process of naturalizing. At some point the
mutual adaptation between immigrant and
natives will be significant enough for the one-
time exotic to have naturalized and become
native (Hettinger 2001).

For example, the protozoan parasite (Myxo-
bolus cerebralis) that causes whirling disease
(an affliction that cripples some fish species) is
a recent immigrant to Yellowstone’s ecosystems.
A European import arriving in this country
about 45 years ago and first detected in park
waters in 1998, the whirling disease parasite is
exotic to the extent that it has not significantly
adapted to species present in the park and to
the extent that park natives have not signifi-
cantly adapted to it. Although the microbe has
successfully parasitized some Yellowstone cut-
throat trout (Oncorhynchus clarki bouvieri),
there has been little time for cutthroat trout to
adapt to the parasite or to exert selective pres-
sure on it.

Whether a species is exotic to an assem-
blage is a matter of degree. The greater the
differences between the species, the abiota,
and their interrelationships in the old and new
habitats, the more exotic the immigrant will be. 

Western North American Naturalist 61(3), © 2001, pp. 257–260

DEFINING AND EVALUATING EXOTIC SPECIES:
ISSUES FOR YELLOWSTONE PARK POLICY

Ned Hettinger1

ABSTRACT.—Exotics are species that are foreign to an ecological assemblage in the sense that they have not signifi-
cantly adapted to resident biota or to local abiotic conditions, and resident species have not significantly adapted to
them. Although they need not be human introduced nor damaging, when they are, a negative appraisal of such exotic
species can be justified. Human introduction of exotics into natural systems typically increases human influence over
those systems, thus diminishing their wildness. Valuing nature for its wildness is a rationale for the national parks’ policy
of letting nature take its course. Thus, Yellowstone Park has a strong reason for removing human-introduced exotics and
for welcoming naturally migrating exotics. Disvaluing exotics that are neither human introduced nor damaging simply
because they are foreign smacks of xenophobia. But given that wanton human mixing of species threatens to homoge-
nize the earth’s biological communities, biological nativism is justified as a way to preserve the diversity between such
communities.

Key words: exotics, exotic species, native, nativism, Yellowstone, wild, natural, biodiversity.

1Philosophy Department, College of Charleston, Charleston, SC 29424.
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For example, mountain goats (Oreamnos amer-
icanus) that are moving into the park from the
north are likely to be much less exotic to the
Yellowstone assemblages they join than Japan-
ese snow monkeys (Macaca fuscata) would be
in the thermal areas of the park. Mountain
goats have likely adapted with a number of
species in the park, whereas little if anything
in the park has ever adapted with any species
of monkey.

Exotic arrival should be distinguished from
range expansion where the traveling species
does not move into ecological assemblages to
which it has not already adapted. Thus, as
bison (Bison bison) expand their range north
and west out of Yellowstone Park into the sur-
rounding grasslands, they enter a habitat in
which they are native, because these assem-
blages and bison have significantly adapted to
each other. When the U.S. Fish and Wildlife
Service moved gray wolves (Canis lupus) from
Canada into the park, this was not exotic intro-
duction because gray wolves have evolved with
elk (Cervus elaphus), mule deer (Odocoileus
hemionus), and moose (Alces alces), among
other species present in the park.

Contrary to a frequently adopted defini-
tion, including one used by the National Park
Service (National Park Service undated), exotics
need not be human-introduced species. This
is true both because some human-introduced
species are native (e.g., the restored Yellow-
stone wolves) and because some species move
to foreign ecological assemblages on their
own. Examples of the latter include Cattle
Egrets (Bubulcus ibis) blown from Africa to
South America and the first finches on the
Galapagos Islands.

Exotics also should not be identified with
damaging species, as some suggest (Scherer
1994), for some natives are damaging and
some exotics are not. For example, the Asian
long-horned beetle (Anoplophora glabripen-
nis), recently discovered in trees in Chicago, is
an important threat to trees in its native range
as well (Corn et al. 1999). The National Park
Service has management policies to deal with
such native pests (National Park Service 1988).

It is true that exotics have caused massive
amounts of damage, both ecologically and eco-
nomically (Office of Technology Assessment
1993). Approximately 40% of threatened or
endangered species on the U.S. Endangered
Species lists are at risk primarily because of
exotic species (Pimentel et al. 1999). Never-

theless, exotics need not be harmful. Many,
perhaps most, immigrant species in foreign
assemblages die out before they become
established (Westman 1990, Williamson and
Fitter 1996). One estimate is that about 10% of
such immigrants succeed in establishing them-
selves (Bright 1998). Even those that become
established need not be invasive or weedy
(Mack 1996). Approximately 15% of foreign
species that have established themselves in
the U.S. have become serious problems (Sim-
berloff 1997). The National Park Service’s
division of exotics into innocuous species and
disruptive species reinforces the point that
exotics need not be harmful (National Park
Service undated). Making such a distinction is
not without risk, for exotics that establish them-
selves in benign ways may eventually experi-
ence explosive growth that damages local
assemblages (Simberloff 1997). Still, some exotic
species are benign and some are even benefi-
cial. Invasion biologists talk about the crucial
role invaders have played in stimulating evo-
lution (Vermeij 1996). In Yellowstone Park,
grizzly bears (Ursus arctos) and other wildlife
consume substantial amounts of nonnative
clover (Trifolium spp.; Reinhart et al. 1999). A
species of eucalyptus tree introduced into Cal-
ifornia from Australia over 120 years ago bene-
fits monarch butterflies (Danaus plexippus)
that rely on them during annual migrations
(Woods and Moriarty 2001). Eucalyptus also
benefits native birds and salamanders (West-
man 1990). The common apple tree (Malus
sylvestris) is an import from Europe and west
Asia. It is hard to imagine that this tree has
not benefited the North American landscape.

EVALUATING EXOTICS

Justifying a Negative Appraisal 
of Exotics

Although I do not think we should define
exotic species in these ways, the exotic species
typically of concern to the park (and others)
are both human introduced and damaging.
Each of these features provides a strong rea-
son for a negative evaluation of such exotics
and perhaps for a policy of control or eradica-
tion of them.

A negative evaluation is fairly straightforward
when exotics significantly damage human inter-
ests or when they impoverish ecosystems, for
example, by turning diverse native communi-
ties into single-species areas unable to support
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other life forms. I say fairly straightforward
because human interests are not the only ones
at stake and because criteria are needed to
distinguish changing ecosystems from damag-
ing them (Throop 2000).

A negative evaluation is also called for
when an exotic is human introduced. Although
controversial, such a value judgment is justi-
fied by the following considerations: (1) the
fact of ongoing massive human influence on
the planet (Vitousek 1997) and the radical
diminishment of the sphere of wild nature; 
(2) a positive evaluation of natural systems to
the extent that they have not been influenced
by humans, that is, to the extent that they are
wild (Hettinger and Throop 1999); and (3) a
judgment that the presence of human-intro-
duced aliens lessens the wildness of natural
systems and thus provides a reason for dis-
valuing such exotics.

For example, Yellowstone Lake has been
humanized by the introduction of lake trout
(Salvelinus namaycush), and the park is less
wild as a result. Even though lake trout have
been present in other park lakes for about a
century (Schullery and Varley 1999), their
recent introduction into Yellowstone Lake sig-
nificantly increases human influence over park
processes as their presence in that lake threat-
ens Yellowstone cutthroat trout and other
species that feed on cutthroat trout, including
grizzly bears and Bald Eagles (Haliaeetus leu-
cocephalus). Rather than feeling in touch with
wild natural processes, a knowledgeable angler
who catches a 10-pound lake trout while fish-
ing for cutthroat trout in Yellowstone Lake will
be reminded of humans and their ill-advised
acts. Removing these lake trout will make Yel-
lowstone a wilder, less human-influenced place,
as did closing the garbage dumps to grizzly
bears.

Letting Nature Take 
Its Course

Valuing nature for its wildness is a rationale
for the park’s policy of letting nature take its
course. One implication of seeing the park as a
natural area where human influences should
be minimized is that just as the park has a rea-
son to eradicate or control human-introduced
exotics, so too it has a reason to welcome natu-
rally dispersing aliens. Removing such exotics
would seem to increase, not decrease, the
human control and manipulation of natural
systems in the park.

Those who believe that the purpose of
national parks is to “preserve vignettes of prim-
itive America” (Leopold et al. 1963) may argue
that the park should eradicate even naturally
arriving exotics, for they will alter the charac-
ter of the native ecosystems the park should
preserve. But national parks ought not to be in
the business of trying to prevent nature from
changing on its own. Yellowstone Park should
preserve natural processes, not some particu-
lar status quo in nature. The national parks’
management guidelines count naturally arriv-
ing exotics as “natives” and thus presumably
sanction their arrival (National Park Service
undated).

Although Yellowstone Park has a strong rea-
son to welcome naturally dispersing exotics,
the policy of letting nature take its course is
not absolute. Such a policy could be overrid-
den if an exotic—or native, for that matter—
were to cause sufficient damage. If the whirl-
ing disease parasite somehow traveled from
Europe into Yellowstone Park without the aid
of humans, the park would be hard pressed to
justify welcoming such a naturally dispersing
exotic. If the parasite threatened to destroy
the entire Yellowstone cutthroat population,
the park would have strong reasons not to let
nature take its course.

Disvaluing Exotics As Such

Are there reasons for disvaluing exotics per
se, simply because they are foreign? If so, the
park would have a reason not to welcome nat-
urally dispersing exotics, even when they did
not cause damage. But negatively evaluating a
species simply because it is foreign smacks of
xenophobia and a nativist desire to keep locals
pure from “foreign biological pollution.” In
human affairs, such an attitude is morally re-
pugnant. Nativist fear of foreigners and preju-
dice against immigrant peoples are morally
troubling attitudes. Critics of biological nativism
(i.e., the preference for native flora and fauna)
point out that the Nazis had a native plant
movement and attempted to purify the flora
and fauna of their country as they purified
their culture of Jews (Pollan 1994). One writer
warns that “nativist trends in Conservation
Biology have made environmentalists biased
against alien species” and thinks it important
to “protect modern environmentalists from
reproducing the xenophobic and racist atti-
tudes that have plagued nativist biology in the
past” (Peretti 1998).
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But biological nativists do not dislike for-
eign flora and fauna, and the charge of purism
ignores their commitment to biodiversity. Bio-
logical nativists want to preserve the spectacu-
lar diversity between biotic communities. The
wanton human mixing of species from around
the globe creates mongrel ecologies and threat-
ens to homogenize the earth’s biotic communi-
ties (Hettinger 2001). The logical end point of
the massive, human-induced spread of exotics
is that ecological assemblages in similar cli-
matic and abiotic regions around the world
will be composed of the same species. This
biotic impoverishment is much like the impov-
erishment of cultural diversity resulting from
economic globalization and the cosmopoli-
tanization of humans. Keeping a dandelion
(Taraxacum officinale) out of Yellowstone is
much like keeping Wal-Mart out of a small
New England town or McDonalds out of
India. Kudzu (Pueraria lobata) in the Ameri-
can South is like TV in Nepal, a threat to the
diversity of the planet’s communities and ways
of life. Because humans have introduced so
many alien species into so many of the earth’s
biotic communities, the park may well have a
reason to oppose even naturally dispersing and
nondamage-causing exotics.
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The National Park Service has precise poli-
cies regarding biological invasions. These place
specific burdens on park management. In con-
sidering how to handle biological invasions in
the United States national parks, we need to
be cognizant and sensitive to these require-
ments. The problems posed by these policies
are revealed by an interesting conundrum
about invasive species.

CONUNDRUM

A serious conundrum exists about invasive
species: Biological invasions are natural and
necessary for the persistence of life on Earth,
but some of the worse threats to biological
diversity are from biological invasions. It was
once believed, both among scientists and in
prescientific history in Western thought, that
nature undisturbed was in a steady state. If
this were true, then biological invasions would
be unnatural, and management of biological
invasions would be simple: prevent them or, if
that failed, eliminate the invaders and restore
the “natural” steady state. But findings in en-
vironmental sciences in the latter part of the
20th century confirm that natural ecological
systems are always changing, that they do not
have a single steady state, and that biological
invasions are natural and, more important,
necessary for the persistence of life. If species
never invaded new territories, they would be
extinguished by catastrophic events in their
previous habitats. An additional conundrum is
revealed. One can either preserve a “natural”
condition, or one can preserve natural processes,
but not both. The preservation of natural pro-
cesses requires change. The resolution to this
second conundrum is, however, simple: either

preserve the natural processes and therefore
preserve life over the long run, or preserve a
single condition and either threaten the persis-
tence of life or else substitute a great amount
of human intervention for natural, dynamic
processes.

Salmon exemplify the necessity of change
and of biological invasiveness. Contrary to the
folktale that salmon always return to spawn in
their natal stream, approximately 15% of adult
salmon find their way to a different stream
from the one in which they were born (Botkin
et al. 1995). This might seem to be a “mistake,”
but without such “mistakes” salmon could not
persist. Salmon are cold-water fish and make
use of cold rivers and streams near northern
continental glaciers. As glacial ages wax and
wane, streams once suitable to salmon become
iced over, while others, previously too warm,
become sufficiently cold to support salmon.
Other natural disturbances make individual
streams temporarily unusable. Salmon require
gravel of a specific size range and composition
in which to lay their eggs. The source of these
gravels is the failure of bedrock headwalls at
the upstream end of streams. When such a
failure occurs, the gravel dumped into a stream
temporarily blocks water flow and makes the
stream unusable by salmon. But without such
temporary blockages, gravel would slowly
erode from all salmon streams. Salmon streams
must become temporarily clogged with gravel
and therefore temporarily unusable for salmon
to survive. Therefore, the requirement for a
supply of gravel also requires that salmon be
able to shift among streams over time. Fires
and storms create conditions that temporarily
eliminate salmon from a specific stream, thus
also requiring that salmon can move among 
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THE NATURALNESS OF BIOLOGICAL INVASIONS

Daniel B. Botkin1
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streams. Thus, for salmon to survive over a
long time, invasiveness and reinvasiveness are
necessary characteristics.

Biological invasion is a natural process every-
where, requisite for the persistence of essen-
tially all species on Earth over the long term.
Being able to seek new habitats and survive in
them is essential in an environment that
changes at all scales of space and time. A strik-
ing example occurred with the creation of
Surtsey, a new island 25 km off the coast of
Iceland as a result of volcanic activity (Botkin
and Challinor 1998). In 1964 scientists camp-
ing on Iceland’s south coast saw the view from
the shore dominated by a vertical plume of
ejecta and smoke from an open fissure about
100 m below the water surface on the mid-
Atlantic ridge. When ocean water met molten
lava at that shallow depth, the water pressure
was insufficient to contain the resulting explo-
sion, which hurled large pieces of the seabed
through the water column as high as 300
meters into the air. Pulsed explosions occurred
with each contact of cold seawater and molten
lava at the fissure. The rapid cooling of the
lava resulted in fine-grained crystal particles
called tephra.

About three and one-half years later, in
1967, the explosions ceased, and the volume
of tephra that had rained from the sky created
Surtsey, roughly two kilometers in diameter
and rising at its highest point about 100 meters
above sea level. A few weeks after the erup-
tions ceased, the lava that formed Surtsey had
cooled and hardened just enough so that it
was safe for a person to walk on the surface,
although molten lava was still visible flowing
deep below through occasional surface cracks.
Now the island could be visited by people. A
group of scientists went to the island, and one,
a botanist, found the first flowering plant
invader: the sea rocket, a small flowering plant
less than 5 cm high, and it was already in
bloom. That the sea rocket flowered so soon
after the lava solidified illustrates the speed
with which biological invasions can occur.

Other botanists later discovered mosses
and grasses that continued the biological inva-
sion of Surtsey. Scientists formed the Surtsey
Research Society, which stimulated long-term
monitoring of the invasion process. The invasion
of Surtsey by the sea rocket had no negative
effects and can only be viewed as a positive

event, beginning the transformation of a new
but lifeless island into one rich with vegeta-
tion and other forms of life.

Another recent, ongoing example of a natural
biological invasion that has had little if any
negative consequences is that of the Cattle
Egret, a ubiquitous white bird familiar to trav-
elers who view African wildlife. This bird prob-
ably evolved in the flood plains of the African
tropics but adapted to irrigated crop fields,
especially in southern Africa. Cattle Egrets eat
insects stirred up by or on large grazing mam-
mals. In Africa these birds readily made the
transition from following only the wild, native
mammalian herbivores to following domestic
cattle as the number of buffalo and other large,
wild herbivores declined. More surprisingly
was the transoceanic migration of this species,
which flew from west Africa to South America.
Eventually, enough egrets arrived to establish
a New World breeding population. In hind-
sight, this transoceanic invasion was not such
a difficult feat for this amazing bird because, if
helped by favorable winds, Cattle Egrets can
fly the 2900 km from West Africa to South
America in about 40 hours.

First reported in South America in the 1880s,
the birds rapidly expanded their range, espe-
cially as coastal tropical forests were cleared
for cattle ranching in the 20th century. Once
established in South America, they migrated
north, reaching the United States in 1951. Just
5 years later they had spread from Texas to
New England—several thousand kilometers!

A similar process took place in Australia,
where these birds became common in the
western part of the continent in 1952. They
reached New Zealand in 1963, and breeding
pairs were found about a decade later. The
Cattle Egret expanded its range from Africa to
virtually all tropical and temperate areas of the
Earth within a century. Its expansion was
fueled by its ability to exploit pastures with
high cattle densities—an artificial habitat more
suitable for its feeding behavior than its origi-
nal one in Africa. So, in part, the egret’s migra-
tion was assisted by effects of people on nature.
But egrets took advantage of these human
actions on their own; they were not transported
by people. The widespread invasion by egrets
seems so far to be benign because it fills a
niche heretofore unoccupied by New World
birds.
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In contrast is a long list of invasions of
exotic species that have had disastrous effects.
Embarrassing to human judgment, many of
the worst cases result from intentional human
introduction, fostered with the belief that each
would be beneficial. As an example, people in
Great Britain intentionally introduced the
American grey squirrel into the British Isles,
believing this would add aesthetically to their
woodlands. But the North American squirrel
is forcing out the native British red squirrel,
which has been extirpated from much of its
original range and persists today only where
habitats are inhospitable to the North Ameri-
can squirrel. Another famous example is the
gypsy moth, introduced into Massachusetts by
a well-meaning scientist who believed these
insects could be used to establish a silk indus-
try in North America. He also believed the
moth could not spread westward because he
introduced it in eastern Massachusetts, and
the prevailing westerly winds would keep the
moth along the coast.

The history of both positive and negative
effects of biological invasions is essential back-
ground for the consideration of National Park
Service policy regarding biological invasions.

NATIONAL PARK SERVICE POLICIES

AND BIOLOGICAL INVASIONS

What are the implications for National Park
Service policies toward invasive species, given
the conundrum about biological nature—that
it is both necessary and natural, and can create
major problems in certain situations? Accord-
ing to National Park Service administrative
policies, “Non-native species of plants and
animals will be eliminated where it is possible
to do so by approved methods which will pre-
serve wilderness qualities.” This is interesting
because (1) the goal is complete elimination,
not control, and (2) the definition brings in the
term wilderness quality, which remains ambig-
uous and therefore presents operational diffi-
culties.

Furthermore, NPS administrative policies
define an exotic species as “a species occur-
ring in a given place as a result of direct or
indirect, deliberate, or accidental actions by
humans.” This definition focuses on the mode
of transportation and arrival rather than on the
effect of the species on others and on ecosys-
tems. Further affirming this emphasis on the

mode of transportation, National Park Service
administrative policies define a native species
as “a species that occurs and evolves naturally
without human intervention or manipulation.”
Species that move into an area without the
direct or indirect aid of humans are consid-
ered native by NPS definition. Based on this
definition, a species that arrived without human
intervention but completely altered a park’s
ecosystem from what it was prior to European
settlement would be considered acceptable
and would be allowed to persist within a park.
However, a species that directly or indirectly
arrived as a result of human actions, even if its
presence was obscure and its effects innocuous,
would be a target for elimination. But what if a
species that arrives on its own, without human
intervention, greatly disrupts the biological
diversity of a park and alters its landscapes
from the way they appeared just prior to
European settlement? And what if a human-
introduced species has little effect if any, or
increases the bountiful appearance of a park?

This emphasis on the condition of a park
prior to European contact appears in NPS
administrative policies, which state:

Plant or animal species introduced by indige-
nous peoples may be preserved and protected
where they were introduced to the site prior
to European settlement, and were culturally
significant, and where their presence does
not have any demonstrated impact of native
species.

This means that, by NPS policy, species intro-
duced after 1492 by Europeans are bad and to
be exterminated, but those introduced before
1492 by peoples not of European origin are
acceptable. In selecting a specific cut-off time
for introductions that are to be allowed, there
is an arbitrariness in this last policy. Underly-
ing this policy also is the assumption that a
single time, which therefore indicates a single
state of nature, is the only one that is natural.
This policy fails to acknowledge that natural
ecological systems always undergo changes,
and that a single time period is not an ade-
quate measure of what is “natural.”

A goal of returning a park to a specific time
is consistent with earlier ideas about nature, in
particular with the belief in a balance of
nature. This is the idea that nature, left alone,
will achieve a single state—a constancy of
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form and structure that will remain indefi-
nitely (Botkin 1990). As stated earlier, research
among environmental sciences in the last 30
years of the 20th century demonstrated this
was false, that natural ecological systems are
dynamic and changing. The one thing we can
be sure about nature in the future is that it
will be different from today, because nature is
always changing. Therefore, a goal of maintain-
ing a park’s ecosystems and species list to con-
form with what was the condition at a single
past time cannot be obtained by a hands-off,
do-nothing policy. It requires extraordinary
effort. Recently, much lip service has been
paid to the idea of the naturalness of change,
but policies and actions have lagged behind,
most of which are based on some kind of
steady-state notion.

The NPS policy is mixed in regard to steady
state. It allows natural introductions and intro-
ductions by American Indians, but not by those
that occurred afterward. The implicit assump-
tion is that introductions following European
settlement have had only bad effects while
those prior to European settlement had good
or neutral effects. This is not true a priori, and
it is not necessarily true in fact, as salmon, the
sea rocket, and the Cattle Egret demonstrate.
As explained earlier, these policies confuse the
origin and mode of transport of a species with
the effects of that species on the ecological
system where it arrives.

Setting Goals

Are we claiming that an invasive species is
a problem for the physical system—the eco-
system or a species—that an ecosystem or set
of ecosystems cannot persist with any invasive
species? Or do we desire to eliminate invasive
species because of our appreciation of land-
scape beauty and a belief that the only land-
scape that can be beautiful in North America
is one that was not affected by European civi-
lization? Or do we desire to eliminate invasive
species because of a spiritual value, perhaps
reasoning that such a landscape might serve as
a source of creative inspiration, but again only
if it appears as it did prior to any European
influence? Do we fear that introduced species,
no matter how innocuous or beautiful, will
take away from that spiritual or aesthetic qual-
ity of an American national park? Or is our
justification a moral judgment—that only

those species that arrived on their own or
were helped by pre-Europeans are morally
acceptable?

Let us consider the scientific basis for the
argument that all invasive species should be
eliminated. While there is ample evidence
that many introduced species have led to dis-
asters, I am aware of no evidence to support
the generalization that all invasiveness is always
negative. The Cattle Egret would appear to
provide a sufficient contrary case in terms of
ecosystem and landscape dynamics. There-
fore, it would seem that a completely general
policy opposing invasion of new species since
European settlement must be based on non-
scientific justifications, such as I have reviewed.
These nonscientific reasons are value judg-
ments, which are a personal and societal choice.
They can be taken as good or bad, my point
being that they cannot be justified on scien-
tific grounds alone.

Discussions of the importance of native
species and the negative effects of invasive
species typically focus on the scientific basis—
on the effects of ecosystem functioning and of
the persistence of native species, including
the potential extinction of a native species. We
tend to shy away from discussing the complex
mixture of goals I have mentioned. I think this
is in part because of a belief that the intangi-
ble values—beauty, spirituality, inspiration,
morality—won’t sell in our modern, material-
istic world. But to the contrary, the history of
Western civilization is the history of the great
power of ideas and beliefs. Somehow, when it
comes to the environment and to life on
Earth, we doubt this power.

I submit it is more logical, easier to justify
theoretically, and pragmatically simpler to con-
struct policies for invasive species based on
truly held values about the intangibles—
beauty, spirituality, creativity, morality—than
it is to base them on poorly understood and
often misused science.

Consider the introduction of wolves into
Yellowstone National Park. The introduction
of wolves is typically justified on 2 grounds:
that they were present in pre-European settle-
ment times, and that they perform a necessary
function in the Yellowstone ecosystems, usu-
ally stated in terms of the natural control of
their prey species. If this is taken to be an
introduction, then it might be interpreted as
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contrary to written national park policy. If it is
assumed that the presence of wolves will
bring the abundance of its prey species back
to the level at some specific year, such as 1492,
then modern ecological research has shown
that this will not be the case. While large
mammalian predators can reduce the abun-
dance of their prey, the idea that they could
create a precise control and return a wilderness
to a fixed, steady state has been abandoned by
the science of ecology. The reintroduction of
wolves can be justified on mechanistic grounds
(that is, on the basis of their function in Yellow-
stone ecosystems) only if reduction in abun-
dance, rather than precise control, is accept-
able.

These policies and assumptions are not
unique to the National Park Service. As I
wrote in Discordant Harmonies, there are 3
basic kinds of natural areas or nature preserves,
when people use that term in North America:
(1) an area with no human action, (2) an area
set aside to conserve a specific species or
species assemblage, (3) an area set aside to
represent a particular time, usually taken to be
that just before European settlement. In regard
to invasive species, NPS policies are consistent
with the last of these conceptions of “natural.”

The naturalness of biological invasion gives
some substance to the fear of those who live
near but outside the park: that a truly success-
ful reintroduction of wolves within the park
will lead to their invasion (or reinvasion) of
surrounding areas. As long as policies are
based on restoring ecological systems to spe-
cific prior conditions, but allow little other
direct actions, then preventing the spread of
wolves beyond the park might not fall under
park policies.

Suppose we took a different approach: justi-
fying the introduction (or reintroduction) of
wolves into Yellowstone on the grounds that
they were once part of the ecological systems,
and that people want to see them there, for
aesthetic, spiritual, and moral reasons. We
abandon the arguments about the ecological
role of wolves as a necessary condition for sus-
taining the Yellowstone ecosystems. If the goal
is justified from one of these points of view,
then less burden in placed on science. Science
does not have to provide the rationale for the
presence of wolves. Instead, science can tell
us how we can attain the goal of maintaining
wolves within the Yellowstone ecosystem with

minimal effects outside the park. In this case
science plays its natural societal role. Scien-
tific findings tell us what the natural charac-
teristics of Yellowstone ecosystems are, and
these include change over time. They tell us
what species were present, but provide little
information about actual abundances (because
of a lack of historical data, both before and after
the establishment of modern ecological sci-
ence). Scientific findings tell us what goals are
possible, how we can attain them, and what
we gain and give up in achieving a goal.

SUMMARY

A dominant idea in ecology in the 20th cen-
tury was the belief in a balance of nature—
that there is a single true condition for any
ecosystem, and therefore a single truth for that
system. But modern ecological research shows
us that ecological systems can persist under a
variety of states and, in fact, generally require
some level of variation. Rather than there
being a single true condition to which a park
must be returned, there are options, which
depend on our goals. Allowing the possibility
of several options for a park may make some
conservationists uncomfortable. It may seem
to open up the management of a park to con-
ditions that specific interest groups would find
undesirable. What becomes clearer through
this discussion is that the management of a
national park, rather than simply the restora-
tion of a wilderness by abandonment of human
intervention, resembles more the activities of
a landscape architect who works to choose a
landscape design that meets the real needs of
a client. In this case, the client is the citizens
of the United States and the visitors to the
national parks.

Given the naturalness of biological inva-
sions and the manifold rationales for the con-
servation of species and restoration of national
park ecosystems, I believe that the path I have
laid out provides a methodology more consis-
tent with the goals of a democracy, more likely
to achieve what people want to see in a park,
and more likely to allow flexible management
that will maintain biological diversity within a
park.
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1. NATURE AND CULTURE

In one sense, nature is quite a grand word,
referring to everything. Natura or physis is the
source from which all springs forth. If one is a
metaphysical naturalist, then nature is all that
there is. The contrast class might be the super-
natural, which, they may argue, is an empty
set. Humans are generated within nature and
they break no natural laws. Everything agri-
cultural, technological, industrial, or economic
will, on this meaning, be completely natural.
So will everything humans have done, whether
intentionally or accidentally, by way of moving
animals and plants around, as with exotics and
invasive species. So will all park management.

Baird Callicott says, provocatively: “We are
therefore a part of nature, not set apart from it.
Chicago is no less a phenomenon of nature
than is the Great Barrier Reef.” Or Yellowstone.
Callicott wants to cure us from mistakenly
supposing a “sharp dichotomy between man
and nature” (1992:16–17). Such scope is prob-
lematic, however, because it allows no useful
contrast with culture; but we need that con-
trast carefully analyzed if humans are going to
relate their cultures to nature. We need a
more restricted definition, one that can enable
us to separate Chicago from Yellowstone.

A straightforward contrast is culture. If I
am hiking across the Lamar Valley, the birds
and their nests are natural; but if I come upon
an abandoned boot, this is unnatural. Expand-
ing this into a metaphor, the whole of civiliza-
tion is mind and hand producing artifacts in
contrast to the products of wild, spontaneous
nature. Wild animals, much less plants, do not
form cumulative transmissible cultures, elabo-
rating such artifacts over generations.

Humans evolved out of nature; our bio-
chemistries are natural. We too have genes
and inborn traits. But human life is radically
different from that in wild nature. Unlike coy-
otes or bats, humans are not just what they are
by nature; we come into the world by nature
quite unfinished and become what we become
by culture. Humans deliberately rebuild the
wild environment. They also deliberately set
out to conserve some wild places, as with Yel-
lowstone, protected by an act of Congress.

Information in nature travels intergenera-
tionally on genes; information in culture travels
neurally as persons are educated into trans-
missible cultures. They learn how to build fires,
or make spears, or make iron plows and grow
wheat. Humans argue about worldviews, about
whether there should be wildlands as well as
wheatlands in Wyoming. The determinants of 
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animal and plant behavior are never anthropo-
logical, political, economic, scientific, philo-
sophical, ethical, or religious.

Any transmissible culture, and especially a
high-technology culture, needs to be discrimi-
nated from nature. Boeing jets fly, as wild
geese fly, using the laws of aerodynamics. The
flight of wild geese is impressive. The infor-
mation storage system in goose genetics could,
in its own way, be the equal of that by which
Boeings fly. Some of the information in the
geese is transmitted nongenetically, as when
they learn migration routes by following other
geese. But geese do not form cumulative
transmissible cultures.

It is only philosophical confusion to remark
that both geese in flight, landing on Yellow-
stone Lake, and humans in flight, landing at
O’Hare in Chicago, are equally natural, and
let it go at that. No interesting philosophical
analysis is being done until there is insightful
distinction into the differences between the
ways humans fly in their engineered, financed
jets and the ways geese fly with their geneti-
cally constructed, metabolically powered
wings. Geese fly naturally; humans fly in arti-
facts.

2. NATURE AND WILDNESS

Nature goes back to Latin and Greek roots
for “giving birth” or “springing forth,” roots
that survive in pregnant, genesis, and native.
We also have the word wild, placed as an
adjective to nature. With this significant modi-
fier, some perspectives shift. We wish to make
it abundantly clear that we are referring to a
world outside the human sector. There is
spontaneous nature in humans, as when we
digest food. There is human nature, as when
parents care for children. In contrast there is
wild nature, elemental and spontaneous, with
humans out of the picture. The word wild is
already present in Old Teutonic, the precursor
of English, before 450 A.D., and means “not
domesticated” or “not cultivated.” The word
wilderness is found in Old and Middle Eng-
lish and means “land not farmed or settled,”
“land in its natural state” (Chipeniuk 1991).

But, comes a protest, etymologies develop
and the meaning of wild is obtained by contrast-
ing it with its foil, culture. Maybe we use a
word with a thousand-year history, but we use
it in the framework of a modern perspective,

one that comes out of Western science and a
high-tech culture. This can be seen even more
clearly when wild is loaded into our concept
of wilderness. Non-Western peoples typically
do not have the word wilderness in their vocab-
ulary, and even some Western languages (like
Spanish) do not have such a word.

Wilderness was once untamed, uncivil
nature, nature cursed after the fall of Adam,
savage nature beyond the “frontier” which it
was the American/European manifest destiny
to conquer. Only with the Romantic move-
ment, and still more recently with the modern
wilderness movement, did the current con-
cept of wilderness arise, a pristine realm
unspoiled by humans. Some of that was initi-
ated in Yellowstone when Americans, busy
taming the frontier, paused to wonder whether
they might not better save at least this region
of wild nature. A century later that ideal con-
tinues, as official policy: “The primary pur-
pose of the National Park Service in adminis-
tering natural areas is to maintain an area’s
ecosystem in as nearly pristine a condition as
possible” (Houston 1971).

But thereby we create a myth, these critics
say. Nature-wild is just one way we choose to
see nature, especially when we are on vacation
in Yellowstone. Wilderness so imagined is a
foil for our American culture, a romanticized
Garden of Eden. Wilderness enthusiasts have
a kind of archetypal, archaic longing for a
world with no people in it, imagining it as
pristine and pure.

David Lowenthal says: “The wilderness is
not, in fact, a type of landscape at all, but a
congeries of feelings about man and nature of
varying import to different epochs, cultures,
and individuals” (1964:36). David Graber
explains:

Wilderness has taken on connotations, and
mythology, that specifically reflect latter-
twentieth-century values of a distinctive Anglo-
American bent. It now functions to provide
solitude and counterpoint to technological
society in a landscape that is managed to
reveal as few traces of the passage of other
humans as possible. . . . This wilderness is a
social construct (1995:124).

Roderick Nash, tracing the history of
Wilderness and the American Mind, reaches a
startling conclusion: “Wilderness does not exist.
It never has. It is a feeling about a place. . . .

268 WESTERN NORTH AMERICAN NATURALIST [Volume 61



Wilderness is a state of mind” (1979). “Civi-
lization created wilderness” (1982:xiii). Wilder-
ness is a myth of the urbane, mostly urban,
mind. Wilderness is a filter-word with which
we color the nature we see. Wild is as much
construct as West.

Or so they say. But the trouble is that such
critics have so focused on wild as a word taken
up and glamorized in the term wilderness, that
they can no longer see that wild and wilder-
ness do have reference outside our culture. It
cannot count against wilderness having a suc-
cessful reference that some earlier peoples did
not have the word. Yes, wilderness is, in one
sense, a 20th-century construct, as also are
Krebs cycle, DNA, photosynthesis, and plate
tectonics. None of these terms were in presci-
entific vocabularies. Nevertheless, these con-
structs of the mind enable us to detect what is
not in the human mind.

Civilization creates wilderness? Lately yes,
originally no. More specifically, the U.S. Con-
gress, acting for its citizens, designates wilder-
ness. That is a legislative meaning of create,
not the biological meaning. Wilderness created
itself, long before civilization; everybody knows
that and it is only setting up conundrums 
to exclaim, “Civilization created wilderness.”
Wildness a state of mind? Wildness is what
there was before there were states of mind.

It ought not to be that difficult for Lowen-
thal, a geographer, to distinguish between the
wilderness idea, which has its vicissitudes in
human minds, and wilderness out there, wild
nature absent humans. A “congeries of feel-
ings of varying import to various individuals in
various epochs” is not any Yellowstone wilder-
ness worth saving. With more denotation with
the connotation, there is plenty of surviving
objective reference in the word.

We need then to identify what it is in nature
to which we so refer. Wild gets at those levels
in nature where there is mixed stability and
spontaneity, creative processes in conflict and
resolution. There is a mixture of order and
chaos. The reference is not ordinarily to mole-
cular or atomic scales. We do not usually think
of a single carbon atom as being wild, nor do
we describe crystal structures as being wild.
Crystal structures are too orderly. Wild retains
some of the “uncontrolled” or “unlawful” or
“spontaneously autonomous” elements. Origi-
nally, the reference is to nature outside human

plan and control. But within that domain, the
reference continues to nature outside simple
lawlike patterns. We do not control these events;
neither are they completely controlled natu-
rally. There needs to be more complexity; the
complexity needs to have broken symmetries.

Geomorphological and climatological pro-
cesses qualify better than simple physical and
chemical ones. There need not be living
things. Antarctica is wild. We probably think of
a moonscape as being wild; rocks and debris
are scattered there; meteors have left their
impact. But eclipses of the moon can be pre-
dicted to within microseconds for centuries
ahead; the clockwork regularity overwhelms
the spontaneity. The process is too automatic
to catch what we mean by wild. Mechanical is
not a synonym for wild. Wild needs more evi-
dent autopoiesis, more turbulence and ferment.

In biology the negentropic tendencies are
there working against the entropic tendencies,
generating and testing new possibilities. We
are inclined to think genetics more wild than
crystallography, although they are equal pro-
cesses in spontaneous nature. Many processes
may be determinate, but there will be the
intersection of causally unrelated lines, pro-
ducing novelty and unpredicted events. Indi-
vidual events rattle around in the statistics.
Recent science accentuates genuine contin-
gency, openness mixed with determinate laws.
The result, on landscape scales, is idiographic
places, beyond lawlike regularity. Yellowstone
is not celebrated as a place where the laws of
gravity are obeyed unexceptionally, or because
meiosis, mitosis, and photosynthesis take place
predictably there, as they do everywhere else.
Yellowstone is celebrated because it is like no
place else on Earth, no place else in the uni-
verse.

3. EXOTICS AND INVASIVES

On such wild landscapes, we also find
exotics, with the root meaning “from the out-
side.” Exotic too is an interesting word, espe-
cially because of its alternative meanings. On
the one hand, the usual meaning is “intriguing,”
“charming,” “beautiful” because unfamiliar.
When one visits botanical gardens, one searches
out the exotics. But the Yellowstone meaning
is “foreign,” “invasive.” When one visits Yellow-
stone, one despises the exotics. Exotics reduce
the wildness on the landscape.
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But why so? You can still have the unpre-
dictability, the contingency, and the spontane-
ity when exotics are introduced. Which exotics
end up where is as patchy as the mosaics on
natural landscapes. Conflict and resolution are
still taking place when purple loosestrife in-
vades a pond. If a vacant lot in a city is aban-
doned, weeds take over. Has not the lot gone
wild? Maybe Yellowstone has had some exotics
dumped into it; but the new plants are on
their own. They do their thing, beyond human
control. They might even increase biodiver-
sity, although exotics typically displace native
vegetation and are, after habitat destruction,
the biggest cause of biodiversity loss in the
United States (Enserink 1999).

Yes, but now the wildness is reduced. The
temporal continuity with the evolutionary past
is broken. The area is less pristine. Perhaps
wildness can eventually return. But meanwhile
the exotics are making the place unnatural. The
invasives are not adapted fits, having evolved
on other landscapes and been transported
here anomalously. Invasive means “entering by
an unlawful force.” These plants and animals
have not entered these ecosystems by any of
the lawlike natural processes that, in the wild,
govern community structure. They are, we
might say, feral. Feral does not mean “wild.”

Exotics do not contribute to what Aldo
Leopold called the “integrity, stability, and
beauty of the biotic community” (1968:224–225).
Charles Elton recognized this, half a century
ago: “We are living in a period of the world’s
history when the mingling of thousands of
kinds of organisms from different parts of the
world is setting up terrific dislocations in
nature” (1958:18). These exotics are, we might
say, weeds. But the word weeds now has an
atypical sense, since these plants are not out of
place, undesired, in our cultivated garden.
These plants are misplaced in the wild.

Exotics typically grow well in disturbed
soil, and humans disturb enormous amounts of
soil. So exotics are waifs of culture. One might
expect, however, that exotics will fail in wild
ecosystems, since they are not good adapted
fits. And that is often so. The invasives often
linger around culture, on roadsides, in fence
rows. One does not find them deep in the
wildlands—at least not at first. But there is
disturbed soil in nature as well as in culture,
and these plants can gradually invade native

places, as they have in Yellowstone. Say, if you
like, that they did so competitively; it is equally
true that they did so by assistance of boat and
plow.

We can take weed as a metaphor for the
whole. One doesn’t want a weedy landscape.
Initially this means a landscape where fields
and pastures are full of weeds that we dislike.
Later it means a landscape where wild nature
has been invaded with exotics. One doesn’t
want a garden with weeds. One doesn’t want a
national park, a natural park, with weeds. On a
small scale, relatively, Yellowstone becomes
the park of weeds, rather than an evolutionary
ecosystem. On a larger scale, Earth becomes a
weedy planet, rather than a biosphere.

Yes, comes a reply, but these weeds are
invasive and competitive, now on their own,
even if once brought to their new locations by
human transport. They are like everything
else wild, except that they manage to exploit
humans and their activities, and to live, wildly,
in the nooks and crannies of civilization. When
humans set aside wild sanctuaries and parks
on the periphery of their civilization, these
exotics are poised, ready to test their coping
skills in these pockets of wildness in the midst
of civilization. Stickseeds evolved to catch on
animal fur, but if several seeds catch instead
on a hiker’s britches and then are dislodged
half a mile down the trail, the resulting seed-
lings do not know whether they were carried
by animal or by human; it does not matter.
Admire them for their aggressive success; that
is what natural selection is all about, ongoing
now despite human interference.

It may matter, however, when the britches
are carried by jet plane to a different conti-
nent, where the sprouting seeds will not have
evolved as an adapted fit in the radically dif-
ferent ecosystem they come now to inhabit.
Once hemmed in by oceans, these plants play
hopscotch because of human travel. These
exotics are foreigners, spillovers from civiliza-
tion. They are like the foreign viruses that
land in New York or Los Angeles and upset
human health in cities, except that, instead,
these upset the health of the land.

Plants do move around on their own. They
invade new areas, as when climates change; and
one can, if one wishes, speak of naturally inva-
sive species. In prehistoric times, with melting
ice, species moved north variously from 200 to
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1500 meters per year, as revealed by fossil
pollen analysis. Spruce invaded what previ-
ously was tundra. Today, most exotic species
are introductions that crossed oceans by boat
or by air, thousands of times faster than any
natural plant movements. Most are rapidly
propagating species that arrived in North
America within the last 2 centuries. Once on
site, exotic species invade typically at a rate of
10 kilometers per year, up to 50 times as fast
as the slower natural rates, and upwards of 7
times more than even the faster natural rates.
Worse, present and predicted Yellowstone en-
vironments will favor exotic species that can
shift ranges of latitude, longitude, and elevation
at 40–50 times faster than anything observed
in the fossil record (Whitlock and Millspaugh
2001).

One way to see the problem is to take exotic
for a local symbol of ongoing global events.
Look forward a century. Michael Soulé says:

In 2100, entire biotas will have been assem-
bled from (1) remnant and reintroduced
natives, (2) partly or completely engineered
species, and (3) introduced (exotic) species.
The term natural will disappear from our
working vocabulary. The term is already mean-
ingless in most parts of the world because
anthropogenic [activities] have been changing
the physical and biological environment for
centuries, if not millennia (1989:301).

That forces us to ask whether we want an en-
tirely managed nature, where humans engineer
and assemble the biotas, or disassemble them
by ignorance and accident, a landscape where
nature has come to an end.

4. PRISTINE NATURE

These lines of argument converge with the
claim that the quest for pristine nature is a
hopeless quest, whether past, present, or future.
Humans are always around, Europeans now
and earlier the Native Americans. Humans are
the real “exotics.” On every continent except
Africa, humans are foreigners out of place, and
everywhere, Africa included, they have long
since displaced the native vegetation.

Just what wild nature was present in the
Americas before the Native Americans arrived
15,000 years ago cannot be known. Even if it
could be known, that was Pleistocene nature.
Climates have since changed; and nature today,

had it been left on its own, would be vastly
different from any Pleistocene nature. So the
quest for pristine nature out of the past is a
hopeless quest—so that argument goes. All we
have, or have ever had, is a dynamically chang-
ing nature occupied by humans.

The quest for pristine nature today is even
more hopeless—and now the argument takes
a new turn. The very idea of some humanless
nature separates humans from nature, falsely.
We have contaminated every landscape we
observe, if not by our hands with our tools,
then by our minds with our cultural baggage.
Edwin Dobb summarizes this view:

Any definition of nature that excludes people
and their works has always been indefensible,
as has any definition of humanity that excludes
nature. Wherever we stand, in the Gila Wilder-
ness or in Times Square, we stand at the inter-
section of nature and culture (1992:46).

By this logic, both Yellowstone and Times
Square are intersecting nature and culture. At
Times Square modern Americans intersect
nature, having rebuilt it dramatically there. In
Yellowstone, too, first the Native Americans
intersected nature on their hunts, and today
the tourists intersect nature as place of vaca-
tion. No human ever knows any nature with-
out intersecting with it.

But this is indiscriminate. Nature, as it
existed for millennia before people and their
works arrived, is quite a defensible definition
of nature. When “we” stand in the Gila or the
Absaroka Wilderness, there is an intersection
of the nature I behold and the cultural educa-
tion with which I behold it. But when I am no
longer standing there, there is a Gila and an
Absaroka Wilderness in which people and
their works are, if not entirely absent, insignif-
icant on the landscape beheld. Experiencing
the Gila Wilderness, Dobb reconsiders: “There
is something that lies beyond the reach of cul-
ture” (1992:50). To fail to discriminate between
the relative proportions of nature and culture
in the Gila Wilderness and in Times Square
only glosses over important issues about which
we are concerned both in understanding our
human place in nature and in our responsibili-
ties for its conservation.

Sometimes one encounters the objection
that the slightest human intervention has a
sort of totalizing effect and brings straightway
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the end of nature. This is like saying that the
whole moon is pristine no more because the
astronauts took a few steps on it, or that the
sky is not natural because some jet planes have
flown through it. Or that the Absaroka Wilder-
ness is not natural because some aborigines
traveled through it once and some backpack-
ers hike there today.

Is it the case that we have lost any possibil-
ity of letting Yellowstone be natural? In an
absolute sense this is true, since there is no
square foot on which humans have not dis-
turbed the predation pressures, nor any on
which rain falls without detectable pollutants.
But it does not follow that nature has absolutely
ended, because it is not absolutely present.
Answers come in degrees, with Times Square
on one end of a spectrum and the Absaroka
Wilderness on another. Events in Yellowstone
can remain 99.44% natural on many a square
foot, indeed on hundreds of square miles. We
can restore nature. We can put the wolves back
and clean up the air, and we have recently
done both. Wildness can return. Pristine nature
is relatively present in the sense (recalling the
language of the Wilderness Act) that the domi-
nant ecosystem processes are substantially
“untrammeled by man.”

This presumes that Yellowstone was wild
before the Europeans arrived. But that, it may
be protested, underestimates how much Native
Americans had already transformed the Amer-
ican landscape. J. Baird Callicott claims:

Upon the eve of the European landfall, most
of temperate North America was not . . . in a
wilderness condition—not undominated by
the works of man. . . . Most of temperate
North America was managed actively by its
aboriginal human inhabitants. In addition to
domesticating and cultivating an extraordi-
narily wide range of food and medicine
plants, native North Americans managed the
continent’s forest and savannah communities,
principally with fire. . . . The European
immigrants, in fact, found a man-made land-
scape, but they thought it was a wilderness
because it didn’t look like the man-made
landscape that they had left behind (1991:
241).

So pristine nature is a bad idea, because there
isn’t any.

Whether this is so is, in part, an ecological
question whether ecosystems were so thrown
out of balance that no wild nature remained.

In part, this is an anthropological question con-
cerning the practices of the pre-Columbian
peoples. The question is to be answered by
historical records, so far as these exist, and by
scientific analysis of the extent of altered
ecosystems. Philosophers have no particular
competence here about the empirical facts,
but they can analyze how these facts are incor-
porated into arguments to see whether the
conclusions reached plausibly follow.

Neither the Wilderness Act nor meaningful
wilderness designation requires that no humans
have ever been present, only that any such
peoples have left the lands “untrammeled.”
The land yet “retains its primeval character
and influence.” Paul Schullery, a recognized
Yellowstone authority, first answers the ques-
tion this way: Yellowstone’s “discovery” by
whites followed 10,000 years of occupation
and use by Native Americans, and the Native
Americans were “very aggressive land man-
agers.” But he goes on to quote Philetus Norris,
the park’s 2nd superintendent and an archae-
ologist, who noticed how rapidly the Indian
remains faded away, concluding that “these
Indians have left fewer enduring evidences 
of their occupancy than the beaver, badger,
and other animals on which they subsisted.”
Schullery adds, “In a sense, he was right”
(1997:11–12). The Indian presence was not
that exotic; it has faded away and nature has
returned.

The only Indian practice that might have
extensively modified the Yellowstone land-
scape is fire. Fire is also quite natural. Forests
in the Americas have been fire adapted for at
least 13 million years, since the Miocene
Epoch of the Tertiary Period, as evidenced by
fossil charcoal deposits. The fire process in-
volves fuel buildup over decades, ignition, and
subsequent burning for days or weeks; any or
all of the 3 may be natural or unnatural. Fire
suppression is unnatural and can result in
unnatural fuel buildup, but no one argues that
the Indians used that as a management tool,
nor did they have much capacity for suppres-
sion. The argument is that they deliberately
set fires. Does this make their fires radically
different from natural fires?

It does in terms of the source of ignition;
the one is a result of environmental policy
deliberation, the other of a lightning bolt. But
students of fire behavior realize that in dealing
with forest ecosystems on regional scales, the
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source of ignition is not a particularly critical
factor. Once the fire has burned 100 yards, the
vegetation cannot tell what the source of igni-
tion was. The question is whether the forest is
ready to burn, whether there is sufficient
ground fuel to sustain the fire, whether the
trees are diseased, how much duff there is,
and so on. If conditions are not right, it will be
difficult to get a big fire going; it will soon
burn out. If conditions are right, a human can
start a regional fire this year. If not, lightning
will start it next year, or the year after that.

In forests natural ignition sources are avail-
able on an order of magnitude (a few years)
that greatly exceeds the order of magnitude of
fuel buildup for burning (several decades). A.
Starker Leopold put it this way: 

If the area is ready to burn, it makes little
difference . . . whether the fire is set by light-
ning, by an Indian, or by [a park scientist], . . .
so long as the result approximates the goal of
perpetuating a natural community” (quoted
in Lotan et al. 1985:65). 

It is difficult to make the case that Native
American fires in Yellowstone, centuries ago, so
dramatically and irreversibly altered the nat-
ural fire regime that it is impossible to find
meaningful wildness there today.

Most of what we think of today in the United
States as pristine nature, much of that which
we have designated as wilderness areas or
parks, was infrequently used by the aborig-
ines, since such areas are often high, cold, arid
mountains or canyonlands difficult to traverse
on foot. There the Indians were seasonal or
transient hunters—for the same reasons that
the whites after them left those regions sparsely
settled. In places such as Yellowstone, the
Native Americans were “visitors who did not
remain.”

Just what did these Native Americans do to
manage the Grand Canyon, or Mount Rainier?
Or Yellowstone or, for that matter, the Great
Smoky Mountains? Or regional wetlands such
as the Everglades? Is there any designated
wilderness in which, on regional scales, the
fundamental ecosystemic processes today are
recognizably different from what they would
have been had there been no Native Ameri-
cans? That is a question for scientists to
answer, not philosophers. But, having posed
that question repeatedly to various ecologists,
I have not yet identified such an ecosystem.

5. MANAGED NATURE AND

NATURE AT AN END?

But now my critics will retort: You are suf-
fering from double illusion. Not only are you
deceived about the past; you are deceived
about the present. Even though the public
still equates national parks with primordial,
untouched wilderness, the reality is consider-
ably different. The very appearance and design
of national parks is based on social conventions,
for example, aesthetic and political ideologies,
that allow “land” to become “landscape.” Ethan
Carr claims:

The designed landscapes in national and
state parks, as works of art, directly express
the value society invests in preserving and
appreciating natural areas. Few other arts,
with the exception of landscape painting,
more fully explore this leitmotif of American
culture. Neither pure wilderness nor mere
artifact, the national park is the purest mani-
festation of the peculiarly American genius
which sought to reconcile a people obsessed
with progress with the unmatched price paid
for that advance: the near total loss of the
North American wilderness (1998:9).

We hire forest managers and park inter-
preters to teach us about nature in contrast to
culture. But the nature-in-contrast-with-cul-
ture view is the epitome of social constructs,
made in a self-consciously technological soci-
ety. In reality, there is no nature-culture dual-
ism; this is an artifact of the eyeglasses West-
erners wear when they look at nature.

One way to ask whether what we see in
Yellowstone is what our managers teach us to
see, this recently constructed American nature-
other-than-culture, is to ask: Is this National
Park Service distinction between nature and
culture only Western and modern? Or is some
such distinction transcultural?

In a 12th-century poem, The Owl and the
Nightingale, the poet remarks, “Their land . . .
isn’t civilized, rather it is a wilderness (wilder-
nisse)” (Dickins and Wilson 1951:54, line 95).
In Greece, Plato claims this as “the wisest of
all doctrines: that all things do become, have
become, and will become, some by nature,
some by art, and some by chance” (Laws,
10.888). In the Bible the Hebrews regularly
distinguish between their own activities and
those of wild nature, especially in Job and the
Psalms. The word wilderness occurs over 300
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times in the Bible. The Chinese anciently dis-
tinguished between nature and culture, a dis-
tinction found in the Analects of Confucius.

In fact, in an etymological study of the
word nature, C.S. Lewis concludes:

This, as it is one of the oldest, is one of the
hardiest senses of nature or natural. The
nature of anything, its original, innate charac-
ter, its spontaneous behaviour, can be con-
trasted with what it is made to be or do by
some external agency. A yew-tree is natural
before the topiatrist has carved it. . . . This
distinction between the uninterfered with
and the interfered with . . . [is] very primi-
tive. . . . What keeps the contrast alive . . . is
the daily experience of men as practical, not
speculative beings, [such as] the antithesis
between unreclaimed land and the cleared,
drained, fenced, ploughed, sown, and weeded
field (1967:45).

Every culture can, to some extent, see beyond
itself to a spontaneous nature, unaffected by
human agency. The very idea of culture, in
any form, has the sense of cultivation, of tak-
ing oversight, direction, and control of a found
natural process to redirect it. That contrast is
found wherever there are people with minds
and hands who act on the world to alter it,
revising the course of events that might natu-
rally have taken place.

Now it seems that the main idea in nature
is that the natural is not a human construct.
Intentional, ideological construction is exactly
what natural entities do not have; if they had
it, they would be artifacts. The main idea in
nature is that nature is not our idea. If so, why
cannot Yellowstone park interpreters, contrary
to Carr’s claim, so “design” the visitor’s expe-
rience as to facilitate the discovery of nature
in, with, and under culture, of pristine nature
yet present on this relatively wild landscape?

Maybe there can be some reasonable illusion
of a once primitive nature in Yellowstone, like
a museum piece on the landscape. But now a
new protest arises. This is backward looking,
because such landscapes are vanishing. Agree-
ing with Michael Soulé, only now enthusiasti-
cally endorsing the changes, Daniel Botkin
says: “Nature in the twenty-first century will
be a nature that we make. . . . We have the
power to mold nature into what we want it to
be” (1990:192–193). Of course he, like many
others, urges us “to manage nature wisely and
prudently”; and, to that end, ecology can

“instrument the cockpit of the biosphere”
(1990:200–201). That sounds like high-tech
engineering which brings wild nature under
our control, remolding it into an airplane that
we fly where we please.

So, it does seem possible to end nature by
transforming it into something humanized.
This has already been taking place, and the
future promises more, at an escalating pace.
Over great stretches of Earth, wild nature
already has been or likely will be diminished
in favor of civilization. Wild nature will never
again be the dominant determinant of what
takes place on inhabited landscapes.

What is the role of Yellowstone in such a
century of managed nature? Perhaps, the park
interpreters are looking backward, nostalgic
about a past that we really no longer have. Yel-
lowstone is quaint: a tiny corner of a continen-
tal landscape mostly managed for multiple
uses, this little bit being intentionally man-
aged to create an illusion of wild nature. But
really, nature is at an end, as the rest of the
landscape demonstrates. There is evidence for
this even in the park. Those exotics prove that
all we can have is nature modified by the
human presence. Even if we set policy to re-
move the exotics, we will still, for all that, have
managed nature, in this case, managed to min-
imize the exotics. The final philosophical les-
son is that wild nature is gone; the new millen-
nium is one of humans managing the Earth.

But for Yellowstone to accept such museum
status would be a great mistake. Why? Because
nature is always still present and potentially
active. Natural forces will flush out many
human effects, similarly to the way in which
natural effects themselves also are often washed
out. Indeed, some human impacts on nature
are quite ephemeral. Hiking through a forest
after a snow, one leaves Vibram sole bootprints,
which are unnatural artifacts contrasted with
the tracks of the rabbits. But the snow soon
melts, and both sets of tracks are gone.

Humans intervene; but, withdraw the
humans, and natural forces return and obliter-
ate the human effects. Wagon tracks of the
pioneers in the American West remain, in
some locations, a century and a half later. But
nature heals these scars; nature comes back.
“As for man, his days are like grass; he flour-
ishes like a flower of the field; for the wind
passes over it, and it is gone, and its place
knows it no more” (Psalm 103.15). These
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ancient words come to mind when one is 
standing at the last traces of a pioneer home-
stead, long since abandoned, and now so
reclaimed by nature that, were it not for a few
rocks from the collapsed chimney, it would be
difficult to tell where the house stood. One
sometimes wishes to pack out the trash; but,
in other moods, there is something moving
about leaving the old cans and watching what
nature does with them. Here we need for our-
selves the lesson we learned about the Native
Americans. When Europeans too draw back,
nature comes back, perpetually present. Yel-
lowstone interpreters need to teach that, not
that nature was once upon a time here and is
now gone.

6. YELLOWSTONE NATURE

AS AN END IN ITSELF

Nature neither is, nor ought to be, ended.
Rather, humans can and ought to make nature
an end in itself, complementary to their own
human ends. We do not want entirely to trans-
form the natural into the cultural, nor do we
want entirely to blend the cultural into the
natural. Neither realm ought to be reduced to,
or homogenized with, the other. Otherness is
not, ipso facto, a bad thing. We do not want a
humanized nature, shore to shore, ocean to
ocean, pole to pole. Humanizing it all does not
make us a part of it; rather, the dominant
species becomes still more dominant by man-
aging all. That, ipso facto, sets us apart: the
one species that manages the place.

Rather, we humans, dominant though we
are, want to be a part of something bigger; and
this we can only do by sometimes drawing
back to let others be. This we do precisely by
recognizing the otherness of wildness, by set-
ting aside places such as Yellowstone as sanc-
tuaries and wilderness where we will not
remain, which we will not trammel. Insisting
on being part of everything, even wilderness,
separates us out just because nothing else on
earth so insists.

Wildness is a place where humanity is
absent, not completely, but nearly enough to
allow independence. Humans need to see
their lives in a larger context, as embedded in,
surrounded by, evolved out of a sphere of 
natural creativity that is bigger than we are.
Humans who cannot do this never know who
they are and where they are; they live under

some other and inadequate mythology. In that
sense, it is important that this nature is inde-
pendent of humans. Setting aside wild places,
fauna and flora, as ends in themselves will do
two good things. It will respect the intrinsic
value in such pristine nature. It will conserve
places on the planet where humans, when
they visit there, can experience their lives in
this larger context. Either of these benefits is
sufficient reason for saving nature as an end in
itself.

Yes, there is a sense in which Yellowstone
Park, so designated by the U.S. Congress, is an
artifact of American culture. Perhaps it is nec-
essary to manage Yellowstone so as to restore
wildness, for instance, to minimize or remove
the exotics. But we ought not to be so easily
led to think there is no wild nature on the Yel-
lowstone landscape, yes, even pristine nature.
That is what tourists come to Yellowstone to
see. Make Yellowstone, as it was founded to be,
“a pleasuring-ground for the benefit and en-
joyment of the people” (U.S. Congress 1872).
Better still, let this be a place where people
encounter wild nature and take pleasure in it.
Teach them that nature is the ground of cul-
ture, that culture transcends nature, that
humans emerge from nature. But teach them
too that nature is a womb that humans never
entirely leave.

Nature can do much without culture—the
several billion years of evolutionary history are
proof of that. Culture, appearing late in nat-
ural history, can do nothing without nature as
its ground. To use a word in some disfavor, in
this foundational sense, nature is the given. To
take a favored word and turn it on its head,
rather than culture constituting nature, nature
here is constitutional for culture. No culture
can ever be independent of nature. Culture will
always have to be constructed (constituted)
out of nature.

Let Yellowstone teach, in conclusion, that
nature is forever lingering around. There is a
sense in which nature has not ended and never
will. Humans depend on nature for their life
support. Humans use nature resourcefully,
modifying and rebuilding it in their cultures.
Humans stave off natural forces, but the nat-
ural forces can and will return, if one takes
away the humans. Let Yellowstone be the place
that Americans can forever encounter once
and future nature.
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Grizzly bears (Ursus arctos horribilis) in the
contiguous United States were extirpated
from 98% of their historical range between
1850 and 1950 by human-caused mortality,
often precipitated by competition for space
and resources (U.S. Fish and Wildlife Service
1993). The Greater Yellowstone Area (GYA)
contains 1 of the 2 largest remaining grizzly
bear populations in the contiguous United
States, in an area of about 23,000 km2. Grizzly
bears in this region were listed as threatened
under the U.S. Endangered Species Act in
1975 for several reasons, including “the pre-
sent or threatened destruction, modification,
or curtailment of habitat or range” (U.S. Fish
and Wildlife Service 1993). In the GYA, dele-
terious human influences persist in the form
of human developments, roads and trails, direct
mortality, loss of secure habitat, and availabil-
ity of human foods. Humans also have affected
grizzly bears by introducing exotic or nonna-
tive species.

Yellowstone’s grizzly bears have coexisted
with exotic species for decades. However, the
spread of exotics and their effects on Yellow-
stone’s bears have escalated in recent years.
Of all the exotics potentially influencing griz-
zly bears in the GYA, a select group is notable
as being of either the greatest benefit or the
greatest harm. This group includes lake trout
(Salvelinus namaycush), white pine blister rust
(Cronartium ribicola), domesticated livestock
such as cattle and sheep, bovine brucellosis
(Brucella abortus), common dandelion (Tarax-
acum officinale), and nonnative clovers (Tri-
folium spp.).

In this paper we present an overview of
these nonnatives and their current and poten-
tial future effects on Yellowstone’s grizzly bears.
We review and interpret existing relevant in-
formation, including published scientific stud-
ies and data recently collected by manage-
ment agencies in the Yellowstone region. We
first address nonnatives that are potentially
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important sources of nutrition and then non-
natives that are, directly or indirectly, poten-
tially important threats to bears.

SITE

The Yellowstone grizzly bear population
currently occupies over 6 million acres (Fig. 1)
in Montana, Idaho, and Wyoming (U.S. Fish
and Wildlife Service 1993). This encompasses
lands managed by Yellowstone (YNP) and
Grand Teton national parks (including the
John D. Rockefeller Memorial Parkway) and
the Gallatin, Shoshone, Bridger-Teton, Targhee,
and Beaverhead national forests as well as
some state and private lands (Gunther et al.
1999). Detailed descriptions of the recovery
area can be found in U.S. Fish and Wildlife
Service (1993, 1994) and Mattson et al. (1991,
1992).

EXOTIC FOODS

Nonnative Clovers 
and Dandelion

Nonnative clovers and dandelion are wide-
spread in the Yellowstone region. Red and
alsike clovers (Trifolium repens and T. hybridum,
respectively) and dandelion arrived in the
New World probably along with the first live-
stock from Europe. Their spread to the GYA
was inevitable and was abetted by cultivation
of hay in and around YNP, as well as transport
of feed into backcountry areas for horses and
cattle. There were a surprising number of live-
stock and haying operations in YNP itself dat-
ing back to the late 1800s (Haines 1996,
Meagher and Houston 1998). The spread of
nonnative clovers and dandelions probably
proceeded apace with the well-documented
invasion of common timothy (Phleum pratense)
between the 1880s and 1950s (Houston 1982,
Meagher and Houston 1998). More recently,
these weedy species have continued to spread
on their own along roads and trails aided, in
the case of clovers, by the seeding of roadbeds
by managers on non-park lands. Even more
dramatically, red and alsike clover were broad-
cast-seeded on U.S. Forest Service lands in the
wake of extensive fires during 1988 to stabilize
denuded steep slopes and valley bottoms.

Grizzly bears eat dandelion and nonnative
clovers wherever these plants are common in
grizzly bear range (Mattson 1990). In Yellow-

stone most consumption of dandelions and
clovers by bears occurs between May and
August, with use of dandelion peaking earlier
(May and June) and use of clover peaking later
(July and August). Heaviest grazing of nonna-
tive clovers by bears occurs on dense patches
found in low-elevation meadows (Graham 1978,
Gunther 1991). Grazing by bears at these sites
can be intense enough to maintain a grazing
lawn typified by persistent regrowth of succu-
lent foliage stimulated by the heavy cropping.
It is not uncommon to find 5 to as many as 50
bear feces at such sites during July. Sites where
bears graze dandelions are less well defined,
but they are typified by an abundance of dan-
delions and other forbs (Mattson 2000).

There is no evidence that use of nonnative
clovers and dandelion has a population-level
effect on either birth or death rates of grizzly
bears (Mattson 1998, 2000, Pease and Mattson
1999). As with many other lower-quality foods,
however, clover and dandelions can be a sub-
stantial source of energy for individual bears
for abbreviated periods of time (Graham 1978,
Gunther 1991). Overall, the low return of net
digested energy obtained from clover and
dandelions compared to trout, ungulates, and
pine seeds (Mattson et al. 1999) and the gen-
erally small fraction of time devoted to grazing
these foods (Mattson et al. 1991, Mattson 2000)
suggest that population-wide effects on fecun-
dity would be minor.

There is evidence that use of clover, in par-
ticular, can lead to elevated conflicts between
grizzly bears and humans (unpublished data,
Bear Management Office, YNP). This occurs
when clover along roads, backcountry trails, or
near human developments attracts bears to
these areas where they are more likely to en-
counter humans. Increased exposure to humans
can lead bears to lose their fear of man, result-
ing in an increase of bear-human conflicts and
human-caused grizzly bear mortalities (Gun-
ther 1994, Gunther et al. 2000).

To date, there has been little control of non-
native clovers or dandelions by managers of
public lands. Managers have often been respon-
sible for the propagation of clover. Compared
to other invasive exotic plants that are the
focus of management, clovers and dandelions
are quite benign. It is unlikely that resources
will be allocated for the control of nonnative
clovers and dandelion in the near future.
Thus, these beneficial exotic foods will likely
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remain available to bears. However, given local
problems with roadside or trailside conflicts
arising from grizzly bear use of clover, control
of clover in these locations might be consid-
ered when secondary negative effects are miti-
gated and such control is within the scope of
governing policies.

Livestock

Grizzly bears prey on domestic cattle, sheep,
and occasionally horses in areas where these
nonnatives have been introduced into grizzly
bear range. Livestock are potentially a high-
quality, abundant food source for bears in the
GYA. However, livestock also compete with
bears for some vegetal foods (Jorgensen 1983,
Stivers and Irby 1997), and bears that persis-
tently prey on livestock are usually killed in
control actions. Historically, predator control

of livestock-depredating carnivores was wide-
spread (Anderson et al. 1997) and contributed
significantly to the grizzly bear’s decline
throughout the western United States (Storer
and Tevis 1955, Brown 1985).

In the Yellowstone region most livestock
producers winter their livestock on private land,
and they then pay a fee to the federal govern-
ment to graze their livestock on public land
(grazing allotment) during the summer season
(Mack et al. 1992). There are approximately
392 active grazing allotments encompassing
16,642 km2 (35%) of public land in the GYA
(Mack et al. 1992). Approximately 105,000
sheep, 77,000 cattle, and 1,000 horses (Mack
et al. 1992) seasonally occupy these allotments.
In comparison, there are an estimated 56,000
elk (Cervus elaphus), 6,000 moose (Alces alces),
and 4,000 bison (Bison bison) in the GYA (U.S.
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Fish and Wildlife Service 1994). Thus, live-
stock are potentially both a significant source
of nutrition for bears and competitors for veg-
etal bear foods.

Most grizzly bears will opportunistically prey
on livestock (Knight and Judd 1983, Mattson
1990). The majority of grizzly bear depreda-
tions on livestock occur from mid- to late June
through September while livestock are being
grazed on public land (Murie 1948, Jorgensen
1983, Anderson et al. 1997). From 1992 to
1998, of the 301 reported incidents of grizzly
bear depredations in the Yellowstone ecosys-
tem, 84% occurred on federal grazing allot-
ments, 15% on private lands, and 1% on state
lands (Gunther et al. 1993, 1994, 1995, 1996,
1997, 1998, 1999). Old-age male bears are most
likely to become chronic depredators of cattle
(Mattson 1990, Anderson et al. 1997).

Livestock are potentially an important source
of energy for Yellowstone’s grizzly bears. At
approximately 4.0–5.5 kcal ⋅ g–1, meat from
native ungulates and domestic livestock is one
of the most concentrated sources of net
digestible energy available to bears in the
GYA (Mattson et al. 1999). Individual bears
can consume numerous cattle or sheep (Ander-
son et al. 1997). In addition to predation, griz-
zly bears also scavenge livestock that die from
other causes. Even though individual bears
may obtain considerable energy from livestock,
there is no clear evidence that use of domestic
livestock translates into a significant popula-
tion-level increase in female fecundity (Matt-
son 2000). Moreover, given that males depre-
date on livestock more often than females
(Anderson et al. 1997), such a population-level
effect would be unexpected.

Any positive population-level effect on
grizzly bear birth rates is likely negated by the
higher death rate of bears that repeatedly kill
livestock. Between 1996 and 1999, four grizzly
bears involved in livestock depredations were
captured and euthanized in control actions.
An additional 19 grizzly bears were captured
and relocated to areas away from livestock graz-
ing allotments (Gunther et al. 2000); relocated
bears typically exhibit higher mortality (Blan-
chard and Knight 1996). Total livestock-related
grizzly bear mortality may be underestimated
as some incidents are not reported (Jorgensen
1983).

The number of livestock depredations by
grizzly bears in the GYA is increasing (Gun-

ther et al. 2000). Between 1996 and 1999, we
documented 265 livestock depredations in the
GYA; during 1992–1995 there were 120 depre-
dations (Gunther et al. 2000). Most of the in-
crease in incidents during 1996–1999 occurred
outside the designated grizzly bear recovery
zone (U.S. Fish and Wildlife Service 1993,
Gunther et al. 2000). At present, highly selec-
tive control of livestock-depredating grizzly
bears has resulted in removal of only the most
chronic depredators. Depredation on livestock
will likely continue to increase as grizzly bear
activity outside the designated recovery zone
increases. At some point the level of public
tolerance of grizzly bear depredations on live-
stock will likely be exceeded, especially in
areas far from the recovery zone boundary.
Predator control actions against depredating
grizzly bears will likely increase as well. The
interface areas between occupied grizzly bear
habitat and livestock-producing agricultural
areas are likely to be a continual challenge to
grizzly bear managers in the Yellowstone region.

EXOTIC THREATS

Bovine Brucellosis

Bovine brucellosis is a nonnative bacterial
disease of ungulates, causing placentitis, metri-
tis, and abortion in newly infected individuals.
The precise origin of this disease in North
America is not known, but domestic cattle im-
ported from Europe were the likely vector
(Meagher and Meyer 1994). Transmission of
brucellosis occurs through contact with infected
tissue such as aborted fetuses, birth mem-
branes, or vaginal discharges from infectious
animals (U.S. National Park Service 2000).
Although the disease affects reproduction in
wild ungulates, the primary management con-
cern in the GYA is potential transmission from
wild ungulates—primarily bison and elk—to
domestic cattle. The first known case of bru-
cellosis in Yellowstone bison occurred in 1917
(Meagher and Meyer 1994, U.S. National Park
Service 2000). Currently, both bison and elk in
the GYA maintain endemic brucellosis.

Carnivores are exposed to brucellosis when
preying on infected ungulates or feeding on
infected carrion. Blood samples from grizzly
bears in the GYA exhibited a 17% (n = 69)
seroprevalence to brucellosis, suggesting bears
are exposed to the disease through contact
with infected ungulates (K. Aune, Montana
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Department of Fish, Wildlife and Parks, per-
sonal communication). However, there is no
evidence the disease negatively impacts repro-
ductive performance in any carnivore. Although
the direct effect of brucellosis on grizzly bears
is unknown, it is probably negligible. Brucel-
losis is likely to impact the Yellowstone grizzly
bear population indirectly, if reductions in
ungulate populations are instituted for disease
management.

Until 1968 bison and elk were maintained
at low numbers within YNP by direct reduc-
tions (Houston 1982). Following termination
of this program, numbers of elk and bison and
amount of biomass associated with bison and
elk increased significantly (Fig. 2; Singer and
Mack 1993). Changes in climate during the
early 1980s, to drier winters and wetter sum-
mers, also may have contributed to this increase
(Despain et al. 1986, Engstrom et al. 1991,
Balling et al. 1992). For almost 30 years, the
YNP bison herd grew steadily, increasing 10-
fold by 1996 (U.S. National Park Service 1997).
Within the last 2 decades, changes in move-
ments led to increased wintertime use of areas
outside YNP by bison (Meagher 1989). These
changes in distribution increased the potential
for transmission of brucellosis to domestic cat-
tle and brought this issue to the forefront of
public and scientific debate.

Planning for control of brucellosis in or near
YNP is currently underway (U.S. National
Park Service 2000). Interestingly, brucellosis
itself is not expected to have an effect on
ungulate populations in the Yellowstone region
(Meagher and Meyer 1994, U.S. National Park
Service 2000). Rather, management of native
ungulates to reduce exposure of cattle to the
disease may have a greater impact on numbers
and distributions of bison. Over 2000 bison
were killed between 1994 and 1999 in attempts
to limit their movement into agricultural areas
(U.S. National Park Service 2000; G. Kurz, YNP,
personal communication). Current management
plans include the possibility of maintaining
bison herds at substantially lower levels than
those of the late 1980s. Thus, this disease stands
to affect the GYA grizzly population mostly
through a management response to the real, 
or perceived, threat of bovine brucellosis to
domestic cattle.

Currently, the GYA supports some of the
highest native ungulate densities in North
America (Mattson 1997). There was a strong

positive relationship between estimated annual
standing biomass of ungulates and minimum
grizzly bear population estimates (Fig. 2).
Although this correlation does not prove cause
and effect, it adds further supportive evidence
that the availability of ungulates may have a
positive influence on the Yellowstone grizzly
bear population.

Grizzly bears in the GYA are unique among
interior North American populations in their
substantial consumption of ungulates (Craig-
head and Mitchell 1982, Mattson et al. 1991,
Mattson 1997). Recently, N15 isotopes in griz-
zly bear hair were used to index the propor-
tion of meat in grizzly bear diets in the GYA
(Hildebrand et al. 1999). Findings indicate that
ungulate meat comprises almost half of the
annual energy intake of adult females and over
half for adult males (Hildebrand et al. 1999).
Of all ungulate species consumed by grizzly
bears, bison are used with disproportionately
greatest frequency and intensity, contributing
24% of total ungulate biomass consumed (Green
et al. 1997, Mattson 1997). Because ungulates
are one of the most concentrated sources of
net digestible energy available to Yellowstone’s
grizzly bears (Mealey 1975, Pritchard and
Robbins 1990, Craighead et al. 1995, Mattson
et al. 1999), availability of ungulates—espe-
cially bison—potentially affects fecundity of the
grizzly bear population.

Availability of ungulate meat may influence
levels of human-caused grizzly bear mortality.
Numbers of bear-human conflicts and human-
caused bear mortalities are negatively corre-
lated with availability of high-quality natural
foods (Mattson et al. 1992, Gunther et al.
2000). Any significant reduction in ungulate
numbers to control the spread of brucellosis
may contribute to increases in bear-human
conflicts and human-caused grizzly bear mor-
talities, especially during shortages of other
natural foods.

Lake Trout

Yellowstone Lake is home to the largest
inland population of native cutthroat trout
(Oncorhynchus clarkii) in the world. Lake
trout were discovered in Yellowstone Lake in
1994. Since then, Yellowstone anglers have
caught thousands of lake trout, and tens of
thousands have been caught in gill nets set by
YNP Aquatic Resources staff (Mahony et al. in
preparation). Lake trout are not native to the
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GYA; they were stocked in historically barren
Lewis Lake, approximately 7 miles from Yellow-
stone Lake in 1896. Although the exact origin
of lake trout in Yellowstone Lake is not known,
they likely came from Lewis Lake. Recent
catches of lake trout from Yellowstone Lake
revealed a reproducing population, with some
25+-year-old individuals, indicating lake trout
have existed in Yellowstone Lake for some
time (Mahony et al. in preparation).

Lake trout are major piscivorous predators
that threaten to reduce Yellowstone Lake’s
native cutthroat trout population and adverse-
ly affect numerous wildlife species that depend
on the cutthroat (Kaeding et al. 1996). The
long-term impact of the illegally introduced
lake trout on cutthroat trout is potentially sub-
stantial (McIntyre 1995, Kaeding et al. 1996,
Ruzycki and Beauchamp 1997). Lake trout have
reduced native cutthroat trout populations 
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Fig. 2. A, Numbers of bison and northern range elk in YNP, 1967–1997; B, estimated metric tons of standing ungulate
(bison and northern range elk) biomass from 1967 to 1997 in Yellowstone National Park. Annual counts of the northern
range elk and YNP bison populations are from NPS (1997). Estimates of standing biomass of elk and bison in the Yellow-
stone ecosystem were calculated using annual ungulate counts, estimated sex and age composition of ungulate popula-
tions, and estimates of edible dry weight biomass available from different sex and age classes of elk and bison. Estimates
of average sex and age composition for the northern range elk were calculated from Houston (1982). Average sex and
age composition estimates for YNP bison were from J. Mack (National Park Service, personal communication) and K.
Frey (Montana Fish, Wildlife, and Parks, personal communication). Estimates for dry weight of edible meat available
from different sex and age classes of elk and bison were from Mattson (1997). Grizzly bear minimum population esti-
mates and ungulate biomass were positively correlated (r = 0.74) between 1975 and 1996 before reductions in bison and
wolf reintroduction occurred.



in western North American lakes including
Bear Lake, Utah; Lake Tahoe, Nevada; Jack-
son Lake, Wyoming; and Heart Lake, Yellow-
stone National Park (Ruzycki and Beauchamp
1997). 

Significant reduction of cutthroat trout pop-
ulations in Yellowstone Lake will alter ecosys-
tem processes, including energy flow to con-
sumers at higher trophic levels. These con-
sumers include 28 known terrestrial and avian
species, including grizzly bears (Schullery and
Varley 1995). Cutthroat trout are vulnerable to
terrestrial and avian predators because they
spawn in tributaries and use shallow water
within Yellowstone Lake. By contrast, because
lake trout primarily use deep waters, they are
unavailable to this same suite of predators
(Schullery and Varley 1995, Kaeding et al.
1996).

Because of their current abundance, high
digestibility, and energy content (Pritchard and
Robbins 1990), cutthroat trout are an impor-
tant part of the diet for numerous grizzly bears
(Reinhart and Mattson 1990, Mattson and Rein-
hart 1995). Despite the limited distribution of
fishable cutthroat trout spawning streams, bears
from a large portion of the ecosystem likely
consume cutthroat trout at some point in their
lives (Mattson and Reinhart 1995).

A substantial number of grizzly bears in the
GYA are known to use spawning cutthroat
trout. Results from a lake-wide survey of all
Yellowstone Lake spawning streams during
1987 estimated a minimum of 44 autonomous
bears using these streams (Reinhart and Matt-
son 1990). Analysis of DNA from hair samples
collected on selected spawning streams be-
tween 1997 and 1999 identified 85 individual
grizzly bears (including dependent young) on
these streams (Haroldson et al. 2000). This
corresponds to approximately 10–30% of the
GYA bear population past the age of weaning
(Eberhardt and Knight 1996).

Lake trout may already be affecting Yellow-
stone Lake cutthroat trout abundance. Contin-
ued monitoring of front-country cutthroat
trout spawning streams near Lake and Grant
villages showed a decline in the relative abun-
dance of cutthroat trout from the late 1980s
through the mid-1990s. However, in recent
years spawning runs have increased to earlier
levels on most streams around Yellowstone
Lake, but have continued to decline in West
Thumb streams (Fig. 3; Haroldson et al. 2000).

The decline of spawning cutthroat trout in
West Thumb streams may be an early indication
of impacts from lake trout. Most lake trout
currently occur in the West Thumb area of
Yellowstone Lake, despite the removal of thou-
sands by anglers and park managers (Mahony
et al. in preparation).

The prognosis for Yellowstone Lake’s cut-
throat trout is potentially grim. Fisheries biol-
ogists have concluded that there is only a
slight chance of eliminating lake trout from
Yellowstone Lake (McIntyre 1995). They also
predict the native cutthroat trout population
could be reduced by ≥70% if nothing is done
to suppress lake trout. However, there is at
least a 50% chance that effective control mea-
sures could be instituted (McIntyre 1995).
Mechanical measures used by YNP managers
to control lake trout include lake-wide gill-
netting, capture on spawning grounds, and
directed angling. During 1995–2000, catches of
lake trout in Yellowstone Lake increased from
200 ⋅ year–1 to over 13,000 ⋅ year–1 (Mahony
et al. in preparation). Yellowstone National
Park intends to continue efforts to reduce lake
trout numbers and maintain native cutthroat
trout populations at levels sufficient to ensure
viability and their role as an important ecolog-
ical component in the GYA.

White Pine Blister Rust

White pine blister rust arrived from Eur-
asia in North America near Vancouver, British
Columbia, in 1910. This fungus infects 5-nee-
dled pines and was first noticed in western
white pine (Pinus monticola) and whitebark
pine (P. albicaulis) in 1921 and 1926, respec-
tively (Hoff et al. 1994). Of all pines affected
by blister rust, whitebark pine is among the
least resistant. Over 99% of all trees are sus-
ceptible to infection, and of those that become
infected, virtually none survive (Hoff et al.
1994). Thus, in areas where blister rust has long
been established, almost all whitebark pine
are either infected or dead (Kendall 1995).
Blister rust spread rapidly south and east and
was known from the GYA as early as the
1940s. Following the initial spread, progres-
sive, dramatic losses of whitebark pine to blis-
ter rust were documented between the 1960s
and the present, especially in areas subject to
maritime climatic influences (Keane and Arno
1993, Keane and Morgan 1994, Keane et al.
1994). In the Yellowstone ecosystem, rates of
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infection have increased from 0–7% in the
1960s to 9–54% in the 1990s, depending on
the location (Smith and Hoffman 1998). The
prognosis for the future in Yellowstone is in-
evitable spread of the disease and, along with
it, eventual loss of most whitebark pine (Smith
and Hoffman 1998, Koteen 1999).

Currently, whitebark pine is abundant in
the Yellowstone area. Forests containing mature
whitebark pine cover 26% of the landscape
(Mattson 2000). Whitebark pine grows to
maturity at elevations >2400–2600 m (Matt-
son and Reinhart 1990). Because of this high-
elevation distribution, stands of mature white-
bark pine are typically far from most human
facilities or places where humans are other-
wise active.

Yellowstone’s grizzly bears make frequent
and substantial use of the large, fatty seeds of
whitebark pine (Mattson and Reinhart 1994).
During some years pine seeds can comprise
the majority of food consumed by bears
ecosystem-wide. Consumption peaks during
August–October, concurrent with maturation
of cones and their harvest by red squirrels
(Tamiasciurus hudsonicus). This late growing-
season period corresponds with hyperpha-
gia—a time of intensive feeding among bears

prior to hibernation. Use of whitebark pine
seeds by Yellowstone’s grizzly bears has sub-
stantial effects on their birth and death rates.
These benefits result from the energy and
nutrients obtained from pine seeds, as well as
from the behaviors associated with foraging on
this food. Whitebark pine seeds provide sub-
stantial concentrations of fat and energy (Matt-
son et al. 1999) and are used twice as often by
female grizzly bears as by males (Mattson 2000).
Compared to females that consume few pine
seeds, females that use whitebark pine seeds
extensively reproduce at an earlier age, pro-
duce litters more frequently, and produce
more 3-cub litters (Mattson 2000). Death rates
of mature grizzly bears also nearly double dur-
ing years when pine seed crops are small com-
pared to years when they are large (Pease and
Mattson 1999). Grizzly bears tend to spend
most of their time in remote whitebark pine
forests during years when seed crops are large.
By contrast, during years when seed crops are
small, bears spend much more time at lower
elevations, which tend to be nearer human
facilities, and consequently experience much
more contact and conflict with humans (Matt-
son et al. 2001) Thus, high-elevation white-
bark pine stands act as a refuge where grizzly
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of Yellowstone Lake (from Haroldson et al. 2000).



bears have little contact or conflict with humans
(Mattson et al. 1992).

Blister rust is poised to take a major toll on
whitebark pine in the GYA. If it does, grizzly
bears in the GYA will be negatively affected.
With the loss of most whitebark pine, birth
rates of grizzly bears will likely decline as
death rates increase. Unfortunately, there are
no strategies by which the short-term effects
of blister rust on whitebark pine can be fore-
stalled. Deliberate or natural selection of blis-
ter rust–resistant genomes will be beneficial
only over the very long term (Hoff et al. 1994),
with success contingent on reestablishment of
whitebark pine in areas where it was elimi-
nated. Of all the exotics affecting Yellowstone’s
grizzly bears, white pine blister rust threatens
to be the most damaging.

CONCLUSIONS

Among the exotic species present in the
GYA are those of potential benefit and those of
potential harm to Yellowstone grizzly bears.
However, when viewed in their totality, exotic
species have caused or are likely to cause
more harm than good. Although important to
some bears, clover and dandelion provide lit-
tle net digested energy compared with bison,
trout, and whitebark pine seeds. Clover and
dandelion provide about 1.5–2.0 kcal ⋅ g–1 in
contrast to 4.0–5.5 kcal ⋅ g–1 for bison, 4.5 kcal
⋅ g–1 for trout, and 2.5 kcal ⋅ g–1 for pine seeds
(Mattson et al. 1999). By contrast, livestock are
a concentrated source of energy, similar to
bison, and are used by a small proportion of
grizzly bears living on the periphery of the
GYA and provide a small part of the total meat
ingested by Yellowstone’s grizzly bears (Mattson
et al. 1991, Mattson 1997). Livestock depreda-
tions can also lead to removal of bears from
the ecosystem and erode public support for
grizzly bear conservation. Because of their
association with humans or human facilities,
exotic foods can increase the frequency of con-
flicts between grizzly bears and humans, thus
leading to deleterious outcomes that likely out-
weigh energetic benefits to the bear population.

Unfortunately, managers typically have few
options to mitigate or contain the impacts of
exotics on Yellowstone’s grizzly bears. The
U.S. National Park Service (NPS) is mandated
to prevent the spread and establishment of
nonnative species (U.S. National Park Service

1988). Currently, YNP administers programs
to monitor and aggressively control lake trout
in Yellowstone Lake and noxious weeds through-
out the park at a cost of hundreds of thousands
of dollars annually (Olliff et al. 2001, Mahony
et al. in preparation). There is ongoing research
on the use of fire and other silvicultural tools
to limit the effects of blister rust in whitebark
pine ecosystems (Keane and Arno 2001). How-
ever, management strategies focused on non-
native species are costly and of unknown effi-
cacy. Further complications arise in the case of
white pine blister rust because management
options have been limited by loss to wildfires
in 1988 of about 25% of forest stands contain-
ing mature whitebark pine in YNP (Renkin
and Despain 1992, Mattson et al. 2000).

Ungulate meat may become even more im-
portant to the nutritional well being of Yellow-
stone’s grizzly bears if whitebark pine seeds
and cutthroat trout are reduced by introduced
exotics. The NPS is developing plans to manage
brucellosis (U.S. National Park Service 2000).
Unfortunately, the effects on grizzly bears of
various proposals to control brucellosis have
not yet been rigorously examined. Any pro-
grams that reduce ungulate numbers will
likely exacerbate the effects of whitebark pine
and cutthroat trout declines. Short-term bear-
human conflicts and related human-caused
grizzly bear mortalities will likely increase,
especially during years when natural bear foods
are in short supply. Long-term reproductive
success will be reduced because of older age
of first reproduction, longer between-litter in-
tervals, decreased litter size, and lower cub
survival (Boyce et al. 2000, Mattson 2000). In
essence, the grizzly bear population will likely
exhibit characteristics of a nutritionally stressed
population similar to those observed a decade
following the closure of the open pit garbage
dumps in 1972 (Craighead et al. 1995).

We have focused on a few exotic organisms,
but others could affect Yellowstone grizzly bear
habitat and foraging opportunities. Noxious
weeds can impact ecosystem processes, lead-
ing to changes in native plant community
structure and distribution as well as foraging
and abundance of ungulate and small mammal
populations (Kurz 1995, Trammel and Butler
1995, Thompson 1996). In aquatic systems
recent findings of New Zealand mudsnails
(Potamopyrgus antipodarum) and whirling dis-
ease (Myxobolus cerebralis) in the Yellowstone
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drainage (Mahony et al. in preparation) may
further reduce native cutthroat trout abun-
dance. Additional exotics with the potential to
affect bears may be present in the GYA, or
they could arrive in the near future and have
not yet been identified.

The most troubling aspect of exotic species,
especially with respect to bears, is that their
potential negative impacts have only begun to
unfold. At best, exotic organisms increase the
uncertainty of any projection for Yellowstone’s
grizzly bear population. At worst, exotics could
lead to declines in carrying capacity, fecundity,
and overall resilience to long-term stressors.
Certainly, the potential effects of exotics need
to be considered in long-term planning for
conservation of the Yellowstone grizzly bear
population.
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This paper will summarize the historical
record of mountain goats in the Greater Yel-
lowstone Ecosystem (GYE) and then will
review the development of National Park Ser-
vice (NPS) policy relating to exotic species.
Finally, it will consider current goat coloniza-
tion of the park in light of history and policy.

It seems especially appropriate, even if
entirely accidental, that Yellowstone National
Park (YNP) hosted a conference on nonnative
species over Columbus Day weekend in Octo-
ber 1999. It has become a standard practice,
almost a cultural act, among those concerned
with the health of native ecosystems, to divide
the history of the New World at a point that is
our own equivalent of B.C.—Before Colum-
bus. The enormously complex and breathtak-
ingly swift overhaul of the North American
landscape that has occurred since 1492 is now
such a fact of life that most Americans give it
little thought and may not even be aware of its

magnitude. In modern Montana, for example,
the public depends upon the enjoyment or
employment of brown trout (Salmo trutta),
pheasants (Phasianus colchicus), horses (Equus
caballus), cattle (Bos taurus), and many other
species of animals and plants from other con-
tinents. Most of these species are deeply
embedded in the national consciousness as
constituting part of the “traditional” western
scene.

Of course, the mountain goat is different: it
is native to North America. Euro-American
influences have not been confined to bringing
new species to this continent. We have also
transported native species long distances
around the continent. Mountain goats in YNP
provide an excellent case study of the com-
plexities of issues relating to nonnative species
in national parks.

Because the boundaries of YNP are largely
artificial and reflect little regard for ecological
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MOUNTAIN GOATS IN THE GREATER YELLOWSTONE ECOSYSTEM:
A PREHISTORIC AND HISTORICAL CONTEXT

Paul Schullery1 and Lee Whittlesey1

ABSTRACT.—Because the relatively recent colonization of portions of Yellowstone National Park by introduced moun-
tain goats (Oreamnos americanus) from public game lands in Montana raises important policy and management ques-
tions for the park, it is necessary to understand the prehistoric and early historical record of mountain goats in the
Greater Yellowstone Ecosystem. We reviewed previous paleontological, archeological, and historical studies of goat
presence and examined a large body of historical material for evidence of goats. Native mountain goat range most
closely approached the Greater Yellowstone Ecosystem to the west, but no modern authority claims goats were resident
in the ecosystem in recent centuries. Historical accounts of goat presence in the region prior to 1882 (and thus prior to
any known introduction of goats by Euro-Americans) are limited to one possible sighting by unreliable observers and a
few casual mentions of goat presence by people of limited or unknown familiarity with the ecosystem. Other early
observers in the region specifically stated that goats were not native. Between 1882 and 1926 other observers and resi-
dents agreed that mountain goats were not native to the park, or to the larger area around it. It is impossible to prove
absolutely that there were no goats in the ecosystem prior to modern introductions, but historical evidence demon-
strates that if present, such goats must have been exceedingly rare and uncharacteristically unsightable. National Park
Service policy relating to exotic species developed gradually after the creation of Yellowstone National Park in 1872,
moving from a general receptivity to introduction of at least some favored nonnative species to a general prohibition on
all such introductions. Current policy, while disapproving of all nonnative species, seems to reserve special efforts at
removal of nonnatives for those species that pose the greatest threat to native species and ecosystems. Current policy is
not helpful in defining the minimum amount of evidence needed to prove a species was present or absent, or whether or
not an introduced nonnative species is causing sufficient harm to justify its removal.

Key words: mountain goat, nonnative species, National Park Service policy, Yellowstone National Park, Greater Yellow-
stone Ecosystem, ecological historiography.

1National Park Service, Yellowstone Center for Resources, PO Box 168, Yellowstone National Park, WY 82190.
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realities, we will address the question of moun-
tain goat prehistory and early history from the
broader and slightly less artificial perspective
of the entire Greater Yellowstone Ecosystem
(GYE; Fig. 1), using recent definitions of it as
an area upwards of 20 million acres encom-
passing the highlands in and around Yellow-
stone and Grand Teton national parks (Glick et
al. 1991).

The prevailing scientific consensus is that
native mountain goat populations existed most
closely to the west of the GYE, in central
Idaho along the Idaho-Montana border (Ride-
out 1978, Chadwick 1983, Laundré 1990). Per-
haps the most popular contemporary defini-
tion of the GYE, proposed by the conservation
group known as the Greater Yellowstone Coali-
tion (Glick et al. 1991), places its western
boundary somewhat short of that historic native
goat range, perhaps less than 50 miles (impre-
cision is the result of vagueness of current def-
initions of GYE boundaries).

ISSUES OF EVIDENCE

The search for evidence that may not exist
is one of historical scholarship’s most interest-
ing enterprises because investigators run the
risk of committing what Fischer (1970) de-
scribes as the “fallacy of the negative proof ”:

It occurs whenever a historian declares that
“there is no evidence that X is the case,” and
then proceeds to affirm or assume that not-X
is the case. . . . [A] simple statement that
“there is no evidence of X” means precisely
what it says—no evidence. The only correct
empirical procedure is to find affirmative evi-
dence of not-X—which is often difficult, but
never in my experience impossible (Fischer
1970:47).

In the case of mountain goats in the GYE,
we suspect that Fischer would be faced with
difficulty in describing for us “affirmative evi-
dence of not-X.” It appears that it will be
extremely challenging to establish an unequiv-
ocal affirmative proof that absolutely no
mountain goats inhabited the GYE prior to the
arrival of Euro-Americans. We also believe
that our study has provided an interesting test
of the concept of negative evidence, a test that
we will discuss later.

But Fischer’s point about negative evidence
is very important in the question of mountain

goats in the GYE. Paleontology, archeology,
and history are more successful at establishing
that a species was native than at proving that
it was not. The prehistoric and historical evi-
dence is always assumed to be incomplete.
Even if it provides no indication a species was
present, we are always left with at least a lin-
gering uncertainty because negative evidence
can always be overridden later by new posi-
tive evidence. The next paleontological inves-
tigation, the next archeological dig, or the next
newly discovered early trapper’s journal may
yield suggestive or conclusive evidence that
the species in question was here after all.

Several reasons have been suggested for
possible underrepresentation of mountain goats
in a survey of archeological and paleontologi-
cal sites (Laundré 1990, Hutchins 1995, Lyman
1998). The use of evidence from such sites to
determine presence or abundance of a given
species in past times is fraught with difficul-
ties (Grayson 1981), including the following:

1. Even if mountain goats have fully occu-
pied the available habitat in a region, they will
probably be neither as numerous nor as acces-
sible to hunters as other ungulate species and
thus may not be harvested as often, thereby
not finding their way into archeological sites
as frequently as other species might.

2. Living as they do in steep country, when
they die their remains may fall considerable
distances and be scattered rather than find
their way into paleontological sites (e.g., pack-
rat middens).

3. If most archeological and paleontological
investigations are conducted at lower eleva-
tions, they may include only, or primarily,
lower-elevation species.

4. The native people who occupied the site
and left animal bones there were operating
under unknown cultural systems, with now
incompletely understood attitudes and prefer-
ences relating to which animals they killed
and which they did not; they certainly would
prefer some species over others, thus intro-
ducing a bias into what their archeological
sites “collect” for us to study.

5. Last, even an identifiable piece of bone
or horn from a mountain goat may in some cases
not be proof the animal lived in the immediate
vicinity of the site in which it was found. If the
bone or horn had potential value (for example,
as a tool or ceremonial device), it might have
been carried a considerable distance to the site.
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Fig. 1. The Greater Yellowstone Ecosystem. Figure by Renée Evanoff.



Another potentially useful kind of evidence
of pre–Euro-American wildlife conditions is
provided by rock art: pictographs and petro-
glyphs. These are sometimes problematic as
well. A rock-art image does not necessarily
prove that the animal represented lived
nearby. Often it is difficult or impossible to
identify the species depicted; sometimes the
animal shown was not a “real” species but the
product of visions that are closely associated
with rock art in the region. Species represented
in rock art in our region tended to have a set
of cultural values unlike species preferred for
food (J. Francis personal communication). Still,
like other archeological as well as paleontolog-
ical evidence, rock art images provide a poten-
tially useful information source.

Written historical accounts likewise present
researchers with a variety of obstacles. Accounts
are often hard to locate or may not exist for all
localities. Writers of early accounts were often
of unknown education, familiarity with wildlife,
and bias. These writers tend to exhibit prefer-
ences for topics depending upon personal
interests; these preferences, while not pre-
dictable for each individual, can be gauged for
certain types of observers. As a general rule,
for example, commercial trappers emphasized
fur-bearing animals and habitats in their writ-
ten accounts. On the other hand, some wildlife
species, such as grizzly bears (Ursus arctos),
were of at least some interest to many types of
travelers, probably because of their greater
threat or their formidable presence in most
northern human cultural traditions. From yet
another perspective, very few early writers, of
any persuasion, bothered to mention small
mammals. Early visitors to YNP had still
another bias introduced into their narratives:
the park’s primary attraction was its geother-
mal activity. YNP visitors, though many did
hunt in the park during its first 11 years, were
here primarily to see the famous geological
oddities. Wildlife did not become an impor-
tant visitor attraction as an object of touristic
attention (i.e., wildlife watching as recreation)
until the later 1880s and 1890s (Schullery
1997).

It has also been pointed out that even in
the earliest period of Euro-American visitation
of lands that would eventually become national
parks in the northern Rockies, roughly
1800–1880, various influences of Euro-Ameri-
cans on the landscape—such as the effects of

European diseases on numbers and activities
of native people; the adoption of the horse,
firearms, and other iron tools by native peo-
ple; and European livestock diseases—were
all potentially at work affecting the landscape.
Such effects may or may not have been pro-
nounced enough to significantly alter plant or
animal communities from their earlier appear-
ance, but if they were, the first white observers
would have been describing a landscape not
entirely free of their own culture’s effects
(Schullery 1984, 1997, Kay 1994).

Terminology is often treacherous in early
historical accounts. For example, in some west-
ern 19th-century accounts, coyotes were known
as “prairie wolves.” Black bears (Ursus ameri-
canus) were sometimes called “cinnamon” bears
depending upon their color, but a cinnamon-
or brown-colored bear might be a misidenti-
fied grizzly bear; and, of course, a black-col-
ored grizzly bear might simply be described as
a “black bear” with no intention of indicating
species. Early 19th-century writers sometimes
referred to elk as red deer, their European
name. And quite a few early writers on the
West, including some who traveled through
the GYE, referred to pronghorn (Antilocapra
americana) as “goats” (e.g., Stuart 1935, Lewis
and Clark 1987). Casual use of other terms
could complicate the problem, as when a
writer referred to a “buck” but meant a “bull”
elk (Cervus elaphus). Careful reading of the
material and close attention to the context can
settle many such confusions, but some are
almost irresolvable and are always compli-
cated by observer ignorance as well as our
ignorance of just how well informed the ob-
server might have been.

We do not wish to cast so much doubt on
paleontological, archeological, and historical
evidence as to suggest that these sources of
information are valueless. They may be the best
tools we have, and they are often excellent
tools indeed. It is our experience, however,
that the tools must be used with great care
and discretion if they are to serve our needs.

PALEONTOLOGICAL AND ARCHEOLOGICAL

EVIDENCE OF MOUNTAIN GOATS

Love (1972) conducted an archeological
survey and historical literature review of the
Jackson Hole region, and, though he discussed
all other relevant large mammals, he mentioned
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no mountain goats in either record. We assume
this is because he found none. Cannon (1992)
reviewed archeological and paleontological
evidence for the northern and central Rockies
physiographic provinces, including 31 late-
Pleistocene–Holocene sites in northwestern
Wyoming, southern and western Montana,
and near the Idaho-Wyoming and Idaho-Mon-
tana borders in Idaho. No mountain goats were
reported in any of these sites. It is interesting
that 2 of the Idaho sites he reviewed, Veratic
Rockshelter and Jaguar Cave, are relatively
close to areas known to have been native
mountain goat habitat along the Idaho-Mon-
tana border. Laundré (1990) also reviewed
paleontological and archeological reports from
the GYE and found no fossil or archeological
evidence of goats in the Holocene. However,
he reported that fossils of ancestral goats (Ore-
amnos harringtoni) at least 70,000 years old
were recovered from a site at Palisades Reser-
voir in Idaho. This is in the southeastern quad-
rant of the GYE.

In an interesting interpretation of the pale-
ontological evidence as it might be applied to
modern management issues, Laundré (1990:40)
suggested that because the GYE’s “native flo-
ral and faunal components” are suitable for
goats, “goats could also not be considered [an]
ecological exotic.” To our knowledge, this is
the only time the concept of “ecological exotic”
has been introduced into the published scien-
tific dialogue relative to mountain goats in
YNP. The concept has not fared well, or had
noticeable effects on today’s dialogues over
mountain goats in YNP, perhaps because
National Park Service (NPS) management poli-
cies do not endorse such a generous definition
of native. However hospitable the ecosystem
might be to introduced goats, a continuous
70,000-year gap in the known record of goat
presence is too large to ignore. Though it
could likewise be argued that Yellowstone
Lake’s native components are suitable for lake
trout (Salvelinus namaycush), no one seems to
be mistaking the clandestinely introduced lake
trout that now threatens native fish in the lake
for some type of “ecological native” (Varley
and Schullery 1998).

Houston and Schreiner (1995) describe a
parallel situation in Grand Canyon National
Park, in which some paleontologists objected
to the removal of burros (Equus asinus) from
that park by NPS managers who regarded

them as nonnative. The paleontologists argued
that burros were “the ecological equivalents of
late Pleistocene equids” that had become ex-
tinct in the area about 11,500 years B.P. In this
instance the ensuing court case supported the
NPS managers’ interpretation that the ecologi-
cal equivalent argument was not in keeping
with NPS policy.

To reach beyond published literature, we
consulted with a number of experienced GYE
archeological and paleontological investiga-
tors. Their familiarity with GYE sites, through
their own published and unpublished work
and that of others, included no knowledge 
of any mountain goat fossils from the Holo-
cene (J. Francis, E. Hadly, C. Hill, A. Johnson,
J. Schoen, personal communication).

Faunal images in rock art sites in the GYE
have not to our knowledge been inventoried
by species for the entire ecosystem. Greer 
and Greer (1998) reviewed images at 50 sites 
in southwestern Montana. A few contained
“zoomorphs,” including 7 bison (Bison bison),
4 bears (Ursus spp.), 2 deer (Odocoileus spp.),
2 snakes, 2 mountain sheep (Ovis canadensis),
2 horses, and 5 “four-legged generic descrip-
tions that cannot be identified at this time due
to lack of information on the site forms”
(Greer and Greer 1998:61). Again, our consul-
tation with a number of regional authorities on
rock art revealed no knowledge of any moun-
tain goat images in GYE rock art (S. Conner, 
J. Francis, M. Greer, A. Johnson, M. Pavesic, 
J. Schoen, personal communication).

So far, therefore, the archeological and
palentological evidence is entirely negative for
mountain goat presence in the GYE prior to
the arrival of Euro-Americans.

THE HISTORICAL RECORD

The earliest review of the historical record
(i.e., written documents and recollections of
early residents) of YNP for evidence of moun-
tain goats was probably that conducted by
novelist Owen Wister, who sought references
to goats anywhere in the state of Wyoming
(Wister 1904). Wister’s report, though infor-
mal, was apparently based on considerable
effort in communicating with experienced local
residents and hunters. He concluded:

There seems to be a sort of goat tradition in
Wyoming, here and there. This myth is, to be
sure, highly sublimated. You don’t hear that
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goat used to be upon this or that definite
mountain, or that So-and-So saw a man who
saw a goat, or whose wife or uncle saw one; it
never comes as near as that; yet still faintly in
the air of the Continental Divide there hov-
ers this vague rumor of the animal (Wister
1904:248).

A more formal search for historical evidence
of mountain goats in Wyoming was made by
Skinner (1926), who interviewed many knowl-
edgeable locals and found no reports of goats
anywhere in Wyoming or in YNP. Laundré
(1990) reviewed a few early accounts of the
GYE and reached the same conclusion.

For some years we have been searching all
available documentary evidence of wildlife in
the GYE prior to 1882 (Schullery and Whittle-
sey 1992, 1995, 1999a, 1999b, Whittlesey 1992,
1994, Schullery 1997). We are unaware of any
previous investigator who has used more than
about 20 early accounts of YNP to determine
wildlife conditions and abundance in the early
historical period (roughly 1800–1880). As men-
tioned above, the overwhelming majority of
early accounts of YNP were concerned with
other matters, especially the park’s well-
advertised geothermal wonders and scenery,
but a surprising number of people did at least
mention wildlife in their accounts. We are now
well past 250 separate accounts of pre-1882
wildlife in the GYE and are preparing a book-
length manuscript analyzing them.

In that considerable body of material, obser-
vations of mountain goats are practically non-
existent, and even discussions of mountain goats
are very rare. Because these few discussions
are of interest both historically and historio-
graphically, we will review them in detail here.

Two early accounts by actual visitors to the
region stated that mountain goats were pre-
sent in the GYE. Both are instructive exam-
ples of the difficulties of using these early
accounts. In September 1864 a prospector
named Robert Vaughn and companions trav-
eled from the gold diggings at Alder Gulch,
Montana, near present-day Virginia City, to
newly discovered gold-bearing areas at Emi-
grant, Montana, on the Yellowstone River north
of present YNP (Fig. 1). Vaughn’s account of
their trip is brief and vague as to their travel
route. He said they crossed “the headwaters of
the Madison, Jefferson, and Gallatin rivers”
(Vaughn 1900:35). The true headwaters of the
Madison and Gallatin rivers are in YNP, but it

seems to us highly improbable that the party
would detour 50 or more miles south of their
intended goal (Emigrant is about 60 miles due
east of Alder Gulch) to reach the true head-
waters of these streams. We suspect that they
simply traveled east and crossed those streams
well above their best-known reaches but also
well below their true headwaters. We recognize
that this is conjecture on our part, but it seems
unlikely that these men would have detoured
so far out of their way, or that they could have
done so and still reached the Emigrant area in
the time they did. Due to the rough country
(e.g., “we were delayed several times by the
dense pines that grew so thick in some places
that we had to chop our way through” [Vaughn
1900:35]), it took them 7 days to reach the Yel-
lowstone River somewhere “many miles” up-
stream from Emigrant. This would suggest
that they reached the Yellowstone River not
far north of present YNP (the north boundary
of present YNP is roughly 30 river miles south
of Emigrant).

Vaughn mentioned that on their way to
Emigrant, in unspecified mountains, they dis-
covered “a great quantity of petrified wood” in
a small valley (Vaughn 1900:35). Petrified wood
exists in the Specimen Creek drainage of north-
western YNP and is common in drainages far-
ther north in the Gallatin National Forest as
well. We assume that the petrified wood was
found in one of these drainages. It was also in
these mountains, apparently, that they made
their mountain goat sighting:

The mountains were very steep. On a cliff
about one hundred yards off stood a Rocky
mountain goat. At first we thought it a domes-
tic sheep, for it was very white, bleated, and
acted as if it was glad to see us. But then, as
there were no settlers within several hun-
dred miles, we could not imagine how a
sheep could get to such a place. While we
were discussing the matter, the animal
leaped over cliffs and up the mountain as if it
was on level ground, and this satisfied us all
that it was a Rocky mountain goat. Not one of
us had seen one previously (Vaughn 1900:35).

This is the only firsthand report of an ob-
served mountain goat in the GYE that we have
yet located from the period before 1882. For
several reasons, it is problematic as evidence.
These observers had never before seen a moun-
tain goat. We do not know if Vaughn was able
to distinguish a goat from a bighorn sheep. For
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all we know, he was like many first-time visi-
tors to present-day YNP and other western
mountain parks, who, in our long experience
with such people, refer to bighorn sheep as
goats. Some of these people are simply unaware
that there are two animals, or that the distinc-
tion between them might be significant to
other people. Others confuse the names, the
way many regional residents today refer to local
ground squirrels (Spermophilus armatus) as
“gophers” (Thomomys talpoides is the local
pocket gopher, but most people are probably
unaware of what gophers look like specifically,
and just assume that small burrowing animals
can fairly be called gophers).

There are also questions about the descrip-
tion of the animal itself. Bighorn sheep are
often quite pale and, again in our experience,
are sometimes described as white by YNP vis-
itors. Bighorn sheep ewes have small horns
about the same size as goat horns. Sheep are
quite agile on cliffs. Again, based on our own
experiences, we know that some park visitors
see sheep in conditions like these and call
them goats (on the other hand, it is likewise
possible that some early traveler who did see
goats might have called them sheep).

Yet, though the account is speculative, it
cannot absolutely be proven in error. We must
consider the known proclivity of the occa-
sional mountain goat to make a long-distance
foray, such as is occasionally witnessed in YNP
today. Apparently, it is not impossible that a
goat from the native population farther west
was just then traveling in this region, just as it
is possible that this was not only a goat but a
member of some resident band of goats that
Vaughn and his companions did not see. After
all, it is an interesting coincidence that of all
the locations in the GYE in which such a sight-
ing could have been reported, this one occurred
reasonably close to the western edge of the
ecosystem, that being the edge closest to known
native mountain goat habitat farther west.

Our conclusion is that this report must be
treated as modern park naturalists would treat
a similar report. Based on the low level of
knowledge of the observers and the vagueness
of the description (Were the horns light or
dark? Was the hair long or short? Did the
body have the angularity of a goat’s?), such a
sighting would be regarded as intriguing but
unreliable. In many years of dealing with the
public in YNP, we have both dealt with great

numbers of visitors as they reported wildlife
sightings; neither of us would regard this as a
trustworthy mountain goat sighting and would
consider it more likely to have been a sighting
of a bighorn sheep ewe or young ram.

The second report is not an actual observa-
tion but a statement of mountain goat pres-
ence. Photographer Henry Bird Calfee and his
companion Macon Josey visited the park area
in 1871 and left several mentions of wildlife
there. Calfee stated that while the two were
camped near Mud Volcano (Fig. 1), and nearly
out of provisions, there was no cause for con-
cern:

Meat however was in abundance. It consisted
of buffalo, moose, elk, bear, wolverine, black
and white tail deer, antelope, mountain sheep,
goat or ibex, wolf, lion, fox, coyote, badger,
otter, beaver, mink, marten, sable, rabbit,
muskrat, porcupine, rock dog, squirrel, chip-
munk, grouse, goose, duck, swan, pelican,
crane, brant, eagle, owl, hawk, crow, raven,
blackbird, blue-jay, snow bird, curlew, sage
hen, prairie chicken, and wormy trout, with
which the upper Yellowstone and Lake
abounded. This bill seems elaborate, but all
could be gotten within five miles of our camp
and in a very short time (Calfee 1896:2).

This is a singular list, not only because it
seems to suggest that Calfee was willing to eat
quite a few things most modern travelers would
not consider appetizing, but also because he
mentioned both sheep and goat. Calfee would
make later visits to the park area, but this was
probably his first. He is to some extent a known
personage, with a documented local history
that gives us no particular reason to discount
his observations outright.

Nevertheless, his statement’s worth as evi-
dence is compromised in at least 3 ways.

First, there is no suitable mountain goat
habitat within 5 miles of Mud Volcano (nor is
there suitable sheep habitat). This is a key point
because if Calfee had not placed that limita-
tion on his statement, and were it not compro-
mised in the other ways listed below, he
potentially would be a considerably more cred-
ible witness than Vaughn.

Second, the sequence of the naming is con-
fusing. When he wrote “mountain sheep, goat
or ibex,” was he in fact giving 3 alternative
names for the same animal (as a writer today
might say “the wolverine, glutton or carcajou”)?
Or was the mountain sheep meant to be one
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animal, and the “goat or ibex” meant to be
another?

If the latter, then we have our 3rd compro-
mise of the evidence, because if he regarded
“goat” and “ibex” as interchangeable terms, it
seems likely that he was thinking of a sheep-
like animal rather than a mountain goat–like
animal. Ibex (Capra ibex and others) are Eur-
asian and African animals with relatively long,
curved horns; in both coat and general confor-
mation they much more nearly resemble North
American bighorn sheep than North American
mountain goats (Nowak 1991).

This reasoning on our part necessarily
assumes that Calfee was in fact knowledgeable
enough to know what an ibex looked like. It is
our suspicion, in any case, that Calfee was
merely listing any and all even marginally edi-
ble species of Rocky Mountain wildlife he could
think of at the time, rather than intending for
readers to draw a 5-mile-radius circle around
Mud Volcano and seriously expect to find inside
it everything he mentioned.

A 3rd statement from the period (though
just after 1882) also suggested by implication
that mountain goats were present. In the
announcement of the prohibition of public
hunting in YNP, issued on 15 January 1883,
Acting Secretary of the Interior H.M. Teller
said this:

The regulations heretofore issued by the
Secretary of the Interior in regard to killing
game in the Yellowstone National Park are
amended so as to prohibit absolutely the
killing, wounding or capturing at any time, of
any buffalo, bison, moose, elk, black-tailed or
white-tailed deer, mountain sheep, Rocky
mountain goat, antelope, beaver, otter, mar-
tin, fisher, grouse, prairie chicken, pheasant,
fool-hen, partridge, quail, wild goose, duck,
robin, meadow-lark, thrush, goldfinch, flicker
or yellow hammer, blackbird, oriole, jay, snow-
bird, or any of the small birds commonly
known as singing-birds (Teller 1883).

Like Calfee’s list quoted above, this list
reveals a curious mixture of ignorance and
knowledge of the native fauna of YNP. Some
listed species did not occur in the park, and at
least one other is listed twice (bison and buf-
falo). It has been suggested that this list was
most likely compiled in Washington, perhaps
by a clerk with limited knowledge of the park
(Schullery 1997). The text of the letter, includ-
ing the mention of mountain goats, reappeared

in later documents relating to park manage-
ment, such as Senator George Graham Vest’s
unsuccessful 1885 bill to strengthen law en-
forcement in the park (e.g., Forest and Stream
1885).

It must be kept in mind that most observers
of that period, including almost all park admin-
istrators, had no formal scientific training and
little awareness of taxonomy (in 1880, Super-
intendent Philetus Norris stated that there
were 6 kinds of bears in Yellowstone). In any
case, no park administrator from this period
suggested that mountain goats actually did
reside in the park.

On the other hand, Superintendent Norris
specifically stated that he was unaware of any
goats in the park. In his annual report for
1880, Norris said that

although the web-footed, snow-loving white
sheep, or Rocky Mountain goats are numer-
ous in many of the adjacent snowy regions, I
have never seen one within the Park, but the
true big-horn sheep are abundant on all the
mountain crests, as well as on their craggy
spurs and foot-hills throughout the Park,
which they never leave (Norris 1881:40).

Here again we see the interchangeability of
names: to Norris, the mountain goat was also
the “white sheep.” Also, Norris suggested that
goats inhabited “snowy regions” adjacent to
the park. Whether by this he meant neighbor-
ing mountain ranges or had in mind some far-
ther-reaching sense of the word region, we
cannot tell. Writing in the somewhat florid
prose of the day, Norris tended sometimes to
speak in sweeping terms, so we are hesitant 
to interpret “adjacent snowy regions” to mean
lands immediately adjoining the park.

The only other specific mentions of moun-
tain goats prior to 1882 were statements of
their absence in large portions of the GYE.
Charles Blackburn spent nearly 2 years pros-
pecting “in the country lying about the head-
waters of the Yellowstone and the other great
rivers that have their sources in the Wind
River Mountains” (Blackburn 1879). The dates
are uncertain, but he probably began in the
region in 1877, and his article was published
in July 1879. In a section entitled “Zoology,”
he described the wildlife: 

Elk and mountain sheep are very plentiful
through all the ranges of the Yellowstone
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country, being generally found near the snow
in the summer, where the grass is new and
tender. The mountain goat (Aplocerus mon-
tanus) was not observed in any of the ranges,
but has been reported by Indians to exist 
in the mountains farther north (Blackburn
1879:2904).

Blackburn evidently understood that there
is a distinction between sheep and goats (we
are assuming he could likewise distinguish
them in the field). Beyond that we know noth-
ing of his qualifications as an observer of
wildlife. His delineation of the country he had
in mind is imprecise, but probably included
the YNP area, and perhaps even the entire
northern half of the GYE. Native mountain
goat populations “farther north” apparently
would be those populations associated with
the Northern Continental Divide Ecosystem
(Chadwick 1983), which is slightly west of
north of the GYE.

Our last mention of goats also covered a
wide and not clearly defined region. In an
extended account of a trip through YNP in
1884, the naturalist-anthropologist George
Bird Grinnell reported on the opinion of a
local hunting guide, one of the Rea brothers.
The Reas ran a stage station near the Henry’s
Fork, in eastern Idaho, not far west of YNP.
The brother that Grinnell questioned had
“been in the country seventeen years and may
therefore be supposed to know it fairly well.”

He stated in a conversation I had with him
that game is still quite plenty here. There are
a few moose; elk and deer are rather abun-
dant, as are also bears, the black and cinna-
mon being common, while the grizzly is not
often seen. Mountain sheep are very scarce.
In reply to specific inquiries as to white
goats and caribou, he stated that he had
never known of either being found in the
neighborhood or in the vicinity of the Park.
The nearest points where goats are to be
found is, he said, between Bitterroot and the
Bighole, a long distance to the westward
(Grinnell 1885:3).

Rea was an experienced local observer, but
it is our impression based on our reading of
this region’s history that he was something of a
self-promoter. He had some credentials as a
wildlife expert. In 1874 he was apparently col-
lecting specimens for “Prof. Ward’s Natural
Science Academy” in Rochester, New York (this

is the same Ward who would later become
well known for his scientific instrument com-
pany). On the other hand, in 1875 he had been
sentenced to 15 years in the territorial prison
for his part in the wrongful death of another
man (Bozeman Avant Courier 1874, 1875a,
1875b). This is not a feature of his biography
that tends to strengthen confidence in his
credibility (he evidently did not serve the full
sentence because he was free to talk with
Grinnell in 1883). Like many other early infor-
mation sources, his reliability is not completely
understood. Such are the vicissitudes of these
anecdotal historical sources, but we know of
no reason why Rea would intentionally mis-
state his impression of mountain goat absence
from the region. If we assume that native
mountain goat range was at that time similar
to what we believe it is today, then it appears
that Rea agreed with modern mountain goat
authorities, as cited above, on the range of the
species.

YELLOWSTONE NATIONAL PARK

IN EARLY WILDLIFE MANAGEMENT

YNP was established by act of Congress in
1872, with very little institutional direction
provided. Early managers were left largely on
their own to develop policies (Haines 1977,
Schullery 1997, Pritchard 1999). Some of the
most important values we associate with national
parks today were barely embryonic in Ameri-
can society at that time, and wildlife manage-
ment policy in YNP could hardly be said to
exist outside minimum standards common on
other public lands. Public hunting was permit-
ted in YNP until 1883 (see discussion of Teller
letter, above). In that year political pressure,
primarily from sportsmen, resulted in hunting
being outlawed. Abruptly the park became a
wildlife reserve of great size and unrealized
opportunity.

But most details of management policy were
still unresolved, or would undergo scrutiny
and reconsideration. It was simply assumed,
for example, that the landscape and its wildlife
could be “improved” by the introduction of
nonnative species. Several species of sport fish
were successfully introduced; native fish species
suffered tremendous declines and even disap-
pearances in many drainages during this pro-
cess (Varley and Schullery 1998).

2001] MOUNTAIN GOATS IN GREATER YELLOWSTONE 297



Less well known now are numerous pro-
posals to introduce a remarkable variety of
nonnative birds and mammals to the park,
including mountain goats. In 1902, Acting
Superintendent John Pitcher pointed out that
“the scarcity of birds [in YNP] has frequently
been noted, and it has been suggested that the
capercailzie and blackcock, game birds of
northern Europe, might be introduced in the
Park” (Pitcher 1902:7; he was apparently refer-
ring to Capercaillie, Tetrao urogallus, and Black
Grouse, Tetrao tetrix). Captain Pitcher was
enthusiastic about these proposals and pointed
out that a further advantage of bringing in these
birds would be that “they would spread into
the neighboring country and soon afford fine
bird shooting where there is little or none at
present” (Pitcher 1902:7). In 1903 as distin-
guished a conservationist and naturalist as
President Theodore Roosevelt wrote enthusi-
astically about “naturalizing” some species of
pheasant and other game birds to YNP. He
was also eager to bring chamois (Rupicapra
sp.) in, “which certainly ought to do well there”
(Roosevelt 1951:470–471). In 1907, Superin-
tendent Samuel Baldwin Marks Young pointed
out that “with intelligent management and
comparatively little expense a greater variety
of birds and mammals could be successfully
added and propagated within the park” (Young
1907a).

Superintendent Young may have come closer
than any other early manager to realizing the
dream of an artificially enriched ungulate eco-
system in Yellowstone. In April 1907, in the
final months of Major Pitcher’s acting superin-
tendency, the secretary of the interior autho-
rized the expenditure of $300 “in relation to
the procuring of white goats and domesticat-
ing the same in the Yellowstone National Park”
(Garfield 1907). When Young replaced Pitcher
in June 1907 (Haines 1977), he quickly pur-
sued this project, corresponding with a variety
of possible sources of goats in Montana and
British Columbia. His plan included what
would today be termed a “soft release,” in
which the goats would be held in a pen for
some time prior to release (Young 1907b). Dan
Doody, of Nyack, Montana, on the southwest
boundary of what would become Glacier
National Park (GNP) a few years later, was
selected to capture the goats, but had difficulty
keeping them alive long enough to transport
them (Doody 1907). Though Young continued

to correspond with one other possible source
of mountain goats in 1908, it appeared that the
project just fizzled. We find no record of goats
purchased or goats shipped to YNP, or of goats
released in YNP. We have not been able to
determine why or when this idea was aban-
doned, though it could be that when Young
left YNP late in 1908 he took with him all
existing administrative enthusiasm for the pro-
ject.

The dream of introducing mountain goats
to YNP died slowly. As late as 1915, the Game
Preservation Committee of the Boone and
Crockett Club recommended that goats be
introduced into YNP (Trefethen 1961). The
general mood of these and other recommen-
dations was that more was better—that nature
could be enriched, indeed improved upon, by
the judicious actions of humans. The wild set-
ting was not seen as an ecological whole with
some innate integrity; it was seen as the raw
material for making the most of a good thing
by adding more good things.

Such manipulations of natural settings and
nonnative species were simply routine in North
America at the time; they were undertaken
widely—and often failed—but have been a
staple of professional wildlife management
since the late 1800s. But opposing views were
surfacing as well in the early 1900s. In their
important article, “Animal Life as an Asset of
National Parks,” published in Science in 1916,
professional biologists Joseph Grinnell and
Tracy Storer said that just as dogs (Canis famil-
iaris) and cats (Felis catus) must be kept from
roaming free in national parks,

equal vigilance should be used to exclude all
non-native species from the parks, even
though they be non-predaceous. In the finely
adjusted balance already established between
the native animal life and the food supply,
there is no room for the interpolation of an
additional species (Grinnell and Storer 1916:
379).

Without specifically saying why, beyond the
assertion that it would upset a “balance,”
these naturalists firmly opposed any additions
to park fauna.

These sentiments were soon echoed and
broadened by the scientific profession. By the
1920s, as the community of wildlife scientists
and management professionals matured and
grew, a number of societies, such as the 
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Ecological Society of America and the Ameri-
can Association for the Advancement of Sci-
ence (AAAS), spoke out against adding more
nonnative species to national parks. In 1921
the AAAS clarified its opposition to introduc-
ing nonnative species: national parks were “rich
fields for the natural sciences . . .” where the
native flora and fauna were “more nearly un-
disturbed than anywhere else” (Wright 1992:37).
In the 1870s, YNP had been recognized by its
first scientific explorers as a kind of laboratory;
the AAAS resolution of 1921 suggested that
the park’s value was now increasing because
its wilderness setting and undisturbed biotic
community were becoming increasingly rare
elsewhere. YNP was being perceived more
broadly as a living museum of primitive condi-
tions, and the value of such an institution was
likewise being more broadly appreciated (Prit-
chard 1999).

AN EMERGING NPS AND YNP POLICY

AGAINST NONNATIVES

Starting after 1900, YNP seemed to develop
a policy on nonnative species in rather hap-
hazard fashion, on a case-by-case basis. The
earliest official rejection of a nonnative species
probably occurred in the area of fisheries man-
agement:

In 1907 a U.S. Fish Commission employee,
D.C. Booth, was given a reprimand by his
superior for planting rainbow trout in Yellow-
stone Lake. This is the earliest instance of
which we are aware of Yellowstone fisheries
managers overtly seeking to protect native
strains of fish from dilution. And in 1908,
when no less a heavyweight than the U.S.
Commissioner of Fisheries proposed that
smelt be stocked in Shoshone and Yellow-
stone Lakes, it couldn’t have been easy to say
no—but the park’s military managers did
(Varley and Schullery 1998:97).

For many years after 1908, nonnative species
of fish that were already in the park at that
date were still managed and fostered as part of
the park’s very popular sport fishery. All that
happened in 1908 was that the addition of
new species was officially disallowed. But that
was an impressive development considering
that at this same time Superintendent Young
was shopping for mountain goats.

The sentiment of opposition to nonnatives
in parks was translated into formal policy in

1936, based on the 1933 publication of what is
now known as Fauna No. 1, an influential report
on park animals by George Wright, Joseph
Dixon, and Ben Thompson. The report, which
reviewed nonnative animal problems in sev-
eral parks, emphasized in all its proposed reg-
ulations the protection of and preference for
native species. Native species that had been
extirpated were to be brought back (if the
species in question had become generally ex-
tinct and no source could be found, it was not
to be replaced with some “related form” of
animal). Nonnative species already established
in parks were to be eliminated. If elimination
was not possible, their numbers were to be
“held to a minimum” (Wright et al. 1933). In a
passage that might be especially relevant to
the current YNP mountain goat situation,
Wright and his colleagues warned that it was
not enough to wait until nonnative species
were established:

That the threatening invasion of the parks by
other exotics shall be anticipated; and to this
end, since it is more than a local problem,
encouragement shall be given for national
and State cooperation in the creation of a
board which will regulate the transplanting
of all wild species (Wright et al. 1933:148).

Since 1936, then, nonnative animals have
been officially and decisively regarded as
unwelcome in YNP. Since that time, through a
series of revisions and modifications of policy
statements, the agency’s position on nonnative
animals has been reaffirmed. All stocking of
park waters (with native or nonnative fishes)
ceased about 40 years ago (Varley and Schullery
1998). The language of policies on nonnatives
has evolved to reflect changing understanding
of ecological communities, but the statements
against exotics have remained. For example, in
the 1970 version of Administrative Policies for
the National Parks and National Monuments
of Scientific Significance (Natural Area Cate-
gory), the policy was about as unequivocal as
was practically possible: “Nonnative species 
of plants and animals will be eliminated where
it is possible to do so by approved methods
which will preserve wilderness qualities” (NPS
1970:56).

In 1988, after additional revisions, the policy
seemed rather less absolute. On the one hand,
the definition of an exotic species was still rea-
sonably concise:
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Exotic species are those that occur in a given
place as a result of direct or indirect, deliber-
ate or accidental actions by humans (not
including deliberate reintroductions). For
example, the construction of a fish ladder at a
waterfall might enable one or more species
to cross that natural barrier to dispersal. An
exotic species might also be introduced
through seeds in the droppings of an animal
that has fed on an exotic species outside the
park. The exotic species introduced because
of such human action would not have
evolved with the species native to the place
in question and, therefore, would not be a
natural component of the ecological system
characteristic of that place (NPS 1988a:4.11).

On the other hand, the agency’s responsibil-
ity toward exotic species was not as absolute as
it had been in earlier policy expressions.
Instead, agency obligation to control exotics
operated on the basis of a continuum of risk.
According to NPS-77, the Natural Resources
Management Guideline that complemented
and interpreted the policy for managers,
exotic species most likely to cause harm to the
ecological system were to be fought most
aggressively, and those that were relatively
benign could apparently be ignored:

Control or eradication will be undertaken,
where feasible, if exotic species threaten to
alter natural ecosystems; [or] seriously restrict,
prey on, or compete with native populations
(NPS 1988b:289).

It appears that this guideline would allow
ecological specialists to determine if mountain
goats that have colonized YNP in recent years
have exhibited any of these listed effects, and
are thus in grave enough violation of policy.
The policy does not quantify what constitutes
a sufficiently harmful alteration of a natural
ecosystem, or what exactly is meant by serious
restriction, predation, or competition.

A spectrum of interpretations of this policy
is possible, and such interpretations are infor-
mally offered by people engaged in conversa-
tions over mountain goats invading YNP. On
one end of the spectrum are those who take
what might be called the philosophical high
road and regard any nonnative presence as
necessarily a violation of the NPS mandate
and the ecosystem’s fundamental purity. On
the other end of the spectrum are those who
selectively welcome some nonnative species,

whether because the species serves to fill a
role vacated by an extinct native or because
the species is merely appealing for aesthetic
reasons. It is both interesting and a little puz-
zling that neither the policy nor NPS-77 seems
to reflect aesthetic concerns, such as the possi-
bility of a visitor experience being compromised
by viewing nonnative species in a national
park, as significant factors in deciding whether
or not to remove such animals.

AN INTRIGUING DEVELOPMENT

IN RECENT HISTORY

The more recent history of mountain goats
in the GYE provides a fascinating example of
the complexities of policy interpretation. In
the past half century, mountain goats have been
established by state game managers of Idaho
and Montana in hospitable habitats to the
north, northwest, west, and southwest of YNP
(Peck 1972, T. Lemke and N. Varley personal
communication). Goats from populations intro-
duced into Montana north of the park are
already established in northeastern and north-
western YNP. However, it is regarded as con-
ceivable that native goats currently residing
farther west of the GYE could also make their
way into the park by following the crest of the
Centennial Mountain Range east to the Gal-
latin Mountain Range in northwestern YNP
(Laundré 1990, Wilkinson 1990; Fig. 1).

A decade ago the very suggestion of the
possibility of such a situation attracted the
attention of the media, as well as then-promi-
nent animal-rights advocate Cleveland Amory
(Wilkinson 1990). The media report posed an
interesting dilemma facing managers. By policy,
YNP managers should resist or at least disap-
prove of the northern invasion because these
goats were from introduced populations. But if
native mountain goats moving in from the west
were part of a non-human–caused colonization,
policy direction seems to be that the animals
would simply be accepted as a new native
species. National park ecosystems, like all oth-
ers, have hosted invasions of new species for
thousands of years; such changes occurred ever
since the ice retreated more than 10,000 years
ago, long before Euro-Americans arrived to
influence the setting. By implication, at least,
the current policy (quoted above) seems to
accommodate late arrivals: species colonizing
parks today unaided are apparently welcome.
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In discussing the possibility of dual moun-
tain goat colonizations from both native and
nonnative populations, former YNP Superin-
tendent Robert Barbee, a pragmatic and real-
istic manager, said that to fight off the species
on one boundary and welcome it along another
did not “pass the red-face test” of real-world
management. No matter how closely such an
approach might adhere to policy, it would look
idiotic to the public (R. Barbee personal com-
munication). Whether it would actually be idi-
otic is another question, but it seems safe to
say that few NPS managers would disagree
with Barbee’s prediction of a negative public
reaction.

The issue is not without opportunities for
scientific inquiry. First, could it be established
which population the invaders were from? Or,
are the native goats west of the GYE and the
introduced goats in Montana too closely related
for distinctions to be genetically meaningful (if
meaningful can even be defined in this con-
text)?

Then, if goats from a native population did
migrate to the park, was their migration facili-
tated by humans? For example, could predator
control either in the home range of these ani-
mals or along the migration route have made
travel easier for them than it would have been
200 years ago? For another example, it appears
that between about 1830 and 1880, bighorn
sheep numbers declined dramatically in some
parts of the GYE, perhaps in part because of
introduced livestock diseases (Schullery and
Whittlesey 1992); did this emptying of habi-
tats have any effect on the hospitality of the
GYE to colonizing mountain goats since then?
Last, the native range of the mountain goat
has changed dramatically with the retreating
ice of the last ice age and should not be
regarded as having achieved some stable state
(Chadwick 1983). Ongoing mountain goat dis-
tribution changes independent of human
activities may have been underway at the time
of Euro-American arrival in the GYE, and
these could also affect the “nativeness” of goats.
It may be necessary to address questions like
these to fully consider how “natural” a moun-
tain goat colonization of the GYE would be,
even if it were effected by goats from native
populations.

One somewhat caustic reader of an earlier
version of this manuscript said that the previ-

ous paragraph’s questions amounted to “milk-
ing mice,” that is, dealing with trivially obscure
issues. We disagree. If the mountain goat inva-
sion of YNP ever became a controversial enough
issue to result in a court case, we believe the
judge would require the milking of these very
mice, and probably quite a few others. Native-
ness is the central issue in this situation, and
the court would certainly recognize that sci-
ence can be applied to clarify the origin of the
goats in question (it seems likely to us, for
example, that if these questions ever did have
to be answered in court, DNA analysis would
probably be called for, in an attempt to distin-
guish goats from different regions).

But the current status and source of YNP
mountain goats is reasonably clear. T. Lemke
(personal communication) reported that the
only persistent concentrations of mountain
goats in YNP occur in the northeast and north-
west corners of the park, with occasional
appearances by wanderers in other park loca-
tions. According to Lemke, these colonies are
extensions of known introduced populations in
the Gallatin and Absaroka Mountain ranges to
the north of the park. As of 1999, then, YNP is
known to have been colonized only by goats
from introduced populations in Montana. The
suggestion that some or any mountain goats
could enter the park from native populations
moving from the west appears to be just that:
a suggestion.

On the other hand, there is some uncertainty
about how close native goats have approached
the GYE. In 1990 the Bureau of Land Man-
agement (BLM), Dillon Resource Area, pre-
pared a draft environmental assessment (EA)
to “reintroduce mountain goats in the Sheep
Mountain area adjacent to Red Rock Lakes
National Wildlife Refuge” (Lewis 1990; Fig. 1).
Sheep Mountain is well within current defini-
tions of the GYE (Glick et al. 1991). The EA
stated that “mountain goats are considered as
being historic residents of this area” (Roscoe
1990) but provided no documentation on this
point. The author of the EA recently explained
to us that the introduction process stopped
when the BLM was unable to find evidence
that goats were native; introducing a nonnative
species in these circumstances would have
been against BLM regulations. “So at that point
the project stopped” (J. Roscoe personal com-
munication).
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In this situation the BLM was in a dilemma
much like that currently faced by YNP.
According to the EA, goats were already close
and even had been observed nearby in the
Centennial Range:

No recent observations of mountain goats
have been made in the proposed release area.
A single adult goat was observed on Slide
Mountain on the west side of the Odell Creek
drainage by refuge manager Barry Reiswig
on October 25, 1983. Several observations of
mountain goats were made in 1984 and 1985
near Spencer, Idaho, which is approximately
25 miles southwest of the project area (Roscoe
1990).

It was not possible at that time to know the
source of the goat seen on Slide Mountain,
which is about 10 miles west of the proposed
introduction site (but still in the GYE). It could
conceivably have been either from farther west
(the direction of the native populations) or
from an introduced population in the Madison
Range to the northeast ( J. Roscoe personal
communication). It is also interesting to note
that the proposed source of goats for this pro-
ject was Olympic National Park (ONP).

The issue of a potential native mountain
goat migration to YNP was perhaps first brought
to the attention of the scientific community by
Laundré (1990) and was picked up by the media
about the time his report was published. In
his report Laundré said:

Given time, goats might have eventually
moved back into the Yellowstone Ecosystem,
as they may presently [sic] be doing from his-
toric range into the Centennial Mountains.
Currently, all this is speculation and the
rapid expansion of goat range in the moun-
tains north of Yellowstone Park would tend to
contradict this hypothesis (Laundré 1990:40).

Notice that Laundré said only that goats “may”
be migrating into the Centennial Mountains, a
range west of YNP. He did not suggest that
they were on their way to YNP, and he seemed
uncertain if such a migration was a likelihood.
As the situation in the Centennial Range de-
scribed above suggests, by the time that Laun-
dré was writing, it was already very difficult to
establish the “identity” of mountain goats mov-
ing through the gap between known native
goat habitat farther west and introduced moun-
tain goat habitat in the GYE.

Meanwhile, the hypothetical dual nature of
the mountain goat colonization of YNP has
somehow risen from the status of an academic
but very interesting “what if ” question to the
status of a genuine dilemma. Though all moun-
tain goats currently in YNP are reasonably
traced to the introduced Montana populations,
the possibility of a migration of goats into the
GYE or YNP from native populations farther
west seems to have become, at least in recent
dialogues, almost equal in significance to the
reality of the known migrations from the north.
The possible immigration of native goats has
become, in the words of Wister, highly subli-
mated. Rather like scholarship’s inability to
demonstrate absolutely that there were no
mountain goats in the GYE prior to 1882,
scholarship’s apparent inability to determine
absolutely the origin of every single mountain
goat that has entered or may enter YNP may
be adding to the current institutional timidity
over what to do next. Those concerned with
the mountain goat issue seem stymied by Wis-
ter’s “vague rumor of the animal.”

CONCLUSION

In this paper we have reviewed all early
mentions of mountain goats in the GYE that
we have found. If those early accounts were
read alone, removed from their full documen-
tary context, they might give the casual reader
reason to suspect that at least a few goats were
present in the GYE in the mid-1800s. Indeed,
we recognize that the possibility may have
existed for the occasional exploration-minded
goat to have entered the GYE from the west.
There may even have been a possibility that a
small, unnoticed population of mountain goats
existed in the GYE before 1882. But the his-
torical material we have examined so far pro-
vides no convincing evidence of either indi-
vidual animals or a population existing in the
GYE before 1882.

Brandborg (1955), in attempting to make
the best use of early travelers’ accounts of
mountain goats in Idaho, has pointed out that

the absence of references to mountain goats
in early journals is not proof that they did not
exist in an area. The route of the travelers
along valley bottoms and through open ter-
rain during midsummer, when the goats
were at high elevations, precluded observa-
tions of them (Brandborg 1955:16).
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As we have explained in some detail above, we
agree that travelers who wrote about their
journeys could neglect to mention wildlife they
saw. In fact, we think many if not most early
travelers in the GYE did just that. It is certain
that virtually none of them kept conscientious
records of every animal they saw. However, in
the case of the GYE and many early accounts
of it that we have analyzed, Brandborg’s 2nd
statement, about the route traveled, does not
apply. Many of our observers, being trappers,
prospectors, hunters, and other adventurous
types, did not confine themselves either to the
valley floors or to the summer season (Schullery
and Whittlesey 1992). It is our opinion, based
on experiences in observing goats in GNP,
Mount Rainier National Park, and YNP, that,
had goats been present in a region as thor-
oughly traveled as was the GYE in the early
historical period, they would have been seen.
It could be argued that with the possible
exception of Dall’s sheep (Ovis dalli), no other
North American ungulate species is so per-
fectly designed by nature to be observed from
a great distance. Not only does the mountain
goat stand out brightly against the often dark
background of its preferred habitat, but also it
does so at sufficient elevations that it is visible
from much of the surrounding lower country.

We therefore believe that Fischer’s fallacy
of negative proof, though a valid and essential
guide in the use of historical material relating
to wildlife, needs a kind of corollary. This
corollary is that it is possible to accumulate
such a large volume of negative evidence as to
leave very little room for the affirmative alter-
native. The negative evidence will never abso-
lutely establish that no animals of a given
species existed in a region, but it can accumu-
late to a volume and depth sufficient to demon-
strate beyond any reasonable doubt that such
animals were scarce at best.

On the simplest level, that of reported sight-
ings, the great wealth of firsthand observations
we have examined makes it clear to us that if
mountain goats did indeed exist somewhere in
the GYE in the early historical period, they
were extraordinarily and uncharacteristically
invisible to virtually all travelers who were
interested enough in wildlife to record their
observations. Without a single verifiable or
even reliable sighting to prove goat presence,
with a few reports that state that goats were
not present, and with many more sources that

simply do not mention goats, we believe that
managers are justified in declaring the moun-
tain goat a nonnative species in the GYE and
YNP.

National park managers must often make
decisions based on incomplete information,
and they must often acknowledge that com-
plete information is not attainable. Determin-
ing the nativeness of a species may be such a
situation, and the YNP mountain goat issue is
not the first time it has arisen. Attempts to
reduce mountain goat numbers in ONP have
featured disagreements over whether the ani-
mals were truly nonnative. These disagree-
ments focus largely on competing interpreta-
tions of surprisingly few problematic early his-
torical sources (Lyman 1994, 1998, Houston
1995, Houston and Schreiner 1995, Hutchins
1995). Rocky Mountain National Park and
Grand Teton National Park also face similar
decisions concerning managing goats, as well
as questions over the nativeness of the species
(Gross et al. 2000). Houston and Schreiner
(1995) review other variations on the native-
nonnative issue in other national parks.

Even in present-day national parks, there are
disagreements over the presence or absence
of a species. A persistent issue in the debate
over Yellowstone wolf (Canis lupus) recovery
involved the possibility of a lingering remnant
population of native wolves (U.S. Fish and Wild-
life Service 1994). Debate over the reintro-
duction of grizzly bears to the Bitterroot Moun-
tains on the Idaho-Montana border now fea-
tures disagreements over whether grizzly bears
are totally absent from the area (Devlin 1999).
When the debate over such an issue achieves
its finest resolution—the analysis of limited
evidence for which there are conflicting inter-
pretations and which at best indicates the
presence of a few animals—it is not clear with
which party the burden of proof should lie, or
how such disagreements might be resolved.

It is also not clear what managers are to do
even if they are confronted with incontrovert-
ible proof of the existence of a single animal of
the species in question. For practical manage-
ment purposes, past experience suggests that
the demonstrated presence of a single animal
may not be sufficient. In the case of wolf re-
covery in the GYE, for example, the U.S. Fish
and Wildlife Service recognized that individ-
ual wolves seemed to exist in the GYE in the
early 1990s (prior to the reintroduction of new
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wolves), but regarded these rare animals as
not constituting a “population” of animals that
had any likelihood of sustaining itself over time
(these animals’ “quality” as evidence was also
suspect because they may have been escaped
pets, clandestinely released animals, or, as was
established in one case, recent immigrants from
other wolf populations beyond the GYE). At
that point in the deliberations of the U.S. Fish
and Wildlife Service, it became a matter of
defining a population, which was done in terms
of a certain number of successfully breeding
pairs over a certain period of time (U.S. Fish
and Wildlife Service 1994). It was regarded as
proven that wolves inhabiting the GYE prior
to the arrival of the introduced wolves in 1995
did not meet this definition.

Current NPS policy and guidelines do not
provide much constructive guidance for man-
agers facing uncertainties of this sort. There
are no prescriptions for what qualities and
quantities of evidence are the minimum accept-
able amount to establish that a species was or
is present or absent. Likewise, there are no
prescriptions for establishing what numbers or
population characteristics are necessary for a
small number of animals to constitute a native
presence as a population.

Thus, it appears there are no indisputable
criteria by which modern YNP managers can
judge the appropriateness of the present moun-
tain goat colonization even if it were estab-
lished that at least one goat did inhabit the
GYE prior to the park’s establishment. If it
were shown that a single sighting of single
mountain goat did occur—if, for example,
Vaughn’s 1864 sighting were somehow con-
firmed—how can that information be applied
to the current situation? Does that single sight-
ing justify or at least make tolerable the cur-
rent goat colonization of YNP from multiple
artificial introductions north of the park? Put
yet another way, even if there were a reliable
sighting of a single goat in the GYE in 1864,
does tolerating the current goat colonization of
YNP equate with assuming that the single goat
was the vanguard of a much larger natural col-
onization on the scale of the one that is now
occurring? Or, to place a broader interpreta-
tion on the policy, does the existence of a sin-
gle native goat in 1864 endow managers with
authorization such that they can disregard these
questions and simply declare the current pop-
ulation of goats “native enough”?

It is also difficult to interpret policy guide-
lines relating to whether or not these moun-
tain goats pose a threat to the native ecosys-
tem and should be removed. Ecological evalu-
ation is beyond the scope of this paper, but
because the issue is social as well as scientific,
we should at least mention it. N. Varley (per-
sonal communication) has reported that so far
he can find no evidence of significant ecologi-
cal effects of goats in YNP. But the invasion is
young, and recent literature on ungulate graz-
ing systems (e.g., McNaughton et al. 1989)
suggests to us it is risky to assume that an
ungulate population will not affect ecosystem
processes and plant communities to some
extent, and current knowledge of potential
goat habitat in YNP may not be capable of
measuring such effects as they happen. As
important, the discussion that followed the
panel session at which our paper was given
made it clear that other participants in the dia-
logue hold to a traditional principle of “purity,”
by which the goats must be regarded as inap-
propriate simply because they are nonnative,
regardless of any measured ecological effects
they may have. Following this line of reason-
ing, even if mountain goats are ecologically
benign, they are inappropriate. That is to say
that aside from any ecological problems they
pose, they compromise the experience the
park is supposed to provide.

The social issue may be the more important
one in the future of goat management in YNP.
It is our opinion, based on the experience of
managers in ONP and on our own observations
of visitors enjoying mountain goats in YNP
and GNP, that people who espouse the princi-
ple of ecological purity as a justification for
removing mountain goats from YNP will not
stand a chance against a pro-goat constituency
for whom the animal’s romantic image and
beauty make it an exciting addition to their
recreational experience. These recreationists
have a demonstrated, even willful, lack of inter-
est in any effects that the mountain goat’s
presence may have on those who come to YNP
to experience native wild nature. If the state of
Montana (which is, after all, the source of the
“problem” because it introduced the goats into
nonnative ranges north of the park and has not
attempted to halt their spread) and the NPS
choose to continue to accommodate the colo-
nization of the park by mountain goats, the
constituency of goat enthusiasts will grow at
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least as fast as the goat population does and
will no doubt be as strong willed and outspo-
ken as it has been in ONP.

Management of YNP natural resources has
evolved greatly since the park’s creation. Such
evolution has most often occurred as a matter
of necessity, when an issue became politically
or even ecologically pressing enough to require
reconsideration. The invasion of Yellowstone
Lake by nonnative lake trout, mentioned above,
is an example of an issue that was immediately
pressing, both because of its threat to native
elements of the ecosystem and because of its
potential impacts on regional recreational eco-
nomics. The goats currently occupying the GYE
and YNP have for some years threatened to
become pressing enough as an issue, but only
time will tell if they force an advancement in
the complex wildlife policies of this region. Our
reading of past Yellowstone history suggests
that as long as no compelling ecological issue
surfaces, the mountain goat colonization of YNP
will probably never achieve adequate signifi-
cance in the eyes of managers or other con-
cerned constituencies to force the decision-
making process into action. That is to say that
so long as the goats seem benign, management
reaction to them will likewise be benign, and
colonization will proceed as the goats and their
new environment allow.

ACKNOWLEDGMENTS

This work is part of the authors’ ongoing
National Park Service study of early Yellow-
stone wildlife history. We thank the organizers
of the Fifth Biennial Scientific Conference on
the Greater Yellowstone Ecosystem, and espe-
cially B. Smith, organizer of the mountain goat
session at which these findings were presented,
for providing such a stimulating forum. The
manuscript was read by S. Consolo Murphy,
D. Houston, A. Johnson, B. Smith, J. Varley, G.
Wright, and 3 anonymous reviewers. B. Barbee,
K. Cannon, S. Consolo Murphy, E. Hadly, A.
Johnson, K. Jope, T. Lemke, T. McEneaney, G.
Plumb, J. Roscoe, E. Schreiner, F. Singer, J.
Varley, and N. Varley helped with answers to a
variety of questions on policy history, taxonomy,
and literature sources. J. Francis, E. Hadly, C.
Hill, A. Johnson, and J. Schoen shared infor-
mation about the absence of mountain goats in
archeological and paleontological sites in the
GYE. S. Conner, J. Francis, M. Greer, A. John-

son, M. Pavesic, and J. Schoen provided insights
about rock art images in the GYE. We also
thank Aubrey Haines for historical advice;
Aubrey’s death in September 2000 deprived all
students of Yellowstone history of a treasured
friend and an irreplaceable advisor.

LITERATURE CITED

BLACKBURN, C.F. 1879. The wilderness at the head of the
Missouri, Columbia, and Colorado rivers. Scientific
American Supplement 8:2903–2904.

BOZEMAN AVANT COURIER. 1874. Returned to the moun-
tains. May 29, p. 3.

______. 1875a. The case of the territory against George
Rea. March 2, p. 3.

______. 1875b. Sentenced. March 12, p. 3.
BRANDBORG, S.M. 1955. Life history and management of

the mountain goat in Idaho. State of Idaho Depart-
ment of Fish and Game, Boise. 142 pp.

CALFEE, H.B. 1896. Calfee’s adventures—he and his com-
panion’s blood curdling trip to the park over a quar-
ter of a century ago. Manuscript assembled from
newspaper clippings. Yellowstone National Park
Research Library, Yellowstone Park, WY.

CANNON, K.P. 1992. A review of archeological and paleon-
tological evidence for the prehistoric presence of
wolf and related prey species in the northern and
central Rockies physiographic provinces. Pages 1-175–
1-265 in J.D. Varley and W.G. Brewster, editors,
Wolves for Yellowstone? A report to the United States
Congress. Volume 4, Research and analysis. NPS,
Yellowstone National Park, WY.

CHADWICK, D.H. 1983. A beast the color of winter: the
mountain goat observed. Sierra Club Books, San
Francisco, CA. 208 pp.

DEVLIN, S. 1999. Grizzly bears—real or imagined? Billings
Gazette, November 3.

DOODY, D. 1907. Letter to the superintendent, incoming
correspondence, document 8665. Yellowstone
Archives, Yellowstone National Park, WY.

FISCHER, D.H. 1970. Historian’s fallacies, toward a logic
of historical thought. Harper & Row, Publishers,
New York. 338 pp.

FOREST AND STREAM. 1885. The Vest Bill. Forest and
Stream 25(23):446–447.

GARFIELD, J. 1907. Letter to the acting superintendent,
incoming correspondence, document 8079. Yellow-
stone Archives, Yellowstone National Park, WY.

GLICK, D., M. CARR, AND B. HARTING. 1991. An environ-
mental profile of the Greater Yellowstone Ecosys-
tem. Greater Yellowstone Coalition, Bozeman, MT.

GRAYSON, D.K. 1981. A critical view of the use of archaeo-
logical vertebrates in paleoenvironmental reconstruc-
tion. Journal of Ethnobiology 1:28–38.

GREER, M., AND J. GREER. 1998. Southwestern Montana
rock art. Archeology in Montana 39:55–64.

GRINNELL, G.B. 1885. Through Two-Ocean Pass. Forest
and Stream (January 29, 1885) 24:3–4.

GRINNELL, J., AND T.I. STORER. 1916. Animal life as an asset
of national parks. Science 44(1133):375–380.

GROSS, J.E., M.C. KNEELAND, D.M. SWIFT, AND B.A. WUN-
DER. 2000. Scientific assessment of the potential
effects of mountain goats on the ecosystems of Rocky
Mountain National Park. Final report to the National

2001] MOUNTAIN GOATS IN GREATER YELLOWSTONE 305



Park Service, Contract 1443PX15099062. Rocky
Mountain National Park, Estes Park, CO. 141 pp.

HAINES, A.L. 1977. The Yellowstone story. 2 volumes. Col-
orado Associated University Press and the Yellow-
stone Library and Museum Association, Boulder, CO.

HOUSTON, D.B. 1995. Response to “Inaccurate data and
the Olympic National Park mountain goat contro-
versy.” Northwest Science 69:238–239.

HOUSTON, D.B., AND E.G. SCHREINER. 1995. Alien species
in national parks: drawing the lines in space and time.
Conservation Biology 9:204–209.

HUTCHINS, M. 1995. Olympic mountain goat controversy
continues. Conservation Biology 9:1324–1326.

KAY, C.E. 1994. Aboriginal overkill: the role of Native
Americans in structuring western ecosystems. Human
Nature 5:359–398.

LAUNDRÉ, J.W. 1990. The status, distribution, and man-
agement of mountain goats in the Greater Yellow-
stone Ecosystem. Final research report, NPS Order
#PX 1200-8-0828. 58 pp. Copy on file, Yellowstone
Research Library and park files, Yellowstone National
Park, WY.

LEWIS, J. 1990. Memo to interested parties. Cover letter for
environmental assessment on mountain goat intro-
duction to the Centennial Valley, Montana. Bureau
of Land Management, Dillon Resource Area, MT. 
1 pp.

LEWIS, M., AND W. CLARK. 1987. The journals of the Lewis
and Clark expedition, G. Moulton, editor. Volume 4.
Center for Great Plains Studies, University of Nebras-
ka Press, Lincoln. 464 pp.

LOVE, C.M. 1972. An archeological survey of the Jackson
Hole region, Wyoming. The Wyoming Archaeologist
18:1–95.

LYMAN, R.L. 1994. The Olympic mountain goat contro-
versy: a different perspective. Conservation Biology
8:898–901. 

______. 1998. White goats white lies, the misuse of sci-
ence in Olympic National Park. University of Utah
Press, Salt Lake City. 278 pp.

MCNAUGHTON, S.J., M. OESTERHELD, D.A. FRANK, AND

K.J. WILLIAMS. 1989. Ecosystem-level patterns of
primary productivity and herbivory in terrestrial
habitats. Nature 341(14):142–144.

NATIONAL PARK SERVICE. 1970. Compilation of the admin-
istrative policies for the national parks and national
monuments of scientific significance (natural area
category). U.S. Government Printing Office, Wash-
ington, DC. 147 pp.

______. 1988a. Management policies, U.S. Department of
the Interior, National Park Service. U.S. Government
Printing Office, Washington, DC.

______. 1988b. NPS-77. Natural resources management
guidelines. National Park Service, Washington, DC.

NORRIS, P.W. 1881. Annual report of the superintendent of
the Yellowstone National Park to the Secretary of the
Interior for the year 1880. U.S. Government Printing
Office, Washington, DC. 81 pp.

NOWAK, R.M. 1991. Walker’s mammals of the world. 5th
edition, volume 2. Johns Hopkins University Press,
Baltimore, MD. 1629 pp.

PECK, S.V. 1972. The ecology of the Rocky Mountain goat
in the Spanish Peaks area of southwestern Montana.
Master’s thesis, Montana State University, Bozeman.
54 pp.

PITCHER, J. 1902. Report of the acting superintendent of
the Yellowstone National Park to the Secretary of the

Interior. U.S. Government Printing Office, Washing-
ton, DC. 22 pp.

PRITCHARD, J. 1999. Preserving Yellowstone’s natural con-
ditions, science and the perception of nature. Uni-
versity of Nebraska Press, Lincoln. 370 pp.

RIDEOUT, C.B. 1978. Mountain goat. Pages 148–159 in J.L.
Schmidt and D.L. Gilbert, editors, Big game of
North America: ecology and management. Stackpole
Books, Harrisburg, PA.

ROOSEVELT, T. 1951. The letters of Theodore Roosevelt,
E.E. Morison, editor. Volume 3. Harvard University
Press, Cambridge, MA. 718 pp.

ROSCOE, J. 1990. Draft environmental assessment, Cen-
tennial Mountains goat reintroduction. Bureau of
Land Management, Dillon Resource Area, Dillon,
MT. 3 pp.

SCHULLERY, P. 1984. A history of native elk in Mount
Rainier National Park. Final report to the National
Park Service, Mount Rainier National Park, WA. 110
pp.

______. 1997. Searching for Yellowstone: ecology and
wonder in the last wilderness. Houghton Mifflin,
Boston, MA. 338 pp.

SCHULLERY, P., AND L.H. WHITTLESEY. 1992. The documen-
tary record of wolves and related wildlife species in
the Yellowstone National Park area prior to 1882.
Pages 1.3–1.173 in J.D. Varley and W.G. Brewster,
editors, Wolves for Yellowstone? A report to the
United States Congress. Volume 4, Research and
analysis. National Park Service, Yellowstone National
Park, WY.

______. 1995. A summary of the documentary record of
wolves and other wildlife species in the Yellowstone
National Park area prior to 1882. Pages 63–76 in
L.N. Carbyn, S.H. Fritts, and D.R. Seip, editors,
Ecology and conservation of wolves in a changing
world. Canadian Circumpolar Institute Occasional
Publication 35.

______. 1999a. Early wildlife hstory of the Greater Yel-
lowstone Ecosystem: an interim research report pre-
sented to National Research Council, National Acad-
emy of Sciences, Committee on Ungulate Manage-
ment in Yellowstone National Park, July 1999. Copies
available from the NRC or from the Yellowstone
Center for Resources, Yellowstone National Park,
WY.

______. 1999b. Greater Yellowstone carnivores: a history
of changing attitudes. Pages 10–49 in T.P. Clark, P.
Curlee Griffin, S. Minta, and P. Kareiva, editors,
Carnivores in ecosystems: the Yellowstone experi-
ence. Yale University Press, New Haven, CT.

SKINNER, M.P. 1926. Mountain goat (Oreamnos montanus
missoulae) not found in Wyoming. Journal of Mam-
malogy 7:334–335.

STUART, R. 1935. Pages 1–186 in P.A. Rollins, editor, The
discovery of the Oregon Trail. Charles Scribner’s
Sons, New York.

TELLER, H.M. 1883. Letter to the superintendent, incom-
ing correspondence, document 162. Yellowstone
Archives, Yellowstone National Park, WY.

TREFETHEN, J.B, 1961. Crusade for wildlife, highlights in
conservation progress. Stackpole Company and the
Boone and Crockett Club, Harrisburg, PA. 377 pp.

U.S. FISH AND WILDLIFE SERVICE. 1994. Final environ-
mental impact statement, the reintroduction of gray
wolves to Yellowstone National Park and central
Idaho. U.S. Fish and Wildlife Service, Helena, MT.

306 WESTERN NORTH AMERICAN NATURALIST [Volume 61



VARLEY, J.D., AND P. SCHULLERY. 1998. Yellowstone fishes:
ecology, history, and angling in the park. Stackpole
Books, Harrisburg, PA. 154 pp.

VAUGHN, R. 1900. Then and now; or thirty-six years in the
Rockies. Tribune Printing Company, Minneapolis,
MN.

WHITTLESEY, L.H. 1992. A history of large animals in Yel-
lowstone National Park before 1882. In-house re-
search report available in Yellowstone National Park
Research Library, Yellowstone National Park, WY,
186 pp.

______. 1994. A pre-1905 history of large mammals in
Pierre’s Hole, Idaho; Jackson Hole, Wyoming; and
the Bechler region of southwestern Yellowstone. In-
house draft report, 2 August 1994. National Park
Service, Yellowstone National Park, WY. 58 pp.

WILKINSON, T. 1990. Yellowstone tackles goat troubles.
The Denver Post, August 26, C1.

WISTER, O. 1904. The white goat and his ways. Pages
227–289 in C. Whitney, G.B. Grinnell, and O. Wister,

Musk-ox, bison, sheep and goat. The Macmillan Com-
pany, London.

WRIGHT, G.M., J.S. DIXON, AND B.H. THOMPSON. 1933.
Fauna of the national parks of the United States. U.S.
Government Printing Office, Washington, DC. 157
pp.

WRIGHT, R.G. 1992. Wildlife research and management in
the national parks. University of Illinois Press, Urbana.
224 pp.

YOUNG, S.B.M. 1907a. Annual report of the superinten-
dent of the Yellowstone National Park to the Secre-
tary of the Interior. U.S. Government Printing Office,
Washington, DC. 27 pp.

______. 1907b. Letter to L.J. Lownds, June 27, 1907; let-
ters sent, 1907. Yellowstone Archives, Yellowstone
National Park, WY.

Received 14 March 2000
Accepted 22 January 2001

2001] MOUNTAIN GOATS IN GREATER YELLOWSTONE 307



Biological invasions are now the 2nd lead-
ing cause (after habitat destruction) of species
endangerment and extinction in the United
States and worldwide. In the United States,
for example, about 42% of all species listed
under the Endangered Species Act are threat-
ened in part or wholly by nonindigenous
species (Wilcove et al. 1998). However, most
introduced species are not invasive. Although
no one can yet say what fraction of introduced
species become problematic in any region, it
is surely no more than a few percent; the great
majority of introduced species probably do not
even survive, and, of those that do, only a few
invade natural ecosystems (Williamson 1996).
But these few can have enormous impacts.

In addition to causing massive ecological
problems, nonindigenous species impose huge
economic costs not only on nature but on agri-
culture, silviculture, industry, and public health;
and this is the real reason for the sudden surge
of new activities to try to deal with them. After
all, Charles Elton (1958) pointed out most of
the ecological problems caused by invasions in

his book, The Ecology of Invasions by Animals
and Plants, but he did not discuss the costs,
and not many people cared, not even ecolo-
gists. Recently, a preliminary report (Pimentel
et al. 2000) estimates the cost of nonindige-
nous species in the United States alone to be
over $130 billion annually, and finally every-
one is eager to do something about them.

First, I will outline the kinds of problems
associated with introduced species. Then I will
discuss why this crisis is occurring. Finally, I
will recommend means of dealing with inva-
sive introduced species.

KINDS OF IMPACTS

All major impacts of introduced species can
be exemplified by problems found in United
States national parks, although some are more
dramatic in other settings. The most signifi-
cant problems, in terms of ecological damage,
are usually caused by plant species that over-
grow entire communities, replacing native,
dominant plants and often most species of
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plants and animals associated with them. For
example, the Australian paperbark tree (Mela-
leuca quinquenervia), Brazilian pepper (Schinus
terebinthifolius), and Australian pines (Casuar-
ina spp.) together cover approximately 650,000
ha in south Florida (Schmitz et al. 1997), in-
cluding many thousands of hectares in Ever-
glades National Park (Doren and Jones 1997).

Overgrowth and replacement of the origi-
nal community is not restricted to terrestrial
systems. Water hyacinth (Eichhornia crassipes)
in Lake Victoria (McKinley 1996) and many
other freshwater sites, as well as the tropical
alga Caulerpa taxifolia, which has invaded 9 of
10 marine reserves of the northwest Mediter-
ranean Sea (Meinesz 1999), have had similar
impacts on aquatic systems. The latter species
has just been found in a lagoon near San Diego
(Anonymous 2000). Occasionally, an animal
species can overgrow an area with devastating
effects on the entire native community, as has
zebra mussel (Dreissena polymorpha), which
has invaded many freshwater systems in North
America (Johnson and Padilla 1996).

Of course, an introduced species that re-
moves a dominant plant species can have enor-
mous impacts on the entire native community.
The Asian chestnut blight fungus (Cryphonec-
tria parasitica) arrived in New York on nursery
stock in the late 19th century, spread over 100
million ha of the eastern United States in less
than 50 years, and killed almost all mature
chestnuts (Castanea dentata; von Broembsen
1989). Because chestnut had been a dominant
tree (comprising more than one-quarter of all
canopy trees in many places, including parts
of Great Smoky Mountains National Park), the
impacts on the native community must have
been enormous. There are occasional claims
that the chestnut blight invasion shows how a
dominant species can be replaced with little
real impact on the ecosystem (e.g., Williamson
1996). Such statements rest on ignorance; few
data exist from before this invasion that allow
one to assess its full impact. Where evidence
exists, it suggests major changes. For example,
several lepidopterans that were host-specific
to chestnut became extinct (Opler 1979).

Chestnut blight is just one of many invasions
that have successively removed dominant
plant species from Great Smoky Mountains
National Park. The European balsam woolly
adelgid (Adelges piceae) has more recently
destroyed nearly all Fraser fir trees (Abies

fraseri), a formerly dominant species in upper
elevations of the park (Campbell and Schlar-
baum 1994). Additionally, dogwood anthrac-
nose (Discula destructiva) is eliminating dog-
woods (Cornus florida; Campbell and Schlar-
baum 1994), while beech scale (Cryptococcus
fagisuga; also from Europe) is spreading beech-
bark disease, a European fungus (Nectria coc-
cinea faginata) that arrived in Nova Scotia in
1890, reached the park by 1993, and is now
ravaging beeches (Fagus grandifolia; Simmons
1999a). The Asian hemlock woolly adelgid
(Adelges tsugae), a huge threat to forests domi-
nated by hemlock (Tsuga canadensis) in the
Northeast, is nearing the park after infesting
80% of hemlocks in Shenandoah National Park
(Simmons 1999b).

In addition to ecosystemic effects, many in-
troduced species affect particular native species
or groups of them. Introduced species can eat
natives, for example. The brown tree snake
(Boiga irregularis) has eliminated virtually all
forest birds of Guam after invading from the
Admiralty Islands (Rodda et al. 1992), while
the Nile perch (Lates niloticus) has extinguished
over 100 species of native cichlid fishes in
Lake Victoria (Goldschmidt 1996). Introduced
herbivores can also eat natives to extinction:
goats brought to St. Helena in 1513 quickly
eliminated about half the native plant species,
all of which were endemic (Groombridge 1992).
Pathogens can heavily impact particular native
species. The introduction of Asian songbirds to
the Hawaiian Islands brought avian pox and
avian malaria, facilitating the decline of native
forest bird species (van Riper et al. 1986).
Introduced species can also compete for re-
sources with native species. For example, in
Great Britain the North American gray squir-
rel (Sciurus carolinensis) is replacing the native
red squirrel (S. vulgaris) by foraging more effi-
ciently (Williamson 1996). Introduced species
can directly affect native ones by attacking
them, rather than indirectly by depleting their
resources. This is how the South American red
imported fire ant (Solenopsis invicta), which
has spread throughout the southeastern United
States and has now reached California, is replac-
ing several native ant species (Tschinkel 1993).
Allelopathy is a plant analog of aggression.
Thus, for example, the African crystalline ice
plant (Mesembryanthemum crystallinum) accu-
mulates salt, which remains in the soil when
the plant decomposes and thereby eliminates
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native plants (Vivrette and Muller 1977). Non-
indigenous species also threaten the existence
of native species, at least as distinct genetic
entities, by mating with them. For example,
both the New Zealand Gray Duck (Anas super-
ciliosa superciliosa) and the Hawaiian Duck
(A. wyvilliana) are threatened by hybridization
and introgression with the introduced North
American Mallard (A. platyrhynchos; refer-
ences in Rhymer and Simberloff [1996]). Even
when there is little or no gene flow, a species
can be imperiled simply by loss of productive
mating opportunities. The introduced brook
trout (Salvelinus fontinalis) threatens native bull
trout (S. confluentus) in this way in the west-
ern United States (Leary et al. 1993); hybrid
individuals rarely backcross to either parental
species.

Sometimes the actions of one introduced
species worsen the impact of others (Sim-
berloff and Von Holle 1999). For example, the
zebra mussel, by its prodigious water filtra-
tion, increases water clarity and thus aids the
invasion of several introduced macrophytes,
such as Eurasian watermilfoil (Myriophyllum
spicatum). The increased growth of the macro-
phytes, in turn, aids the mussel by providing
settling substrate (MacIsaac 1996). In other
instances, highly coevolved species (that alone
would be innocuous) produce, in concert, a
damaging invasion, as witness the sudden
spread of exotic fig trees (Ficus spp.) from
Miami into Everglades National Park after the
arrival of obligatory fig wasp (Hymenoptera:
Agaonidae) pollinators (Kauffman et al. 1991).

WHAT TO DO—POLICY

In an era when free trade is almost a religion
and amounts of travel and cargo are rapidly
increasing, it will be difficult to attempt to
introduce impediments and barriers to move-
ment of species. However, one of the most
important policy arenas is the World Trade
Organization (WTO). The WTO Agreement on
the Application of Sanitary and Phytosanitary
Measures states that all new trade items, trade
routes, or transportation methods are accept-
able until they are proven to be too risky. This
is called the “presumption of admissibility.”
The International Plant Protection Convention
was revised to be in accord with the WTO
Agreement in 1997.

The guiding philosophy of the WTO is that
of a blacklist law. Anything may be imported
unless it is on a blacklist of prohibited species.
However, blacklist laws have never worked
well to control introduced species (Simberloff
2000). It is difficult to get a species on a black-
list unless it has already caused damage, and
by then it is usually too late because the great
majority of established introductions are irrev-
ocable. The WTO Appellate Body recently
ruled against the Australian government in a
salmon import case along these lines (Low
1999). The Appellate Body demands formal
risk assessments and explicitly rejected scien-
tific uncertainty about a risk as an adequate
basis to preclude entry. However, risk assess-
ments for introduced species are in their in-
fancy, and there are several aspects of biology
(such as evolution and autonomous dispersal)
that make it extremely difficult to predict the
trajectory of invasions (Simberloff and Alexan-
der 1998). In other words, as a party to the
WTO, if the United States wanted to adopt a
broad ban such as, “no untreated wood or
wood products unless the party proposing the
import demonstrates no risk,” they could be
turned down on the grounds that this is pro-
tectionism. An appeal would have to be based
on a risk assessment that presently cannot be
done well and may always have a huge margin
of error. It is worth noting that wooden pack-
ing material is believed to be responsible for
the recent arrival of the Asian long-horned
beetle (Anoplophora glabripennis) in New York
and Chicago.

What is needed is a change in philosophy,
away from innocent until proven guilty. The
WTO must recognize that the very nature of
introduced species makes current risk assess-
ments unreliable documents, that introduc-
tions are generally irrevocable once they are
established, and that the harm some species
can cause is not only staggering in economic
terms but incalculable in ecological ones. The
United States, of course, has enormous influ-
ence on the WTO, but the leadership will have
to come from the top—the President and the
federal trade representative. What is really
needed is a combination of a white list law
(Ruesink et al. 1995) and a blacklist law; certain
products and species are so inherently danger-
ous that they should be prohibited under any
circumstances, while others (the vast majority)
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must all be subjected to detailed expert exami-
nation before they are put on an approved
white list. That is, a precautionary principle is
needed for introduced species.

The Convention on Biodiversity, held in
Rio de Janeiro in 1992, specifically called for
preventing introduction of species (article 8h):
each contracting party shall “as far as possible
and as appropriate . . . prevent the introduc-
tion of, control or eradicate those alien species
which threaten ecosystems, habitats or species.”
The United States, unfortunately, has not yet
ratified the Convention, but ca 180 nations
have, and this United States shortcoming will
probably be remedied some day. Another prob-
lem is that article 8h has never really been
made an action item for the Conference of
Parties to the Convention (Glowka and de
Klemm 1996); but this is simply a matter of
building international interest in the problem.
An extremely promising development is the
growth of the Global Invasive Species Program
(GISP), a component of an international pro-
gram on the science of biodiversity (DIVER-
SITAS). GISP is coordinated by the Scientific
Committee on Problems of the Environment
in conjunction with the International Union
for the Conservation of Nature, the United
Nations Environment Program, and Common-
wealth Agricultural Bureau International. In
the last 3 years, GISP has sponsored an in-
creasing number of workshops on many aspects
of the introduced species problem, with em-
phasis on practical matters such as exclusion
and management (Mooney 1999). This degree
of high-level international activity may help to
shift the direction of the WTO and other mul-
tilateral organizations.

Within the United States, many of the same
problems arise as one finds on the interna-
tional scene. For example, it is quite difficult
for states to exclude a species they think might
be a risk (e.g., bait or game fish, biocontrol
agents), as the U.S. Supreme Court has usually
called such exclusion an infringement of inter-
state commerce and therefore unconstitution-
al. However, a species from one part of the
United States, even a native, can be extremely
damaging in other parts of the United States
where it is nonindigenous. East coast cordgrass
(Spartina alterniflora) is a huge problem on
California and Washington beaches (Daehler
and Strong 1996). On ecological grounds, it is

illogical for a nation as large as the United
States to act as if a species native to one region
is native to all.

At the federal level, Executive Order 13112
of 3 February 1999 on introduced species is a
promising start at bringing about major changes
in the way the United States deals with in-
vaders. Currently, we operate largely by fed-
eral blacklists, such as the Federal Noxious
Weed List. Species not on a blacklist (the vast
majority of all species) are generally permitted
entry into the United States. The primary
agency in the United States charged with gov-
erning import of species, the United States
Department of Agriculture Animal and Plant
Health Inspection Service, currently operates
without clear guidance on what should be quar-
antined, and it has recently relaxed controls
on immigration of woody plants. The afore-
mentioned executive order, sections 2.2 and
2.3, enjoins all federal agencies to prevent the
introduction of invasive species and not to
authorize or carry out actions that it believes
are likely to cause or promote the introduction
of invasive species, unless it has determined
that the benefits of such actions clearly out-
weigh the potential harm. It will be interest-
ing to see how these injunctions affect the
overall flow of living organisms into the United
States.

Executive Order 13112 also sets up an Inva-
sive Species Council of the federal agencies.
This council took a long time to initiate work,
but by July 2000 it had established its expert
advisory committee and produced a draft of a
comprehensive management plan. The coun-
cil has the prestige and scope to do much that
is needed. The executive order is explicit only
about federal activities, demanding a report
from the council on what they are and how to
improve them within 18 months. It has only
inspirational language with respect to the states,
municipalities, and private property owners,
who are every bit as crucial in this battle.
However, the council could be instrumental in
generating the necessary coordination.

Both exclusion and management of intro-
duced species could be greatly improved by
increased cooperation between various entities
managing nonindigenous species. On the man-
agement side, there is insufficient overall pri-
oritization, and many agencies lack sufficient
tools even to predict which invaders are likely 
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to be problems. The National Park Service has
a ranking system for plants (Hiebert and Stub-
bendieck 1993), while the Nature Conservancy
has another one (Randall et al. 1996), the State
of Washington uses yet a 3rd (S. Reichard per-
sonal communication), which one of the largest
horticulture firms in this country claims to use
voluntarily (Klinkenborg 1999), and the Aus-
tralian government uses yet another one
(Pheloung 1995). For animals, there really are
no comparable tools. There is little retrospec-
tive research on how any of these tools for
plants is working. Until some order is brought
to this area and the scope is expanded, there
will be no consensus on what to worry about
and what to ignore.

Much more cooperation is also needed. For
instance, we cannot have a situation that
occurred in July 1999 (Barnard 1999). The
Oregon Department of Agriculture had been
trying for years to control Scotch broom
(Cytisus scoparius), a weed that infests over 6
million ha in western Oregon. They had tried
backhoes, root wrenches, and herbicides with
little success. Finally, they found what they
considered a promising biological control:
European beetle (Bruchidius villosus) that eats
seeds of Scotch broom. By 1999 they had
reared enough individuals for a field test. At 1
of 12 sites, they released 250 beetles. A few
days later a road crew of the Bureau of Land
Management ripped out the entire Scotch
broom patch and killed all the beetles. This
case is emblematic; in the information age,
there can surely be better organization and
cooperation. There has to be more readily
accessible and comprehensive data on which
species are where, what they are doing, and
which agencies are doing what where (Ricciardi
et al. 2000). Information on successful and un-
successful management techniques should be
much more widely disseminated.

The biggest improvement of all, from both
national and international standpoints, must
come from increased public pressure. The bat-
tle against invaders can be won. All techniques
in use can be improved, and coordination will
enhance success. The key is for the public to
pressure policymakers to ensure creation of an
improved legal and operational framework.

WHAT TO DO—MANAGEMENT

Both in the United States and worldwide,
many invaders have been eradicated completely

(Simberloff 1997, 2000). Most had inhabited
only small areas (e.g., Asian wild rice [Oryza
rufipogon] in a 0.1-ha area of Everglades
National Park), but several were well estab-
lished over wide ranges. For example, the
African malaria mosquito (Anopheles gambiae)
was eradicated from over 30,000 km2 in north-
eastern Brazil (Davis and Garcia 1989). The
probability of successful eradication is enhanced
if a species is detected early in the invasion
and eradication efforts begin quickly. How-
ever, such efficiency requires either great luck
or a good monitoring program and a rapid
response mechanism. Other factors conducive
to successful eradication include a thorough
understanding of the biology of the target
organism, sufficient resources to carry the pro-
ject to completion, and the regulatory power
to enforce cooperation in such matters as
quarantines.

If eradication fails or is not attempted, there
are 4 basic control approaches, and for the
first 3 there have been some striking suc-
cesses, as well as crushing failures (Simberloff
et al. 1997, Simberloff 2000). First, mechanical
means as simple as hand-picking and as com-
plicated as elaborate machinery can control
certain species at acceptably low densities.
Volunteer labor has frequently been used in
such efforts, as has convict labor. Second, chem-
ical means (i.e., herbicides, rodenticides, insec-
ticides, etc.) are sometimes effective, although
they are often controversial. Some early-gen-
eration pesticides had substantial nontarget
impacts, including human health effects, and
these problems have left a legacy of chemo-
phobia in some circles (Williams 1997). Even
though many current chemical controls have
few if any nontarget impacts, there are other
disadvantages. First, many are expensive, par-
ticularly if they are to be used routinely over
large natural areas. Second, species evolve re-
sistance to them, which both increases the
cost and means that no chemical can be used
in perpetuity.

The 3rd approach, biological control, is often
seen as a green alternative to chemical con-
trol. In some instances it has worked superbly
(e.g., the control of South American alligator-
weed [Alternanthera phyloxeroides] in Florida
by the flea-beetle Agasicles hygrophila [Cen-
ter et al. 1997]), with the pest kept in check at
a relatively constant low density in homeosta-
tic fashion by its natural enemy. However, bio-
logical control has recently come under critical
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scrutiny. First, it usually does not work; that is,
the target pest is usually not substantially re-
duced. However, about 3 times as many intro-
duced biological control agents establish pop-
ulations as effect substantial control (data in
Williamson [1996]). Second, in some instances,
biological control agents have attacked non-
target species, and they have even driven some
to extinction (Simberloff and Stiling 1996, and
references therein).

Finally, management of an entire ecosystem
can sometimes create conditions inimical to
introduced species but suitable for the natives.
Consider the forests of the southeastern United
States dominated by longleaf pine (Pinus pal-
ustris). These forests formerly extended over
28 million ha. Less than 600 ha of old growth
remains, but there are substantial amounts of
2nd growth with varying degrees of similarity
to the original forests. Longleaf pine forests
are classical fire disclimaxes (Hermann 1993);
they are maintained by cool, growing-season
fires, usually every 2–5 years, and the longleaf
pine itself, groundcover plants (often domi-
nated by wiregrass [Aristida spp.]), and all
other inhabitants are adapted to thrive in such
a fire regime. It is striking that, when a natural
fire regime is maintained, this community is
barely invaded, even though the Southeast has
more than its share of nonindigenous species.
The red imported fire ant, though wreaking
havoc in much of the Southeast (Tschinkel
1993), does not get into intact longleaf pine for-
est except along roads (McInnes 1994); a native
fire ant (S. geminata) persists here, though the
invader replaces it in other habitats. Similarly,
the plant community notably lacks invaders. In
the largest old-growth longleaf pine forest (80-
ha Wade Tract in south Georgia), there are few
introduced plants, though these are worrisome
because nearby areas are increasingly converted
to suburban housing with exotic landscaping.
The groundcover of the Wade Tract has almost
400 species of native plants. There are about
11 nonindigenous plant species (S. Hermann
personal communication), and almost all indi-
viduals are within 2 m of human disturbance,
especially the old trails that dissect the frag-
ment. There are approximately 22 other non-
indigenous plants within 200 m of the Wade
Tract, but they have not invaded. The appar-
ent resistance to invasion probably has to do
with the frequent fires that destroy the exotics
except on the trails, which rarely burn. If a
fire-adapted nonindigenous species such as

Asian cogon grass (Imperata cylindrica) were
to colonize this region, the Wade Tract might
be invaded. However, to date, it seems as if
the prescribed burns, more or less mimicking
the natural fire regime, have controlled invasive
species in this forest.

Ecosystem management, though adopted
by virtually all federal agencies as the opera-
tive means of managing natural resources, has
largely been a catch-phrase rather than a group
of well-defined and tested techniques (Sim-
berloff 1998). Whether longleaf pine forests are
unusual in that a particular management tool
(routine growing season fires) tends to main-
tain an entire ecosystem remains to be seen.
There may be other communities that can be
kept largely intact in the face of potential in-
vaders by managing entire ecosystems.

Because it is the newest approach, ecosystem
management is most in need of enhanced re-
search. But all of the approaches—eradication
plus mechanical, chemical, and biological con-
trol—could be greatly enhanced by substantial
research. First, much management literature
is very gray. Some management techniques
are transmitted only verbally. Thus, wheels are
probably continually reinvented, even some
that failed to work the first time. Again, in an
age of information transfer, this should not
happen. As introduced species databases are
improved and become increasingly user-friendly
and compatible with one another (Simberloff
1999), it is important that management tech-
niques and attempts be part of the easily acces-
sible record. Second, much basic research is
required on all management techniques. As I
stated at the outset, all are characterized by
some successes and some failures, and there is
little doubt that percentages of the former can
be increased by well-designed, traditional
research.

CONCLUSIONS

An aura of hopelessness sometimes sur-
rounds the issue of introduced species, as if an
increasing flood of invaders is inevitable and
our potential arsenal to limit their entry and
impact is meagre (Quammen 1998). Although
the battle to manage this problem adequately
will be long and difficult, there are 2 reasons
not to surrender. First, if the public gives up, 
many habitats will surely progressively drown
in a sea of exotics, and much of the Earth,
national parks included, will indeed become a
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“planet of weeds” (Quammen 1998). Second,
many things can be done to improve the re-
sponse to this assault. On the policy front, a
shift from a blacklist philosophy to a combina-
tion of white lists and blacklists would drasti-
cally reduce the number of nonindigenous
species that would actually invade any nation,
and perhaps even parts of large nations. Coor-
dination and cooperation on many fronts seem
logistically feasible, if sufficient resources are
devoted to this problem. Areas in which coor-
dination would greatly improve the current
situation are monitoring, risk assessments and
prioritization procedures, rapid response teams,
reporting of attempted management proce-
dures, and availability of basic biological data
on introduced species.

Further, various procedures already used
for management could all be greatly improved.
With increased monitoring, an appropriate
rapid response mechanism, and technological
improvements in methods of attack, a major
increase could be achieved in the rate at which
nonindigenous species are eradicated before
they are widespread or even established. For
established pests, although ecosystem man-
agement is probably most in need of substan-
tial research as a tool to exclude exotics, the
more traditional methods—mechanical, chem-
ical, and biological control—could all be en-
hanced in terms of both efficacy in eliminating
the target pests and minimization of nontarget
impacts. In light of the striking successes that
each of these methods (and combinations of
them) has already achieved, with a relatively
small research effort compared to that in, say,
public health or pollution control, there is rea-
son for optimism that major technological ad-
vances in all of them could make vast strides
toward bringing the introduced species prob-
lem under control.

What will be required to achieve these im-
provements in policy and technology? Public
pressure! As the public increasingly recog-
nizes the terrible cost imposed by nonindige-
nous species, they will demand more effective
action to do something about this problem.
And when the public demands action, they
will get it.
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Exotic species are those that occur in a given
place as a result of direct or indirect, deliber-
ate or accidental action by humans (not
including deliberate reintroduction). . . . The
exotic species introduced because of such
human actions would not have evolved with
the species native to the place in question,
and, therefore, would not be a natural com-
ponent of the ecological system characteristic
of the place (National Park Service 1988).

This definition of exotic species emphasizes
the fact that human actions are responsible for
the introduction of new species that pose con-
siderable threat to the health of native ecosys-
tems. The definition also implicitly raises ques-
tions about the natural state of ecosystems on
long time scales and the relative importance of
biotic invasions and range expansions prior to
extensive Euro-American activity. To address
these issues requires an examination of the
paleoecological record, inasmuch as such data
disclose the response of biota in the face of past
environmental changes (Millar and Woolfenden

1999) and provide a natural baseline against
which to measure present conditions (Swetnam
et al. 1999). A long-term perspective also allows
us to consider the role of climate and natural
disturbance in accomplishing major biogeo-
graphic changes. Paleoecologic data thus offer
a context by which to evaluate present inva-
sions and their ecological consequences.

Information on past changes in species dis-
tributions is also relevant in assessing the
potential impact of rising concentrations of
atmospheric CO2 and other “greenhouse” gases
on ecosystems in the future. Land managers
around the world are engaged in complicated
and expensive efforts to combat the introduc-
tion and expansion of alien species, and sev-
eral studies have noted that projected climate
changes will accelerate the success of these
invasions (e.g., Vitousek et al. 1996, Dukes and
Mooney 1999, Mooney and Hofgaard 1999).
Rates of exotic species spread are alarming,
particularly in areas of highly altered habitat
and human-mediated disturbance, but even
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A PALEOECOLOGIC PERSPECTIVE ON PAST PLANT INVASIONS
IN YELLOWSTONE

Cathy Whitlock1 and Sarah H. Millspaugh1

ABSTRACT.—The role of climate and natural disturbance in the past provides a context for understanding present and
future changes in biota. The vegetation history of the Yellowstone region, like that of North America as a whole, is
largely one of plant invasions and extinctions in response to changes in climate and environment. When Holocene plant
migrations are examined on multiple spatial and temporal scales, several generalities are apparent. First, at a continental
and regional scale, plant migration patterns followed the direction of climate change, whereas at local scales plant colo-
nization was governed by site-specific conditions and possibly by biotic interactions. Second, species were individualis-
tic in their response to climate change, and, as their ranges shifted across the landscape, existing communities were dis-
mantled and new ones were formed. Individual species met little resistance from existing communities. Third, rates of
species invasion were astonishingly rapid, suggesting that rare long-distance dispersal events were critical. Fourth, fire
during periods of climate change was an important catalyst in allowing the invasion of new species, but it is unlikely that
a single fire event triggered irreversible vegetation change. 

Regional climate and biotic changes in response to projected increases in atmospheric CO2 in the next century sug-
gest an even more complex picture than in the past. Model simulations portray changes in temperature and precipita-
tion in the Yellowstone region that have not occurred in the last 20,000 years. Likewise, projected changes in species
ranges, including latitudinal, longitudinal, and elevational shifts, require faster rates than anything observed in the fossil
record. Increased fire occurrence may help maintain some native taxa but promote the decline of others. Thus, future
conditions are likely to create evermore opportunities for exotic species to invade and establish within the Yellowstone
region.

Key words: Yellowstone, past plant migrations, paleoecology, fire history, invasive species.
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seemingly pristine places, like Yellowstone
National Park, are not immune to the assault.
At present, over 170 species of nonnative plants
have been identified in Yellowstone, and addi-
tional invasions are imminent (Olliff et al. 2001,
Whipple 2001).

The objectives of this paper are to (1) pro-
vide some examples of past plant migrations in
North America and Europe, as well as in the
Yellowstone region, during the Holocene (the
last 10,000 years of earth history), (2) describe
the role of natural disturbance as a trigger of
past vegetation change, and (3) compare past
and present biogeographic changes in Yellow-
stone with projections of ecosystem changes
in the future.

BIOTIC INVASIONS IN THE PAST

Pattern of Plant Migrations

An “invasive species” has been defined as
one whose introduction does or is likely to
cause economic or environmental harm or
harm to human health (President’s Executive
Order EO13112 of February 3, 1999). Certain-
ly, this narrow definition does not fit the spread
of native species in the past, but current inva-
sions and past “migrations” both require species
to colonize, establish, and reproduce in new
plant communities. The paleoecologic record
therefore offers insights into the ecological
consequences of introducing new species into
established communities, as well as the poten-
tial rate of species spread.

The paleoecologic record of the last 20,000
years provides evidence of significant adjust-
ments in the geographic distribution of plants
and animals since the last ice age. These bio-
geographic changes involved displacements
that ranged from a few to hundreds of kilome-
ters (see Webb et al. 1983, Huntley 1988, Webb
1988, Elias 1991, FAUNMAP Working Group
1996), and they were accomplished by a series
of biological invasions in which new species
moved into and potentially disrupted existing
ecosystems. The paleoecologic record indicates
that species were highly individualistic in the
direction and rate of migration because each
had particular environmental requirements
that dictated their pattern of colonization. As a
result, the ranges of species shifted in no single
direction, and communities were continually
formed and dismantled in the process. To ac-
complish the long-term patterns of migration,

the rates of invasion for most species were
breathtakingly fast, e.g., on the order of 200–
1500 m ⋅ yr–1 for major tree taxa (Huntley
1988, Birks 1989). Long-distance dispersal was
apparently critical in the past, and the process
was probably similar to exotic species inva-
sions in this century that begin with a quies-
cent phase of little discernible range change
and are followed by an active phase of explo-
sive expansion (Mack 1986, Pitelka et al. 1997).

The large-scale picture of past tree invasions
comes from examining networks of radiocar-
bon-dated pollen records. One approach for
analyzing pollen data is to determine the tim-
ing of the first appearance of species at indi-
vidual pollen sites and compile these “first
appearance” dates to construct a map of range
limits for different time intervals (pollen iso-
chrone maps; see Davis 1981a, 1983, Gaudreau
and Webb 1985). Another approach is to plot
the abundance of particular pollen types at
specific locations and develop pollen percent-
age contour maps (isopoll maps; see Huntley
and Birks 1983, Webb et al. 1983, Bartlein et
al. 1986, Huntley 1988, Webb 1988). Changes
in the spatial patterns of pollen abundance are
then used to track the distribution of the
species at different times.

The pollen record of spruce in North Amer-
ica and Europe provides an example of the
range shifts that occurred in the last 18,000
years2 (Webb and Bartlein 1992; Fig. 1). In
North America a network of pollen records
indicates that spruce (Picea glauca and P. mar-
iana) resided in the southern and central Great
Plains during the last ice age. As the climate
warmed, spruce shifted its range northward
and eastward into deglaciated regions. By
12,000 years ago, it occupied a broad region
along the southern margin of the retreating ice
sheet. The advance of spruce in interior Can-
ada was particularly rapid from 12,000 to 9000
years ago and has been attributed to strong
southeasterly winds off the ice sheet that may
have transported seeds exceptional distances
(Ritchie and MacDonald 1986). At 6000 years
ago, the northern limit of spruce lay north of
its present position as a result of higher-than-
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present temperatures. In the last 6000 years,
the limit of spruce has shifted southward be-
cause of cooler conditions. The modern boreal
forest formed in only the last 3000 years when
the ranges of white spruce (Picea glauca),
black spruce (P. mariana), jack pine (Pinus
banksiana), tamarack (Larix laricina), and bal-
sam fir (Abies balsamifera) overlapped. The
present distribution of boreal mammals was
also attained at this time (FAUNMAP Working
Group 1996). In Europe, Norway spruce (Picea
abies) moved from its glacial range in north-
western Russia westward into Fennoscandia
and eventually into the Baltic region and Swe-
den. Some researchers have suggested late-
Holoceme deforestation as the cause of the
spruce expansion in Fennoscandia; however,
climate-model results indicating lower winter
temperatures and increased winter precipita-
tion may better explain the pattern (Huntley
1988).

An example of a prehistoric pathogen inva-
sion that had large ecological consequences
comes from eastern North America. The inva-
sion occurred 4650 ± 300 years ago when
forests of hardwoods and conifers extended
across the eastern and central U.S. (Gaudreau
and Webb 1985). At this time populations of
eastern hemlock (Tsuga canadensis) declined
precipitously in the forest, as evidenced by the
sharp drop in hemlock pollen percentages at
most sites. The demise was rapid, widespread,
and showed no discernible geographic pattern.
Hemlock was the only victim detected in the
fossil record, but organisms that relied on hem-
lock probably also declined. Davis (1981b)
attributed the “hemlock decline” to the effects

of a pathogen, not unlike the European chest-
nut blight of the 1900–1920s that killed Amer-
ican chestnut (Castanea dentata) in the same
forests. Competing theories, such as climate
change or widespread natural disturbance, do
not adequately account for the abrupt decline
of a single species over such a large area. A
recent study (Bhiry and Filion 1996) suggests
that a series of defoliating events between
4900 and 4200 years ago led to the loss of
hemlock; hemlock looper (Lambdina fiscel-
laria) and other lepidopteran defoliators, includ-
ing spruce budworm (Choristoneura fumifer-
ana), were the likely culprits. These insects
have their greatest impact during warm, dry
conditions, as was the case at the time of the
hemlock decline.

How long did it take for hemlock to recover
following its decline? Pollen records suggest
500–1000 years, but forests in most places were
never the same (Davis 1981b). In the absence
of hemlock, tree species like maple (Acer) and
beech (Fagus) expanded their range and pre-
sumably took over the ecological space occu-
pied by hemlock. Moreover, the climate 1000
years later was cooler in many areas than it
had been before, and this probably shifted 
the ecological balance (Bartlein et al. 1986).
Although hemlock survives to the present, one
could argue that the legacy of the pathogen(s)
is still evident.

When past invasions are examined at the
local scale, the pattern of colonization seems
to be shaped by the interplay of soil character-
istics and disturbance regimes at the site level
and the overarching control of climate at the
regional scale (Brubaker 1975, Graumlich and
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Fig. 1. Geographic variations in the abundance of spruce (Picea) pollen in Europe (top row) and eastern North Amer-
ica (bottom row). Darkest shading represents >20% spruce, medium shading represents 5–20%, and light shading rep-
resents <1% (after Webb and Bartlein 1992).



Davis 1993, Davis et al. 1994). Stratigraphic
changes evident in individual pollen diagrams
suggest that most sites experienced long peri-
ods of vegetation stability, which are designated
as pollen zones, interrupted by periods of rela-
tively rapid change, marked by pollen zone
boundaries. Periods of invasion span 500–1000
years at most sites, whereas periods of relative
stability often last for millennia (Watts 1973).
The transition periods thus represent several
generations of the invading species, which
implies that past invasions of native tree taxa
were gradual but fairly opportunistic events. A
species’ success depended on the ability of
seedlings to establish and survive during a
phase of initial low population density. Stable
populations within the existing communities
seem to have offered little resistance to these
tree invasions; instead, the important controls
appear to be habitat conditions and intraspe-
cific biological constraints (Watts 1973).

Opportunism modulated by habitat condi-
tions is also evident on longer time scales when
the vegetation history of other interglacial
periods is examined. In northeastern Europe,
for example, subtle variations in the sequence
and direction of plant migrations distinguish
each interglacial period and attest to the fact
that plant associations are not persistent in
time (Watts 1988). For example, Abies was more
widespread and moved more rapidly in the
Holsteinian interglacial period than in the
younger Eemian or Holocene interglacial peri-
ods. Differences in migration history are
attributed to variations in the location of
glacial refugial populations and the climate of
each interglacial period.

In the western United States, the density of
fossil sites is too sparse to describe the pattern
of postglacial plant migrations in detail. Regional
descriptions of vegetation history, however,
are available from several regions, including
the American Southwest (Betancourt et al.
1990), Pacific Northwest (Whitlock 1992), Col-
orado Rockies (Fall 1997), and Sierra Nevada
(Anderson 1990). In the Yellowstone and Grand
Teton region, a series of pollen records from
the former ice margin to the center of glacia-
tion (Whitlock 1993, Whitlock et al. 1995) pro-
vides information on the movement of conifers
during deglaciation. For example, the spread
of Engelmann spruce (Picea engelmannii) is
estimated from the first increase in spruce
pollen and presence of needles in a series of

Yellowstone sites (Fig. 2). The evidence suggests
that spruce survived close to the ice margin 
in northwestern Wyoming and southeastern
Idaho, probably as small populations in pro-
tected areas. As the climate warmed and glaci-
ers receded, the range of spruce shifted north-
ward and eastward into northern Jackson
Hole. Spruce was present in northern Jackson
Hole by 14,750 years ago and reached the Yel-
lowstone Lake region by about 11,300 years
ago. The pattern of spruce invasion within the
deglaciated region was not unidirectional, and
elevation, soil development, and environmen-
tal conditions probably complicated coloniza-
tion at the local scale. Nonetheless, a simple
calculation of the invasion rate from its arrival
at the former ice margin to its appearance
near Yellowstone Lake (the former ice center)
is ~100 m ⋅ yr–1, which is consistent with
rates estimated for spruce in eastern North
America and Europe (Davis 1981a, Huntley
1988). Although pace of climate change and
availability of suitable habitats limited the
migration of all, the similarity among widely
separated species of Picea is remarkable. It
suggests that spruce may have an intrinsic rate
of response determined by its biological con-
straints to produce and disperse seeds, establish
seedlings and saplings, and grow to reproduc-
tive age. If so, this characteristic has probably
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Fig. 2. Age (in radiocarbon years before present) of the
first appearance of Engelmann spruce (Picea engelmannii)
in Grand Teton National Park (GTNP) and southern Yellow-
stone National Park (YNP) based on the initial increase in
Picea pollen in a network of pollen records. All sites lie
within the area that was glaciated by the Yellowstone ice
cap, and the center of glaciation was in the Yellowstone
Lake region (after Whitlock 1993). Large lakes are shown
in black.



been acquired as part of a long-term evolu-
tionary strategy for surviving the climate
changes that accompany glacial/interglacial
cycles (Barnosky 1987, Bartlein 1997, Bennett
1997, Jackson and Overpeck 2000).

Several plant species in the western United
States have experienced recent expansions
that may be either a continuation of Holocene
range changes or a response to recent human
activities (Swetnam et al. 1999). The appear-
ance of pinyon pine in northern Colorado
400–500 years ago, for example, seems to be a
part of a general expansion from Mexico that
has been underway since the last ice age
(Betancourt et al. 1991). Climate change has
also been implicated in the recent spread of
creosote bush (Larrea tridentata) in the mid-
dle Rio Grande Basin and Borderlands of Ari-
zona and New Mexico (Grover and Musick
1990), single needle pinyon (Pinus mono-
phylla) in northern Nevada (Nowak et al. 1994),
Utah juniper ( Juniperus osteosperma) in Wyo-
ming (Swetnam et al. 1999), and western juni-
per ( Juniperus occidentalis) in eastern Oregon,
(Miller and Wigand 1994, Miller and Rose
1995). Paleoecologic data show that these taxa
have undergone considerable adjustment in
their ranges during the Holocene and may still
be migrating in response to long-term climate
changes. However, the impact of such Euro-
American activities as grazing, agriculture,
and fire suppression on their recent spread is
difficult to disentangle from the impact of
longer processes.

Importance of Natural 
Disturbance

Disturbance, particularly fire, is considered
an important catalyst in the spread of exotic
species at present (Vitousek et al. 1996). Exotic
grassland species, for example, have been
shown to initiate and maintain a fire regime
that prevents the regeneration of native woody
and grassland species (D’Antonio and Vitousek
1992). Paleoecologic records, on the other hand,
suggest that fires have been a major form of
natural disturbance in temperate ecosystems
throughout the Holocene and have helped
maintain particular vegetation types for long
periods. Such records also show that the fre-
quency and ecological importance of fires
have varied in association with past climate
changes (see Clark et al. 1996, Millspaugh et
al. 2000, Whitlock and Larsen in press).

Yellowstone National Park is one location
where climate-vegetation-fire relationships have
been studied on both short and long time
scales, and thus the role of fire in biotic
change can be assessed. Fire reconstructions
of the last 500 years come from dendrochrono-
logical records (Romme and Despain 1989,
Barrett 1994), including fire-scarred tree-ring
data and forest-stand ages. Holocene records
of fire occurrence are available from high-res-
olution charcoal records obtained from lake
sediments (Millspaugh and Whitlock 1995,
Millspaugh et al. 20003. Both tree-ring and
charcoal data indicate that a combination of
small, frequent fires and large, infrequent fires
characterizes the current fire regime. For exam-
ple, the period from 1690 to 1750 A.D. experi-
enced extensive fires, but several decades
with small or no fires followed it. This regime
led to the development of extensive old-growth
forest in the late 20th century and large accu-
mulations of burnable biomass. Unusual weather
and fuel conditions triggered large fires in
1988, which affected 395,600 ha of the park
(Schullery 1989, Balling et al. 1992). Although
these fires have no precedence in recorded
history, they seem to be well within the nat-
ural range of variation documented in the den-
drochronological and charcoal record.

Long charcoal records from Yellowstone
reveal the relationship between fire, vegeta-
tion, and climate on millennial time scales
(Fig. 3). At Cygnet Lake in the Central Plateau
region, a sharp increase in fire frequency
occurred at the beginning of the Holocene.
The change in fire regime coincided with the
onset of warm conditions and the establish-
ment of lodgepole pine forest in an area that
was previously covered by tundra vegetation.
Local fires were most frequent between 11,000
and 7000 years ago4 (>10 fires ⋅ 1000 yr–1).
Paleoenvironmental records from southern and
central Yellowstone and Grand Teton national
parks suggest that summer temperatures were
higher than today and drought was more severe
at this time (Millspaugh et al. 2000). Fire occur-
rence decreased to the present frequency of 
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3Charcoal analysis is based on evidence that charcoal particles are intro-
duced to lakes during and shortly after a fire. Sedimentary layers with abun-
dant large charcoal particles provide a record of past fire events in the water-
shed (Whitlock and Millspaugh 1996, Whitlock and Larsen in press). In a
study of 4 small lakes, charcoal peaks dated by the lead-210 method matched
well with timing of fires identified by historic documents and dendrochrono-
logic studies (Millspaugh and Whitlock 1995).

4These dates are given in calendar year (see Millspaugh 1997).



2–3 ⋅ 1000 yr–1 in the last 7000 years as the cli-
mate become cooler and wetter. Despite these
changes in fire regime and climate, the forest
continued to be dominated by lodgepole pine,
probably because the infertile soils of the
Central Plateau have limited the establishment
of other conifers (Whitlock 1993).

Pollen and charcoal data from Slough Creek
Lake in northern Yellowstone, in contrast,
show changes in both vegetation and fire regime
as a result of Holocene climatic change. A
period of pine-juniper (Pinus-Juniperus) forest
and low fire frequency occurred between
11,000 and 7000 years ago, when the climate
was warmer and wetter than present. Wetter-
than-present conditions in this region have
been attributed to a strengthening of summer
monsoonal circulation in the early Holocene
(Whitlock and Bartlein 1993). Fire frequency
has increased from 4 fires ⋅ 1000 yr–1 to >10
fires ⋅ 1000 yr–1 in the last 7000 years, and
Douglas-fir (Pseudotsuga menziesii) parkland
has established as a result of cooler, drier con-
ditions and increased fire activity (Millspaugh
1997).

A comparison of the Cygnet and Slough
Creek records on a finer time scale reveals
short periods when both sites burned despite

their long-term climate differences; 1988 was
such a year, and another period occurred about
1000 years ago during a warm, dry interval
known as the Medieval Warm Period (Mill-
spaugh 1997). At these times, short-term climate
variations apparently overrode the influence of
the slowly varying climate changes and led to
fires in both summer-wet and summer-dry
regions. The pollen record suggests that such
short-term variations are not accompanied by
major changes in vegetation composition or by
the appearance of new species.

General Observations

Past changes in the ranges of native taxa
invite a few comparisons with the spread of
exotic species at present (Table 1).

First, plant migrations on long time scales
have been governed primarily by climate
change and the attendant effect of climate on
the physical and biotic environment (Bartlein
et al. 1986). In contrast, exotic species inva-
sions at present are largely determined by the
direct and indirect actions of humans. This
difference contributes to the unprecedented
nature of current invasions.

Second, the pattern and rate of invasion
vary among species. The paleoecological record
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Fig. 3. Comparison of climate, vegetation, and fire history in 2 regions of Yellowstone with contrasting Holocene cli-
mate histories (after Millspaugh 1997). Ages in this figure represent calendar years before present.



from Yellowstone and elsewhere suggests that
species adjusted their range during the Holo-
cene according to their individual require-
ments. Features such as soil and disturbance
regime helped guide the local pattern of inva-
sion, but, at regional and continental scales,
climate conditions governed species limits.
Physical barriers have not been significant
obstacles to invasion in the past or at present.
The Great Lakes and the deserts and moun-
tains of the western United States did not slow
climatic-driven Holocene plant migrations in
North America (Thompson 1988, Betancourt
et al. 1990, Davis et al. 1994). Likewise, moun-
tain ranges, deserts, and oceans have been easily
breached by exotic species in recent times as a
result of human-assisted dispersal (Vitousek et
al. 1996, Cox 1999, Mack et al. 2000).

Third, much debate focuses on the signifi-
cance of species richness and community
structure on the invasibility of present-day
communities (Elton 1958, Tilman and Down-
ing 1994, Stohlgren et al. 1999, Levine 2000).
On long time scales these attributes seem to
have little importance because patterns of
plant migration at continental and even local
scales have been strongly mediated by envi-
ronmental conditions (Davis et al. 1994).
Indeed, paleoecological records indicate that
invading species meet little resistance from
existing ones. As a result, communities have
been dismantled and reorganized continually
through the Holocene. The observation that
present-day communities have no long history
suggests that species richness and structural
complexity may ultimately prove irrelevant to
the success of exotic species.

Fourth, the ecological mechanisms that en-
able most tree taxa to move presently operate
too slowly to account for the rates of move-
ment observed on Holocene time scales (Hunt-
ley 1988, Birks 1989, Clark et al. 1998; Table 1).
This mismatch between present and past ob-
servations points to the importance of rare
events, including long-distance dispersal, in
shaping present-day geographic distributions
(Cox and Moore 2000). Waif dispersal is a poor-
ly understood process in modern ecology; yet,
it may be key in explaining major expansions
in geographic range over the long term (Clark
et al. 1998).

Finally, paleoecological records clearly show
that climate, fire, and vegetation are inter-
related elements of the earth system, and their
variation and interaction through time have
shaped the modern landscape. On century and
millennial temporal scales, large changes in
climate determine fire regime and vegetation
composition. Yellowstone studies indicate that
periods of major climate change, such as tran-
sitions from the late-glacial period to Holocene
and the early Holocene to late Holocene, were
accompanied by changes in fire frequency. This
shift in fire regime undoubtedly contributed
to vegetation changes recorded in the pollen
records of specific sites. In the absence of cli-
mate change, fires should be considered an
intrinsic component of the ecosystem, whereas
during periods of climate change, fires are sig-
nificant catalysts that allow the invasion of
new species. The role of fire at present is fur-
ther accentuated by nonclimatic disturbances,
such as human-caused habitat alteration and
landscape fragmentation.
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TABLE 1. Characteristics of biological invasion: past, present, and future.

Holocene time scales Last few centuries Next century

Mode of dispersal irrelevant human, wind, animal human (dispersal may 
vectors require deliberate

assistance)
Rate of movementa <1 km ⋅ yr–1 >10 km ⋅ yr–1 >40–50 km ⋅ yr–1

Primary cause of climate change human activities climate/human
invasion activities

Proximal cause of natural disturbance natural and human natural and human
invasion disturbance disturbance

Limits to invasion major biogeographic characteristics of uncertain
barriers (mountain invading species,
ranges, oceans, human activities,
deserts) landscape pattern

aBased on Mack 1986, Huntley 1988, Webb 1988, Bartlein et al. 1997



BIOTIC INVASIONS IN THE FUTURE

An issue of great concern and debate is
how past and current species invasions com-
pare with those that may occur in the future
(Vitousek et al. 1996, Pitelka et al. 1997, Dukes
and Mooney 1999, Davis and Shaw 2001).
Efforts to address this question rely on results
of climate and ecological model simulations
that examine ecosystem responses under ele-
vated greenhouse gases (Houghton et al. 1996).
In the western United States, atmospheric
general circulation models (AGCMs) and re-
gional climate models have been used to com-
pare changes in climate arising from a dou-
bling of atmospheric carbon dioxide (referred
to as the 2xCO2 climate) with those simulated
for the present day (Bartlein et al. 1997, Thomp-
son et al. 1998). The output of climate models
has also been introduced into ecological mod-
els to consider the response of particular taxa
to changes in seasonal and annual temperature
and precipitation. Comparison of present and
future species ranges identifies where suitable
habitat will be lost, gained, or remain unchanged
in the future. These projected range changes,
like those in climate, represent a comparison
of equilibrium conditions (i.e., how the species
ranges or regional climate in a 2xCO2 climate
compares with simulations of present condi-
tions).

Climate and ecological models are continu-
ally under refinement. AGCMs and regional
climate models improve as spatial resolution,
physics of atmospheric circulation, and inter-
actions of the atmosphere and Earth’s surface
become better constrained. Ecological models
are becoming more realistic by incorporating
bioclimatic variables, such as growing degree
days, minimum temperature, effective moisture,
and the biophysical effects of CO2 on plant
growth. Nonetheless, model simulations should
be considered projections of potential climate-
vegetation relationships under equilibrium con-
ditions; they are not predictions of what will
actually occur.

Most climate projections of the future indi-
cate warmer, wetter conditions in the north-
western United States (Bartlein et al. 1997,
Thompson et al. 1998). Differences between
2xCO2 and present-day simulations in the Yel-
lowstone region include an increase in Janu-
ary and July temperatures of more than ~5°C,
a substantial increase in January precipitation,

and less extreme and spatially more variable
changes in July precipitation. Modern climate
analogues for projected changes in the Yellow-
stone region are found in the interior Pacific
Northwest, the Wasatch Range, and lower ele-
vations of the Absaroka Range (Bartlein et al.
1997). Other model simulations suggest a
greater role for fire in the future, both in
terms of more convectional activity (Price and
Rind 1994) and reduced water surpluses in
summer (S. Shafer unpublished data 2000).

The location of suitable climate for particu-
lar species changes dramatically in future sim-
ulations, but, in general, low-elevation taxa are
less impacted than high-elevation species
(Bartlein et al. 1997). For example, the future
range of low-elevation lodgepole pine (Pinus
contorta) in Yellowstone is little changed from
its present distribution (Fig. 4). The climate
suitable for Douglas-fir, another low-elevation
species, shifts to intermediate elevations in
future simulations, probably because drought
conditions at low elevations limit its growth.

In contrast, projected future conditions in
most of Yellowstone and the Northern Rocky
Mountains are not suitable for current high-
elevation species. Whitebark pine (Pinus albi-
caulis) is a subalpine species that provides
food for grizzly bear, Clarks Nutcracker, and
red squirrel in Yellowstone (Despain 1990). Its
range is nearly eliminated in Yellowstone in
the 2xCO2 scenario. This keystone species has
declined already with the spread of white pine
blister rust (Cronartium ribicola) in the late
20th century (Kendall et al. 1999). The addi-
tional impact of projected climate changes on
whitebark pine has not fully been considered
in conservation plans aimed at protecting griz-
zly bear habitat.

Current models are not able to consider
transient conditions that might determine
whether species could keep pace with pro-
jected climate changes, nor do they address
the importance of habitat connectivity, compe-
tition, and disturbance in influencing biotic
responses. These factors will be critical in pre-
dicting the response of native and exotic
species. For example, the attendant changes in
fire regime toward more frequent and/or more
intense fires will undoubtedly complicate veg-
etation adjustments. The ability of lodgepole
pine to grow on infertile soils and reproduce
following fire (neither of which is considered
in model experiments) should help perpetuate
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it as a forest dominant in the future. Fires may
also encourage the spread of Douglas-fir into
new areas, since its seedlings require light and
mineral soil to become established (Burns and
Honkala 1990). On the other hand, the thick
bark of mature Douglas-fir trees is an adapta-
tion to fire, and increased fire occurrence may
delay the decline of old-growth Douglas-fir
forest and the invasion of new tree species.
Fires will likely accelerate the decline of white-
bark pine, given its sensitivity to intense fires.
Added to this picture is the role of opportunis-
tic exotic species that thrive in areas of distur-
bance.

The message of future climate studies for
conservationists and land managers is not
whether the simulations are correct in detail
(they probably are not). Rather, the point is
the model results consistently suggest that large
biogeographic adjustments will be required if
species are to maintain equilibrium with future
climate conditions. Current simulations indicate
complex changes in mountain regions that
include north- and southward shifts as well as
altitudinal adjustments of species ranges. The
rates of movement required of species to keep
pace with projected climate changes are
greater than anything observed in the fossil
record of the last 20,000 years. Predicted in-
creases in fire frequency and intensity will
affect species differently. A shift toward more
frequent or intense fires will create ecological
opportunities for some taxa, but, in other cases,

fire may retard vegetation changes by helping
to maintain existing communities.

CONCLUSIONS

The process of invasion looks different de-
pending on whether one uses Holocene time
scales, the last few centuries, or the next 100
years as the time scale of interest. The relative
importance of biological versus climatic con-
straints on invasion also varies with time scale.
When invasion is studied on long time scales,
the specific mechanism of dispersal and the
role of natural disturbance are generally unim-
portant because large-scale climate change is
the primary driver. During the Holocene, rates
of migration for most tree species were <1 km
⋅ yr–1, and, although fire and other natural dis-
turbances may have promoted invasion at the
local scale, no single fire led to unidirectional
ecological change.

Exotic plants in recent centuries have been
largely introduced by the deliberate and acci-
dental actions of humans, but their success as
invaders is constrained by the characteristics
of the species and habitat. Successful invaders
include species that can colonize disturbed
areas, have rapid growth, reach maturity early,
and reproduce prolifically. The most aggres-
sive colonizers are often those with superior
mechanisms for dispersal by human, wind, or
animal vectors. Current rates of exotic species
invasion seem rapid, ~10 km ⋅ yr–1 (Mack 
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Fig. 4. Potential range changes for 3 tree taxa. Medium shading indicates grid points where a specific taxon occurs
under both the present and 2xCO2 climate; light shading indicates grid points where a taxon occurs under the present
climate, but does not occur under 2xCO2 climate; and dark shading indicates grid points where a taxon does not occur
under the present climate, but is present under 2xCO2 climate conditions (after Bartlein et al. 1997). 



1986, Vitousek et al. 1996, Pitelka et al. 1997),
but if considered on longer time scales, these
rates would probably appear slower.

Invasions in the next 100 years will likely
combine elements of short-term and long-
term patterns and processes discussed above
because both human actions and climate change
are involved. Humans will be the primary agent
of dispersal, and human-assisted migration may
be a necessary conservation strategy for the
survival of some native plant species. Climate
will determine the potential limits for plants
and animals, and current biogeographic barri-
ers, like oceans and mountain ranges, may not
be significant. The rapid rate of future climate
change exceeds anything seen in the Holo-
cene, and simple calculations suggest that
native species will have to move or disperse at
rates 40–50× faster than those observed in the
paleoecologic record if they are to maintain
equilbrium with the climate. It seems unlikely
that most species will be able to do so, and
disturbances, such as fire, may tip the balance
in enabling their spread or extinction. Unfor-
tunately, disturbance in the face of climate
change will also create opportunities for non-
native species to establish and flourish.

Although the past provides a key to the
present and perhaps to the future, the past
also highlights the unprecedented nature of
the present and future. We have seen species
in the past adapt to the magnitude of climate
change projected in the next century but not
at the projected rate (Overpeck et al. 1991). It
is not clear that native species will be able to
move across highly fragmented landscapes fast
enough to survive, and management strategies
will have to consider what level of intervention
is acceptable. The projected ecological disrup-
tion also paves the way for exotic species inva-
sions. Because future invasions stand as outliers
to those witnessed in the past and present, man-
agers and conservationists need to consider
climate change explicitly in their planning
efforts. As Hobbs and Huenneke (1992:333)
observed:

Nearly all systems are likely to be nonequi-
librial in the future; we must be activists in
determining which species to encourage and
which to discourage. We cannot just manage
passively, or for maximal diversity, but must
be selective and tailor management to spe-
cific goals.
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Previous research suggests that habitats with
high native plant species diversity can be more
vulnerable to exotic plant species invasions
than less species-rich areas (Stohlgren et al.
1998b, 1999a). To efficiently address threats
posed by exotic species to native biodiversity,
exotic plant species must be detected early.
However, once an invasion has occurred, those
populations and surrounding areas must be
monitored to provide resource managers with
the information needed to contain and control
the exotic species.

Because only a small portion of any land-
scape can be affordably measured (usually
<1%), predicting species occurrences or other
features over the remainder of the land- 
scape requires accurate multi-scale techniques
(Stohlgren et al. 1997d). Most native and
exotic plant species, rare habitats, and hot spots
of diversity are patchy on most landscapes,
and so they are usually missed by single-
phase, single-scale transects and small plots
(Stohlgren et al. 1998a). In addition, many
inventory and monitoring attempts are ham-
pered by unknown sources and amounts of
error. For example, inventories based on

resource maps must include an assessment of
what information would be gained by using a
map of higher resolution (smaller minimum
mapping unit; Stohlgren et al. 1997b), since
many coarse-scale maps fail to recognize rare
but important habitats.

This paper describes a sampling and spatial
modeling approach that can provide resource
managers with a clearer picture of which areas
and habitats are vulnerable to invasion by exotic
plant species. This information can improve
resource management decisions for control of
exotic species as well as the inventory and
monitoring of native and exotic plant species.

A Multi-species, Multi-scale, 
Multi-phase Approach

The importance of conserving biological
diversity is recognized worldwide, and recog-
nition of the benefits of conserving biodiver-
sity at the ecosystem level, rather than the
individual species level (Noss 1983, Agee and
Johnson 1988, LaRoe 1993), has resulted in
the need to identify areas for protection based
on their biodiversity. Stohlgren et al. (1997d)
outlined an approach to a landscape-scale
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assessment of plant diversity to complement
the National GAP Analysis Program (Scott et
al. 1993). The approach recognizes that the
resolution of investigation is the 1st source of
potential error in identifying important habi-
tats for conservation. Common minimum
mapping units (MMUs) of 100 ha, 50 ha, and 2
ha failed to identify rare but important habi-
tats such as aspen stands in the Beaver Mead-
ows area of Rocky Mountain National Park,
Colorado (Stohlgren et al. 1997b). Aspen stands
are a keystone habitat in this area with unique
and rich assemblages of plants (Stohlgren et al.
1997c), birds (T. Mabee personal communica-
tion), and butterflies (Simonson 1998). Thus, a
key feature of our approach is to sample rare
and common habitats with a stratified random
sampling design. Unbiased vegetation sampling
sites are selected in each stratum (Stohlgren et
al. 1997b).

A 2nd source of error in assessing patterns
of biodiversity results from single-scale sam-
pling techniques. A comparison of several
common sampling techniques demonstrated
that small, single-scale plot and linear transect
techniques missed many locally rare species,
both native and exotic (Stohlgren et al. 1998a).
In addition, valid extrapolations to larger areas
were impossible. The Modified-Whittaker
nested vegetation sampling plot consists of a
20 × 50-m plot that contains ten 1-m2 subplots
(6 systematically arranged around the inside of
the plot perimeter and 4 systematically arranged
around the outside of the 100-m2 subplot
perimeter), two 10-m2 subplots (in diagonally
opposite corners of the plot), and one 100-m2

subplot (in plot center; Stohlgren et al. 1995,
1998a). The multi-scale data allow one to esti-
mate the number of species found in an area
larger than the area sampled (Stohlgren et al.
1997c).

Stohlgren et al. (1997c) tested a rapid bio-
diversity assessment using multi-phase, multi-
scale sampling in the Beaver Meadows area
mentioned above. Multi-phase sampling refers
to using ground-truth plots (Modified-Whit-
taker), aerial photos, and satellite images to
sample a specific characteristic, such as vege-
tation cover, at overlapping locations (Kalkhan
et al. 1995). These multiple layers of data
allow assessment of the accuracy of satellite
image vegetation classification, and classifica-
tions can be improved from multiple layers of
data (Kalkhan et al. 1998). The multi-scale

Modified-Whittaker vegetation plot sampling
design allowed identification of hot spots of
biodiversity and a reasonable estimate of the
total number of plant species expected to be
found in the study area.

Data Comparability, Analysis, 
and Synthesis

In addition to identifying where species of
interest and hot spots of diversity occur, multi-
ple threats to native species diversity must be
recognized so that appropriate management
strategies can be developed. Using compara-
ble sampling methods allows both local and
regional analyses and monitoring of species
diversity, for example, across management units.
Sampling designs and methods must be able
to accurately assess the effects of a particular
management action or potential resource threat.

For example, data collected using the Mod-
ified-Whittaker plot have proven valuable for
assessing impacts and outcomes. A grazing
study in Rocky Mountain grasslands demon-
strated that vegetation composition differences
inside and outside grazing exclosures could
not be attributed to the effects of grazing
alone because of landscape heterogeneity in
vegetation distributions that had not been
sampled in earlier studies (Stohlgren et al.
1999b). Vegetation sampling in the U.S. cen-
tral grasslands and Rocky Mountains showed
that exotic plant species are invading areas
with highest native plant species richness and
cover (Stohlgren et al. 1998b, 1999a). Modi-
fied-Whittaker plots arranged along transects
that cross forest ecotones in Rocky Mountain
National Park, Colorado, provided information
on understory species richness and species
distributions (Stohlgren et al. 2000) and may
provide a means to monitor changes in regional
climate (Stohlgren et al. 1998c).

In recognition of the strengths of multi-
scale sampling, the U.S. Forest Service Forest
Health Monitoring Program has modified its
single-scale understory vegetation sampling
method so that it is comparable to the multi-
scale Modified-Whittaker plot (Busing et al.
1999). Grand Staircase–Escalante National
Monument, Utah, is using the multi-phase,
multi-scale approach to inventory its vascular
plant diversity and soil crust development
(Stohlgren et al. 1997a). The Smithsonian
Institution’s Biodiversity Program has adopted
the Modified-Whittaker vegetation sampling

2001] SAMPLING AND MODELING PLANT SPECIES 329



design and successfully used the methods in
Peru’s Amazon basin (Stohlgren and Chong
1997). Many other federal and non-federal
resource managers are adopting multi-scale
approaches to inventory and monitor biodi-
versity.

Predictive models developed from multi-
scale data are an excellent example of data
synthesis for resource management (Kalkhan
et al. 2000). Modeling small-scale variability in
landscape characteristics requires the genera-
tion of full-coverage maps depicting character-
istics measured at points in the field (Reich
and Bravo 1998). While many spatial data sets
describing land characteristics have proven
reliable for macro-scale ecological monitoring,
these relatively coarse-scale data fall short in
providing the precision required by more re-
fined ecosystem resource models (Gown et al.
1994). Spatial statistics and geostatistics pro-
vide a means of developing spatial models that
can be used to correlate coarse-scale geograph-
ical data with multi-scale field measurements
of biotic and abiotic variables (Kalkhan and
Stohlgren 2000).

In summary, we have developed an inven-
tory and monitoring approach where the result-
ing data are useful for many different applica-
tions at various scales. In the remaining portion
of the paper, we introduce some preliminary
results from our spatial modeling approach as
an example of data analysis and synthesis.

METHODS

Field Data

To demonstrate the model procedures dis-
cussed in this paper, we used Modified-Whit-
taker vegetation data (ninety-four 1000-m2

plots) from a 54,000-ha portion of Rocky Moun-
tain National Park, Colorado, USA. Sample
points were located based on stratified ran-
dom sampling in vegetation cover types rang-
ing from wet meadow to alpine tundra (proce-
dure described in Stohlgren et al. 1997c). This
data set is used to develop preliminary spatial
models to predict species richness (native and
exotic) and presence/absence of exotic species
in 30 × 30-m cells.

GIS Data

The GIS database used to develop the
models contained several coverages of inde-
pendent variables thought to influence vari-
ability in species richness and the presence of
exotic species. These included a 30-m-resolu-
tion Digital Elevation Model (DEM; Depart-
ment of Interior, U.S. Geological Survey), which
was used to create a 30-m grid overlay of per-
cent slope and aspect (GRID, ARC/INFO;
ESRI 1997). The database also included 30-m-
resolution overlays of Landsat TM bands 1
through 7. The point coverage of the sample
data was used to extract point estimates of ele-
vation, slope, aspect, and the digital numbers
associated with the 7 Landsat bands (Table 1).

Geostatistical Analysis

Multiple regression analysis was first used
to explore variation in species richness and
presence/absence of exotic species as a func-
tion of geographical location, elevation, slope,
aspect, and Landsat TM bands 1–7 (Fig. 1).
Stepwise regression was used to identify the
best linear combination of independent vari-
ables.

Residuals of the regression models were
computed and used for modeling their semi-
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TABLE 1. Summary statistics of data used in modeling species richness (native and exotic) and presence of exotic species
in a 54,000-ha area of Rocky Mountain National Park, Colorado.

Variable Minimum Maximum Mean Standard deviation

Number native 0 27 7.20 4.7
Number exotic 0 6 0.59 1.0
Elevation (m) 2443 3639 2778 271.8
Slope (%) 0 33.36 13.62 8.5
Aspect 0 181 97.5 54.7
Band 1 47 92 60.5 9.1
Band 2 18 41 26.2 5.7
Band 3 15 54 26.9 9.0
Band 4 37 115 60.7 15.6
Band 5 30 156 71.5 27.8
Band 6 124 202 154.6 17.3
Band 7 11 90 33.6 17.0



variograms. Model parameters were estimated
using weighted least squares (Cressie 1985).
We also analyzed residuals for spatial autocor-
relation and cross-correlation (Czaplewski and
Reich 1993, Reich et al. 1994, Bonham et al.
1995) with geographical variables. Inverse dis-
tance sampling was used to define the spatial
weights matrix.

Estimates of the residuals were obtained
using ordinary kriging. To obtain estimates of
species richness (native and exotic) and pres-
ence of exotic species, we added regression
estimates based on elevation, slope, aspect,
etc., and estimated residuals computed using
ordinary kriging. Kriging was carried out using
the 4 nearest neighbors.

Modified residuals kriging models were
cross-validated to assess variability in predic-
tion errors. Cross-validation included deleting
a single observation from the data set and pre-
dicting the deleted observation using remain-
ing observations in the data set. We repeated
this process for all observations in the data set.
Summary statistics of estimated values were

computed. Accuracies of the kriging models
were assessed using the relative mean-squared
error suggested by Havesi et al. (1992).

Spatial Integration

The ability to spatially model field data
allows integration over any specified geograph-
ical region (i.e., point- and plot-level field
data, management unit, watershed, region) to
obtain a point estimate and associated stan-
dard error of prediction. This is accomplished
by integrating the 3-dimensional response sur-
face representing the variable of interest over
the area of interest and dividing by the area.
Since spatially modeled response surfaces can
be represented as a grid in ARC/INFO (ESRI
1997), any specified region will contain a finite
number (n) of grid cells of uniform size (i.e.,
30 × 30 m). Our point estimate of a resource in
some bounded region, A, is obtained by sum-
ming the point estimates associated with each
cell, Φi, and dividing by the number of cells in
the bounded region. It is also possible to obtain
estimates of variance. Resource managers can
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use this information to determine which areas
warrant further field data collection to increase
model accuracy.

RESULTS

Regression Models

The regression model developed to describe
variability in number of native species includes
geographical location, elevation, and Landsat
bands 1, 3, 5, 6, and 7 (Table 2). The positive
correlation between elevation and number of
native species suggests that species richness
increases with increasing elevation. The num-
ber of native species was higher in northern
and western portions of the study area. The
significant Landsat TM bands provide infor-
mation about differences in vegetation and
soils throughout the study area and their influ-
ence on the richness of native and exotic species
(Jensen 1996).

The regression model for number of exotic
species includes geographical location, eleva-
tion, slope, aspect, and Landsat bands 2, 3, 5,
6, and 7 (Table 3). Exotic species were more
prevalent in the southern and eastern portions
of the study area and at lower elevations. The
positive correlation with slope and the nega-
tive correlation with aspect indicate that exotic
species are more prevalent on steeper, more
northerly exposures. The positive correlation
with number of native species indicates that
exotic species are invading areas with high
native plant species richness. This result agrees
with the findings of Stohlgren et al. (1998b,
1999a) and Kalkhan and Stohlgren (2000).

The regression model to predict presence/
absence of exotic species is similar to the one
developed for number of exotic species (Table
4). The same factors that influence number of
exotic species also influence probability of
observing an exotic species.

The regression models accounted for 21%
and 31% of variability observed in number of
native and exotic species, respectively. The
model developed to predict presence/absence
of exotic species accounted for 38% of observed
variability. Residuals of the regression models
were positively spatially autocorrelated at the
alpha = 0.05 level of significance. No significant
cross-correlation was observed between resid-
uals and independent variables used in devel-
oping the models. Residuals were approximate-
ly normally distributed.
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TABLE 2. Regression model used to explain large-scale
spatial variability of number of native species (in 30 × 30-
m cell) in a 54,000-ha area of Rocky Mountain National
Park, Coloradoa. The x-, y-coordinates are in meters (UTM
coordinates).

Variable Coefficient P-value

Intercept –454.30 0.030
X-coordinate –0.0002 0.0
Y-coordinate 0.0001 0.015
Band 1 0.3482 0.0
Band 3 –0.3936 0.0
Band 5 0.1072 0.0
Band 6 0.1452 0.0
Band 7 –0.1683 0.002
Elevation (m) 0.0058 0.0
aR2 = 0.208, standard error = 4.22, n = 940 1-m2 plots.

TABLE 3. Regression model used to describe large-scale
spatial variability in number of exotic species (in 30 × 30-
m cell) in a 54,000-ha area of Rocky Mountain National
Park, Coloradoa. The x-, y-coordinates are in meters (UTM
coordinates).

Variable Coefficient P-value

Intercept 83.422 0.065
X-coordinate 0.00003 0.0
Y-coordinate –0.00002 0.039
Band 2 –0.0966 0.0
Band 3 0.0560 0.007
Band 5 0.0386 0.0
Band 6 –0.0082 0.074
Band 7 –0.0528 0.0
Elevation (m) –0.0011 0.0
Slope (%) 0.0069 0.081
Aspect –0.0011 0.066
Number native 0.0803 0.0
aR2 = 0.314, standard error = 0.839, n = 940 1-m2 plots.

TABLE 4. Regression model used to describe large-scale
spatial variability in probability of presence of exotic
species (in 30 × 30-m cell) in a 54,000-ha area of Rocky
Mountain National Park, Coloradoa. The x-, y-coordinates
are in meters (UTM coordinates).

Variable Coefficient P-value

Intercept 38.89 0.05
X-coordinate 0.000 0.001
Y-coordinate –0.000 0.04
Band 2 –0.045 0.001
Band 3 0.029 0.001
Band 5 0.015 0.001
Band 7 –0.019 0.001
Elevation (m) –0.001 0.001
Slope (%) 0.007 0.001
Aspect –0.001 0.05
Number native 0.037 0.001
aR2 = 0.383, standard error = 0.377, n = 940 1-m2 plots.



Kriging

Model parameter estimates of the semivari-
ograms for the 3 models are given in Table 5.
The large range associated with residuals for
native species suggests the presence of large-
scale spatial continuity in number of native
species across the study area. In contrast, the
small range associated with exotic species mod-
els indicates that exotic species occur in small
patches throughout the study area. The large
nugget effect relative to the sill for these 2
models also suggests a considerable variation
within these patches.

The modified residual kriging model for
number of native species had a relative mean-
squared error of 8.39 (R2 = 0.625), while, in
comparison, the regression model had a rela-
tive mean-squared error of 17.81 (R2 = 0.208;
Table 6). Kriging the residuals reduced the
relative mean-squared error by 53%. The mod-
ified residual kriging model for number of
exotic species had a relative mean-squared
error of 0.501 (R2 = 0.506), which represents
a reduction in relative mean-squared error of
29%. Similar mean-squared errors were ob-
served for the probability model of exotic
species. Larger errors associated with exotic
species models are due primarily to the small-
scale spatial heterogeneity associated with the
occurrence and density of exotic species. This
small-scale spatial heterogeneity makes it dif-
ficult to predict spatial variability in pres-
ence/absence or number of exotic species at
the 1000-m2 plot scale.

DISCUSSION

We have outlined a comprehensive approach
to sampling and modeling native and exotic
plant species for natural resources manage-
ment. Our approach provides an alternative to
individual-based reaction-diffusion and spatially
explicit simulation models and their assump-
tions and limitations (see Higgins et al. 1996).
For example, the use of full-coverage, fine-

scale variables (e.g., Landsat TM data with a 30
× 30-m resolution) is a valuable addition to
spatial modeling and addresses problems re-
lating to lack of empirical data and inappropri-
ate scales that affect previously mentioned
types of models. Also, our approach is based
on current species locations, and so no direct
assumptions are made about dispersal or aute-
cology (see Kot et al. 1996)

The multi-phase, multi-scale sampling and
modeling methods are easily modified for appli-
cation across management units and even bio-
mes and taxonomic groups (e.g., birds and 
butterflies as well as plants). The sampling
methods are efficient and accurate in the field,
and the development of automated data man-
agement and analysis tools will facilitate data
use for local management as well as basic
research and synthesis.

Data collected for a rapid assessment of
plant diversity patterns were immediately use-
ful for modeling native and exotic plant distri-
butions across the landscape (Kalkhan and
Stohlgren 2000). This information could be used
by resource managers to set priorities and
quickly target hot spots of exotic plant diver-
sity for control efforts. Alternatively, or simul-
taneously, they might target areas of recent
invasion where control efforts are relatively
less expensive. Likewise, corridors of invasion,
such as roads and riparian zones, might be tar-
geted for control (Greenberg et al. 1997,
Stohlgren et al. 1998b).

Additional variables, such as soil character-
istics, will enhance the models’ predictive capa-
bilities (Kalkhan and Stohlgren 2000). The
combination of spatial statistics and stepwise
multiple regressions greatly increased the pre-
dictive capabilities of our models for estimat-
ing the numbers of native and exotic species
and the probability of encountering an exotic
species. One of the strengths of this modeling
approach is the ability to develop maps of
“uncertainty” based on subsampling the data
with Monte-Carlo simulations (Kalkhan et al.
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TABLE 5. Parameter estimates of the semivariograms used to describe spatial continuity in the residuals.

Regression Semivariogram
model Nugget Sill Range model

Native 15.94 1450 32704728 exponential
Exotic 0.763 1.117 151.4 Gaussian
Probably exotic 0.081 0.187 215.1 Gaussian



2000). This provides land managers with a
spatial representation of the confidence of the
model and completeness of plot data. The
multi-phase sampling approach (i.e., data from
ground-truth plots, air photos, and Landsat
TM images) provides additional ways to assess
vegetation classification accuracy and deter-
mine where more ground-truth plots are needed
(Kalkhan et al. 1998).

Similar models can be developed for indi-
vidual species in more restricted areas (with a
greater density of sample points) to better
understand their ecology (where they are able
to occur) and patterns of spread. We are devel-
oping spatial models for many common inva-
sive plant species in Rocky Mountain National
Park to better understand the effects of graz-
ing, natural and prescribed fire, and rapid cli-
mate change on invasive plant species.
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The intense interest generated by the expe-
ditions of Folsom and Cook in 1869 and Lang-
ford, Washburn, and Doane in 1870 led to the
establishment of Yellowstone as the 1st national
park in the world in 1872. The 1st botanical
collection was by Robert Adams, Jr., who was
a member of the 1871 Hayden expedition. The
earliest known record of an exotic species in
Yellowstone is Oxalis violacea Jacq., which was
collected by Forwood in 1881 (Denton 1973).
The 1st Yellowstone flora was published by
Frank Tweedy (1886), who incorporated the
work of several collectors and listed 657 species,
including 6 species that, if correctly identified,
are exotic. Thus, a relatively early baseline of
information exists that predates most major
disturbance by visitors. In 1900, Per Axel Ryd-
berg completed a catalogue of the vascular
plants of Montana and Yellowstone National
Park and reported 8 species that appear to be
exotic, including 4 that were reported by
Tweedy. These early floras did not include all
collections that had been made within Yellow-
stone, omitting, for example, the Forwood col-
lection of Oxalis violacea. Intense interest in
the park resulted in many other collectors vis-
iting and making extensive collections that are
now scattered among many different institu-
tions. Examination of material at Yellowstone
National Park (YELLO), Montana State Uni-
versity (MONT), and Rocky Mountain Herb-
arium (RM) resulted in the location of speci-
mens documenting the presence of at least 12

exotic species in the park by 1900. Other collec-
tions, such as many of those cited by Tweedy
and Rydberg, are at East Coast herbariums
such as the New York Botanical Gardens (NY)
and the Smithsonian Institution (US) and there-
fore were not easily available for examination.

A significant interval has passed since the
last flora was published for Yellowstone National
Park (Despain 1975). In the intervening time
exotics have continued to arrive and spread in
Yellowstone. The purpose of this paper is to
provide an updated annotated checklist of
exotics known to occur within the park.

Precise demarcation of exotic species can
be difficult. A species is considered exotic by
the National Park Service if it occurs in a
given place as a result of direct or indirect,
deliberate, or accidental actions by humans
(NPS 1988). Species that are native to North
America, but would not be found within the
confines of the park without human interven-
tion, are therefore considered exotic.

During the early years of the park, several
species including Syringa vulgaris L., Picea
pungens Engelm., and Populus spp. were inten-
tionally planted in Mammoth and at other
locations in the park. The annotated checklist
of exotic plants does not include any species
that was intentionally planted if the original
plant has not reproduced or spread from the
historical planting. Because one goal of the
National Park Service is to prevent the estab-
lishment of exotic species, any new arrival is
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ANNOTATED CHECKLIST OF EXOTIC VASCULAR PLANTS
IN YELLOWSTONE NATIONAL PARK
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ABSTRACT.—Documentation of the arrival of exotic vascular plants in Yellowstone National Park has been sporadic.
An annotated checklist of exotic vascular plants is presented, with information about the approximate arrival time in the
park of each species and the current extent of the infestation. Yellowstone’s flora includes 187 exotic vascular plant
species (14.8% of the flora), and the park has an extrapolated mean number of exotic species per 10 km2 of 47.3. The sit-
uation in Yellowstone is compared with other areas in North America. The increase in exotics mirrors a corresponding
increase in visitation.
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eradicated if possible. Therefore, some species
that might not persist and reproduce within the
confines of the park are included in this list.

The origins of several cosmopolitan weeds
that occur in Yellowstone, such as Amaranthus
retroflexus L., Poa pratensis L., Polygonum avic-
ulare L., and Rorippa nasturtium-aquaticum
(L.) Hayek, have spawned intense debate in
the literature and may never be satisfactorily
resolved (Cronquist et al. 1977, Stuckey and
Barkley 1993, Rejmánek and Randall 1994).
The decision to include Amaranthus retroflexus,
Poa pratensis, Polygonum aviculare, and Ror-
ippa nasturtium-aquaticum as exotic species to
Yellowstone is somewhat arbitrary, yet gener-
ally consistent with records of the earliest col-
lections in the park.

Documentation of the arrival of exotics has
been somewhat sporadic through the years.
The first 50 years after the park’s establish-
ment was a time of intense collecting, but
interest in and documentation of exotics var-
ied from collector to collector. P.H. Hawkins
and H.S. Conard in the 1920s collected exten-
sively in the park and documented many exotics
for the 1st time. Interest in documenting exotic
species presence in the park then dwindled
until the early 1950s, when Ray Davis docu-
mented the presence of an additional 28
species. The arrival of plant ecologist Don
Despain in Yellowstone in 1972 renewed inter-
est in the flora of the park and resulted in pub-
lication of a flora reporting 86 exotics (Despain
1975). Additional new records of exotics were
documented during habitat mapping of the
entire park during the late 1970s. Yellowstone’s
Exotic Vegetation Management Plan (NPS
1986) listed 89 species of exotics but failed to
mention several species reported in Despain
(1975). The intensification of interest and
alarm about the spread of exotics has resulted
in a determined effort by the National Park
Service to document all exotics present in the
park and eradicate new arrivals, if possible,
before they become established (Olliff et al.
2001). Currently, 187 species of exotics (188
taxa) are known to occur or have occurred in
the past within the confines of the park, and
new taxa are located almost every year.

Even though visitors come from all over the
world to visit Yellowstone, origins of the exotic
species do not reflect this wide diversity. The
primary source of exotics is Eurasia, represent-
ing 93.6% of the exotic flora, as is typical in

many parts of the United States (Rejmánek
and Randall 1994, Sheley et al. 1999). The re-
mainder are from North America (5.3%) and
Central and South America (1.1%).

Because the incidence and spread of exotics
is escalating, more interest is focused on the
magnitude of the problem. Several methods
have been used to present information about
the presence of exotics in a flora. The total
number of exotic taxa, of interest in itself, pro-
vides no way to compare diverse areas, espe-
cially when the areas to be contrasted are of
significantly different size. Another commonly
used comparison is the percentage of the flora
that is exotic. This method has some of the
same problems as the number of exotic species.
In addition, the percentage can be highly in-
fluenced by the relative diversity of the flora,
allowing comparable-sized areas with the
same number of exotics to have very different
percentages. Rejmánek and Randall (1994) used
the number of species ⋅ log(area)–1 as a stan-
dardized expression of exotic species richness.
When used with log to the base 10, this index
corresponds to the extrapolated mean number
of exotic species ⋅ 10 km–2. The high number of
exotics centered near developed areas, roads,
and trails in Yellowstone skews this result. The
likelihood of finding a particular 10-km2 plot
with this exact number of exotics is low. Even
with these difficulties, this method allows
comparison among areas of greatly different
sizes and native flora richness (Table 1). The
infestation of exotics is greater than might be
expected in Yellowstone, given that most of the
park is de facto wilderness and has not been
logged, farmed, or grazed by domestic stock.

Most exotic vascular plants currently known
from within Yellowstone National Park are also
widespread in adjacent states. Yellowstone,
though, is a destination for visitors from
throughout the United States and the world.
The 1st report of an exotic for the state of
Wyoming has not infrequently been from Yel-
lowstone National Park. The annotated check-
list includes 11 species not reported by the
most recent flora of Wyoming (Dorn 1992):
Centaurea × pratensis, Cerastium glomeratum,
Hieracium caespitosum, H. flagellare, H. flori-
bundum, Holosteum umbellatum, Prunus avium,
Senecio jacobaea, Trifolium aureum, T. cam-
pestre, Vicia cracca.

The escalating number of exotics mirrors
the steadily increasing visitation to the park
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(Fig. 1). The correlation between increasing
visitation and increasing numbers of exotics
has been noted previously in other national
park units (Lesica et al. 1993). The arrival of
new exotic plants into Yellowstone associated
with vehicles, muddy shoes, equipment, and

stock is likely to persist unabated. Continued
vigilance is needed to eradicate new exotic
species to the park prior to their becoming
established.

The annotated checklist represents the cur-
rent state of knowledge about the exotic flora
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TABLE 1. Species richness of exotic vascular plant floras at selected locations in the United States.

Number of Number of Percentage of Number of exotic
Region native species exotic species exotic species species per log(area)

Alaska1 1229 144 10.5 23.3
California1 4844 1025 17.5 182.6
Glacier N. P.2 1131 126 11.1 34.9
Great Plains1 2495 394 13.6 63.5
Great Smoky Mountains N. P.3 1573 341 21.7 102.6
New York1 1940 1082 35.8 210.5
Utah1 2572 444 14.7 83.1
Western Montana1 1251 250 16.7 64.2
Wyoming4 2761* 348* 12.6 64.4
Yellowstone N. P. 1265 187 14.8 47.3
Yosemite N. P.5 1352 126 9.3 36.2
1Modified from Rejmánek and Randall 1994
2Peter Lesica personal communication
3Janet Rock personal communication
4Fertig 1999
5Jan VanWagtendonk personal communication
* = total number of taxa (not species) 

Fig. 1. Number of exotic plant taxa occurring in Yellowstone National Park based on herbarium records compared
with visitation to the park based on official records since 1900.



of Yellowstone and is based primarily on a re-
view of specimens at the Yellowstone National
Park herbarium. The Montana State Univer-
sity herbarium and Rocky Mountain Herbar-
ium were also consulted, resulting in docu-
mentation of a minimum of 12 exotic species
in the park by the turn of the 20th century.
The review of specimens was not exhaustive;
additional material that was not examined may
be present at these facilities. The extensive
early and continual interest in Yellowstone
National Park has resulted in collections of
Yellowstone material now housed throughout
the country. As these collections are examined

and additional literature citations located, the
time of establishment of many exotic species
will be further refined. Regretfully, the timing
of arrival of many species will never be known
exactly, due to the sporadic collecting efforts
that focused on exotic species.

The annotated list is arranged alphabetically
by family, genus, and species. Nomenclature
follows Dorn (1992) except that traditional
names for families were used as in Hitchcock
and Cronquist (1973). Following the scientific
name, common names are provided as used in
Yellowstone or adjacent states (Hitchcock and
Cronquist 1973, Whitson et al. 1992, Welsh et
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al. 1993, Stubbendieck et al. 1995). The earli-
est herbarium record that could be located is
cited by herbarium code and year of collec-
tion. In some cases information exists in
records that suggests an earlier arrival time;
due to an inability to verify these reports, this
information was not included in the graph of
arrival times (Fig. 1). Noxious species as listed
by the states of Idaho, Montana, and Wyoming
are noted. A brief summation of the current
status of the species in the park completes the
information provided. Information about the
location and extent of various species was aug-
mented by the author’s personal observations.
A map of Yellowstone, including reference to
areas commonly mentioned in the annotated
list, is also provided (Fig. 2). Exotic species
that had been reported previously, but which
were based on misidentified material or for
which no specimens could be located, include
the following: Artemisia vulgaris L., Callit-
riche anceps Fern., Chenopodium album L.,
Foeniculum vulgare Mill., Silene noctiflora L.,
and Spergularia marina (L.) Griseb.

ANNOTATED LIST OF EXOTIC PLANTS

OF YELLOWSTONE NATIONAL PARK

ACERACEAE

Acer negundo L.; box-elder; YELLO (1979); 2 road-
side shrubs in the Mammoth area (highly
browsed, not able to discern variety) 

AGAVACEAE

Yucca glauca Nutt.; Great Plains yucca, soapwell;
YELLO (1996); a few plants at 1 campsite at
Mammoth campground, not persisting

AMARANTHACEAE

Amaranthus retroflexus L.; redroot pigweed, rough
pigweed; YELLO, 1952; disturbed areas around
Mammoth, Gardiner, and Stephens Creek 

BORAGINACEAE

Amsinckia menziesii (Lehm.) Nels. & Macbr.; Men-
zies’ fiddleneck; YELLO (1991); disturbed
ground at the South Entrance

Asperugo procumbens L.; catchweed, madwort;
YELLO (1979); around Mammoth, Stephens
Creek, and Gardiner

Cynoglossum officinale L.; houndstongue; YELLO
(1953); listed noxious by MT, WY; infestation
around Mammoth and near the East Entrance

Lappula squarrosa (Retz.) Dum. var. squarrosa;
European stickseed, European sticktight;
YELLO (1989); scattered occasionally along
roadsides

Lithospermum arvense L.; corn gromwell; YELLO
(1989); Mammoth and Gardiner

Myosotis micrantha Pallas ex Lehm.; blue scorpion-
grass, small-flower forget-me-not; YELLO
(1990); Upper Geyser Basin and West Thumb
Geyser Basin

CAMPANULACEAE

Campanula rapunculoides L.; creeping bellflower,
rover bellflower; YELLO (1992); apparently
planted historically around residences on Offi-
cer’s Row in Mammoth and persisting in lawns
and along building edges

CANNABACEAE

Cannabis sativa L.; marijuana, hemp; YELLO (1995);
located and eradicated at least twice along
roadside of Highway 191

Humulus lupulus L. var. neomexicanus Nels. & Cock.;
hops; YELLO (1978); perhaps planted histori-
cally, a few plants persisting around Mammoth
and Grant Village near buildings

CAPRIFOLIACEAE

Lonicera tatarica L.; Tatarian honeysuckle; YELLO
(1988); planted historically around Mammoth
and occasionally spreading into adjacent sink-
holes

CARYOPHYLLACEAE

Arenaria serpyllifolia L.; thyme-leaf sandwort;
YELLO (1989); a few locations in Upper and
Lower geyser basins

Cerastium glomeratum Thuill.; sticky chickweed;
YELLO (1995); spreading in Midway and
Lower geyser basins

Cerastium fontanum Baumg.; mouse-ear chickweed;
YELLO (1926); Upper and Lower geyser
basins, Mammoth, and other scattered sites
around park

Dianthus armeria L.; grass pink; RM (1981), YELLO;
near Old Faithful, Midway Geyser Basin, and
on the West Entrance road

Dianthus barbatus L.; sweet william; YELLO (1992);
roadside near Blacktail Drive possibly inten-
tionally spread from seed packet, eradicated

Gypsophila paniculata L.; baby’s breath; YELLO
(1978); perhaps planted historically, occasional
plants along roadsides near Mammoth

Holosteum umbellatum L.; jagged chickweed, holo-
steum; YELLO (1992); Mammoth Terraces

Saponaria officinalis L.; bouncing-bet, soapwort;
YELLO (1952); perhaps planted historically,
occasional near houses around Mammoth

Silene latifolia Poir.; white campion, white cockle;
YELLO (1924); disturbed ground along road-
sides and in developed areas

Silene vulgaris (Moench) Garcke; bladder campion;
YELLO (1990); roadsides and spreading, espe-
cially along the Northeast Entrance road
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Spergularia rubra (L.) J. & K. Presl; red sandspurry;
MONT (1922), YELLO; widespread and natu-
ralized

Stellaria media (L.) Vill.; common chickweed;
YELLO (1992); scattered locations including
Mammoth

Vaccaria hispanica (Miller) Rauschert; cowcockle,
cowherb; RM (1899); disturbed areas histori-
cally by Gardner River, not located recently in
park

CHENOPODIACEAE

Atriplex heterosperma Bunge; two-seed orache;
YELLO (1996); 1 site near Rattlesnake Butte

Atriplex hortensis L.; garden orache, sea purslane;
YELLO (1952); label states Gardiner dumps,
not recently located within park

Atriplex rosea L.; red orache, tumbling orache;
YELLO (1952); on disturbed ground near
Stephens Creek 

Bassia hyssopifolia (Pallas) Kuntze; bassia, five-hook
bassia; YELLO (1995); Yellowstone River Trail
near Gardiner

Kochia scoparia (L.) Schrad.; summer cypress,
kochia; YELLO (1957); widespread on dis-
turbed soil near Gardiner 

Salsola australis R. Br.; Russian thistle, tumble-
weed; YELLO (1926); widespread on dis-
turbed ground near Gardiner and Mammoth

Salsola collina Pallas; Pallas’ tumbleweed; YELLO
(1990); along roadsides near Gardiner and
Mammoth

COMPOSITAE

Anthemis tinctoria L.; yellow chamomile; YELLO
(1992); 1 plant eradicated in parking lot of
Administration Building at Mammoth

Arctium sp. (Hill) Bernh.; burdock; YELLO (1999);
Arctium minus Bernh. listed noxious by WY; 1
vegetative plant eradicated in lawn at Mam-
moth, probably Arctium minus

Artemisia absinthium L.; wormwood, absinthium;
YELLO (1992); isolated plants along roads,
apparently not reproducing

Carduus acanthoides L.; plumeless thistle, acanthus
thistle; YELLO (1992); listed noxious by WY; 1
infestation near Tuff Cliff north of Madison
Junction 

Carduus nutans L.; musk thistle, nodding thistle;
YELLO (1973); listed noxious by ID, WY; a few
small infestations scattered throughout park

Centaurea diffusa Lam.; diffuse knapweed; YELLO
(1989); listed noxious by ID, MT, WY; occa-
sional plants along roadsides

Centaurea maculosa Lam.; spotted knapweed;
YELLO (1973); listed noxious by ID, MT. WY;
established in scattered areas such as around
Mammoth, Fountain Paint Pots, and along the
West Entrance Road 

Centaurea × pratensis Thuill.; meadow knapweed;
YELLO (1990); listed noxious by ID; discov-
ered as only 1 plant and eradicated

Centaurea repens L.; Russian knapweed; YELLO
(1989); listed noxious by ID, MT, WY; a few
small infestations near North Entrance and
Reese Creek

Chrysanthemum leucanthemum L.; oxeye daisy;
YELLO (1927); listed noxious by MT, WY (as
Leucanthemum vulgare Lam.); infestations at
Mammoth and Madison Junction

Cichorium intybus L.; chicory, wild succory, blue-
sailors; YELLO (1990); occasional single plants
found along road edge and eradicated

Cirsium arvense (L.) Scop. var. horridum Wimm. &
Grab.; Canada thistle, creeping thistle; YELLO
(1934); listed noxious by ID, MT, WY; wide-
spread throughout park including backcountry

Cirsium vulgare (Savi) Tenore; bull thistle, common
thistle; YELLO (1952); several infestations
along roads, in developed areas, and in back-
country

Crepis tectorum L.; annual hawksbeard; YELLO
(1953); established in southern portion of park
and at several other locations 

Filago arvensis (L.) L.; field filago; YELLO (1992);
spreading at several locations

Hieracium aurantiacum L.; orange hawkweed,
orange king devil; YELLO (1978); listed nox-
ious by ID, MT; roadside infestations at sev-
eral locations

Hieracium caespitosum Dumort.; yellow hawkweed,
yellow king devil; MONT (1992), YELLO;
listed noxious by ID, MT; roadside infestations
at several locations

Hieracium flagellare Willd.; whiplash hawkweed;
YELLO (1996); established along roadside
near Sand Point 

Hieracium floribundum Wimmer & Grab.; glaucous
king devil; YELLO (1994); listed noxious by
MT; established along roadside near Tuff Cliff

Lactuca serriola L.; prickly lettuce; YELLO (1952);
widespread on disturbed soil near roads

Matricaria maritima L.; scentless may weed, scent-
less chamomile; YELLO (1987); occasional
along roadsides

Onopordum acanthium L.; scotch thistle, cotton
thistle, winged thistle; YELLO (1991); listed
noxious by ID, WY; at least 2 separate estab-
lishments of single plants that were eradicated

Ratibida columnifera (Nutt.) Wooton & Standley;
prairie coneflower; MONT (1900), YELLO;
occasional plant along roadside, not persisting

Sececio jacobaea L.; tansy ragwort; YELLO (1990);
listed noxious by ID, MT; 1 plant eradicated
from roadside in Lower Geyser Basin

Senecio vulgaris L.; common groundsel; YELLO
(1992); Fern Cascades trail at Old Faithful

Solidago rigida L. var. humilis Porter; stiff golden-
rod; YELLO (1998); 1 roadside plant eradi-
cated near Antelope Creek
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Sonchus arvensis L.; perennial sow-thistle, field
sow-thistle; YELLO (1989); listed noxious by
WY, ID; spreading from several infestations

Sonchus asper (L.) Hill; prickly sow-thistle, spiny
sow-thistle; YELLO (1933); occasionally scat-
tered around park

Sonchus uliginosus Bieb.; marsh sow-thistle,
meadow sow-thistle; YELLO (1978); spreading
from several infestations

Tanacetum vulgare L.; common tansy; YELLO
(1973); listed noxious by MT; a few scattered
plants along roadsides

Taraxacum laevigatum (Willd.) DC.; red-seeded
dandelion; YELLO (1926); naturalized park-
wide

Taraxacum officinale Weber; common dandelion;
YELLO (1924); naturalized parkwide

Tragopogon dubius Scop.; yellow salsify, western
salsify; MONT (1922), YELLO; widespread

Tragopogon porrifolius L.; salsify, vegetable oyster,
oyster plant; YELLO (1925); Stephens Creek,
not recently relocated

Tragopogon pratensis L.; meadow salsify, Jack-go-
to-bed-at-noon; YELLO (1925); scattered along
roadsides, especially on northern range

CONVOLVULACEAE

Convolvulus arvensis L.; field bindweed, field morn-
ing-glory; YELLO (1952); listed noxious by ID,
MT, WY; established along roads primarily
near Mammoth, Gardiner, and along Highway
191

CRUCIFERAE

Alyssum alyssoides (L.) L.; pale alyssum, yellow
alyssum; YELLO (1952); scattered locations in
park including all over Mammoth Terraces

Alyssum desertorum Stapf; desert alyssum, dwarf
alyssum; YELLO (1972); abundant in undis-
turbed vegetation near Gardiner and Stephens
Creek 

Barbarea vulgaris R. Br.; bitter wintercress, yellow
rocket; YELLO (1924); occasional plants along
roadsides and developed areas

Berteroa incana (L.) DC.; berteroa, hoary allysum;
YELLO (1986); dense along roadside near
West Entrance and at other scattered locations

Brassica kaber (DC.) Wheeler; wild mustard, char-
lock; YELLO (1954); disturbed area near
Mammoth, not located recently in park

Brassica rapa L.; field mustard, rape, birdsrape
mustard; RM (1899), YELLO; disturbed areas
historically, not located recently in park

Camelina microcarpa Andrz. ex DC.; smallseed false-
flax, littlepod falseflax; MONT (1922), YELLO;
occasional, especially on northern range

Camelina sativa (L.) Crantz; false flax, gold-of-plea-
sure; RM (1899); near Undine Falls, not located

recently in park although reported as “[v]ery
abundant in some places on the roadside”
(Nelson 1899)

Capsella bursa-pastoris (L.) Medic.; shepherd’s purse;
RM (1899), YELLO; widespread in thermal
areas and disturbed places

Cardaria chalepensis (L.) Hand.-Mazz.; chalapa
hoarycress, orbicular whitetop; YELLO (1995);
listed noxious by MT (as Cardaria spp.), WY
(as Cardaria spp.); near Gardiner 

Cardaria draba (L.) Desv.; hoary cress, whitetop;
YELLO (1995); listed noxious by ID, MT, WY;
1 infestation along northeast entrance road 

Cardaria pubescens (Meyer) Jarmol.; hairy white-
top, globepodded hoarycress; YELLO (1931);
listed noxious by MT (as Cardaria spp.), WY;
established near Gardiner and Mammoth

Chorispora tenella (Pallas) DC.; blue mustard, musk
mustard; YELLO (1996); small population along
Coyote Creek trail near northern boundary

Descurainia sophia (L.) Webb ex Prantl; flixweed,
bed-ground-weed; YELLO (1952); occasional
sites, especially on northern range

Draba verna L.; whitlow-grass, spring draba; RM
(1980), YELLO; spreading throughout Upper
Geyser Basin

Hesperis matronalis L;. dame’s rocket, damask violet,
sweet rocket; YELLO (1978); perhaps planted
historically, occasional plants persisting in
vicinity of Mammoth

Isatis tinctoria L.; dyer’s woad; YELLO (1992);
listed noxious by ID, MT, WY; 4 separate
establishments of single plants, eradicated 

Lepidium campestre (L.) R. Br.; fieldcress, field
pepperweed; YELLO (1992); occasional plants
along roadsides

Lepidium perfoliatum L.; clasping peppergrass,
clasping pepperweed; YELLO (1978); on dis-
turbed ground at several locations in park

Lepidium sativum L.; garden cress; YELLO (1990);
Mammoth along Officer’s Row

Rorippa nasturtium-aquaticum (L.) Hayek; water-
cress; YELLO (1922); widespread especially in
thermal areas

Sisymbrium altissimum L.; tumblemustard, Jim Hill
mustard; MONT (1922), YELLO; common in
disturbed areas along roads and near developed
areas

Sisymbrium loeselii L.; Loesel tumblemustard, tall-
hedge mustard; YELLO (1975); occasional along
roads and in developed areas 

Thlaspi arvense L.; fanweed, field pennycress; RM
(1906), YELLO; widespread on disturbed
ground

CYPERACEAE

Scirpus atrocinctus Fern.; wool-grass; YELLO (1996);
a few plants persisting in roadside ditch near
Yellowstone Lake
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DIPSACACEAE

Dipsacus fullonum L.; teasel; YELLO (1992); several
plants eradicated from roadside

EUPHORBIACEAE

Euphorbia esula L. var. uralensis (Fisch. ex Link)
Dorn; leafy spurge; YELLO (1991); listed nox-
ious by ID, MT, WY; 1st written report in park
in 1983, several small infestations scattered
around park

Euphorbia maculata L.; spotted spurge; RM (1980),
YELLO; West Thumb Geyser Basin 

GERANIACEAE

Erodium cicutarium (L.) L’Her. ex Aiton; filaree,
stork’s-bill; YELLO (1974); established in sev-
eral thermal areas including Mammoth Hot
Springs and the Upper Geyser Basin

GRAMINEAE

Agropyron cristatum (L.) Gaertn. var. desertorum
(Fisch. ex Link) Dorn; crested wheatgrass;
YELLO (1942); deliberately planted in the
Stephens Creek area in the northern portion of
the park in the 1950s and occasionally spread-
ing

Agropyron triticeum Gaertn.; annual wheatgrass;
YELLO (1952); widespread in undisturbed
areas near Gardiner

Agrostis stolonifera L.; red top, creeping bentgrass;
YELLO (1924); widespread along roads

Aira caryophyllea L.; silver hairgrass; RM (1982),
YELLO; known only from vicinity of Firehole
Lake in Lower Geyser Basin

Alopecurus arundinaceus Poiret; creeping foxtail;
YELLO (1990); a few scattered locations,
especially along roads

Alopecurus pratensis L.; meadow foxtail; YELLO
(1978); scattered locations including the back-
country

Apera interrupta (L.) Beauv.; Italian sandgrass, in-
terrupted apera; YELLO (1991); Mammoth
Terraces

Arrhenatherum elatius (L.) J. & K. Presl; tall oat-
grass, tuber oatgrass; YELLO (1989); eradi-
cated 3 times from roadside

Avena fatua L.; wild oats; YELLO (1990); roadside
near Mammoth Terraces

Avena sativa L.; common oats; YELLO (1989);
rarely present and not persisting along road-
sides in the Gallatin and Stephens Creek area

Bromus briziformis Fisch. & Meyer; rattlesnake
chess; YELLO (1925); historically in Mam-
moth area, currently along 1 area of Old Gar-
diner Road

Bromus inermis Leyss. var. inermis; smooth brome;
YELLO (1925); widespread in northern range
of park, especially in Lamar Valley and near
roadsides 

Bromus japonicus Thunb. ex Murray; Japanese
brome; YELLO (1986); along roads in northern
portion of park, especially near Gardiner and
Stephens Creek

Bromus tectorum L.; cheatgrass, downy brome,
downy chess; YELLO (1930); present and
widely distributed in park, especially in ther-
mal areas and northern range

Dactylis glomerata L.; orchard-grass; YELLO (1978);
occasional along roadsides

Elymus hispidus (Opiz) Melderis var. hispidus;
intermediate wheatgrass; YELLO (1999); a few
patches scattered along roads 

Elymus hispidus (Opiz) Melderis var. ruthenicus
(Griseb.) Dorn; intermediate wheatgrass;
YELLO (1990); a few patches scattered along
roads and in developed areas

Elymus junceus Fisch.; Russian wild rye; YELLO
(1988); apparently planted during 1960s and/or
1970s for revegetation and persisting

Elymus repens (L.) Gould; quackgrass, couchgrass;
YELLO (1952); listed noxious by WY [as Elyt-
rigia repens (L.) Nevski]; well established near
Gardiner and at scattered locations along roads

Festuca arundinacea Schreb.; tall fescue; YELLO
(1995); 1 site near Old Gardiner Road

Festuca pratensis Huds.; meadow fescue; YELLO
(1995); scattered along roadsides, especially
along Northeast Entrance road

Lolium perenne L.; perennial ryegrass, English rye-
grass; YELLO (1925); Mammoth and a few
scattered locations 

Phleum pratense L.; timothy, common timothy;
MONT (1897), YELLO; widespread on north-
ern range and spreading from many additional
locations

Poa annua L.; annual bluegrass; MONT (1922),
YELLO; disturbed areas, thermal areas, and
along many backcountry trails

Poa bulbosa L.; bulbous bluegrass; YELLO (1972);
Mammoth and Bechler Ranger Station

Poa compressa L.; Canada bluegrass; YELLO (1938);
widespread 

Poa palustris L.; fowl bluegrass; MONT (1922),
YELLO; widespread

Poa pratensis L.; Kentucky bluegrass; MONT (1897),
YELLO; widespread

Polypogon monspeliensis (L.) Desf.; rabbitfoot grass;
MONT (1922); Mammoth area in wetlands

Puccinellia distans (L.) Parl.; weeping alkaligrass,
European alkaligrass; YELLO (1926); occa-
sional

Secale cereale L.; cultivated rye; YELLO (1989);
planted in adjacent national forests after 1988
fires leading to some casual seeding in park,
not persisting 

Setaria viridis (L.) Beauv.; green bristlegrass; YELLO
(1952); rarely appearing along roadside near
Gardiner, not persisting

Triticum aestivum L.; cultivated wheat; YELLO
(1991); rare along roadsides and not persisting
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HYPERICACEAE

Hypericum perforatum L.; common St. Johnswort,
Klamath weed; YELLO (1973); listed noxious
by MT; a few infestations, especially in Lower
Geyser Basin

LABIATAE

Dracocephalum thymiflorum L.; thyme-leaved drag-
onhead; YELLO (1990); established at several
sites along roadsides

Galeopsis ladanum L.; hemp nettle; YELLO (1954);
a few scattered sites

Glecoma hederacea L.; ground-ivy, gill-over-the-
ground; YELLO (1974); persisting in Mam-
moth lawns

Lamium amplexicaule L.; common dead-nettle, hen-
bit; YELLO (1952); a few areas near Gardiner
and Stephens Creek

Nepeta cataria L.; catnip, catmint; YELLO (1952);
perhaps planted historically in the Mammoth
area, persisting along building edges

Salvia nemorosa L.; sage, violet sage; YELLO
(1978); 1 plant eradicated near the North
Entrance

LEGUMINOSAE

Medicago lupulina L.; black medic, hop clover;
YELLO (1952); widespread along roadsides,
thermal areas, and other locations

Medicago sativa L. var. falcata (L.) Doell; yellow
alfalfa; YELLO (1994); plant eradicated along
roadside

Medicago sativa L. var. sativa; alfalfa; YELLO (1952);
occasional roadside plants, spreading only at
lowest elevations

Melilotus albus Medikus; white sweet-clover;
YELLO (1952); roadsides, especially on north-
ern range

Melilotus officinalis (L.) Pallas; yellow sweet-clover;
YELLO (1952); widespread on northern range
and at other scattered locations around park

Onobrychis viciifolia Scop.; saintfoin, sandfain;
YELLO (1990); isolated plants along roadside

Trifolium aureum Pollich; yellow clover, large hop
clover; YELLO (1992); a few small sites scat-
tered along roadsides

Trifolium campestre Schreber in Sturm; hop clover;
YELLO (1995); Midway Geyser Basin and Potts
Hot Springs

Trifolium hybridum L.; alsike clover; RM (1899),
YELLO; widespread and spreading

Trifolium pratense L.; red clover, rose clover; RM
(1899), YELLO; scattered locations 

Trifolium repens L.; white clover, Dutch clover; RM
(1899), YELLO; widespread and spreading

Vicia cracca L.; bird vetch; YELLO (1996); at least
2 roadside plants eradicated

MALVACEAE

Alcea rosea L.; hollyhock; YELLO (1993); perhaps
planted historically, appeared and eradicated
in parking area in Mammoth

Malva neglecta Wallr.; common mallow; YELLO
(1992); 1 plant eradicated at Old Faithful

Malva rotundifolia L.; roundleaved mallow; YELLO
(1989); 1 plant eradicated at Stephens Creek

OLEACEAE

Fraxinus pennsylvanica Marsh.; green ash; YELLO
(1995); planted in Gardiner and escaping, 1
tree eradicated

OXALIDACEAE

Oxalis dillenii Jacq.; Dillen’s wood-sorrel, gray-green
wood-sorrel; YELLO (1991); a few scattered
locations

Oxalis violacea L.; violet wood sorrel; US (1881);
only known report, Denton (1973) states prob-
ably introduced

PLANTAGINACEAE

Plantago lanceolata L.; buckhorn plantain, ribwort;
YELLO (1953); occasional in disturbed areas

Plantago major L.; broadleaf plantain, nippleseed;
YELLO (1926); occasional in disturbed areas 

POLYGONACEAE

Polygonum aviculare L.; prostrate knotweed, door-
weed; US? (1885), YELLO; widespread, first
collected by Frank Tweedy (Tweedy 1886, Ryd-
berg 1900) 

Polygonum convolvulus L.; wild buckwheat, dullseed,
cornbind; RM (1899), YELLO; disturbed areas
at Stephens Creek, Old Faithful, and rarely
along roadsides

Polygonum lapathifolium L.; willow weed, pale smart-
weed; YELLO (1991); a few scattered small
sites

Rumex acetosella L.; sheep sorrel, red sorrel; RM
(1904), YELLO; widespread and naturalized

Rumex crispus L.; curly dock, sour dock; YELLO
(1924); occasional near roads and developed
areas

Rumex patientia L.; patience dock; YELLO (1924);
Madison Junction 

PORTULACACEAE

Portulaca oleracea L.; common purslane, mother-of-
millions; YELLO (1991); spreading in Upper,
Lower, and Midway geyser basins and other
thermal areas

RANUNCULACEAE

Ranunculus acris L.; tall buttercup; YELLO (1998);
listed noxious by MT; small infestations at
Bechler Ranger Station and on northern range
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Ranunculus repens L. var. repens; creeping butter-
cup; YELLO (1991); established in lawn at
Mammoth

Ranunculus testiculatus Crantz; bur buttercup, horn-
seed buttercup; YELLO (1988); spreading
around Mammoth Hot Springs and the North
Entrance

ROSACEAE

Potentilla argentea L.; silvery cinquefoil; YELLO
(1972); Madison Junction

Potentilla norvegica L.; rough cinquefoil, Norwegian
cinquefoil; YELLO (1925); widespread in dis-
turbed areas

Potentilla recta L.; sulphur cinquefoil; YELLO
(1992); listed noxious by MT; a few scattered
infestations

Prunus avium L.; sweet cherry; YELLO (1992); 1
plant on roadside thermal ground, eradicated

Pyrus malus L.; cultivated apple; YELLO (1992); a
few shrubs along roadside

RUBIACEAE

Galium mollugo L.; wild madder, great hedge bed-
straw; YELLO (1996); 2 sites along roadside in
Lamar Valley

Galium verum L.; yellow bedstraw, lady’s bedstraw;
YELLO (1978); 1 site in Mammoth

SALICACEAE

Salix fragilis L.; crack willow; YELLO (1995); planted
in Gardiner and escaping, 1 shrub eradicated
in Yellowstone

SCROPHULARIACEAE

Linaria dalmatica (L.) Miller; Dalmatian toadflax;
YELLO (1957); listed noxious by ID, MT, WY;
major infestation in the Mammoth and Gardiner
area (unconfirmed report that it may have been
planted historically at Mammoth) and small
infestations in several other areas

Linaria vulgaris Miller; yellow toadflax, butter and
eggs; YELLO (1933); listed noxious by ID,
WY; scattered infestations especially in the
southern portion of the park

Verbascum thapsus L.; common mullein, wooly
mullein, flannel mullein; YELLO (1953); well
established on Mammoth Terraces and at other
scattered locations

Veronica arvensis L.; corn speedwell, common
speedwell; YELLO (1974); well established
throughout the Upper, Lower, and Midway
geyser basins

Veronica biloba L.; bilobed speedwell; YELLO
(1994); Bechler Ranger Station, Mammoth,
and Heart Lake 

SOLANACEAE

Hyoscyamus niger L.; henbane, hog’s bean; YELLO
(1942); listed noxious by ID; Mammoth

Lycium barbarum L.; matrimony vine, teavine;
YELLO (1987); probably originally planted
around Mammoth and occasionally spreading 

Solanum physalifolium Rusby var. nitidibaccatum
(Bitter) Edmonds; hairy nightshade; YELLO
(1952); Stephens Creek 

UMBELLIFERAE

Carum carvi L.; caraway; RM (1905), YELLO;
occasional along Northeast Entrance road

Conium maculatum L.; poison-hemlock; YELLO
(1989); listed noxious by ID; established in
Mammoth along Officer’s Row

Daucus carota L.; wild carrot, Queen Anne’s lace;
YELLO (1999); one roadside plant eradicated
near Midway Geyser Basin

Pastinaca sativa L.; common parsnip; YELLO (1952);
Stephens Creek, not recently relocated
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The number of documented exotic plants in
Yellowstone National Park (YNP) has increased
from 85 recognized in 1986 to over 185 today,
which represents about 15% of the vascular
plant species in the park (Whipple 2001). Thirty
of these plants are listed as noxious in 1 of 3
states (Wyoming, Montana, and Idaho) in which
YNP is located. Some extremely invasive exotics
that have not been found in Yellowstone, in-
cluding yellow starthistle (Centaurea solstitialis
L.) and purple loosestrife (Lythrum salicaria
L.), are becoming serious problems in some
adjoining states. On the other hand, nonnative
plants that are not listed as noxious, like timo-
thy (Phleum pratense L.), may be affecting
native biotic communities to a greater degree
than those plants deemed “noxious” (Wallace
and Macko 1993).

Many biologists consider exotic plant estab-
lishment to be the largest threat to the integrity
of native plant communities of the park. Non-

native plants have been demonstrated to nega-
tively impact ecosystem structure and func-
tion by altering soil properties and related
processes (Lacey et al. 1989, Olson 1999), plant
community dynamics and related disturbance
regimes (e.g., D’Antonio and Vitousek 1992),
and distribution, foraging activity, and abun-
dance of native ungulates (Trammel and Butler
1995, Thompson 1996) and small mammals
(Kurz 1995). Geothermal habitats unique to
Yellowstone have been altered by exotic plants,
potentially compromising the long-term persis-
tence of populations of Ross bentgrass (Agrostis
rossiae Vasey), a restricted endemic plant found
only in a few geothermal environments within
the park. Aesthetics and viewsheds of cultural
landscapes and historic districts within the
park have been altered by the establishment
of exotic plant species.

In response to the threat exotic plants pose to
YNP’s native flora and fauna, and in compliance
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MANAGING A COMPLEX EXOTIC VEGETATION PROGRAM
IN YELLOWSTONE NATIONAL PARK

Tom Olliff1, Roy Renkin1, Craig McClure1, Paul Miller1, Dave Price2,
Dan Reinhart1, and Jennifer Whipple1

ABSTRACT.—The number of documented exotic plants in Yellowstone National Park has increased from 85 known in
1986 to over 185 today. Exotic plants are substantially impacting the park’s natural and cultural resources and are a high
management priority. We have adopted an integrated weed management approach with regard to exotic vegetation,
emphasizing prevention, education, early detection and eradication, control, and, to a lesser degree, monitoring. The
program involves over 140 staff with program expenditures averaging approximately $190,000 annually. Prevention
actions include requiring approved gravel on construction projects; banning hay in the backcountry and allowing trans-
port of only certified weed-seed-free hay through Yellowstone; requiring construction equipment to be pressure-
cleaned prior to entering the park; and native species revegetation after road, housing, and other construction projects
have disturbed ground.

Over 4500 acres, primarily along roadsides and in developed areas, are surveyed annually in early detection efforts
with emphasis placed on eradicating small, new infestations of highly invasive species such as sulfur cinquefoil (Poten-
tilla recta L.) and leafy spurge (Euphorbia esula L.). Control efforts focus on about 30 priority species, such as spotted
knapweed (Centaurea maculosa Lam.), oxeye daisy (Chrysanthemum leucanthemum L.), and hoary cress (Cardaria draba
[L.] Desv.) using chemical, mechanical, and cultural techniques. A total of 2027 acres were treated during 1998, whereas
control efforts for 12 species occurred on 2596 acres during the previous 3-year period, 1995–1997. Strong and expand-
ing partnerships with other federal, state, and local agencies and private companies contribute to management efforts
within the park. Future program goals emphasize increases in base funding to ensure continued weed management
efforts as well as expanding survey, monitoring, and reclamation efforts. Ultimately, a more rigorous assessment of pro-
gram effectiveness is desired.

Key words: exotic vegetation, Yellowstone National Park, integrated weed management.
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with legal and policy mandates prescribing
weed control, YNP has established an aggres-
sive program to prevent, eradicate, and control
the spread of exotic plants. This program is
guided by the Yellowstone National Park
Exotic Vegetation Management Plan (NPS
1986). The park’s Resource Management Plan
(NPS 1998) lists exotic plants as one of the
major threats to natural resources.

Here we describe the structure and imple-
mentation of the exotic vegetation manage-
ment program in the park, summarize distri-
bution and area information as a result of mon-
itoring efforts for a select group of species
under control, and identify actions to enhance
long-term program effectiveness. For consis-
tency here and with Whipple (2001), all plant
species nomenclature follows Dorn (1992) and
is provided upon initial reference to a particu-
lar plant species. Where current usage may
differ from Dorn (1992), synonomy is also pro-
vided in accordance with nomenclature used
by the Weed Science Society of America.

SITE

YNP is the 1st national park in the world
and represents the core of the largest, nearly
intact, natural ecosystem in the temperate
zone of the earth. The park has been recog-
nized as a United Nations Biosphere Reserve
and a World Heritage Site. Established in 1872,
the park was set aside as a “public park, or
pleasuring ground” for “the preservation, from
injury or spoliation, of all timber, mineral de-
posits, natural curiosities, or wonders within . . .
and their retention in their natural condition”
(1871 Bill S. 392). Through subsequent legisla-
tion and administrative guidelines, including
the National Park Service Management Poli-
cies (NPS 1988), YNP’s fundamental goal con-
tinues to be the preservation of its natural and
cultural resources while allowing human visi-
tation and enjoyment.

Encompassing 2,221,722 acres (3472 square
miles), YNP is located primarily in the north-
western corner of Wyoming, with portions ex-
tending into southwestern Montana and south-
eastern Idaho. Ninety-nine percent of the
park remains undeveloped (NPS 1991). While
the overall footprint of developments is small,
developments, including 370 miles of paved
roads, 17 frontcountry developed areas, 2200
frontcountry campsites, 300 backcountry camp-
sites, and 950 miles of backcountry trails, are

widely dispersed throughout the park. Visita-
tion approaches 3 million people annually;
about 28,000 people spend one or more nights
in backcountry campsites. YNP also hosts
approximately 8000 backcountry stock use
nights annually.

The park consists of 5 more or less distinct
vegetation zones influenced most heavily by
the interaction between geology and climate
(Despain 1990). Four of the 5 zones are at
higher elevations between 6500 and 11,000
feet, are underlain by bedrock of volcanic
andesite or rhyolite origin, and receive greater
amounts of precipitation ranging from 20 to 70
inches annually. These areas generally support
forests dominated by lodgepole pine (Pinus
contorta Dougl. ex Loud.), Engelmann spruce
(Picea engelmanii Parry ex Engelm.), subalpine
fir (Abies lasiocarpa [Hook.] Nutt.), or white-
bark pine (Pinus albicaulis Engelm.) inter-
spersed with subalpine meadows or alpine
tundra above timberline. The remaining zone,
primarily along the Yellowstone and Lamar
River valleys in the northern portion of the
park, encompasses some 198,000 acres (9%) of
the total park area. This low-elevation zone
(5200 to 6500 feet) is underlain by glacial
debris of volcanic andesite and sedimentary
composition and receives less precipitation (11
to 20 inches annually). As a result, the area is
dominated by sagebrush (Artemisia spp.) steppe
and grasslands and is bordered by Douglas-fir
(Pseudotsuga menziesii [Mirb.] Franco) forests.
This cold-desert environment provides habitat
conditions most susceptible to exotic plant
invasion and establishment relative to other
vegetation zones in the park. These lower ele-
vations support large wintering herds of elk
(Cervus elaphus nelsoni Bailey) and smaller
numbers of wintering bison (Bison bison L.),
whereas mule deer (Odocoileus hemonius hemon-
ius Rafinesque), pronghorn antelope (Antilo-
capra americana americana Ord), and bighorn
sheep (Ovis canadensis canadensis Shaw) are
observed mostly during the summer or at the
lowest elevations during winter. Moose (Alces
alces shirasi Nelson) can occasionally be ob-
served throughout the year.

PROGRAM ORGANIZATION AND

RESPONSIBILITIES

The National Park Service (NPS) is man-
dated to prevent exotic plant introduction and
to control established exotic plants by law,
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executive order, and management policy (e.g.,
Executive Order 13112, National Park Service
Management Policies [NPS 1988], Federal Nox-
ious Weed Act of 1974 [NPS 1996]). YNP’s
size and ecological complexity require an
effective organizational structure to develop
and implement the exotic plant management
program. The Exotic Plant Management Com-
mittee, composed of District Resource Opera-
tions Coordinators (ROC), the Branch Chief–
Resource Operations, the Vegetation Manage-
ment Specialist, and the Park Botanist, coordi-
nates the parkwide program. The committee
establishes parkwide prevention, early detec-
tion, eradication, and control priorities and
protocols; establishes, tests, and refines inven-
tory and monitoring techniques; acquires the
necessary approvals for herbicide use and
reports annual levels of herbicide use; seeks
program funding and participates in partner-
ship development and implementation; devel-
ops staff training workshops; and represents
the park weed management program at vari-
ous local, state, and federal workshops.

The Weed Management District is the core
of program implementation. The park is divided
into 4 weed management districts (Fig. 1) based
on ecological and administrative criteria. Each
district is supervised by a district ROC. The
North District has an assistant ROC due to
the number, size, and complexity of exotic
plant invasions in the low elevations of the
district. ROCs are responsible for local pro-
gram development: setting district priorities
within the framework of parkwide priorities,
managing the district budget, hiring and train-
ing staff, coordinating district prevention and
education programs, surveying and controlling
exotic plants, and recording weed manage-
ment activities.

District ROCs also participate in the estab-
lishment and implementation of weed manage-
ment areas (WMA) with cooperating agencies
across park boundaries within their respective
districts. YNP is currently a partner in 4 multi-
jurisdictional WMAs established in accordance
with the Greater Yellowstone Coordinating
Committee’s Guidelines for Coordinated Man-
agement of Noxious Weeds in the Greater Yel-
lowstone Area (GYCC Guidelines; Free et al.
1990). The Henrys Fork, Upper Madison,
Upper Gallatin, and Jackson Hole WMAs were
established as ecologically definable areas, ir-
respective of management jurisdiction, where
similar weed problems exist within WMA

boundaries (Fig. 2). Such recognition allows
more specific weed management goals and a
sharing of resources among differing adminis-
trative entities with similar weed problems.

Cooperation and participation from a vari-
ety of different individuals and park divisions
are necessary for a successful weed manage-
ment program in the park. Over 140 NPS staff
participate in the program each year. Field
and entrance station rangers assist with
mechanical control of weed infestations and
weed prevention by conducting hay and con-
struction equipment inspections at entrance
gates. Maintenance Division staff assist with
weed prevention by cleaning construction
equipment and using approved gravel in park
sanding operations and construction projects.
The Branch of Landscape Architecture over-
sees park revegetation efforts and assists with
funding the exotic plant program by adminis-
tering Federal Lands Highway Program funds.
The Concessions Office, in conjunction with
major park concessionaires, facilitates weed
control in areas affected by concessionaire
operations. Interpretation rangers assist with
exotic plant education efforts. More than 100
short- and long-term volunteers assist annually
with early detection surveys, mechanical con-
trol, and seed collection for revegetation.

Many partners from outside YNP also con-
tribute to the program. Scientists from univer-
sities in Wyoming, Montana, and Idaho and
the U.S. Geological Survey Biological Resources
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Yellowstone National Park.



Division are conducting research into the bi-
ology of weed infestations and control methods,
recommending best prevention and control
techniques, and assisting with staff education
programs (e.g., Whitson et al. 1992). Dow Agro-
Sciences and Monsanto have donated funding
and herbicides for research, and have assisted
with assessing and monitoring weed problems
in portions of the park. Weed supervisors from
counties that adjoin YNP are consulted regu-
larly regarding local weed management issues.

Securing appropriate funds to support the
weed management program has been chal-
lenging. Permanent employees with weed
oversight responsibility are funded through

NPS base operating funds. All other aspects of
the program, including seasonal biological tech-
nicians, equipment, supplies, and operating
funds, must be funded through opportunistic,
nonrecurring funding sources with no guaran-
tee of future funding. Total annual expendi-
tures for the weed program are approximately
$190,000. Since 1994 the Federal Lands High-
way Program has funded weed monitoring
and control efforts along road segments under
construction. From 1994 to 1999 annual fund-
ing averaged $80,701 and ranged from $16,629
to $98,624. Funds for employee housing con-
struction also pay for some weed control. An
employee housing plan and environmental
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assessment (NPS 1992) states, “Two percent of
actual building costs will be set aside for con-
trol and prevention of exotic plant infesta-
tions” due to the potential for invasive plants
to become established after ground distur-
bance. Between 1995 and 1999 annual fund-
ing averaged $16,544 and ranged from $0 to
$26,160. Amfac Parks and Resort, the largest
park concessionaire, contracts with NPS weed
managers to control weeds on concessions land
assignments within park boundaries. From 1996
to 1999 annual funding averaged $2,356 and
ranged from $2,275 to $2,700. In 1998 and 1999
the park safety committee provided $2,200
and $2,700, respectively, to purchase safety
equipment necessary for the exotic plant man-
agement program. In fiscal year 2000 the park
committed $65,000 of Recreational Fee Demon-
stration Program funds to control weeds.

PROGRAM IMPLEMENTATION

YNP adopted an integrated strategy to
manage exotic plants. Integrated weed man-
agement encompasses preventing weed intro-
duction, early detection and eradication of
new weed infestations, controlling and/or con-
taining established weed infestations, educat-
ing park employees and the public about weed
identification and management, and inventory
and monitoring to define the extent of weed
problems and assess program effectiveness
(Mullin 1992, Sheley et al. 1999a).

Preventing Weed Introduction

Prevention is recognized as an initial and
effective weed management strategy and re-
quires identification of problem areas and
sources of seed introduction. The vast major-
ity of YNP’s noxious weed infestations occur
along park roads and in developed areas
where ground-disturbing activities frequently
take place. Weed seeds are transported on
vehicles, equipment used in construction, and
in sand and gravel used for construction and
maintenance. While we have not addressed
private vehicles as weed seed vectors, we are
establishing a prevention program aimed at
reducing weed seeds in gravel and on con-
struction equipment. All gravel used in YNP
must now either come from a source operating
under an approved weed management plan or
be heated to 300°F prior to being used in the
park. Park weed managers are working with

local county weed supervisors and gravel pit
owners to inventory gravel pits for weeds,
develop weed management plans, and inspect
the pits after plan implementation to monitor
weed status. In addition, all equipment used
in ground-disturbing construction must be
pressure-washed and inspected prior to enter-
ing the park.

Recreational stock, as well as native ungu-
lates, can also introduce and spread weeds.
Seeds can be transported on animal hides or
may pass through digestive systems. Weed
seeds can also be dispersed through horse
feed and hay. Opportunistic surveys associated
with stock site inventories have not revealed
high levels of noxious weeds in backcountry
horse sites, and so we do not require that
horses be quarantined prior to entering the
park as some authors recommend (Sheley et
al. 1999b). We do, however, ban all hay from
being taken into the backcountry and allow
only certified weed-seed-free hay to be trans-
ported through the park. YNP’s Superinten-
dent’s Compendium specifies that

only weed-free pellets, cubes and/or grain,
but no hay, may be taken into and used in the
backcountry. Certified weed-free hay, securely
wrapped, may be transported through the
park for use outside the park when a permit
has been obtained from the Superintendent
(36 CFR 1.7[B], Section 2.16 [g]).

Even certified weed-free hay is not truly
“weed-free.” It is only free of weeds listed as
“noxious” in its home state. The hay can legally
contain many nonnative plants, including tim-
othy, clover (Trifolium spp.), and yellow sweet-
clover (Melilotus officinalis [L.] Pallas), that
can become established and compromise
native plant communities.

A vigorous native plant community is one of
the most effective means of preventing invasion
and spread of nonnative plants. We target native
species revegetation on about 200 acres each
year, primarily in association with road, hous-
ing, and other construction projects. Revege-
tation efforts have focused on careful preser-
vation of topsoil as a growing medium and
native seed source. Topsoil management is
augmented by the park seed bank established
in partnership with the Natural Resources
Conservation Service Plant Materials Center
in Bridger, Montana. Since 1987, seed has
been collected within the park and increased
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at the center. Seeding is done with this seed
on a site-specific basis (NPS 1997).

Early Detection and Eradication 
of New Weed Infestations

When prevention fails, the best course of
action is to identify and eradicate new species
or infestations before they become well estab-
lished and disperse seeds for the 1st time. We
use early detection survey routes along park
roads and in developed areas to accomplish
this. Each year as weeds are beginning to
emerge (generally June and early July), sur-
veys are undertaken on about 4500 acres for
weed infestations in the early stages of estab-
lishment. Early detection and eradication
efforts are directed at 32 of 185+ nonnative
plants in Yellowstone, those species that are
assigned to the watch list, priority I, or prior-
ity II category (Table 1).

Controlling and/or Containing 
Established Weed Infestations

Many noxious weeds and nonnative plants
have become firmly established in YNP be-
cause prior attempts at prevention and early
detection efforts were ineffective, eradication
efforts have failed, or, in the case of some non-
natives, past management practices have led
to planting and protecting these species. Since
the seeds of plants can remain viable for
decades (e.g., oxeye daisy seeds have germi-
nated after 39 years; Sheley and Petroff 1999),
areas where weeds have dispersed seeds must
be revisited for control for years, even if no
plants are apparent. Thus, we have established
an ongoing weed control and/or containment
program that focuses on problem areas (pri-
marily along roadsides and developed areas)
and some 30 high-priority species (priority I,
II, and, in limited cases, priority III species
[Table 1]). Most of these high-priority species
are listed as noxious in Wyoming, Montana,
and/or Idaho. The majority of control effort is
directed toward listed noxious species and
aggressive and new invaders.

Most of our weed control effort is put into
mechanical control—pulling, grubbing, mow-
ing, or cutting weeds. Mechanical control is
our first option in small infestations when the
plant biology lends itself to mechanical control,
and it is our only option in sensitive areas close
to surface water and in thermal basins. In 1998

mechanical means were employed on 1551
(77%) of 2027 total acres treated for control.

Chemical control is a small, but important,
part of our program. We employ 8 different
herbicides reviewed and approved at the high-
est level of the NPS. Herbicides are used to
eradicate and contain aggressive, high-priority
species that do not respond well to mechanical
control, or when staffing for mechanical con-
trol is limiting. Conservative chemical control
techniques involve the use of the most selec-
tive herbicide for the target species and spot
spraying individual plants over broadcast spray-
ing. From 1989 to 1993 herbicide use aver-
aged 34.5 pounds of active ingredient (lbs. a.i.)
applied annually (Fig. 3). From 1994 to 1998
this annual average increased over fourfold to
158 lbs. a.i. Herbicides accounted for about
23% of the total area treated during 1998, where
476 acres were treated with 115 lbs. a.i., an
average of less than 4 oz per acre.

Educating Park Employees 
and Visitors

Formal weed education efforts began in
1982 with development and circulation of a
pocket-sized notebook of sketched illustrations
of select noxious weeds. By 1986 color photo-
graphs were compiled, reproduced, and con-
densed into the “Ten Most Wanted” poster in
an effort to help staff identify some of the
park’s most invasive weeds. Species targeted
included spotted knapweed, oxeye daisy, com-
mon tansy (Tanacetum vulgare L.), common
mullein (Verbascum thapsus L.), field bindweed
(Convolvulus arvensis L.), and houndstongue
(Cynoglossum officinale L.). Education efforts
targeting both the visiting public and park
employees have grown since that time. An
article entitled “Non-native Plants Impact
Ecosystem” is published each spring, summer,
and fall in Yellowstone Today, the official park
newspaper, which has a circulation of approxi-
mately 775,000. Visitors traveling through the
park with horses receive Exotic Plants: Don’t
Let Them Ride With You!, a small pamphlet
explaining how recreational stock users can
prevent weed seeds from spreading into the
park. Overnight backcountry campers receive
Beyond Road’s End, a pamphlet with 2 full
pages dedicated to identifying weeds and pro-
cedures for reporting weeds found in the
backcountry.
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TABLE 1. Exotic plant priority list, Yellowstone National Park. Nomenclature follows Dorn (1992) and is consistent with
Whipple (2001).

Priority 
category Description Species

Watch list Species that have not been found in Yellowstone Centaurea × pratensis Thuill. (meadow 
National Park but are known to exist nearby or knapweed)
species that have been found in the park but Centaurea solstitialis L. (yellow starthistle)
removed prior to seed dispersal. Chondrilla juncea L. (rush skeletonweed)

Crupina vulgaris Cass. (common crupina)
Isatis tinctoria L. (dyer’s woad)
Lythrum salicaria L. (purple loosestrife)
Senecio jacobaea L. (tansy ragwort)

Priority I Species that have produced seed in the park, but Carduus acanthoides L. (plumeless thistle)
populations are small and limited in number. Centaurea diffusa Lam. (diffuse knapweed)
These species have a high probability for Centaurea repens L. [Acroptilon repens (L.) DC]
eradication and are cost effective to control. (Russian knapweed)

Chorispora tenella (Pallas) DC. (blue mustard)
Dianthus spp. (sweet william, grass pink)
Euphorbia esula L. (leafy spurge)
Potentilla recta L. (sulfur cinquefoil)
Onopordum acanthium L. (Scotch thistle)
Veronica biloba L. (bilobed speedwell)

Priority II Aggressive invaders, some of which are well Berteroa incana (L.) DC. (berteroa)
established in some localities, but most are Cardaria spp. (whitetop, hoary cress)
confined to relatively small areas at specific Carduus nutans L. (musk thistle)
locations. Containment will be the primary goal Centaurea maculosa Lam. (spotted knapweed)
for these species. Chrysanthemum leucanthemum L. (oxeye daisy)

Cirsuim vulgare (Savi) Tenore (bull thistle)
Convolvulus arvensis L. (field bindweed)
Cynoglossum officinale L. (houndstongue)
Hieracium spp. (orange hawkweed,

yellow hawkweed)
Hypericum perforatum L. (common 

St.  Johnswort)
Linaria dalmatica (L.) Miller [L. genistifolia spp.   

dalmatica Maire & Petitm.] (dalmatian 
toadflax)

Melilotus officinalis (L.) Pallas (yellow 
sweet-clover)

Silene vulgaris (Moench) Garcke (bladder 
campion)

Tanacetum vulgare L. (common tansy)
Verbascum thapsus L. (common mullein, wooly

mullein)

Priority III Aggressive invaders that are dispersed over large Bromus inermis Leyss. (smooth brome)
areas of Yellowstone.  Control efforts are likely Bromus tectorum L. (downy brome, cheatgrass)
to be ineffective, costly, and have deleterious Cirsium arvense (L.) Scop. (Canada thistle)
effects on the park ecosystem. However, work Elymus repens (L.) Gould  [Elytrigia repens (L.)
may be done to confine the spread of these plants Nevski, Agropyron r. (L.) Beauv.] 
in sensitive areas. (quackgrass)

Linaria vulgaris (L.) Miller (yellow toadflax)
Phleum pratense L. (timothy)
Poa spp. (bluegrass)

Priority IV Exotics for which no control efforts are
currently foreseen. These plants, other than being
nonnative, do not appear to displace native
vegetation to the extent of higher-priority species.
Approximately 144 species fall into this category
(Whipple 2001).



Park employees receive updates on exotic
plant identification and management at the
annual Resource Management Workshop, a 3-
day training session designed to share infor-
mation on resource issues with park staff. In
addition, the park botanist has developed a 2-
hour training session on exotic plant identifi-
cation that is given at field locations every 2–3
years. Since 1994, seasonal biological techni-
cians have been required to attend a 3-day
training workshop focused on weed identifica-
tion and ecology, safe herbicide mixing and
handling techniques, sprayer calibration, and
data collection protocol. Permanent employees
with weed management responsibility attend
the NPS Integrated Pest Management course,
maintain pesticide applicator’s certification in
either Wyoming or Montana, and attend con-
tinuing education courses such as state weed
meetings or exotics conferences.

Inventory and Monitoring

Weed managers have emphasized the need
for inventory and monitoring to quantify weed
problems and evaluate program effectiveness
(NPS 1986, NPS 1996, Johnson 1999). Follow-
ing GYCC Guidelines (Free et al. 1990), YNP

managers developed a computerized database
to monitor weed management efforts. Begin-
ning in 1993, several aspects of management
actions and weed conditions were recorded in
a standardized spreadsheet on an annual basis.
Most information derived from the database
has been for administrative purposes, i.e., quan-
tifying the amount of time, money, and effort
put forth by resource management personnel
in weed management. We have made few
attempts, however, to use the database to
quantify weed problems or describe charac-
teristics of weed populations throughout the
park.

The YNP weed management database en-
compasses 31 different fields that capture
yearly survey and control efforts by weed man-
agement district. Database items include the
species encountered, a UTM coordinate loca-
tion obtained from 7.5-minute topographic
maps or global positioning satellite technology,
patch size (in ft2), a qualitative estimate of
plant density (low to high), type of treatment
or chemical mix/quantity where appropriate,
and other secondary data relative to location
(state, county, road segment, drainage, YNP jur-
isdictional unit, etc.). The information derives
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Fig. 3. Amount of herbicide, in pounds of active ingredient, applied annually from 1989 to 1998 for weed control in
Yellowstone National Park.



from systematic survey efforts in the devel-
oped areas and along road corridors, as well as
opportunistic backcountry observations. District
weed managers and technicians regularly re-
cord pertinent information on field forms dur-
ing the summer season and transfer the infor-
mation into a relational database (Microsoft
Access) at a later date. District-wide weed
information is then pooled to represent park-
wide weed management activities and condi-
tions observed within a given year. Because of
this, the database captures only those weed
management activities that take place within a
given year and does not necessarily reflect the
totality of weed conditions within the park at
any one point in time. For this analysis we
used parkwide independent records by site
location for the years 1995–1997 to consider
all known weed patches. We further focused
our analysis on 15 different weed species, all
of high management priority.

The database query of independent records
for 15 select weed species from 1995 to 1997
revealed 1571 records covering 2596 total
acres (Table 2). The North District accounted
for 46% (n = 722) of total records and 83% (n
= 2142 acres) of total area affected. Musk this-
tle (Carduus nutans L.), Russian knapweed
(Centaurea repens L. [Acroptilon repens (L.)
DC.]), spotted knapweed, oxeye daisy, field
bindweed, and hoary cress occurred in great-
est proportion within the North District, occu-
pying 77–100% of the area reported for each
species. On the other hand, the West District
supported the greatest proportional area for

common St. Johnswort (Hypericum perfora-
tum L.), common tansy, and hawkweeds (Hier-
acium spp.), ranging from 51% to 99%. The
West District also recorded the 2nd greatest
proportional area for both oxeye daisy (22%)
and spotted knapweed (14%). The Lake and
Snake River districts each experienced <35
total acres across all species. Hawkweed, spot-
ted knapweed, and musk thistle occupied 81%
(n = 27 acres) of the total area reported for the
Lake District. Weed problems in the Snake
River District for the species reported here
occurred primarily as scattered, isolated indi-
viduals.

Spotted knapweed was the most commonly
reported species in all districts, accounting for
56% (n = 878) of total records and 64% (n =
1664 acres) of total area reported here (Fig. 4).
Eighty-six percent (n = 1424 acres) of the area
and 45% (n = 398) of the records for spotted
knapweed were reported from the North Dis-
trict. Of 1664 acres parkwide, 70% (n = 1167
acres) were of low-density (<1 plant ⋅ 100 ft–2)
compared to only 8% (n = 90 acres) of the
total area experiencing high-density (1 plant ⋅
ft–2) infestations.

A frequency vs. size class distribution showed
the majority (81%, n = 714) of records for
spotted knapweed were <1 acre in size and
only 3 records were for areas >100 acres. Two
of these 3 records were of scattered individu-
als and small patches continuous with the
roadside prism along major road sections.
Fifty-four percent (n = 386) of the patches <1
acre in size were of the “incidental” variety,
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Table 2. Acreage and number of records (in parentheses), by weed management district, for 12 priority weed species
under control in Yellowstone National Park. Data were derived from independent records by location (n = 1571) for the
years 1995–1997 maintained in a computerized database.

District___________________________________________
Weed species Common name North West Snake Lake Totals

Carduus nutans musk thistle 70  (18) 5  (7) <1  (2) 4  (17) 79  (44)
Hieracium spp. hawkweeds <1  (7) 19  (9) <1  (8) 18  (27) 37  (51)
Centaurea diffusa diffuse knapweed 0 <1  (8) <1  (2) <1  (1) <1  (11)
Centaurea repens Russian knapweed 3  (20) 0 <1  (1) <1  (2) 3   (23)
Centaurea maculosa spotted knapweed 1424  (398) 234  (305) <1  (82) 6  (93) 1664 (878)
Tanacetum vulgare common tansy <1  (4) 5  (23) <1  (13) <1  (6) 5  (46)
Chrysanthemum

leucanthemum oxeye daisy 147  (45) 41  (71) <1  (21) 2  (48) 190  (185)
Convolvulus arvensis field bindweed 110  (105) <1  (6) <1  (1) <1  (2) 112  (127)
Cardaria draba hoary cress; whitetop 387  (120) 0 0 0 387  (120)
Euphorbia esula leafy spurge <1  (1) <1  (5) 0 <1  (1) <1  (7)
Potentilla recta sulfur cinquefoil <1  (3) <1  (1) 0 <1  (3) <1  (7)
Hypericum perforatum common St. Johnswort <1  (1) 117  (62) <1  (4) 1  (5) 118  (72)

TOTALS 2142  (722) 421  (497) 1  (134) 32  (218) 2596  (1571)



whereby single to very widely scattered indi-
viduals were recorded in an area <400 ft2.
Although these incidental records represent a
costly database item with regard to field docu-
mentation and database entry/storage, they
nonetheless provide a useful index of occur-
rence per linear mile along major road corri-
dors (Table 3). These data are important to
assess causes and trends in spotted knapweed
invasion and establishment and perhaps quan-
tify the effectiveness of prevention and early
detection components of the weed management
program.

CURRENT AND FUTURE

CONSIDERATIONS

The exotic vegetation management program
is subject to concern, scrutiny, and controversy.
While relying on mechanical, cultural, and
chemical control, no active program using bio-
logical control agents is employed. Differences
in management philosophy and inadequate
understanding of the ecological effects of pur-
poseful nonnative introductions (e.g., Louda et
al. 1997, Strong 1997, Callaway et al. 1999) have
precluded an active biological control program.
Historically from 1969 to 1974, a rearing-and-
release program for a defoliating moth (Calo-
phasia lunula Hufn.) was attempted in the
park to control dalmatian toadflax (Linaria dal-
matica [L.] Miller [L. genistifolia ssp. dalmat-
ica Maire & Petitm.]). The program was dis-
continued apparently because of poor rearing

success and insufficient release stock. More
recently, biocontrol agents have been released
near the park, and some agents have migrated
across park boundaries. Observations of ovary-
feeding beetles (Brachypterolus pulicarius L.)
have been made on both yellow toadflax (Linaria
vulgaris Miller) and dalmatian toadflax, a cap-
sule-feeding weevil (Gymnaetron spp.) was
collected from yellow toadflax, and galls of
seedhead-feeding flies (Urophora spp.) were
observed on spotted knapweed. It is unlikely
that biocontrol agents or emerging technolo-
gies involving plant genetics would be em-
braced in Yellowstone without addressing
philosophical or ecological concerns weighed
against current control practices.

Chemical rather than biological control
generates the most controversy, ranging from
appropriateness in a national park to the spe-
cific effects on wildlife, soil, and water re-
sources. Human health and safety issues for
applicators, employees, and visitors are also
expressed. We try to balance these concerns
with our management objectives, recognizing
that (1) more passive weed management is
most detrimental to overall ecosystem struc-
ture and function and has the greatest nega-
tive economic impact to individuals and agen-
cies outside park boundaries, and (2) human
health problems can be prevented. Written
records are kept for areas that have been
sprayed; information includes type of herbi-
cide used and duration of human exclusion.
Herbicide applicators wear full personal pro-
tective equipment, including Tyvek® suits with
hoods, rubber boots and gloves, and breathing
filters and goggles. We are entering into a
partnership with the Environmental Protec-
tion Agency to review our herbicide storage
and mixing techniques and possibly assess
health effects associated with repeated herbi-
cide handling for long-term employees in the
weed control program.

Levels of herbicide use from 1994 to 1999
appear more commensurate with the degree
and threat of exotic plant infestations and do
not necessarily represent a continuing trend of
increased reliance on herbicides for control.
Rather, previous levels of herbicide use were
apparently inadequate or insufficient to con-
trol incipient weed problems. Recent creative
funding efforts have resulted in short-term
increases in staffing, survey, and control. We
anticipate a declining trend in herbicide use
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Fig. 4. Distribution of spotted knapweed in Yellowstone
National Park. Data were derived from independent
species records by location (n = 878) for the years
1995–1997 maintained in a computerized weed database.



over time with effective control unless large
areas have yet to be identified or control em-
phasis shifts to more ubiquitous, lower-prior-
ity species.

More active revegetation of weed-infested
areas to native plant communities would simi-
larly contribute to decreased levels of herbi-
cide use. To date, most revegetation efforts have
been directed toward reclaiming construction
disturbance rather than restoring weed-infested
areas. We have, however, initiated experimen-
tal trials for reclamation of lands dominated by
exotic crested wheatgrass (Agropyron crista-
tum [L.] Gaertn.), desert alyssum (Alyssum
desertorum Stapf), and/or Russian thistle (Sal-
sola australis R. Br. [S. tragus L.]). These areas
encompass some 570 acres in the core of
ungulate winter range near the gateway com-
munity of Gardiner, Montana (Houston 1982).
A 125-year history of human disturbance, in-
cluding hay operations for ungulate forage pro-
duction, cattle grazing, channeling ground water
for irrigation purposes, and railroad opera-
tions, has resulted in monocultures of exotic
plant communities. Experimental trials will be
used to enhance native plant reestablishment
as part of an overall site rehabilitation plan.

Budget limitations require the prioritization
of weed species for management purposes,
preclude expanded management efforts, and
cast doubt on maintaining current activity be-
yond the short term. Given current levels of
monitoring and the structure of the weed
management database, no direct measure of
success can be made. The information pre-
sented here, however, will be a useful baseline

from which to compare future conditions and
assess program effectiveness provided compa-
rable management effort is maintained. More
emphasis on base funding would allow a struc-
tured survey and quantitative assessment of
backcountry areas, inclusion of more species
for aggressive control, and increased monitor-
ing efforts to quantify the behavior of target
species under control and the response of the
vegetation community to herbicide applica-
tion. Until then, opportunistic funding sources
will be required to address these and other
concerns.
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The Greater Yellowstone Ecosystem (GYE)
contains the headwaters of 3 continental-scale
watersheds, those of the Missouri, Snake, and
Green rivers. These rivers are primary tribu-
taries, respectively, to the Mississippi, Colum-
bia, and Colorado rivers, which, together, drain
well over half of the conterminous United
States. Average annual discharge from the GYE
into these rivers totals 2.0 million ha-m. Rivers
and lakes of the GYE are internationally famous
for their recreational and scenic values; the
GYE is arguably the most popular trout fish-
ing destination in the world. Despite the eco-
nomic and ecological importance of the rivers
and watersheds of the GYE, there exists rela-
tively little ecosystem-scale information on the
status of these rivers and the species that
inhabit them. Of 9 papers in a 1991 special
section of Conservation Biology devoted to the
GYE (Brussard 1991), none dealt with fish or
other aquatic resources. Only the paper of
Marston and Anderson (1991) mentioned the
importance of watersheds in contributing to

the ecological structure and function of the
GYE. These authors concluded that spatial
trends in watershed condition need to be quan-
tified as a key step in developing ecosystem
management for the GYE.

The need for an ecosystem-scale inventory
of aquatic resources in the GYE has become
even more critical over the past decade. The
1994 discovery of lake trout (Salvelinus namay-
cush), a nonnative species, in Yellowstone Lake
illustrated that even in the center of the largest
piece of relatively undisturbed land in the
conterminous United States, persistence of na-
tive aquatic species is in jeopardy (Kaeding et
al. 1996). In the past few years, conservation
organizations have petitioned the U.S. Fish and
Wildlife Service to protect under the federal
Endangered Species Act all 4 subspecies of
cutthroat trout (Oncorhynchus clarki) native to
the GYE as well as the native Montana gray-
ing (Thymallus arcticus montanus).

The goals of this study are to evaluate the
ecological integrity of and provide conservation
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STATUS AND CONSERVATION OF SALMONIDS IN RELATION
TO HYDROLOGIC INTEGRITY IN THE

GREATER YELLOWSTONE ECOSYSTEM

Robert W. Van Kirk1 and Lyn Benjamin2

ABSTRACT.—Native salmonid status was evaluated with an index quantifying distribution and abundance of cutthroat
trout (Oncorhynchus clarki) and grayling (Thymallus arcticus) in 41 watersheds comprising the Greater Yellowstone
Ecosystem. We assessed hydrologic integrity with a percentile-based index measuring cumulative effects of reservoirs,
surface water withdrawals, and consumptive water use. Status of native salmonids was poor in 70% of the watersheds;
exceptions occurred in a north–south core extending from the Upper Yellowstone southward through the national parks
to Bear Lake. Hydrologic integrity was highest in headwater areas and lowest in lower-elevation watersheds. Status of
native and nonnative salmonid populations currently existing in the ecosystem was positively correlated with hydrologic
integrity (r = 0.58), indicating that the hydrologic index performed well on a watershed scale in quantifying suitability
of stream environments for salmonids. However, native trout status and hydrologic integrity were similarly correlated 
(r = 0.63) only when watersheds receiving the lowest possible native salmonid index score were removed from analysis
because these watersheds were uniformly distributed across hydrologic integrity. We infer that nonphysical factors such
as interactions with introduced fish species have played an important role in the disappearance of native salmonids. The
highest priority for conservation is preservation of core watersheds, where both hydrologic integrity and native trout sta-
tus are high. Restoration opportunities exist in the Teton, Idaho Falls, Willow Creek, Central Bear, and Bear Lake water-
sheds, where viable cutthroat trout populations remain but are threatened by habitat degradation.

Key words: Greater Yellowstone, cutthroat trout, Oncorhynchus clarki, hydrologic alteration, watersheds, introduced
species.

1Department of Mathematics, Campus Box 8085, Idaho State University, Pocatello, ID 83209.
2PO Box 564, Victor, ID 83455.

359



strategies at the watershed scale for aquatic 
systems in the GYE. In general, ecological
integrity is determined by physical and biotic
components. Indices of biotic integrity incorpo-
rate measures of aquatic organism assemblage
structure and have been used as quick and
accurate alternatives to more traditional physi-
cal- and chemical-based assessments of stream
health (Karr 1981, Fausch et al. 1984, Hilsen-
hoff 1987). From a management perspective,
however, an ideal assessment of ecological in-
tegrity should incorporate enough measures of
both the biotic and physical components to
allow testing of relationships between the two.
If changes in the biotic component can be
linked to changes in the physical component,
and these, in turn, can be linked to natural
resource management and use, then results of
the assessment can be used to determine restor-
ation, conservation, and management activities
aimed at maintaining and improving ecologi-
cal integrity.

Toward this end, we inventoried available
data that could be used to assess ecological
integrity of watersheds in the GYE (Van Kirk
1999, Van Kirk et al. 2000). Unfortunately, this
effort failed to identify habitat and water-qual-
ity data of sufficient quantity, quality, and con-
sistency at the watershed scale to allow devel-
opment of a meaningful ecosystem-wide index
of stream physical habitat condition. However,
consistent U.S. Geological Survey (USGS) hy-
drologic data are available at the appropriate
scale for all watersheds in the ecosystem, and
review of the rapidly growing body of litera-
ture identifying the role of hydrologic re-
gime in determining physical and biological
characteristics of streams suggested that an
index of hydrologic integrity might prove use-
ful in quantifying the physical component of
ecological integrity.

The natural hydrologic and sediment regimes
of a given stream are determined by climate,
geology, and topography (Gregory at al. 1991).
In turn, hydrologic and sediment regimes play
major roles in determining channel morphol-
ogy, water temperature, and nutrient and
energy fluxes. Lotic and riparian ecosystems
have evolved in response to physical environ-
ment and to variability in the natural flow
regime (Vannote et al. 1980, Resh et al. 1988,
Poff and Ward 1989). Recent research has
focused extensively on how the presence of

dams and reservoirs has altered the timing
and quantity of water and sediment delivered
to a river system (Petts 1984, Williams and
Wolman 1984, Hirsch et al. 1990), affecting
both abiotic and biotic components of the
riverine environment (Hill et al. 1991, Sparks
1992, Ligon et al. 1995, Collier et al. 1996). In
the western U.S., reduction of peak flows, rapid-
ly fluctuating hydropower discharges, and ab-
sence of sediment immediately below dams
have been the most dramatic downstream
effects of river impoundment.

As a result of altered discharge and sediment
regimes, downstream channel morphology can
be changed in many ways that affect stream
biota. Lack of sediment in water issuing directly
from a dam results in erosion of the streambed
below the dam, loss of spawning gravels, stream-
bed armoring, and stream incision (Petts 1979,
Andrews 1986, Kondolf 1995). In many rivers,
for example, the Colorado River below Glen
Canyon Dam, warm, silt-laden water has been
replaced by clear, cold water, causing a shift in
the aquatic ecosystem from heterotrophic to
autotrophic (Marzolf et al. 1999). Key geomor-
phic factors that influence river ecology and
are altered by river regulation include the fol-
lowing: (1) cross-sectional shape, which deter-
mines the nature of habitat features such as
overhanging bank cover; (2) cross-sectional size,
one determinant of frequency and duration of
overbank floods, which link the floodplain
with the river channel and allow terrestrial/
aquatic nutrient flux (Ward and Stanford 1995);
(3) pool/riffle/run ratios, which determine the
proportion of various habitat types available to
aquatic organisms; (4) point bar and island for-
mation, which determines availability of a vari-
ety of fish habitat; and (5) channel substrate
composition, which determines, in part, inver-
tebrate diversity and abundance and the qual-
ity and quantity of spawning gravels for fish
(Petts 1984, Stanford 1994, Ligon et al. 1995).

Aquatic insect assemblage composition, di-
versity, and abundance are affected by quantity
and timing of discharge, current velocity, sub-
strate, temperature, and water chemistry, all of
which can be modified by river regulation
(Hauer and Stanford 1982, Brittain and Salt-
veit 1989, Casado et al. 1989, De Jalon and
Sanchez 1994, Rader and Belish 1999). Hydro-
logic regime also determines the amount and
timing of water available to streamside plants 
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and the disturbance regime experienced by
those plants. Numerous studies have docu-
mented changes in composition and abun-
dance of riparian vegetation throughout the
western states as a result of altered hydrologic
regime; these changes often consist of declines
in native species and establishment of exotic
species (Johnson 1990, Carothers and Brown
1991, Stromberg and Patten 1991, Stromberg
et al. 1993, Everitt 1995, Scott et al. 1996, 1997,
Merigliano 1997, Patten 1998). Changes in
riparian area structure can have substantial
impacts on stream biota because of the critical
functional links between terrestrial and aquatic
ecosystems provided by riparian areas. For ex-
ample, the riparian canopy modifies the amount
of solar radiation that reaches the stream chan-
nel, affecting primary production and stream
temperature. The riparian area also supplies
woody debris, an important source of struc-
tural habitat in the stream channel. Several
studies have examined how patterns of dis-
charge variability and extreme high and low
flow events influence fish assemblage struc-
ture (Horwitz 1978, Meffe 1984, Coon 1987,
Bain et al. 1988, Jowett and Duncan 1990, Poff
and Allan 1995).

Based on the importance of native salmonids
in the GYE, availability of consistent water-
shed-scale hydrologic data across the ecosys-
tem, and well-documented relationships be-
tween hydrologic regime and stream physical
environment, we chose to utilize the status of
native salmonids as the biotic index and hy-
drologic integrity as the physical index in our
assessment. The objectives of this study are to
quantify the status of native salmonid popula-
tions in the GYE, quantify hydrologic integrity
of the watersheds in the GYE, assess the rela-
tionship between native salmonid status and
hydrologic integrity, and develop a general
strategy for conserving watersheds in the GYE.

STUDY AREA

Watersheds of the GYE

The GYE has been defined in numerous
ways, but most definitions include an area of
approximately 50,000 km2 comprising Yellow-
stone and Grand Teton national parks and
adjacent lands at elevations above 1500 m
(Anderson 1991). We define the GYE as the
area bounded on the east by the western edge
of the Wyoming Basin ecoregion (Omernik

1987), on the south and west by the 1500-m-
elevation contour and the boundary of the
Middle Rockies ecoregion (Omernik 1987),
and on the north by an approximate east–west
line running from the Jefferson-Madison-Gal-
latin confluence through the Shields-Yellow-
stone confluence and down the Yellowstone
River to its confluence with Clarks Fork (Fig.
1). Based on this definition, the GYE consists
of that portion of the Middle Rockies ecore-
gion that lies south of the Bridger Range, the
adjoining portions of the Northern Basin and
Range, Snake River Basin, and Montana Val-
ley and Foothill Prairie ecoregions (Omernik
1987) that lie above about 1500 m in elevation,
and the Yellowstone River riparian corridor
upstream of the Clarks Fork confluence. A
substantial amount of land in the GYE is man-
aged by public agencies other than the National
Park Service, including the U.S. Bureau of Land
Management and the U.S. Forest Service.
Because USGS 8-digit hydrologic units (HUCs)
are used as the geographic reporting unit for
most water-related data, these were chosen as
the basic watershed units for this study. With
the exception of a few watersheds containing
only a small amount of land lying within the
GYE, the study area consisted of all HUCs
lying wholly or partially within the GYE as
defined above. This resulted in inclusion of 41
eight-digit hydrologic units (Table 1, Fig. 1).
These 41 watersheds have a combined area of
162,000 km2, which is substantially larger than
most generally accepted definitions of the
GYE. However, because the condition of stream
biota and habitats reflects the condition of the
entire watershed upstream, inclusion of low-
land watersheds lying only partially within the
GYE is necessary to gain an understanding of
the condition of watersheds in higher eleva-
tion areas.

Salmonid Fishes 
of the GYE

Six species of salmonids are native to the
GYE. Cutthroat trout and mountain whitefish
(Prosopium williamsoni) are native to nearly all
GYE watersheds. The Montana graying is
native to watersheds of the Upper Missouri
River basin. The other 3 native salmonids are
endemic to Bear Lake at the southern edge of
the GYE. These are the Bear Lake whitefish
(P. abyssicola), Bonneville cisco (P. gemmifer),
and Bonneville whitefish (P. spilonotus). Four
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subspecies of cutthroat trout are recognized as
native to the GYE. The Yellowstone cutthroat
(O. c. bouvieri) was by far the most widely dis-
tributed of all cutthroat subspecies in the
GYE, historically occupying most of the Upper
Snake and Upper Yellowstone River drainages.
Although the Snake River finespotted cut-
throat is sometimes listed as a subspecies dis-
tinct from the Yellowstone cutthroat (Behnke
1992), this distinction has not been officially
recognized taxonomically (May 1996). West-
slope cutthroat (O. c. lewisii) are native to water-
sheds of the Upper Missouri basin, and Colo-
rado River cutthroat (O. c. pleuriticus) are native
to the Green River basin. The cutthroat sub-
species inhabiting the Bear River drainage has
been classified as Bonneville cutthroat trout
(O. c. utah; Behnke 1992, Duff 1996a). However,
recent genetic evidence shows that the Bear

River cutthroat is more closely related to the
Yellowstone subspecies than to other members
of the Bonneville subspecies (Shiozawa and
Evans 1995). A geomorphic explanation for
this is that the Bear River became a tributary
of the Great Salt Lake, the remnant of ancient
Lake Bonneville, only about 30,000 years ago;
prior to that time it was a tributary to the
Snake River, to which the Yellowstone cut-
throat is native.

The GYE contains 4 major areas that were
likely barren of salmonid fish prior to Euro-
American settlement: the Yellowstone Plateau/
Teton Range crest, Absaroka Range/Beartooth
Plateau, Wind River Range, and the entire
Beaver-Camas hydrologic unit (Fig. 1). Most
waters historically barren of salmonids were
also barren of other fish species, with the pos-
sible exception of sculpin (Cottus sp.) in a few
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Fig. 1. Watersheds of the Greater Yellowstone Ecosystem. Shading indicates approximate location of historically fish-
less areas, clockwise from left: Snake River Plain sinks drainages, Yellowstone Plateau/Teton Range crest, Absaroka
Range/Beartooth Plateau, and Wind River Range. Watershed identification numbers correspond to those in Table 1.



locations. Geological barriers prevented up-
stream migration of fish into headwater areas
in the first 3 of these areas following the most
recent periods of glaciation (Behnke 1992,
May 1996, Varley and Schullery 1998). The
Beaver-Camas watershed is part of a large
region of the Snake River plain in which sur-
face water originating in the adjacent moun-
tains sinks into highly porous lava rock with-
out any surface connection to the Snake River
(Hackett and Bonnichsen 1994). Although it is
not known with certainty whether this water-
shed was historically fishless, most literature
(e.g., Behnke 1992, Duff 1996b) lists the water-
shed as historically barren of salmonids, and
we will thus consider this to be the case (but
see Jaeger et al. 2000).

Four species of nonnative salmonids have
been introduced to the GYE. Brown (Salmo
trutta), rainbow (O. mykiss), and brook (Salve-
linus fontinalis) trout are widespread through-
out the GYE. Lake trout are found in many
GYE lakes and reservoirs, including Yellow-
stone and Jackson lakes, and golden trout (O.
m. aguabonita) have been stocked extensively
in the high mountain lakes of the Wind River
and Absaroka-Beartooth ranges. Fish of all
species were introduced into waters through-
out the West beginning in the 1870s (U.S.
Commission on Fish and Fisheries 1877), and,
throughout most of the 20th century, stocking
was used to provide angling opportunity in the
face of increased angler numbers and decreased
habitat quality. Rainbow trout have been by
far the most widely utilized fish in hatchery
programs, but various strains of Yellowstone
cutthroat have also been stocked liberally
throughout the West. Although the National
Park Service ceased stocking nonnative trout
in Yellowstone in 1916, it continued to stock
Yellowstone cutthroat in the park until the
1950s (Varley and Schullery 1998). Hybridiza-
tion with and competition from introduced
salmonids have negatively affected cutthroat
trout throughout the western U.S. (Krueger
and May 1991). Habitat degradation associ-
ated with natural resource development and
use has also been cited in the decline of native
cutthroat trout (e.g., numerous papers in Gress-
well 1988). Aquatic habitat in the GYE has
been affected over the past 130 years by irri-
gated agriculture, timber harvest, livestock
grazing, mining, and oil and gas exploration
and extraction (Marston and Anderson 1991).

METHODS

Salmonid Status Indices

Indices of biotic integrity specific to the
parameters of the GYE were developed based
on concepts of naturalness proposed by Ander-
son (1991) and on indices utilized in the Sierra
Nevada ecosystem by Moyle and Randall (1998).
We assessed native salmonid status with an
index based on spatial distribution and popu-
lation status of native trout and grayling. We
omitted the whitefish species from analysis
because 3 of the species are endemic to only a
single lake in the ecosystem and because con-
sistent ecosystem-wide data on mountain white-
fish populations were not available. Current
and historical distribution and current popula-
tion status of native trout and grayling were
determined from Duff (1996b) and Varley and
Schullery (1998).

For each of the 41 watersheds, we assigned
a score for distribution of native trout and
grayling using the following criteria:

5 = area currently occupied within the water-
shed deviates from area historically occu-
pied by ≤ 20%

3 = area currently occupied within the water-
shed deviates from area historically occu-
pied by 20–40%

1 = area currently occupied in the water-
shed deviates from area historically occu-
pied by >40%

A score for native trout and grayling popu-
lation status was assigned based on popula-
tions currently existing within their historic
range in the watershed as follows: 

5 = existing populations are locally abun-
dant, natives make up majority of current
trout/grayling community, all life history
forms historically present in the water-
shed are well represented, subpopulations
remain connected in metapopulations

3 = some populations may be locally abun-
dant but nonnatives are as abundant as
natives, some life history forms are not
well represented, many subpopulations
are isolated from others

1 = natives are rare within the watershed,
existing native populations make up only
a small percentage of existing trout/
grayling assemblages, little or no connec-
tivity exists among subpopulations

The native salmonid index was computed by
averaging the distribution and population status
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TABLE 1. Watersheds of Greater Yellowstone, the status of their salmonid fishes, and their hydrologic integrity. Salmonid status indices are interpreted qualitatively as follows: 4–5

= good, 3 = fair, 1–2 = poor. The hydrologic integrity index is interpreted qualitatively as follows: 66.7–100 = good, 33.3– 66.6 = fair, 0–33.2 = poor.

Mean
USGS Hydrologic Perennial annual Native Existing

ID cataloging subregion Area stream discharge salmonid salmonid Hydrologic
no. Watershed name no. (major river basin) (km2) (km) (ha-m) index index integrity

1 Red Rock 10020001 Missouri headwaters 6,035 2,368 39,387 1 5 45.1
2 Beaverhead 10020002 Missouri headwaters 3,781 1,288 36,771 1 5 17.3
3 Ruby 10020003 Missouri headwaters 2,559 1,132 18,879 1 5 47.9
4 Jefferson 10020005 Missouri headwaters 3,504 1,445 187,557 1 4 51.1
5 Madison 10020007 Missouri headwaters 6,656 3,407 188,865 1 5 71.0
6 Gallatin 10020008 Missouri headwaters 4,714 3,239 96,296 1 5 68.3
7 Yellowstone headwaters 10070001 Upper Yellowstone 6,734 3,541 279,485 5 5 95.0
8 Upper Yellowstone 10070002 Upper Yellowstone 7,615 4,406 336,493 3 5 82.5
9 Shields 10070003 Upper Yellowstone 2,209 1,648 27,541 1 5 61.7

10 Upper Yellowstone–Lake Basin 10070004 Upper Yellowstone 4,053 1,088 631,279 1 4 82.5
11 Stillwater 10070005 Upper Yellowstone 2,745 1,422 84,660 1 5 93.8
12 Clarks Fork Yellowstone 10070006 Upper Yellowstone 7,174 2,835 93,186 1 3 50.1
13 Upper Wind 10080001 Bighorn 6,579 2,763 72,987 1 2 57.5
14 Little Wind 10080002 Bighorn 2,823 890 51,566 1 1 78.9
15 Popo Agie 10080003 Bighorn 2,067 858 28,037 1 2 70.3
16 Lower Wind 10080005 Bighorn 4,429 454 113,744 1 2 30.5
17 Upper Bighorn 10080007 Bighorn 8,936 1,557 156,709 1 2 25.4
18 Greybull 10080009 Bighorn 2,979 1,078 43,064 1 3 50.5
19 North Fork Shoshone 10080012 Bighorn 2,209 1,546 80,033 1 5 83.3
20 South Fork Shoshone 10080013 Bighorn 1,707 1,169 34,723 1 5 67.5
21 Shoshone 10080014 Bighorn 3,859 889 82,858 1 2 33.0
22 Upper Green 14040101 Upper Green 7,589 2,924 148,318 1 3 64.2
23 New Fork 14040102 Upper Green 3,160 1,168 66,250 1 4 58.3
24 Big Sandy 14040104 Upper Green 4,688 742 6,737 1 1 6.1
25 Central Bear 16010102 Bear 2,160 920 18,926 3 4 10.8
26 Bear Lake 16010201 Bear 3,160 768 71,340 3 3 10.8
27 Middle Bear 16010202 Bear 3,134 1,026 103,132 1 2 14.5
28 Snake headwaters 17040101 Upper Snake 4,351 2,098 265,665 5 5 79.8
29 Gros Ventre 17040102 Upper Snake 1,652 836 57,284 5 5 95.0
30 Greys-Hobock 17040103 Upper Snake 4,066 2,140 409,295 5 5 84.8
31 Palisades 17040104 Upper Snake 2,370 1,245 625,726 4 5 77.0
32 Salt 17040105 Upper Snake 2,297 1,190 70,408 3 4 83.3
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Fig. 2. Status of native trout and grayling by watershed.

Fig. 3. Hydrologic integrity by watershed.



scores. Average scores of 4 and 5 were consid-
ered good, 3 was considered fair, and 1 and 2
were considered poor.

A 2nd index was computed to determine
the status of salmonids currently existing in
each watershed, whether or not the species
present are native, introduced, or hybrids of
native and introduced species. We refer to this
index hereafter as the “existing salmonid” index.
Data for determining this index came from
state fish and game agencies in Idaho, Mon-
tana, Wyoming, and Utah and from federal
agencies responsible for fisheries management
in Yellowstone National Park and on the Wind
River Indian Reservation. These data were
primarily contained in unpublished agency
fisheries inventory and management reports,
although information gained through personal
communications with fisheries biologists and
managers was also used. The existing salmonid
index was computed in a manner analogous to
that for native species. Distribution scores
were assigned exactly as for the native species,
except that all presently occurring trout species
were included. For example, in an area histori-
cally containing native trout and/or grayling, a
score of 5 would be given if trout and grayling
of any species currently occupy 80–100% of
the area originally occupied by trout and gray-
ling, even if the current occupants are non-
native species. We assigned a population status
score to existing trout and grayling popula-
tions (native, nonnative, and/or hybrid) where
they currently exist according to the following
criteria:

5 = abundant, populations generally stable
and wild

3 = moderately abundant, some populations
are supplemented by stocking, population
size is limited by water quality and habi-
tat in some locations

1 = low abundance, many fisheries are sup-
ported by stocking, habitat degradation
limits population abundance over large
areas

The existing salmonid index was calculated by
averaging these distribution and population
status scores.

Hydrologic Integrity Index

An index of hydrologic integrity was com-
puted for each watershed by determining
cumulative impacts of water resource devel-

opment and use in the entire drainage area
upstream from the bottom of the watershed.
Because all watersheds within the GYE have
experienced at least some degree of hydrologic
alteration and because there is no absolute
scale on which to measure hydrologic integ-
rity, the index is based on percentile rankings
and thus compares each watershed to the least
altered watershed in the ecosystem. We used
3 parameters reported in the U.S. Geological
Survey water use database: total reservoir sur-
face area, total surface water withdrawals, and
total consumptive water use. For all but head-
water HUCs, determining cumulative impacts
involved totaling water use figures for the HUC
in question as well as for all HUCs lying up-
stream, with 2 exceptions: (1) the surface area
of a reservoir marking the downstream bound-
ary of the HUC was not included in the cumu-
lative reservoir surface area, and (2) cumula-
tive reservoir surface area for a tributary, the
confluence of which marked the downstream
boundary of the HUC in question, was not
included.

All cumulative totals were divided by mean
annual discharge from the given HUC to
obtain normalized values. Mean annual dis-
charge was determined from USGS stream
discharge data at the recording station located
nearest the downstream boundary of the HUC.
For normalized reservoir surface area figures,
watersheds with 0 surface area were assigned
a score of 0 and removed. We then assigned
remaining watersheds a score based on their
percentile rank. These scores were subtracted
from 100 so that watersheds with 0 reservoir
surface area received a score of 100, and scores
decreased as relative reservoir surface area in
the watershed increased. Water use figures
were percentile-ranked and results subtracted
from 100. Hydrologic integrity index was com-
puted as the mean of the 3 reverse-percentile
figures. Hydrologic integrity scores from 0 to
33.2 were considered poor, those from 33.3 to
66.6 were considered fair, and those of 66.7
and above were considered good. We assessed
correlation between salmonid status and hydro-
logic integrity with Spearman’s rank correla-
tion test incorporating correction for ties.

Conservation Strategy 
and Priority

Conservation strategy and priority were
determined based on the concepts in Moyle
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and Sato (1991) and Frissell (1997). These con-
cepts state loosely that (1) existing native
species should be protected where they al-
ready exist in viable populations, (2) restoration
should be undertaken first in areas where it is
possible to return species assemblages to his-
torical condition without unreasonable efforts
such as removing a large dam, (3) large, high-
integrity watersheds can act as sources of
native species to recolonize adjacent 2nd-tier
watersheds as they are restored, and (4) some
watersheds will never be restored to historical
condition with any reasonable amount of effort
and are thus better suited for appropriate
management to enhance or maintain recrea-
tional, scenic, or water resource values. Such
management may include stocking sport fish
and maintaining popular nonnative sport fish-
eries. Conservation strategy and priority were
assigned based on the status of native and
existing salmonids and on hydrologic integrity
according to the criteria in Table 2.

RESULTS

The status of native salmonids was good in
8 of 41 watersheds (20%), fair in 4 (10%), and
poor in the remaining 29 (70%; Table 1). All
watersheds in which native salmonid status
was either good or fair occurred in the Upper
Yellowstone, Upper Snake, and Bear River
basins (Fig. 1). All salmonids native to these
watersheds, including the endemic Bear Lake
whitefishes, were present in viable populations.
Yellowstone cutthroat are found throughout
much of their original range in the GYE, but
few viable populations exist east of the Yellow-
stone and Snake River headwaters areas. Viable
populations of Bear River cutthroat are found
in Bear Lake and a few of its tributaries and in
the Smiths and Thomas Fork drainages along
the Idaho-Wyoming border.

Native salmonid status was poor in all water-
sheds historically containing either Colorado
River cutthroat or westslope cutthroat and
grayling. The Montana grayling is essentially
extinct in the GYE; it is found in its native
range in only a few lakes in the Red Rock water-
shed and has been introduced in other lakes
scattered throughout the GYE. A small rem-
nant population of fluvial grayling exists in the
Bighole watershed west of the GYE. Westslope
cutthroat are found in a few isolated enclaves
in the Red Rock, Ruby, Madison, and Gallatin

drainages. Colorado cutthroat exist in numer-
ous but generally disconnected headwater
streams along the eastern slopes of the Gros
Ventre and Wyoming ranges. A majority of the
streams and lakes in all of the historically fish-
less areas now contain introduced salmonid
species.

The status of all salmonid species (native,
introduced, and/or hybrids) currently existing
in GYE was substantially better than that of
native species. Existing salmonid status was
good in 24 watersheds (59%), fair in 6 (15%),
and poor in only 11 (27%; Table 1). Eighteen
watersheds in which native salmonid status
was poor received a score of fair or good for
the status of their nonnative salmonids. These
watersheds are characterized by salmonid dis-
tributions that are not substantially different
from those occurring historically and by viable
populations of wild trout displaying varied life
history patterns. However, the majority of trout
populations in these watersheds comprise non-
native species rather than natives.

Because the hydrologic integrity index is a
percentile-based measurement, the distribu-
tion of watersheds among the good, fair, and
poor status classes was roughly uniform, as
expected (Table 1). However, spatial distribu-
tion of hydrologic integrity was not uniform.
All watersheds with a high degree of hydro-
logic integrity were located in headwater
areas, and all but 2 (Little Wind and Popo
Agie) occurred in a large, contiguous region in
the north central part of the ecosystem cen-
tered on the national parks (Fig. 3). Those with
poor scores were located at lower elevations
around the perimeter of the GYE, where
reservoirs, withdrawals, and consumption
have resulted in substantial alteration of nat-
ural hydrologic regimes.

The population status of both native and
existing salmonids was positively correlated
with hydrologic integrity. With all 41 water-
sheds included in the analysis, native salmonid
index was weakly but significantly correlated
with hydrologic integrity index (Spearman’s r
= 0.27, P = 0.041). However, the 26 water-
sheds receiving a native salmonid index score
of 1 (the lowest score possible) were nearly
uniformly distributed across hydrologic integ-
rity scores (Fig. 4, Table 1). With these 26 water-
sheds removed from analysis, the correlation
between the native salmonid index and the hy-
drologic integrity index increased substantially
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(Spearman’s r = 0.63, P = 0.0057). With all 41
watersheds included, existing salmonid index
was also positively correlated with hydrologic
integrity (Spearman’s r = 0.58, P = 3.6 ×
10–5).

Based on the conservation priority and strat-
egy criteria in Table 2, the 12 watersheds in
which native trout status was either fair or
good were assigned 1st priority for conserva-
tion (Table 3). The status of existing (native,
nonnative, and hybrid) salmonid populations
in 13 watersheds was high enough to warrant
2nd- or 3rd-tier priority for aquatic conserva-
tion in these watersheds (Table 3). The remain-
ing 16 watersheds (39%) fell into the lowest 2
priority classifications.

DISCUSSION

The native salmonid status and hydrologic
integrity indices quantify the pattern identi-
fied by Marston and Anderson (1991) of high
ecological integrity in the center of the GYE
and decreasing integrity with distance away
from this center (Figs. 2, 3). Because the moun-
tainous region of the GYE generally runs in a
north–south orientation, the high-integrity core
of the GYE consists of a central band of water-
sheds that extends from the Shields and upper
Yellowstone watersheds on the north side of
GYE southward through Yellowstone and
Grand Teton national parks to the Greys and
Salt rivers. Although we did not analyze our
results in the context of land ownership and
management, the watersheds in the high-
integrity core of the GYE tend to contain large
amounts of public land managed by the
National Park Service and National Forest
Service (Table 3). The lowest degree of ecolog-

ical integrity is generally found in the non-
mountainous watersheds on the west and east
sides of the GYE. These watersheds generally
contain large amounts of private agricultural
land and rangeland managed by the Bureau of
Land Management (Table 3).

The status of native salmonids across the
GYE is generally poor, illustrating that even in
a large, relatively undeveloped ecosystem,
native fish and probably other native aquatic
species are imperiled. The population status of
existing native and nonnative salmonid species
in the GYE is much better, indicating that in
many watersheds nonnative trout species that
have replaced natives are doing well. Not sur-
prisingly, watersheds in which native species
status was poor but existing species status was
good support the most popular sport fisheries
in the GYE for introduced brown, rainbow,
brook, and cutthroat-rainbow hybrid trout.
Examples include the Madison, Gallatin, Hen-
rys Fork, Beaverhead, and North Fork Shoshone
(Table 1). Habitat conditions in these water-
sheds are apparently good enough to support
viable populations of wild trout, but the trout
that currently inhabit these watersheds are
nonnatives. Because our analysis was con-
ducted on a watershed scale, it is important to
note that many watersheds in which native
salmonid status was poor still contain viable,
but small and disconnected, populations of
native trout on a local scale. Examples include
Henrys Fork (Yellowstone cutthroat; Jaeger et
al. 2000), Upper Green (Colorado River cut-
throat; Young et al. 1996), and Greybull (Yel-
lowstone cutthroat; Kruse et al. 2000).

Although the core of the GYE consists of
large amounts of public land, much of which is
protected from development in roadless and
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TABLE 2. Criteria for assigning conservation priority and strategy.

Native Existing
salmonid salmonid Hydrologic

status status integrity Priority Strategy

good/fair good/fair good 1 (p) Preserve and protect
good/fair good/fair fair/poor 1 (r) Rehabilitate and restore ecological 

processes
poor good good 2 Preserve and protect
poor good fair/poor 3 Rehabilitate and restore ecological

processes
poor fair/poor good 4 Maintain scenic, recreational, ecological

values
poor fair/poor fair/poor 5 Enhance scenic, recreational, ecological

values



wilderness areas and in the national parks, the
lower-elevation areas of the ecosystem have
been extensively developed, most notably for
agricultural use. Because the climate in these
lower-elevation areas is arid to semiarid (Mar-
ston and Anderson 1991), most agriculture is
possible only with irrigation. Thus, extensive
irrigation water storage and delivery systems
have been developed throughout the GYE,
substantially altering hydrologic regimes in the
lower-elevation watersheds of the GYE. Aquatic

and riparian habitat features in these more
developed watersheds are likely to be degraded
by other causes such as grazing, urban devel-
opment, agricultural chemical runoff, sedimen-
tation, and flood control. Thus, we expect that
aquatic habitat conditions would be correlated
with our index of hydrologic integrity not only
because of the direct link between hydrologic
regime and ecological processes but also be-
cause other types of habitat-degrading activi-
ties are likely to occur in tandem with a high
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TABLE 3. Conservation priority and primary land ownership for the watersheds of Greater Yellowstone. Land owner-
ship is listed in approximate decreasing order of land area owned within the watershed.

Conservation
ID Watershed priority Primary land
no. name (Table 2) ownershipa

1 Red Rock 3 BDNF, BLM, S
2 Beaverhead 3 BLM, P, S
3 Ruby 3 P, BDNF, BLM, S
4 Jefferson 3 P, BDNF, BLM
5 Madison 2 P, BDNF
6 Gallatin 2 GNF, P, YNP
7 Yellowstone headwaters 1(p) YNP, SNF, GNF
8 Upper Yellowstone 1(p) GNF, P
9 Shields 3 P, GNF

10 Upper Yellowstone––Lake Basin 2 P, GNF
11 Stillwater 2 CNF, P
12 Clarks Fork Yellowstone 5 P, BLM, CNF, YNP
13 Upper Wind 5 WR, SNF
14 Little Wind 4 WR
15 Popo Agie 4 SNF, WR, BLM
16 Lower Wind 5 WR, BLM
17 Upper Bighorn 5 BLM
18 Greybull 5 BLM, P, SNF
19 North Fork Shoshone 2 SNF, YNP
20 South Fork Shoshone 2 SNF, P
21 Shoshone 5 BLM, P
22 Upper Green 5 BLM, BTNF, P
23 New Fork 3 BLM, BTNF, P
24 Big Sandy 5 BLM, BTNF
25 Central Bear 1(r) BLM, P, TCNF, BTN
26 Bear Lake 1(r) WCNF, TCNF, P
27 Middle Bear 5 P, WCNF, S
28 Snake headwaters 1(p) GTNP, BTNF, P
29 Gros Ventre 1(p) BTNF
30 Greys-Hobock 1(p) BTNF, P
31 Palisades 1(p) TCNF, P
32 Salt 1(p) BTNF, TCNF, P
33 Idaho Falls 1(r) P, BLM
34 Upper Henrys 2 TCNF
35 Lower Henrys 5 P, BLM, TCNF, YNP
36 Teton 1(r) P, TCNF, S
37 Willow 1(r) P, S
38 American Falls 5 P, FH, BLM
39 Blackfoot 5 P, FH, S
40 Portneuf 5 P, TCNF, BLM
41 Beaver-Camas 5 BLM, TCNF, P, S
aKey to land ownership: BDNF = Beaverhead-Deerlodge National Forest, BLM = U.S. Bureau of Land Management, BTNF = Bridger-Teton National Forest,
CNF = Custer National Forest, FH = Fort Hall Indian Reservation, GNF = Gallatin National Forest, GTNP = Grand Teton National Park, P = private, S =
state, SNF = Shoshone National Forest, TCNF = Targhee-Caribou National Forest, WCNF = Wasatch-Cache National Forest, WR = Wind River Indian
Reservation, YNP = Yellowstone National Park.



degree of water resource development and
use.

This expectation appears to be realized in
the significant positive correlation between
population status of salmonid fishes and hy-
drologic integrity (r = 0.58, P = 3.6 × 10–5),
indicating that the hydrologic integrity index
performed well in quantifying the suitability
of stream environments for salmonid fishes on
a watershed scale. If hydrologic integrity and
related environmental conditions were the
only factors determining the status of native
salmonids, we would expect to see an equal
degree of correlation between native salmonid
status and hydrologic integrity. Instead, a sim-
ilar degree of correlation (r = 0.63) between
native salmonid status and hydrologic integrity
was observed only when all watersheds receiv-
ing the lowest possible native trout index
score were removed from the analysis. When
all 41 watersheds were included, the correla-
tion was considerably weaker (r = 0.27) be-
cause the 26 watersheds receiving the lowest
possible native salmonid score were nearly
uniformly distributed across hydrologic integrity
(Fig. 4).

Two conclusions can be deduced from these
results: (1) disappearance of native salmonids
from watersheds of the GYE was not due to
changes in the physical environment alone,
and (2) continued viability of populations of all
species of salmonids (native or otherwise) is
dependent on maintaining or enhancing the
hydrologic integrity of watersheds in the GYE.
Although habitat degradation has been an im-
portant factor leading to the decline of native
cutthroat trout species throughout the West
(e.g., Gresswell 1988), equally important have

been the negative impacts of nonnative trout
species, which include competition and hybrid-
ization (e.g., Griffith 1988, Gregory and Grif-
fith 2000, Henderson et al. 2000). Harvest of
large numbers of native fish is another factor
that probably acted in concert with the spread
of nonnatives to reduce native trout numbers
(e.g., Gresswell and Varley 1988). However,
where natives still persist, their status is posi-
tively correlated with hydrologic integrity,
which, in turn, is likely to be positively corre-
lated with aquatic habitat quality. Moyle and
Randall (1998) drew similar conclusions from
their study of ecologic integrity of watersheds
in the Sierra Nevada. They identified intro-
duced fish species and large dams as the 2
most important factors contributing to decline
of ecological integrity. Similarly, Richter et al.
(1997) reported that the 2 most important fac-
tors in the disappearance of native fish in the
western U.S. are introduced species and hydro-
logic alteration.

Given that large-scale eradication of non-
native fish is unfeasible and that state agencies
have already ceased most nonnative stocking
programs in waters containing viable popula-
tions of natives, the most pragmatic approach
to native trout conservation is to preserve exist-
ing populations. Thus, the 1st priority should
be preventing further degradation of the GYE
core watersheds that scored high in both
native trout and hydrologic indices. These 7
watersheds are identified as priority 1(p) (pri-
ority = 1, strategy = preserve and protect) in
Table 3, from which it is apparent that land
management responsibility in these water-
sheds lies primarily with the National Park
Service (both parks) and the Bridger-Teton,
Targhee-Caribou, and Gallatin national forests.
Threats from introduced trout in these water-
sheds (e.g., lake trout in Yellowstone Lake)
should be addressed aggressively, and hydro-
logic integrity and habitat quality should be at
least maintained, if not restored where possi-
ble. Identified in Table 3 as priority 1(r) (prior-
ity = 1, strategy = rehabilitate and restore)
are the 5 watersheds that scored good or fair
in the native trout index but low in hydrologic
integrity. These watersheds will provide the
greatest return for investment in on-the-ground
restoration because they are areas where
native fish are still present but suffer more
greatly from habitat degradation than from
nonnative species threats. These watersheds
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contain more private and Bureau of Land
Management land than the 1(p) watersheds,
although portions of the Targhee-Caribou and
Wasatch-Cache national forests lie in these
watersheds (Table 3). Habitat restoration in
these areas is likely to involve reducing the
impacts of irrigated agriculture, grazing, and
flood control activities.

The watersheds in the 2nd and 3rd tiers of
conservation priority are those such as the
Madison, Gallatin, and Upper Henrys that pro-
vide popular nonnative angling opportunities.
Preservation and restoration activities applied
to both fish populations and habitat in these
watersheds will provide both ecological and
economic benefits. Even though these water-
sheds are in the 2nd- and 3rd-priority cate-
gories, they have large conservation constituen-
cies because of the popularity of their fish-
eries. Generating interest in and resources for
conservation work from watershed-specific
recreational user groups in these drainages
should be fairly easy, allowing regional and
national resources to benefit the 1st-priority
watersheds. Nonnative trout fisheries may be
the primary beneficiaries of conservation activ-
ities in these 2nd- and 3rd-priority watersheds,
but the opportunity to contribute to conserva-
tion of remnant native populations should not
be overlooked. Some subbasins could be man-
aged to maintain and/or expand the range of
native trout. Land management varies widely
across these watersheds (Table 3), and habitat
restoration will need to address any number of
issues related to agriculture, grazing, timber
harvest, road construction, housing develop-
ment, mining, and water management.

Watersheds in the low- and lowest-priority
categories are placed there not because con-
servation work is not needed but because
resources expended there may do little to
restore native species and ecological function.
However, a few like the Upper Green contain
isolated remnant populations of native trout,
and very specific conservation efforts have the
potential to increase viability of these popula-
tions. In general, these watersheds are the most
highly impacted in the GYE, and many have
experienced alterations due to water resource
development that may not be restored without
major expenditure of resources and impacts to
local communities. Conservation efforts in these
watersheds should be directed toward main-
taining and enhancing recreational, scenic,

and water quality values, particularly those
that benefit nearby cities such as Billings,
Riverton, Lander, Idaho Falls, and Pocatello.
Development of urban greenbelts, put-and-
take fisheries in artificial ponds, and riparian
protection zones are examples of cost-effective
conservation measures in these watersheds.
However, where possible, opportunities to
restore native fish should be pursued.

An exception to this general approach to
the lower-priority watersheds is restoration of
what Frissell (1997) terms “grubstake habitats,”
low-elevation wetland and riparian areas that
are high centers of biodiversity. Large-scale
restoration and preservation of these areas
may be costly, but payoffs in terms of in-
creased fish and wildlife habitat and water
quality are potentially very large. Riparian
areas along the lower portions of GYE’s large
rivers, including the Snake, Yellowstone, Wind,
Green, and Jefferson, are good examples of
grubstake habitats, and large-scale watershed
conservation efforts there should be imple-
mented. Land management responsibility in
the lowest-priority watersheds generally lies
with private landowners, states, Native Ameri-
can tribes, and the Bureau of Land Manage-
ment (Table 3).

CONCLUSION

The generally poor status of native salmonids
in the GYE illustrates that even in an ecosys-
tem considered to be among the most pristine
and unaltered in the conterminous United
States, introduced species have had detrimen-
tal impacts on native species despite the pres-
ence of high-quality habitat. Watersheds of
highest ecological integrity, both in terms of
native salmonid populations and hydrologic
integrity, are found in the mountainous center
of the ecosystem, where most of the land area
and natural resources are managed by federal
agencies. A practical approach to conserving
watersheds and aquatic resources of the GYE
is based on the observation that it is easier to
maintain populations of native fish species
where they currently exist than to introduce
them into areas currently dominated by non-
natives. Such an approach assigns highest pri-
ority to central core watersheds, where native
trout status is either good or fair. Habitat pres-
ervation and restoration in these watersheds
will benefit native species without involving

2001] SALMONIDS AND HYDROLOGIC INTEGRITY 371



large-scale eradication of nonnatives. The pos-
itive correlation between the status of existing
(native and nonnative) salmonid populations
and hydrologic integrity in the GYE illustrates
the importance of natural hydrologic function
in maintaining salmonid habitat. The success
of our crude hydrologic integrity index in pre-
dicting population status of salmonid fishes
suggests that further development and refine-
ment of measures of hydrologic integrity may
be of great use in assessing and preserving
stream biota.
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By the mid-1980s, the exotic New Zealand
mudsnail, Potamopyrgus antipodarum (Gastro-
poda: Hydrobiidae), had become established
in the middle Snake River drainage and asso-
ciated springs in southern Idaho, USA (Taylor
1987, Bowler 1991). It has subsequently be-
come the dominant macroinvertebrate species
in many of these waters and has spread into
several river drainages in and near Yellow-
stone National Park, Wyoming and Montana,
USA. Potamopyrgus antipodarum densities
have been reported as high as 800,000 ⋅ m−2

(Dorgelo 1987). We have recorded patches of
P. antipodarum exceeding 500,000 ⋅ m−2 at
Banbury Springs, a tributary of the Snake
River, near Hagerman, Idaho. These small
patches (roughly 1 to 2 m2) were in a spatially
heterogeneous landscape and were often adja-
cent to patches with low densities of P. antipo-
darum (sometimes <1000 ⋅ m−2).

It is unknown what the effects of P. antipo-
darum will be on the native macroinvertebrate
communities, but given its potential for rapid
population growth and its present high densi-
ties in some waters, negative ecological and
associated economical impacts could occur.
Potamopyrgus antipodarum is native to New

Zealand and has become widely established
throughout Europe, Australia, and now the
USA. In Europe, P. antipodarum became
established in the mid- to late 1800s and is
now the dominant macroinvertebrate in many
fresh to slightly saline aquatic communities
(Anistratenko 1991, Cogerino et al. 1995). In
the USA, P. antipodarum populations have been
documented in (1) the Yellowstone, Madison,
and Snake rivers in and near Yellowstone
National Park, Wyoming and Montana; (2) the
Snake River drainage, Idaho and Wyoming;
(3) the Columbia River, Oregon; and (4) Lake
Ontario, Canada and USA (Zaranko et al. 1997).
Potamopyrgus antipodarum can reproduce sexu-
ally or asexually via parthenogenesis (Dybdahl
and Lively 1995). Because of its ability to
reproduce asexually, invading populations of P.
antipodarum can quickly dominate an aquatic
environment. Like all hydrobiid snails, P. anti-
podarum possesses an operculum, which can
be used to seal itself tightly into its shell; thus,
it is able to survive unfavorable conditions, in-
cluding many fishes’ digestive systems (Haynes
et al. 1985).

The middle Snake River drainage is also
home to several federally listed threatened
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SPATIAL DISTRIBUTION OF THREE SNAIL SPECIES,
INCLUDING THE INVADER POTAMOPYRGUS ANTIPODARUM,

IN A FRESHWATER SPRING

David C. Richards1, L. Dianne Cazier2, and Gary T. Lester1

ABSTRACT.—The highly invasive New Zealand mudsnail, Potamopyrgus antipodarum, may compete with and displace
native North American macroinvertebrates in freshwater systems wherever it becomes established. Densities and spatial
distributions of 3 snail species including P. antipodarum and the threatened Taylorconcha serpenticola were compared
among 3 adjacent habitat types (run, edge, and vegetation) in Banbury Springs, a tributary of the Snake River, near
Hagerman, Idaho, USA. In all 3 habitats P. antipodarum was the most abundant snail species. All 3 species densities
were highly variable within habitats, suggesting a nonrandom distribution pattern. Densities of P. antipodarum were sig-
nificantly greatest in the vegetation habitat type, while densities of T. serpenticola were similar among habitats. Smaller-
sized P. antipodarum were less abundant in the run habitat with its associated higher water velocities, and their densities
were negatively correlated with velocity. Densities of P. antipodarum also were negatively correlated with distance from
the highly infested, man-made Morgan Lake, while T. serpenticola densities were positively correlated with distance
from Morgan Lake. Potamopyrgus antipodarum is a potential competitor with native aquatic species, although its colo-
nization into some freshwater habitats may be limited.

Key words: threatened species, endangered species, biological invader, competition, spatial distribution.
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and endangered snail species, including the
threatened Bliss Rapids snail, Taylorconcha
serpenticola (Rissoidea: Hydrobiidae), and the
locally common pebble snail, Fluminicola sp.
(Hydrobiidae; Bowler 1991). Very few data are
available on habitat preferences and spatial
distributions of any of these 3 species in the
middle Snake River drainage.

For this study we collected and analyzed
densities and spatial distribution data as related
to 3 assumed habitat types (run, edge, and vege-
tation) for all 3 snail species, P. antipodarum,
T. serpenticola, and Fluminicola sp., in Ban-
bury Springs. We also related shell lengths of
P. antipodarum with water velocity and habitat
type in Banbury Springs.

STUDY SITE

Banbury Springs are located alongside the
Snake River (river mile 589) at the southwest-
ern end of the eastern Snake River Plain of
Idaho, USA, and upriver of the Thousand
Springs complex located at river mile 585 (Fig.
1). The Snake River runs through a steep-sided
canyon within a larger trench-cut canyon
through the Snake River Plain. Banbury Springs
consist of 22 springs that convey water from
basalt walls through an aquifer that underlies
the plain. Average flow of the springs is
approximately 3.5 m3 ⋅ s−1. Surrounding acre-
age consists of forested wetlands, shrubland,
and talus slopes. The springs form numerous
braided channels that then flow into small,
man-made Morgan Lake, which was created
in 1965. The springs then empty into the Snake
River through a culvert. Banbury Springs sup-
port several species of aquatic macrophytes,
densities of which vary seasonally.

METHODS

We collected 54 small Surber samples from
3 delineated habitat types (run, edge, and veg-
etation) in a 30 × 30-m section of the north-
ernmost spring at Banbury Springs between 6
April and 11 May 1999. Our small Surber
sampler was a 1-mm mesh, modified Surber
sampler with a collection area of 15 cm × 15
cm as compared to a 30 × 30-cm collection
area used in standard Surber sampler. We
elected to use the smaller Surber sampler
because of the very high numbers of P. antipo-
darum collected in our samples and because a
full Surber sample would often overlap from

one delineated habitat type into the next. Of
the 54 small Surber samples, 17 were in run
habitats, 14 in edge habitats, and 23 in vegeta-
tion habitats. We delineated a run habitat as
any riffle or flowing section that did not have
emergent, aquatic vegetation growing and that
was dominated by gravel size or larger sub-
strates. Sample sites in runs remained free of
vegetation, as of 5 November 1999. An edge
habitat was that portion of the emergent aquatic
vegetation habitat that was within 15 cm of a
run. Vegetation habitat was defined as being
more than 15 cm from a run habitat and com-
posed of emergent, aquatic vegetation. Samples
collected in the vegetation and edge habitats
included both macrophytes and substrate.

To determine whether there was a relation-
ship between size of P. antipodarum and habi-
tat type, we measured 760 P. antipodarum shell
lengths to nearest 0.05 mm: 235 from edge,
250 from vegetation, and 275 from run habitats.
We measured an additional 889 P. antipodar-
um shell lengths from 12 samples in the study
site from habitats with varying water velocities
to determine whether there was a relationship
between shell length and water velocity. Hourly
water temperatures (N = 4919) were recorded
at the upper and lower portions of the study
site between 13 April and 5 November 1999
using HOBO temperature data loggers (Onset
Computer Corp. 1998).

STATISTICAL ANALYSES

Descriptive statistics (including skewness
and kurtosis), histograms, normal expected fre-
quencies, Shapiro-Wilk W-tests, and normal
probability plots of the 3 snail species densities
were generated and analyzed for comparison.
Densities that did not follow a normal distri-
bution were log-normalized and reexamined.
All log-normalized densities subsequently
appeared to follow a normal distribution. A
nonparametric Spearman rank order correla-
tion was conducted between nontransformed
P. antipodarum densities and water velocity. In
addition, we related log-transformed P. antipo-
darum densities and water velocity using Pear-
son product-moment correlation. Both corre-
lation methods were used to determine if
there was a relationship between P. antipodarum
densities and distance upstream from Morgan
Lake. We also used Pearson product-moment
correlation for examining the relationship
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between P. antipodarum shell lengths and
water velocity. One-way ANOVAs using Tukey
HSD post hoc comparison were conducted on
log-transformed densities of the 3 snail species
for each species to determine if there were
any differences in snail densities in the 3 habi-
tats. Potamopyrgus antipodarum mean shell
lengths were compared among the 3 habitats
using 1-way ANOVA and Tukey post hoc com-
parison. We used STATISTICA for Windows
(Statsoft, Inc. 1995) for all statistical analyses.

RESULTS

Potamopyrgus antipodarum had the highest
densities of the 3 snail species in all 3 habitats
but was more similar with T. serpenticola and
Fluminicola sp. densities in the run habitat
(Figs. 2, 3, 4). All 3 species densities showed a
nonrandom distribution within all habitats
(Shapiro-Wilk test W < 0.01, skewness and
kurtosis > 0, and by visualization of normal
probability plots) with the exception of Flu-
minicola sp. in the vegetation and run habitats
(Shapiro-Wilk test W > 0.25, skewness and
kurtosis ∼0, and by visualization of normal
probability plots), which showed a normal or
random distribution.

Log-transformed mean densities of P. anti-
podarum were marginally different among
habitats (1-way ANOVA, F = 3.02, df 2,26, P
= 0.07). Mean densities (log-transformed) of P.
antipodarum were significantly higher in the
vegetation than the run habitat (Tukey HSD

post hoc comparison, P = 0.05) but were not
significantly greater in the edge than the run
habitat (P = 0.36) or between the vegetation
and edge habitats (P = 0.53). Fluminicola sp.
mean densities (log transformed) were signifi-
cantly different among the 3 habitats (1-way
ANOVA, F = 6.21, df = 2,26, and P = 0.00).
Fluminicola sp. mean densities were significant-
ly greater in the vegetation and edge habitats
than in the run habitat (Tukey HSD post hoc
comparison, P = 0.07 and 0.01, respectively)
but were not significantly greater between the
edge and vegetation habitats (P = 0.48). Mean
densities (log-transformed) of the threatened
Bliss Rapids snail, T. serpenticola, were not
significantly different among any of the 3 habi-
tats (1-way ANOVA, F = 0.63, df = 2,26, P =
0.53, and Tukey HSD post hoc comparison, P
> 0.60 for all 3 habitats), but were most vari-
able and had the lowest median density in the
vegetation habitat (Fig 4).

Water temperature was constant through-
out the study site and season. Mean hourly
temperatures recorded between 13 April and
5 November 1999 were 14.19°C (±0.38°C s;
min = 12.93°C; max = 14.85°C; N = 4919) at
the upstream portion of the study site and
14.29°C (±0.57°C s; min = 12.93°C; max =
16.38°C; N = 4919) at the downstream por-
tion. Therefore, we did not consider tempera-
ture to be a variable in our analysis within the
study site, although temperature could have
an effect on snail distribution in other areas,
including Morgan Lake.
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Fig. 1. Study area.



Water velocities ranged from 0 m ⋅ s−1 in
thicker vegetation habitats to 0.52 m ⋅ s−1 in
runs. Mean water velocity was 0.04 m ⋅ s−1

(±0.03 s) for vegetation, 0.08 m ⋅ s−1 (±0.12 s)
for edge, and 0.34 m ⋅ s−1 (±0.15 s) for run
habitat. Velocities were significantly different
(P < 0.05) between run and vegetation, and
run and edge habitats, but not between vege-
tation and edge habitats.

Non-parametric Spearman rank order cor-
relation on nontransformed data suggested that
P. antipodarum densities were significantly
negatively related to water velocity (N = 54; r
= −0.52; P = 0.00). Log-transformed densities
of P. antipodarum also showed significant neg-
ative correlation with velocity using Pearson
correlation (N = 47; r = −0.57; P = 0.00).
Densities of T. serpenticola and Fluminicola
sp. were not significantly correlated with veloc-
ity using nonparametric or log-transformed
data analysis.

Mean shell lengths of P. antipodarum were
significantly correlated with water velocity
using Pearson correlation (N = 12, r = 0.68, P
= 0.02). Mean shell lengths of P. antipodarum
were also significantly greater in the run habi-
tat than in edge or vegetation habitats (P <
0.00 for both), but not significantly different

between edge and vegetation habitats (P =
0.87).

Log-transformed densities of P. antipo-
darum were negatively related with distance
upstream from the pond section (N = 60, r =
−0.55, P < 0.05), as were their nontransformed
densities using nonparametric analysis (N =
60, r = −0.70, P = 0.00). Densities of T. ser-
penticola (log-transformed) were positively
related with distance upstream from Morgan
Lake (r = 0.33, P = 0.03). Taylorconcha ser-
penticola density (nontransformed) was posi-
tively related to distance from Morgan Lake
(N = 60, r = 0.30, P = 0.02). Density of Flu-
minicola sp. was not related to distance from
Morgan Lake. 

Surface areas of macrophytes collected in
the vegetation and edge samples were not mea-
sured in this study. Therefore, our results show
only densities of snails in a 2-dimensional
plane within the 3 habitats.

DISCUSSION

It appears that P. antipodarum may be
establishing itself into the upper portion of the
springs, mostly by spreading through vegeta-
tion and edges of the faster-flowing waters and
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Fig. 2. Comparison of P. antipodarum densities ⋅ m−2 in
3 habitat types (vegetation, run, and edge) in the Banbury
Springs study site, 1999. (Vegetation: median = 1328.04,
mean = 10651.49, minimum = 0.00, maximum =
39841.20, lower quartile = 78.12, upper quartile =
24529.68, N = 23. Edge median = 996.03, mean =
7081.02, minimum = 39.06, maximum = 32029.20, lower
quartile = 390.60, upper quartile = 12811.68, N = 14.
Run median = 156.24 ⋅ m−2, mean = 2072.48, minimum
= 0.00, maximum = 12811.68, lower quartile = 78.12,
upper quartile = 2460.78, N = 17.)

Fig. 3. Comparison of Fluminicola sp. densities ⋅ m−2 in
3 habitat types (vegetation, edge, and run) in the Banbury
Springs study site, 1999. (Vegetation: median =1288.98,
mean = 1448.62, minimum = 78.12, maximum =
3554.46, lower quartile = 624.96, upper quartile =
1992.06, N = 23. Edge: median = 1640.52, mean =
1944.63, minimum = 937.44, maximum = 4999.68, lower
quartile = 1093.68, upper quartile = 2031.12, N = 14.
Run: median = 820.26, mean = 921.36, minimum =
156.24, maximum = 1718.64, lower quartile = 585.90,
upper quartile = 1249.92, N = 17.)



then moving into new habitats, particularly
unoccupied vegetation habitat. Faster water
velocity possibly limits colonization of P. anti-
podarum into run habitats. The vegetation ha-
bitat with its associated slower water velocity
seems to provide refuge for small-sized P. anti-
podarum and might also act as a nursery. Veloc-
ity could also affect smaller P. antipodarum
more than larger ones due to a combination of
physical, behavioral, physiological, or morpho-
logical factors. Current more easily dislodges
P. antipodarum than T. serpenticola individu-
als. During this study, T. serpenticola remained
attached to rock substrates when disturbed,
whereas P. antipodarum immediately detached
themselves from any substrate and readily
entered the drift after disturbance. Interest-
ingly, we found P. antipodarum to be the 2nd
most abundant macroinvertebrate collected in
24-hour drift net samples at Banbury Springs,
and we have often found them in floating veg-
etation mats in Morgan Lake. We have also
timed their dispersal on flat substrates at up to
1 m ⋅ h−1.

Continued invasions of P. antipodarum are
likely, particularly in habitats with low water
velocity and large amounts of vegetation (e.g.,
ponds, lakes, reservoirs, slower rivers, and back-
waters), but may be limited in habitats with

higher water velocities. There was little water
temperature gradient in our study area, but
temperature may be important for snail distri-
bution and abundance in other aquatic envi-
ronments, including Morgan Lake.

Although densities of the threatened species,
T. serpenticola, did not vary between habitats,
we do not know whether this species would be
more abundant in vegetation habitats if densi-
ties of P. antipodarum were lower. We are
presently conducting field and laboratory com-
petition experiments between P. antipodarum
and T. serpenticola and are continuing to mon-
itor temporal and spatial changes in snail den-
sities on a bi-monthly basis from these same
locations at Banbury Springs. We will also
conduct population surveys of T. serpenticola
throughout its range in the mid-Snake River
drainage in the near future.
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More than 100 exotic plant species occur in
Yellowstone National Park (Whipple 2001), and
others will undoubtedly become established in
the future. Many of these are likely to under-
go range expansion. An ability to predict the
areas threatened by expanding exotics should
be of great value to park managers trying to
minimize dispersal to susceptible areas and
eradicate new colonies of these areas.

Information needed to predict the potential
extent of a species includes knowledge of
which environments are susceptible to inva-
sion by the species and the location and extent
of susceptible environments.

Both are available for Yellowstone National
Park. First, we have a map of environmental
types (Despain 1990a). Students of vegetation
have pointed out that plant communities provide
a good indicator for site conditions (Holdridge
1947, Whittaker 1975, Huschle and Hironaka
1980). In our area Daubenmire identified major
environmental types (habitat types) for eastern
Washington and northern Idaho and demon-
strated the relationship of indicator species 
to both environmental qualities (Daubenmire
1952, 1956) and plant performance (Dauben-
mire 1976). His environmental types have
been extended into southern Idaho, Montana,
and Wyoming (Pfister et al. 1977, Mueggler et
al. 1980, Hironaka et al. 1983, Steele et al.
1983), and their relationships to environment
have been reviewed by Weaver et al. (2001).

We use environmental type as a synonym for
Daubenmire’s habitat type, but prefer envi-
ronmental type because it unambiguously
refers to physical environment and excludes
confusing factors in animal “habitat” such as
characteristics of a community temporarily
occupying the site (e.g., species composition
or structure of a seral community). Dauben-
mire recognized and regretted this confusion
(Weaver et al. 2001).

Second, exotic species’ potentials to invade
environmental types representing segments of
the altitudinal gradient of the northern Rocky
Mountains have been identified by Weaver et
al. (2001). In their treatment the environmen-
tal range of a species is expected to be wider
in disturbed sites (where competition is less)
than in late seral communities (where compe-
tition is intense; Daubenmire 1968, Grime
1979, Huschle and Hironaka 1980), and this
has been demonstrated (Weaver et al. 2001).
Thus, we expect geographic ranges of exotic
species in undisturbed vegetation to be nar-
rower than, and nested in, ranges of the same
species occupying disturbed vegetation.

This paper has 5 objectives: (1) to demon-
strate a method for mapping potential plant
distribution, (2) to illustrate it with 4 exotic
plant species of Yellowstone National Park, (3)
to publicize maps of 24 other exotics, (4) to
compare the mapped ranges of each species
on undisturbed and disturbed sites, and (5) to
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A RULE-BASED MODEL FOR MAPPING POTENTIAL
EXOTIC PLANT DISTRIBUTION1
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ABSTRACT.—Wildland managers need a method to predict which portions of the lands under their stewardship are
susceptible to invasion by exotic plants. We combined a database listing exotic plant species known to occur in major
environmental types (habitat types) throughout the northern Rocky Mountains with a digital vegetation map of environ-
mental types for a major national park in the region (Yellowstone National Park) to produce maps of areas potentially
threatened by major exotic species. Such maps should be helpful to managers concerned with monitoring and control-
ling exotic plants.
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evaluate the method by comparing predicted
distributions with actual distributions recorded
by Yellowstone National Park’s weed manage-
ment staff.

METHODS

Working in Glacier National Park, Yellow-
stone National Park, Grand Teton, and areas
between, Weaver et al. (2001) studied the dis-
tribution of exotic plants in 16 environmental
types representing altitudinal zones of the
northern Rocky Mountains. To determine
which exotics invade disturbed and undis-
turbed vegetation in these environmental
types, they recorded presence at 7–10 sites in
each environmental type. To test susceptibility,
they examined sites long exposed to diverse
seed sources, i.e., sites near major highways.
Their inspection of each site was concentrated
in two 4 × 25-m plots running parallel to the
road. Entry into disturbed sites was examined
with a plot on the roadcut (inslope) bordering
the highway. Entry into near-climax vegeta-
tion was examined with another plot in adja-
cent undisturbed vegetation. They listed all
species present in the plot (and in similar
areas around it), recorded presence in five 4 ×
5-m segments of the plot as an index of ubi-
quity, and estimated cover with 75 points
located near the central axis of the plot. They
reported both constancy values (the percent-
age of plots in an environmental type where
the species occurred) and cover for each
species. For a more complete description of
their methods, refer to Weaver et al. (2001).

We used Weaver et al.’s (2001) constancy
value as a measure of a species’ ability to
establish in an environmental type. Our maps
indicate areas where a species was present at
more than half the sites, at less than half the
sites, and where they were capable of invad-
ing the climax community.

Two details require elaboration. First, be-
cause Weaver et al. (2001) did not encounter
all environmental types that occur in Yellow-
stone National Park, we predicted exotic plant
species occurrence, in those Yellowstone
National Park types for which they had no
data, from the most similar type for which data
were available. A type was judged to be simi-
lar if it was in a similar moisture range of the
same series. Resultant assignments are shown
in Table 1. Exotic plant species presence in

the known type was assigned to other types in
its group.

Second, Despain’s (1990a) habitat type map
sometimes uses mosaic mapping units that
contain 2 dominant types, such as a matrix of
grasslands with numerous islands of trees or

2001] MAPPING POTENTIAL WEED DISTRIBUTION 429

TABLE 1. Environmental types of Yellowstone National
Park with Weaver et al. (2001) equivalents.

Weaver et al.a Yellowstone environmental typeb

DECA/CARX alpine tundra

FEID/AGCA FEID/DECA
POFR-ARCA/DECA
ARCA/FEID
ARTR/FEID-GEVI
FEID/STRI
FEID/AGCA-GEVI
FEID/AGCA

ARTR/FEID ARTR/FEID

ABLA/ARCO PIAL/VASC
PIAL/CAGE

ABLA/VASC ABLA/LIBO-VASC
ABLA/VAGL-VAGL
ABLA/THOC
ABLA/VASC-VASC
ABLA/VASC-PIAL
ABLA/VASC-CARU
ABLA/CAGE
ABLA/CARU

ABLA/ARCO ABLA/CARO
PICO/CAGE
PICO/CARO
PICO/PUTR

PSME/PHMA PSME/PHMA

PSME/SYAL PSME/SYAL
PSME/CARU
PSME/SPBE-SPBE

AGSP/BOGR FEID/AGSP
ARTR/AGSP

STCO/AGSP AGSP/POSA-STCO
aEnvironmental types are named for 2 species, including a dominant overstory
species and an indicator species. Names of these species are abbreviated with
a 4-letter code including 2 letters from the genus name and 2 from the spe-
cific epithet: ABLA = Abies lasiocarpa, AGCA = Agropyron caninum, AGSP
= Agropyron spicatum, ARCA = Artemisia cana, ARCO = Arnica cordifolia,
ARTR = Artemisia tridentata, BOGR = Bouteloua gracilis, CAGE = Carex
geyeri, CARO = Carex rossii, CARU = Calamagrostis rubescens, CARX =
Carex spp., DECA = Deschampsia caespitosa, FEID = Festuca idahoensis,
GEVI = Geranium viscosissimum, LIBO = Linnaea borealis, PHMA =
Physocarpus malvaceus, PIAL = Pinus albicaulis, PICO = Pinus contorta,
POFR = Potentilla fruticosa, POSA = Poa sandbergii, PSME = Pseudotsuga
menziesii, PUTR = Purshia tridentata, SPBE = Spirea betulifolia, STCO =
Stipa comata, STRI = Stipa richardsonii, SYAL = Symphoricarpos albus,
THOC = Thalictrum occidentale, VAGL = Vaccinium globulare, VASC = Vac-
cinium scoparium.
bWeaver et al. (2001) did not encounter all environmental types that occur in
Yellowstone National Park. Thus, Yellowstone types (Despain 1998) were
grouped with the Weaver type to which they were most similar. Blocking in
this table indicates the correspondences. Yellowstone types for which there
are no equivalent Weaver types include hot springs vegetation, sedge bogs,
willow/sedge, wet forests, talus, and water.



vice versa. In these cases we averaged the
constancy values of the 2 component types to
derive a value for the mosaic units. If a species
could invade the climax vegetation of either of
the types, the entire map unit was considered
to be susceptible to that species.

The resultant database was combined with
the vegetation map using GIS to create 28
maps, one for each species studied. Four
species are used as illustrations. Canadian
thistle (Cirsium arvense [L.] Scop.) and spot-
ted knapweed (Centaurea maculosa Lam.) are
classed as noxious weeds by the surrounding
states. Yellow sweetclover (Melilotus officinalis
[L.] Lam.) and timothy (Phleum pratense L.)
are crop plants that have become widely estab-
lished in nonagricultural areas of the region.
All 4 are of special concern to Yellowstone
National Park managers.

To evaluate the success of our model, we
compared locations we mapped for 3 species
with actual locations mapped by Yellowstone
National Park’s staff: Canadian thistle, spotted
knapweed, and yellow sweetclover (data for
timothy were not available).

RESULTS

Potential ranges of 28 exotic species found
repeatedly in northern Rocky Mountain vege-
tation (Weaver et al. 2001) were mapped.
Maps are available from the Geographic Infor-
mation and Analysis Center, Montana State
University, Bozeman, website (http://www.giac.
montana.edu) in raster format at 50-m resolu-
tion, which should be useful for field purposes.

Centaurea maculosa is classified as a nox-
ious weed in the Greater Yellowstone Ecosys-
tem. The potential range of spotted knapweed
mapped for disturbed sites (Fig. 1) includes
the drier portions of the park, i.e., dry grass-
lands/shrublands and drier Douglas-fir forests.
We mapped no areas where knapweed would
have an expected constancy >50%. It is ex-
pected to invade climax vegetation only in dry
grasslands predominantly at low elevations. In
contrast to our predictions, actual Yellowstone
National Park data showed many locations
along park roads outside our predicted areas.
Thus, more data are required to determine
how threatening this species is in Yellowstone
National Park. Unpredicted locations may be
either transient occurrences that would disap-
pear without constant seeding from the outside

or an indication that knapweed enters environ-
ments not predicted by this model and is thus
a serious threat over a much larger area than
that mapped. While it does not appear to pose
a serious threat to the majority of the park, 
it should be closely monitored as a potential
threat especially in the Yellowstone River val-
ley along the north boundary.

Cirsium arvense is a 2nd noxious weed of
the Greater Yellowstone Ecosystem. The poten-
tial range mapped for it (Fig. 2) includes dis-
turbed areas primarily in sparsely vegetated
forest types and montane and subalpine grass-
lands/shrublands. We map no potential for entry
into dry grasslands/shrublands. Because it does
not invade climax vegetation, colonies estab-
lished on disturbed sites are expected to die
out as succession progresses to climax. No areas
occurred where Canadian thistle would have
an expected constancy >50%. Our map is 
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Fig. 1. Potential distribution of Centaurea maculosa
(spotted knapweed) in Yellowstone National Park. Gray
areas show the distribution of disturbed areas where it is
expected to occur in less than half a series of study plots.
No areas occurred where it would be capable of occurring
in more than half the study plots. Black areas show distri-
bution of those sites where it is capable of invading climax
vegetation. Roads are indicated (solid line) for reference.
Actual locations recorded by Yellowstone’s weed manage-
ment staff are shown by triangles.

Centaurea maculosa



validated by noting that the majority of loca-
tions mapped by the Yellowstone National Park
weed management staff are within the areas
we mapped as potential habitat. Anomalous
colonies in dry grassland/shrubland units may
be located within inclusions of wetter environ-
mental types.

Melilotus officinalis is a plant of special
concern because it tends to dominate grass-
lands. The potential range mapped for yellow
sweetclover on disturbed sites (Fig. 3) includes
areas from drier grassland/shrubland sites in the
northern part of the park to moist subalpine
meadows. Our map predicts that Melilotus is
capable of invading open climax communities
across the same range. In the higher-elevation
forest zone it can invade disturbed areas. No
areas were mapped where yellow sweetclover
would have an expected constancy >50%. Most
locations recorded by the weed management

staff did not correspond to predicted locations.
More data must be gathered to determine the
threat posed by yellow sweetclover. This species
could become a serious problem if it displaces
native climax species in sites to which it is
well adapted.

While Phleum pratense is less obvious than
the forbs just discussed, it has a significant
tendency to dominate Yellowstone National
Park vegetation (Weaver et al. 2001). The poten-
tial range mapped for timothy (Fig. 4) includes
disturbed areas in most of the park. The map
indicates that it can invade climax communi-
ties in a smaller range of environmental types,
i.e., moister grasslands/shrublands and lower
forest communities. It is more common than
spotted knapweed, Canadian thistle, and yellow
sweetclover on disturbed sites; i.e., it had 
a constancy >50% over large portions of 
the park. Because weed management staff
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Fig. 2. Potential distribution of Cirsium arvense (Cana-
dian thistle) in Yellowstone National Park. Gray areas
show the distribution of disturbed areas where it is
expected to occur in less than half a series of study plots.
No areas occurred where it would be capable of occurring
in more than half the study plots. Black areas show distri-
bution of those sites where it is capable of invading climax
vegetation. Roads are indicated (solid line) for reference.
Actual locations recorded by Yellowstone’s weed manage-
ment staff are shown by triangles.

Fig. 3. Potential distribution of Melilotus officinalis (yel-
low sweetclover) in Yellowstone National Park. Gray areas
show the distribution of disturbed areas where it is
expected to occur in less than half a series of study plots.
No areas occurred where it would be capable of occurring
in more than half the study plots. Black areas show distri-
bution of those sites where it is capable of invading climax
vegetation. Roads are indicated (solid line) for reference.
Actual locations recorded by Yellowstone’s weed manage-
ment staff are shown by triangles.

Cirsium arvense Melilotus officinalis



members do not map it, actual location data
for this widespread species are not available
for validation of our maps. While it is of little
concern in the forested types because it would
be greatly reduced at canopy closure, it could
be of major concern in moister grassland/shrub-
land environments, which are the major source
of forage for native ungulates.

DISCUSSION

This exercise has demonstrated a method
for producing maps showing the potential
ranges of exotic plant species in disturbed and
undisturbed environments. Some general pat-
terns are seen in the maps: (1) potential ranges
of some species are limited while others are
extensive; (2) most invader species are adapted
to colonize disturbed sites, and thus species
ranges are broader on disturbed than undis-
turbed segments of an environmental type; (3)
where colony locations are known, constancies

are usually highest in or near the potential
range predicted. We attribute near-misses to
interfingering of environmental types in eco-
tonal areas, unmapped islands of one type in a
matrix of another, or inexact records of invader
colony locations made by the weed team.

The certainty of our maps could be increased
by adding more observations, particularly in
those types where Weaver et al. (2001) have
no data. The most extensive of these in Yellow-
stone are the wetland types and high-elevation
forests.

For simplicity we have mapped ranges in
successional extremes of severely disturbed
roadside cuts and near-climax conditions. Road-
cuts are typically void of developed soil and
are usually in the early stages of primary suc-
cession. Gathering more data relating to more
moderate disturbances, such as wildland fire,
could usefully extend the work. For example,
while Canadian thistle has been shown to
increase after forest fire (Turner et al. 1997),
this is not reflected (Fig. 2). The persistence of
this species as the community succeeds, after
fire, to climax vegetation deserves study. Thus,
it would be useful to gather exotic species dis-
tribution data across successional stages within
each of the environmental types (Despain
1990a) to allow a broader and more accurate
evaluation of the threat posed by a particular
species.

We recommend that managers gather the
data necessary to use this method to further
their efforts in monitoring and controlling the
establishment and spread of these exotic plants,
especially those that are most likely to cause
extensive ecological and economic problems.
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Fig. 4. Potential distribution of Phleum pratense (timo-
thy) in Yellowstone National Park. Light gray areas indi-
cate where it is expected to occur in less than half a series
of study plots. Dark gray indicates areas where it is
expected to occur in more than half the study plots. Black
areas show distribution of those sites where it is capable
of invading climax vegetation. Roads are indicated (solid
line) for reference.

Phleum pratense
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National forests and parks have a mandate
to manage against exotic plants both in their
charters (U.S. Congress 1872) and recent exec-
utive directives (Clinton 1994, 1999).

Management of exotics requires their iden-
tification. Plants exotic to specific regions (e.g.,
Whitson 1992) and management units (e.g.,
Whipple 2001) have often been listed to facili-
tate recognition and identification. A listing by
ecological zones within a region would refine
this capacity.

In addition, a listing by environmental types
within a region would provide a key to envi-
ronments (or sites) the plant might invade or
might already have invaded. Identification of
occupiable environmental types will enable
managers to concentrate control efforts in a
fraction of the management area. Two environ-
mental qualities are important. First, one con-
siders environmental types (defined in Meth-
ods), determined by physical characteristics
such as climate and substrate (Holdridge 1947,
Daubenmire 1968, 1970, Whittaker 1975) and
indicated locally by potential natural vegeta-
tion (Pfister et al. 1977, Mueggler and Stewart

1980, Steele et al. 1983). And, within each of
these, one compares sites on the competitive
spectrum from freshly disturbed (noncompeti-
tive) to late seral (very competitive; Grime
1979, Despain 1990).

The objectives of this paper are thus to list
the common exotics of the northern Rocky
Mountains, to provide separate lists of the
exotics present in major upland environmental
types of the region, and to compare exotic
presence in an early (less competitive) and late
(more competitive) seral stage in each envi-
ronmental type. A companion paper extends
our results to separately map the potential dis-
tribution of major exotics on disturbed and
undisturbed sites in Yellowstone National Park
(Despain et al. 2001).

METHODS

Our term environmental type is synonymous
with Daubenmire’s (1968a, 1968b, 1970) habi-
tat type (HT). (1) An environmental type (ET
= HT) includes all environments (equivalent,
but not identical) capable of supporting a climax
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EXOTIC PLANTS IN EARLY AND LATE SERAL VEGETATION
OF FIFTEEN NORTHERN ROCKY MOUNTAIN ENVIRONMENTS (HTs)1
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ABSTRACT.—We determined the capacity of exotic plants to invade major environmental types of the northern Rocky
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locations—corridors adjacent to highways—on transects across the mountains in Glacier National Park and Grand Teton
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association (series of plant communities of the 
same kind). (2) The concept is useful because
it groups discrete sites (or environments as
opposed to plant communities) likely to respond
similarly to similar managment (Daubenmire
1968b, 1976, Pfister et al. 1977, Mueggler and
Stewart 1980). (3) The term environmental type
is preferred because it clarifies the concept
that the types represent physical environment
(e.g., moisture and temperature) rather than
habitat for a particular organism, since the lat-
ter “habitat type” may either extend across
several environmental types (e.g., wide-rang-
ing plants in Table 3) or may not exist in the
organism’s optimal environmental type (e.g., if
vegetation of the seral stage present provides
too much competition [Walter 1960] or fails to
provide necessary nutrients, cover, or struc-
ture). Daubenmire (personal communication)
recognized the environmental type/habitat type
confusion—especially among zoologists—and
wished he had called his types “environmental
types.”

To determine which exotics might invade a
specific environmental type (e.g., a montane
environment occupied by Pseudotsuga men-
ziesii/Symphoricarpos albus at climax), we
needed to observe exotic colonization of well-
inoculated sites in that type. Thus, we sampled
several (7–11) sites jointly in that type and
near a major highway that has long delivered
seed to it (Table 1).

To determine which “seral” vegetation types
in that environmental type could be invaded,
we needed to compare invasion of highly dis-
turbed (low competition), less disturbed (early
seral), and high competition (late seral) sites
(Grime 1979) occupying that physical environ-
ment. Thus, we sampled relatively gentle road
cuts, logged right-of-way (not reported here),
and nearby undisturbed vegetation at each of
the 7–11 sites studied. The fact that our work
was primarily in national parks facilitated loca-
tion of undisturbed sites adjacent to highly
disturbed sites. The relatively low establish-
ment of a species on a late seral site, perhaps
20–30 m away, is attributed to competition but
could also be due to failure to disperse. We
attribute most of the deficiency to competition,
however, both because differences in distances
from the highway are short and because dis-
persal is a characteristic selected for in oppor-
tunistic species.

To complete the list of exotics likely to invade
our region, we needed to sample other major
environmental types representative of the
environmental gradient from steppe upward
through forest to the alpine. Thus, we sampled
15 environmental types along highways cross-
ing the mountains in Glacier and Grand Teton
national parks (1984–1985) and in intervening
lowland areas (in 1986). We identified major
environmental types by using late seral vege-
tation as indicators (Holdridge 1947, Dauben-
mire 1968a, 1968b, 1970, Whittaker 1975).
While our exotic lists for major environmental
types approach completeness, our regional list
is incomplete because we omitted less wide-
spread types such as those along streams or on
unusual substrates. The environmental types
(HTs) sampled are listed, in altitudinal order,
in Table l, with abbreviations, general loca-
tions, and sample size (~10). Underlying
changes in climate and soils along the gradient
are compared in Table 2, as well as by Dauben-
mire (1968a, 1970), Pfister et al. (1977), Mueg-
gler and Stewart (1980), and Steele et al. (1983).

Thus, our sample design included 15 envi-
ronmental types (HTs), 2 treatments reported
here (and 3 others [Weaver et al. 1993]), and
approximately 10 replications (sites). Vegeta-
tional characteristics of each of the approxi-
mately 800 sites studied were recorded with
measures of presence, frequency, and cover of
both native and exotic species present. (1)
Presence was recorded by listing all exotic and
native plant species present in a 1 × 25-m plot
representative of the zone and parallel to the
highway traveled. We separately noted any
other species present in adjacent similar vege-
tation. Natives in the plots, not discussed here,
are listed in Weaver et al. (1993). (2) Cover of
a species was measured by recording the per-
centage of 75 points covered by that species.
The 75 points were located by lowering 3 pins
into the vegetation in each meter point along
the plot’s center line. Cover was integrated
over a type by averaging cover measurements
across sites, but only at sites where the species
occurred. We omitted unoccupied plots in
these calculations to measure the success of
species at sites where they did occur. If
desired, cover values for the environmental
zone as a whole can be calculated by multiply-
ing cover values presented by the associated
constancy value; this will correct the cover 
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value downward for sites at which the species
did not occur (Table 3). (3) Constancy was cal-
culated as the percentage of sites in the envi-
ronmental type at which the species occurred.

We hypothesized that a strong presence of
an exotic in roadside samples would result in a
strong presence in adjacent undisturbed vege-
tation because a strong presence at the road-
side indicates both good adaptation to the
environment and production of many propa-
gules for colonization of nearby sites. We
tested this hypothesis, using both constancy
and cover data, by comparing the presence of
each exotic in disturbed vegetation on sites
adjacent to occupied vs. unoccupied native
vegetation. The Mann-Whitney test, a non-
parametric t test, was used (Gibbons 1985). An
alternative test, regression/correlation, was
forgone because quantitative data from the
undisturbed sites are currently unavailable.

In a companion paper (Despain et al. 2001),
we map the potential range of an exotic in a
region by using a map of the environmental
types (HTs) of the region (e.g., Despain 1990b)
as a base and shading ETs invasible by the
species studied. We expect the range mapped

on disturbed sites to enclose the range on un-
disturbed sites because competition is less rig-
orous on disturbed sites.

RESULTS

Our observations of exotic plant presence
on roadcuts (outslopes) and adjacent undis-
turbed vegetation of 15 environmental types
are summarized in Table 3. (1) Vertically, table
segments list groups of exotic species found,
according to their ranges on the altitudinal
gradient studied: those with narrow, moderate,
or broad amplitude and those with an inter-
rupted range. (2) The elevational gradient
ranges from dry steppe, through warm dry
forests, warm moist forests, cool forests, to
mountain meadows and alpine tundra. Fifteen
segments (environmental types or habitat types)
on this gradient are listed horizontally. These are
named and characterized in Table 1. (3) Entries
in Table 3 specify the presence of exotics, both
on disturbed sites in corridors along which
propagules are expected to move and on adja-
cent undisturbed sites. Presence on roadsides is
indicated by constancy (the percent of occupied
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TABLE 1. Environmental types (HTs), locations, and sizes of samples in which exotic distributions were observed.
Environmental types are listed in approximate order of altitude, from low to high.

Environmental type (HT)a Abbreviationb Locationc Sampled

GRASSLANDS/ SHRUBLANDS

Stipa comata/ Bouteloua gracilis STCO/ BOGR Broadwater MT 7
Agropyron spicatum/ Bouteloua gracilis AGSP/ BOGR Broadwater MT 8
Artemisia arbuscula/ Festuca idahoensis ARAR/ FEID Teton WY 10
Artemisia tridentata/ Festuca idahoensis ARTR/ FEID Meagher, Gallatin MT 10
Festuca scabrella/ Festuca idahoensis FESC/ FEID Glacier MT 10

DRY FORESTS

Pseudotsuga menziesii/ Symphoricarpos albus PSME/ SYAL Meagher, Gallatin MT 10
Pseudotsuga menziesii/ Physocarpus malvaceus PSME/ PHMA Gallatin MT, Park WY 6

WARM MOIST FORESTS

Populus tremuloides/ Calamagrostis rubescens POTR/ CARU Flathead MT 8
Tsuga heterophylla/ Clintonia uniflora TSHE/ CLUN Flathead MT 10
Abies lasiocarpa/ Clintonia uniflora ABLA/ CLUN Flathead MT 9
Abies lasiocarpa/ Xeophyllum tenax ABLA/ XETE Flathead MT 10

COOL CONIFER FORESTS

Abies lasiocarpa/ Arnica cordifolia ABLA/ ARCO Teton WY 10
Abies lasiocarpa/ Vaccinium scoparius ABLA/ VASC Teton WY 10

HIGH GRASSLANDS AND TUNDRA

Festuca idahoensis/ Agropyron caninum FEID/ AGCA Teton WY 10
Deschampsia caespitosa/ Carex spp. DECA/ CASP Park WY, Carbon MT 11

aEnvironmental types are those of Pfister et al. (1977) and Meuggler and Stewart (1980).
bAbbreviations provide a key to Table 3. They represent dominant species by reporting initial letters (2) from genus and species names.
cLocations are specified by county. Glacier and Flathead are in the Glacier National Park area. Broadwater and Meagher are adjacent to the Bridger/Big Belt
Mountains. Gallatin, Park, and Carbon are at the north edge of Yellowstone. Teton includes Grand Teton National Park.
dEach environmental type was sampled at 7–11 sites. At each site 5 environments were sampled with 5 parallel quadrats. Of these, those representing roadcuts
and undisturbed vegetation are discussed here.



sites in the ET). Potential dominance on those
sites is indicated by cover (the average cover
on sites which are occupied); and current real-
ized success is found by multiplying these
entries. Presence in undisturbed vegetation is
reported nonquantitatively from plots of the
same size and shape. The material in cells hav-
ing constancies >30% is in boldface because a
higher constancy indicates that the plant has
established more or less regularly in that envi-
ronmental type.

The 29 exotic plants occuring in >10% of
the sites in at least one environmental type are
listed (Table 3, vertically). Ten species have a
narrow amplitude; i.e., they have a high con-
stancy in only 1 or 2 types. Ten species have a
moderate amplitude, that is, range over 4–8
environmental types, as arranged in Table 3.
Four species have a broad amplitude, ranging
over 10–14 ETs. The ranges of 5 species of
moderate to broad distribution are interrupted;
that is, they occupy low and higher sites, but
not the intervening environments. Two types
of occurrence deserve further comment. First,
plants with low constancy in a single ET are
ignored because they may occupy microsites
in an environmental type; that is, they do not
actually occupy the environmental type dis-
cussed. Alternatively, they could either be new
to the region (Forcella and Harvey 1981) or be
the vanguard of a newly adapted ecotype. Sec-
ond, 7 environmental types contain a species
which occurs on undisturbed, but not on non-
competitive disturbed, sites. Such species could
possibly require a stability not found at road-
sides, e.g., lack of erosion or frost action. More
likely, these species are “accidentals”; other-

wise this pattern would repeat in similar types,
as it does for Taraxacum.

On disturbed sites the number of high-con-
stancy (>30%) exotics (Fig. 1, Table 3) was
10–11 in grasslands, 9–12 in dry forests, and
8–10 in warm moist forests and 7–11 in cool
forests. Numbers were lower in shrublands
(5–7), mountain meadows (5), and alpine (1).
Numbers of low-constancy exotics were 3–6 in
grasslands, 5–11 in dry forests, 3–6 in warm
moist forests, and 2–6 in cool forests. Low-
constancy richness was similar in mountain
shrublands (2–5) and mountain meadows (7),
and low in alpine (2).

The number of exotics entering undis-
turbed sites (Fig. 1, Table 3) decreased from
grasslands (9–13) through aspen forests (8) and
shrublands (5–7) to conifer forests (0). It
increased again in mountain meadows (7) and
alpine tundra (2). While the richness (average
number of species per sample) on undisturbed
sites is always lower than on disturbed sites,
most grassland ETs are occupied by at least
one species not found on disturbed sites in it.

DISCUSSION

Exotics in the Northern 
Rocky Mountains

We found only 29 exotic species (Table 3) in
our sample of major upland environmental
types of Glacier National Park, Grand Teton
National Park, and little disturbed intervening
areas including parts of Yellowstone National
Park. Our list does not include species that
have invaded since 1986, which occupy heav-
ily grazed areas or uncommon substrates. To
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TABLE 2. Comparison of environments in major Rocky Mountain ecosystems. Standard errors, as well as additional
data, are available in Weaver (1978, 1980, 1990, 1994).

Temperatures (C)b Water availability (mm)c________________________ __________________________________
Jan Tgs July Pptn Drt HOH Soil GSd

Parameter min mean max ann mo deficit WHC mo

Alpine tundraa –16 6 12 778 0 0 38 3.6
Abies lasiocarpa –18 12 22 820 0 0 30 4.5
Pseudotsuga menziesii –16 12 27 580 0 1 103 3.6
Festuca idahoensis –12 12 27 380 1 6 101 5.1
Agropyron spicatum –13 12 28 380 1 17 117 4.9
Bouteloua gracilis –15 14 31 350 2 25 117 4.4
aThe ecosystems compared range from alpine down through high forests (ABLA), low forests (PSME), and grasslands (FEID, AGSP, and BOGR). Each is named 
for its climax dominant vegetation and abbreviated with initial letters from its generic and specific epithets.
bTemperatures (Weaver 1980, 1990) include average January minimum, growing season mean, and average July maximum.
cWater data include annual precipitation, drought months, and annual water deficit (Weaver 1980, 1990, 1994), and water-holding capacity of the rooted zone
(Weaver 1978), all in mm.
dGrowing season months are defined as those with moist soils and average air temperature above 0°C (Weaver 1994).
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TABLE 3. Presence of major exotic species in major environmental typesa of the northern Rocky Mountains. Code digitsb indicate constancy and cover on disturbed sites and tendency

to invade undisturbed vegetation. Constancies >30% are in boldface to emphasize environments where the species is common.

STCO AGSP ARAR ARTR FESC PSME PSME POTR TSHE ABLA ABLA ABLA ABLA FEID DECA
BOGR BOGR FEID FEID FEID SYAL PHMA CARU CLUN CLUN XETE ARCO VACC AGCA CARX

SPECIES WITH NARROW AMPLITUDE

Agropyron cristatum 7CXb X .. 1A .. .. .. .. .. .. .. .. .. .. ..
Alyssum alyssoides 8AX 9BX .. .. 1AX .. 1A .. .. .. .. .. .. .. ..
Camelina microcarpa 4AX 5AX .. .. .. .. .. .. .. .. .. .. .. .. ..
Bromus japonicus 8BX 6AX .. .. .. 1A X .. 1C .. .. .. .. .. ..
Descurania pinnata 5AX 5AX .. .. .. .. .. .. .. .. .. .. .. 2CX ..
Rumex acetosa .. .. 9DX 9D .. 1A .. .. .. .. 1A .. .. .. 0A
Dactylis glomerata .. .. 2B 3B .. 2BX 5EX .. 1A .. 1A 1B 2B .. ..
Festuca pratensis .. .. .. .. .. 1A 5A .. .. .. .. .. .. .. ..
Verbascum thapsus 2AX 1AX .. .. 2B .. 5B 1A .. .. .. .. .. .. ..
Chrysanthemum leucanthemum .. .. .. .. .. .. .. .. 5B .. .. .. .. .. ..

SPECIES WITH MODERATE AMPLITUDE

Tragopogon dubius 4AX 8AX 1AX 5BX 4AX 2A 5BX 1A 1A 2B .. 1B 1A .. ..
Centaurea maculosa 4BX 3AX 1D .. 7EX 2A .. 7C 2B .. .. .. .. .. ..
Melilotus officinalis 8BX 8BX .. .. 6BX 3B 5A 9CX 2A 1B 1A .. 3E 1BX ..
Cirsium arvense .. 1A .. .. 3CX 4A 1A 8CX .. .. .. 1A .. .. ..
Poa compressa 1A 1A .. .. 6CX 1AX 1A 8C 1A 1A 3A 1A .. 1A X
Trifolium procumbens .. .. .. .. 4BX .. .. 7BX 7C 5D 3B .. .. .. ..
Trifolium pratense .. .. .. .. .. 5BX 1AX .. 7D 1C 8D .. .. .. ..
Trifolium repens .. .. .. .. .. 5DX 1A .. 8C 4B 8B 1B 4B 1C ..
Agrostis alba .. .. .. .. .. 1A .. 6DX 6C 4A 5B 2B 4B .. ..
Trifolium hybridum .. .. .. .. 2A 1AX .. 2C 9D 8D 6D 8E 8E 6C ..

SPECIES WITH BROAD AMPLITUDE

Bromus inermis 2B 5E 2B .. 5D 5DX 8B 2AX 5E 8E 6B 7D 4D .. ..
Poa pratensis 4EX 5EX 9EX 9EX 8DX 7CX 6CX 7BX 4B 6C 7B 5C 4C 7DX ..
Taraxacum officinale X 2AX X 5BX 3B 8CX 8BX 8BX 9C 8C 5C 9E 8D 9CX 3BX
Phleum pratense .. .. 1AX .. 9DX 7CX 8DX 9EX 9D 9C 9C 8B 8C 7BX 0A

SPECIES WITH INTERRUPTED RANGES

Lactuca serriola 5AX 2BX .. 2A .. 1A 5A .. .. .. .. .. .. .. ..
Bromus tectorum 9BX 7DX .. .. .. X 3BX .. .. .. .. .. .. .. ..
Polygonum aviculare .. 1AX 9CX 4BX .. .. .. .. .. .. .. .. 4A X ..
Madia glomerata .. .. 7AX 5CX .. 1A .. 3B .. .. .. 3A 5B 2BX ..
Medicago lupulina .. .. 1A .. .. 4C 6C .. .. .. .. 3C 4D 3A ..

aEnvironmental types are listed from dry to moist, as in Table 1: grasslands (1, 2, 5), shrublands (3, 4), dry forests (6, 7), aspen (8), warm moist forests (9–11), cool forests (12, 13), mountain meadows (14), and alpine (15).
bCodes indicate constancy in roadside sites, cover in occupied roadside sites, and invasiveness. Constancy (= the probability of occurring in a stand in the environment): 0 = 0–9, 1= 10–19, 2 = 20–29, . . . 9 = 90–100%. Cover classes are A =
+, B = 0–1%, C = 1–2%, D = 2–5%, E = 5–25%, F = >25%. Invasion of undisturbed areas in an environmental type is indicated by X.



illustrate this qualifying statement, we give
Chrysanthemum leucanthemum as a species
underrepresented because its range is expand-
ing, Centaurea maculosa as less common than
expected because it expands with grazing
absent on the sites we studied, and Euphorbia
esula as a species that is most important in
areas moister than we sampled, e.g., riparian
sites. Since volcanic materials are uncommon
in the region, extrapolation to volcanic parts of
Yellowstone National Park must be made with
caution.

Exotic Richness Across 
Environmental Types

The presence of an exotic in an environ-
mental type depends on at least 3 factors.
First, the environment must be within the
physiologic niche of the species. A species range
on disturbed sites across the broad altitudinal
gradient suggests the breadth of the physio-
logic niche. Second, the environment/vegeta-
tion must be within the realized niche of the
species. Presence in undisturbed vegetation of
an environmental type demonstrates presence
in the realized niche, with respect to climax

(= late seral) vegetation. And third, presence
in either disturbed or undisturbed sites demon-
strates that the species has dispersed to the
site. While proximity to a highway maximized
the exotic’s likelihood of arrival at the sites we
studied, sites in environmental types in the
agricultural zone had far more exposure to
invading propagules than did sites in the high
mountains.

On disturbed sites the exotic richness
(species number) across the environmental
gradient seems remarkably constant (Fig. 1),
despite changes in its composition (Table 3).
Regulars (constancy >30%) were 8–12 except
in shrublands (5–7), one conifer forest (7),
mountain meadows (5), and tundra (1). While
one might argue that incidentals (constancy
<30%) indicate microsite effects, numbers of
incidentals were also rather constant (2–6),
except in the Pseudotsuga/Symphoricarpos envi-
ronment (11). Thus, disturbed sites seem to
have a more or less constant “richness capac-
ity,” but filled with species differing among
environments. Shrubland environments are
slightly species deficient, for no obvious rea-
son. Pseudotsuga environments have a small
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Fig. 1. Number of exotics (richness) by class and environmental type. Classes are total exotics of undisturbed sites
(UnD-tot), common exotics of disturbed sites (D-maj), all exotics of disturbed sites (D-tot), and all exotics of disturbed
and undisturbed sites (Total). Environmental types are as listed in Tables 1 and 3, that is, grasslands (1, 2, 5), shrublands
(3, 4), dry forest (6, 7), aspen (8), warm moist forests (9, 10, 11), cool forests (12, 13), mountain meadows (14), and alpine
(15).



excess, possibly due to their location at eleva-
tions supporting floras from Mediterranean/
steppe environments and northern coniferous
environments. While we see no corresponding
break in environmental rigor (Table 2), the
tundra environment is notably exotic poor.

In contrast, numbers of species invading
undisturbed vegetation of different environ-
mental types vary greatly (Table 3): grasslands
(7–13), aspen (8), dry Pseudotsuga forests (8–10),
other conifer forests (0), and alpine (2). This sug-
gests that the undisturbed vegetation of major
environmental types differs greatly in compet-
itiveness. In grasslands and dry forests, exotics
occupying disturbed sites, i.e., tolerating the
physical environments, also colonize adjacent
undisturbed vegetation. The open structure of
these vegetation types apparently provides non-
competitive microsites for these exotics. The
exotic deficiency seen in the shrub zone was
also seen on disturbed sites and is most likely
induced by the physical environment. In con-
trast, exotics known to tolerate physical condi-
tions in the conifer zone (i.e., disturbed sites)
rarely invade adjacent forest. These exotics are
probably excluded from forests by heavy com-
petition for water/nutrients (Watt and Fraser
1933) or light. Thus, removal of forest commu-
nities, by fire or harvest, should allow plants
capable of occupying noncompetitive disturbed
sites to colonize more widely in the forest
environment, where they may inhibit forest
establishment but will finally yield when they
are overtopped by tree species.

The low exotic richness of the alpine is
probably due in part to environments too rig-
orous for establishment of opportunists (Billings
and Mooney 1968), but this does not explain
the sharp decline from the forest and mead-
ows below. It is likely that failure of dispersal
also contributes. To illustrate, we contrast the
exotic presence in alpine and mountain meadow
vegetation. (1) First, while plants adapted to
disturbed Old World alpine environments may
exist, vectors—crops, animals, machinery—
rarely pass directly from these areas to high-
altitude areas in the Rockies. Thus, the trans-
fer of potential weeds has been slight. We con-
servatively suggest that as recreational use
grows, managers should minimize introduc-
tions (exchanges) of exotics by increasing both
quarantine and efforts to detect and eradicate
unwanted establishment. (The presumed need
for this caution might be tested by showing

that alpine opportunists are available in the
Old World [Alps, Himalayas, Southeast Asia]
flora and that the grazing disturbance has been
sufficient and environmental rigor slight enough
to induce the evolution of opportunistic species.)
(2) In contrast, while mountain meadows seem
almost equally isolated, our culture has pro-
vided a stepping stone for exotics to them. The
exotics have been introduced to environmen-
tally similar foothill sites through commercial
and agricultural activity, have established, and
are being transported upward, especially as
motorized backcountry use increases. For
example, while an experimentally bared por-
tion of a remote mountain meadow (Weaver
and Collins 1977) was not infected by Cirsium
arvense in the preceding 2 decades, thistle
appeared soon after loggers entered nearby
forests.

Distribution of 
Individual Species

Knowledge of the tolerance range of a
species tells us where to look for established
stands and where to expect establishment. Both
are useful in planning control. It may also help
us estimate a species’ ability to cross stress-
ful—dry or cold—zones without assistance.
The importance of the latter is declining as
human transport becomes the dominant dis-
persal mechanism.

DISTRIBUTION AMONG DISTURBED SITES.—
The physiologic niche of a species is suggested
by its presence in disturbed sites because
open spacing reduces competition. We recog-
nize 4 distribution types (niche types).

First, species with narrow distributions are
most important in lower, warmer environments
(Table 3). Some occupy dry grasslands (Agropy-
ron cristatum, Alyssum alyssoides, Camelina
microcarpa, and Bromus japonicus), shrublands
(Rumex acetosa), and warm forests (Dactylis
glomerata, Festuca pratensis, Verbascum thap-
sus). None are important in the moist conifer
zone, cool conifer zone, or mountain grass-
lands/tundra. In our data Chrysanthemum leu-
canthemum seems to have narrow tolerances,
but it is spreading rapidly into drier environ-
mental types including those dominated by
Pseudotsuga menziesii and Festuca idahoensis.

Second, plants with broader tolerances pop-
ulate wider zones in the altitudinal gradient
(Table 3). Low-site plants (Tragopogon dubius,
Centaurea maculosa, and Melilotus officinalis)
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may prefer grasslands over shrublands. Exotics
dominating near the lower forest margin plants
include Cirsium arvense, Poa compressa, and
the most drought tolerant (?) of the clovers (Tri-
folium procumbens). Trifolium pratense occurs
throughout the low/warm conifer zone. Trifo-
lium repens, T. hybridum, and Agrostis alba
occur in the moist conifer zone, both low/warm
and high/cool.

Third, 2 plants (Poa pratensis and Tarax-
acum officinale) have remarkably wide distri-
butions, extending from low grasslands through
forests to mountain meadows and even tundra
(Table 3). Two others (Bromus inermis and
Phleum pratense) range from moister grass-
land environments through forest environ-
ments to mountain meadow environments. All
of these species cover 2–5% (D in Table 3) or
5–25% (E) of the ground surface on disturbed
sites in some environments they occupy.

Fourth, 5–6 species representing 2 sub-
groups have interrupted or bimodal distribu-
tions (Table 3). First, Lactuca serriola and Bro-
mus tectorum were found in dry grasslands
(Bouteloua and Agropyron), were absent from
moister grassland environments, and reappeared
in dry forests (Pseudotsuga). One might specu-
late that these species tolerate arid environ-
ments, cannot compete in moister grassland
environments, and become competitive again
where precipitation evaporates from treetops
before it becomes available to plants in the
ground layer. This hypothesis would be more
convincing if the interruption occurred in the
undisturbed zone, but not in the disturbed
zone. The same interruption was reported for
2 native grasses (Stipa viridula and Koeleria
nitida) and 5–10 exotic species (including Bro-
mus inermis, B. tectorum, B. japonicus, 3 annual
mustards, and Kochia scoparia) that are pre-
sent in the dry plains of eastern Montana, dis-
appear in the foothills and grasslands, and
reappear in the Pseudotsuga zone to the west
(Weaver and Meier 1997). Second, 3–4 species
have modes in both a lower-elevation zone
and in the Abies/mountain meadow zone. Des-
curania (listed as unimodal) appears in dry
grasslands and has a weak high mode. Poly-
gonum and Madia appear first in moister grass-
lands and have solid high modes. Medicago
appears first in the dry forest zone (Pseudo-
tsuga) and reappears in the Abies/mountain
meadow zone. We speculate (hypothesize) that
plants of the lower mode occupy a site dry due

to lack of precipitation and those of the high
mode occupy sites dry due to the high wind
flows near mountain ridges (cf. Weaver 2001).

Each altitudinal zone contains species of
both narrow and broad environmental ampli-
tudes. This is demonstrated by listing the
species within an amplitude group according
to their locations on the altitudinal gradient
(Table 3). Thus, among species with narrow
distribution, Agropyron cristatum, important
only in the driest environments, appears first.
And among species with broad distribution,
Poa pratensis appears before Taraxacum offici-
nale because it becomes important at lower
altitudes.

DISTRIBUTION AMONG UNDISTURBED SITES.—
The tendency of exotics to escape from distri-
bution corridors is inversely related to the
penetrability of adjacent vegetation. Thus, while
establishment on disturbed sites provides an
indication of the physiologic niche, invasion of
natural vegetation provides an indication of
the realized niche, i.e., performance under
competition from natural vegetation.

The escape of species of all amplitudes and
gradient segments is proportional to the open-
ness of the adjacent native vegetation. Species
of narrow to moderate altitudinal ranges often
escape into relatively open grassland or Dou-
glas-fir (Pseudotsuga) vegetation, but they are
unlikely to escape into denser subalpine fir
forests (Abies; Table 3). Similarly, species with
broad ranges tend to escape into grassland and
low forests but are unlikely to escape into dense
forest environments (Table 3). Given these
observations, we expect bimodal species to
escape in their lower, drought-stressed envi-
ronments, but to be competitively constrained
in their upper, moister environments. This is
true except where the environment in the
upper arm is sufficiently wind-dried to create
competitive conditions (and escape) similar to
that in the low-elevation mode (Table 3). Poly-
gonum aviculare and Madia glomerata are bi-
modal plants illustrating the last point.

While undisturbed vegetation in the center
of the forest zone may be impenetrable, seg-
ments of the forest zone that have been logged
or burned are probably more penetrable, either
because competition for light or water/nutri-
ents (Watt and Fraser 1933) is reduced or be-
cause wind dispersal is facilitated. Analysis of
comparable samples (existing data) will even-
tually test this hypothesis.
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We expect the dominance of a species on
disturbed sites of an environmental type to
indicate its capacity to invade undisturbed
sites in that environmental type, both because
a species thriving on the disturbed site must
be well adapted to the physical environment 
it occupies and because, as a well-adapted
species, it will produce more seed. Our
hypothesis is, then, that invading species will
be more dominant on adjacent disturbed sites
than noninvaders. In fact, the median constancy
of invaders usually does exceed the median
constancy of noninvaders, and the difference
is significant in 70% of the cases (Table 4).
When data are pooled across all except the
moist conifer types, which show no escape,
the difference is significant (P < 0.0005). The
moist conifer types, PSME/PHMA, TSHE, and
ABLA forests are reasonably excluded from
this analysis because no exotic species have
moved from roadside to forested environments.

Evaluating Exotics

If public forest and park vegetation is to be
managed for “pre-Columbian” condition (cf.
U.S. Congress 1872), exotics should be ex-
cluded. If this is impossible, managers should
strive to prevent exotics from dominating the
vegetation because dominants are most likely
to affect the success of native plant associates
and, through their influence on vegetation
composition, animal associates as well (cf.
Clinton 1999). In evaluating species, we mini-
mize “breadth of distribution” as a criterion on
the assumption that conservationists should
equally emphasize preservation of all vegeta-
tion types important in the region. Vegetation
types rare in the region deserve special atten-
tion if they are endemic to it, but they are less
critical if they are well represented in other
regions. Because our project was designed for
generality, we studied no rare types.

Sites undergoing primary succession are
rare in the forest and grassland zones (e.g., 

river deposits or landslides) and more com-
mon in ridge sites of the alpine (e.g., unde-
composed rock). Although slopes of our road-
side sites may be steeper than the average dis-
turbed site, our data (Table 3, cover classes D
and E) probably identify the most problematic
species of upland sites undergoing primary
succession. On disturbed grassland sites (in-
cluding mountain meadows) the only exotic
with 5–25% cover (E) was Poa pratensis and
exotics having 2–5% cover (D) were Bromus
inermis, B. tectorum, Phleum pratense, and
Rumex acetosa. In dry forests exotics with
cover 5–25% (E) were Dactylis glomerata and
Phleum pratense, while those with cover 2–5%
(D) were Agrostis alba, Bromus inermis, and
Trifolium repens. In moister conifer forests,
those with cover 5–25% (E) were Bromus iner-
mis, Melilotus officinalis, Taraxacum officinale,
and Trifolium hybridum; and 2–5% (D) were
Medicago lupulina, Phleum pratense, Trifolium
pratense, and T. procumbens. No exotic covered
as much as 5% of either disturbed or undis-
turbed sites in the alpine. Ironically, the most
aggressive exotics are rarely discussed as
problematic, and none of the exotics desig-
nated as noxious seem to dominate in the wide
range of environments we studied.

Secondary secession sites—such as recent
burns, logged areas, or old fields—are more
common on public lands than are primary suc-
cession sites. Here, the performance of exotics
may be similar to their performance on pri-
mary succession sites. This expectation may
overstate the problem since exotics, mostly
dispersing laterally through space, must com-
pete with natives colonizing both from the
propagule bank and dispersing laterally. Thus,
we expect the grasses (Agrostis, Bromus, Dac-
tylis, Phleum, and Poa), legumes (Melilotus,
Medicago, and Trifolium), and dandelion, listed
above, to be among the most important exotic
invaders.
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TABLE 4. Median constancy of both invading species and noninvading species on disturbed sites. The lower constancy
of noninvading species may indicate poorer adaptation or a smaller seed supply.

Environmental BOGR AGSP FEID FEID FESC PSME PSME POTR FEID DECA Over-
type (HT) STCO BOGR ARAR ARTR FEID SYAL PHMA CARU AGCA CARX all

Invaders 5.0 5.0 7.0 5.0 6.0 5.0 5.0 7.5 2.0 1.0 5.0
Noninvaders 1.5 1.0 1.5 2.5 2.5 1.0 5.0 2.5 2.0 0.0 1.0

P = 0.0005a 0.07 0.23 0.08 0.16 0.06 0.06 0.61 0.06 — 0.57
aKruskal-Wallis test (Gibbons 1985)



Late seral sites may be as common as or
more common than secondary succession sites
in national forests and parks. Later seral vege-
tation of moister forests is impenetrable, but
grasslands, shrublands, and dry forests are in-
vaded by many species (Table 3). However,
because dominance of all species falls from
disturbed to undisturbed sites, we discount
most of the species not listed as invaders of
secondary succession sites. This position may
understate the effects of robust (e.g., Agropy-
ron cristatum or Melilotus officinalis) or very
numerous (e.g., Bromus tectorum, B. japoni-
cus, or Alyssum alyssoides) plants of the driest
environmental types.

CONCLUSIONS

The number of exotics currently common
in vegetation of the northern Rocky Moun-
tains is relatively few, approximately 29 (Table
3). The altitudinal (temperature/moisture) ampli-
tude of each of these species is described by
presence in environmental types (HTs) repre-
senting segments of the environmental gradi-
ent (Table 3). Knowledge of species ampli-
tudes will enable managers to estimate and
even map potential distributions of exotics,
both in disturbed (primary succession) and
undisturbed (late seral) vegetation.

The overall invasibility of major environ-
mental types—in both disturbed and undis-
turbed conditions—is indexed by tabulating
exotic species richness across a broad altitudi-
nal gradient of types. Grasslands and dry forest
environments harbor the most exotic species,
both in disturbed and undisturbed sites. Moist
conifer forests have similar species richness on
disturbed sites, but no exotics appear on undis-
turbed sites. Tundra environments support few
exotics on either disturbed or undisturbed
sites.

Dominance in vegetation in at least one
environmental type is our criterion for recog-
nizing an exotic of special concern, because a
dominant is most likely to affect the success of
plant associates and, through its influence on
vegetation composition, the success of animal
associates as well. We minimize breadth of
distribution as a criterion on the assumption
that conservationists should emphasize equally
the preservation of all regionally common 
and internationally unique ecosystems. Seven
species exhibited cover of 5–25% on disturbed

sites they occupied in at least one type (Table
3); they include grasses (Agrostis, Bromus, Dac-
tylis, Phleum, and Poa), legumes (Melilotus,
Medicago, and Trifolium), Rumex and Tarax-
acum species. An additional seven species ex-
hibited cover of 2–5% on disturbed sites in at
least one environmental type (HT). Most of
these plants were introduced intentionally and
none of these stealth plants is normally con-
sidered a noxious weed.
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White pine blister rust disease (WPBR),
caused by the introduced fungus Cronartium
ribicola, is the most widespread and serious
disease of Pinus albicaulis (whitebark pine;
Arno and Hoff 1989) and P. flexilis (limber pine)
in the Rocky Mountains (Smith and Hoffman
2000). The disease is also a potential threat to
most, if not all, other white pine species (genus
Pinus, subgenus Strobus, section Strobus, sub-
sections Cembrae and Strobi, and section Par-
rya, subsection Balfourianae; Hoff et al. 1980).
The rust causes branch and stem cankers that,
in most cases, girdle and kill the host tree.

Cronartium ribicola has a complex life cycle
that is characterized by 5 spore-producing
stages that alternate infection between white
pine species and plants of the genus Ribes
(currants and gooseberries). Aeciospores are
small, light spores that are produced on pine
cankers and can travel long distances to infect
the leaves of Ribes. Urediniospores emerge 
on Ribes leaves and spread to other leaves on
the same plant, or other nearby Ribes plants.
Teliospores, produced on Ribes, germinate and
form the basidium, which releases basidio-

spores to infect white pine needles. Fungal
hyphae spread into woody tissue causing
cankers, where the 5th type of spore-bearing
structure, the pycnium, is produced. Upon
completion of the pycnial stage, which proba-
bly involves mating, aecia are produced, com-
pleting the life cycle.

Like other pine rusts, transmission of spores
and host infection depends on a favorable
temperature and moisture environment, an
abundance of spores (inoculum), and availabil-
ity of susceptible hosts (Mielke 1943, Charlton
1963). These conditions may be affected by
physical factors such as slope, aspect, eleva-
tion, and precipitation, as well as biological
factors such as structure of the forest canopy
and proximity of Ribes spp.

Site and stand factors associated with rust
incidence have been identified by studying
the distribution of WPBR and endemic pine
rusts. Van Arsdel (1972) found that the size of
forest canopy openings and certain topographic
features were related to WPBR incidence in
Pinus strobus (eastern white pine). In British
Columbia, Hunt (1983) reported more WPBR
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cankers in P. monticola (over 2.5 m high in the
tree) as slope increased. Jacobi et al. (1993)
found Cronartium comandrae (comandra blister
rust) incidence in Pinus contorta subsp. latifolia
(lodgepole pine) positively correlated with tree
diameter, and negatively correlated with stand
density and distance to the rust’s telial host.
Beard et al. (1983) found a greater incidence
of C. coleosporioides (stalactiform blister rust)
in central Idaho Pinus contorta forests at mid-
dle to upper elevations, and in Abies lasiocarpa/
Xerophyllum tenax and Abies lasiocarpa/Vac-
cinium scoparium habitat types. Endocronar-
tium (=Peridermium) harknessii (western gall
rust) stem infections were negatively corre-
lated with stand age in British Columbia Pinus
contorta forests (van der Kamp 1988). Van Ars-
del (1965) constructed a formula based on
slope and canopy openings and predicted
WPBR presence in southwestern Wisconsin
with 89% accuracy. Charlton (1963) used aspect,
elevation, slope, topographic position, and vege-
tation structure, along with climatic factors, to
assess WPBR infection hazard in the eastern
U.S. A comprehensive site-specific WPBR haz-
ard model based on site, stand, alternate host,
and physiological factors was developed by
McDonald et al. (1981) for P. monticola in
northern Idaho.

Very little of this type of work has been
conducted in the southern portion of C. ribi-
cola’s range in the Rocky Mountains because,
historically, disease surveys revealed only trace
levels of infection (Brown 1967, Brown and
Graham 1969). However, WPBR has recently
intensified and spread to new locations in the
southern portions of the Northern Rocky Moun-
tain and Middle Rocky Mountain provinces
(Kendall et al. 1996, Smith and Hoffman 2000).
As an initial step in modeling WPBR spread
and intensification in this region, we used USDA
Forest Service disease survey data (Smith and
Hoffman 1998) to look for relationships between
WPBR incidence and several site and stand
characteristics.

STUDY AREA

Pinus albicaulis and P. flexilis populations in
the U.S. extend southward along the Rocky
Mountains from the Canadian border to south-
eastern Idaho and southwestern Wyoming.
Pinus flexilis extends even further south,
throughout the mountains of Utah. There are

also several disjunct P. flexilis and P. albicaulis
populations in isolated mountain ranges of
eastern Oregon and northern Nevada, and both
species occur in the Sierra Nevada (Critch-
field and Little 1966). Our study area encom-
passes those Rocky Mountain white pine pop-
ulations that lie within southern Idaho and
western Wyoming (Fig. 1). Within this region
P. albicaulis and P. flexilis populations extend
upward from the lower subalpine zone to the
upper (cold) tree line. Pinus flexilis also has
the unique ability to grow at lower (dry) tree
line (Arno and Hammerly 1984).

FIELD METHODS

In 1995 we installed 10 rectangular plots
according to the methods specified by the
Whitebark Pine Monitoring Network (Kendall
1995). In 1996 we used randomly located strip
transects rather than rectangular plots to delin-
eate trees. We switched to transects because
white pine species in our study area tend to
grow as dispersed woodlands or as infrequent
seral components in subalpine forests. Obtain-
ing 50 white pines in a rectangular plot of a
reasonable size was often not possible. For the
68 sites sampled during 1996, we established
a 4.6-m (15-ft)-wide strip transect, along the
contour of the slope, from a random starting
point. We traversed this transect until 50 white
pines had been inspected or until we encoun-
tered a change in the character of the site or
stand that did not match our sampling criteria,
such as a different canopy structure, a suffi-
ciently different aspect (>10° difference), slope
(>5% difference), habitat type or phase, or a
topographic change. Rather than cross this
environmental gradient, we changed the direc-
tion of the transect by 180°, displaced it uphill
or downhill 4.6 m (15 ft), and continued to
sample until 50 trees had been inspected.

For each tree we recorded the presence of
WPBR cankers and DBH (diameter at breast
height, 1.37 m above the ground), in 5.1-cm
(2-in) size classes. At the midpoint of each tran-
sect, we measured or calculated habitat type
(Steele et al. 1981, 1983), presence/absence of
Ribes sp., basal area, trees per hectare, canopy
closure, elevation, aspect, slope angle, and
topographic position (Table 1).

An additional variable, estimated mean sum-
mer precipitation, was generated from climate
maps (Martner 1986, Molnau and Newton
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1994). To estimate mean summer precipita-
tion, we multiplied regionalized estimates of
the summer (June, July, and August) propor-
tion of total precipitation by the mean annual
precipitation values taken from these maps.
We interpolated precipitation values between
isohyetal contours for each of our sample sites.

STATISTICAL METHODS

Because sampling location criteria and data
collection procedures were identical for plots
and transects, the data were combined for our

analysis. We grouped the categorical indepen-
dent variables, habitat type, canopy cover, and
topography to reduce the number of cate-
gories for model calculation. For example, we
identified 20 habitat type classes in the field
but combined these into 4 categories based 
on a multidimensional scaling procedure that
groups habitat series based on moisture re-
quirements of understory plants (McDonald
unpublished data). We used dummy coding for
the categorical variables. Presence or absence
of Ribes spp. was entered as a binary variable
(i.e., a value of 0 for absent, 1 for present). 
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Fig. 1. Northern and middle Rocky Mountain ranges, sample locations, and white pine blister rust intensity for 78
sample sites inspected in 1995–1996. Distribution of white pine species (shaded areas) derived from Little (1971).



Elevation, slope, latitude (UTM northing), aver-
age tree size, and mean summer precipitation 
were entered as continuous variables (i.e.,
their actual measured values). The aspect
measurement, which is azimuthal (circular
data), was linearized by taking the cosine of
the aspect in radians.

Logistic Regression Analysis

Percent of trees infected in a sample stand
was the dependent variable, which was treated
statistically as the number of successful events
(infected trees) per number of trials (trees
sampled) at each sample site. We performed a
stepwise logistic regression procedure with
the model development data set using the
PROC LOGISTIC STEPWISE option in SAS
(SAS Institute Inc. 1996). This procedure iden-
tifies predictive variables when the number of
potential explanatory variables is large relative
to the number of samples (Hosmer and Leme-
show 1989). We constructed 3 models of WPBR
incidence with combinations of the variables
selected by the stepwise procedure.

To determine if models were statistically
significant, we compared 4 criteria to assess
how well the models fit and to compare how
well each model predicted WPBR incidence.
First, we calculated r2

L, which is a measure of
the reduction in the log-likelihood as a result
of including the independent variables (Menard
1995). We tested the null hypothesis that the

predictor variables contribute no more than 
chance to the explanation of the dependent
variable with the Gm statistic (the model chi-
square statistic). The Bayesian information cri-
terion (BIC) was calculated as a selection de-
vice because it emphasizes parsimony by penal-
izing models with a large number of parame-
ters (Ramsey and Schafer 1997). To measure
the predictive efficiency of each model, we
arbitrarily assigned broad classes of WPBR
incidence, low (<25% incidence), medium
(26–50%), and high (>50%), to the observed
and predicted values and then calculated how
frequently each model correctly predicted the
observed category, was 1 category off, or was
off by 2 categories.

Model Testing

We used a split-sample validation tech-
nique to develop and test the logistic regres-
sion models. Each record was assigned a ran-
dom number, sorted by this number, and then
split into a model-development data set (2/3 of
the data), which was used to develop the mod-
els. The remaining 1/3 of the data (n = 23) was
treated as an independent data set to test the
models’ statistical significance, fit, and predic-
tive efficiency, and to assess the importance of
the independent variables. We estimated the
predicted proportion of trees infected in each
sample with the predicted probability of infec-
tion (presence or absence of WPBR) for each
tree in that sample.
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TABLE 1. Variables used in the stepwise logistic regression procedure and parameter estimates for the 3 models using
the recombined (full) data set.

Standardized parameter estimate (Wald χ2)_____________________________________________
Variable (description) Model 1 Model 2 Model 3

Elevation (meters, from topo map) –0.613 (313) –0.606 (321) –0.546 (308)
Average DBH (diameter at breast height in 2-cm classes) 0.458 (212) 0.454 (210) 0.517 (301)
Mean summer precipitation (interpolated from maps) 0.278 (109) 0.304 (145) 0.250 (111)
Ribes (present/absent in stand) 0.237 (62) 0.239 (69)
Stand density (trees ⋅ ha–1, all species) –0.258 (61) –0.222 (55)
Topographic position 3 (upper slopes) 0.215 (56) 0.212 (55)
Habitat type 1 (wet subalpine fir group) 0.123 (28)
Slope (percent) –0.109 (12) –0.118 (15)
Habitat type 4 (whitebark pine series) 0.007 (7)
Basal area (m2 ⋅ ha–1, all species, white pines only)
Aspect (cosine of aspect in degrees)
Latitude (UTM–northing)
Canopy (open, broken, closed)
Topography (valley/lower, mid, upper, ridge)
Habitat type (wet subalpine fir, cool/moist

subalpine fir, cold/dry subalpine fir,
whitebark series, Douglas-fir)



The probability of WPBR infection in a
tree [P(Y)] was obtained by inserting the test
data independent variables into the equation
for each model. The equations calculated logit(Y)
(the natural logarithm of the odds of WPBR
infection) rather than P(Y) directly. The form of
the equation was

logit(Y) = β̂0 + β̂1 × x1 + β̂2 × β̂x2 +..... + β̂k × xk,

where logit(Y) = ln {P(Y)/[1 – P(Y)]}, β̂0 is the
Y-intercept, x1 through xk are the independent
variables identified by the stepwise procedure
as important predictors of WPBR incidence,
and β̂1 through β̂k are the coefficients for these
independent variables. It was necessary to lin-
earize the predicted value to compare it to the
linear observed proportion of trees infected.
To accomplish this, logit(Y) was converted to
odds(Y) by exponentiation, and then to P(Y) 
by the formula P(Y) = odds(Y)/[1 + odds(Y)],
where P(Y) is the predicted probability of infec-
tion in an individual tree and odds(Y) is the
ratio of the probability that Y = 1 to the prob-
ability that Y ≠ 1.

We used least-squares regression to com-
pare the predicted proportion of trees infected
with our observed proportion of infected trees
and to calculate the significance of the regres-
sion and the coefficient of determination.
Finally, we assigned the low, medium, and
high classes to the predicted and observed
values and performed a simple error assess-
ment to see how well the model predicted
incidence.

Analysis of the Independent 
Variables in the Model

To assess the importance of the indepen-
dent variables, we evaluated the odds ratio,
which approximates how much more likely
the event (WPBR presence in a tree) becomes
with increases or decreases in the value of
each independent variable (SAS 1996). We
also used the standardized logistic regression
coefficients to evaluate the strength of the
relationship between each independent vari-
able and the dependent variable (Menard
1995).

RESULTS

Model Development 
and Validation

The stepwise logistic regression identified
13 variables that were potentially related to
WPBR infection. We used these to develop 3
candidate models. For the 1st model we re-
moved 4 variables that were highly correlated
(r > 0.6) or that were not significant (P >
0.05). We created the 2nd model by removing
the variables with Wald-χ2 values <20. The
3rd model contained only the 3 variables that
stood apart from the others because of their
very high Wald-χ2 values (>100). Fit statistics,
significance, and predictive efficiency for the
3 models are shown in Table 2A.

When applied to the validation set, all 3
regression models were statistically significant
(P ≤ 0.001). The coefficient of determination
(r2) for the models ranged from 0.38 to 0.45.
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TABLE 2. Fit statistics and prediction efficiency for 3 logistic regression models of WPBR incidence using the model-
developing data set (A) and the model-validation data set (B).

A Prediction of incidence category__________________________________________
Model χ’s GM

a Pb R2c R2
L

d BICe nf Correct Under 1 Over 1 Under 2 Over 2

1 9 502 0.001 0.483 0.179 2326 49 37(76%) 3 5 2 2
2 7 487 0.001 0.473 0.173 2339 49 37(76%) 5 4 2 1
3 3 370 0.001 0.347 0.129 2502 50 33(66%) 8 7 2 0

B Prediction of incidence category___________________________________________
Model χ’s Pb R2c nf Correct Under 1 Over 1 Under 2 Over 2

1 9 0.001 0.448 24 19(79%) 3 1 1 0
2 7 0.001 0.384 24 18(75%) 3 2 1 0
3 3 0.001 0.405 24 15(62%) 6 3 0 0

aModel chi-square
bStatistical significance of model
cCoefficient of determination
dReduction in log-likelihood due to the model
eBayesian information criterion
fNumber of observations; differences due to missing values for some variables



The level of classification accuracy was highest
for model 1, which correctly classified 79.2%
of the cases. Model 3 correctly classified 62.5%
of the test cases and had a higher r2 than
model 2 (Table 2B).

Importance of Independent 
Variables in the Model

The most important variables in all 3 models
were elevation, mean summer precipitation,
and average DBH. Although other variables
were also statistically significant, when com-
bined, these variables accounted for a much
smaller proportion of the variation in WPBR
incidence than the first 3 variables. Table 1
lists the parameter estimates for the variables
in each model.

DISCUSSION

Interpretation of Independent 
Variable Selection

ELEVATION.—In Yellowstone National Park,
Berg et al. (1975) reported that WPBR inci-
dence in Pinus albicaulis and Pinus flexilis
decreased with elevation. These researchers
found that 92% of all infections occurred
below 2591 m (8500 ft) elevation. Our results
suggest a similar negative relationship between
elevation and WPBR incidence. We found that
97% of the sample stands below 2591 m had
WPBR, while only 53% of the stands above
2591 m were infected. However, the average
proportion of trees infected in these stands
did not decrease with elevation. In fact, the
proportion of high-infection sites above 2591
m, 33%, was slightly greater than the propor-
tion of high-infection sites below this eleva-
tion, 31%, suggesting that once WPBR is able
to infect a high-elevation site, it is able to con-
tinue to intensify. However, this phenomenon
was apparent only in the Greater Yellowstone
Ecosystem portion of our study area. Some fac-
tors involved in the decrease in WPBR inci-
dence with increasing elevation may include
earlier Ribes leaf senescence, cooler tempera-
tures at key times of development or spore
dispersal, less susceptible Ribes species, or a
less favorable spatial pattern of hosts at higher
elevations.

PRECIPITATION.—Mean summer precipita-
tion was an important predictor variable in
our model. Other researchers have observed a
relationship between WPBR incidence and

regional moisture characteristics. For example,
Van Arsdel et al. (1956) attributed low WPBR
incidence in southwestern Wisconsin to the
dry climate of the region.

Optimal temperature and moisture condi-
tions for survival of Cronartium ribicola have
been well documented (Mielke 1943, Van Ars-
del et al. 1956). Infection of pines requires
extended periods of time (Charlton 1963) dur-
ing late summer and early autumn with night-
time temperatures below 19.4°C (67°F) and free
moisture on the needle surfaces (Kimmey and
Wagener 1961). Van Arsdel et al. (1956) con-
cluded that at least 2 consecutive days of these
favorable conditions are required for infection
of pines.

Extended temperature data from high-ele-
vation weather stations within our study area
were not available, and interpolating tempera-
tures between low-elevation weather stations
is inappropriate because of local temperature
inversions that are common in mountain envi-
ronments (Baker 1944). Thus, we did not include
a temperature variable in our analysis. We were
also unable to locate climate data for moun-
tainous areas that included summer moisture
estimates other than mean precipitation
amounts. It is generally thought that moist
summers are conducive to WPBR development
and spread; however, mean summer precipita-
tion alone is probably not the best indicator of
favorable climate conditions. For example,
Mielke (1943) noted that a heavy “flare up” of
WPBR incidence occurred in Idaho during a
summer of relatively low mean precipitation
in 1937. In fact, dew may be an equally impor-
tant source of moisture (Mielke 1943). Cloudy
summer periods and high relative humidity
periods may be better indicators of WPBR
incidence than precipitation.

AVERAGE TREE DIAMETER.—The importance
of average tree diameter at breast height (DBH)
in the logistic regression model may be due to
2 factors. First, smaller-diameter trees tend to
have less foliage than larger-diameter trees
and are therefore smaller targets for spores.
Second, most cankers we inspected were in
the upper portion of tree crowns in the inte-
rior of stands or throughout the crown of trees
on an open edge of the stand. We speculate
that wind patterns during times of basidio-
spore dispersal from Ribes to pines concen-
trate infections along the windward and upper
sides of a stand. Wind-dampening effects of
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the forest canopy and screening of spores by
larger trees may reduce the transfer of spores
to smaller, more sheltered trees.

While diameter could reflect the length of
exposure, the length of exposure is probably
not important because even the smallest trees
in our samples likely pre-date WPBR presence
in the region.

Average DBH appears to be more impor-
tant to the intensity of infection on sites that
are infected than to WPBR incidence. Of 16
stands with an average DBH of <10 cm, all
but 2 were infected, with an average infection
level of 19.5% (2–85%) for the infected stands.
Of 14 stands with ≥20 cm average DBH, 4 were
uninfected, and the average infection rate for
the infected stands was 46.3% (2–87%).

OTHER VARIABLES.—Other variables were
statistically significant in the stepwise logistic
regression analysis. However, these variables
had much lower Wald-χ2 values and con-
tributed proportionally much less to explain-
ing observed variability in incidence than ele-
vation, mean summer precipitation, and aver-
age tree diameter. Due to the low Wald-χ2 val-
ues and potential correlations between these
variables, their statistical and biological signif-
icance is suspect. Also, since we did not test
each of the independent variables, it is possi-
ble that we included irrelevant variables in the
model.

Implications for 
Future Research

The potential relationships between site
and stand characteristics that we identified in
this analysis represent a “snapshot” in time for
the current stage of the developing WPBR epi-
demic in our study area. These relationships
help identify areas where WPBR will likely
spread and/or intensify first. Aging cankers
could help researchers (1) determine how
WPBR has moved and intensified in the region
and (2) differentiate between sites susceptible
to long-range transmission and those where
WPBR intensifies quickly. Such a study could
also help researchers predict future spread
and intensification of WPBR in the region.
However, the characteristics of spread and
intensification may change in the future due
to genetic adaptations by Cronartium ribicola,
an exponential increase in inoculum availabil-
ity, changes in host distributions, or shifts in
regional climate patterns.

Management Implications

The ability to identify areas of potential rapid
intensification or areas with a low probability
of infection or intensification over time would
help land managers direct mitigation efforts.
For example, a spatial model that identifies
these areas of intensification could aid the on-
going search for phenotypically resistant trees,
which are highly visible in severely infected
stands. In some areas vegetative competition
from Abies lasiocarpa (subalpine fir) is as much
of a concern as WPBR (Keane et al. 1994). A
spatio-temporal WPBR spread and intensifica-
tion model would help managers decide where
treatments to reduce this competition would
be effective. Where WPBR intensification prob-
ability is low, silviculture and/or prescribed
fire could be used to reduce competition and
provide regeneration opportunities for white
pines. Conversely, conducting these activities
in areas with a high probability of WPBR
intensification could potentially increase inocu-
lum levels through the regeneration of suscep-
tible white pines or an inadvertent increase in
Ribes abundance. A predictive model could
also help resource planners assess the future
effects of white pine mortality on wildlife, water
quality and quantity, avalanche activity, and
recreation.
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Discovery of life at high temperature
(Brock 1978) led to advances in biotechnology
made possible by Thermus aquaticus (Taq),
which was isolated in Yellowstone National
Park (YNP; Brock and Freeze 1969). Since Taq
polymerase chain reaction (PCR) became a
patented process for in vitro amplification of
DNA, PCR has generated significant scientific
advances in biotechnology and substantial rev-
enues (Brock 1994) for the patent holder. The
commercial success of T. aquaticus led to an
increase in collection activity and research in
the Yellowstone geothermal ecosystem. Scien-
tists seeking other utilitarian, heat-stable en-
zymes in the protected, mostly unexplored hot
spring habitats generated dozens of research
permits in the 1990s, allowing microbial explo-
ration in YNP.

Only a small number of organisms from the
hot springs in YNP have been isolated (Lind-
strom 1997). As a result, there is no existing
microbial inventory to evaluate whether inves-
tigators who visit a series of springs inadver-
tently introduce exotic microbes via sampling
equipment or mud carried from one spring to
another. Hence, without a historic baseline
inventory, we cannot determine whether a 

newly isolated species is an exotic microbe.
Such an issue arose in the acid sulfate habitat
of Sulfolobus acidocaldarius (Brock et al. 1972).
This organism was the first species known to
grow in this habitat. Then several new species
were reported, Metallosphaera sedula, Sulfolo-
bus metallicus, S. solfataricus, Acidianus brier-
leyi, A. infernus, Acidobacillus fibrocaldarius,
Lobobacillus acidocaldarius (Zillig et al. 1980,
Segerer et al. 1986, Huber et al. 1989, Huber
and Stetter 1991, Weiss Bizzoco 1999). It was
not known whether they were newcomers to
the acid sulfate habitat or were always present,
but due to advances in isolation technology,
only recently identified and reported

One approach to this question was pursued
by Susan Barns and Norman Pace (Barns et al.
1994), who developed a complete inventory of
a mineral rich hot spring known as Jim’s Black
Pool using PCR-based DNA fingerprinting of
the small subunit rRNA. This classic study
produced a grouping of the archaeal domain
into 2 kingdoms, Crenarchaeota and Korarchae-
ota. This would not have been possible using
traditional enrichment culture techniques, since
most of the microbes cannot be cultured.
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INVISIBLE INVASION: POTENTIAL CONTAMINATION OF
YELLOWSTONE HOT SPRINGS BY HUMAN ACTIVITY1

Robert F. Lindstrom2, Robert F. Ramaley3, and Richard L. Weiss Bizzoco4

ABSTRACT.—This report establishes a baseline inventory of microorganisms in acidic hot springs of Yellowstone
National Park (YNP). The analysis is based on observations carried out over the past 25 years using light microscopy,
DNA staining, and electron microscopy of environmental samples. The inventory, while incomplete in that not all organ-
isms have been cultured or examined using genetic approaches, represents a study of several solfatara (acid sulfate)
geyser basins in YNP. We found that the types of microorganisms in flowing springs had changed over time. In contrast,
no such changes occurred in mixing pools. We solicited opinions of prominent YNP microbiologists to address the issue
of change in the context of human cross-contamination of springs and to suggest sampling protocols. While the consen-
sus is that research has not introduced exotic species, this explanation is always uncertain. The issues related to this
uncertainty, including human cross-contamination, are discussed, and sampling methods designed to best preserve the
springs for future investigations are described.
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We report herein a baseline inventory of
organisms in the acid sulfate habitat based on
both historical and recent study. Then we pre-
sent the opinions of prominent Yellowstone
researchers on the possibility of introduction
of exotic species of microbes from human
(including human researcher) activity.

STUDY SITES

We examined 2 types of acid hot springs in
YNP, flowing springs and mixing pools. These
thermal habitats are further distinguished by
their chemical and physical characteristics.
Among flowing springs, the south end of Roar-
ing Mountain is the hottest acid spring (pH
2.1) in YNP, with a site temperature at the ori-
gin of 93°C. This compares with the western
end of the Amphitheater basin, springs 2 and 3
(pH 2.3), with an origin temperature of 81°C.
However, these springs have heavy deposits of
sulfur that begin a few centimeters away from
the origin. Phenotypically interesting organisms
are associated with sulfur deposited along out-
flow channels (Amphitheater Springs and Nor-
ris Junction). No such deposits occur at Roar-
ing Mountain.

In 1971 Norris Junction and Amphitheater
Springs were similar in that both sites had
flowing springs with sulfur deposits in the out-
flow channels. Over the years since 1971 at
Norris Junction, both temperature and water
flow have decreased. The main spring at Nor-
ris Junction still has heavy deposits of elemen-
tal sulfur. However, the spring is now a mixing
pool with a much lower temperature (70°C)
than that measured in 1971 (80°C).

We examined several mixing pools in the
Norris Geyser Basin: Congress, Vermillion,
Locomotive, and Growler (defunct in 1975).
We also visited several sites in the Sylvan
Springs complex (Gibbon Geyser Basin).
Another spring we studied, Frying Pan Spring,
lies north of Norris Junction along the road to
Mammoth. In the Mud Volcano area we studied
Sulfur Caldron and Moose Pool. We examined
a series of springs in Hayden Valley located in
Crater Hills. These springs are mixing pools;
one with a visibly high content of elemental
sulfur is known as Great Sulfur Spring.

METHODS

Organisms in flowing springs were exam-
ined by immersing cleaned, one end–frosted

glass slides in a spring as described previously 
(Weiss 1973). The slides (RITE-ON, Clay
Adams, NY) were cleaned with ethanol
(ETOH), rinsed with water, air-dried, and
placed in outflow channels of springs. Organ-
isms were allowed to attach and grow for
selected periods of time; the slides were then
removed, placed in a screw-cap Coplin jar or a
small plastic slide carrying case (Cell Path,
Hemel Hempstead, UK) filled with spring
water, and returned to the laboratory.

For DNA staining, a stock solution of 4′, 6-
diamidino-2-phenylindole, HCl (DAPI) stain
(10 µg mL–1) was prepared in 0.1 M 2-(N-
morpholino) ethanesulfonic acid, MES buffer,
pH 6.8, 1 mM ethyleneglycol-bis-(ß-amino-
ethyl ether) N,N′-tetraacetic acid, (EGTA), 0.5
mM MgCl2 ⋅ 6H2O. Samples were mixed with
an equal volume of stain on a slide to deliver a
final concentration of 5 µg mL–1 DAPI. In
some experiments cells were concentrated
before staining by centrifugation at 10,000 g
for 15 minutes at 23°C.

Samples were observed and photographed
with a Leitz Dialux 20 phase contrast epifluo-
rescence (A filter block) microscope equipped
with a Wild MPS 55 automatic camera. Images
were recorded using Kodak T-MAX 400 film
and T-MAX developer.

Electron microscope samples from flowing
acid hot springs were taken in the channel
center. Samples of sediment were collected
with an inverted sterile 10-mL pipette with a
tip broken to accommodate a pipet pump.
Samples from pools were collected in a 1-L
Nalgene beaker attached to a telescoping 8-
foot paint roller pole. The samples were trans-
ferred into 140-mL plastic bottles.

For electron microscopy, we cooled envi-
ronmental samples in the field to ambient
temperature, ~25°C. Glutaraldehyde (4%) in 
4 mM KPO4 buffer, pH 7.0, with 0.1 mM
CaCl2 ⋅ 2H2O and 0.1 mM MgCl2 ⋅ 7H20 was
added to an equal sample volume to obtain a
final concentration of 2% V/V glutaraldehyde.
After fixation for 2 hours at ~25°C, the cells
were centrifuged at 8000 g for 15 minutes,
washed in buffer, and fixed in 1% OsO4 in 50
mM cacodylate-HCl buffer, pH 7, for 1 hour
at 25°C, cooled on ice, and fixed for 4 hours
longer. Fixed cells were dehydrated for 10
minutes each in 25, 50, 75, and 100% acetone
and embedded in Spurr’s epoxy resin. Ultrathin
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sections cut on a Reichert OMU 2 ultramicro-
tome with a diamond knife were stained with
uranyl acetate and lead citrate.

For negative staining, we placed a small
drop of cells on a Formvar plastic-coated grid.
Organisms were allowed to attach for 5 min-
utes. The cells were stained with 2% W/V
aqueous uranyl acetate and dried with filter
paper. Samples were examined with a Philips
400 transmission electron microscope.

Scanning electron microscope (SEM) sam-
ples were prepared on 13-mm-diameter cover
glasses. Cells and sulfur attached to cover
glasses coated with a thin layer of poly-l-lysine
to increase binding of sulfur and cells. Cells
were fixed for 1 hour or longer on the cover
glass with 1% OsO4 in 50 mM Na cacodylate,
pH 7.2. After dehydration for 5 minutes each
in 25, 50, 75, and 100% ETOH, samples were
dried by the critical-point method using a
semiautomatic Tousimis samdri 790 drier and
then sputter-coated with Au-Pd on a Hummer
VI. Cells were photographed in a Hitachi
model 2700 SEM equipped with a Princeton
Gamma Tech IMIX X-ray microanalyzer. Sulfur
was identified in the SEM on Au-Pd–coated
samples attached to aluminum stubs.

Sampling of YNP 
Thermobiologists

An abstract was prepared for a conference
talk to be presented at the 5th Biennial Scien-
tific Conference on the Greater Yellowstone
Ecosystem entitled, “Exotic organisms in greater
Yellowstone: native biodiversity under siege.”
The abstract on potential contamination of
YNP thermal springs by human activity was
sent (by e-mail) to a selected list of researchers
known to be experts in their field and active in
YNP microbial research. The e-mail requested
comments and opinion on the question for
inclusion in the present paper.

Information on sampling methods from one
investigator, Karl O. Stetter, was adapted from
a video tape (Films for the Humanities and
Science 1993) with the approval of the investi-
gator.

RESULTS

Microbial Inventory

HISTORICAL STUDIES.—In the 1970s, Sul-
folobus was the predominant organism at tem-
peratures above 70°C at Norris Junction and

Amphitheater Springs 1 and 2. It could be 
isolated easily from most sites in both areas
either on sulfur as an autotroph or on yeast
extract as a heterotroph. It usually took about
a week to isolate new strains, sometimes
slightly longer, from most sites. At our Roaring
Mountain sites, it was the only organism we
saw. Here, we define Sulfolobus as Sulfolobus-
like, meaning that the organism was a lobed
sphere. It is important to note that at this time
we had not yet described it as a genus. We
were just beginning to write up the work,
which was initially submitted in July 1971
(Brock et al. 1972).

On all of our slide immersion studies,
whether at Roaring Mountain, Norris Junction,
or Amphitheater Springs, we found roughly
equal numbers of attached rods and Sulfolobus
spheres around 70–75°C. Above 75°C the
main organism was Sulfolobus; few if any rods
were seen. Below 70°C rod-shaped cells began
to appear in very high numbers at sites along
thermal gradients at Norris and Amphitheater,
but not at Roaring Mountain, where we saw
principally Sulfolobus. Investigators Carl Flier-
mans and David Smith found metabolic activ-
ity in the soils of Roaring Mountain due to both
Sulfolobus and rods (perhaps Thiobacillus).
The highest temperature at which they ob-
served rods was about 60°C.

In 1997–98 we surprisingly found mainly
rod-shaped cells in the samples from Amphi-
theater Spring 2. We found many more types
than the few we had observed earlier in our
1970–1973 thin-section and negative-stain elec-
tron microscopy. In the early samples we saw
only 2 different rods at Amphitheater. The first
had a Sulfolobus-like subunit cell wall, and the
second, a long filament, had a layered, bacter-
ial-like cell wall. With so much diversity appar-
ent, it became difficult for us to characterize
all the different types of organisms (rod shaped)
that were present. When the samples at Amphi-
theater Springs were prepared and examined
by electron microscopy, some Sulfolobus-like
spheres appeared. But the striking difference
was the ratio of rods to spheres at tempera-
tures up to 75°C. Whereas previously there
had been about a 1:1 ratio, now the ratio was
on the order of 10:1 rods to spheres. We have
not yet found a suitable explanation for these
dynamics, but the sites have undergone many
changes over the years.
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We also did slide immersion studies in the
same spring in 1997–98 and found no colonies
of Sulfolobus-like cells at temperatures of
70–80°C but significant attachment of rod-
shaped cells. The slides immersed in springs
had many elongated, thin filaments (0.4 × 20
µm), rods of medium thickness and length
(~0.6 × 6 µm), and smaller rods (~0.5 × 2 µm).
Here again, this differed significantly from our
earlier observation that Sulfolobus-like and
rod-shaped cells were present in about equal
numbers, but above 75°C Sulfolobus-like cells
usually outgrew rods on immersed slides and
developed into colonies. The slide immersion
studies usually correlate well with phase con-
trast microscopic observations of samples
taken from the same habitat.

RECENT STUDIES.—Two other features of
these early observations are worth noting. (1)
Sulfolobus, when it did occur within the de-
posits of sulfur at Amphitheater Springs 1 and
2, was present in large numbers in microhabi-
tats. (2) It was not seen at every sample site.
This compares with rods that were the domi-
nant type in our recent observations. Amphi-
theater Spring 3 (summer 1997), with unusual
dark deposits at the origin and elemental sul-
fur, had almost totally Sulfolobus-like cells and
only a few rods. The deposits (perhaps iron)
were bound tightly to the siliceous bottom of
the spring. Sulfur deposits begin at the origin,
and extensive deposits occur further down the
thermal gradient.

This difference (rods vs. spheres) is particu-
larly evident when cells are examined by DAPI
staining (Fig. 1). Samples taken at 78°C at
Amphitheater Spring 2 compared with those
from nearby Spring 3, 75–78°C (Fig. 2), em-
phasize the difference in colonization of sulfur-
rich habitats by rods and Sulfolobus-like cells.
The sulfur crystal structure (c) is particularly
evident as are the differences in morphology
of the microbes attached to sulfur. The indi-
vidual rod and spherical shapes can readily be
seen by DAPI staining and phase contrast
microscopy.

More detail can be observed when cells
attached to sulfur are processed for negative
staining (Fig. 3). Here, the 2 different cell types
and their relative sizes are evident. The Sul-
folobus-like cell is a lobed sphere ~1 µm in
diameter with several thin filaments, termed
pili, extending from the cell surface. The thin

filaments possibly play a role in attachment of
cells to sulfur. The wall structure is formed
from subunits arranged in a 2-dimensional
array. The rod-shaped cell has a somewhat dif-
ferent cell wall, with small, circular units
arranged in rows that form a regular 2-dimen-
sional array. The cell is about 0.45 × 2.6 µm,
uniform in width, and has rounded ends. It
has no thin filaments or other obvious surface
structures. We made an interesting observa-
tion on other cells: flagella bearing wings of
unknown function. Commonly, 2 of these are
arranged opposite each other (180° apart)
along the flagellum. They extend from the sur-
face of the flagellum as featherlike rows that
run as a helix along the full length of the fla-
gellum (Weiss Bizzoco et al. 2000).

Samples from Amphitheater Spring 2 taken
at 70°C, 74°C, and 78°C sites were examined
by SEM. The high-temperature (78°C) sample
is shown in Figure 4. Here, rod-shaped cells
(R) and spherical, Sulfolobus-like cells (S)
appear in about equal numbers. Both cell
types are attached to the surface of crystals.
Because there are many different minerals
present in hot springs, some of which are crys-
talline, we examined individual crystals with
attached cells. X-ray microanalysis reveals that
sulfur (S) is a major component of the crystal
to which microbes are attached (Fig. 5). At
temperatures of 70°C and 74°C, rod-shaped
cells appear by the thousands, while Sulfolo-
bus-like cells are seen less frequently in sam-
ples examined in the SEM.

Frying Pan Spring is a large pool, pH 2.4,
with a temperature of 75°C (vs. 77°C in 1971).
In 1971 at Frying Pan Spring, a mixing pool,
we saw only rod-shaped microorganisms. One
was a long, slender filament just visible by
phase contrast microscopy, and the other was
a short, sausage-shaped rod. In 1997 when we
examined control cells from this spring with-
out the addition of DAPI using fluorescence
microscopy, we found no autofluorescence.
DAPI staining identifies DNA in several mor-
phological kinds of rod-shaped cells (Fig. 6).
The observed DAPI fluorescence coincides
with the DNA of cells visualized in phase con-
trast images of cells. Thin filaments and
sausage-shaped cells exhibit DAPI fluores-
cence with different intensities (Fig. 6). Some
cells showed small, intensely fluorescent sites,
suggesting they are undergoing cell division.
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In contrast, other cells had low levels of fluo-
rescence, suggesting the cells are in the sta-
tionary or death phase of the growth cycle. We
also fixed cells, prepared thin sections, and
examined the resulting cells by electron micro-
scopy. We found thin, microbial filaments and
sausage-shaped cells resembling those seen in
the light microscope (Fig. 7, cf. Fig. 6). Exami-
nation of these by negative staining revealed
several different types of flagellated cells (data
not shown). Some flagella on these cells lack

any obvious substructure, while others are
unique in comprising units with a linear sub-
structure. In this sense they are reminiscent of
the winged flagella at Amphitheater Spring 2
that also have a linear substructure.

In mixing pools we found 2 distinct popula-
tions of cells. In 2 sites there was nearly a
pure culture of Sulfolobus-like cells. This
occurred at Moose Pool and Great Sulfur
Spring. Sulfur Caldron, Locomotive, Growler,
and several of the springs in the Sylvan
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Fig. 1. DAPI-stained Sulfolobus-like control sample. Sulfur crystal (c) with attached spherical cells was collected from
a flowing spring. A, Phase contrast; B, DAPI stain. DNA is seen as uniform DAPI fluorescence. Amphitheater Spring 3:
75°C, pH 2.3. X1300.

Fig. 2. DAPI-stained, rod-shaped cells associated with sulfur crystals (c) in a flowing spring. Cells attach to crystal (c)
and extend from the surface. A, Phase contrast; B, DAPI stain. DNA appears as uniform DAPI fluorescence. Amphithe-
ater Spring 2: 74°C, pH 2.3. X1300.
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Springs area had a mixture of rods and Sul-
folobus-like cells. In contrast, only rod-shaped
cells were observed at Frying Pan Spring,
although it is known to contain Thermoplasma
(Segerer et al. 1988), a spherical organism.
From 1971 to 1999 there was a significant
change in 2 springs, Evening Primrose and
Growler. In 1995 Evening Primrose (Sylvan
Springs, see Fig. 6.7b, Brock 1978) caved in.
When we visited it in 1997, the temperature
had dropped from 89°C (1971) to 33°C.
Whereas previously it had been a Sulfolobus
habitat, it now contained mainly algae and 
no Sulfolobus-like cells. The second spring,
Growler, had collapsed earlier (1975), and above
(northeast) it a new spring, Sulfur Spring,
appeared. From 1997 to 1998 Sulfur Spring
changed in temperature from 88°C to 74°C.
Despite such changes, the microbial popula-
tions of most mixing pools remained relatively
stable over the period from 1971 to 1999. Our
most recent microbial survey of these springs
is presented in Table 1.

Human-vectored Contamination:
Perspectives of Yellowstone 

Microbiologists

Thomas D. Brock
E.B. Fred Professor Emeritus, Department of
Bacteriology, University of Wisconsin, Madi-
son. Area of study: Thermophiles

Although human cross-contamination could occur,
it seems to me that this process would occur much
more often via wild animals in the area, or via air-
borne contamination. Sorting out human from non-
human contamination experimentally would be dif-
ficult.

Craig J. Oberg,
Department of Microbiology, Weber State Uni-
versity, Ogden, UT. Area of study: Metabolism
and genetics of thermophiles

Lower temperature acidic and photosynthetic
environments are continually inoculated by envi-
ronmental biota and are thereby probably immune
to xenic species contamination. Hyperthermophilic
habitats, although refractory to most species, are
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Fig. 3. Microbes attached to sulfur in a flowing spring: A, Sulfolobus-like cell is a lobed sphere about 1 µm in diame-
ter. Cell bears thin filaments intertwined with nearby filaments. Cell wall is formed of subunits arranged in a regular
pattern over the surface. B, Rod-shaped cell with surface subunits arranged in rows forming a patterned array. Cell
shown measures ~0.65 × 2.6 µm. No filaments appear on the cell shown here. A, B, Amphitheater Spring 2: 74°C, pH
2.3. Negative stain electron micrographs, X30,000.



not often visited by natural vectors and may be
inoculated only by contaminated human probes.

Richard W. Castenholz
Department of Biology, University of Oregon,
Eugene. Area of study: Yellowstone photosyn-
thetic thermophiles

With present practices I do not believe there is
a real danger of introducing exotic microorganisms
into Yellowstone hot springs. First of all, most ther-
mophilic microorganisms from far distant hot
spring clusters (which are by their nature disjunct)
would be rarely transported in sufficient inoculum
size to become established in a hot spring commu-
nity (usually of different chemistry). It is a “princi-
ple” of ecology that established native communities
rarely become displaced by exotics unless the
recipient community is disturbed. This may also
apply to hot springs communities. Sufficient inocu-
lum may come frequently enough from hot springs
in the same cluster (e.g., the springs of Yellow-
stone), by insects for example, but this would be
expected and constitute natural dispersal. Although
thermobiologists are probably the most likely vec-
tors of viable cells from one geothermal area to
another (e.g., Oregon to Yellowstone), the amount
of inoculum would be essentially inconsequential,
i.e., some old mud on boots, unwashed collecting
equipment, etc., unless of course there is a pur-
poseful mass inoculation. Nevertheless, I have
always made it a practice to use new materials or
sterilized old. Scrubbing boots and/or steam steriliz-
ing them or simply using a new pair is a good idea
if collectors have been in a distant hot spring area. I
am sure that transferring boats from one lake or
temperate stream to another constitutes a much

greater risk (well documented) of introducing exotic
species than in the refractory habitat of hot springs.
The natural photosynthetic populations of alkaline
and acid hot springs and their patterns in Yellow-
stone have not changed in any apparent way during
the past 33 years of my studies, but of course this
does not include the more recent studies using
molecular methods. As for the shift in dominant
species in various springs, there are well-docu-
mented changes in the chemistry, temperature, and
flow in many springs in Yellowstone, especially in
unstable areas such as Mammoth and Norris. I have
observed many pH and temperature changes in
springs over these years, and these changes corre-
lated with some changes in microorganisms. As for
the “possible” shift from Sulfolobus to Acidianus in
some acid springs, the latter genus was unknown
earlier and would not have been recognized at that
time in the 1970s when Sulfolobus was discovered.
Even if such a shift has taken place, in order to
understand it, studies of correlative changes in tem-
perature, pH, and chemistry should have been
made in order to find possible causes. The introduc-
tion of Acidianus by collectors or human vectors of
any type seems (by orders of magnitude) the least
likely scenario.

As far as other impacts of hot spring collectors
are concerned, taking an occasional thimbleful or
even 100 mL of water and mat/sediment is not
going to affect in any way the integrity of the hot
spring community of microorganisms. However,
trampling of soil and plants surrounding certain
heavily used hot springs (e.g., Octopus Spring)
should be discouraged as much as possible. There
are many springs similar to Octopus that could be
used by collectors.

Norman R. Pace
Department of Molecular, Cellular, and Devel-
opmental Biology, University of Colorado,
Boulder. Area of study: Biodiversity—PCR-
based DNA fingerprinting

I’m in full concurrence with Brock and Casten-
holz about this. I’m not too concerned about conta-
mination (of Octopus Spring or Obsidian Pool)
because the mats are so rich in biomass. We always
try to use aseptic technique and are less concerned
about contaminating the site than the sample.

Carl R. Woese
Department of Microbiology, University of
Illinois, Urbana. Area of study: Gene isolation
techniques

Although the direct gene isolation method now
fails us by not identifying the actual phenotype of
the organism from which the gene has come, the
approach more than compensates for this by (1)
telling us that phenotypically characterized organ-
isms are related to unisolated ones; (2) allowing us to
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Fig. 4. Rod-shaped (R) and Sulfolobus-like (S) cells
attached to sulfur in a flowing spring. Amphitheater
Spring 2: 78°C, pH 2.3. Scanning electron micrograph,
X2300.



design probes and primers to aid in efforts to isolate
the organism in question by enrichment culturing;
(3) best of all, having the potential of a complete
accounting of microbial species occurring in a
niche, complementing enrichment culturing.
Together, the 2 approaches give microbiologists the
power to define, understand, and reveal the full
richness of the microbial world.

Francisco F. Roberto
Department of Biotechnology, Idaho National
Engineering and Environmental Laboratory,
U.S. Department of Energy, Idaho Falls, ID.
Area of study: PCR-based Yellowstone micro-
bial extremophile diversity

On Acidianus brierleyi, I don’t believe it’s an
alien species, but actually it has probably been
there all the time. It’s likely that it was in Brock’s
original enrichments, as it’s virtually indistinguish-
able from Sulfolobus acidocaldarius under a micro-
scope. I’m not surprised by Brock being cool to the
idea. I saw the call for papers and also think that
rather than introducing new microbial species, the
biggest effect of man is altering the environment,
leading to the succession and dominance of “non-
native” species, which have probably always been
around in small numbers, but not had the right
environments to proliferate.

Karl O. Stetter
Department of Microbiology, University of
Regensburg, Regensburg, Germany. Area of
study: Hyperthermophilic microbes

I define hyperthermophilic microbes as those
growing fastest above 80°C. I isolate hyperther-
mophiles from many terrestrial, subterranean, and
abyssal and shallow submarine areas all over the
world. From Yellowstone (I have had a collecting
permit for about 15 years), my co-workers and I
have cultivated and described (1) Thermoplasma
volcanium, the first Thermoplasma (wall-less
microbe) in YNP; (2) Thermosphaera aggregans,
from Obsidian Pool; (3) Thermocrinis ruber, Brock’s
“pink filaments,” from Octopus Spring. For sam-
pling and storage of samples, I always use glass bot-
tles to avoid diffusion of oxygen into samples. This
would occur with plastic bottles.

Like other Yellowstone investigators, Karl Stet-
ter samples hot springs in a temperature range
from 70°C to boiling water. In addition to Yellow-
stone, Solfatara Crater near Pozzuoli, Italy, is one of
his choice hot habitats; it is laden with sulfur. Sam-
pling here at extreme temperatures, he is most con-
cerned with keeping the organisms happy. To sam-
ple an inaccessible spring, he uses a long, 2-piece
pole with a small 250-mL stainless cup attached to
one end. He fills up the cup by sampling in the
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Fig. 5. X-ray spectrum of crystal sampled at Amphitheater Spring 2: 78°C, pH 2.3. Sulfur (S) is a major component.
The gold-palladium (Au-Pd) peaks represent the surface coating deposited on the crystal during sample preparation.
Also evident are aluminum (Al) from the sample stub and carbon (C) from cells. Chromium (Cr) and silicon (Si) are pre-
sent in the sample as minor components.



middle of a spring and transfers the sample to a
glass sample bottle that he fills to the top without
introducing bubbles during pouring. In springs that
are easy to sample, he uses a 50-mL plastic syringe
to withdraw samples. Here again, he fills up a glass
bottle to the top to exclude oxygen. Then he may
add sodium dithionite to the sample. He notes,
“There is one important thing, there is practically
no oxygen here. With a powerful oxygen killer,
sodium dithionite, the organisms will be very
happy” (Films for the Humanities and Science
1993).

Robert F. Ramaley
Department of Biochemistry and Molecular
Biology, University of Nebraska Medical Cen-
ter, Omaha. Area of study: Thermus species

As of this point, I don’t know if we have any
hard data that “native microbial populations” in Yel-
lowstone have been displaced by either “native”
transfer (wildlife) or any evidence that investigators
themselves could be contributing to displacement
from any use of nonsterile collecting equipment.
This is a constant worry, especially when you see
investigators doing physical sampling of hot springs
for released gases, etc., much as I observed on 16
July 1999 at Octopus Spring by Gavin Chan and
other students from Washington University in St.
Louis during their detailed mapping of the outflow
channels of Octopus Spring (Web site http://
epsc.wustl.edu). I have been very careful to always
use sterile materials (wrapped sterile sampling
material) and suggest that approach for other indi-
viduals or investigators to avoid or minimize any
direct contamination problems.

Perry Walker Russell
Department of Biology, Cumberland College,
Williamsburg, KY. Area of study: Sampling
protocol

A sampling protocol needs to be established that
will preserve these sites as much as possible. Since
my background is in pathogenic bacteriology, I
have always as a habit used techniques that are as
close to “sterile technique” as possible. (1) I use a
telescoping golf ball retriever with a glass beaker
attached to the end for gathering my samples and a
thermometer hanging from the end of the retriever
shaft. (2) Before collecting a sample, I sterilize the
end of the retriever, the beaker, and the thermome-
ter with alcohol. (3) When actually collecting the
sample, I never stand in the water and, in fact, like
to stand back a little way. Of course, for really hot
or dangerously weak crustal areas, standing back is
a necessity, but I also like to stay back a couple of
feet from more easily accessible and cooler runoff
streams. After all, I don’t need to be stomping
around with my Kentucky microflora–laden boots
in Yellowstone thermal springs. (4) Upon retrieving
a sample in the beaker, I first check the tempera-
ture reading and then pour the sample into an indi-
vidually wrapped sterile polypropylene tube
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Fig. 6. DAPI-stained cells from a mixing pool. A, Phase
contrast; B, DAPI fluorescence. DNA appears as bright
spots or less intense thin lines of DAPI fluorescence. Fry-
ing Pan Spring: 75°C, pH 2. X1300.

Fig. 7. Thin filaments and wide, curved rod coexist with
other cell types in a mixing pool. Figures 6 and 7 may be
compared. Frying Pan Spring: 75°C, pH 2. Thin-section
electron micrograph, X10,000.
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(maybe 8–10 mL). The residual in the beaker I pour
out into the dirt or sand (not back into the water).
(5) I can now take a pH reading of my sample by
quickly putting a drop or two from my sample tube
onto pH paper. (I tend to prefer this method over
sticking a probe end into the spring or the sample
because of the potential for contamination plus I
have always found my pH test strips to be accurate
enough for my purposes.) (6) Before moving to the
next site, I record my site data (temperature, pH,
location, and elevation) and sterilize the end of the
retriever, the beaker, and the thermometer with
alcohol again.

Hopefully by using this protocol, I am not cont-
aminating any sampling site with bugs from Ken-
tucky or cross-contaminating springs with other
thermophiles. My only worry lies in the fact that
while alcohol should destroy any bacterial contami-
nants, it may not eliminate all bacteriophage conta-
minants.

DISCUSSION

Several kinds of experimental approaches
provide a microbial inventory of hot spring

ecosystems. These include (1) PCR-based
methods to amplify rRNA gene sequences
(ribosomal DNAs), (2) DNA staining with
DAPI to distinguish microbes from minerals,
and (3) electron microscopic analysis to iden-
tify microbes and their phenotype. Small sub-
unit rRNA sequence-based analysis provides
the most complete inventory of microbial pop-
ulations. While this method does not assess
the microbial growth phase or phenotype of
unknown microbes, as do DAPI staining and
electron microscopy, it provides an elegant
method to gain information on microbes that
can be seen microscopically, but not cultured.
Such approaches are strengthened by micro-
bial culture and an analysis of phenotypes to
reveal the presence of new characteristics
such as the “winged” flagellum (Weiss Bizzoco
et al. 2000).

Our observations of Sulfolobus-like cells in
pools ranging in temperature from 68°C to
88°C and in a flowing spring at Amphitheater
(79°C) indicate that in many acid habitats this
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TABLE 1. Microorganisms in acid thermal habitats in Yellowstone National Park.

Location °C pH Microbesa

Amphitheater Spring 2 78 2.0 Sulfolobus-like, thin filaments,
short wide rods, flagellated rods

74 2.0 Sulfolobus-like, long curved rods, thin
rods, one enlarged end, short rods,
winged flagella

70 2.0 short wide rods

Norris Geyser Basin
Sulfur Spring above Growler 88 1.5 long rods, short rods, thin rods
Locomotive 83.5 2.0 Sulfolobus-like, short rods
Vermillion 79 2.3 Sulfolobus-like, short rods, thin rods
Congress 85.5 2.6 short rods
Small Triangular Pool 86 2.1 Sulfolobus-like, thin rods, wide rods,

curved rods
Norris Junction 72 1.5 Sulfolobus-like, thin rods, wide rods,

long, irregular curved rods, long rods

Frying Pan Spring 75 2.4 Thin filaments, medium length rods,
long rods, short curved wide rods

Roaring Mountain
(southern effluent) 88 2.2 Sulfolobus-like, long thin filaments

80 2.2 Sulfolobus-like, short rods

Mud Volcano area
Sulfur Caldron 70 1.5 Sulfolobus-like, Lobobacillus, long 

thin rods, short thick curved rods, 
short thin rods

Moose Pool 69 1.8 Sulfolobus-like, thin filaments, very
thin rods, wide rods

Crater Hills
Great Sulfur Spring 86 2.1 Sulfolobus-like, a few short thin rods

aSampling period was 1997–1999.



is the dominant morphological type of organ-
ism. It is also clear from our results that popu-
lation dynamics in mixing pools have not
changed substantially since 1971 when cells of
environmental samples were first observed by
means of electron microscopy. It seems clear
from our results of the past 3 years that a mor-
phologically diverse collection of rod-shaped
microbes exists at 70–89°C, pH 2–2.4. This
temperature range is substantially higher than
that reported for most rod-shaped ther-
mophiles in comparable habitats below pH 3.
The exceptions perhaps are Thermofilum and
Thermoproteus, which grow anaerobically
(70–97°C, pH 2.5–6.5) and share Sulfolobus
habitats (Stetter 1986).

Our studies show that in one flowing spring
at Amphitheater a substantial change has taken
place. Whereas our earlier study (Weiss 1973)
showed that at temperatures above 75°C Sul-
folobus-like cells were the predominant cell
type, we have demonstrated here that rod-
shaped microbes significantly outnumber Sul-
folobus-like cells at all temperatures above
65°C in Amphitheater Spring 2. Our light and
electron micrographs indicate that in this
spring there may be significant interactions
among phenotypically diverse rod-shaped
cells as well as between the rod-shaped cells
and spherical Sulfolobus-like cells. Such cell-
cell interactions may allow survival of the
associated cell types and appear to involve
direct attachment by cell walls or short surface
pili. One feature of considerable interest is
that whether cells attach to sulfur directly, as
with rod-shaped organisms, or by pili, as with
Sulfolobus-like cells, the majority of the attached
cluster remains separated from the sulfur crys-
tal surface. Sulfolobus-like cells accomplish
this by means of long pili, whereas rods attach
to each other, forming elongated cell groups
that extend away from the sulfur crystal. The
significance of this separation distance for the
oxidation of sulfur and the long-term survival
of the microbial community remains to be
determined.

The finding that Sulfolobus-like cells no
longer represent the dominant organism at
Amphitheater Spring 2 indicates that a change
in population dynamics has occurred. We note
with interest that it is still the most abundant
microbe in nearby spring 3 in the Amphithe-
ater group. At another flowing spring, Roaring
Mountain, changes are not as obvious because

of lower cell numbers and the absence of sul-
fur. This type of microbial community change
has been considered by Yellowstone microbi-
ologists who generally believe that other organ-
isms have always been present along with Sul-
folobus, and that a shift in the dominant
species does not result from research activities
but instead represents natural succession within
native microbial communities. In keeping with
that opinion, it seems unlikely that the change
represents an “invasion” or exotic microbes. It
is also unlikely that this habitat has been inten-
tionally disturbed by research or other human
activity. The pH and temperature of this site
have been rather stable over the years. How-
ever, changes such as flow rate, chemistry of
the spring, or nutrients entering from the algal
mat above the spring may all be factors con-
tributing to microbial changes.

Human-vectored 
Contamination

This study shows that microbial community
changes have occurred over a period of time
in the acid hot spring habitat. An important
question is whether such changes might be
expected to occur naturally over time within
an established community or whether they
might be the result of human research activi-
ties. We will consider below 5 points related
to this question, i.e., human-vectored contami-
nation.

(1) The argument is given that human and
animal contamination would be hard to
separate.

While this is most likely correct, animal
cross-contamination might be more easily dis-
missed. Although animals such as moose and
bison range in the area of acidic hot springs
and pools and might step into a spring, trans-
fer of acquired microbes seems more likely
limited to nearby springs which themselves
have already been exposed, possibly through
abiotic processes, to these same organisms.
With springs that are more distant, say miles
apart, it could take many hours for the animal
to travel to the next spring, and the microbes
might die or be removed during transit time
from the first to the second spring.

The time interval for springs several miles
apart would be so great that such cross-conta-
mination is less likely. Insect-mediated conta-
mination may have a shorter interval for the
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longer distances, but insects for the most part
would likely be limited to the cooler surfaces
of algal mats below 55°C. Furthermore, micro-
bial communities in these mats have long
been exposed to insect foraging activities, par-
ticularly ephydrid flies that carry out their life
cycle year-round in algal mats. Possible dis-
persal of microbes in these lower temperature
ranges seems to be part of the biotic activities
to which springs and microbial communities
have already been exposed. At the lower tem-
perature ranges, there is a complex commu-
nity structure. Algae constitute a food source
for these herbivores (Brock 1978), but at higher
temperatures insects do not seem to visit the
springs to any great extent.

On the other hand, investigators travel by
automobile from one site many miles to the
next, within minutes. The general mobility of
investigators who can travel rapidly from site
to site and the presence of inexperienced in-
vestigators such as graduate students or assis-
tants represent unknowns that could impact
hot spring habitats. While researchers are well
aware of and concerned about exotic species,
the current awareness was not a major concern
with microbes one or more decades ago.

We should note that even if mud from an
investigator’s boot were to enter a new system
accidentally, most of it would be carried down-
stream in a flowing spring like Amphitheater,
leaving only a small and likely inconsequential
amount of inoculum. In pools this could vary a
bit where there might not be an outflow chan-
nel. Most pools are sampled with some type of
extension device so that investigators stay fur-
ther away from the edge of a pool than they
would a flowing spring. Despite the lack of
past attention to possible contamination, micro-
bial investigators have always been careful to
try to minimize input in hot springs and pools
and in most cases use sampling methods and
devices that would avoid any but the smallest
possible input into a system. The fairly size-
able flow rate of spring water in pools and the
continuous turnover of the contained water
(Brock 1978) would likely remove the intro-
duced inoculum.

(2) Microbial researchers are very careful to
avoid contamination of their samples, but
in the past they may not have been think-
ing about mud or soil that was on their
feet.

Moreover, investigators taking hot spring
samples to analyze physical or chemical prop-
erties may not have been as careful as microbi-
ologists. So, both seem to be likely potential
vectors.

Although this concern introduces an
unknown, it is diminished somewhat because
acid hot springs provide a hostile environ-
ment, perhaps even for the resident microbes.
This is seen by our DAPI staining results where
most cells in the springs are in a stationary
phase and are not growing and rapidly divid-
ing. Very few organisms present have been
isolated in culture. This is usually consistent
with stringent nutrient (or oxygen) require-
ments. As pointed out by Stetter (Films for the
Humanities and Science 1993), many acid hot
spring organisms utilize hydrogen and are
inhibited or killed by oxygen. This implies
that exotic organisms have complex growth
requirements that likely will not be met in
most new habitats.

(3) Castenholz argues that exotic species tend
to establish only in disturbed habitats, and
since these hot spring habitats are thought
to be undisturbed, it is unlikely that any of
the established species are introduced. 

This is said despite the fact that some
changes in communities have been observed
over the years. While it seems clear that dis-
turbance facilitates establishment of exotics,
this system of hot springs is much more like a
series of islands than vast tracts of continental
land. In islands dispersal is a rare event, and
unique and interesting species arise through
adaptive radiation due to the large number of
unfilled niches. Islands are prone to exotic
species damage even when very undisturbed.
When exotic species, e.g., rats, enter a Pacific
island, they rapidly establish and decimate the
local species, both competitors and local flora.
It is easy to imagine that acid hot springs can
have very unusual and unique species, but
that an introduced bacterium from another
pond will not have the bacteriophage load and
may actually be better adapted. There might
be underadapted species that are susceptible
to competitive exclusion by introduced species.
Islands can possess underadapted species
because of the absence of introduced competi-
tors and predators.

If bacteriophage in cells of the native com-
munity were lysogenic, their presence proba-
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bly would not alter the ability of native cells to
compete effectively with an introduced
species. On the other hand, if bacteriophage
are thought of as a means for keeping micro-
bial populations in check, then a phage-free
introduced organism could gain an advantage.
If bacteriophage kill off the dominant species
(by lysis), this might allow the introduced
microbe to gain a competitive advantage and
become established in the new ecosystem,
assuming all other things are equal.

Although the existence of bacteriophage
introduces some uncertainty, it is less of a con-
cern than it might seem. So far, only 2 genera
have been recognized as having bacteriophage
or viruslike particles (Stetter and Zillig 1985).
While this might seem to be a low number of
organisms with bacteriophage, recall that we
have examined a very large number of springs
by electron microscopy of thin sections and
whole mounts and find this to be consistent
with our results. As for the 2 genera we know
about, each has elements that decrease the
possible problem. The bacteriophage of Ther-
moproteus cause cell lysis when the sulfur
supply is exhausted; clearly, this might be
cause for concern, but this organism is a strict
anaerobe. This considerably reduces the con-
cern because anaerobic contaminants are not
likely to survive transfer via a human vector.
Viruslike particles in Sulfolobus do not appear
to affect active growth of this organism. The
crystalline particle arrays seen in Sulfolobus
are not known to cause cell lysis without an
induction mechanism such as UV irradiation
(Stetter and Zillig 1985); this required stimu-
lus would not likely be encountered in the
natural habitat.

Certainly a case can be made that under-
adapted species exist within acid hot springs
because there is electron microscopic evi-
dence for the existence of a rich diversity, and
yet many cells are present in low number. It is
easy to imagine that an exotic species might be
better adapted than the underadapted species.
This introduces some uncertainty, but the
niche of the underadapted species would
likely be small since they are few in number.
So, the introduced species, even if successful,
would likely be insignificant.

(4) One researcher stated that alcohol clean-
ing would not eliminate bacteriophage
contaminants. 

Introduced bacteriophage could be a
major disturbance in these systems. Bacterio-
phage are strongly resistant, perhaps even to
attempts at sterilization by ETOH. Bacterio-
phage in the acid sulfate habitat likely follow
the general rule that those with a wide range
of species are more rare than those with
species or strain specificity. Phage would have
to make specific contact with sensitive cells.
This might be difficult in a flowing spring with
continuously moving water. In a mixing pool
bacteriophage could be removed by nonspe-
cific adsorption to a surface such as a mineral
particle. Even direct contact with a suitable
host would not assure a productive infection.
We mentioned that most organisms in these
habitats are not actively growing and dividing.
Thus, while these considerations (a narrow
host range and a quiescent microbial host pop-
ulation) certainly do not eliminate the poten-
tial for bacteriophage to disturb the system,
the problem is diminished to some extent
from a conceptual point of view because the
more abundant the bacteriophage might be,
the less likely they are to interact effectively
with the existing microbial population. In
keeping with this idea, viruslike structures in
thermoacidophilic cells from natural samples
or cultures were seen only rarely (Weiss Biz-
zoco 1999) in many hundreds of samples
examined by electron microscopy. Thus, even
if bacteriophage present in these springs are
vectored by humans, their activity is likely to
be at a low level.

(5) Although we have stated that these sys-
tems do not vary, several springs show
minor temperature changes or major
changes induced by cave-ins.

Castenholz mentions documented natural
changes in many springs in YNP, especially in
unstable areas such as Mammoth and Norris.
These natural changes could be the source of
disturbance that would enhance the chance
for success of introduced exotic microbes.

While solfatara basins such as Norris or
Amphitheater Springs seem fundamentally
unchanged and stable, individual springs can
and do undergo alterations. Far from being
unusual, changes of this type, both minor and
major, are normal events in solfatara areas.
Such natural changes as water flow, tempera-
ture, pH, and chemistry all conceivably could
enhance or reduce chances for success of
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human-introduced species. Several arguments
should be considered in evaluating which pos-
sibility is more likely. First, with present micro-
biological methods, numbers of any introduced
organisms would be small. The likelihood of
their becoming established seems low because
they would have to undergo an abrupt, and
not necessarily favorable, change in chemistry
compared to their native habitat. One possible
result is that introduced organisms would be
washed away or die from these changes. Sec-
ond, organisms may be introduced to a habitat,
but, if not optimally adapted, their numbers
will remain low or insignificant. The chances
that a few introduced microbes will land in an
acid hot spring may be great, but the likeli-
hood of landing in a spring, whether disturbed
or not, to which they are optimally adapted in
temperature, pH, and flow or chemistry seems
minimal. Third, the physiological state of these
organisms is an important consideration that is
usually overlooked. Most cells in springs are
in the stationary growth phase and potentially
quiescent. As a result, they are not necessarily
going to grow, even if exposed to an appropri-
ate and favorable environment. Fourth, organ-
isms in acid hot springs are exposed to extremes
of temperature, pH, and redox potential. Low
redox potentials (anaerobic habitats) exist in
these springs. Because of the low solubility of
oxygen at high temperature and the presence
of reducing gases like hydrogen sulfide, most
of the organisms are anaerobes. Oxygen is toxic
to these exotic organisms, particularly during
transfer between springs. This toxicity would
likely reduce their ability to displace native
microbes or even survive. Fifth, many respon-
dents in this paper are long-time thermobiolo-
gists, some with decades of experience. Over
the years of attempting to grow organisms seen
microscopically in samples, experienced inves-
tigators know it may be extremely difficult to
duplicate conditions required for growth. This
suggests that the organisms have complex nu-
tritional requirements or interactions in their
natural habitats. The fastidious nature of these
microbes is not particularly evident in native
communities where these organisms coexist in
large numbers. Introduced organisms with
unique nutritional requirements might survive
in a new habitat for a prolonged period of
time, but it is much less likely that they would
displace native residents, even in the face of
natural changes or disturbances in a spring.

Taken together, these 5 points on human-
vectored contamination introduce some un-
knowns that may be cause for concern.
Although some human-vectored species might
survive, if introduced into springs, our rebut-
tal arguments favor the view that exotic
species are likely to have a low probability of
displacing native microbial communities, even
with the present level of research activities in
the acid hot springs of YNP. Because un-
knowns exist, the use of sound microbiological
technique in sampling acid thermal habitats
seems absolutely essential to provide the most
protection for the unique native microbes.

CONCLUSIONS

Results of this study suggest that the micro-
bial flora in YNP has changed in some cases,
and some things not seen in the 1970s may
now be present in the system. Whether this is
a result of biotic or abiotic processes, includ-
ing successional change, or introduction of
new exotic species (human-vectored contami-
nation) cannot be determined from the results
presented here. While the consensus of promi-
nent YNP microbiologists is that research
activities have not produced human-vectored
contamination, the question has not been
studied in detail (using PCR-based analysis),
and uncertainty on the issue remains. It will
serve the long-term stability of YNP hot springs
as well as other similar resources if all investi-
gators (both beginning and experienced) are
aware of the possible introduction of exotic
species into the springs and thermal sites that
are being studied. With care and considera-
tion on the part of investigators, undisturbed
hot spring microbial populations will have the
best chance to exist for the benefit of future
generations. Significant contributions already
made include the discovery of life at high tem-
peratures, the invention of PCR (Saiki et al.
1988), and establishing the Archaea as one 
of the primary lines of evolutionary descent
(Woese et al. 1990). That YNP has fostered
these contributions suggests that microbial
research represents an important activity.
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GEOGRAPHY OF EXOTIC PLANTS ADJACENT TO CAMPGROUNDS,
YELLOWSTONE NATIONAL PARK, USA

Karen Allen I and Katherine I-Iansen2

ABSTlIAcT.-Elevt:n camp!-7ounds ill Yellowstone National Park were studied to dt:llermine the geogmphy of 10 spc
ciflc exotie plant species udjncent to campgrounds. ,Exotics wcre found in only 6 campgrounds. Six species were found al
Mammoth campground, a low-elevation, dry sitc with year-round use. Only 2 .~pt:des were found in the other 5 camp
gmunds. Exotics decreased with distance [rom Mammoth clunpground out to 6 m and then increased, suggesting a
spread in their distribution. Significant associations Were found between exotic presence and both open <md closed
(,~,Uloptcs :.md low levels of disturbance. Generally, exotics decreased with an increase in l.'Over of other vegetation tonus.
Five species were found most frequently in big sagebrush hahitat types.

Key words: exotic plall.ts. campgrounds, disturbance, carwpy coocr, Yellowslfme NatiVlud Pttrk.

Exotic plants have dramatically tmnsfonned
vegetation of the western United States over
the past century and can be found tnday in
most disturbed wJdlands. Their well-docu
mented abJity to displac-e native species is a
primary concern regarding their presence in
national parks (Marion lOt ,,1. 1985, Mack 1986,
Weaver and Woods 1986, Bedunah 1992,
Cheater 1992, Kummerow 1992, Tyscr and
Worley 1992, Lesiea and Ahlenslagcr 1993).
The introouction and spread of exotic plants
into national parks threatens the structure and
functions of native plant communities. Previ
ous studies have fOlmd exotics to be associated
with road and trail disturbance, high light
intensities provided by open canopies, and
trampling in campsites (Dale and Weaver
1974, Cole 1981, I'hreella aod Harvey 1983,
Kuss and Graefe 1985, Baker 1986, Cole and
Knight 1990, Benninger-Truax el a1. 1992,
Tyser and Worley 1992).

In 1994, 140 exotic species were found in
Yellowstone National Park, while in 1986 ooly
85 were known to occur there (Yellowstone
National Park 1986; J. Whipple, Yellowstone
National Park botanist, personal communica
tion 1996). It was hypothesized that some of
this increase might be rclated to activities with
in campgrounds. More exotics were expected
to be found close to campgrounds where a
source of seeds may have been introduced by
humans, ears. and maintenance equipment;

where ground disturbance had created areas
that C'Ould serve as seedling cstablisbment
sites; and where the overstory canopy may
have been opened fOI:" campsites. With that in
mind, the objectives of this study were to
determine whether exotics were distributed
according to (1) distance Ii-om camp~rounds,

(2) amount of canopy (overstory) cover, (3)
amount of disturbance, and (4) amount of
ground cover,

STUDY AHEA AND METHODS

We studied all 11 vehicle-accessible camp
grounds of Yellowstone National Park, USA.
The campgrounds (1820--2425 m elevation)
occur within habitats ranging from big Stlge
hrushibluebuneh wheatgrass (Artemisia tri
ckntata/Agropyron spicatum) at lower eleva
tions to subalpine fir/grollse whortleberry
(Abies lasioca.rpa/Vaccinium scopariurn) at
hi~her c1evatioos (Table 1). Average annual

. .
precipitation near the 11 campgrounds ranges
Ii-om 37 to 105 em, and frost-free days ran~e

from 21 to 125 (Natural Resource:,; Conserva
tion Service 1994). Campgrounds range in age
from approximately 30 to 78 YI: Overnight use
today consists primarily of campers with auto
mobiles and, secondarily, of hikers and bicy
clists. While the type of use within camp
grounds is relatively homogeneous, the nlUll
ber of campers varies substantialty and is

1402 NWC~a Ave.. Ben..l, OR mol.
!J)"IlI:ITlmcflt of Earth~ Mlllltl!.nl!. Sl1l1e University, 1~,,,,:mlUl.MT ;H117.
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T.-\.IlLE 1. Habitat types and related elevations and mean canopy covers in which exotic plants were found in YeUow~tone National Park campgrounds.

I\umberof
Elevation Number transects Transect Exotic Mean

range of with frequency species canopy
Habitat type (m) Campground(s) transects exotics (%)' foundb (%)c

Big sagebrushJblue bunch 1820 Mammoth 8 8 100 SK, YSC, HT, 14
whcatgrass MULL, CT, DT

Big sagebrushlIdaho fescue 1895-2090 Slough Creek 8 2 25 CT 0
Pebble Creek

("J

Douglas-fir/common 1895-2000 Slough Creek 6 I 17 CT 0 '"'"snowberry Tower FaH ~
t>::

Engelmann spruce! 189.S-2090 Slough Creek 7 I 14 CT 27 >
~-sweetscented bedstraw Pebble Creek Z

or horsetail Z
~

Subalpine firitwinflower 2000 T()\'.'er Fall 3 0 0 none n/. e::
'">

Subalpine fu/pinegrass 2 OD,CT
".

2000--2275 Norris 21 -
~Indian Creek 14 6

Madison 1 CT

Subalpine fir/grouse 2075--2425 Canyon 35 9
wbnrtleberry Grant Village 1 CT

Norris 21
Bridge Bay 2 CT
Lewis Lake

U'!rw.JU;o,ct frequency: percentage oftran~ects in a given habitat t}pe that contain e.wticr.
bt;:ey to exotic ~pecies found: SK "" spotted wpweed, HT = hound·$·tongtw,. cr - Cwac3 thistle, OD - o:reye.dai~"l'; DT = d.alrnatiAA toadJ1a5., YSC "" )'fJ:JJow swwtcll;over, MUu.. .. common mullein.
cMun eaoopy ref"rs to quadrat!J In which ¢li;()~ W€re fuund.
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dependent on the number of sites within a
campground and the length of time a camp
ground is open (Wert 1994). Mammoth camp
ground, located near the park's headquarters,
is the only one open all year.

Ten exotic species were selected for study
based on their designation by park staff as
high priority for control (Yellowstone National
Park 1986). These included spotted knapweed
(Centaurea maculosa), hound's-tongue (Cyno
glossum ojJicinale), Canada thistle (Cil·sturn
aroense), oxeye-daisy (Chrysanthemum leucan
themum), dalmatian toadflax (Linaria <lalmat
;cal, yellow sweetclover (Melilotu.s ofJicindis),
Russian knapweed (Centaurea repens), musk
thistle (Canluus nutans), tansy aster (Tanace
tum vulgare), and commOn mullein (Verbas
cum thapsis). Species nomenclature and verifi
cation of alien status follow Hitchcock and
Cronquist (1973). All species, except yellow
sweetclover, are also considered noxious weeds
by the states of Wyoming, Montana, or both. A
noxious weed as defined by federal law is a
plant of foreign origin that can directly or indi
rectly injure agriculture, navigation, fish and
wildlife, or public health (Yellowstone National
Park 1986, Bedunah 1992).

We systematically established 8 transects,
with a random starting point, outward from
and perpendicular to the edge of each camp
ground. The edge was located where <10%
vegetative cover existed adjacent to the camp
ground road's outer border. To identify the
distance at which exotic occurrence changed,
we sampled contiguous quadrats (4 X 1 m)
along each transect from just inside the camp
ground edge (quadrat 0) to 15 m outside the
edge (quadrat 15). Additionally, quadrats were
sampled at 20, 25, 30, 40, and 50 m from the
campground edge to determine the extent of
occurrence at greater distances. Eight quad
rats inside each campground and 8 control
quadrats outside each campground were also
sampled ror comparisons. Data collected within
each quadrat during summer 1994 included
percent cover and density of exotics, percent
canopy cover of trees and shrubs (using a
spherical densiometer), percent cover of dis
turbance (disturbed bare ground, trampled
grass, footprints, and social trails), and percent
cover of bare ground and other vegetation.
Additional data were collected and analyzed as
reported by AUen (1996).

Distribution of exotic plant cover and den
sity relative to distances from campground
edges were displayed with side-by-side box
plots and scatterplots for campgrounds in
which exotics were found. A Cox-Stuart test
for trend (Daniel 1990) was used to determine
the general trend in occun'ence of exotics with
increasing distance from the edge of Mam
moth campground. Chi-square tests were used
to determine whether significant associations
existed between canopy cover and presence of
exotics and between disturbance and presence
of exotics (a = 0.05 for all analyses).

RESULTS AND DISCUSSION

Species Distributions

Exotic plants were found in only 6 of 11
campgrounds (Manunoth, Slough Creek, Madi
son, Norris, Grant Village, and Bridge Bay).
Six species were found at Mammoth (spotted
knapweed, hound's-tongue, Canada thistle,
dalmatian toadflax, yellow sweetclover, and
common mnUein). Canada thistle was found in
all 6 campgrounds, while oxeye-daisy was found
in just 1 quadrat at Norris campground. We
observed no other exotics within the quadrats;
however, we saw others in the vicinity.

. Exotics and Distance
from Campgrounds

Exotic plants at Mammoth campground
were fairly numerous and occurred at all mea
sured distances beyond the campground edge
(Fig. 1). Few to no exotics were found within
the quadrats placed immediately inside the
campground edge (quadrats 0), due primarily
to frequent and severe campground-associated
disturbance. Exotic cover and density were
higher immediately outside the campground
edge (quadrats 1 and 2). Median exotic density
and cover decreased from 2 m out to 4 m and
6 m, respectively, suggesting the campground
may be a source of inoculation or introduction.
This decrease in exotics with distance from
disturbance is similar to results found by Dale
and Weaver (1974), Benninger-Truax et a!'
(1992), and Tyser and Worley (1992). Beyond
about 6 m, density and cover increased out to
9 m, and then became more variable. We
found a general trend of higher density (P =
0.001) and cover (P = 0.011) at distances of
11-50 m (versus 0--10 m) /i'om Manunoth camp
ground edge. Canada thistle presence was
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Fig.!. Geography ofexotic plants (density and cover) relative to distance from Mammoth campground edge.

highest between 11 m and 15 m, and between
30 m and 50 m, from campground edges,
based on the cumulative relative frequency of
Canada thistle relative to distance for all
quadrats in which the plant was found. No
decreasing trend in Canada thistle presence
witll distance was found.

Exotics and Canopy Cover

At Mammoth campground a significant
association was found between canopy cover

(at the 20% and 30% open/closed threshold
divisions) and presence of hound's-tongue,
spotted knapweed, and yellow sweetclover
(Table 2). Hound's-tongue was significantly
associated 'With closed canopies, suggesting
the plant prefers or tolerates some degree of
shade. It was more consistently found under
higher canopy covers than any other exotic
species (Fig. 2). This condition is similar to
that reported by Lacey and Lacey (1986),
where hound's-tongue was found in areas of
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T:illLP. 2. .Results of chi·squuro tests used to de-tennine
the association be.tween canopy cover and exotic plant
pr~sence at ~1ammolh campground (*denotes signifi~

cance at O.Q.5Ievel).

Canopy
Exotic plant(s) cover (%j Chi-square P·value

All 20 0.940 0.3323
30 1.3.14 0.2481
40 2.047 0.1525

Hound's-tongue 20 18A76 0.0000·
30 .5.483 0,0192'
40 2,853 0.0012

Spotted knapwccd 20 7.H20 0.0049*
30 3.ts59 0.0495"
40 3.047 O.OSO!!

Dafmatian toadllax 20 0.036 0.84%
30 0.025 0.8744
40 0.017 0.8003

Yellow swcctclover 20 1!!.313 ·OOסס.0

30 5.797 O.OlGl'"
40 3,O5.'! 0,0806

Mullein 20 2,_ 0,1475
30 2.208 0.1373
40 1.743 O.lSnS

Can:tw\ thistle 20 0.3.'>5 0,5513
30 0.173 0.6775
40 0.137 0.7113

thick litter accumulation (as might bc found
under a forest with high canopy cover). Pres~

ence of spotted knapwced ancl yellow sweet
clover was significantly associated with open
canopy conditions (at the 20% and 30% open/
closed threshold divisions). Spotted knapweed
was always found under <20% canopy, and
75% of its OCCWTence fell below §% canopy
cover (Fig. 2), Previous studies bave also found
spotted knapweed to be more abundant under
open canopies (\'\latson and Renney 1974,
Losensly 1987, Miln«r 1995). Seventy-five per
cent of yellow sweetcJover QL.'Currences were
beneath <10% canopy cover.

Dalmatian toadflax, found growing under a
wide range of canopy covers, from 0% to 85%,
was predominantly lc)Und under lower canopy
cover values. '~7hile it is known to establish
drier, open areas (Lajeunesse et a1. 1993),
results indicate its tolerance for moderate
amounts of shade. Mullein was always found
under a canopy cover of <30%, and 75% of its
occun-ences were under $5% canopy cover
(Fig. 2). No significant association was found
between canopy cover and mullein, nor be·
tween all exotic.s (when combined at Mammotll;
Table 2), reflecting differences in canopy
cover tolerance of individual species. In 84%

of quadrats within which exotics were found,
however, canopy cover was ,;30% (Fig. 2).

Eighty-seven percent of Canada thistlc
occurrences were under a canopy cover of
<20%. Haderlie et a1. (1989) found that warmth
and long days favorcd Canada thistle growth.
This condition is prescnt in open canopy con
ditions during the Yellowstone National Park
growing season. Althouf'h Carmda thistle f'l"OWS
most often under open canopies, its occasional
presence under more closed canopy covers
(up to 95%) suggests it is somewhat tolerant of
shade.

Exotics and Disturbauc-e

Almost 40% of the quadrats at Mammoth
contained no disturbance, and yet exotics were
fi'equently encountered in these sites. In 75%
of the disturbed qnadrats at Mammoth, distur
bance covered ~O% of a quadrat. Presence of
exotic plants at Mammoth was found to be sig
nificantly related to lcvels of disturbance of
~O% (P = 0.0(02). Esotics occurred most fre
quently at low disturbance covers partially
'because these are the conditions most com
monly encountered at Mammoth. Higher dis
turbance covers (>60%) occurred infrequently
and were usually found in the road edge dis
turbance of the 1st quadrat. Exotics were
apparently less able to become established
where disturbance levels were high.

Disturbance cover at Mammoth decreased
from tlle campground edge out to a distance of
6 m. A general h'end of decreasing exotic plant
cover \-vith increasing disturbance was found.
In other studies it was often predetermined or
assumed that disturbance decreased with dis
tance from the road or trail, and tbat exotic
presence decreased along this gradieot
(Weavcr et a1. 1989, Denninger-Truax et al.
1992), In this study the cover of disturhed
ground was highest between 25 m and 40 n'1
from Mammoth campground edge; hO\VCVCf,

highest exotic covers did not occur at compa
rable distances.

We found Canada thislle growing in all
amounts of disturbaoce, although 20% of quad
rats in which it was present had· no evidence
of disturbaocc. Canada thistle abundance in
creased as disturbance cover increased from
5% to 40%. '0 relationship was found betwcen
disturbance and Canada thistle when distur
bance covers exceeded 60%. Where both
Canada thistle and disturbance occnrrcd, the
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plant was consistently rooted within the dis
turbance. The ability of Canada thistle to re
produce by lateral roots (Haderlie et al. 1989)
may contribute to its presence in undisturbed
and in both low and high levels of disturbed
grOllnd.

Patterns in exotic cover \vere explained, in
part, by both canopy and disturbance, The
highest exotic p,la.nt cover at Mammoth, in most
transects, occurred where canopy and distur
bance covers were both low. An exception to
this occurred along 2 transects where a high
perc;entage ofhound's-tongue was found under
canopies > 25% (again indicating its tolerance
of higher canopy covers),

Exotics and Other Vegetation

Exotic species were usually found gnl\\ing
with other plants, hilt overall the exotic plant
cover at Mammoth decreased with an increase
in individual covers of grasses, forbs, shrubs,
•.md the combined cover of these vegetation
fonus. In conh'ast, 77% of Canada thistle
occurrences were witl1 at least 45% cover of
other vegetation, and 33% of occurrences of
C ..mada thistle were with >75% (:over, suggest·
ing Canada thistle can compete well for avail
able resoun..'Cs. Overall, exotic cover ",,-as great
est where hare soil cover was <10%. When
Canada thistle was present, bare soil always
covered <40% of the ,!uadmt This result (more
exohcs where less bare soil is found) supports
other results (reported ahove) for disturbauce,
as disturbance often produces bare soil. A
slight dccrcas:e in exotic cover occurred with

an increase in litter, and no relationship was
found between exotic cover and that of moss!
lichen, sedges, or trees.

Exotics and Habitat lype

Six exotic species were found in the big
sagcbrushlbluebuneh wheatgrass habitat type,
u lower-elevation, drier habitat type tban otb
ers in Yellowstone (Table 1). Forcella and Har·
vey (1983) also found exotics to be common in
'low-elevation, dry habitats.

The abundance of exotics at Mammoth may
he related to climate, Of all Yellowstone camp
grounds, this site has the longest frost·frce
period (12-5 d) and the highest average tem
peratnres (15,3°G) for the summer growing
season (june-Au~lIst; I\atural Resources Con
scrvation Servic'C 1994), Spotted knapweed
has been found to be more common at rela
tively low elevations (610-1829 m), and it
rcquires 50-120 frost-fj'ee days (Chicoine et at.
1988, Milner 1995), Mammoth was the only
campground that met tbe.."ic conditions.

Fewer exotic plants were found at higher
eleyations, perhaps due to shorter growing
seasons, habitat types, and related higher
canopy covers. Low temperatures have been
shown to inhibit total germination and rate of
germination in yellow sweetclover (McElgunn
1973), Oxeye-daisy is adapted to a more north
ern climate (Lindsay 1953) than that ofYeJlow
stone National Park, perhaps explaining its
presence at a higher elevation (2275 m) tban
most other exotics, in the subalpine fir/pine·
grass habitat. Canada thistle was found in a
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wide range of habitats (big sagebrushllcHIO
fescue, Douglas-firlcommon suowberry, Engel
mann spruce/sweetscentcd bedsh'aw, Engel
mann spruce!horselajl, subalpine fir/grouse
whOltlcberry, and subalpine fir/pinegrass habi
tat,), a ranlle of elevations (1820-~365m), aud
on slopes <10%. No exotics were found in the
subalpine Hr/h;inBower habitat.

Random and Control Quadrats

All 8 random quadrats sampled within
Mammoth campground contained hound's
tongue, spotted knapwood, dalmatian toadOax,
and yellow sweetelover. Canada thistle was
fowld in 2 quadrats within Slough Creek camp
ground. Control quadrats near Marrunoth were
the only ones that contained exotic plants. Five
of these 8 c'Ontained dalmatian toadllax.

CONCLUSIONS

Results of thi~ study provide new infonna
tion about the (1) gcography of exotics within
Yellowstone National Park and (2) canopy con
ditions under which some exotics may grow.
Exoti,c occurrence was limited adjacent to
most of the park's camp!\founds, but it was
relatively high adjacent to \lammotb camp
ground. Exotics decreased with distance from
the campground edge, up to 6 m, and then
increased. The brge number of exotics found
coloni7ing between 11 m and 50 In from Mam
moth campllrtlUnd cdge disturbance may be a
result of several lactors: availability of viahle
seed, habitat type, canopy cover. year-round
use, and proximity Lo roads and trails. Distribu
tion of exotics at Mammoth ~'llggests that plants
may spread outward from the campgrolmd
area or from other nearby roads and h-ails.
Canada thistle was the most prevalent species
in all other campgrounds, covering a wide
range of habitats.

Canopy cover and exotic occunence were
inversely related for most species; howevel;
hound's-tongue, Canada thistle, and dalmatian
toadflax were also found under more closed
canopy conditions. Fewer exotics occurred as
disturhance increased. and exotics were f ...e
qmmtly encountered in areas of no distur
bance. Because uudisturbed or slightly rus
ttu'bed ground is common lmder natural con
ditions, exotics can be expected to colonize
these arcas given a seed source and sufficient
light and nutrient,. Canada thistle was found,

however. in all amounts of disturhance, Sll~

gesting that many areas are suitable for its
establishment. Generally, cxotics decreased
with an tn(a-ease in cover of other vegetation,
perhaps due to increa.'\ed competition for
availahle nutdellts, water, and light. Carmela
thistle appears to compete well. a.'i inrucHted
by its occurrence with high percentages of
other vegetation.

Resource management activities in Yellow
stone may have conhinuted to the lIeo!\faphy
of exotics as found in this study. Some spray
ing anu pulling of exotics in campgrounds has
occurred, but most control efforts have hecn
concenh-ated along roadsides (J. Sweaney,
North District Resource l\1aIL:'1gement coordi
uator, Yellowstone National l"ark, personal com
munication 1996). Canopy cover within forested
campgrounds of the park is being reduced 'lS

nccessmy to prevent "ha7"u'd trees" f.·om falling.
Although exotics were found adjacent to few
campgrounds, and a relatively small number
of species was found. there are indications that
exotics arc spreading, The results of this study
may be applied to ecosystems similar to this
national park and can serve as a baseline for
evaluating human-induced changes elsewhere.
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