Report No. NPS D-489

Annual Data Summary

MOUNT RAINIER NATIONAL PARK

2002

National Park Service Gaseous Air Pollutant Monitoring Network

AIR RESOURCES DIVISION RESEARCH AND MONITORING BRANCH

12795 West Alameda Parkway P.O. Box 25287 Lakewood, Colorado 80225 Telephone: (303) 969-2820 Fax: (303) 969-2822

B&W Scans Z-10-2004

This Annual Data Summary was prepared under NPS Contract C2350010840 by:

Air Resource Specialists, Inc.

1901 Sharp Point Drive, Suite E Fort Collins, Colorado 80525 Telephone: (970) 484-7941 Fax: (970) 484-3423

For additional copies of this report or reports for other NPS units, contact:

National Park Service Air Resources Division

Information Management Center c/o Air Resource Specialists, Inc. 1901 Sharp Point Drive, Suite E Fort Collins, Colorado 80525 Telephone: (970) 484-7941

Fax: (970) 484-3423 E-Mail: AIR-IMC@AIR-RESOURCE.COM

or

National Park Service

Air Resources Division
P.O. Box 25287
Lakewood, Colorado 80225-02587
Telephone: (303) 969-2130
E-Mail: AQ_INFO@AQD.NPS.GOV

ACKNOWLEDGEMENTS

The National Park Service Air Resources Division (ARD) recognizes the level of effort required by individual park units, site operators, auditors, cooperating state and local agencies, and ARD contractors. ARD sincerely appreciates the contributions of all participants in assisting with the collection, validation, and reporting of these air quality and meteorological data.

At Mount Rainier National Park, the ARD specifically recognizes Ann Bell for performing the technical and administrative skills required to help produce the data presented within this report.

TABLE OF CONTENTS

Secti	<u>on</u>		Page
1.0	INTE	RODUCTION	1-1
	1.1	The National Park Service Gaseous Pollutant Monitoring Network	1-1
	1.2	Mount Rainier National Park	1-3
2.0	DAT	A SUMMARY	2-1
	2.1	Overview	2-1
	2.2	Ozone Data Summary	2-7
	2.3	Meteorological Data Summary	2-23
	2.4	Dry Deposition Data Summary	2-27
3.0	NAT	IONAL PARK SERVICE AIR RESOURCES DIVISION DATA SOURCES	3-1
4.0	GLO	SSARY	4-1
	4.1	Definitions and Computational Procedures for National Park Service Quick Look Annual Summary Statistics Table	4-1
	4.2	Air Quality Glossary	4-4
	4.3	Glossary of Units	4-6
		LIST OF FIGURES AND TABLES	
			Page
	_	of National Park Service Gaseous Pollutant Monitoring Network e and Sulfur Dioxide Monitoring Sites	1-2
	Site S	pecifications	1-4
	Data	Collection Statistics	2-2
	First (Quarter Data Stackplot	2-3
	Secon	nd Quarter Data Stackplot	2-4
	Third	Quarter Data Stackplot	2-5
	Fourt	h Quarter Data Stackplot	2-6
	Ozone	e Quick Look Annual Summary Statistics	2-8
	Ozone	e Annual Frequency Distribution	2-9

LIST OF FIGURES AND TABLES (Continued)

	Page
Ozone Daily 1-Hour Maximum Concentrations and National Ambient Air Quality Standards Comparison	2-10
Attainment Status with EPA Proposed Primary Ozone Standards	2-1
Ten Highest 1-Hour Average Ozone Concentrations	2-12
Episodes with 1-Hour Ozone Concentrations ≥ 100ppb and > 124 ppb	2-13
Episodes with 8-Hour Ozone Concentrations >84 ppb	2-14
Ozone Rank Listings of Second Highest 1-Hour Average Concentrations, Maximum 8-Hour Average Concentrations, and Annual Sum60 Exposure Index for All NPS Monitoring Sites	2-15
Plot of Maximum Ozone Concentration Comparison for Three Years	2-16
Map of National Park Service Gaseous Pollutant Monitoring Network, Second Highest Hourly Ozone Concentration	2-17
Quarterly Diurnal Ozone Plots	2-18
Annual Diurnal Ozone Plot	2-19
Quarterly Ozone Pollutant Roses	2-20
Annual Ozone Pollutant Rose	2-21
Ozone Precision Check Data Summary	2-22
Summary of Selected Meteorological Data	2-24
Quarterly Wind Roses	2-25
Annual Wind Rose	2-26
Quarterly and Annual Average Concentrations	2-28
Weekly Concentrations Report	2-29
Three Year Comparison of Maximum and Average Concentrations	2-30
Average Particulate Nitrate Concentrations	2-31
Nitric Acid Concentrations	2-32

LIST OF FIGURES AND TABLES (Continued)

	Page
Average Total Nitrate Concentrations	2-33
Average Ammonium Concentrations	2-34
Average Particulate Sulfate Concentrations	2-35
Average Sulfur Dioxide Concentrations	2-36
SO ₄ /SO ₂ Ratio	2-37

1.0 INTRODUCTION

1.1 THE NATIONAL PARK SERVICE GASEOUS POLLUTANT MONITORING PROGRAM (GPMP)

Gaseous air pollutants, including ozone and sulfur dioxide, are of concern to the National Park Service (NPS). Pollutants like these can affect park unit biological resources as well as the health of park unit residents and visitors. The NPS established a gaseous pollutant monitoring program for several pollutants linked to effects on NPS resources. This program was designed to meet certain resource management objectives.

The primary objective of this monitoring program is to establish the status and trends of park unit air quality conditions and to determine if a park unit is exceeding the National Ambient Air Quality Standards established by the U.S. Environmental Protection Agency (EPA) to protect public health and welfare. In addition, such monitoring is designed to detect changes or trends in pollution levels over time. A monitoring station may also be established if there is documented biological injury due to air pollution in a park unit. Information on ambient air pollution levels is an important part of research on effects of air pollutants on NPS resources, and can help confirm suspected causes of observed effects.

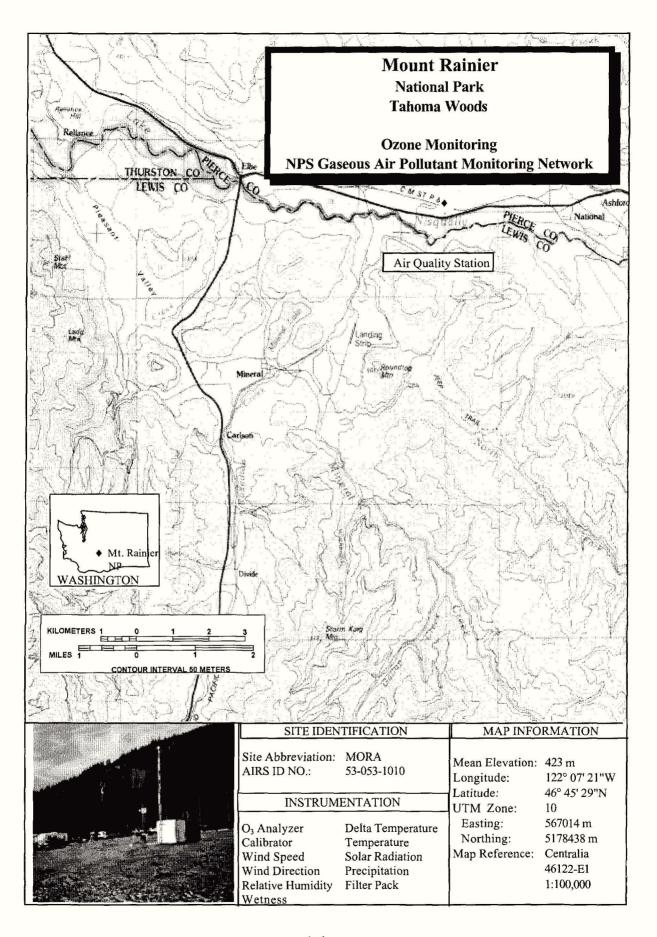
Other monitoring objectives call for the collection of data to support the National Park Service's required involvement in both the development of state air quality control plans, and the evaluation of permit applications for new or expanding air pollution sources wishing to locate near park units. The Clean Air Act gives federal land managers and superintendents an affirmative responsibility to protect air quality related values in Class I areas and to assess whether new sources will have an adverse impact on park unit resources and values. Information on air quality levels in NPS units can also be used to evaluate the performance of atmospheric models that simulate how pollutants are transported into park units and predict impacts on the park unit caused by air pollution sources.

The National Park Service Gaseous Pollutant Monitoring Program site locations and measured parameters collected in this reporting year are shown on the map on the following page. During this reporting period, 47 monitoring sites in 37 units of the National Park System had some combination of ozone, sulfur dioxide, nitrogen, meteorological, and Clean Air Status and Trends Network (CASTNet) dry deposition monitoring. Monitoring methods and quality assurance procedures used in the national park network meet the applicable 40 CFR Part 58 EPA requirements. This allows for the direct comparison of NPS collected data with that collected by the EPA, and state and local air pollution control agencies. Data collected by this network are incorporated in the EPA Aerometric Information Retrieval System (AIRS) database which is a national database of all air quality data collected throughout the country. These data are also stored in the NPS Air Resources Division's Information Management Center (IMC) that allows for easy access and analysis of data.

This report includes a variety of data summaries for data collected at an individual monitoring site at a national park unit during this reporting period. These summaries highlight the average range and frequency of the data collected during the year. A digital copy of all data collected during the year and data summary products are available; see Section 3.0 for information on obtaining these data. Individual reports are generated for each site where monitoring was conducted in the national park network.

NATIONAL PARK SERVICE GASEOUS POLLUTANT MONITORING NETWORK

1.2 MOUNT RAINIER NATIONAL PARK


Mount Rainier National Park, a Class I area, is located in Washington about 40 kilometers southeast of Seattle. Its location and site specifications are presented on the following page.

The purpose of Mount Rainier National Park is to protect, preserve and interpret the natural, scenic and historical resources. Mount Rainier is a classic example of a dormant composite volcano, with the largest single-peak glacial system in the contiguous United States. The park also contains outstanding examples of the native flora and fauna of the Cascade Mountains.

The topography of the park is rugged and precipitous, consisting mainly of peaks and valleys. The Cascade Range of the east, the Tatoosh Range on the south, and mountains on all sides tower from 2,000 to 4,000 feet above the valleys. These mountains are dwarfed by the mass of Mount Rainier. The spectacular glacier-covered volcanic peak of Mount Rainier is the park's prime attraction. It rises to 14,410 feet above sea level and almost 10,000 feet in a single peak above surrounding peaks and valleys of the Cascade Range.

Over 700 species of vascular plants are found in the park, including spectacular virgin forests containing nearly 40 percent of the species of trees native to the region. Forests of Douglas fir, western red cedar and western hemlock occur primarily in the western hemlock zone, while Pacific silver fir, Alaska cedar, noble fir and western white pine appear in the silver fir zone. Spectacular subalpine flower fields laced by stands of mountain hemlock and subalpine fir dominate the mountain hemlock zone. The harsh alpine zone supports hardy alpine plants, including mosses and lichens, in areas free from ice and snow.

Wildlife includes at least 126 species of birds, 54 species of mammals, and 17 species of reptiles and amphibians. Examples are: white-tailed ptarmigan, blue and ruffed grouse, varied thrush, grey jay, raven, mountain goat, deer, black bear, elk, coyote, bobcat, marmot, redlegged frog, tailed frog, Pacific giant salamander and Pacific garter snake.

2.0 DATA SUMMARY

2.1 OVERVIEW

Based on the site specifications during this annual reporting period, data summaries and statistics are provided in this section.

Data Collection Statistics Mount Rainier National Park

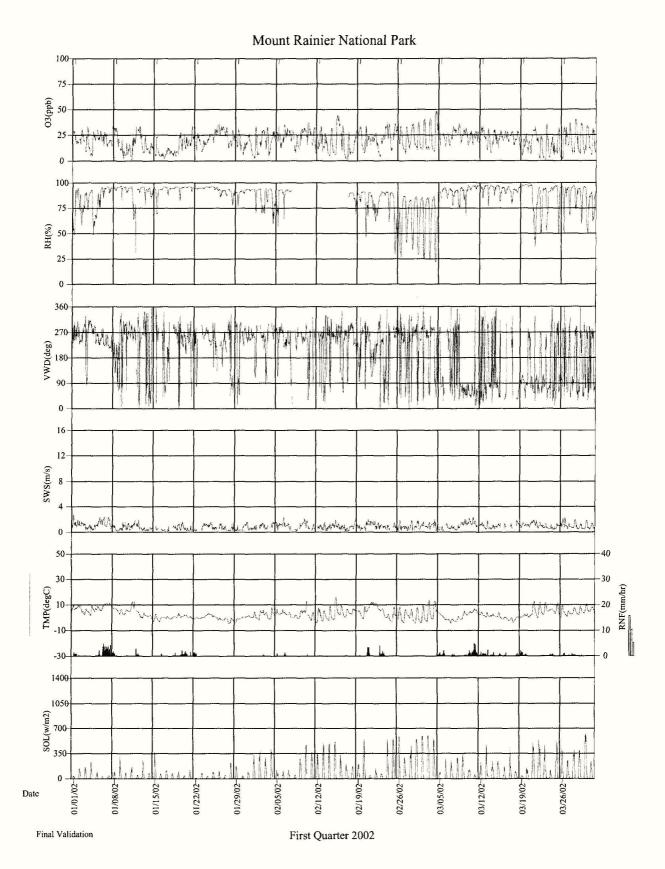
Final Validation

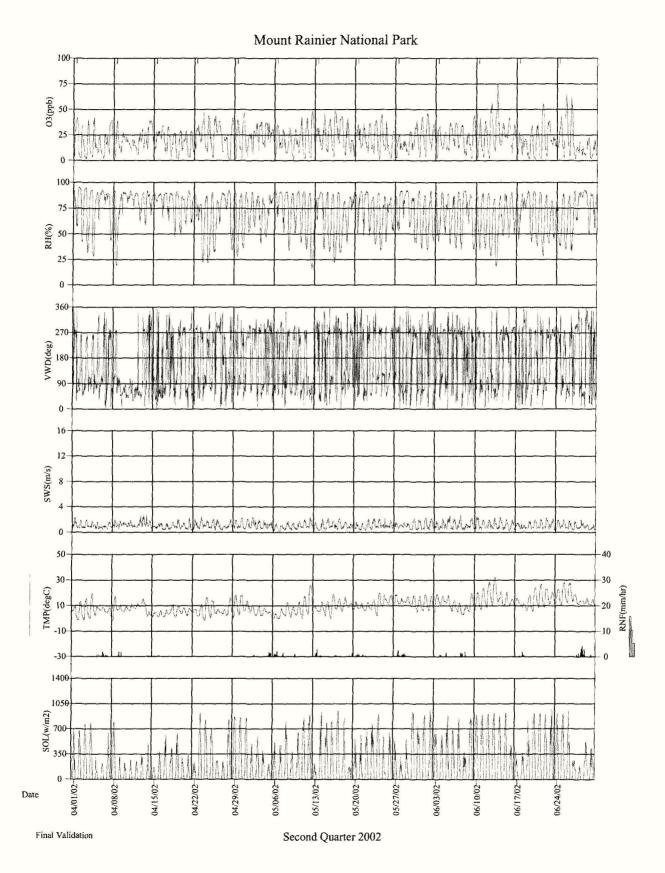
01/01/2002 -	12/31	/2002
--------------	-------	-------

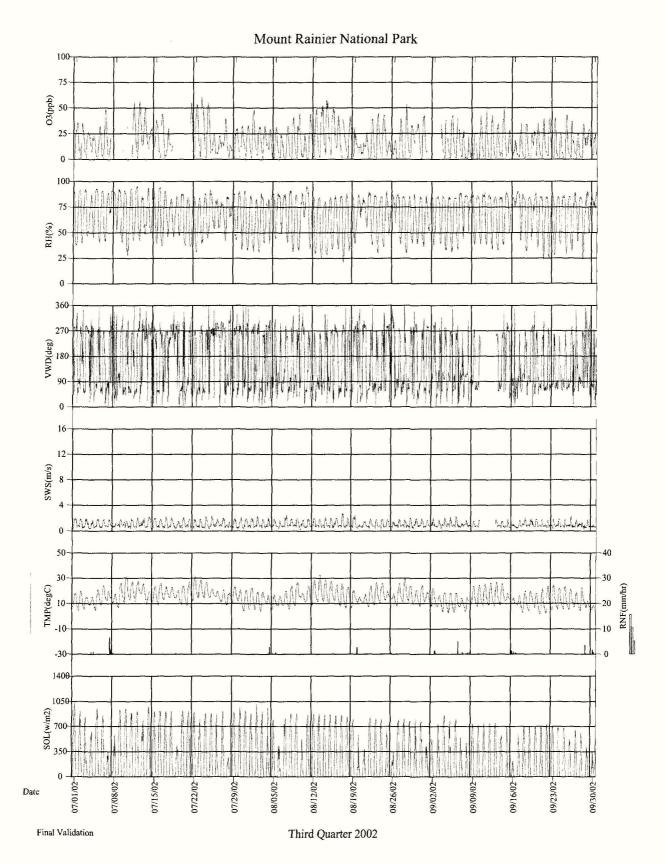
		Par	Da	ta Recov	very	Valid	Data
Parameter	Interval	40 CO 40 ACCCC	No. Possible	No. Collected	% Collected	No. Valid	% Valid
Ozone Analyzer	hourly	O3	8760	8003	91.4	7582	86.6
Scalar Wind Speed	hourly	sws	8760	8514	97.2	8448	96.4
Vector Wind Speed	hourly	VWS	8760	8518	97.2	7942	90.7
Vector Wind Direction	hourly	VWD	8760	8518	97.2	7942	90.7
Standard Deviation for Wind Direction	hourly	SDWD	8760	8518	97.2	7942	90.7
Ambient Temperature (aspirated)	hourly	TMP	8760	8741	99.8	8741	99.8
Delta Temperature	hourly	DTP	8760	8741	99.8	8741	99.8
Relative Humidity	hourly	RH	8760	8740	99.8	6354	72.5
Precipitation	hourly	RNF	8760	8689	99.2	8689	99.2
Wetness Sensor	hourly	WET	8760	8705	99.4	8705	99.4
Solar Radiation	hourly	SOL	8760	8741	99.8	8741	99.8
Filter Pack Flow Rate	hourly	FLOW	8760	8742	99.8	8742	99.8

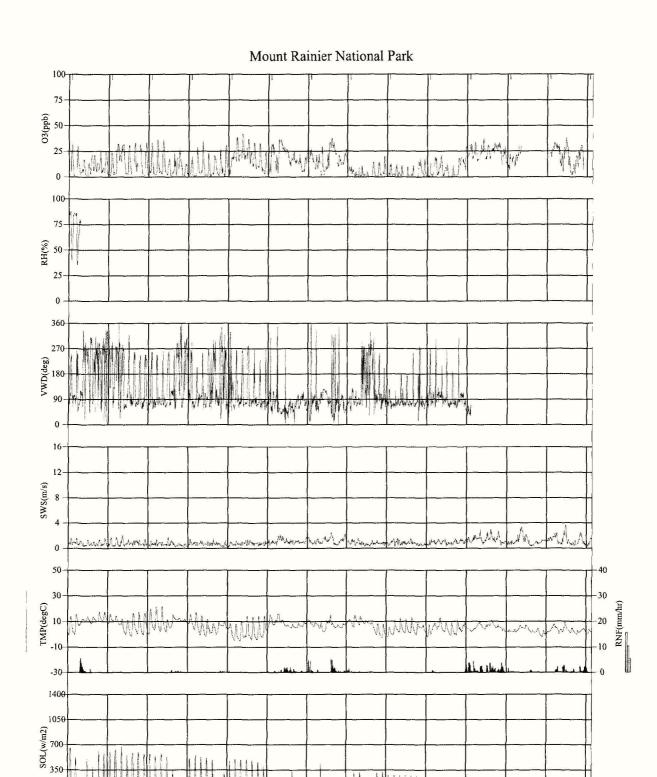
Notes: The percent valid is calculated against the number possible.

Automatic zeros and spans are performed daily on most ambient gas analyzers, therefore, no ambient data can be collected during this time. As a result, the maximum percent valid for ambient gas data typically can not be greater than 95.8.


Performance Goals:


Quarterly Criteria:


100% of sites, >= 85% valid data capture 90% of sites, >= 90% valid data capture 80% of sites, >= 95% valid data capture


Monthly Criteria:

100% of sites, >= 60% valid data capture 90% of sites, >= 75% valid data capture 80% of sites, >= 85% valid data capture

Final Validation

Date

10/01/02

10/08/02

10/15/02

10/22/02

10/29/02

11/05/02

Fourth Quarter 2002

11/19/02

12/24/02

12/10/02

12/03/02

11/26/02

12/17/02

12/31/02

11/12/02

2.2 OZONE DATA SUMMARY

2-8

Ozone Quick Look Annual Summary Statistics Mount Rainier National Park

01/01/2002 - 12/31/2002

STATISTIC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	MAY- SEP	ANNUAL
DAILY 1-HR MAXIMUM	36	44	50	47	49	75	60 60	58	49	42	38	38	75	75
NO. OF DAYS	(31)	(28)	(31)	(30)	(31)	(30)	(27)	(31)	(29)	(31)	(30)	(26)	(148)	(355)
AVERAGE DAILY MAXIMUM	27	33	33	34	36	38	37	37	33	28	23	26	36	32
NO. OF DAYS	(31)	(28)	(31)	(30)	(31)	(30)	(27)	(31)	(29)	(31)	(30)	(26)	(148)	(355)
MAXIMUM DAILY MEAN	31	29	31	32	33	39	34	33	23	26	30	30	39	39
NO. OF DAYS	(31)	(28)	(30)	(30)	(31)	(30)	(22)	(31)	(25)	(28)	(30)	(23)	(139)	(339)
AVERAGE DAILY MEAN	18	21	21	21	23	22	21	19	15	12	12	16	20	19
NO. OF DAYS	(31)	(28)	(30)	(30)	(31)	(30)	(22)	(31)	(25)	(28)	(30)	(23)	(139)	(339)
MAX PEAK:MIN RATIO	33.000	28.000	35.000	42.000	45.000	35.000	56.000	53.000	43.000	35.000	30.000	21.000	56.000	56.000
NO. OF DAYS	(31)	(28)	(30)	(30)	(31)	(29)	(20)	(23)	(19)	(21)	(21)	(18)	(122)	(301)
AVERAGE PEAK:MIN RATIO	4.020	5.204	5.575	11.527	8.696	10.982	21.306	23.595	24.893	17.780	7.812	5.235	16.638	11.445
NO. OF DAYS	(31)	(28)	(30)	(30)	(31)	(29)	(20)	(23)	(19)	(21)	(21)	(18)	(122)	(301)
MAX 9AM-4PM AVERAGE	31	35	42	40	46	51	53	47	39	34	31	31	53	53
NO. OF DAYS	(31)	(28)	(30)	(30)	(31)	(30)	(24)	(31)	(25)	(31)	(30)	(23)	(124)	(344)
MONTHLY 9AM-4PM AVERAGE	20	26	29	30	31	31	30	30	27	21	15	18	30	26
NO. OF DAYS	(31)	(28)	(30)	(30)	(31)	(30)	(24)	(31)	(25)	(31)	(30)	(23)	(124)	(344)
MAX 7AM-7PM AVERAGE	30	32	36	36	40	50	45	43	32	30	31	31	50	50
NO. OF DAYS	(31)	(28)	(30)	(30)	(31)	(30)	(23)	(31)	(25)	(31)	(30)	(23)	(123)	(343)
MONTHLY 7AM-7PM AVERAGE	19	23_	25	26	28	29	28	26	21	17	13	17	27	23
NO. OF DAYS	(31)	(28)	(30)	(30)	(31)	(30)	(23)	(31)	(25)	(31)	(30)	(23)	(123)	(343)
MONTHLY MEAN	18	21	21	21	23	22	21	19	15	12	12	17	20	19
NO. OF HOURS	(671)	(605)	(670)	(655)	(680)	(655)	(528)	(679)	(590)	(650)	(656)	(543)	(3132)	(7582)
SUM0 EXPOSURE INDEX	12161	12716	14216	13675	15384	14621	11271	13070	8844	7977	7950	9057	63190	140942
NO. OF HOURS	(671)	(605)	(670)	(655)	(680)	(655)	(528)	(679)	(590)	(650)	(656)	(543)	(3132)	(7582)
SUM60 EXPOSURE INDEX	-					393	60		-				453	453
NO. OF HOURS	(0)	(0)	(0)	(0)	(0)	(6)	(1)	(0)	(0)	(0)	(0)	(0)	(7)	(7)
SUM80 EXPOSURE INDEX	-		-	-	-						-	-	-	-
NO. OF HOURS	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
W126 EXPOSURE INDEX	60	106	148	171_	236	597	397	315	104	46	42	54	1650	2278
NO. OF HOURS	(671)	(605)	(670)	(655)	(680)	(655)	(528)	(679)	(590)	(650)	(656)	(543)	(3132)	(7582)

Concentrations in parts per billion (ppb)

Exposures in parts per billion-hours (ppb-hr)

* Statistics defined in the Quick Look subsection of the Glossary

Final Validation

Frequency Distribution

Mount Rainier National Park

Monitoring Season: 05/01/02 - 09/30/02¹

TOTAL PARTY DATE				Arith.	Geo.	Geo.
50 70 90	95 99	Obs.	Max.	Mean	Mean	Stdv.
0.036 0.042 0.050	0.056 0.065	0.075	0.065	0.0369	0.0353	1.36
)						

¹Records for this report are selected in accordance with the AIRS Geo-Common file criteria. These criteria are based on the state-specific Monitoring Season defined in AIRS.

²The number of observations (# Obs.) includes all valid observations recorded within the Monitoring Season.

³ The percent of valid observations (% Obs.) is the percentage of valid days to the number of possible monitoring days during the Monitoring Season. A valid day is defined as a day with 9 or more valid observations between 9:00 a.m. and 9:00 p.m..

⁴The minimum observation value (Min. Obs.) is the minimum daily maximum recorded during the Monitoring Season.

⁵The percentiles and other statistics are derived from the daily maximums.

Ozone Standards Report and Daily Maximum 1-Hour Concentrations (ppm)

Mount Rainier National Park

01/01/2002 - 12/31/2002

Day	Jan-	02	Feb-	02	Mar-	02	Apr-	02	May-	02	Jun-	02	Jul-	02	Aug	-02	Sep-	02	Oct-	02	Nov-	02	Dec	-02
1	.029	T	.033	F	.038	F	.042	M	.027	W	.047	S	.036	M	.048	T		S	.032	T	.037	F	.017	S
2	.031	W	.030	S	.041	S	.035	T	.037	T	.036	S	.035	T	.032	F		M	.030	W	.033	S	.017	M
3	.033	T	.033	S	.041	S	.040	W	.038	F	.033	M	.026	W	.033	S		T	.017	T	.033	S	.013	T
4	.029	F	.029	M	.050	M	.042	T	.037	S	.028	T	.022	T	.029	S		W	.016	F	.025	M	.019	W
5	.031	S	.033	T		T	.026	F	.033	S	.037	W	.032	F	.031	M	.043	T	.022	S	.033	T	.021	T
6	.028	S	.036	W	.027	W	.026	S	.036	M	.037	T	.049	S	.024	T	.040	F	.025	S	.037	W	.013	F
7	.034	M	.030	T	.034	T	.040	S	.031	T	.035	F		S	.032	W	.028	S	.026	M	.037	T	.011	S
8	.032	T	.025	F	.036	F	.039	M	.032	W	.027	S		M	.041	T	.022	S	.023	T	.027	F	.019	S
9	.024	W	.032	S	.032	S	.028	T	.031	T	.044	S		T	.045	F		M	.032	W	.025	S	.030	M
10	.017	T	.038	S	.029	S	.023	W	.043	F	.041	M		W	.025	S	.042	T	.032	T	.022	S	.032	T
11	.033	F	.033	M	.029	M	.021	T	.042	S	.039	T	.055	T	.044	S	.047	W	.031	F	.029	M	.034	W
12	.034	S	.033	T	.033	T	.028	F	.049	S	.056	W	.056	F	.049	M	.043	T	.033	S	.027	T	.037	T
13	.026	S	.027	W	.031	W	.032	S	.032	M	.075	T	.050	S	.053	T	.035	F	.032	S	.023	W	.031	F
14	.018	M	.032	T	.030	T	.039	S	.046	T	.037	F	.031	S	.058	W	.049	S	.034	M	.030	T	.033	S
15	.024	T	.044	F	.029	F	.029	M	.041	W	.042	S	.038	M	.050	T	.028	S	.033	T	.034	F	.034	S
16	.008	W	.036	S	.029	S	.034	T	.049	T	.035	S	.044	T	.043	F	.019	M	.038	W	.038	S	.030	M
17	.013	T	.028	S	.028	S	.033	W	.043	F	.028	M	.031	W	.039	S	.035	T	.036	T	.023	S	.022	T
18	.011	F	.030	M	.029	M	.027	T	.041	\mathbf{S}	.024	T		T	.042	S	.034	W	.018	F	.027	M	.027	W
19	.028	S	.033	T	.026	T	.030	F	.020	S	.035	W		F	.031	M	.027	T	.024	S	.010	T		T
20	.026	S	.034	W	.022	W	.030	S	.035	M	.035	T		S	.015	T	.035	F	.027	S	.007	W		F
21	.034	M	.026	T	.033	T	.029	S	.036	T	.056	F	.055	S	.026	W	.040	S	.013	M	.011	T		S
22	.027	T	.027	F	.024	F	.035	M	.036	W	.039	S	.054	M	.039	T	.040	S	.020	T	.005	F		S
23	.020	W	.033	S	.035	S	.047	T	.039	T	.023	S	.060	T	.044	F	.040	M	.029	W	.014	S		M
24	.026	T	.038	S	.023	S	.044	W	.045	F	.043	M	.055	W	.043	S	.024	T	.035	T	.014	S	.027	T
25	.033	F	.036	M	.032	M	.044	T	.038	S	.065	T	.025	T	.018	S	.043	W	.023	F	.020	M	.033	W
26	.036	S	.034	\mathbf{T}	.033	T	.039	F	.028	S	.061	W	.023	F	.019	M	.037	\mathbf{T}	.021	S	.013	T	.031	T
27	.033	S	.033	W	.037	W	.023	S	.025	M	.017	T	.040	S	.041	T	.025	F	.027	S	.012	W	.038	F
28	.030	M	.036	T	.040	T	.042	S	.020	T	.018	F	.014	S	.053	W	.035	S	.031	M	.011	T	.012	S
29	.031	Т			.037	F	.040	M	.029	W	.023	S	.030	M	.033	T	.029	S	.023	T	.010	F	.030	S
30	.019	W			.034	S	.046	T	.038	T	.020	S	.032	T	.035	F	.025	M	.039	W	.011	S		M
31	.026	T			.031	S			.043	F			.033	W	.043	S			.042	Т				
Valid Days	31		28		30		30		31		30		24		31		25		31		30		24	
Maximum	.036		.044		.050		.047		.049		.075		.060		.058		.049		.042		.038		.038	····
Violations	0		0		0		0		0		0		0		0		0		0		0		0	2

7582 Total Samples	0 Daily-maxima exceeding the standard of .12 ppm (starred[*])	2
86.8 % Possible	2 Missing days assumed to be less than the standard	
345 Valid daily maxima	0 Daily maximas exceed the alert level of .200 ppm	Concentrations in parts per million (ppm)

Mount Rainier National Park

2002 Attainment Status With U.S. Environmental Protection Agency (EPA) PRIMARY Ozone National Ambient Air Quality Standard

Ozone Season: May through September

The primary National Ambient Air Quality Standard for ozone is designed to protect human health. The level of the primary ozone standard promulgated by the EPA on July 18, 1997 is 0.08 parts per million (ppm) [80 parts per billion, (ppb)], daily maximum 8-hour average. The primary ozone standard is met at an ambient monitoring site when the 3-year average of the annual fourth-highest daily maximum 8-hour average ozone concentration is less than or equal to 0.08 ppm. This standard is not met when the 3-year average is greater than 0.08 ppm. Using the EPA's rounding convention, a computed 3-year average ozone concentration of 0.085 ppm (85 ppb) is the smallest value that is greater than the level of the 0.08 ppm standard.

The primary standard requires 90 percent data completeness, on average, during the 3-year period, with no single year within the period having less than 75 percent data completeness. This data completeness requirement would have to be satisfied in order to determine that the standard has been met at a monitoring site. However, calendar years with less than 75 percent data completeness are included in the computation if the annual fourth-highest daily maximum 8-hour concentration is greater than the level of the standard. A site could be found not to have met the standard with less than complete data. The percent data completeness is the percent of valid ozone monitoring days. A day is valid if valid 8-hour averages are available for at least 75 percent of possible hours in the day (i.e., at least 18 of the 24 averages). An 8-hour average is considered valid if at least 75 percent (or 6) of the hourly averages for the 8-hour period are available.

The table below lists the 3-year average fourth-highest daily maximum 8-hour ozone concentration based on data collected during the reported year and the two previous years. This is the number to compare to the level of the new primary standard. The 3-year average data completeness percent and the reported year highest five daily maximum 8-hour averages are also tabulated. A 'No' in the Data Comp % Met? column indicates EPA data completeness requirement was not met for the three-year period.

	3-Year							
	Avg			Annual	Annual	Annual	Annual	Annual
	4th High	3-Year		1st High	2nd High	3rd High	4th High	5th High
	Daily	Avg	Data	Daily	Daily	Daily	Daily	Daily
}	Max 8-hr	Data	Complete	Max 8-hr				
1	Ozone	Complete	%	Ozone	Ozone	Ozone	Ozone	Ozone
Year	(ppb)	%	Met?	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
2002	56	92%	Yes	57	55	53	52	51

Ozone Analyzer

10 Highest Daily 1-Hour Average Maximum Concentrations Mount Rainier National Park

Final Validation 01/01/2002 - 12/31/2002

Value	Date	Hour	Concentration (ppb)
	Ozone A	Analyzer	
1	06/13/2002	17	75
2	06/25/2002	16	65
3	06/26/2002	13	61
4	07/23/2002	12	60
5	08/14/2002	13	58
6	06/12/2002	16	56
7	06/21/2002	15	56
8	07/12/2002	14	56
9	07/11/2002	15	55
10	07/21/2002	16	55**

^{**} This value was also recorded on one or more days later in the reported period.

Final Validation

04/16/2003

Episodes with 1-Hour Ozone Concentrations ≥ 100 ppb and > 124 ppb Mount Rainier National Park

01/01/2002 - 12/31/2002 FINAL VALIDATION

		Beginning	No.	Hours	Max
Site	Date	Hour	≥ 100 ppb	>124 ppb	(ppb)
	No values g	reater than or ed	jual 100 ppb	during this per	riod_
		Total	0	0	

Note: The primary and secondary national ambient air standard for ozone that applied in 1996 is 0.12 ppm over a one hour period not to be exceeded more than once per year. (A value greater than .12 ppm, 124 ppb, or 235 ug/m³ exceeds the standard.) (40 CFR 50.9 with reference to Appendix D and H.)

Episodes with 8-Hour Average Ozone Concentrations > 84 ppb Mount Rainier National Park

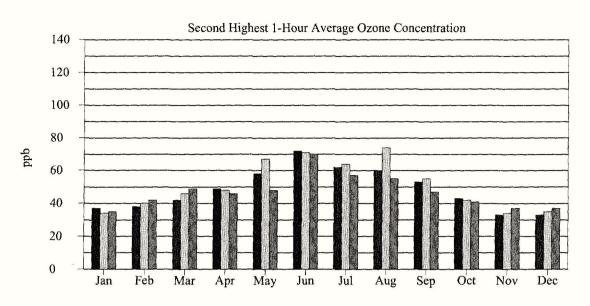
01/01/2002 - 12/31/2002 FINAL VALIDATION

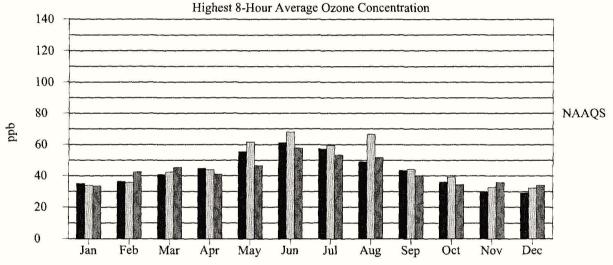
Site	Date	Start and End Time of Daily Maximum 8-Hour Average > 84 ppb (hr)	Daily Maximum 8-Hour Average (ppb)	Number of 8-Hour Averages > 84 ppb During the Day
	No values exceeded 84 ppb during this period			
	0	Days with 8-hour average concentrations > 84 ppb		

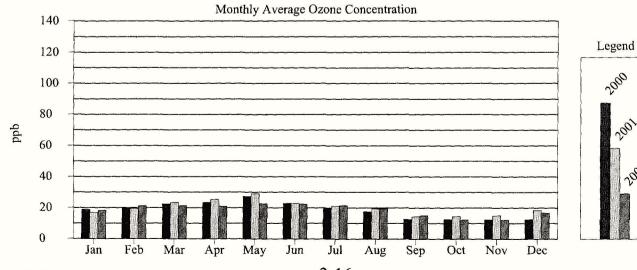
Note: This table presents episodes of high ozone based on running 8-hour averages. In 1997, the EPA published new primary and secondary national ambient air quality standards for ozone based on 8-hour average ozone concentrations. Attainment of the new primary standard is reached if the annual fourth highest daily maximum 8-hour ozone concentration, averaged over three years, does not exceed 0.08 ppm (84 ppb or 157 ug/m³).

2-14 4/17/03

Ozone Rank Listings of Second Highest 1-Hour Average Concentrations, 4th Highest 8-Hour Average Concentrations, and Annual SUM60 Exposure Index for All NPS Monitoring Sites

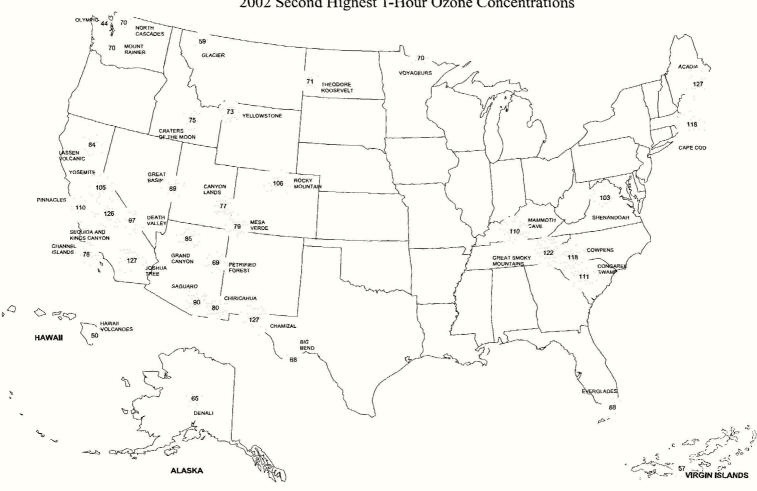

01/01/2002 - 12/31/2002

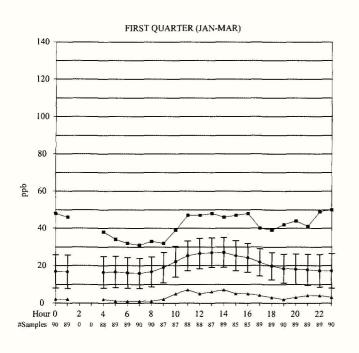

	econd Hi				
1-Hour A	1-Hour Average Concentration Concentration				
Site	Rank	(ppb)		S	
ACAD-CM	1	127		SI	
CHAM-XX	2	127	1	SI	
JOTR-YV	3	127		JC	
SEKI-LK	4	126		Si	
SEKI-AS	5	124		G	
SEKI-LP	6	124		G	
GRSM-LR	7	122		G	
CACO-XX	8	118		A	
COWP-XX	9	118		G	
ACAD-MH	10	117		C	
GRSM-CM	11	117		C	
GRSM-CD	12	115		Y	
COSW-BL	13	111	'	A	
MACA-HM	14	110		C.	
PINN-ES	15	110		R	
GRSM-CC	16	108		Pl	
ROMO-LP	17	106		SI	
GRSM-PK	18	105		М	
YOSE-TD	19	105		D	
SHEN-BM	20	103		C	
DEVA-PV	21	97		G	
SAGU-PC	22	90		G	
GRBA-MY	23	89		S	
GRCA-AS	24	85		L.	
LAVO-ML	25	84		G	
CHIR-ES	26	80		C.	
YOSE-MR	27	80		Y	
MEVE-MY	28	79		M	
CHIS-XX	29	78		C	
CANY-IS	30	77		C.	
CRMO-VC	31	75		C.	
YELL-WT	32	73		Y	
THRO-VC	33	71		V	
MORA-TW	34	70		B	
NOCA-MM	35	70		T	
VOYA-SB	36	70		E,	
PEFO-HB	37	69		D	
BIBE-KB	38	68		PI	
EVER-BC	39	68		G	
DENA-HQ	40	65		M	
GLAC-WG	41	59		V	
VIIS-LP	42	57		N	
HAVO-TH	43	50		H	
OLYM-VC	44	44		0	

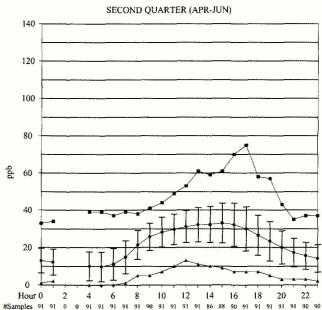

4th Highest 8-hour					
Average Concentration					
Concentration					
Site	Rank	(ppb)			
SEKI-LP	1	109			
SEKI-LK	2	108			
JOTR-YV	3	107			
SEKI-AS	4	107			
GRSM-CM	5	103			
GRSM-LR	6	102			
GRSM-CD	7	101			
ACAD-CM	8	100			
GRSM-PK	9	94			
CACO-XX	10	93			
COWP-XX	11	93			
YOSE-TD	12	93			
ACAD-MH	13	89			
CHAM-XX	14	89			
ROMO-LP	15	87			
PINN-ES	16	86			
SHEN-BM	17	86			
MACA-HM	18	85			
DEVA-PV	19	83			
COSW-BL	20	82			
GRSM-CC	21	82			
GRCA-AS	22	79			
SAGU-PC	23	77			
LAVO-ML	24	75			
GRBA-MY	25	74			
CANY-IS	26	72			
YOSE-MR	27	72			
MEVE-MY	28	70			
CHIR-ES	29	69			
CRMO-VC	30	69			
CHIS-XX	31	66			
YELL-WT	32	66			
VOYA-SB	33	65			
BIBE-KB	34	62			
THRO-VC	35	62			
EVER-BC	36	57			
DENA-HQ	37	55			
PEFO-HB	38	55			
GLAC-WG	39	52			
MORA-TW	40	52			
VIIS-LP	41	48			
NOCA-MM	42	46			
HAVO-TH	43	42			
OLYM-VC	44	39			

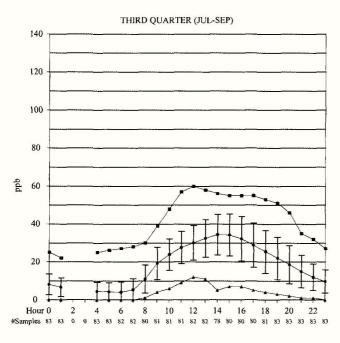
	Annua	ıl			
Sum60 Exposure Index					
Site	Rank	Sum60	Count		
SEKI-LK	I	204306	2639		
SEKI-AS	2	196849	2529		
SEKI-LP	3	193795	2491		
JOTR-YV	4	175177	2398		
GRSM-CM	5	169849	2320		
YOSE-TD	6	164764	2298		
GRSM-LR	7	131936	1794		
GRSM-CD	8	130649	1793		
GRSM-PK	9	118538	1656		
DEVA-PV	10	106174	1586		
GRCA-AS	11	104360	1584		
ROMO-LP	12	95145	1403		
SHEN-BM	13	88006	1273		
CANY-IS	14	68738	1068		
COWP-XX	15	66858	924		
PINN-ES	16	54322	767		
MEVE-MY	17	49400	771		
GRSM-CC	18	42779	611		
CACO-XX	19	39974	546		
MACA-HM	20	39775	571		
ACAD-CM	21	39360	529		
SAGU-PC	22	35867	540		
COSW-BL	23	34655	491		
CHAM-XX	24	34216	482		
CRMO-VC	25	34186	537		
CHIR-ES	26	32418	503		
GRBA-MY	27	30461	466		
YELL-WT	28	29522	470		
ACAD-MH	29	26476	362		
LAVO-ML	30	26432	394		
YOSE-MR	31	22272	334		
VOYA-SB	32	7405	116		
BIBE-KB	33	7215	116		
CHIS-XX	34	6974	106		
THRO-VC	35	4004	63		
DENA-HQ	36	996	16		
PEFO-HB	37	951	15		
EVER-BC	38	833	13		
MORA-TW	39	453	7		
NOCA-MM	40	267	4		
GLAC-WG	41	124	2		
HAVO-TH	42	0	0		
OLYM-VC	43	0	0		
VIIS-LP	44	0	0		

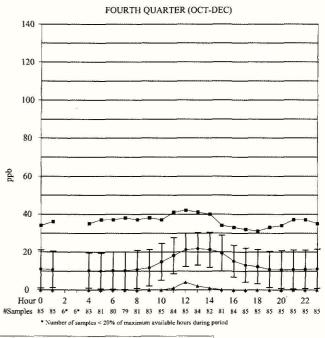
Ozone Three Year Comparison



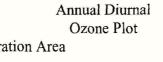


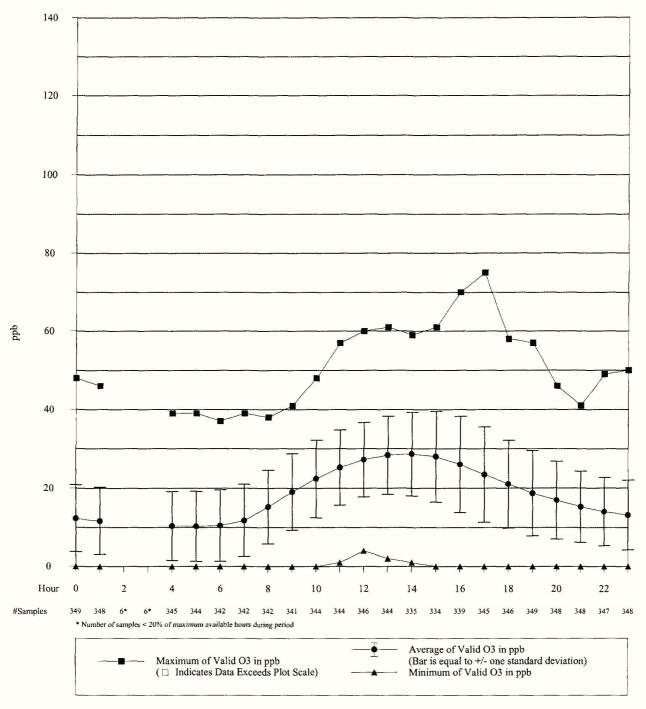

NATIONAL PARK SERVICE GASEOUS POLLUTANT MONITORING NETWORK



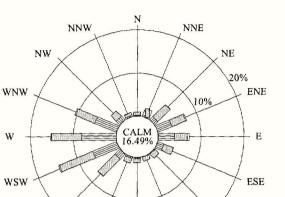


Near Tahoma Woods Administration Area





Maximum of Valid O3 in ppb
(a Indicates Data Exceeds Plot Scale)


 Average of Valid O3 in ppb (Bar is equal to +/- one standard deviation)
 Minimum of Valid O3 in ppb

Final Validation 04-18-2003

FIRST QUARTER (JAN-MAR)

Ozone (ppb)

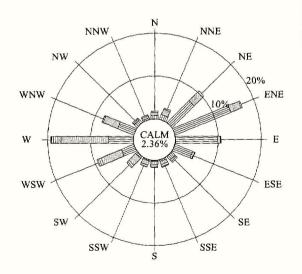
0 - 19

20-39 40-59 60-79 80-99

100-119

140+

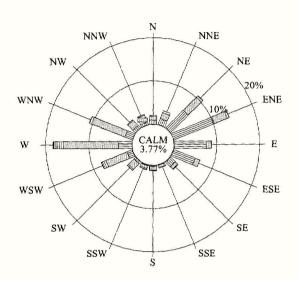
SE


SSE

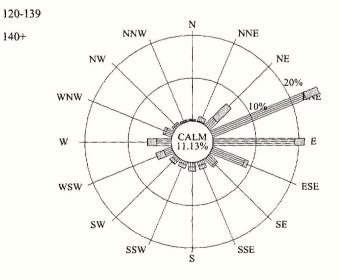
81.4% Collected 81.4% Valid 2160 Possible /1759 Collected /1759 Valid (includes WS and WD)

SW

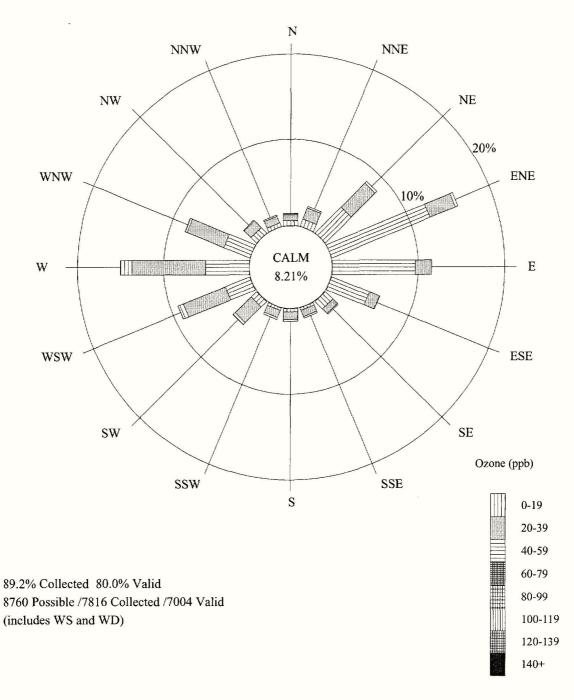
SSW


THIRD QUARTER (JUL-SEP)

91.9% Collected 78.7% Valid 2208 Possible /2030 Collected /1737 Valid (includes WS and WD)


Final Validation

SECOND QUARTER (APR-JUN)



91.1% Collected 91.1% Valid 2184 Possible /1990 Collected /1990 Valid (includes WS and WD)

FOURTH QUARTER (OCT-DEC)

92.3% Collected 68.8% Valid 2208 Possible /2037 Collected /1518 Valid (includes WS and WD)

Ozone Analyzer Precision Check Summary Mount Rainier National Park

Precision checks are required by the Environmental Protection Agency (EPA) of all monitoring instruments collecting data which are to be submitted to the EPA Aerometric Information Retrieval System (AIRS). A precision check is performed by challenging the pollutant analyzer with a known concentration of gas from the pollutant transfer standard. This precision check must be performed at least every 14 days of monitoring operation. The percent difference between the analyzer and the transfer standard is then calculated.¹ According to NPS Standard Operating Procedures, the pollutant analyzer must respond within 10% of the transfer standard. The table below gives the number of precision checks performed during each quarter, the average² of all the individual precision check percent differences for the quarter, and the upper and lower 95% probability limits³ for precision checks. The probability limits represent the interval having a 95% chance of containing the true average percent difference. The quarterly average percent difference and probability limits should ideally be within +/- 10%.

Final Validation 01/01/2002 - 12/31/2002				
Calendar Quarter	Number of Precision Checks	Average Percent Difference 1 2	Lower 95% Probability Limit ³	Upper 95% Probability Limit ³
1	12	-2.84	-5.00	-0.69
2	13	-2.88	-4.23	-1.52
3	12	-2.95	-4.89	-1.01
4	12	-2.58	-3.63	-1.53

Percent Difference= analyzer - transfer std transfer std X 100.

Average Percent Difference is the mean of all individual precision check percent differences during the quarter.

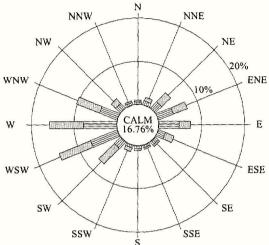
Upper/Lower 95% Probability Limits=(Average Percent Difference) +/- (1.96)(Standard Deviation of precision check percent differences in the quarter.)

2.3 METEOROLOGICAL DATA SUMMARY

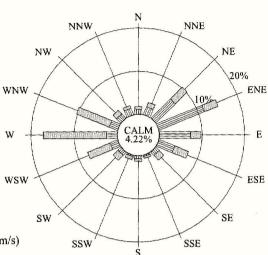
Summary of Selected Meteorological Data Mount Rainier National Park

Final Validation 01/01/2002 - 12/31/2002

Parameter	Value	Units	Number	Std Dev
SCALAR WIND SPEED				
Average	1.0	m/s	8448	0.5
Maximum	3.8	m/s		
Percent calm = 7.98				
AMBIENT TEMPERATURE				
Average	8.4	degC	8741	6.8
Maximum	32.4	degC		
Minimum	-5.3	degC		j a
RELATIVE HUMIDITY	1			
Average	74	percent	6354	19
Maximum	98	percent		
Minimum	16	percent		
PRECIPITATION (Rainfall or Snow melt)				
Average non-zero rate	1.0	mm/hr	977	.9
Maximum non-zero rate	6.6	mm/hr		
Minimum non-zero rate	.3	mm/hr		
Accumulated during period	928.8	mm		
SOLAR RADIATION				
Average Daily Total	10,071,063	joules/m2day	357	7,795,314
Maximum Daily Total	27,676,800	joules/m2day		
Minimum Daily Total	291,200	joules/m2day		


Note: Calms are included in the average scalar wind speed and are defined as winds less than 0.5 m/s (1.0 mph).

Solar radiation terms are based on the calculation of the total amount of solar energy incident on a unit area during each day. The maximum and minimum daily totals are selected from the list of daily totals. The totals for all days are then added and divided by the number of days to yield the average daily total. Only days with 24 valid values are included in these statistics.


NA indicates instrument not available.

FIRST QUARTER (JAN-MAR)

SECOND QUARTER (APR-JUN)

Scalar Wind Speed (m/s)

88.9% Collected 88.9% Valid 2160 Possible /1921 Collected /1921 Valid (includes WS and WD)

THIRD QUARTER (JUL-SEP)

NNE

NE

SE

SSE

NNW

NW

WNW

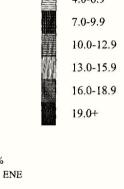
WSW

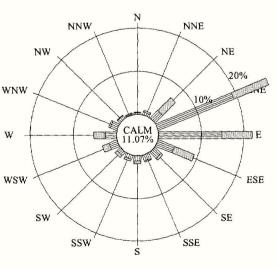
SW

SSW

Final Validation

CALM < .5



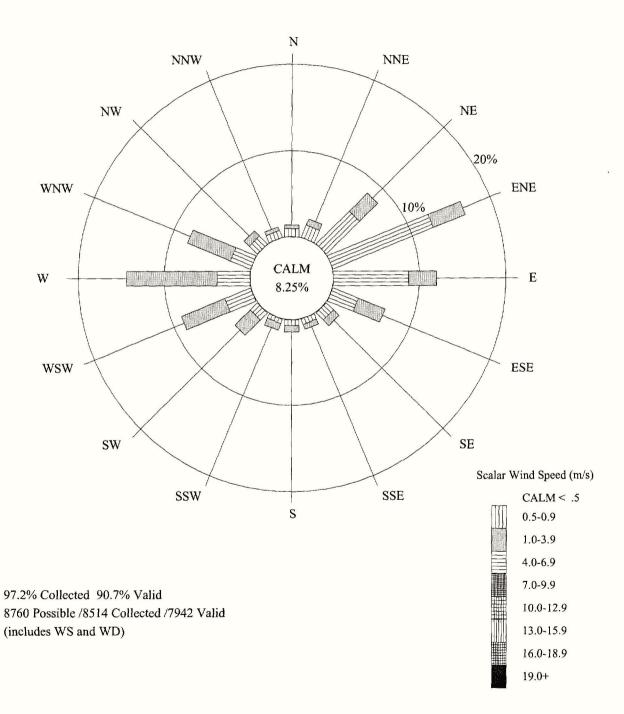

1.0-3.9

99.9% Collected 99.9% Valid 2184 Possible /2182 Collected /2182 Valid (includes WS and WD)

FOURTH QUARTER (OCT-DEC)

4.0-6.9

100.0% Collected 97.0% Valid 2208 Possible /2207 Collected /2141 Valid (includes WS and WD)


Ś

E

ESE

99.8% Collected 76.9% Valid 2208 Possible /2204 Collected /1698 Valid (includes WS and WD)

04-18-2003

2.4 DRY DEPOSITION DATA SUMMARY

Clean Air Status and Trends Network (CASTNet) Dry Deposition Monitoring

In 1995, the National Park Service (NPS) and the Environmental Protection Agency (EPA) entered a partnership to jointly measure dry deposition in park units, mostly in the West. A portion of the 2000, 2001, and 2002 data collected from this partnership is presented in this section. These data are presented using local conditions. Data presented in reports prior to 2002 are based on standard conditions.

Atmospheric deposition of acidic species takes two pathways: wet deposition and dry deposition. Wet deposition is the result of precipitation events (rain, snow, or fog) that remove particles and gases from the atmosphere. Dry deposition is less event driven, but still involves the transfer of particles and gases from the atmosphere to surfaces and plants. Wet deposition has been well documented for many years. In the national parks, the National Acidic Deposition Program (NADP) measures and reports wet deposition (see the web site at http://nadp.sws.uiuc.edu for further information). Dry deposition is much harder to measure and a smaller network of monitoring stations is involved. The method used to measure dry deposition is sometimes called the "inferential method" because air quality concentration data are combined with meteorological measurements and land use functions to compute deposition velocities. The CASTNet program provides long-term estimates of total acidic deposition by adding dry deposition values to wet deposition values.

This annual summary report presents the air quality concentration portion of the dry deposition inferential method, which is the only currently available data set. These data were compiled from the analyses of filters collected by CASTNet deposition filter pack systems in the parks. The filter pack analyses yielded weekly average concentrations of particulate sulfate (SO₄²⁻), particulate nitrate (NO₃⁻), particulate ammonium (NH₄⁺), sulfur dioxide (SO₂), and nitric acid (HNO₃). In some cases, the positive ions Na⁺, K⁺, Ca²⁺, and Mg²⁺ were also measured from the filter samples. These concentration data for the individual ionic species are presented as annual bar charts and summarized by quarter and by year in this report. Concentration data can be used to compare sites and to indicate the amount of acidic species available for deposition. As with the continuous analyzer data, the filter pack concentration data are included on a computer diskette that accompanies this report.

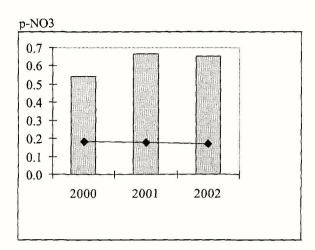
Estimated dry deposition values derived from EPA modeling will be reported at a later time to complete the inferential analyses. When available, these modeling results will be posted on the NPS Air Resources Division Internet web site at http://www.aqd.nps.gov/ard1 or on the EPA CASTNet site. Initial CASTNet results have shown that dry deposition can be a significant portion of total acidic deposition.

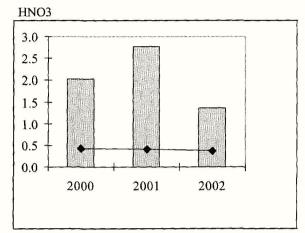
CASTNet Dry Deposition Monitoring Quarterly and Annual Average Concentrations

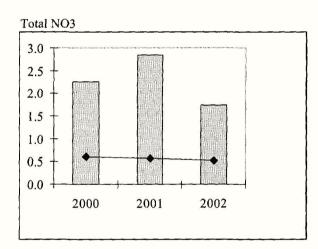
Mount Rainier National Park 1/1/02 - 12/31/02

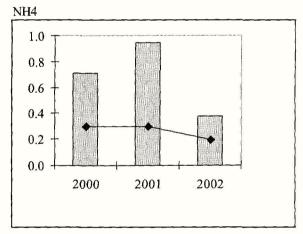
Quarter	No.Valid Samples	p-NO ₃ (ug/m³)	HNO ₃ (ug/m³)	Total NO ₃ (ug/m³)	NH ₄ (ug/m ³)	p-SO ₄ (ug/m³)	SO ₂ (ug/m ³)	SO ₄ /SO ₂ Ratio
1	13	0.126	0.150	0.273	0.146	0.368	0.289	1.273
2	13	0.284	0.354	0.632	0.260	0.762	0.403	1.892
3	13	0.177	0.783	0.948	0.240	0.809	0.448	1.804
4	14	0.099	0.184	0.280	0.142	0.330	0.235	1.407
Annual Average		0.170	0.364	0.529	0.196	0.563	0.342	1.647
Standard Deviation		0.126	0.314	0.368	0.094	0.315	0.199	

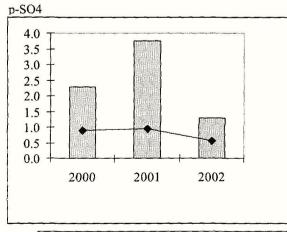
Data Recovery Table							
Total No. Filters	No. Invalidated	Data Capture	No. Valid Hours				
53	0	100.0%	8833.0				

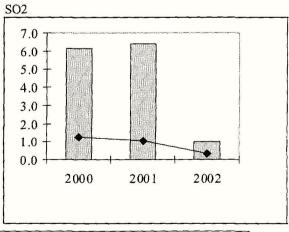

CASTNet Dry Deposition Monitoring Weekly Concentrations Report Mount Rainier National Park

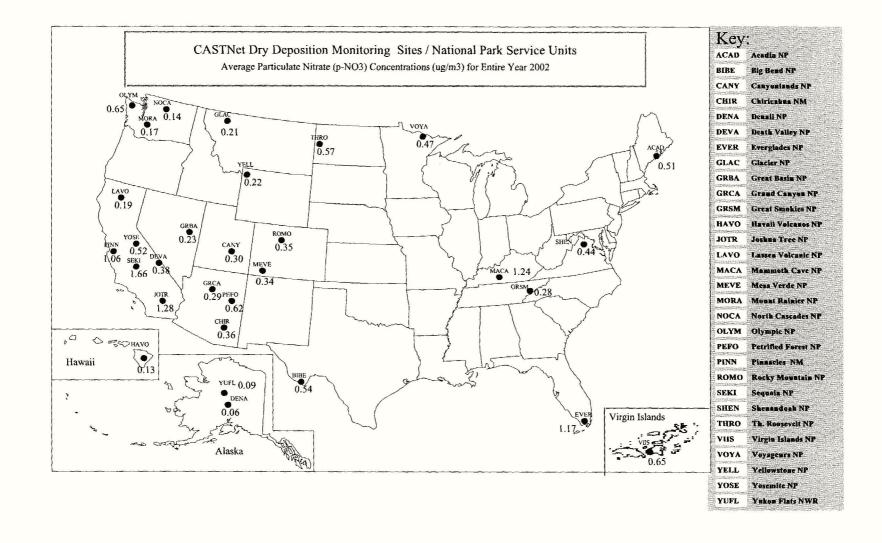

1/1/02 - 12/31/02

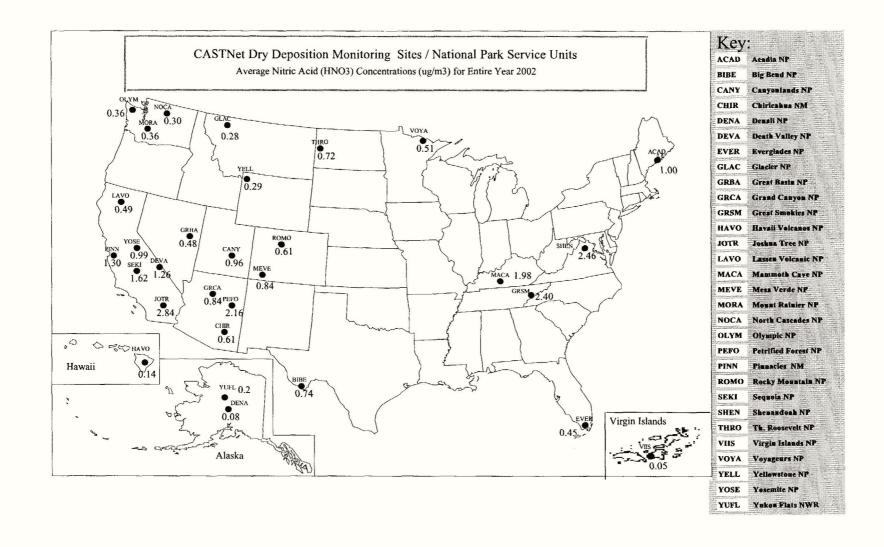

		p-NO ₃	HNO ₃	Total NO ₃	NH ₄	p-SO ₄	SO_2	SO_4/SO_2
On Date	Off Date	(ug/m^3)	(ug/m^3)	(ug/m^3)	(ug/m^3)	(ug/m ³)	(ug/m ³)	Ratio
12/26/01	01/01/02	0.070	0.071	0.141	0.078	0.127	0.159	0.803
01/01/02	01/08/02	0.058	0.059	0.116	0.042	0.084	0.131	0.639
01/08/02	01/15/02	0.342	0.117	0.456	0.139	0.404	0.251	1.608
01/15/02	01/22/02	0.077	0.200	0.273	0,220	0.592	0.329	1.801
01/22/02	01/29/02	0.133	0.176	0.307	0.103	0.151	0.352	0.428
01/29/02	02/05/02	0.062	0.098	0.158	0.094	0.186	0.168	1.106
02/05/02	02/12/02	0.103	0.062	0,165	0.044	0.148	0.158	0.937
02/12/02	02/19/02	0.091	0.150	0.239	0.183	0.460	0.280	1.644
02/19/02	02/26/02	0.101	0.062	0.162	0.135	0.315	0.201	1.566
02/26/02	03/05/02	0.298	0.435	0.726	0.255	0.627	0.806	0.778
03/05/02	03/12/02	0.102	0.178	0.277	0.142	0.490	0.320	1.534
03/12/02	03/19/02	0.136	0.063	0.198	0,155	0.404	0.140	2.878
03/19/02	03/26/02	0.060	0.283	0.339	0.302	0.792	0.459	1.725
03/26/02	04/02/02	0.237	0.156	0.390	0.381	1.281	1.024	1.250
04/02/02	04/09/02	0.156	0.291	0.442	0,263	0.693	0.494	1.402
04/09/02	04/16/02	0.163	0.165	0.326	0.118	0.258	0.368	0.702
04/16/02	04/23/02	0.300	0.250	0.546	0.218	0.862	0.163	5.280
04/23/02	04/30/02	0.341	0.448	0.782	0.287	0.834	0.432	1.931
04/30/02	05/07/02	0.344	0.162	0.504	0.164	0.811	0.270	3.011
05/07/02	05/14/02	0.227	0.463	0.683	0.312	0.888	0.253	3.514
05/14/02	05/21/02	0.402	0.374	0.770	0.310	0.650	0.269	2.419
05/21/02	05/28/02	0.098	0.319	0,413	0.306	0.551	0.191	2.887
05/28/02	06/04/02	0.653	0.292	0.940	0.186	0.714	0.326	2,190
06/04/02	06/11/02	0.344	0.237	0.577	0.184	0.556	0.247	2.248
06/11/02	06/18/02	0,243	0.655	0.888	0.306	0.879	0.270	3.258
06/18/02	06/25/02	0.183	0.790	0.960	0.348	0.926	0.927	0.998
06/25/02	07/02/02	0.137	0.410	0,541	0.203	0.495	0.209	2.367
07/02/02	07/09/02	0.073	0.496	0.561	0.192	0.648	0.239	2.713
07/09/02	07/16/02	0.386	1.370	1.734	0.241	1.053	0.617	1.706
07/16/02	07/23/02	0.094	0.860	0.941	0.272	0.726	0.521	1.393
07/23/02	07/30/02	0.196	0.822	1.005	0.251	1.074	0.383	2.809
07/30/02	08/06/02	0.163	0.616	0.769	0.234	0.754	0.525	1.437
08/06/02	08/13/02	0.094	0.876	0.956	0.328	0.883	0.384	2.297
08/13/02	08/20/02	0.440	1.150	1.572	0.225	0.878	0.608	1.444
08/20/02	08/27/02	0.057	0.826	0.870	0.381	1.189	0.537	2.215
08/27/02	09/03/02	0.266	0.761	1.015	0.230	1.019	0.517	1.970
09/03/02	09/10/02	0.078	0.550	0.619	0.159	0.591	0.263	2.248
09/10/02	09/17/02	0.100	0.930	1.015	0.264	0.741	0.493	1.504
09/17/02	09/24/02	0.213	0.516	0.721	0.143	0.464	0.533	0.870
09/24/02	10/01/02	0.117	0.515	0.624	0.144	0.478	0.422	1.134
10/01/02	10/08/02	0,139	0.445	0.577	0.255	0.638	0.336	1.901
10/08/02	10/15/02	0.161	0.282	0.438	0.155	0.600	0.413	1.455
10/15/02	10/22/02	0.095	0.318	0.408	0.239	0.529	0.148	3.571
10/22/02	10/29/02	0.241	0.271	0.508	0.349	0.729	0.265	2.753
10/29/02	11/05/02	0.060	0.151	0.209	0.185	0.387	0.309	1.254
11/05/02	11/12/02	0.106	0.089	0.194	0.043	0.110	0.135	0.815
11/12/02	11/19/02	0.060	0.073	0.131	0.096	0.256	0.144	1.776
11/19/02	11/26/02	0.096	0.104	0.198	0.155	0.298	0.155	1.919
11/26/02	12/03/02	0.060	0.061	0.120	0.077	0.141	0.340	0.416
12/03/02	12/10/02	0.062	0.063	0.125	0.090	0.112	0.165	0.674
12/10/02	12/17/02	0.058	0.059	0.116	0.042	0.065	0.146	0.447
12/17/02	12/23/02	0.071	0.079	0.149	0.093	0.150	0.172	0.868
12/23/02	12/30/02	0.060	0.061	0.120	0.062	0.128	0.135	0.946

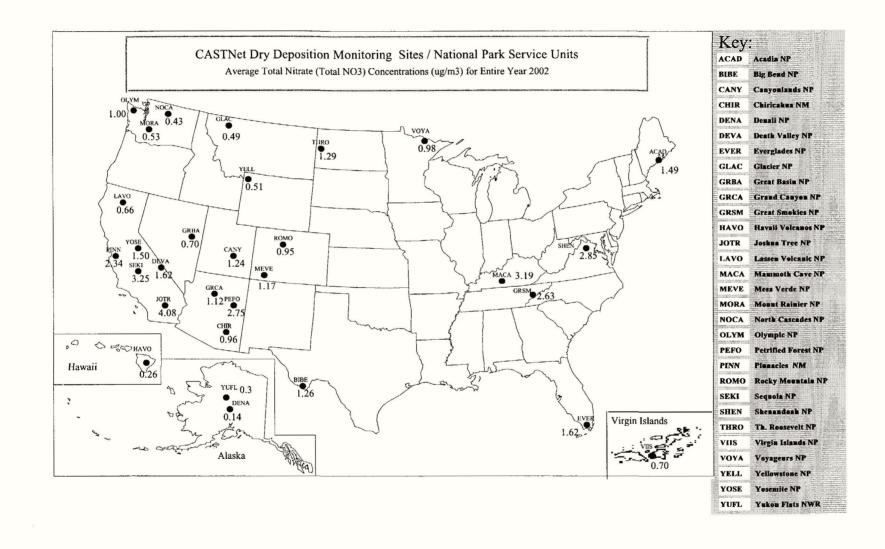

Mount Rainier National Park CASTNet Dry Deposition Monitoring

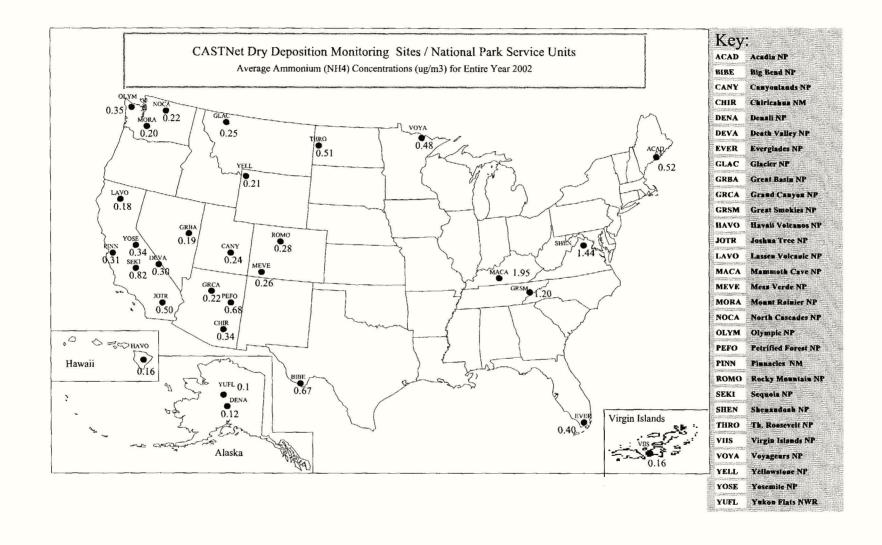

Three Year Comparison of Maximum and Average Concentrations

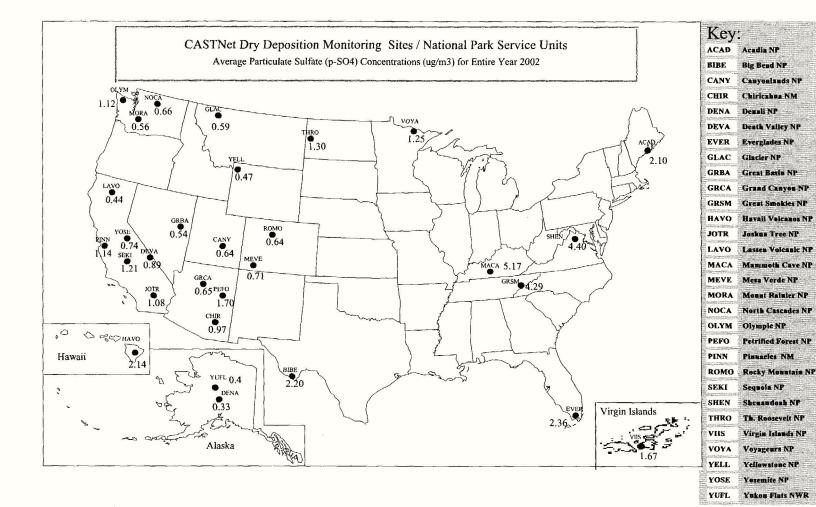


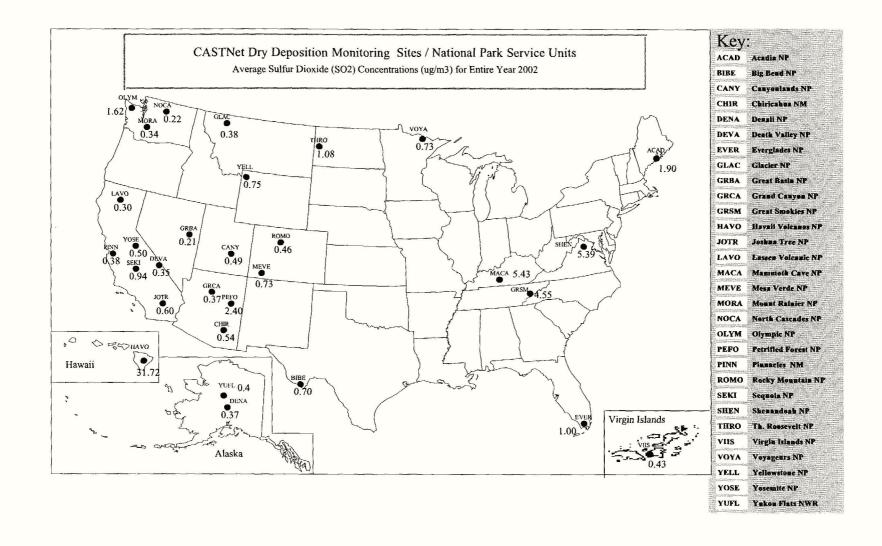


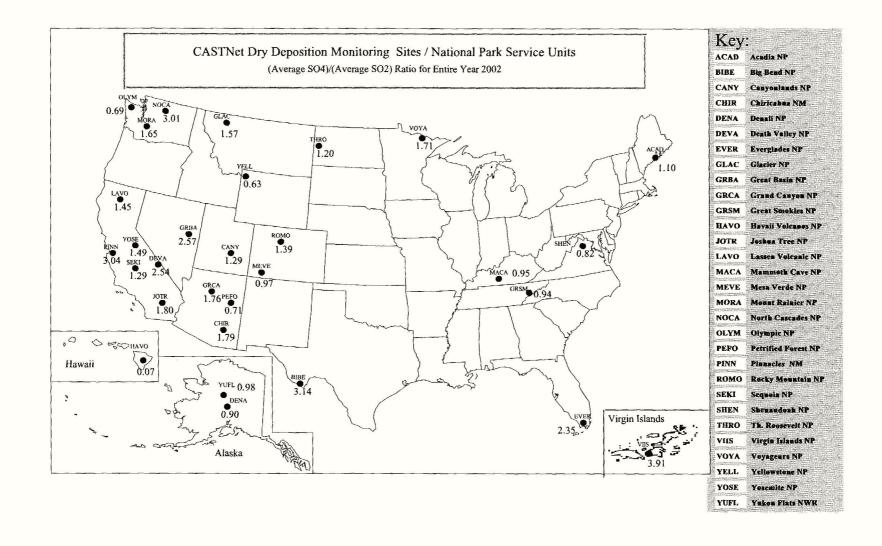





Maximum Concentration (ug/m3)


Average Concentration (ug/m3)





3.0 NATIONAL PARK SERVICE AIR RESOURCES DIVISION DATA SOURCES

Meteorological and hourly gaseous data contained in this report may be obtained from the following sources:

- National Park Service AIRWeb (http://www.aqd.nps.gov/natnet/ard)
- EPA AIRS database
- Data requests directed to:

NPS Air Resources Division Information Management Center c/o Air Resource Specialists, Inc. 1901 Sharp Point Drive, Suite E Fort Collins, Colorado 80525 Telephone: (970) 484-7941

Fax: (970) 484-3423

E-Mail: AIR-IMC@AIR-RESOURCE.COM

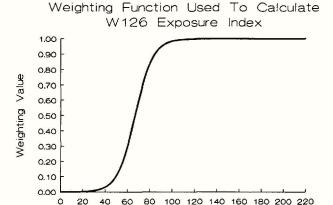
CASTNet concentration data may be obtained from the following Web site:

http://www.epa.gov/castnet/data.html

4.0 GLOSSARY

4.1 DEFINITIONS AND COMPUTATIONAL PROCEDURES FOR NATIONAL PARK SERVICE QUICK LOOK ANNUAL SUMMARY STATISTICS REPORT

The National Park Service Quick Look Annual Summary Statistics Table (Page 2-8) provides ozone summary statistics for various indices computed on a monthly basis for an entire year. Growing season (generically defined to be May 1 - September 30) and annual statistics are also presented under the "MAY-SEP" and "ANNUAL" columns, respectively. All concentrations are expressed in the units of parts per billion (PPB) and exposures in parts per billion-hours (PPB-HR). The definitions for each of the statistics appearing on the Quick Look Annual Summary Table are given below.


- (1) **Daily 1-Hr Maximum**. The maximum 1-hour average concentration recorded during each month, the growing season or the year regardless of the number of valid hourly observations recorded during a given day. The number in parentheses below this statistic, (N), indicates the number of <u>days</u> in the month, growing season, or year with valid data.
- (2) Average Daily Maximum. The average of all Daily 1-Hr Maxima during the month regardless of the number of Daily 1-Hr Maxima recorded during the month. For the "MAY-SEP" column the average of all the Daily Maxima recorded during the growing season is given. For the "ANNUAL" column the average of all the Daily Maxima is given. N is as in (1) above.
- (3) **Maximum Daily Mean**. The maximum of the valid daily means computed for each month, the growing season ("MAY-SEP" column), and the year ("ANNUAL" column). A valid daily mean is one for which 75% of the observations are available for each day, i.e., 18 hours. N is the number of days during each month, growing season, and year with at least 18 observations.
- (4) **Average Daily Mean**. The average of all valid daily means for the month, the growing season ("MAY-SEP" column), and the year ("ANNUAL" column). N is as in (3) above.
- (5) Max Peak:Min Ratio. The ratio of the Daily 1-Hr Maximum to the Daily 1-Hr Minimum. A ratio is computed only if a valid Daily Mean is computed and if the Daily 1-Hr Minimum is not equal to zero. N is the number of days with a valid Peak:Min ratio.
- (6) Average Peak:Min Ratio. The average of all Peak:Min ratios for the month, growing season, or year. N is as in (5) above.
- (7) Max 9AM-4PM Average. The maximum of all valid 9AM-4PM Averages computed for the month, growing season, or year. A valid 9AM-4PM Average is one which has 75% of the observations available during that time period (i.e., 6 hours. N is the number of days with valid averages.)

- (8) **Monthly 9AM-4PM Average**. The average of all valid 9AM-4PM Averages for the month, growing season, or year. N is as in (7) above.
- (9) Max 7AM-7PM Average. The maximum of all valid 7AM-7PM Averages computed for the month, growing season, or year. A valid 7AM-7PM Average is one which has 75% of the observations available during that time period, i.e., 9 hours. N is the number of days with valid averages.
- (10) **Monthly 7AM-7PM Average**. The average of all valid 7AM-7PM averages for the month, growing season, or year. N is as in (9) above.
- (11) **Monthly Mean**. The average of all 1-Hr ozone concentrations recorded during the month, growing season, or year. A mean is computed regardless of the number of hours with valid data. N is the number of hours with valid observations.
- (12) **SUM0 Exposure Index**. The monthly sum of all hourly ozone concentrations. Units are PPB-HR. The "MAY-SEP" column sums across the months of May through September to give the cumulative exposure for the growing season. The "ANNUAL" column sums across every month to give the cumulative exposure for the year. N is the number of hours with valid observations and is the same N as in (11) above.
- (13) **SUM60 Exposure Index**. The monthly sum of all hourly ozone concentrations equaling or exceeding 60 PPB. Units are PPB-HR. The "MAY-SEP" column sums across the months of May through September to give the cumulative exposure for the growing season. The "ANNUAL" column sums across every month to give the cumulative exposure for the year. N is the number of hours equaling or exceeding 60 PPB during the month, growing season, or year.
- (14) SUM80 Exposure Index. The monthly sum of all hourly ozone concentrations equaling or exceeding 80 PPB. Units are PPB-HR. The "MAY-SEP" column sums across the months of May through September to give the cumulative exposure for the growing season. The "ANNUAL" column sums across every month to give the cumulative exposure for the year. N is the number of hours equaling or exceeding 80 PPB during the month, growing season, or year.
- (15) W126 Exposure Index. The monthly sum of all hourly ozone concentrations where each concentration is weighted by a function that gives greater emphasis to the higher hourly concentrations while still including the lower ones. This weighting function provides a weighting value that is unique for each hourly ozone concentration. The weighting function, as described by Lefohn, Laurence, and Kohut¹ is:

$$w_i = \frac{1}{1 + 4403 \exp(-.126c_i)}$$

where

 w_i = weighting value for hourly concentration i, and c_i = hourly concentration i in PPB.

Ozone Concentration

The graph of weighting value versus ozone concentration, in the figure to the left, illustrates the greater weights given to higher hourly ozone concentrations.

Each hour's weighting value is multiplied by its corresponding hourly concentration. This product

is summed over all the valid hours in each month to calculate the monthly W126 exposure.

Thus, the monthly W126 exposure is:

$$W126 = \sum_{i=1}^{n} w_i c_i$$

where

W126 = monthly W126 exposure index,

(ppb)

 w_i = weighting value for hourly concentration i,

 c_i = hourly concentration i in PPB, and

n = number of hours in the month with valid ozone concentrations.

The "MAY-SEP" column sums across the months of May through September to give the cumulative exposure for the growing season. The "ANNUAL" column sums across every month to give the cumulative exposure for the year. The exposure units are PPB-HR.

Because each hour contributes to this exposure index, N is the number of hours with valid observations and is the same N as in (11) and (12) above.

The U.S. Environmental Protection Agency usually considers air quality statistics, such as a mean, to be "valid" (i.e., representative of the parameter being estimated for the time interval in question) only if 75% or more of the total possible observations have been measured during that time interval. Therefore, one should exercise caution when comparing these statistics between months and sites, particularly those that are <u>not</u> averages (e.g., maxima and exposures) whenever the number of valid observations is less than 75% of the total possible.

References

1. Lefohn, A.S., J. A. Laurence, and R. J. Kohut. 1988. A Comparison of Indices That Describe the Relationship Between Exposure to Ozone and Reduction in the Yield of Agricultural Crops. *Atmospheric Environment* 22, 1229-1240.

4.2 AIR QUALITY GLOSSARY

Acid Deposition: Air pollution produced when acid chemicals are incorporated into rain, snow, fog, or mist.

Aerometric Information Retrieval System (AIRS): A computer-based database of U.S. air pollution information administered by the EPA Office of Air Quality Planning and Standards (U.S. Environmental Protection Agency).

AIRWeb: Air Resources Web, an air quality information retrieval system for U.S. parks and wildlife refuges developed by the Air Resources Division of the National Park Service and the Air Quality Branch of the Fish and Wildlife Service.

Air Pollutant: An unwanted chemical or other material found in the air.

Air Pollution: Degradation of air quality resulting from unwanted chemicals or other materials occurring in the air.

Air Quality: The properties and degree of purity of air to which people and natural and heritage resources are exposed (in the context of national parks).

Air Pollution Control Permitting Process: Process by which facilities are permitted to emit specified types and quantities of air pollutants.

Air Quality Related Values (AQRVs): Values including visibility, flora, fauna, cultural and historical resources, odor, soil, water, and virtually all resources that are dependent upon and affected by air quality. "These values include visibility and those scenic, cultural, biological, and recreation resources of an area that are affected by air quality." (43 Fed. Reg. 15016)

Ambient Air: Air that is accessible to the public.

Class I: Areas of the country set aside under the Clean Air Act to receive the most stringent degree of air quality protection.

Class II: Areas of the country protected under the Clean Air Act but identified for somewhat less stringent protection from air pollution damage than Class I, except in specified cases.

Clean Air Act: Originally passed in 1963, our current national air pollution control program is based on the 1970 version of the law. Substantial revisions were made by the 1990 Clean Air Act Amendments.

Continuous Sampling Device: An air analyzer that measures air quality components continuously.

Criteria: Information on health and/or environmental effects of pollution (in the context of criteria air pollutants).

Criteria Air Pollutant: A group of very common air pollutants regulated by EPA on the basis of criteria and for which a National Ambient Air Quality Standard is established (SO₂, NO₂, PM₁₀, Pb, CO, O₃).

Emissions: Release of pollutants into the air from a source.

Environmental Protection Agency (EPA): The federal agency responsible for regulating air quality.

Monitoring: Measurement of air pollution.

National Ambient Air Quality Standards (NAAQS): Permissible levels of criteria air pollutant established to protect public health and welfare.

Ozone (O_3): A criteria air pollutant that is a strong oxidizing agent, reactive with many other compounds and surfaces, and a health hazard in high concentrations. Ozone is formed by nitrogen oxides and organic compounds reacting in sunlight.

Source: Any place or object from which air pollutants are released. Sources that are fixed in space are stationary sources; sources that move are mobile sources.

Sulfur Dioxide (SO₂): A criteria air pollutant that is a gas produced by burning coal and some industrial processes.

^{*} Recent updates to this glossary may be found on the NPSARD AIRWeb - http://www.aqd.nps.gov/natnet/ard/glossary.htm.

4.3 GLOSSARY OF AIR QUALITY UNITS

Units Conversion Table						
Parameter Type	Multiply	Ву	To Obtain			
Pollutant	ppm	1000	ppb			
	ppm	1960	μg/m³ Ozone (at 25°C)			
	ppm	2615	μg/m ³ Sulfur Dioxide (at 25°C)			
	ppb	0.001	ppm			
	ppb	1.960	μg/m ³ Ozone (at 25°C)			
	ppb	2.615	μg/m ³ Sulfur Dioxide (at 25°C)			
	μg/m ³ Ozone (25°C)	0.0005102	ppm			
	μg/m ³ Ozone (25°C)	0.5102	ppb			
	μg/m ³ Sulfur Dioxide (25°C)	0.0003824	ppm			
	μg/m³ Sulfur Dioxide (25°C)	0.3824	ppb			
Wind Speed	m/s	2.05	mph			
	mph	0.489	m/s			
Solar Radiation	ly/min	697	w/m ²			
	w/m²	0.00143	ly/min			
Precipitation	mm/hr	0.0394	in/hr			
	in/hr	25.4	mm/hr			
Temperature	°C + 17.78	1.8	°F			
	°F - 32	5/9	°C			

Where:

ppm = parts per million ppb = parts per billion

 $\mu g/m^3$ = micrograms per cubic meter (at 25°C)

m/s = meters per second
mps = miles per hour
ly/min = langleys per minute
w/m² = watts per square meter
mm/hr = millimeters per hour
in/hr = inches per hour
or = degrees centigrade
or = degrees fahrenheit