
EVALUATION OF NATIONAL PARK SERVICE PARTICIPATION IN THE NATIONAL ATMOSPHERIC DEPOSITION PROGRAM

I. AN OVERVIEW

WATER RESOURCES LABORATORY REPORT NO. 82-4

WATER RESOURCES FIELD SUPPORT LABORATORY NATIONAL PARK SERVICE COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO 80523 Water Resources Report series of the National Park Service Water Resource Field Support Laboratory, Colorado State University, Fort Collins, Colorado 80523 provides the means to distribute to the National Park Service regional and field staff the results of studies and other scientific information useful for the management, preservation and protection of water and the related riparian resources of the National Park System.

The Water Resources Report series is not a substitute for the open scientific and technical literature. The degree of editing depends on usage as the series is designed to be flexible in format and content. The series includes the disciplines of hydrology, geology, biology, ecology, and engineering and provides for the retention and dissemination of research information which

- 1. directly address water resource management problems in the parks;
- are primarily literature reviews or bibliographies pertaining to water resources problems;
- 3. present compilations of basic scientific data; and
- discuss methodology for collecting water quality and quantity information in the National Park System.

The reports may present the results of NPS or independent research.

Requests for Water Resources Field Support Laboratory reports may be directed to:

Director, National Park Service Water Resources Laboratory 107C Natural Resources Colorado State Unviersity Fort Collins, Colorado 80523

EVALUATION OF NATIONAL PARK SERVICE

PARTICIPATION IN THE

NATIONAL ATMOSPHERIC DEPOSITION PROGRAM

I. AN OVERVIEW

Elizabeth Binney and Jill Baron

National Park Service Water Resources Laboratory Natural Resource Ecology Laboratory Colorado State University Fort Collins, CO 80523

and

Dave Bigelow

Natural Resource Ecology Laboratory Colorado State University Fort Collins, CO 80523

Evaluation of National Park Service Participation in the National Atmospheric Deposition Program

I. An Overview

Elizabeth Binney

Jill Baron

Dave Bigelow

The National Atmospheric Deposition Program (NADP) operates a network of over 100 long-term sites monitoring the chemistry of precipitation across the nation. There are 22 National Park Service areas participating in the program; several of them have been functional since early 1980. This report is an early assessment of the quality of information produced at the NPS/NADP sites. The objectives of this overview are to (1) examine and characterize program quality <u>at the site</u> as opposed to quality at the national level, (2) determine whether routine note and error messages generated at the Central Analytical Laboratory (CAL) can be used as a means of quality assessment, and (3) investigate whether recurring problems represent network-wide problems or can be remedied at the site level. Our analyses include the collection of pH and conductivity values and the note and error messages supplied by the Central Analytical Laboratory to each park site. Part II will examine park values for pH, conductivity, and collection efficiency.

Methods

Information from 18 of the 22 parks was compiled from available listings of field and laboratory data which are sent monthly by the Central Analytical Laboratory to each site in the network. The data consisted of the sampling interval, laboratory and field pH, laboratory and field conductivity, precipitation volume in milliliters (ml), and weekly note and error messages generated by the CAL computer (Table 1).

Note and error messages were grouped into five sets, each representing a different aspect of site operation problems (Table 2). Carelessness messages were designed as Error Set I. Lack of protocol messages were placed in Error Set II. Notes about pH were put into Error Set III. Conductivity notes became Error Set IV. Error Set V was a message which compared wet bucket collection efficiency with that of the rain gage collector. Totals of each error set by park were normalized to the amount of time each park had been operating. The data expressed as percent of operating time allowed for comparison between parks.

Error messages generated by CAL for error sets III and IV occur whenever there is a difference of ≥ 1 pH unit between lab and field measurements and ≥ 20 µmhos/cm in conductivity measurements. For our evaluation the more rigorous cut-off points of ≥ 0.5 pH units and ≥ 10 µmhos/cm were used. Every sample did not have both lab and field measurements; therefore, operating time percentages for each park were instead calculated using the number of weeks that had both lab and field values instead of the number of weeks the site had been operating.

Frequency plots of error sets by park were made with the joint aim of establishing the general level of park performance and identifying which parks were having a particular set of problems. The parks were ranked in terms of their performance in each error category. Other rankings of the sites were made to determine whether interfering factors correlated to error sets. These include the length of time a site had been operating, the size of the park, the size or participation of the research program at the park, and the distance from operator's workplace

to sample site. Data were plotted over time to determine seasonal trends.

Results and Discussion

Frequency plots of the error sets by park revealed a large fluctuation in the number and types of problems at any given park (Table 3 and Figs. 1-5). No particular trends or commonality of errors were noted. The majority of parks were functioning satisfactorily, meeting protocol and keeping the regular weekly schedule. Ranking of the parks by error set (Table 4), however, revealed some areas for improved performance. Carelessness errors (Error Set I, Fig. 1) occurred for 15-20% of the samples. The four parks with the highest occurrence were Channel Islands, 61%; Craters of the Moon, 54%; Theodore Roosevelt, 48%; and Shenandoah, 53%. Big Bend, Glacier, Rocky Mountain, and Indiana Dunes had the lowest occurrence of carelessness errors. Those note and error messages involving departure from protocol (Error Set II, Fig. 2) occurred 6% of the time for the average park. Only Channel Islands, 46%; Glacier, 22%; Yellowstone, 16%; and Craters of the Moon, 16%, were significantly different from the average.

With the 0.5 pH unit cutoff (Error Set III, Fig. 3) the frequency of pH discrepancies at a park averaged 37%. Six parks had greater values: Craters of the Moon, 86%; Mt. McKinley, 79%; Rocky Mountain, 76%; Indiana Dunes, 56%; Everglades, 55%; and Big Bend, 52%. Acadia, Shenandoah, and Sequoia were consistently in agreement with CAL on pH. The average park had a discrepancy of more than 10 µhmos/cm in conductivity measurements only 13% of the time (Error Set IV, Fig. 4). Channel Islands and Craters of the Moon at 100%, Great Smoky Mountains at 50%, and Everglades at 37% were above this average. It should be noted,

however, that over the period of our analysis Channel Islands' sample size was only one sample and Craters of the Moon had no samples with both lab and field measurements.

Error Set V (large variance between sample depth and rain gauge measurement) occurs about 7% of the time for the average park (Fig. 5). Isle Royale, Glacier and Yellowstone showed above average percent errors (39%, 17%, and 16%, respectively).

The rankings in Table 4 were used not only as an indication of overall site performance but also as identification of the areas of the NADP program needing more attention. The average park receives some type of note or error message for half of the samples collected. While carelessness is an area where field operator improvement would make a difference, problems with the measurement of pH are more common and often cannot be solved at the field level. Changes in the methodology or sampling strategy to rectify general problems of pH measurement will require guidance at the network level.

Sites that consistently rank high in all error sets are unproductive ones with serious problems. These furnish NADP with very little information and either must correct their methods or be dropped from the program. While Craters of the Moon was a consistent offender early in its operating history, it has taken steps to correct this and now functions on an acceptable level. One other park site, Channel Islands, had such logistic problems with operating on a regular schedule that it has been taken out of the network.

Sites ranking near the top in only one category, such as Isle Royale in collection efficiency or Theodore Roosevelt in carelessness, usually have only one specific recurring problem. Isle Royale has poor

collection efficiency during the winter months when the station resides at Houghton, MI. Theodore Roosevelt continuously failed to bag the bucket prior to shipment to CAL during the sampling interval.

Conclusions

Overall, we feel the quality of data coming out of the parks is good. In those areas where the median values of an error set are below 10% the operation is considered excellent, although there is still room for improvement. This conclusion is supported at the network level where less than 0.5% of the submitted samples are excluded from the NADP data base. By ranking the parks within the various error sets we have established a standard by which each park can measure its performance. Further, this report has identified areas for improvement of field operations and areas within the NADP program that need more attention.

We feel the preliminary note and error messages can be employed in a similar manner by individual site personnel to identify areas of performance for improvement. These data summaries benefit individual site operators and supervisors and provide a rapid assessment of program status.

=	computer						
Error or note	Кеу						
Error #1	Time on for sample precedes the time off for sample Please notify CAL of correct times by sending a note with your next bucket mailing.						
Note #2	Time between sample off and sample on is greater than 3 hours (# of hours given). Possible missing samples.						
Note #3	The sampling interval for was nonstandard. The interval was days.						
Note #4	did not have a standard Tue-Tue sampling period. Actual sampling period was Mon-Mon (or the like; for general).						
Note #5	The field pH for sample (pH) was outside the expected range for precipitation samples. (Expected range is to)						
Note # 6	The lab pH differed by more than 1. pH unit from the field pH for sample						
Note #7	Conductance <1 or >300.						
Note ∦8	The lab conductivity differed by more than 20 µmho/cm from the field conductivity for sample						
Note #9	The liquid depth of sample does not compare well with the precipitation depth recorded for that period. Please re-check your rain gage chart and event record to confirm the precipitation depth and the proper operation of the collector. Notify CAL of any changes.						
Note #10	Sample had major leakage during shipment to CAL.						
Note #11	A required date or time for sample is missing. Please notify CAL of missing info by sending a note with your next bucket.						
Note #12	Sample was not bagged. Please bag all buckets before shipment to CAL.						
Note ∦13	A required time zone code for sample is missing. Please notify CAL of missing info.						

Table 1. Explanations of notes and error messages generated by CAL computer

Table 2. Definitions of Error Sets

Error Set I	A combination of notes/errors 1, 2, 10, 11, 12, 13, which are all considered carelessness.
Error Set II	A combination of notes 3 and 4, both having to do with nonstandard sampling periods or not following protocol.
Error Set III	A combination of notes 5 and 6, both having to do with pH, either not in expected pH range or a difference of one unit or more.
Error Set IV	Is note 8, lab conductivity differed by more than 20 µmhos/cm from field conductivity.
Error Set V	Is note 9, liquid depth of sample does not compare well with precipitation depth recorded.

.

NPS			NADP	
code	Site name	State	code	Sampling interval
DENA	Denali National Park	Alaska	AK03	12/2/80-9/29/81
ORPI	Organ Pipe Cactus National Monument	Arizona	AZ06	11/4/80-9/29/81
GRCA	Grand Canyon National Park	Arizona	AZ03	Not operating at time of survey
BUFF	Buffalo National River	Arkansas	AR16	Not operating at time of survey
SEKI	Sequoia-Kings Canyon National Park	California	CA75	9/30/80-9/29/81
CHIS	Channel Islands National Park	California	CA85	12/2/80-9/29/81
YOSE	Yosemite National Park	California	CA99	Not operating at time of survey
MEVE	Nesa Verde National Park	Colorado	C099	4/28/81-9/29/81
ROMO	Rocky Nountain National Park	Colorado	CO19	11/25/80-9/29/81
EVER	Everglades National Park	Florida	FL11	11/25/80-9/29/81
CRMO	Craters of the Moon National Monument	Idaho	ID03	11/17/80-9/29/81
INDU	Indiana Dunes National Lakeshore	Indiana	IN34	11/25/80-9/29/81
ACAD	Acadia National Park	Maine	ME99	11/18/80-9/29/81
САСО	Cape Cod National Seashore	Massachusetts	MA01	Not operating at time of survey
ISRO	Isle Royale National Park	Michigan	MI25	11/25/80-9/22/81
GLAC	Glacier National Park	Montana	MT05	11/18/80-9/29/81
THRO	Theordore Roosevelt National Park	North Dakota	NDO7	5/5/81-9/29/81
GRSM	Great Smoky Mountains National Park	Tennessee	TN 1 1	11/18/80-9/29/81
BIBE	Big Bend National Park	Texas	TX04	11/25/80-9/29/81
SHEN	Shenandoah National Park	. Virginia	VA28	5/12/81-10/6/81
OLYM	Olympic National Park	Washington	WA14	11/25/80-9/22/81
YELL	Yellowstone National Park	Wyoming	WY08	11/25/80-9/29/81

Table 3. Names, NPS codes, NADP codes, and length of operating time for National Park Service/National Atmospheric Deposition sites

*18 weeks missing from 2/3/81-6/16/81.

.

9

.

Table 4. Rankings of National Park Service NADP sites by performance

8

.

Error Set rank									
l'rotocol (II)	рн (111)	Conductance (IV)	Efficiency (V)	% of Error Free Weeks					
Channel Islands (46%) Glacier (22%) Yellowstone (16%) Craters of the Noon (16%)	Channel Islands (*) Craters of the Noon (*) Nt. NcKinley (79%) Rocky Mountain (76%)	Channel Islands (*) Craters of the Noon (*) Great Smoky Nountain (50%) Everglades (37%)	Isle Royale (39%) Glacier (17%) Yellowstone (16%)	Channel Island (21%) Isle Royale (22%) Theordore Roosevelt (24%) Craters of the Moon (27%)					
Median 6%	Nedian 37%	Median 13%	Median 7%	Nedian 51%					
Sequoia (3%) Olympic (2%) Acadia (2%) Organ Pipe (0%)	Sequoia (17%) Shenándoah (12%) Acadia (10%)	Shenandoah (7%) Yellowstone (4%) Mt. McKinley (4%) Gfacier (0%)	Rocky Nountain (2%) Theodore Roosevelt (0%) Organ Pipe (0%)	Mt. HcKinley (66%) Big Bend (73%) Organ Pipe (75%) Acadia (81%)					
	Channel Islands (46%) Glacier (22%) Yellowstone (16%) Craters of the Moon (16%) Median 6% Sequoia (3%) Olympic (2%) Acadia (2%)	Protocol (II)pll (III)Channel Islands (46%)Channel Islands (*)Glacier (22%)Craters of the Moon (*)Yellowstone (16%)Nt. NcKinley (79%)Craters of the Moon (16%)Nocky Mountain (76%)Median 6%Median 37%Sequoia (3%)Sequoia (17%)Olympic (2%)Shenandoah (12%)	Protocol (II)pll (III)Conductance (IV)Channel Islands (46%)Channel Islands (*)Channel Islands (*)Glacier (22%)Craters of the Moon (*)Craters of the Moon (*)Yellowstone (16%)Mt. McKinley (79%)Great Smoky Mountain (50%)Craters of the Moon (16%)Median 37%Median 13%Median 6%Median 37%Median 13%Sequoia (3%)Sequoia (17%)Shenandoah (7%)Olympic (2%)Shenandoah (12%)Mt. McKinley (4%)	Protocol (II)pll (III)Conductance (IV)Efficiency (V)Channel Islands (46%)Channel Islands (*)Channel Islands (*)Isle Royale (39%)Glacier (22%)Craters of the Moon (*)Craters of the Moon (*)Glacier (17%)Yellowstone (16%)Nt. NcKinley (79%)Great Smoky Mountain (50%)Yellowstone (16%)Craters of the Moon (16%)Nedian 37%Median 13%Median 7%Sequoia (3%)Sequoia (17%)Shenandoah (7%)Yellowstone (4%)Rocky Mountain (2%)Olympic (2%)Shenandoah (12%)Yellowstone (4%)Rocky Mountain (2%)					

.