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A B S T R A C T

The American bullfrog (Rana catesbeiana) is an invasive species globally significant for its role as a generalist 
predator in freshwater systems. Native turtles are among the species eaten by bullfrogs, and turtle populations 
are slow to recover from this impact. We examined the effects of bullfrogs and their removal on Northwestern 
pond turtles (Actinemys marmorata) at four sites in Yosemite National Park. From 2016 to 2022, we monitored 
turtle populations in two sites where bullfrogs were present and two where they have been absent. We removed 
12,317 bullfrogs, larvae, and whole egg masses from one site and 4067 from the other, reaching near complete 
eradication by 2019. We captured just large adult turtles where bullfrogs were present compared with all sizes 
where bullfrogs were absent. Prior to near complete eradication, juvenile turtles were only found with bullfrogs 
when they were recovered from bullfrog stomachs. Turtles at bullfrog present sites were 26–36 % larger and 
76–97 % heavier than turtles from bullfrog absent sites. Turtle abundance and densities were also 2–100 times 
higher at bullfrog absent sites. We captured the first juvenile turtles at bullfrog present sites only after reaching 
near complete bullfrog eradication in 2019. Altogether, our study shows a prolonged lack of juvenile turtle 
recruitment where bullfrogs were present but offers hope that bullfrog control may succeed in recovering turtle 
populations by easing predation pressure on hatchlings and juveniles. Our results indicate that bullfrog eradi-
cation efforts may be necessary to ensure persistence of at-risk species like native turtles.

1. Introduction

Invasive species are one of the leading drivers of global species 
decline (Wilcove et al., 1998; Butchart et al., 2010), and managers are 
increasingly faced with the daunting task of mitigating effects of inva-
sive species on native ecosystems. Left unmitigated, invasive species can 
alter species assemblages and interactions in ecosystems, in many cases 
threatening native species with extinction (Bellard et al., 2016; Black-
burn et al., 2019). Among the most threatened ecosystems are fresh-
water systems, which support >100,000 animal species on <1 % of 
Earth's total surface (Ricciardi and Rasmussen, 1999; Dudgeon et al., 
2006; Balian et al., 2008). Given declines in freshwater biodiversity, the 
rise in non-native species introductions has great implications for native 
species persistence (Mooney and Cleland, 2001; Dudgeon et al., 2006).

One invasive species distributed widely outside its native range with 
significant ecological impacts is the American bullfrog (Rana 

[Lithobates] catesbeiana, hereafter ‘bullfrog’). Bullfrogs can quickly 
establish in new areas, with their populations reaching tens of thousands 
of individuals (Bury and Whelan, 1984; Louette et al., 2012). They are 
also opportunistic predators, known to consume diverse taxa, including 
insects, crustaceans, amphibians, reptiles, fish, small birds, and mam-
mals (Korschgen and Baskett, 1963; Bury and Whelan, 1984; Hothem 
et al., 2009; Jancowski and Orchard, 2013). Their indiscriminate diet 
has led bullfrogs to be implicated in the disappearance or imperilment of 
many native species (Moyle, 1973; Bury and Whelan, 1984; Lawler 
et al., 1999; Adams and Pearl, 2007).

Yosemite National Park in the western United States, renowned for 
its protected wilderness, is not immune to the risks posed by invasive 
species. Among the park's native fauna, the Northwestern pond turtle 
(Actinemys marmorata; hereafter ‘pond turtle’) has seemingly dis-
appeared from Yosemite Valley—especially in areas where bullfrogs 
dominated for over half a century (Kamoroff et al., 2020). In Yosemite, 
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some remaining pond turtle populations co-occur with bullfrogs. Re-
ported instances of small pond turtles in bullfrog stomachs have led 
some to attribute pond turtle declines at least in part to the introduction 
of bullfrogs (Holland, 1994; Sloan, 2012; Hallock et al., 2017; Nicholson 
et al., 2020; Manzo et al., 2021). Pond turtles have naturally low 
recruitment and high hatchling mortality, characteristics shared by 
many turtles globally that place them at particular conservation risk and 
make them among the world's most imperiled vertebrate fauna (Bury 
et al., 2012; Rhodin et al., 2018; Stanford et al., 2020). The addition of 
yet more mortality from introduced bullfrogs likely further limits pond 
turtle recruitment. As such, pond turtle populations that co-occur with 
invasive bullfrogs have been found to lack juveniles and be dominated 
by larger—and presumably older (sensu Sloan, 2012)—pond turtles 
(Nicholson et al., 2020). Effective bullfrog management may thus be an 
option to mitigate the impacts of bullfrogs.

Eradication is one of several strategies for managing invasive species, 
which can also include habitat modification, biological controls, or 
other strategies (Simberloff, 2002; Adams and Pearl, 2007). Eradication 
and control programs are often expensive, labor-intensive, require sus-
tained efforts over long periods, and garner mixed public opinions 
(Genovesi, 2005; Adams and Pearl, 2007; Simberloff et al., 2013). 
Control can also have the unintended effect of increasing survival for 
remaining individuals—particularly in juveniles—causing populations 
to rebound and exceed pre-removal abundances (Govindarajulu et al., 
2005; Zipkin et al., 2009). However, when feasible, targeted removal of 
invasive species can promote the return or restoration of native species 
(Vredenburg, 2004; Genovesi, 2005; Knapp et al., 2007; Kamoroff et al., 
2020; Adams et al., 2023b), and such a strategy may be needed to 
recover pond turtle populations over the long-term.

The purpose of our study was to compare body size (length), con-
dition (mass relative to length), and population structure (using size 
distributions) in pond turtle populations from sites with and without 
bullfrogs as well as to examine the response in pond turtle recruitment 
following active bullfrog eradication. By examining four study sites in 
protected Yosemite National Park, we were able to isolate the impact of 
bullfrogs from other conservation challenges like road mortality, 
poaching, agriculture, pollution, and habitat alteration. We expected 
pond turtle populations with decades of co-occurrence with bullfrogs 
would have on average, larger turtles (Sloan, 2012; Nicholson et al., 
2020) and smaller population sizes than those without bullfrogs as a 
result of a prolonged lack of recruitment from increased predation on 
juvenile turtles. We also expected that reducing bullfrog numbers with 
eradication effort would facilitate new juvenile turtle recruitment. The 
results of our study should shed light on the role of invasive bullfrogs on 
pond turtle populations and the value of invasive species control for 
recovering declining native freshwater turtles.

2. Methods

2.1. Study sites

We conducted this study in Yosemite National Park, Tuolumne 
County, California, USA. We identified two waterbodies with co- 
occurring bullfrog and pond turtle populations and two waterbodies 
with pond turtle present only populations. We mask place names with 
generic location names owing to the sensitive status of the Northwestern 
pond turtle and to distinguish between bullfrog present or absent. The 
two sites with established bullfrog populations—Bullfrog Present 1 and 
Bullfrog Present 2—lie in the northwestern region of the park, east of 
Lake Eleanor and west of Hetch Hetchy Reservoir. American bullfrogs 
were deliberately introduced to Bullfrog Present 1 sometime in the mid- 
1970s and were well-established by 1990 (Dave Graber, pers. comm.). 
The exact reason for introducing bullfrogs is unknown, but for context, 
bullfrogs were widely introduced to the Western US—primarily as a food 
source for humans—beginning in the late 1800s (Snow and Witmer, 
2010). Just south of these bullfrog present sites, Yosemite Valley was 

also the recipient of intentional bullfrog introductions in the 1950s 
(Cunningham, 1960; Kamoroff et al., 2020). Bullfrog Present 1 is a 2.5 
ha small pond at 1530 m elevation that was originally a spring and 
formed when water filled the area after it was excavated and used as a 
borrow area in the 1930s. Bullfrog Present 1 was stocked with non- 
native Rainbow trout (Oncorhynchus mykiss) and Brook trout (Salveli-
nus fontinalis) from 1939 to 1987 with over 55,000 trout. Today, 
stocking no longer occurs and Brook trout have not been observed, but 
Rainbow trout are still known to occur at Bullfrog Present 1 in small 
numbers. Bullfrog Present 2 is a glacially formed 7.8 ha lake at 1557 m 
elevation that lies 1.45 km south of Bullfrog Present 1 and is accessible 
only by off-trail hiking. It is unknown whether bullfrogs were similarly 
deliberately introduced to Bullfrog Present 2 or whether individuals 
immigrated from Bullfrog Present 1. Bullfrog Absent 1 is a 5.78 ha 
shallow lake at 1596 m elevation that dries partially in late Fall. Bullfrog 
Absent 2 is a smaller 0.5 ha shallow pond at 1430 m elevation that 
likewise dries partially in early Fall. Bullfrog Absent 1 and 2 sites lie 
4.73 km south of the two bullfrog present sites. There is no evidence to 
suggest that bullfrogs were ever present at Bullfrog Absent 1 or 2.

The four study sites are in predominantly coniferous forests with 
herbaceous vegetation typical of the lower montane forests on the 
western slopes of the Sierra Nevada Mountains (North et al., 2016). Hot, 
dry summers and cool, wet winters characterize the region's climate. 
Dominant emergent vegetation at the four waterbodies consisted of 
alder (Alnus sp.), willow (Salix sp.), western azalea (Rhododendron 
occidentale), dogwood (Cornus sp.), watershield (Brasenia schreberi), 
yellow pond lily (Nuphar lutea), and sedge (Carex sp.). Thus, in sum, the 
four study sites all occurred at similar elevations, in similar habitat, with 
similar climate, within 5 km of each other, and in a national park 
buffered from many contemporary conservation challenges that afflict 
landscapes outside park boundaries.

2.2. American bullfrog eradication effort

We removed American bullfrogs from the two Bullfrog Present sites 
during spring and summer months (typically May–October), 
2015–2022. Due to the location of the sites, our efforts required 
extended backcountry camping to make the work feasible. Owing to 
mutable park budgets and related hiring and training constraints, the 
vicissitudes of weather, and the COVID-19 pandemic, our effort at the 
two sites varied annually and resulted in limited effort in some years. In 
general, we conducted visual surveys during the day to locate and scoop 
bullfrog egg masses using paint strainers and/or fine-mesh zoo-plankton 
sampling dipnets. At night, we located post-metamorphic bullfrogs 
(adult and juvenile) to remove using high-powered (>500 lm) flash-
lights and headlamps. We captured bullfrogs by use of hand captures, 
pole spears, dip nets, pellet air rifles, or via electro-shocking. However, 
the last two methods were limitedly used, and electro-shocking was 
abandoned after year one. Although we did not target tadpoles for 
removal, occasional tadpoles were removed via dip nets and turtle traps 
from incidental captures. Egg masses removed were placed on the bank 
to desiccate while adult and juvenile bullfrogs were euthanized by 
topical application of benzocaine (20 %) to the ventral abdomen fol-
lowed by pithing as a secondary measure per 2013 AVMA guidelines 
(American Veterinary Medical Association [AVMA], 2013). We 
employed these methods while walking the perimeter of the waterbody 
or from inflatable boats to maneuver the inside perimeter of the 
waterbody and access floating islands and vegetation that harbored 
bullfrogs and egg masses.

We recorded the life stage and the snout-to-vent length (SVL) of all 
bullfrogs >100 mm SVL. We dissected bullfrogs >100 mm SVL and 
recorded their sex, stomach contents, and whether females were gravid 
or spent. Stomach contents were identified in the field to the finest 
taxonomic scale possible (e.g., order, family, genus, species) depending 
on the condition of the remains.

In addition to nighttime removal efforts, we conducted visual 
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encounter surveys during the day to remove egg masses with dip nets 
and paint strainers. Bullfrog egg masses were easily identified and 
distinguished from other amphibians in the region due to the large size 
of the gelatinous mats produced by bullfrogs at the surface of the water.

2.3. Northwestern pond turtle monitoring

We set traps to capture and monitor pond turtles at all four sites 
during spring and summer months (typically May–October) 2016–2021, 
with additional monitoring and hand captures in 2022 during continued 
bullfrog eradication effort. As with bullfrog eradication effort, and due 
to the remote location of the sites and aforementioned challenges, our 
effort at the four sites varied annually. We captured pond turtles using 
modified crab traps made of black, synthetic mesh stretched over a 
collapsible, metal frame partially placed above the water surface to 
allow access to air. For deep water placement, traps were outfitted with 
mesh towers affixed to the top to ensure pond turtles could surface to 
breathe. Traps were baited with canned mackerel and rebaited every 
other day. We deployed traps up to six nights at a time and checked them 
every 8–12 h to ensure turtle safety and maximize the effectiveness of 
capture. We recorded the sex of each captured pond turtle and measured 
the midline straight carapace length (MCL), carapace width, midline 
straight plastron length, plastron width, and shell height of each using 
field calipers. We recorded whether female pond turtles were gravid via 
palpation of their inguinal region. We recorded the mass (g) of each 
pond turtle using portable electronic scales. Counting scute annuli can 
be useful for aging juvenile turtles while they are young and growing 
quickly (Bury and Germano, 1998); the method is not reliable, however, 
for determining the age of adult turtles as their growth slows and scute 
annuli become crowded, indistinguishable, and worn smooth by 
weathering over time. For this reason, we used MCL in analyses to make 
inferences about age structure of the populations given that turtles tend 
to increase in size as they age (i.e., larger turtles are generally older than 
smaller turtles where climate and environment are similar; Congdon 
et al., 2013). For general comparisons, we divided pond turtles using 
MCL and annuli into three possible life stages: pond turtles with less than 
one annuli were recorded as hatchlings, pond turtles with more than one 
annuli (i.e., older than one year) but <110 mm in MCL were recorded as 
juveniles, and pond turtles >110 mm in MCL regardless of age structure 
or if age structure could not be determined (e.g. worn age rings) were 
recorded as adults. Secondary sex characteristics tend to arise around 
110 mm in MCL (Bury et al., 2012). We marked each pond turtle with a 
unique ID by notching the marginal scutes (Cagle, 1939), following a 
unique numbering system (Holland, 1994). Some hatchlings <40 mm 
were not able to be notched; thus were photographed for later 
identification.

2.4. Statistical analyses

We estimated abundance and demographic rates of Northwestern 
pond turtles at each site with a Bayesian analysis of the Schwarz- 
Arnason superpopulation parameterization of the Jolly-Seber model 
using parameter-expanded data augmentation (Jolly, 1965; Kéry and 
Schaub, 2012; Schwarz and Arnason, 1996; Seber, 1965). We shared 
parameters across populations for efficiency and to allow estimation of 
quantities that otherwise would not be estimable for each population 
individually. Specifically, we assumed annual apparent survival was 
constant across years and sites, and we adjusted apparent survival in the 
model for the interval between sampling occasions at each site. Indi-
vidual capture probability per trap check was assumed constant across 
sites and years. Entry probabilities were independent at each sampling 
occasion for each site to avoid constraining abundance estimates. In 
addition to apparent survival, entry, and capture probabilities, we also 
estimated pond turtle abundance in each sampling year and total pond 
turtle abundance at each site for the study period. We further calculated 
pond turtle densities for each site by dividing the abundance estimate for 

each posterior sample from the MCMC output by pond area. We assessed 
goodness-of-fit using the posterior predictive distribution of the number 
of captures of each pond turtle based on the Freeman-Tukey statistic 
(Rose et al., 2022), with fit for each site evaluated independently. We 
selected priors for each parameter to be vague and ensured that our 
augmented data set was not constraining abundance estimates by veri-
fying posterior inclusion probabilities for each site were < <1.00. We 
fitted the model using JAGS 4.3.0 (Plummer, 2017) in R 4.3.1 (R Core 
Team, 2023) using the package ‘jagsUI’ (Kellner, 2015). We ran the 
model for 200,000 iterations on each of 5 independent chains after a 
burn-in period of 20,000 iterations and thinned the output by a factor of 
10. We assessed convergence with examination of history plots and the 
Gelman-Rubin statistic (Gelman and Rubin, 1992); all history plots 
appeared well-mixed and R̂ < 1.01 for all parameters of interest. Min-
imum effective sample size for monitored parameters was 1719.

We used linear mixed effects models to compare pond turtle size 
among the sites. Because bullfrogs were almost completely eradicated at 
the bullfrog present sites by 2020, we compared pond turtles captured 
from bullfrog present sites through 2019—while the pond turtles were 
still living with dense bullfrog populations—with those captured at the 
bullfrog absent sites across all years. For each model, we used MCL or 
mass of each pond turtle at first capture as our response variable, bull-
frog presence as a fixed effect, and site as a random intercept. We per-
formed one analysis on pond turtles of all sizes and a second analysis on 
just adult pond turtles (>110 mm MCL). We likewise used linear mixed 
effects models to compare mass (relative to length) of pond turtles 
among the sites, with log10mass at first capture as our response variable, 
both log10MCL and bullfrog presence as fixed effects, and site as a 
random effect. We again used a separate model for pond turtles of all 
sizes and for just adult pond turtles when comparing relative mass. We 
used the ‘lme4’ package (Bates et al., 2015) to conduct analyses in R 
version 4.3.1 (R Core Team, 2023). We used Kruskal-Wallis rank sum 
tests with a Dunn's post-hoc test of multiple comparisons where overall 
models were significant at the α = 0.05 level.

3. Results

From 2015 to 2022, we recorded a total of 977 h of American bull-
frog removal effort at Bullfrog Present 1 and 941 h at Bullfrog Present 2. 
Much of this effort was centered during 2017–2019, by which point we 
found the greatest success removing bullfrogs using pole spears or direct 
hand captures, both from boats and walking the waterbody perimeter. In 
total, we removed 12,317 American bullfrogs from Bullfrog Present 1 
(120 egg masses, 108 larvae, 10,775 juveniles, and 1314 adults) and 
4067 American bullfrogs from Bullfrog Present 2 (42 egg masses, 215 
larvae, 2775 juveniles, and 1035 adults).

The number of bullfrogs removed from Bullfrog Present 1 peaked in 
2018, with 6998 individuals removed that year, excluding egg masses 
(Fig. 1). The number of bullfrogs removed from Bullfrog Present 2 
peaked in 2019, with 1822 individuals removed that year, excluding egg 
masses (Fig. 1). Most American bullfrogs were removed within the first 
five years (98.5 % from Bullfrog Present 1 and 89.1 % from Bullfrog 
Present 2; Fig. 1). Due to the Covid-19 pandemic and workforce limi-
tations in 2020, only one night of bullfrog removal occurred at Bullfrog 
Present 1, and two nights at Bullfrog Present 2 in 2020. Despite this 
unexpected pause in removal effort, eradication appeared nearly com-
plete by the end of 2019 given the lack of captures in 2020, and despite 
renewed, substantial effort in 2021 and 2022.

We found many prey items in bullfrog stomachs, including pond 
turtles (A. marmorata, N = 6), Sierra newts (Taricha sierrae, N = 2), 
garter snakes (Thamnophis spp., N = 19), frogs (Rana catesbeiana, N =
60; Pseudacris regilla, N = 7), Virile crayfish (Faxonius virilis, N = 72), 
insects (N = 902), unidentifiable species of small birds (N = 7), small 
rodents (N = 7), and rocks (N = 2). Some stomach contents were 
partially digested and could not be confirmed, so these numbers likely 
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underestimate true counts. All six of the pond turtles in bullfrog stom-
achs were hatchlings or juveniles, including four at Bullfrog Present 1 
and two at Bullfrog Present 2. Two of the pond turtles found in bullfrog 
stomachs at Bullfrog Present 1 were found in 2021, after nearly all 
bullfrogs had been removed from the sites and very few remained.

We captured 45 individual pond turtles (94 total captures) at Bull-
frog Present 1 and 21 individual pond turtles (24 total captures) at 
Bullfrog Present 2 (Table 1). We captured 222 individual pond turtles 
(302 total captures) at Bullfrog Absent 1 and 71 individual pond turtles 
(77 total captures) at Bullfrog Absent 2 (Table 1). Most captures of new 
individuals occurred in the first one to two years of sampling at the 
bullfrog present sites, whereas new individuals were still captured in 
later years of sampling at the bullfrog absent sites (Suppl. Fig. 1).

The Schwarz-Arnason superpopulation model sharing capture and 
survival information across sites generally fit the data well, with some 
evidence for lack of fit at Bullfrog Absent 2 (Table 2). Bullfrog absent 
sites were on average smaller in size yet supported higher annual pond 
turtle abundance estimates than sites with bullfrogs (median estimates 
at sites with bullfrogs, range = 22–50; sites without bullfrogs, range =
174–245; Table 2; Fig. 2). Mean pond turtle densities followed a similar 
pattern, being higher in the Bullfrog Absent sites than in the Bullfrog 
Present sites (mean estimates at sites with bullfrogs = 12 (11–14); sites 
without bullfrogs = 218 (182–262)). Given the mean size of the pond 

turtles in their respective sites, this translated to a range of 2.4–135 kg/ 
ha of median estimated biomass, with the highest estimated pond turtle 
biomass occurring at one of the Bullfrog Absent sites and the lowest at 
one of the Bullfrog Present sites. Superpopulation estimates were similar 
to annual estimates (Table 2), indicating that adult pond turtle pop-
ulations varied little and were generally well-sampled over the course of 
our study. Annual apparent survival of adult pond turtles was 0.998 
(0.989–0.999; Table 2). Individual capture probability at each trap 
check was 0.055 (0.050–0.060; Table 2).

Pond turtle populations at the two bullfrog present sites were 
dominated by larger adult pond turtles (Fig. 3). In contrast, pond turtles 
of all sizes were captured at the bullfrog absent sites, including hatchling 
and juvenile pond turtles (Fig. 3). Turtles <110 mm MCL (i.e., juvenile 
size) on first capture represented 35.1 % of turtles at Bullfrog Absent 1, 
and 19.5 % at Bullfrog Absent 2. No hatchling or juvenile pond turtles 
were ever captured in traps at Bullfrog Present 1; the only hatchling or 
juvenile pond turtles recovered from Bullfrog Present 1 were four 
removed from bullfrog stomachs. Just one hatchling and one juvenile 
were captured in traps at Bullfrog Present 2, both captured after bull-
frogs were nearly completely eradicated in 2019 (Fig. 3).

The lack of smaller pond turtles at the bullfrog present sites through 
2019 was conspicuous, with pond turtles captured at the bullfrog pre-
sent sites through 2019 being 26–35.5 % larger by MCL on average than 

Fig. 1. Number of American bullfrogs (Rana catesbeiana) removed per year by life stage for both sites where bullfrogs were historically present. *Year 2020 had very 
limited removal effort.
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those captured at the bullfrog absent sites throughout the study (p =
0.002; Fig. 3; Table 1). Pond turtles did not differ significantly in MCL 
between Bullfrog Present 1 and 2 (p = 0.60) or between Bullfrog Absent 
1 and 2 (p = 0.85). Among just adult pond turtles, those captured at the 
bullfrog present sites through 2019 were 11.8–19 % larger by MCL on 
average than those captured at the bullfrog absent sites throughout the 
study (p = 0.017; Fig. 4). Adult pond turtles did not differ significantly in 
MCL between Bullfrog Present 1 and 2 (p = 0.48) but were larger at both 
bullfrog present sites than at Bullfrog Absent 1 (p-values < 0.0001), 
where they were in turn larger than at Bullfrog Absent 2 (p = 0.018; 
Fig. 4). Mass followed a similar trend due to the lack of smaller pond 
turtles—pond turtles captured at bullfrog present sites through 2019 
were 75.7–96.7 % heavier on average than pond turtles captured at 
bullfrog absent sites throughout the study (p < 0.0001; Table 1). Pond 
turtles did not differ significantly in mass between Bullfrog Present 1 and 
2 (p = 0.45) or between Bullfrog Absent 1 and 2 (p = 0.98). Among just 
adult pond turtles, those captured at the bullfrog present sites through 
2019 were 31.4–62 % heavier on average than adults captured at bull-
frog absent sites throughout the study (p = 0.031, data not shown). As 
with MCL, adult pond turtles did not differ significantly in mass between 
Bullfrog Present 1 and 2 (p = 0.31) but were heavier at both bullfrog 
present sites than Bullfrog Absent 1 (p-values<0.001), where adult pond 
turtles were in turn heavier than Bullfrog Absent 2 (p = 0.007). The 
relative mass of pond turtles at bullfrog present sites through 2019 did 
not differ from those captured at the bullfrog absent sites throughout the 
study (p = 0.96). Likewise, among just adult pond turtles, the relative 
mass of those captured at the bullfrog present sites through 2019 did not 
differ from those captured at the bullfrog absent sites throughout the 
study (p = 0.48).

4. Discussion

The American bullfrog is included among the world's 100 worst 
invasive species due to its impact on native biodiversity (Lowe et al., 
2000). Its wide ecological niche means that native freshwater species 
including freshwater turtles—a group already imperiled globally 
(Dudgeon et al., 2006)—are often at particular risk where bullfrogs are 
established. While the challenges presented by invasive bullfrogs are 
diverse, it is their opportunistic and generalist nature as predators that 
often gives them an outsized impact on native species (Moyle, 1973; 
Bury and Whelan, 1984; Pearl et al., 2004; Jancowski and Orchard, 
2013). This risk is heightened for species like turtles, whose populations 
are slow to respond even when conservation threats are alleviated 
(Gibbons et al., 2000; Enneson and Litzgus, 2008).

As opportunistic predators, bullfrogs are gape-limited in prey choice 
(Carpenter and Morrison, 1973), and adult pond turtles are simply too 
large to be consumed by bullfrogs. However, the opposite is true for 
hatchlings and other young pond turtles. Among the varied prey items 
we found in bullfrog stomachs at the two study sites were six separate 
instances of small pond turtles. This likely underrepresents the true 
number of pond turtles consumed by bullfrogs given that one instance of 
a pond turtle in the stomach contents was mostly digested (e.g., only one 
hatchling limb and one scute fragment evident in one stomach), and the 
odds of capturing a bullfrog that had fed recently enough for the entire 
turtle to still be identifiable was likely low. For comparison, in a study 
from British Columbia, Canada, 12 native Western painted turtle 
hatchlings were found in bullfrog stomachs in just six months 
(Jancowski and Orchard, 2013). Our detections now join a growing list 
of observations of bullfrogs preying on small pond turtles where bull-
frogs were introduced (Korschgen and Baskett, 1963; Hothem et al., 
2009; Hallock et al., 2017; Nicholson et al., 2020). Given that hatchling 
pond turtles can measure as little as 25 mm in MCL, they likely take 
several years to outgrow the gape of an adult bullfrog (Bury et al., 2012) 
and remain at risk of predation by bullfrogs. Prolonged predation risk 
coupled with slow maturation rates (7–10 years), limited reproductive 
rates (e.g., typically 4–6 eggs per nest), and high nest depredation means Ta
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that few turtles are likely to survive to sexual maturity (Holland, 1994; 
Bury et al., 2012), placing this long-lived species at particular risk. Our 
study adds mounting evidence that hatchling and juvenile pond turtle 
losses to bullfrogs pose a serious threat to pond turtle population 

persistence. The impact of bullfrogs on pond turtles was even listed as 
one cause for the proposed listing of the turtle as threatened under the 
Endangered Species Act (USFWS, 2023).

An obvious consequence of consistent and prolonged predation of 

Table 2 
Prior and posterior distributions for Schwarz-Arnason superpopulation parameterization of the Jolly-Seber model to estimate site- and year-specific abundance of 
Northwestern pond turtles (Actinemys marmorata) captured in turtle traps in Yosemite National Park, California, USA, 2016–2021. SD = standard deviation, ETI =
equal-tailed interval. Beta(α, β) indicates a prior with a beta distribution and two shape parameters (α and β). Note entry probabilities were given a Dirichlet prior as 
specified in Kéry and Schaub (2012). The Gelman-Rubin convergence diagnostic (R̂) was 1.00 for all reported values in the table and the minimum effective sample size 
across all parameters was 2243.

Parameter Site Symbol Prior Posterior distribution summary

Mean ± SD Median 95 % ETI

Inclusion probability Bullfrog Absent 1 ψBA1 Beta(α = 1, β = 1) 0.49 ± 0.03 0.49 0.44–0.55
Bullfrog Absent 2 ψBA2 Beta(1, 1) 0.40 ± 0.05 0.40 0.31–0.50
Bullfrog Present 1 ψBP1 Beta(1, 1) 0.34 ± 0.04 0.34 0.26–0.43
Bullfrog Present 2 ψBP2 Beta(1, 1) 0.32 ± 0.07 0.31 0.20–0.47

Annual apparent survival probability Shared across sites and years ϕ Beta(1, 1) 0.997 ± 0.003 0.998 0.989–1
Mean capture probability per trap-check Shared across sites and years p Beta(1, 1) 0.055 ± 0.002 0.055 0.05–0.06
Abundance Bullfrog Absent 1 in 2018 NBA1_2018 Derived parameter 174.11 ± 12.49 174 151–200

Bullfrog Absent 1 in 2019 NBA1_2019 Derived parameter 230.76 ± 7.33 231 217–245
Bullfrog Absent 1 in 2020 NBA1_2020 Derived parameter 245.25 ± 7.47 245 232–261
Bullfrog Absent 1 in 2021 NBA1_2021 Derived parameter 245.78 ± 7.76 245 232–263
Bullfrog Absent 2 in 2018 NBA2_2018 Derived parameter 190.51 ± 20.21 189 154–233
Bullfrog Absent 2 in 2021 NBA2_2021 Derived parameter 197.01 ± 20.42 196 160–240
Bullfrog Present 1 in 2018 NBP1_2018 Derived parameter 45.27 ± 3.22 46 38–51
Bullfrog Present 1 in 2019 NBP1_2019 Derived parameter 48.66 ± 2.06 48 45–53
Bullfrog Present 1 in 2021 NBP1_2021 Derived parameter 50.18 ± 3.12 50 46–58
Bullfrog Present 2 in 2016 NBP2_2016 Derived parameter 22.12 ± 3.54 22 16–29
Bullfrog Present 2 in 2018 NBP2_2018 Derived parameter 27.92 ± 3.66 27 22–36
Bullfrog Present 2 in 2019 NBP2_2019 Derived parameter 29.31 ± 4.17 29 23–39
Bullfrog Present 2 in 2021 NBP2_2021 Derived parameter 31.32 ± 5.08 31 23–43

Superpopulation abundance Bullfrog Absent 1 Nsuper_BA1 Derived parameter 246.94 ± 7.75 246 234–264
Bullfrog Absent 2 Nsuper_BA2 Derived parameter 198.84 ± 20.58 198 162–242
Bullfrog Present 1 Nsuper_BP1 Derived parameter 50.42 ± 3.11 50 46–58
Bullfrog Present 1 Nsuper_BP2 Derived parameter 31.56 ± 5.10 31 24–43

Bayesian P-value Bullfrog Absent 1 Derived parameter 0.88 ± 0.32 1 0–1
Bullfrog Absent 2 Derived parameter 0.06 ± 0.23 0 0–1
Bullfrog Present 1 Derived parameter 0.32 ± 0.47 0 0–1
Bullfrog Present 2 Derived parameter 0.46 ± 0.50 0 0–1

Fig. 2. Annual abundance estimates for Northwestern pond turtles (Actinemys marmorata) captured in turtle traps by site and year for sites with (upper panels) and 
without (lower panels) American bullfrogs (Rana catesbeiana). Bullfrog removal occurred from 2016 to 2022 at Bullfrog Present 1 and 2. Points represent posterior 
medians, vertical lines represent 95 % equal-tailed intervals, and shapes represent posterior distributions.
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young pond turtles by American bullfrogs is the lingering demographic 
impact observed in our study. At the sites where bullfrogs were present, 
pond turtles had low population densities and were dominated by larger 
individuals, which would be consistent with an aging population that is 
demographically top heavy. Such effects in pond turtle populations have 
previously been attributed to prolonged cohabitation with bullfrogs 
(Holland, 1991; Sloan, 2012; Nicholson et al., 2020). While adult pond 
turtles in these populations were still reproducing—evidenced by the 
appearance of hatchlings in bullfrog stomachs—sustained predation by 
bullfrogs meant no pond turtles survived long enough to be recruited 
into later life-stages. Extremely truncated populations composed of just 
adult turtles indicates a declining population that, if unmitigated, will 
lead to local extinction (Browne and Hecnar, 2007; Howell et al., 2019). 
Without the active bullfrog eradication undertaken here, these turtle 
populations are unlikely to have recovered on their own. Our study 
shows that control efforts in the short-term are likely to benefit pond 
turtle populations until long-term solutions (e.g. full eradication) can be 
reached. Unfortunately, declines in turtle populations can happen sur-
reptitiously as adults persist for decades due to long lifespans and high 
survival while no juveniles survive to replace them. This phenomenon, 
coined the “perception of persistence”, can provide a false sense of se-
curity and delay management intervention necessary for species con-
servation (Lovich et al., 2018). In the case of mitigating American 
bullfrog impacts to pond turtle populations, this management inter-
vention may need to take the form of protracted effort to remove inva-
sive bullfrogs altogether.

Our results suggest that sustained, direct removal of bullfrogs, while 
demanding, can succeed in dramatically reducing populations and 
predation pressure on native species. Study sites containing bullfrogs 
escaped management attention for decades, allowing populations to 
grow and reach high densities. The number of bullfrogs removed from 
the 2.5-ha Bullfrog Present 1 far surpassed even the highest numbers 

reported from other studies for a single population. Louette et al. (2012)
targeted primarily tadpoles but removed 9212 individuals from a 0.15- 
ha pond over two years. In another region of Yosemite National Park, 
park staff removed 8126 individuals over 15 years from the Yosemite 
Valley—a region that spans approximately 1500 ha (Kamoroff et al., 
2020). Using a conservative estimate of 25 g of body mass per bullfrog, 
we estimate that we removed >300 kg of bullfrog biomass over the eight 
years from Bullfrog Present 1 alone. The bullfrog biomass removed from 
the study sites here represents substantial energy being redirected to 
bullfrogs and away from native species. We know from historical park 
records, for instance, that California red-legged frogs (Rana draytonii) 
were widespread in this region prior to bullfrog introduction (Adams 
et al., 2023a). Following near eradication of bullfrogs at Bullfrog Present 
2, we recorded the first captures of small pond turtles—a hatchling and a 
juvenile—suggesting a strong relationship between bullfrog removal 
and pond turtle recruitment and thus providing some hope for turtle 
population recovery once bullfrog predation pressures are alleviated. 
The sustained pressure from bullfrogs likely plays a sizeable role in low 
pond turtle recruitment and the slow decline of wild pond turtle pop-
ulations where the two species cohabitate. Any attempt to reverse range- 
wide declines of pond turtles in the western US may thus benefit from 
including bullfrog control.

Studies continue to show that the successful removal of invasive 
species can support native species recovery (Genovesi, 2005; McGeoch 
et al., 2010). The eradication of bullfrogs from Yosemite Valley 
(Kamoroff et al., 2020) prompted the facilitated reintroduction of Cali-
fornia red-legged frogs (Rana draytonii) using captive-reared pop-
ulations that have since shown signs of wild reproduction and 
recruitment (Adams et al., 2023b). Similarly, after mountain yellow- 
legged frogs (Rana sierrae and R. muscosa) disappeared from 90 % of 
their historical California range, the removal of non-native trout from 
remote alpine lakes resulted in the rapid increase of native frog densities 

Fig. 3. Size frequency histograms of Northwestern pond turtles (Actinemys marmorata) upon first capture. American bullfrog removal occurred at Bullfrog Present 1 
and 2 from 2016 to 2022. Bullfrog Absent 1 and 2 had no bullfrog presence. Gray bars represent pond turtles captured in 2019 or earlier, and white bars represent 
pond turtles captured in 2020 and later after reaching near complete bullfrog eradication. Vertical black dashed lines depict the mean midline straight carapace 
length for each site across all years. Sample size of individual pond turtles is in the upper left corner of each site's panel.
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(Vredenburg, 2004; Knapp et al., 2007). Our efforts to dramatically 
reduce bullfrog abundances have supported the reintroduction of the 
California red-legged frog in this region. Our work underscores the 
considerable time, effort, and dedication required to remove bullfrogs 
and monitor the effects on native turtle populations long-term. To pre-
vent bullfrog populations from rebounding, continued removal on the 
bullfrogs that remain will be essential for pond turtles and other native 
species to recover. While our study examined the detrimental effect of 
invasive bullfrogs on a declining native turtle species of concern, the 
implications for freshwater systems are broad in the face of increasingly 
altered environments. Given the wide range of negative effects bullfrogs 
can have on freshwater systems, early detection and proactive bullfrog 
management can have multi-species benefits and be a worthwhile 
endeavor for restoring freshwater ecosystems.

5. Conclusion

Invasive species are among the greatest threats to biodiversity with 
potential to cause permanent damage to native ecosystems (Blackburn 
et al., 2019). American bullfrogs represent one example of a globally 
distributed invasive species that has been implicated in the decline of 
many native freshwater species (Lowe et al., 2000). Our study investi-
gated how prolonged American bullfrog presence affected Northwestern 
pond turtle demographics while simultaneously assessing the efficacy of 
targeted bullfrog removal aimed at ameliorating these effects. We found 
prolonged bullfrog predation on small pond turtles likely inhibited pond 
turtle recruitment, evidenced by the low population densities and 
demographically “top-heavy” structure we observed in pond turtle 

populations at bullfrog present sites. However, our targeted removal of 
adult and juvenile bullfrogs coincided with the first observations of 
young pond turtles at our bullfrog present sites, indicating that bullfrog 
removal may facilitate population recovery for native pond turtles. 
While the challenges associated with invasive species removal are sig-
nificant, our study shows the potential benefit of reversing species de-
clines and restoring freshwater ecosystems.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.biocon.2025.111090.
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