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As our urban areas grow in population and physical prominence on the landscape, the
use of nearby natural areas for outdoor recreation also increases. Although some local
effects of human recreation in wilderness areas have been documented, landscape level
responses of wildlife species to patterns of human recreation have not been previously
evaluated.

I studied the avian Family Corvidae (crows, ravens, jays, and magpies) in Mount
Rainier National Park. Using data collected from over 1400 point counts across areas
varying in type and level of visitor use, I calculated predicted density and occupancy values
using the programs DISTANCE and PRESENCE, while allowing for variation in detection
probability. I then investigated aspects of the human and natural landscapes that best
explained patterns of corvid density and occupancy and evaluated the influence of food
availability on the use of these features by corvids.

Although level of visitor use and the availability of food subsidy was important in

explaining the distribution patterns of three corvid species—Steller's jay, Clark's nutcracker,



and common raven—a species-specific suite of vegetative and landscape variables were also
consistently important in describing occupancy and density patterns. Steller’s jays tended to
occupy edgy landscapes and other patchy, forested areas while gray jays occupied high
elevation contiguous forests. Clark’s nutcracker occupied areas with open forest edges near
stands of whitebark pine and common ravens used forests and roads.

Corvids are intelligent generalist-omnivores that serve important ecosystem functions
such as songbird nest predation, nutrient cycling, and seed dispersal. Wildland landscapes
that support human recreation provide anthropogenic food subsidies and may benefit these
synanthropic species while potentially reducing ecosystem function. In Mount Rainier
National Park, Steller’s jays (Cyanocitta stelleri), Clark’s nutcrackers (Nucifraga
columbiana), and common raven (Corvus corax) all changed their use of landscape features
in areas where anthropogenic food subsidies were available. Gray jays (Perisoreus
canadensis), although frequently observed in areas of food subsidy, did not appear to shift
their use of the landscape in response to human subsidized foods.

Corvids respond to both human presence and patterns of anthropogenic development
on the landscape. Corvids are also gregarious, easily recognized, and relatively easy to
monitor and thus may be ideal bioindicators of anthropogenic ecosystem change. Changes in
Steller’s jay distribution or abundance may indicate increases in landscape fragmentation and
nest predation while increases in raven presence along roads or at point subsidies may
indicate a reduction in nutrient cycling in other natural areas. Increases in Clark’s nutcracker
abundance at an area of anthropogenic food subsidy may indicate a decrease in the seed
dispersal of large wingless seeded pines, such as whitebark pine (Pinus albicaulis), with
which nutcrackers are highly coevolved. American crows, although not observed during
surveys in Mount Rainier, are strongly associated with urban and suburban development.
Should crows appear in great abundance within wildland natural areas such as Mount
Rainier, it would likely indicate increased development or the presence of a significant and

reliable point subsidy.
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Chapter 1

Recreation Changes the Use of a Wild Landscape by Corvids:
Local Effects and Possible Landscape Repercussions

Recreation, ecotourism, and other relatively low levels of human disturbance, affect
native wildlife communities and wildland ecosystems and landscapes (Edington and
Edington 1986, Knight and Gutzwiller 1995, Czech and Krausman 1997, Liddle 1997). The
presence of outdoor photographers, rock climbers, hikers, and horseback riders in natural
areas exposes wildlife to direct human disturbance while the creation of access roads, bike
paths, campgrounds, and picnic areas affects the composition and pattern of native
landscapes. While most native species of wildlife are negatively affected by human
recreation in natural areas (Knight and Gutzwiller 1995, Czech and Krausman 1997), the
magnitude and direction of impacts of human disturbance on wild landscapes may vary by
species, animal condition, season, amount of visitation, type of recreation, and visitor
behavior (Kuss et al. 1990, Liddle 1997, Steidl and Powell 2006). Although localized
responses, both positive and negative, to recreation are well documented (Burger and
Gochfeld 1998, Gutzwiller et al. 1998, Gutzwiller et al. 2002, Neatherlin and Marzluff 2004,
Marzluff and Neatherlin 2006), landscape level responses of wildlife species to patterns of
human recreation have not been evaluated. However, through varying levels of human
disturbance and the direct and indirect provisioning of anthropogenic food, human recreation
favors some species over others, which may result in changes in the use of landscape features
by species, immediately affecting landscape integrity and ecosystem function and ultimately
causing evolutionary change. Managers of natural areas are thus challenged to achieve a
balance between the provision of recreational opportunities and the resulting positive and
negative influences on the native species, landscapes, and the performance of ecosystem
functions.

Songbird communities may be especially sensitive to nonconsumptive wildland
recreation (Boyle and Samson 1985, Knight and Gutzwiller 1995, Miller et al. 1998).
Recreation may decrease bird species diversity and skew density in favor of a few species

(Beissinger and Osborne 1982, Hansen et al. 2005, Devictor et al. 2008) by affecting avian



fecundity and survivorship (Miller ez al. 2001, Sandrik and Barrett 2001, Bolduc and
Guillemette 2003). Nesting birds in recreational areas may suffer increased nest desertion,
decreased hatching success, reduced parental attendance at the nest, increased foraging effort,
or increased nest parasitism (Hickman 1990, Burger and Gochfeld 1998, Miller et al. 1998,
Chace and Walsh 2006). Additionally, egg and chick predation, the primary cause of nest
failure in songbirds (Martin 1993), may increase due to the attraction of mammalian (Bradley
and Marzluff 2003, Martin and Joron 2003, Gutzwiller and Riffell 2008,) and avian predators
(Wilcove 1985, Gutzwiller et al. 2002, Marzluff and Neatherlin 2006, Piper and Catterall
2006, Marzluft e al. 2007).

The vulnerability of particular species to the above impacts is likely to depend on
various life history traits as well as their resource requirements (Knight and Gutzwiller 1995,
Hill et al. 1997). Bird species that are likely to be negatively affected by an increase in
nonconsumptive recreation include those requiring specialized resources, ground nesters, rare
species, and species that require large contiguous home ranges (Knight and Gutzwiller 1995,
Neatherlin and Marzluff 2004, Marzluff and Neatherlin 2006). In contrast, human
recreational use of natural areas may benefit generalist species, such as corvids (birds of the
Family Corvidae, including jays, crows, ravens, magpies, and nutcrackers), which are able to
adapt to living with humans and are associated with diverse landscapes. Corvids and other
avian predators may benefit from increased visibility and juxtaposition of diverse resources
(i.e. edge habitats; Martin and Joron 2003).

Corvids are intelligent generalist-omnivores that are well-adapted to associating with
humans, often flourishing in urban areas and in areas of more moderate human presence such
as recreation areas (Marzluff and Angell 2005, Marzluff and Neatherlin 2006). In recreation
areas with anthropogenic food, corvids may maintain smaller home ranges and populations
may increase in both number and density (Gutzwiller ez al. 2002, Storch and Leidenberger
2003, Neatherlin and Marzluff 2004, Marzluff and Neatherlin 2006, Bui ef al. 2010). The
response of corvids to recreation may reduce the ability of wildland reserves to conserve rare
species such as greater sage grouse (Centrocercus urophasianus; Bui et al. 2010) and
marbled murrelet (Brachyramphus marmoratus; Luginbuhl et al. 2001). Changing corvid
communities may also affect important ecosystem functions including carrion decomposition

(Knight and Kawashima 1993, Mason and MacDonald 1995) and seed dispersal (Vander



Wall and Balda 1977, Ligon 1978, Hutchins and Lanner 1982, Tomback 1982, Tomback and
Taylor 1987, Johnson et al. 1997).

The response of corvids to recreation potentially influences local and large scale
processes. Corvids are wide ranging birds that serve ecosystem functions across broad
spatial scales. For example, nutcrackers are known to cache pine seeds up to tens of
kilometers from the parent tree (Vander Wall and Balda 1977) and blue jays may transport
nuts and acorns between widely separated fragments of native vegetation (Johnson et al.
1997). For songbird nest predators including Steller's jays, habitat fragmentation may result
in an increase in nest predation along forest edges and in small forest fragments (Andrén
1992, Marzluff and Restani 1999, Ibarzabal and Desrochers 2004). A landscape perspective
on the response of corvids to human recreation may increase our understanding of
recreation’s effect on ecosystem processes.

In this study, I evaluated the impact of anthropogenic food subsidy and varying levels
of human recreation on the distribution patterns and landscape-level habitat use of five corvid
species in Mount Rainier National Park: American crow (Corvus brachyrhynchos), Clark’s
nutcracker (Nucifraga columbiana), common raven (Corvus corax), gray jay (Perisoreus
canadensis), and Steller’s jay (Cyanocitta stelleri). 1 predicted corvid populations in general
to concentrate around areas of high visitor use and with food subsidy, including visitor
centers, picnic areas, and drive-up campgrounds. In areas of low visitor use, I predicted
corvid presence to coincide with the locations of hike-in campgrounds, the areas most likely
to provide consistent anthropogenic food resources. Clark’s nutcrackers are highly
coevolved with whitebark pine (Pinus albicaulis) in the northwestern United States
(Hutchins and Lanner 1982, Tomback 1982) and I predicted nutcrackers to concentrate
primarily in areas near stands of whitebark pine.

Although corvids are already known to be highly associated with humans and man-
made habitat features on the landscape (Knight and Gutzwiller 1995, Neatherlin and
Marzluff 2004, Marzluff and Angell 2005, Marzluff and Neatherlin 2006), no research has
shown the direct effects of food subsidy on the distribution patterns of corvids and their use
of landscape habitat features in wildland ecosystems. In this study, I expected to see
evidence for changes in use of landscape-level habitat features in response to the provision of

food subsidy for all species. However, I expected the effect of food subsidy to be weakest



for American crows in the park as these birds are already highly associated with areas of high
human development that already have food subsidy; areas with human food subsidy are the
niche for American crows in the Pacific Northwest (Marzluff ez al. 2001, Marzluff and
Neatherlin 2006). Likewise, Steller's jays may also show a weak response to food subsidy
because their habitat preferences naturally coincide with areas also likely to have food
subsidy, i.e. low elevation forests with many edges (Vigallon and Marzluff 2005a). Gray
jays tend to use higher elevation contiguous forests and I expected that, in areas where food
subsidy is provided, they may use patchier or lower elevation landscapes. Ravens are wide
ranging birds that are likely to appear in low densities across much of Mount Rainier
National Park. However, I predicted that they are most likely to be associated with roads,
foraging for road kill (Knight ef al. 1995). Additional direct sources of food provisioning
such as backcountry campgrounds may also subsidize ravens and affect their use of
landscape features away from roads. Although I predicted nutcrackers to be found near
whitebark pine, in high elevation open patchy forests, food subsidy may draw this species
farther from pine stands to forage, perhaps to lower elevations or to areas of more contiguous

vegetation (Tomback and Taylor 1987).



METHODS

Study Area

I surveyed corvids throughout Mount Rainier National Park (Figure 1.1). Mount
Rainier is a 4392 meter volcanic peak located on the west side of the Cascade Range,
approximately 100 km southeast of Seattle in southwestern Washington. The national park
encompasses 235,625 acres and, as established by the Washington Park Wilderness Act of
1988 (Public Law 100-668), is 97 percent designated wilderness.

Mount Rainier National Park is characterized by long, cool, wet winters and relatively
warm, dry summers, typical of the Pacific Northwest. Due to the combined effects of the
steep elevation gradient and precipitation levels that change both with elevation and with the
east-west rain-shadow effect, vegetation and habitat features vary widely throughout the
park. Lower elevations, below 1000 m, are characterized by mature forests dominated by
Douglas-fir (Pseudotsuga menziesii), western red cedar (Thuja plicata), and western hemlock
(Tsuga heterophylla). Mixed forests of western white pine (Pinus monticola), western
hemlock, and Pacific silver fir (4bies amabilis) can be found at mid-level elevations between
1000 and 1500 m. Relatively open mixed forests and subalpine meadows characterize
elevations from 1500 to 2000 m and dominant tree species include subalpine fir (4bies
lasiocarpa), mountain hemlock (7Tsuga mertensiana), Alaska yellow cedar (Callitropsis
nootkatensis), and whitebark pine. Subalpine meadow vegetation may include heather
species (Cassiope sp. or Phyllodoce sp.), huckleberry (Vaccinium sp.), subalpine lupine
(Lupinus arcticus spp. subalpinus), false hellebore (Veratrum viride), sedges, alpine aster
(Aster alpinus), paintbrush (Castilleja sp.), western anemone (Anemone occidentalis), or
fescues (Festuca sp.). Above 2000 m is an alpine zone covered mostly by heather
communities, snow, glaciers, rock outcrops, and talus fields. In total, approximately 58
percent of the park is forested, 23 percent is subalpine, and the remainder is alpine.

The wide variety of plant communities found within Mount Rainier National Park
provides numerous recreational opportunities, from picnicking to alpine climbing, and the
park welcomes over two million visitors every year. The park maintains four visitor centers,

three wilderness information centers, four drive-up campgrounds, 41 hike-in campgrounds,
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and over 400 km of trail, including the 150 km Wonderland Trail which encircles the peak of

Mount Rainier.

Survey Design

Incorporating areas with a variety of vegetation types, recreational impacts, and park
management uses, I surveyed 168 points for corvid presence throughout Mount Rainier
National Park during the summer, post-breeding seasons (mid-June through late-September)
0f' 2009 and 2010. I surveyed 113 points in 2009 and 114 points in 2010, including 59 points
in both survey seasons (Figure 1.1). During each field season, I visited each point between
two and ten times, totaling 639 visits in 2009 and 774 visits in 2010. Although there is wide
variability in the number of visits to each point, ranging from two to 18 visits across both
seasons, | used analysis methods that take this into account, minimizing the bias of varying
survey effort. Most points received at least six visits (n=141). Of those points with less than
six visits (n=27), both low and high visitors use areas and points both with and without food
subsidy were represented, although most were located in low visitor use areas without food
subsidy (n=23). Both analysis programs DISTANCE v.5.0 (density; Thomas et al. 2006) and

PRESENCE (occupancy; http://www.mbr-pwrc.usgs.gov/software/ presence.html) allow

unequal survey effort. DISTANCE averages observations across visits to compute an
average predicted density estimate for each site. Occupancy and detectability modeling in
PRESENCE is robust to missing observations and an equal sampling effort across all sites is
not required (MacKenzie ef al. 2005). Visits to each point were spaced out across the survey
season to minimize within season differences.

I chose survey points to reflect a variety of visitor uses and sorted points into four site
types based on differences in level of human use and the availability of anthropogenic food
subsidy. Points with high visitor use (n=35), including visitor centers, drive-up
campgrounds, road pullouts and trailheads, are defined as areas that can be reached by
vehicle and are commonly used by day visitors. Approximately half of high visitor use points
had food subsidy available (drive-in sites with picnic tables and/or trash cans; n=17). Low

visitor use points (n=133) can only be reached by foot and include wilderness campsites and



trails. Most of these points did not have food (hike-in trail sites; n=119), but food subsidy
was available at hike-in campgrounds (n=14).

At campgrounds, administrative areas and visitor centers, survey points were located
at the approximate center of the human use area. Along roads, I surveyed points in pull-outs
or parking areas. To remove the influence of the trail corridor on visual corvid detections, I
surveyed forested trail points at a random distance (between 10 and 50 m) and right-angle
direction off trail. I separated all survey points by a minimum distance of approximately 500

m.

Survey Methodology

I conducted distance sampling at all point count locations (Buckland ez al. 2001),
recording the horizontal distance to each corvid detected visually or audibly during a twenty
minute period. In addition to following standard point count techniques described by Ralph
et al. (1993, 1995), I also considered specific variables influential to corvids, such as weather
and time of day (Luginbuhl ez al. 2001). I conducted surveys on days with only light wind
(less than 19 kph), no more than light precipitation (U. S. National Weather Service 1995),
and between sunrise and early afternoon, the time of day when birds are most active.

Across two field seasons, three observers conducted all corvid surveys and each
observer surveyed the majority of the sites at least once. At each survey point and during
each point count, we additionally noted characteristics of weather, vegetation, and visitor use
which we expected to be important in explaining patterns of corvid detection, distribution, or
abundance (for variable descriptions, see Table 1.1). For each survey point, we noted the
elevation, general vegetation type within 50 m, forest structure, and canopy cover. Based on
designations outlined in Mount Rainier National Park’s 2001 General Management Plan, we
also classified each point by zone type, a classification of the type of visitor use. We also
recorded start time (used to calculate the time after sunrise), precipitation, cloud cover, noise,
wind, and number of observed visitors (used to calculate average number of visitors for each

site).



Table 1.1. Description of count, point, and landscape level variables used in occupancy, density, and
detection analyses. *Count level features were only used only to model detection. *Canopy cover, habitat,
and structure were used to model detection in addition to occupancy and density. Distance to whitebark
pine was used only in Clark's nutcracker analyses.

Count Features*

Definition

percentage of cloud cover in visible sky, 0-100%; only used to

Cloud Cover model detectability

measure of noise level at beginning of count: 1 (no noise), 2 (gentle

. babbling brook noise), 3 (babbling creek noise), 4 (rushing creek

Noise . . . . .

noise), 5 (roaring creek/river noise); noise levels 4 and 5 aggregated

for analyses; only used to model detectability

— Cap— 5 - -

Precipitation presence of precipitation during > 5 minutes (25%) of count: no rain

or rain; only used to model detectability

Time After Sunrise

time elapsed between sunrise and the start of count, number of
minutes converted to decimal fraction of a day; only used to model
detectability

Wind

Point Features

measure of wind level at beginning of count, Beaufort scale (0-6);
wind levels 0 and 1 and levels 3 and greater aggregated for
analyses; only used to model detectability

Average Visitors

average number of visitors observed across all counts

estimation of canopy cover directly above survey point: none (<

Canopy Cover' 11%), little, 11-40%), partial (41-70%), full cover (71-100%); also
used to model detectability
Elevation elevation at survey site, in meters
description of dominant habitat type within 50 m of site: forest or
Habitat non-forest (non-forest can be either open forest or meadow); also
used to model detectability
sites are classified as either high visitor use (able to reach by
Site Type vehicle) or low visitor use (hike-in only) and as either with food

subsidy (with picnic tables, trashcans, and/or campsites) or without
food subsidy

Forest Structure’

description of general forest structure within 50 m: very complex (2
or more canopy layers and multiple openings), complex (1 or 2
canopy layers with few openings), simple (simple forest structure
with 1 canopy layer and no openings or meadow habitat with few/no
trees; also used to model detectability

Zone Type

Landscape Metrics

as defined by 2001 General Management Plan: backcountry camp,
trail zone, or day use

Contrast-weighted Edge Density
within 2 km

density of important edges within 2 km radius of survey point,
meters/hectare: forest-developed edge weight = 1, forest-meadow
edge weight = .5, other = 0

Contrast-weighted Edge Density
within 5 km

density of important edges within 5 km radius of survey point,
meters/hectare; weights described above

Distance to Campground

distance to nearest campground, meters

Distance to Road

distance to nearest road, meters

Distance to Whitebark Pine "’

distance to nearest stand of whitebark pine, meters; location of
stands based on shapefile provided by National Park Service; used
only in analyses for Clark’s Nutcracker



Table 1.1 continued

10

Length of Road Edge within 2 km

2 x length of road within 2 km of survey point, meters

Length of Road Edge within 5 km

2 x length of road within 5 km of survey point, meters

Patch Richness within 2 km

number of different types of landcover patches within 2 km

Patch Richness within 5 km

number of different types of landcover patches within 5 km

Percent Forest within 2 km

percentage of forest landcover within 2 km radius of survey point

Percent Forest within 5 km

percentage of forest landcover within 5 km radius of survey point
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Landscape Metrics

To assess the relationship between corvid distributions and broad scale landscape
characteristics, [ used ArcGIS v.9.3.0 (ESRI 2008) to measure the distance from each survey
point to the nearest road, the nearest campground, and the nearest stand of whitebark pine
(Table 1.1). The distance to whitebark pine was used only in the analyses of Clark's
nutcracker observations. I also used the NPScape 2001 landcover dataset for Mount Rainier
National Park (Homer ef al. 2004, National Park Service 2010) to represent the landcover
patterns surrounding each survey point within buffer areas of 2 and 5 km radii. I chose these
buffer areas because they approximate the average home range sizes of the targeted corvid
species. Using FRAGSTATS v.3.3 (McGarigal 2002), I calculated landscape metrics within
each buffer area for each survey point, including percent forest, Shannon’s diversity index,
contagion, patch richness, length of road edge, and contrast-weighted edge density. These
metrics were chosen because they reflect the amount of edge and degree of fragmentation on
the landscape, both known to be important characteristics in predicting corvid presence and
abundance. For contrast-weighted edge density, edges between forest and developed land
received a weight of 1, edges between forest and meadow/shrub received a weight of 0.5, and
all other land cover edges received a zero weight. Because Shannon’s diversity index,
contagion, and percent forest were highly correlated when considering both radii (2 km:
”>0.91, p<0.001; 5 km: r*>0.93, p<0.001), I included only percent forest, contrast-weighted
edge density, patch richness, and length of road edge, in my final analyses (Table 1.1).

Detectability

To make accurate estimates of the density and occupancy of wildlife species based on
observation in varying field conditions, it is necessary to correct for potential differences in
detection. Detectability, defined as the probability of observing an organism during a survey
given the organism is present, may vary by distance from the observer, observer ability,
numerous environmental and temporal factors, and species-specific characteristics
(Rosenstock et al. 2002 and references therein). Bird, and specifically corvid, detection may

vary by wind, noise, precipitation, time after sunrise, and light intensity (Anderson and



12

Ohmart 1977, Luginbuhl ez al. 2000, Restani et al. 2001, Donnelly and Marzluff 2006,
Marzluff and Neatherlin 2006). Thus, in modeling density and occupancy patterns of corvid
populations, I considered the potential effects of differing detectability to avoid biases. In all
occupancy and density analyses described below, I compare models considering the effects
of eight variables on detectability, including habitat, forest structure, canopy cover,
precipitation, time after sunrise, noise, cloud cover, and wind (Table 1.1). Each point was
surveyed multiple times by at least two of three observers to help minimize the effects of

differences between observers and I did not consider the effect of observer on detectability.

Occupancy

I used the program PRESENCE (http://www.mbr-pwrc.usgs.gov/software/
presence.html) to provide occupancy estimates and site-specific predictions while allowing
for varying detectability and to provide predicted occupancy values for each corvid species.
I considered 18 variables as potential explanatory variables for occupancy of each corvid
species (Table 1.1). In addition, I considered the distance to the nearest stand of whitebark
pine to explain occupancy for Clark's nutcracker (Table 1.1).

For some variables, values were scaled to avoid numerical convergence issues with
the logit link function in PRESENCE. I converted percent forest and cloud cover to
proportions and elevation and distance measurements were expressed in kilometers with the
exception that length of road edge was scaled to hundreds of kilometers. I divided values for
average number of visitors and patch richness by ten.

A large variable set inhibited the comparison of a predetermined set of models.
Thus, for all analyses, I used forward model selection and Akaike's Information Criterion,
corrected for small sample size (AIC.; Akaike 1974), to identify the most parsimonious
model to best explain the data in each analysis for each species. I first compared all single
variable models of occupancy and selected the model with the lowest AIC.. I then tested all
models considering that single occupancy variable with a single detection variable. Again
considering the model with the lowest AIC,, I considered another set of models with a
secondary occupancy variable. I continued this process, adding detection and occupancy

variables one at a time until no additional variable improved (lessened) the AIC..
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Before calculating predicted occupancy values for the entire data set, | tested for the
significance of survey year in explaining observed corvid patterns at 59 points surveyed in
both seasons. I found the best detection model using forward model selection and eight
detection variables and considered both a null model with no explanatory occupancy
variables and a model considering only year. Year was not included in the best model for
any species (AAIC, reported is difference between best null model and model including year;
Steller’s jay AAIC.: 2.48; gray jay AAIC.: 2.79; common raven AAIC,: 2.79; Clark’s
nutcracker AAIC.: 2.68). Because the models including year were less competitive than the
best null model, I used the single season analysis engine in PRESENCE to calculate
predicted occupancy estimates for each species in all subsequent occupancy analyses.

To evaluate how corvid occupancy varies in areas with different levels of visitor use
and with the provision of food subsidy, I used PRESENCE to model detectability using eight
detection variables and calculate predicted occupancy estimates for each species at each
individual survey point. I then divided the points into four site types defined by level of
visitor use and the availability of food subsidy and calculated an average occupancy for each
site type for each species.

To best explain overall corvid occupancy patterns in Mount Rainier National Park, I
used the single season analysis engine in PRESENCE to evaluate the influence of count,
point, and landscape level variables (Table 1.1) on occupancy and detectability to fit the best
occupancy model to the observations of each species. I calculated the effect size of
anthropogenic food availability on each species occupancy patterns.

Finally, to assess how corvids change their use of the landscape due to the availability
of food subsidy, I evaluated the importance of interactions between food availability and
other variables included in the competitive models (AAIC. < 2) describing each species

overall occupancy.

Density

I used the program DISTANCE v.5.0 (Thomas et al. 2006) to estimate site-specific

density for each corvid species while allowing for variation in detection probability. 1

truncated observations for each species to exclude the greatest 10% of distances and binned
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the remaining observations into distance categories. Bins were generally 10 m wide,
although bin width varied between species and analyses. Bin sizes were also uneven within
each species because of awkward truncation distances and because bins were offset from
multiples of five due to an observer tendency to round distances to these values. I evaluated
half-normal and hazard-rate key functions with cosine, polynomial, and hermite series
expansions, allowing for the inclusion of up to five adjustment terms. As with occupancy
analyses (described above), I considered potential effects of eight vegetation and weather
variables on detectability (see Table 1.1). In detection analyses in DISTANCE, I used
forward model selection and AIC, to identify the most parsimonious model to describe the
data for each corvid species. Top detection models of corvid density may be found in
Appendix 1.A.

While DISTANCE identifies variables that influence detection and supplies predicted
density estimates, the program cannot investigate variables that may influence density alone.
With the program R v. 2.10.0 (R Development Core Team 2009) and the R Commander
package (Fox et al. 2009), I evaluated the importance of point and landscape-level habitat
variables on predicted corvid densities using linear regression models. However, because the
density estimates use a common estimated detection function, they are not independent as
assumed in the linear regression models I examined. For all analyses, I used forward model
selection and chose the most parsimonious model using AIC..

Before analyzing the entire data set, I tested for the significance of survey year in
explaining observed corvid patterns at 59 points surveyed in both seasons. I compared
predicted densities at each point for each survey year and found no significant difference
between years for any species (n=59; Steller’s jay: t=0.31, p=0.76, common raven: t=0.55,
p=0.59, gray jay: t=1.69, p=0.10, Clark’s nutcracker: t=0.97, p=0.34). Thus, in further
analyses I treated all observations as if they were from a single survey season and did not
consider year as a design variable.

To evaluate how corvid density varies in areas with different levels of visitor use and
with the provision of food subsidy, I calculated predicted density estimates for each species
at each survey point using DISTANCE and calculated an average density for each species in
each of the four recreation site types defined by visitor use and the availability of food

subsidy. I then evaluated the influence of other point and landscape level variables (see
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Table 1.1) to best describe overall corvid density patterns across all sites. Finally, I evaluated
the influence of food availability on the use of landscape features by corvids by testing for
the significance of interactions between food and other explanatory variables from

competitive density models (AAIC, < 2) for each species.

Comparison of Occupancy and Density

As occupancy and density patterns may tell us different things about a species’
distribution (Bui ez al. 2010), I compared average occupancy and density predictions across
site types defined by level of visitor use and the availability of anthropogenic food (Figure
1.2a-d). Although the comparison is limited because occupancy ranges only from zero to one
and density is a continuous variable, the degree of linear correlation between the two
measures can give us an idea of whether both are needed to identify interesting distribution
patterns for each species. For Steller’s jays and nutcrackers, occupancy and density changed
proportionally across the four site types (n=4; jay: r*,=0.97, p=0.01; nutcracker: r*,=0.94,
p=0.02). Gray jay occupancy and density were somewhat proportional (n=4; r%,=0.75,
p=0.09) across the four site types while raven occupancy and density were inconsistent (n=4;
%.=0.63, p=0.13). This suggests that both occupancy and density are important for
accurately interpreting raven distribution patterns. In subsequent analyses for each species, |
report primarily occupancy results for the four species, except when density analyses
produced exceptionally different results. Complete density analyses for all species can be

found in Appendices 1.A-C.
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RESULTS

I detected four of the five possible corvid species during surveys conducted during
the summers of 2009 and 2010. I did not observe American crows either during my surveys
or, anecdotally, in additional time spent within park boundaries, although they were observed
just outside the park, in the town of Ashford, WA. I observed Steller’s jays 415 times at
nearly half (48.2%) of 168 points, including 80% of high visitor use points (94.1% of 17
points with food subsidy, and 6.7% of 18 without) and 39.8% of low visitor use points
(14.3% of 14 points with food subsidy, 42.9% of 119 without). I observed common ravens
273 times at 53% of points. I detected ravens at 85.7% of 35 high visitor use points,
including 88.2% of points with and 83.3% of points without food subsidy. At sites with low
visitor use, I observed ravens at 57.1% of points with food subsidy and 42.9% of points
without. I made 395 observations of gray jays at 53% of points, including 17 high visitor use
sites (64.7% of 17 points with food subsidy, 33.3% of 18 points without), 64.3% of low
visitor use points with food subsidy, and 52.9% points of low visitor use, without food
subsidy. Of the four species observed, I saw Clark’s nutcrackers least frequently. I made
only 176 observations of nutcrackers at 16.7% of points including 7 high visitor use points
(35.3% of points sites with food subsidy, 5.6% of points without) and 21 sites with low
visitor use (28.6% of points with food subsidy, 14.3% of points without).

Corvid Detection

Combinations of weather, vegetation, and temporal variables explain patterns of
detection of occupancy for all corvid species (Table 1.2) and were consistent across
competitive models (Appendix 1.D). In general, corvid detection was affected by noise
level, while canopy cover, forest structure, habitat, and the time after sunrise were also
important (Table 1.2). Steller's jays were best detected in complex forests with moderate to
high canopy cover and moderate noise levels. Gray jays, on the other hand, were best
detected in quiet landscapes of simply-structured forests. For Clark's nutcrackers, detection

was best in quiet meadows with little canopy cover. Nutcracker detection also increased with
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Table 1.2. Landscape attributes associated with corvid occupancy across all survey points. Table values
are coefficients and standard error values of variables in top models describing occupancy for all species.
Variables in occupancy models have been scaled (see text) and coefficients are untransformed logit values.
"Variables in bold are included in all competitive models (AAIC, < 2). * The AAIC, listed is for the
second-best model, not shown.

Steller’s Jay Coefficient SE Model Selection
Occupancy

Intercept -10.90 3.13 AIC, 1146.84
Visitor Use (High)* 30.75 5.45 AAIC.* 0.49
Food (With) 27.99 5.44 w; 0.05
Food (With):Visitor Use (High) -29.28 5.41

Contrast-weighted Edge Density within 5 km 14.69 6.11

Patch Richness within 5 km 21.02 5.03

Elevation -3.02 0.96

Canopy Cover (71-100%) 22.49 2.64

Canopy Cover (41-70%) -21.78 2.64

Canopy Cover (11-40%) -20.31 2.73

Forest Structure (Very Complex) 21.15 2.63

Forest Structure (Complex) 19.95 2.68

Detection

Intercept -1.95 0.32

Canopy Cover (71-100%) 0.43 1.11

Canopy Cover (41-70%) 0.74 1.11

Canopy Cover (11-40%) -0.15 1.13

Forest Structure (Very Complex) 0.26 1.14

Forest Structure (Complex) 0.82 1.16

Noise (Level 2) 0.41 0.19

Noise (Level 3) -0.02 0.22

Noise (Level 4) 0.42 0.33

Gray Jay

Occupancy

Intercept -7.42 4.65 AIC. 1073.79
Elevation 10.33 2.04 AAIC, 0.72
Percent Forest within 2 km 8.19 2.90 w; 0.08
Forest Structure (Very Complex) 23.47 4.01

Forest Structure (Complex) 25.07 4.07

Patch Richness within 5 km -22.53 7.40

Habitat (Forest) -21.64 4.03

Habitat (Open Forest) 1.72 1.56

Distance to Campground 0.58 0.27

Detection

Intercept -1.28 0.24

Noise (Level 2) -0.002 0.19

Noise (Level 3) -0.61 0.24

Noise (Level 4) -1.47 0.49

Forest Structure (Very Complex) -0.35 0.33

Forest Structure (Complex) -1.23 0.38

Habitat (Forest) 1.00 0.42

Habitat (Open Forest) 0.32 0.36



Table 1.2 continued

Clark’s Nutcracker

Occupancy

Intercept -3.49 3.28 AIC, 331.08
Distance to Whitebark Pine -3.47 1.28 AAIC. 0.78
Average Visitors 2.46 1.09 w; 0.13
Contrast-weighted Edge Density within 2 km 43.46 18.21

Forest Structure (Very Complex) -12.23 6.28

Forest Structure (Complex) -4.40 4.77

Food (With) 7.25 3.63

Habitat (Forest) 6.45 4.97

Habitat (Open Forest) 8.36 3.55

Detection

Intercept -0.80 0.36

Noise (Level 2) -0.74 0.42

Noise (Level 3) -1.12 0.45

Noise (Level 4) -0.62 0.96

Forest Structure (Very Complex) 22.01 3.58

Forest Structure (Complex) 17.98 3.88

Canopy Cover (71-100%) -18.25 3.80

Canopy Cover (41-70%) -20.82 3.57

Canopy Cover (11-40%) -20.96 3.63

Habitat (Forest) -0.19 0.86

Habitat (Open Forest) -1.13 0.54

Time After Sunrise 3.08 1.95

Common Raven

Occupancy

Intercept -84.88 3.97 AIC, 982.87
Contrast-weighted Edge Density within 2 km 192.92 17.87 AAIC, 0.86
Percent Forest within 5 km 81.33 4.19 w; 0.09
Average Visitors 38.52 8.05

Forest Structure (Very Complex) -4.15 4.07

Forest Structure (Complex) -14.30 5.39

Detection

Intercept -1.59 0.25

Noise (Level 2) 0.03 0.19

Noise (Level 3) -0.89 0.25

Noise (Level 4) -1.64 0.54

Time After Sunrise -3.30 1.12

Canopy Cover (71-100%) 0.41 0.24

Canopy Cover (41-70%) 0.78 0.25

Canopy Cover (11-40%) 0.03 0.34

Wind (Level 2) 0.39 0.19

Wind (Level 3) 0.37 0.33

19
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time after sunrise. Common ravens were best detected in quiet mornings on landscapes with
moderate canopy cover and little wind.

In explaining patterns of corvid density, different variables were identified as
important for detecting the four corvid species (Appendix 1.A). Steller's jays were best
detected in areas with moderate noise and low wind while gray jay detection was affected by
precipitation. Clark's nutcracker detection was best in forests of complex and simple
structure. Ravens were best detected on landscapes of low noise and wind, as well as low

canopy Cover.

Correlates of Species Occurrence

Both human-influenced and natural aspects of the landscape help describe patterns in
overall occupancy for all species (Table 1.2; all competitive models shown in Appendix1.D).
Although both food and visitor use were important in describing Steller’s jay occupancy and
food was important for Clark's nutcracker occupancy, in general, vegetation (forest or
meadow), degree of fragmentation, and the availability of edges, particularly roads, were
most important in characterizing corvid distribution. There was rarely a single model that
clearly represented the data however. The full complement of competitive models (models
with a AAICc < 2) had a substantial combined weight of evidence in their favor, ranging
from 22 to 44%.

Each species was consistently related to a few aspects of the landscape. Steller’s jays
tended to occupy edgy landscapes and other patchy, forested areas with high visitor use and
food subsidy, a pattern supported by 12 competitive models with a combined weight of
evidence of 0.34 (Table 1.2). Gray jays occupied high elevation contiguous forests; ten
competitive models had a combined weight of 0.44 (Table 1.2). Clark’s nutcracker occupied
areas with open forest edges near stands of whitebark pine and with anthropogenic food
subsidy. This association was based on three competitive models with a total weight of 0.28
(Table 1.2). Common ravens used forests and roads, a pattern supported by three
competitive occupancy models with a combined weight of 0.22 (Table 1.2). For each corvid

species, variables explaining density patterns were similar to those important for explaining
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occupancy (Appendices 1.B and 1.C). Raven density, however, also responded positively to

areas of high visitor use and food subsidy.

Influence of Food Subsidies on Corvid Use of Landscapes

Across all survey points, corvid occurrence was dependent on elevation, forest cover,
and amount of edge (see above). At survey points with anthropogenic food subsidy,
however, species used landscape features differently than at points without food subsidy
(Table 1.3). With food subsidy, all corvids used points with more visitors that were closer to
roads and campgrounds and in open forests with less overall forest cover on the landscape.
Food subsidy tended to draw species closer to areas with more visitor use and with more
human development on the landscape, although this effect varied between species and
specific landscape measures. For example, common ravens and gray jays occupied areas
over 760 m closer to campgrounds when food subsidy was available, a significant difference
for gray jays. Steller’s jays moved only 380 m closer to campgrounds. In contrast, Steller’s
jays were over 860 m closer to roads in areas with food, a significant shift, while ravens were
only 50 m closer. The effect of food subsidy on raven use of roads and edges was weak
relative to the observed effect on the jays. Ravens occupied landscapes with an additional 4
km of nearby road edge when food subsidy was available. Gray jays and Steller’s jays,
however, occupied areas with 9 and 13 km of additional road edge respectively. The
difference in nearby road edge was significant for Steller’s jays. Clark’s nutcrackers used
areas 150 m closer to whitebark pine stands when food subsidy was available, although this
shift was not significant. All species used sites with a significantly higher number of average
observed visitors at sites with food.

In evaluating the impact of food subsidy on corvid distribution patterns, Steller's jays,
ravens, and Clark's nutcrackers significantly changed aspects of their use of landscape
features when food subsidy was available (Table 1.4). Neither gray jay occupancy nor
density patterns were significantly changed by food subsidy. Steller's jays were less common
in simple and very complex forest structures when food subsidies were not available. On the
other hand, Clark's nutcrackers used areas of complex and very complex forest structure less

when food subsidy was available. Nutcrackers were in greater abundance at lower elevations



Table 1.3. Effect of food subsidy on use of landscape features by corvids. For continuous variables, effect
size is equal to the difference between the average variable value at occupied sites in areas with and
without food subsidy. For categorical variables, effect size is the difference between the percentage of
occupied sites in areas with and without food subsidy. Negative values indicate that the use of the
landscape feature decreased in areas of food subsidy. *95% confidence interval does not include zero.

Effect Size of Food Subsidy

(occ. sites with food — occ. sites without food)

Steller's Gray Jay Clark's Common
Variable Jay Nutcracker Raven
Average Visitors 9.95% 8.52% 11.82%* 6.49*
Contrast-weighted Edge Density
within 2 km (m/ha) 4.59 3.91 -3.04 0.58
Contrast-weighted Edge Density
within 5 km (m/ha) 2.13 1.34 -1.07 0.33
Distance to Campground (m) -382.71 -760.58* -736.69 -763.45
Distance to Road (m) -863.41* -347.75 -381.67 -48.22
Distance to Whitebark Pine (m) -—-- -—-- -152.48 -—--
Elevation (m) -31.58 -12.83 0.24 -62.15
Length of Road Edge within 2 km (m) 13259.73* 9039.44 6579.18 3801.59
Length of Road Edge within 5 km (m) 21527.67 8487.52 3632.16 4023.76
Patch Richness within 2 km 0.33 0.47* 0.18 0.15
Patch Richness within 5 km -0.06 -0.04 -0.04 -0.06
Percent Forest within 2 km -3.60 -9.80 -12.64 -2.21
Percent Forest within 5 km -4.34 -6.52 -11.66 -2.05
Percentage of Occupied Sites with:
Canopy Cover (<11%) -15.08%* -8.99 -26.67 -20.29
Canopy Cover (11-40%) -7.14 -1.59 20.00 -4.74
Canopy Cover (41-70%) 17.46 11.01 -2.22 28.13
Canopy Cover (71-100%) 4.76 -0.44 8.89 -3.10
Forest Structure (Simple) -13.49 -8.99 -21.11 -18.78
Forest Structure (Complex) 15.08 11.16 -6.67 15.09
Forest Structure (Very Complex) -1.59 -2.17 27.78 3.69
Habitat (Forest) -7.14* -15.07 -7.78 3.49
Habitat (Meadow) -5.56 -7.39 -24.44 -15.35
Habitat (Open Forest) 12.70 22.46 32.22 11.86
Visitor Use (High) 69.84 46.30 54.44 42.49
Visitor Use (Low) -69.84 -46.30 -54.44 -42.49
Zone Type (Backcountry Campground) 11.11 45.00 40.00 33.27
Zone Type (Day Use) 48.41 34.06 54.44 27.54
Zone Type (Trail Zone) -59.52% -79.06 -94.44 -60.80
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Table 1.4. Significant changes in landscape feature use by corvids due to the availability of anthropogenic
food subsidy. Table values are coefficients and standard error values of variables in top models
considering food interactions for both occupancy and density for all species. Only models which were
significantly better than analyses which did not consider food interactions are shown. Variables in
occupancy models have been scaled (see text) and occupancy coefficients are untransformed logit values.
* The AAIC: listed is for the best overall model without food interactions, shown in Appendix 1.B for
density and Table 1.2 for occupancy.

Steller’s Jay Coefficient SE Model Selection
Density

Intercept 0.16 0.16 AIC, 370.98
Zone Type (Day Use) 0.60 0.11 AAIC* 0.37
Zone Type (Trail Zone) 0.49 0.12

Food (Without) -0.20 0.12

Elevation <-0.001 <0.001

Forest Structure (Simple) 0.34 0.19

Forest Structure (Very Complex) 0.51 0.13

Contrast-weighted Edge Density within 2 km 0.01 0.003

Food (Without):Forest Structure (Simple) -0.20 0.20

Food (Without):Forest Structure (Very Complex) -0.37 0.14

Clark’s Nutcracker

Occupancy

Intercept -2.76 4.12 AIC, 330.74
Distance to Whitebark Pine -6.60 2.25 AAIC, 0.34
Average Visitors -7.05 5.03

Contrast-weighted Edge Density within 2 km 75.15 28.98

Forest Structure (Very Complex) -21.29 27.39

Forest Structure (Complex) -4.50 27.89

Food (With) 89.34 7.24

Habitat (Forest) 9.38 27.71

Habitat (Open Forest) 14.98 5.57

Food (With):Forest Structure (Very Complex) -73.91 6.05

Food (With):Forest Structure (Complex) -90.60 9.68

Detection

Intercept -0.87 0.37

Noise (Level 2) -0.74 0.41

Noise (Level 3) -1.09 0.43

Noise (Level 4) -0.58 0.97

Forest Structure (Very Complex) 55.30 1.19

Forest Structure (Complex) 51.73 1.69

Canopy Cover (71-100%) -51.79 1.51

Canopy Cover (41-70%) -53.99 1.18

Canopy Cover (11-40%) -54.25 1.32

Habitat (Forest) -0.24 0.83

Habitat (Open Forest) -1.11 0.52

Time After Sunrise 3.12 1.95

Clark’s Nutcracker
Density
Intercept -0.08 0.15 AIC, -659.74



Table 1.4 continued

Distance to Whitebark Pine

Percent Forest within 5 km

Percent Forest within 2 km

Food (Without)

Forest Structure (Simple)

Forest Structure (Very Complex)
Canopy Cover (11-40%)

Canopy Cover ( <11%)

Canopy Cover ( 41-70%)

Elevation

Food (Without):Distance to Whitebark Pine
Food (Without):Canopy Cover (11-40%)
Food (Without):Canopy Cover (<11%)
Food (Without):Canopy Cover (41-70%)
Food (Without):Elevation

Common Raven

Density

Intercept

Food (Without)

Visitor Use (Low)

Length of Road Edge within 5 km
Average Number of Visitors

Food (Without): Visitor Use (Low)

Food (Without):Length of Road Edge within 5 km

<-0.001
0.01
-0.005
-0.02
-0.93
0.04
-0.46
0.45
-0.23
<0.001
<0.001
0.43
0.49
0.24
<0.001

0.13
-0.11
-0.12
<0.001
-0.004
0.11
<-0.001

<0.001
0.001
0.001
0.15
0.13
0.03
0.11
0.16
0.05
<0.001
<0.001
0.12
0.1
0.06
0.001

AAIC,

0.04 AIC,
0.04 AAIC,
0.04
<0.001
0.001
0.04
<0.001

24.88

-862.79
1.23
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and used areas of greater canopy cover when food subsidy was available. Their association
with stands of whitebark pine was also stronger when food subsidy was available. Ravens
were less abundant in heavily roaded areas without the additional subsidy of direct food

provisions.

Comparison of Occupancy and Density

Although species responses to recreation varied, corvid presence in general was
correlated with high visitor use and anthropogenic food subsidy (Figure 1.2a-d). Common
raven occupancy was significantly greater at points with high visitor use then areas of low
visitor use (AAIC.= 7.12, the difference between model including visitor use and the null
model). The response of raven density to food subsidy depended on the level of visitor use
(Fi164=11.65, p=0.001). Gray jay occupancy was greater at sites with low visitor use (AAIC,
= 0.06, the difference between model including visitor use and the null model). Clark's
nutcracker occupancy and density was greatest in areas with food subsidy (occupancy: AAIC,
= 3.60, the difference between model including food availability and the null model; density:
F1,16=5.04, p=0.026). The response of both Steller’s jay occupancy and density to food
subsidy depended on level of visitor use (occupancy: AAIC.= 17.81, the difference between
model including food availability, visitor use, and their interaction, and the null model;
density: F16=9.58, p=0.002). In areas of high visitor use, Steller’s jays were most common
at points with food but, at low visitor use points, they were most common when no food

subsidy was available.
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DISCUSSION

Recreation in wildlands can affect native species by increasing levels of predation,
decreasing productivity, and changing species distribution patterns. As a result, recreation is
one of the leading causes of species endangerment (Czech and Krausman 1997). These
extreme effects of recreation are increasingly well recognized yet more subtle effects of
nonconsumptive recreation on wilderness ecosystems are less appreciated. Landscape level
responses of wildlife species to human recreation and food subsidy have not been evaluated
although such responses may affect species' ecological niche and subsequently broad-scale
ecosystem function. My study demonstrates how recreation changes the association of birds
with aspects of the landscapes in which they live. Corvids adjusted their use of wild
landscapes to human recreation in ways that may affect important ecosystem functions.
Corvids were in greater abundance and density in areas with high visitor use relative to
remote areas of low visitor use. Corvids also responded to the provision of anthropogenic
food subsidy and three species changed their use of native vegetation and landscape features.
These broad scale responses to recreation by corvids could affect aspects of ecosystem

function such as predation, nutrient cycling (i.e. carrion removal), and seed dispersal.

Corvid Distribution Patterns

Occupancy and Density

The observed relationship between occupancy and density for each of the four corvids
was not consistent. Variation likely stems from species specific behaviors. Common ravens,
which display the weakest correlation between occupancy and density when comparing
averages at the four site types, are large, wide-ranging birds known to use roads for foraging
(Knight and Kawashima 1993, Knight ef al. 1995). In Mount Rainier National Park, they are
found in low numbers throughout the backcountry (remote areas away from human
development) and occupy most areas near roads even when direct anthropogenic food
subsidy is not available. In areas of low visitor use, points of food subsidy are used
consistently by few ravens (Restani ez al. 2001, Bui et al. 2010). In areas of high visitor use

however, where ravens already likely occur, food subsidy supports higher densities of
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foraging ravens (Marzluff and Neatherlin 2006). Bui et al. (2010) found similar significant
differences between raven occupancy and density on a human-modified landscape in
Wyoming. Ravens used oil fields (i.e. low human use areas) consistently but were observed
at low densities. Large flocks of ravens, however, made infrequent visits to landfills (i.e.
points with food subsidy), resulting in patterns of high density but low occupancy.

For Clark’s nutcrackers, stands of whitebark pine may influence occupancy and
density patterns much like the effect of roads and anthropogenic food subsidy on raven
distribution. Although in this study I found that nutcracker occupancy was correlated with
density, there was high variability in the observations. In addition, I made relatively few
observations of nutcrackers overall in comparison with other species. More observations
may have elucidated a clearer relationship. Additionally, nutcrackers collect and cache pine
seeds mostly in the late summer and fall (Vander Wall and Balda 1977), and thus season may
play a strong role in the observed patterns in Clark’s nutcracker distribution. In future
nutcracker survey efforts, surveys conducted in the fall may see stronger differences between
patterns of occupancy and density then observed here.

Territorial species, such as Steller’s jay and gray jay, may forage in pairs or small
family groups but are unlikely to be observed in large foraging flocks, even at points of food
subsidy. The patterns of occupancy and density were, as expected, closely correlated for
each of these species, especially Steller’s jay. Gray jay density was variable and may have
been affected by their habit of partial dispersal in the post-breeding season (Strickland 1991).
Even after young have become independent, gray jays may forage in groups of three or four,
including two adults and one or, less commonly, two juveniles. This is in contrast with
Steller’s jays, which were most often observed as individuals or pairs.

Future research should consider the specific behavior traits of targeted species when
designing surveys to measure either occupancy or density, or both. The distribution and
abundance of territorial species is likely to be fairly consistent and either occupancy or
density alone may adequately describe the species’ use of landscape features. For, flocking
or wide-ranging species, occupancy and density may reveal different patterns in landscape

use.
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Effects of Recreation on Ecosystem Function and Landscape Integrity

Human presence and the availability of anthropogenic food subsidy in otherwise
wildland landscapes may result in broad scale changes in the use of landscape features by
corvids. Because corvids also serve a variety of important ecosystem functions, changes in
corvids use of landscape features may affect landscape integrity. I found evidence that food
subsidy affected the distribution and abundance patterns of Steller's jays, Clark's nutcrackers,
and common ravens in Mount Rainier National Park.

On natural landscapes, corvids prey on a variety of birds and small mammals and can
thereby affect songbird community structure. Changes in the use of landscape features by
corvids due to recreation may result in new patterns of predation on the landscape. To
provide access for recreation, humans create novel edges through otherwise contiguous wild
landscapes by building roads, clearing hiking trails, and developing campgrounds and
parking areas. In addition to the benefit of increased visibility (Martin and Joron 2003),
human-made edges may also attract corvids because of their proximity to anthropogenic food
subsidy, artificially inflating local rates of predation and potentially reducing predation rates
away from human-created edges. In Mount Rainier National Park, both Steller’s jay and
common raven are closely associated with fragmented forest landscapes and tend to occupy
areas with edges, particularly along roads and around developed areas. In general, Steller’s
jays and ravens use areas of high visitor use and with the availability of food subsidy. This is
consistent with previous studies, where Steller’s jays and ravens used forest edges, especially
along campgrounds and other areas of human development (Marzluff ez al. 2004, Marzluff
and Neatherlin 2006). Common ravens also used smaller home ranges and foraged at greater
densities at campgrounds (Marzluff and Neatherlin 2006). In contrast, gray jays, another
nest predator, use mostly contiguous forest landscapes in low visitor use areas on Mount
Rainier and do not appear to change their habitat use when anthropogenic food subsidy is
available. Edges along developed areas in Mount Rainier National Park, in particular areas
with high visitor use and food subsidy, may suffer high nest predation rates by Steller’s jay
and common raven. Both Steller’s jay and ravens use areas of low visitor use and contiguous
landscapes less frequently. While the shift away from contiguous forests by Steller’s jays
and ravens may indicate that these habitats might suffer lower rates of songbird predation,

gray jays are highly associated with these landscapes. Songbird and songbird nest predation
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by gray jays in areas of high elevation contiguous forest may help maintain landscape
integrity and avian community richness. Human recreation may simply shift corvid
predation niches or disrupt the natural patterns and ecosystem functionality of corvid
predation on songbirds and future research should focus on this distinction.

Nutrient cycling is an important ecosystem process necessary to the integrity of all
landscapes. Through carrion removal, corvids such as the common raven perform a vital
ecosystem function. In a wild landscape, carrion is produced through a variety of means but
is frequently the result of predation events (Stahler ef al. 2002). In human-influenced
landscapes, carrion may be produced through encounters with vehicles and common ravens
are drawn to roads because of easy foraging opportunities (Knight and Kawashima 1993,
Knight et al. 1995). Thus, roads provide a sort of indirect anthropogenic food subsidy to
ravens and other carrion eaters (i.e. vultures). In Mount Rainier National Park, common
ravens use roaded areas and roads were more important in explaining raven distribution than
any other landscape feature, even considering other aspects of human recreation such as
visitor use or direct human food subsidy. Ravens concentrating on roads for an easy meal
may be missing harder-to-find carcasses on the forested landscape away from roads,
impacting the effectiveness of carrion removal and nutrient cycling in wildlands. Gray jays
also feed on carrion, although they tend to avoid roads in preference of contiguous forest
habitat. Because the use of landscape features by gray jays was not affected by food subsidy
in this study, nutrient cycling by gray jays in areas away from intense human development is
likely to be functional.

The caching and dispersal of large wingless pine seeds by some corvids is an
ecosystem service that supplements the diets of other seed-eating birds and rodents and is
necessary to maintain both genetic diversity of specific pine species (Bruederie et al. 1998)
and biodiversity on the landscape (Tomback and Kendall 2001). Clark’s nutcrackers are
highly coevolved with whitebark pines in the Pacific Northwest and a single bird might cache
tens of thousands of seeds each year (Vander Wall and Balda 1977, Tomback 1982). In
Mount Rainier National Park, Clark’s nutcrackers were present in areas near whitebark pine
stands, regardless of level of visitor use or anthropogenic food subsidy. However, some
features of nutcracker landscape use did respond to aspects of human recreation, particularly

the provision of anthropogenic food subsidy. When food subsidies were available,
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nutcrackers use landscapes of complex and very complex forest structure less and were more
abundant at lower elevations and in areas of moderate canopy cover. Their association with
stands of whitebark pine was also stronger when food subsidy was available; in areas near
whitebark pine, nutcrackers may also utilize food subsidies provided by visitors.
Anecdotally, nutcrackers were observed foraging on anthropogenic food refuse at Sunrise
Ranger Station and Paradise Inn, both high visitor use sites with large numbers of visitors
observed during point counts. Although there is no evidence that food subsidies are
negatively impacting the use of whitebark pine by nutcrackers in Mount Rainier National
Park, food subsidy may still be an important energy source for nutcrackers in years with low
seed crops, potentially upsetting the link between nutcracker and whitebark pine populations.
If food subsidy allows nutcracker populations to remain relatively high even through periods
of low seed crop, a greater proportion of seed caches may be retrieved, reducing whitebark
recruitment (Siepielski and Benkman 2007). Alternatively, nutcrackers may become less
dependent on seed caches in general, potentially reducing whitebark seed dispersal (Tomback
and Taylor 1987). Thus, human recreation, and the provision of food subsidy in particular,
may impact the important ecosystem service of pine seed dispersal and recruitment and, in
Mount Rainier National Park, threaten the already vulnerable whitebark pine (Campbell and
Antos 2000, Tomback and Achuff 2010).

In wildland recreation areas, corvids are attracted to areas of human use and may
benefit from man-made edges and the direct provision of anthropogenic food subsidy at
campgrounds, picnic areas, and refuse facilities. Food provisioning in recreation areas may
also result in changes in corvid use of landscape features, indicating a possible shift in
landscape integrity due to decreases in the performance of ecosystem functions including
predation, seed dispersal, and nutrient cycling. | found that corvid species responded to
patterns of human recreation in different ways that may reflect a species' particular life
history traits. For generalist species, like Steller's jays and common ravens, that eat a wide
variety of food types, it is likely easier to adapt to anthropogenic food sources than for
specialist species. Flexible foraging strategies may have enabled these species to utilize
areas of high visitor use and change their use of other landscape features in areas of food
subsidy. Species which specialize on specific foods, for example Clark's nutcracker which

mainly forage on the large wingless seeds of pines such as the whitebark pine, may be less
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likely to respond to anthropogenic food subsidy. On Mount Rainier, nutcrackers seem to use
food subsidies, but only in areas which are near stands of whitebark pine. Species which
naturally use vegetative features similar to those created by human development, for example
Steller's jays use of edges, are more likely to use developed areas with high visitor use in
wildland preserves such as Mount Rainier. Gray jays, however, use contiguous habitat in
natural settings which may account for their low use of visitor areas in Mount Rainier and
lack of change in landscape use in the presence of anthropogenic food subsidy. Because of
their differential responses to human activity, ecosystem functions performed by both
generalists and specialists, edge lovers as well as inhabitants of contiguous vegetation, may
be affected by human recreation and food subsidy as generalists may be drawn away from

natural landscape features and specialists find less landscape area suitable for their needs.
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Chapter 2

Corvids as Bioindicators of Anthropogenic Ecosystem Change

Over the past century the global human population has more than tripled (Klein
Goldewijk and van Drecht 2006), leading to increased impact on the environment (Vitousek
et al. 1997). Humans affect native ecosystems and landscapes by fragmenting and
converting native vegetation, overutilizing natural resources, releasing carbon stores,
increasing nitrogen fixation, and modifying genomes of plant and animal species for
domestication and food production. Some direct measurements can be made of the human
impact on the environment (i.e. land cover change and carbon dioxide emissions), but the
cumulative and interactive effects of these changes on ecosystem function are harder to
quantify. Bioassays are ideal for understanding the summed effects of humans on native
ecosystems because they measure the response of affected species to environmental change
and are commonly used to describe the impact of large scale human activity. For example,
bioindicators of phenology and range shifts are indicative of the global biological effects of
climate change (Walther ef al. 2002). Likewise, changes in the composition of aquatic
invertebrate communities can give us insight into the integrity of freshwater ecosystems
(Bonada ef al. 2006). Bioassays may be additionally useful in monitoring the effects of land
conversion such as urbanization and even more subtle human impacts, such as
nonconsumptive human recreation.

Urbanization is one of the most direct and visible effects of human population
growth. As human populations have grown, cities have become larger, both in population
and physical space on the landscape (Marzluff ez al. 2008). Cities couple human and natural
systems in unique ways, often intricately affecting ecological functions and evolutionary
trajectories of plants and animals (Clucas and Marzluff 2011). However, the use of bioassays
to assess the myriad impacts of urbanization has been relatively limited. Bioassays have
been frequently used to monitor the effects of urban runoff on rivers, estuaries, and
watersheds (Fulton ef al. 1993, Cooper et al. 2009, Corsi et al. 2010) but relatively few

bioindicators measure the terrestrial impacts of urbanization. Of those terrestrial studies,
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wildlife bioindicators are uncommon and most studies use plant or lichen indicators of
human impact. For example,vegetation composition and forest structure is indicative of
anthropogenic stressors in Nova Scotian urban parks (LaPaix and Freedman 2010). In
western Georgia, concentrations of airborne contaminants in tree cores and lichens indicated
pollution levels along an urban-wildland gradient (Styers and Chappelka 2009).

As cities grow, people seek recreational opportunities in nearby wildlands (Cole
1996). Preserved public natural areas are thus increasingly stressed to both provide the
public with recreational opportunities and preserve native landscapes for ecosystem function
and service. For wilderness areas in the United States, the Wilderness Act of 1964 (Public
Law 88-577) legally mandates managers to maintain this balance between conflicting needs
of humans and wildlife communities. In U. S. National Parks and Forests, bioassays are used
to establish visitor use thresholds or “visitor carrying capacities” and visitor impact
management frameworks are used to assess resource integrity and recreational experience by
monitoring changes in wildlife, vegetation, soil, water, and air, as well as campsite and trail
quality, litter quantity, and noise pollution (Merigliano 1990a and 1990b, Leung and Marion
2000). Wildlife bioindicator species may be monitored for significant changes in population
abundance or distribution that can then be correlated with changes in human use patterns and
indicate potential thresholds of visitor impact (Kuss ef al. 1990). The presence of American
black bears (Ursus americanus) at campgrounds in Yosemite National Park, California, for
example, indicates an increase in the provision of anthropogenic food subsidy (Greenleaf et
al. 2009). Species may also be monitored for specific behavioral responses indicative of
disturbance stress. Behaviors in response to recreation can be very complicated and may
vary between species and within species, between sexes, age groups, or individuals. For
example, boat traffic may disturb many marine wildlife species, including Florida manatees
(Trichechus manatus latirostris; Nowacek et al. 2004), orcas (Orcinus orca; Williams et al.
2002), dugongs (Dugong dugon; Hodgson and Marsh 2007), and crocodilians (caiman,
Caiman crocodilus fuscus; Grant and Lewis 2010). But in the case of orca, males and
females respond to approaching boats in subtly different ways, perhaps due to differing
energy needs and “costs of transport” (Williams and Noren 2009). While males maintained
their speed and took a smooth but indirect path away from the boats, females swam faster

and took a more direct path while increasing the angle between dives (Williams et al. 2002).
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In this case, monitoring the amount of boat traffic alone would not provide insight into either
how orcas in general respond to boats or how orca sexes differ in their responses.

In both urban and wildland areas, wildlife species indicate cumulative ecosystem
responses to humans. Such responses, however, may be difficult to interpret and link directly
to specific human activity. Additionally, the magnitude and direction of the effect of human
presence may vary by species, condition of the animal, season, number of people, or human
behaviors (Kuss ef al. 1990, Steidl and Powell 2006). Useful wildlife bioindicators must
therefore cover a variety of human impacts, both direct, such as vehicle-caused mortality, the
provision of food subsidy, and consumptive recreation such as hunting or fishing, and
indirect, including changes in the pattern and composition of vegetation or the invasion of
non-native species (Kuss et al. 1990, Knight and Gutzwiller 1995, Liddle 1997, Steidl and
Powell 2006). Although wildlife indicators can, in general, be difficult to monitor because
species may be hard to detect and behaviors difficult to interpret, avian populations and
communities are relatively easy to study compared with other vertebrates and thus provide
researchers with a unique opportunity to investigate the wide-reaching, cumulative, and
interactive effects of an increasing human presence in urban and natural areas (Furness et al.
1993, Hutto and Young 2002).

Avian species that are particularly responsive to human action are likely to be useful
indicators of the effects of both urbanization and human recreation in natural areas
(Merigliano 1990b, Furness et al. 1993). Habitat specialists, ground nesters, rare species,
and birds that require large contiguous home ranges may be negatively affected by an
increase in human presence on the landscape (Knight and Gutzwiller 1995, Neatherlin and
Marzluff 2004, Marzluff and Neatherlin 2006). In contrast, human presence may benefit
species that are habitat generalists, able to adapt to living with humans, and associated with
habitat edges. Avian predators may benefit from increased visibility and juxtaposition of
diverse resources (i.e. edge habitats; Martin and Joron 2003) and thus habitat fragmentation
may result in an increase in nest predation along vegetation edges (Andrén 1992, Marzluff
and Restani 1999, Ibarzabal and Desrochers 2004; Figure 2.1). In particular, changes in the
abundance and distribution of synanthropic avian species, which are able to adapt to human
development and may benefit from the provision of food subsidies (Knight and Gutzwiller

1995, Marzluff and Neatherlin 2006), may provide evidence for cumulative ecosystem



35

22

® Continuous
20 | < Fragmented

18 | F

16

14

Days to Predation

12+

10

0.0 0.5 1.0 1.5 2.0

Corvid Abundance

Figure 2.1. Landscape level relationship between corvid abundance and risk of nest predation. Each point
represents the maximum per point average of all corvids detected versus average days to predation for
nests containing eggs for plots grouped by apriori landscape category. Open symbols indicate that survey
point was located in fragmented forest; closed symbols indicate contiguous forests. For details on
methods, see Luginbubl al. (2001).
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responses to humans and provide useful thresholds of human impact.

Here I present and discuss a synanthropic avian family that may be ideally suited to
indicate anthropogenic effects on the landscape. I also present a case study in Mount Rainier
National Park which demonstrates how synanthropic species may change their use of
landscape features in the presence of visitors and anthropogenic food subsidies. As birds are
drawn from natural patterns of landscape use, changes in species' distribution or abundance

may indicate anthropogenic ecosystem effects and loss of ecosystem function.
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CORVIDAE

Corvids (birds of the Family Corvidae, including jays, crows, ravens, magpies, and
nutcrackers; Figure 2.2) are large, conspicuous, and often gregarious birds found in terrestrial
habitats worldwide outside of Antarctica. Although some species are specialists, such as
many neotropical jays and the nutcrackers that are highly coevolved with large wingless-
seeded pines (Vander Wall and Balda 1977, Tomback 1982), most tend to be generalist
omnivores, eating everything from insects, spiders and earthworms to flower nectar, seeds,
and nuts, as well as eggs, carrion, and small rodents, herptiles, and birds. In part due to their
diverse diet, corvids perform numerous important ecosystem functions including nutrient
cycling (achieved through carrion removal; Mason and MacDonald 1995, Devault et al.
2003), seed dispersal (by leaving unclaimed seed caches to germinate; Vander Wall and
Balda 1977, Tomback 1982), and predation (Sieving and Willson 1998, Terborg et al. 2001,
Marzluff ef al. 2007). Among the most intelligent of birds, corvids have relatively large
brains (Cnotka et al. 2008) which, in combination with their omnivorous, non-specialized
way of life, allow them to explore a variety of foraging opportunities (Lefebvre ez al. 2001).
Corvids are known to indirectly exploit other animal species for food acquisition, including
wild ungulates (hogs: Baber and Morris 1980; deer: Fitzpatrick and Woolfenden 1996,
Genov et al. 1998; horses: Ashley 1998), wolves (Canis lupus; Stahler et al. 2002, Wilmers
et al. 2003, Vucetich ef al. 2004), and humans (Marzluff and Angell 2005).

Corvids are coevolved with humans throughout most of their range. Outside of South
America, corvids flourish in urban areas (Marzluff and Angell 2005); in North America,
populations of the American crow (Corvus brachyrhynchos; Marzluff et al. 2001) are
growing in size and density in cites and urbanizing landscapes. Corvid populations also
respond to more moderate human presence such as in rural, agricultural, or wildland
recreation areas (Andrén 1992, Storch and Leidenberger 2003, Marzluff and Neatherlin
2006). Corvids often increase in abundance and density in fragmented landscapes (Marzluff
and Restani 1999, Luginbuhl ez al. 2001) and forage along roads (Knight and Kawashima
1993, Knight et al. 1995) and other anthropogenic edges including trails (Hickman 1990),
agricultural fields (Andrén 1992, Bayne and Hobson 1997), and clear cuts (Luginbuhl ez al.

2001). In South America and on tropical islands, where corvids remain mostly associated
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Figure 2.2. Four North American corvids: (A) gray jBgrisoreus canadensis), (B) American crow

(Corvus brachyrhynchos), (C) Steller’s jay Cyanocitta stelleri), and (D) common raverCorvus corax).
Throughout their worldwide range, corvids are associated with humans and human-impacted landscapes.
They also perform important ecosystem services that may be affected by their relationship with people.
Photo Credit for gray jay, American crow, and Steller’s jay: Jorge A. Tomasevic. Photo Credit for
common raven: Dalene Edgar.
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with contiguous native vegetation, corvids may indicate loss of native vegetation or increases
in invasive species, for example the Mariana crow (Corvus kubaryi) and the brown tree snake

(Boiga irregularis) on the island of Guam (Fritts and Rodda 1998, Wiles et al. 2003).

Corvids and Wildland Nonconsumptive Recreation

Acting as both human commensals and important participants in natural ecological
processes, corvids may serve as useful bioindicators of the human effect on native
ecosystems. They may be particularly useful for quantifying the subtle effects of
nonconsumptive recreation and could be used by managers of public natural areas to identify
imbalances between the dual mandates of providing human recreational opportunities and
protecting native wildland ecosystems. In wildland recreation areas, corvids are attracted to
areas of human use and may benefit from man-made edges and the direct provision of
anthropogenic food subsidy at campgrounds, picnic areas, or from refuse. In the German
Alps, a variety of corvids, including carrion crows (Corvus corone), common magpies (Pica
pica), Eurasian jays (Garrulus glandarius), alpine choughs (Pyrrhocorax graculus), spotted
nutcrackers (Nucifraga caryocatactes), and common ravens (Corvus corax), were associated
with areas around tourist mountain huts when compared with control areas (Storch and
Leidenberger 2003). Alpine chough attendance to tourist areas in the French Alps was
related to the amount of human activity on a seasonal scale (Delestrade 1995). In the
mountains of Scotland, carrion crows and rooks (Corvus frugilegus) were more abundant in
disturbed areas after the development of ski areas, especially around parking areas (Watson
1979). In Yellowstone National Park, Wyoming, common ravens may indicate the success
of management efforts to restore previously lost ecosystem function. Grey wolves were
reintroduced to the Yellowstone ecosystem in 1995 (Bangs and Fritts 1996, Phillips and
Smith 1997) and today common ravens follow wolves to scavenge from wolf-killed
carcasses, indicating that wolves in Yellowstone may now represent a functionally intact
predator population along with its attendant cadre of scavengers (Stahler ez al. 2002, Wilmers
et al. 2003).

Corvids are conspicuous and familiar, making them relatively easy to recognize and

enumerate compared with other birds. Corvid presence and abundance on the landscape can
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be determined through the use of standard point counts (Ralph ez al. 1993), although corvid-
specific methodologies have been developed that require few repeat surveys (Luginbuhl et
al. 2001). Because corvids are fixtures on the landscape, i.e. they do not migrate and they
have limited altitudinal migration, and they are generally territorial and responsive to calls
and playbacks, corvids can be reliably surveyed year round. Also, although they respond to
calls, corvids do not defend their territories with song and therefore may be surveyed during
most hours of the day (Luginbuhl ez al. 2001). Therefore, reliable and consistent data on
corvid abundance and distribution may be relatively easy to collect by those with little

specialized training.
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A CASE STUDY: CORVIDS AS BIOINDICATORS IN A WILDLAND SETTING

Mount Rainier National Park is a large reserve (235,625 acres) centered on a 4392
meter volcanic peak in the Cascade Range, approximately 100 km southeast of Seattle,
Washington (Figure 2.3). The national park, as established by the Washington Park
Wilderness Act of 1988 (Public Law 100-668), is 97 percent designated wilderness and
receives over two million visitors every year who use the park for a variety of recreational
activities, including hiking, backcountry camping, car camping, picnicking, alpine climbing,
snow-shoeing, horse-back riding, and scenic photography. Five corvid species can be found
within the park, including American crow (Corvus brachyrhynchos), Clark’s nutcracker
(Nucifraga columbiana), common raven, gray jay (Perisoreus canadensis), and Steller’s jay
(Cyanocitta stelleri) (Wilkerson et al. 2005).

In 2001, a General Management Plan for Mount Rainier National Park was finalized,
instituting a visitor use management framework to measure and monitor resource conditions,
visitor experiences, and protect the quality of both through the development of visitor use
thresholds. Several indicators were suggested for measuring visitor impact including
measures of soil, vegetation, air quality, aquatic resources, noise, trails, and wildlife. Among
the proposed wildlife measures of visitor impact was the degree of food habituation, a

measure listed with corvids in mind.

Mount Rainier Corvids

In the summers of 2009 and 2010, I surveyed corvids in Mount Rainier National Park
to determine their distribution in relation to level of visitor use, availability of anthropogenic
food subsidy, and numerous weather, vegetation, and landscape variables (Seckel 2011). 1
also evaluated the effect of food subsidy on the use of landscape features by corvids. Using
data collected during more than 1400 visits to 168 survey points, I found, in agreement with
previous research, that corvids were most common in areas with high visitor use, especially
where visitors provided food subsidies. Additionally, some corvid species—Steller’s jay,
Clark’s nutcracker, and common raven—significantly changed their use of the

landscape when food subsidies were provided. Steller’s jays were more common in simple
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Figure 2.3. View of (A) the eastern face of Mount Rainier from Wonderland Trail, overlooking Indian Bar
and the valley draining the Ohanapecoch Glacier and (B) the southwestern face of the peak, rounding
Mount Ararat on the Kautz Creek Trail, approaching Indian Henry's Hunting Grounds.
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and very complex forest structures when food subsidies were available. Food availability
also affected the use of different forest structures by Clark’s nutcrackers. Nutcrackers were
less present in landscapes of complex and very complex forest structure when food subsidies
were provided. Nutcrackers were also in greater abundance at lower elevations and used
areas of greater canopy cover when food subsidy was available. Their association with
stands of whitebark pine was also stronger when food subsidy was available. Ravens used
roads to forage for roadkill regardless of direct food subsidy but were less abundant in
heavily roaded areas without the additional subsidy of food provisions.

To effectively use corvids as bioindicators of human impact, baselines of corvid
presence from which to measure responses must be established. In Mount Rainier, baseline
corvid presence for natural landscapes can be estimated using corvid densities in areas with
low visitor use and without food subsidy (Figures 2.4 and 2.5; Corvid densities are predicted
density values from distance sampling analyses of point count observations. See Seckel 2011
for detailed methods.) Corvid densities in areas of high visitor use and with anthropogenic
food subsidy may then be indicative of changes in density due to human recreation in the
park. Species-specific patterns may provide insight into particular effects of anthropogenic
landscape change.

In Mount Rainier National Park, the level of landscape fragmentation as well as the
risk of songbird nest predation may be indicated by distribution patterns of Steller's and gray
jays (Figures 2.4 and 2.5). Steller's jays were found on patchy forested landscapes with
abundant anthropogenic edge, a pattern consistent with previous research conducted in
western Washington State (Vigallon and Marzluff 2005a, Marzluff and Neatherlin 2006).
Thus, increases in Steller's jay abundance or movement of Steller's jays into previously
unoccupied areas, may indicate increased levels of fragmentation and landscape patchiness,
as well as songbird nest predation (Vigallon and Marzluff 2005b). Gray jays, in contrast,
were observed in high elevation contiguous landscapes with large amounts of forest and few
edges or patches. Increased gray jay presence may be indicative of higher rates of nest
predation but it also indicates a functionally connected landscape on Mount Rainier. This
may be a regional finding as gray jays in Quebec were found to be highly associated with
forest edges, particularly when home ranges were more heavily forested (Ibarzabal and

Desrochers 2004).
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Figure 2.4. Assessment of the effects of human recreation on landscape integrity. Reported numbers are
baseline corvid densities. Fragmentation is represented by average differences between areas with low and
high visitor use. Food supplementation compares corvid densities at sites with or without food subsidy,
regardless of visitor use. The response to roads measures the difference between average raven density
within and farther than 0.5 km of roads. The integrated response shows the combined effect of high visitor
use and food subsidy on corvid densities. The change in crow density is from wildlands to areas of

exurban development (Marzlugf al. 2001). * Significant changes in corvid density from baseline (using
unpaired t-test).
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The broader ecosystem effects of roads on the landscape, including nutrient cycling,
may be indicated by common raven abundance and distribution (Figures 2.4 and 2.5). In
Mount Rainier, common ravens were commonly present, and most abundant, in forested
areas fragmented by roads. Previous studies give insight into the ways in which ravens use
roads to forage for vehicle-produced road-kill (Knight and Kawashima 1993, Knight ez al.
1995). Ravens concentrating on roads for an easy meal may be missing harder-to-find
carcasses on the forested landscape away from roads, impacting the effectiveness of carrion
removal and nutrient cycling in wildlands. Increases in raven presence may thus indicate
both increased landscape effects of roads as well as a reduction in the ecosystem function of
nutrient cycling.

The ecosystem function of seed dispersal may be indicated by changes in patterns of
Clark's nutcracker distribution (Figure 2.5). Sufficient dispersal of seeds is vital for both
overall landscape integrity and the survival of some specialized plant species. In particular,
seed dispersal by Clark's nutcrackers is vital for the propagation of whitebark pine, a species
already threatened by destructive outbreaks of insects and fungi (Campbell and Antos 2000,
Tomback and Achuff 2010). In Mount Rainier National Park, nutcrackers were found in
areas of open forest near whitebark pine. They were also associated with areas with many
visitors as well as anthropogenic food subsidy. In the Rocky Mountains, where nutcrackers
are also known to utilize food subsidies, Tomback and Taylor (1987) speculated that the
provision of food subsidies may result in decreased whitebark pine seed dispersal. However,
on Mount Rainier, nutcrackers only used anthropogenic food sources when they were also
near stands of whitebark pine. In the future, increased presence of Clark's nutcrackers in
areas far from whitebark pine but with high visitor use and food subsidy may indicate a
reduction in seed dispersal.

Even low levels of human development may be indicated by the presence or
increased abundance of American crows (Figure 2.4). Crows were not observed during my
surveys of Mount Rainier National Park and previous extensive surveys recorded only one
crow observation (Wilkerson ef al. 2005). However, from other areas and previous research,
crows are known to indicate human development across the urban to wildland gradient. In
suburban and urban areas throughout North America, crow populations are expanding and

are highly correlated with areas of human food subsidy (Marzluff ez al. 2001, Marzluff and
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Angell 2005). In wildland areas on the Olympic Peninsula, higher densities of American
crows around campgrounds were caused by decreases in home ranges and increases in
reproduction and survival, likely resulting from food subsidy and decreased harassment
(Neatherlin and Marzluff 2004, Marzluff and Neatherlin 2006). Thus, an increase in crow
presence in Mount Rainier National Park may indicate increased human development or the
increased availability of permanent and reliable anthropogenic food sources.

Visitor use and the provision of food subsidy in Mount Rainier National Park is
responded to strongly by corvid populations, indicating that landscape integrity may be
impacted in approximately 18% of the park’s land (areas within 0.5 km of roads or
campgrounds). Although much of the preserve likely retains an intact and functional
ecosystem, significant changes in landscape use by corvids have already been observed in
developed areas. These results do not define a threshold for visitor use and only highlight the
known ecosystem response to recreation in Mount Rainier, as indicated by corvids. Park
managers interested in the ecosystem effects of roads or food supplementation could monitor
common raven populations, while managers interested in the impacts of fragmentation could
rely on patterns in Steller’s jay abundance and distribution (Figure 2.4). Both Steller’s jay
and common raven respond significantly to summed visitor effects, suggesting that either
species could be used as an indicator of the overall impacts of human presence in a wildland
preserve.

These results demonstrate the utility of corvids as bioindicators of human impact in
wildland recreation areas. Continued surveys for corvids in areas of high and low visitor use,
and areas with and without food subsidy, could document the relative effects of recreational
use in the park on corvids and thus ecosystem function. Additionally, continued surveys may
reveal additional trends; for example, corvids may be impacted differently by visitor use in
different seasons, following particularly harsh winters, dry summers, or, for nutcrackers, low
pine seed crop. The methods used in this case study are applicable to other wildland
preserves as well as urban areas and corvids may be useful bioindicators of the effects of
human development on ecosystem function across the wildland to urban gradient. For
example, Steller's jays are also common in suburban settings in the western United States and
jay abundance along trails and parking areas in suburban parks may indicate increased nest

predation along these edges. In more developed settings, even small patches of native
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vegetation are important for songbird foraging and reproduction (Marzluff and Rodewald
2008) and minimizing the number of trails and other fragmenting features may help keep
Steller's jay predation levels low. American crow abundance may be particularly useful for
indicating relative level of human development. As cities grow in population and physical
expanse, surrounding suburban and rural areas subsequently become increasingly developed,

a shift that may be indicated by increasing crow populations.
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APPENDIX 1.A. TOP DETECTION MODELS IN DENSITY ANALYSES

Vegetation and weather attributes associated with corvid detection when modeling density. Table
values are coefficients and standard error values of variables in top models describing detection for all
species. Detection variables used to correct density estimates were modeled using half normal or hazard
rate key functions and considered cosine, simple polynomial, and hermite adjustments. There was rarely a
single model that clearly represented the data. The full complement of competitive models (models with a
AAICc < 2) had a substantial weight of evidence in their favor.

Steller’s Jay detection is hindered by high levels of noise and wind. This is summarized by 11
competitive models with a combined weight of 0.43. Gray Jay detection is affected by precipitation, a
pattern supported by a single competitive model with a likelihood of 0.99. Clark’s Nutcrackers detection,
as described by six competitive models with a total combine weight of 0.40, is lowest during counts with
high winds in areas of complex forests. Common Raven detection was hindered by loud noise, increased
canopy cover, and wind, a pattern supported by seven competitive models with a combined weight of 0.39.
"Variables in bold are included in all competitive models (AAIC, < 2). * The AAIC, listed is for the
second-best model, not shown.

Steller’s Jay Detection Coefficient SE Model Selection
Best Model: Half Normal Key

Intercept 43.59 2.73 AIC, 1520.64
Noise: Level 1° 0.82 0.21 AAIC.* 0.80
Noise: Level 2 0.66 0.16 w; 0.07
Noise: Level 3 0.39 0.16

Wind: Level 1 -0.41 0.25

Wind: Level 2 -0.57 0.25

Gray Jay Detection

Best Model: Half Normal Key, Simple Polynomial

Intercept 35.13 3.46 AIC, 1138.50
Precipitation: None -0.08 0.12 AAIC, 11.94
Adjustment of Order 4 2.00 5.80 w; 0.99

Clark’s Nutcracker Detection

Best Model: Hazard Rate Key

Intercept 78.56 1.19 AIC, 413.11
Power Parameter 6.37 12.35 AAIC, 0.65
Forest Structure: Complex -0.25 0.17 w; 0.11
Forest Structure: Simple 0.42 0.10

Common Raven Detection

Best Model: Half Normal Key, Cosine

Intercept 65.73 5.84 AIC. 1065.37
Noise: Level 1 -0.02 0.31 AAIC, 0.48
Noise: Level 2 0.08 0.31 w; 0.10
Noise: Level 3 -0.32 0.33

Canopy Cover: 71-100% 0.13 0.09

Canopy Cover: 11-40% -0.14 0.11

Canopy Cover: <11% 0.41 0.18

Wind: Level 1 0.26 0.20

Wind: Level 2 0.06 0.20

Adjustment of Order 2 0.23 0.10
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Landscape attributes associated with corvid density across all survey points. Table values are
coefficients and standard error values of variables in top models describing density for all species.
"Variables in bold are included in all competitive models (AAIC, <2). * The AAIC, listed is for the

second-best model, not shown.

Steller’s Jay Coefficient SE Model Selection
Density

Intercept 0.35 0.14 AIC, -370.61
Zone Type (Day Use)' 0.56 0.11 AAIC.* 1.53
Zone Type (Trail Zone) 0.44 0.12 w; 0.15
Food (Without) -0.41 0.09

Elevation <-0.001 <0.001

Forest Structure (Simple) 0.18 0.09

Forest Structure (Very Complex) 0.22 0.06

Contrast-weighted Edge Density within 2 km 0.01 0.003

Gray Jay

Density

Intercept -0.64 0.29 AIC, -317.13
Elevation <0.001 <0.001 AAIC, 0.24
Percent Forest within 2 km 0.005 0.002 w; 0.12
Contrast-weighted Edge Density within 2 km -0.01 0.004

Clark’s Nutcracker

Density

Intercept -0.08 0.10 AIC, -634.86
Distance to Whitebark Pine <-0.001 <0.001 AAIC. 091
Percent Forest within 5 km 0.008 0.001 w; 0.13
Percent Forest within 2 km -0.005 0.001

Food (Without) -0.08 0.03

Forest Structure (Simple) -0.91 0.15

Forest Structure (Very Complex) 0.04 0.03

Canopy Cover (11-40%) -0.07 0.04

Canopy Cover (<11%) 0.84 0.15

Canopy Cover (41-70%) -0.03 0.03

Elevation <0.001 <0.001

Common Raven

Density

Intercept 0.18 0.03 AIC. -861.56
Food (Without) -0.18 0.03 AAIC, 0.50
Visitor Use (Low) -0.15 0.03 w; 0.17
Length of Road Edge within 5 km <0.001 <0.001

Average Number of Visitors -0.004 0.001

Food (Without): Visitor Use (Low) 0.15 0.03
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