HISTORIC STRUCTURE REPORT

Yosemite Lodge Food Service Building

National Park Service | December 2018
Table of Contents

CLIENT:

National Park Service
Yosemite National Park
5083 Foresta Rd., Bldg. 759
El Portal, CA 95318

Ron Gaunt
COR & Project Manager

Erin "Echo" Davenport
Project Specialist

Scott Carpenter
Program Manager for Cultural Resources

Kimball Koch
Yosemite Historic Preservation Officer

Lindsay Kozub
Historian

PRIME ARCHITECT:

Architectural Resources Group, Inc.
Pier 9, The Embarcadero, Suite 107
San Francisco, CA 94111

Kitty Vieth, AIA, LEED AP
Principal-in-Charge, Project Manager

Sarah Hahn
Planner/Architectural Historian

Alicia Virani
Project Designer

STRUCTURAL ENGINEER:

SOHA Engineers
48 Colin P. Kelly Street
San Francisco, CA 94107
Art Dell, P.E.

MECHANICAL ENGINEER:

List Engineering
9699 Blue Larkspur Lane, Suite 203
Monterey, CA 93940
Ron Blue, P.E.
Jaime Zaldivar, P.E.

ELECTRICAL ENGINEER:

O’Mahony & Myer, Inc.
4340 Redwood Highway, Suite 345
San Rafael, CA 94903
Pieter Colenbrander, P.E., LEED AP

ARG #13026.10
Table of Contents

Introduction

1. Study Summary ... 1
 - Introduction
 - Contents of the Historic Structure Report
 - Project Goals
 - Methodology
 - Research Findings
 - Major Issues Identified
 - Recommendations for Treatment and Use

2. Administrative Information .. 3
 - Building Information
 - Previous Documentation and Studies

Part 1: Development History

3. Historical Background .. 5
 - Mission 66 in Yosemite
 - Mission 66 Concession Buildings
 - Yosemite Lodge
 - Yosemite Lodge Food Service Building

4. Chronology of Development and Use ... 17
 - Chronology of Historic Events
 - Chronology of Physical Construction
 - Alterations Diagram
Table of Contents

5. Physical Description .. 23
 Introduction
 Physical Description

6. Evaluation of Significance .. 29
 Previous Evaluations
 Character-Defining Features
 Evaluation of Significance
 Significance Rating Methodology
 Space Priority Diagram

7. Condition Assessment.. 35
 Current Condition Matrix

Part 2: Treatment and Work Recommendations

8. Historic Preservation Objectives .. 51

9. Requirements for Work .. 53
 Applicable Codes, Laws, and Regulations
 Code Requirements

10. Work Recommendations and Alternatives .. 57
 Architectural Recommendations
 Material Conservation Recommendations
 Building Systems Recommendations
Table of Contents

Appendices

Appendix A. Bibliography
Appendix B. Historic Photographs
Appendix C. Selected Drawings
Appendix D. Existing Condition Photographs
Appendix E. Existing Condition Drawings
Appendix F. The Secretary of the Interior’s Standards for Rehabilitation
Appendix G. Structural Letter Report
Appendix H. Mechanical/Plumbing Letter Report
Appendix I. Electrical Letter Report
Appendix J. 2018 Base Camp Remodel
Section One

Study Summary

PART I: STUDY SUMMARY

INTRODUCTION

At the request of the National Park Service (NPS), Architectural Resources Group (ARG) has prepared the Yosemite Lodge Food Service Building Historic Structure Report (HSR) to serve as a guide for proposed upgrades and ongoing maintenance of the building. The Yosemite Lodge Food Service Building, completed in 1956, was constructed as part of the Mission 66 program that expanded visitor services and amenities in the park. The Food Service Building forms the western side of the Yosemite Lodge’s core complex, and is a contributor to the Yosemite Lodge Historic District.

The district is eligible under Criterion A, for association with the National Park Service’s Mission 66 Era of construction, which is defined as pre-Mission 66 (1945-1955), Mission 66 (1956-1966), and Parkscape USA (1967-1972). The district is also eligible under Criterion C, for association with architect Eldridge Theodore “Ted” Spencer and his use of the Modern Movement style in the planning and design of the development.\(^1\) District eligibility was established through a consensus Determination of Eligibility (DOE) with the State Historic Preservation Office (SHPO) on 3 February 2017.

CONTENTS OF THE HISTORIC STRUCTURE REPORT

The contents of this HSR comply with NPS Director’s Order 28: Cultural Resource Management Guideline, Chapter 8 and Preservation Brief 43: The Preparation and Use of Historic Structure Reports. This HSR conveys information about the design and construction of the Yosemite Lodge Food Service Building in two main sections: 1) Developmental History and 2) Treatment and Use. The Developmental History section comprises a chronology of development and use; a historical background and context; a physical description and a list of character-defining features and materials; and a discussion of significance. This section also provides a comprehensive analysis of the building’s interior and exterior conditions, and examines the building’s structural, electrical, mechanical, and plumbing systems.

Guests dining at Yosemite Lodge, c.1960 (Yosemite National Park Archives).

PROJECT GOALS

According to National Park Service Preservation Brief 43, an HSR provides documentary, graphic, and physical information about a property’s history and existing conditions. Broadly recognized as an

\(^1\) Rodd L. Wheaton and John Feinberg. National Register of Historic Places Registration Form, “Yosemite Lodge Historic District,” Yosemite National Park, Mariposa County, California (22 June 2015), 35.
Study Summary

effective part of preservation planning, an HSR also provides a thoughtfully considered argument for selecting the most appropriate approach to treatment prior to the commencement of work and outlines a scope of recommended work. The report serves as an important guide for all changes made to a historic property during preservation, rehabilitation, restoration, or reconstruction.

METHODOLOGY

The Yosemite Lodge Food Service Building HSR has been developed using information gathered from meetings and interviews with interested parties, archival research, and field investigation. The methodology employed for this report meets the standards and requirements set forth in the following documents:

- NPS Director’s Order 28: Cultural Resource Management Guideline, Chapters 7 and 8
- Preservation Brief 43: The Preparation and Use of Historic Structure Reports
- The Secretary of the Interior’s Standards for the Treatment of Historic Properties
- National Register Bulletin 15: How to Apply National Register Criteria for Evaluation
- National Register Bulletin 39: Researching a Historic Property

Meetings

On August 10, 2016, ARG attended an initial project meeting at the Food Service Building with representatives from NPS and Aramark, the concessioner group at Yosemite. The project scope, objectives, coordination, schedule, information gathering, compliance process, and procedures were discussed at this meeting. Since that time, additional correspondence has been completed via conference call and email on an as-needed basis with key NPS staff, ARG personnel, and ARG subconsultants in order to confirm direction on report development.

Background Research and Data Collection

In December 2016 and January 2017, ARG reviewed primary and secondary source materials collected from the Yosemite Research Library, the Yosemite National Park Archives, National Park Service reference databases, and other sources. Materials included architectural drawings, historical photographs, newspaper accounts, and related correspondence. ARG also conducted online research using the following archives and repositories: Online Archive of California, Yosemite Online, and Newspapers.com, the online archive for the San Francisco Chronicle, and NPS’s Planning, Environment and Public Comment (PEPC) website. These materials aided in the preparation of the Developmental History portion of this report.

Field Investigation and Condition Assessments

The project team, including ARG staff and the structural, mechanical, and plumbing engineering subconsultants, conducted field investigations at the Lodge Food Service Building on December 19-20, 2016 to document existing conditions. The building’s exterior and surrounding site were examined and photographed extensively at this time. The electrical subconsultant conducted field investigations at the Yosemite Lodge Food Service Building on January 31, 2016.

RESEARCH FINDINGS

This HSR presents information collected through a review of existing information, archival research, and field investigation. The Developmental History portion of this HSR relies heavily on information from the draft National Register of Historic Places Registration Form for the Yosemite Lodge Historic District recently completed by Rodd L. Wheaton and John Feinberg (22 June 2015). ARG also completed additional building-specific research to fill out the historical record for the building. This report includes copies, quotations, and references to the materials collected as part of the overall research effort.

MAJOR ISSUES IDENTIFIED

The Yosemite Lodge Food Service Building is generally in good condition. No major issues with the building were found through this study. Specific areas of deterioration and disrepair are described in the Condition Assessment section of this report.

RECOMMENDATIONS FOR TREATMENT AND USE

Rehabilitation is recommended as the overall treatment approach for the Yosemite Lodge and Food Service Building. All future work shall be carried out in accordance with The Secretary of the Interior's Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (The Standards). Continuation of the original use of the building is recommended.

The scope of work recommended for rehabilitation of the Yosemite Lodge Food Service Building includes repair of deteriorated features and renewal of the interior and exterior finishes. Each of the building systems also require improvements, including structural, mechanical, electrical, and plumbing upgrades.
Section Two

Administrative Information

PART I: ADMINISTRATIVE INFORMATION

BUILDING INFORMATION

Original Name: Yosemite Lodge Food Service Building
NPS Preferred Structure Name:
Current Name: Yosemite Lodge Food Service Building
NPS Structure Number: 84836
LCS Number:
Location: Yosemite National Park, Mariposa County, California
Construction Date: 1959
Architect: Eldridge T. Spencer & William Clement Ambrose
Landscape Architects: National Park Service
Contractor: Hedahl Construction Company
Historic Use: Food Service, Food Sales, Retail, Employee Services
Current Use: Food Service, Food Sales, Retail, Employee Services, Recycling
Designations:

PREVIOUS DOCUMENTATION AND STUDIES

For the preparation of this HSR, ARG reviewed a number of sources (listed in the Bibliography), including the following key reports:

This page intentionally left blank.
Section Three

Historical Background

MISSION 66 IN YOSEMITE

The Mission 66 program was initiated by the National Park Service in 1956 in response to a significant increase in park visitation following World War II. The effort involved a comprehensive, nationwide park improvement program that was to be completed by the 50th anniversary of the agency in 1966. Over $1 billion was spent on visitor service facilities, circulation improvements, employee housing, administrative facilities, campground expansion, infrastructure and other improvements throughout the course of the program. Concessioner-funded projects were a key component of the Mission 66 program, and included construction of new lodging facilities, stores, restaurants, and other visitor services within Yosemite and the park system as a whole.

In keeping with the era in which the program originated, the Modern Movement style was chosen as a basis of design for all new construction that took place during the Mission 66 period. The style combined the use of cost-efficient materials and systems with modernist design concepts to create a distinctive new style of park building representative of the modern era. Prominent components of the Modern Movement style, sometimes referred to as "Park Service Modern," include the use of steel, concrete, and prefabricated elements; incorporation of nontraditional fenestration; integration of interior and exterior spaces; low-profile, horizontal massing; use of exterior colors and textures to blend building and environment; and naturalistic site plantings to screen associated parking lots, sidewalks, and utility areas.

The Modern style, as applied to NPS properties during the Mission 66 era, interpreted the design characteristics of the Rustic style, which was the principal architectural approach applied to new park construction in the decades leading up to World War II. The intent of the Rustic style was to create harmony between the built and natural environments through the use of native materials, traditional craftsmanship, and naturalistic landscape planning. In Mission 66 Visitor Centers: The History of a Building Type, historian Sarah Allaback asserts that the best examples of Modern architecture within parks did harmonize with their setting, "but in a new way.” When “stripped of the ornamentation and associations of rustic design, Mission 66 development could be both more understated and more efficient.”

While the NPS embraced Modernism during the Mission 66 era, use of the style was never formally mandated. According to the National Park Service Mission 66 Era Resources MPD:

No official policy statement regarding the adoption of the Modern Movement style at the National Park Service was ever made. Following the Great Smoky Mountains Superintendents’ Conference, where he was asked to issue an official policy on architectural design, [National Park Service Director Conrad Wirth] responded with a brief statement: 'Structures should be designed to reflect the character of the area while at the same time following up-to-date design standards. Park structures are to conform, to some extent, with the trend toward contemporary design and the use of materials and equipment accepted as standard by the building industry. However, restraint must be exercised in the design so that the structures will not be out of character with the area and so that the structures will be subordinated to their surroundings.'

Sarah Allaback, in her study, Mission 66 Visitor Centers: the History of a Building Type, describes how longtime National Park Service architects, who produced important Rustic style buildings in the 1930s, were, by the early 1950s, developing new approaches in response to postwar conditions. “We couldn’t help but change,” explained National Park Service architect Cecil J. Doty. “I can’t understand how anyone could think otherwise, how it [architectural

2 Ethan Carr, et al., National Register Multiple Property Documentation Form, “National Park Service Mission 66 Era Resources” (13 August 2015), Section E, Page 10-11.
Historical Background

...which was not to design buildings for atmosphere, whimsy or aesthetic pleasure, but for change: to meet the demands of an estimated 80 million visitors” and to do so efficiently using new building technologies to reduce the effect of emerging higher costs of labor and materials.4

Use of the Modern style within parks met with both criticism and praise throughout the Mission 66 period and beyond. Despite the controversy, the style, “as developed by Park Service designers during the Mission 66 era, became as influential in the history of American national and state park management as the Park Service Rustic style had been.”5

MISSION 66 CONCESSION BUILDINGS

Concessioner-funded development was a key component in the overall Mission 66 program. Many national park concession contracts were renegotiated under Mission 66, and included a requirement that the concessioners commit to large capital investments in the parks. According to historian Ethan Carr:

Between 1956 and 1966, park concessioners invested $33 million in new overnight accommodations, restaurants, gas stations, and park stores. Concessioner investments had great impacts on public perceptions of Mission 66 because they resulted in some of the highest profile, earliest Mission 66 construction projects. Concessioners hired their own architects and could initiate work quickly once they secured financing. The National Park Service usually provided the infrastructure. Concession facilities were used heavily by the public and strongly affected early perceptions of Mission 66.6

At Yosemite, concessioner-funded development during the Mission 66 period was focused in the most heavily used part of the park, the Valley. The first concessioner-funded development in the Valley was the Yosemite Lodge, the core complex of which was completed in 1956. The Lodge provided expanded overnight accommodations, visitor services, dining facilities, a swimming pool, and other amenities for park visitors.

Concessioner-led developments in the New Village area were constructed to replace outdated and inadequate visitor service facilities in the Old Village. The first was Degnan’s Restaurant, which was completed in 1958 and funded by Degnan-Donohue, Inc., an extension of the original Degnan family concessions business in the park. Upon completion, the building contained a soda fountain, bakery, delicatessen, and entrance foyer on the first level, and restaurant on the second level.

Another major addition to the New Village by a concessioner was the “Merchandising Center,” or Village Store, which was funded by the Yosemite Park & Curry Company (YP&CC) and completed in 1959. The Village Store housed a new restaurant, a fountain to replace the Old Village Grill, a full-service grocery store, a barber shop, a beauty parlor, restroom facilities, and a shoe repair shop.

Other concessioner-funded improvements in the Valley completed as part of the Mission 66 program included safety and sanitation upgrades at Housekeeping Camp. Outside the Valley, concessioners funded new improvements at Wawona, White Wolf, Glacier Point, and at the High Sierra Camps.

YOSEMITE LODGE

The National Register of Historic Places Registration Form for Yosemite Lodge Historic District documents the history and development of the Yosemite Lodge complex, including that of the Food Services Building.

4 Ibid.
Historical Background

The section below provides a summary history of the overall Yosemite Lodge development, as presented in that document.7

Park History and Yosemite Lodge

Yosemite National Park was formally established by the United States Congress October 1, 1890. The War Department’s U. S. Army, as keepers of the nation’s national parks, assumed protection of Yosemite beginning in May 1891 from headquarters in the Wawona area. In 1906, after the State of California ceded claim to park lands, the army relocated to Yosemite Valley, which was the center of activity. After military control of national parks was relinquished to the Department of the Interior in 1914, the Fort Yosemite headquarters buildings were partially turned over in 1915 to a private concessioner to provide guest accommodations.8 Daniel Joseph Desmond of Los Angeles, California, established the National Park Service Company and, with the encouragement of the Park Service, began to develop a portion of the former army headquarters into what became Yosemite Lodge, directly in competition with the Curry Camping Company. Two barracks constructed in 1912 were modified to provide a lounge and dining room for what became the core building of the original Rustic style Yosemite Lodge. The southeast façade featured an arched roof porte cochère supported on log columns extending perpendicular from the frame building and its screened porch. A kitchen wing extended northwest from the northeast dining room section. By 1925, a cafeteria building facing northwest and an adjoining rear kitchen were completed along with a dance pavilion located between the lodge and the 1916 swimming pool and laundry building.

The granting of and the reuse of the former U. S. Army headquarters buildings dictated the location of Yosemite Lodge originally named “Camp Desmond” for its developer. The main lodge area at the base of the north escarpment of the valley was located north of a wagon road that extended southwest from a bridge over Yosemite Creek. Desmond converted the two barracks buildings adjacent to the military parade ground into guest services. Accommodations were in cabins located to the northeast. The cabins were salvaged and shipped on the Yosemite Valley short line railroad that extended from Merced to El Portal in 1907. Augmenting the cabins were 156 platforms for canvas tent accommodations. By 1922, the Yosemite Lodge complex had been substantially expanded southeast towards the junction of Yosemite Creek and the Merced River further south. The Desmond Company was reorganized as the Yosemite National Park Company in 1920, which merged in 1925 with the Curry Camping Company becoming the Yosemite Park & Curry Company. Through the 1930s to World War II, additional frame cabins were constructed north and south of the lodge and the pool area. Most of these permanent frame cabins were small gabled roof and larger clipped gable buildings documented in historic postcards as being situated within mature trees. Bath houses provided facilities for the guest accommodations without bathrooms.

Yosemite Lodge was managed by the Yosemite Park & Curry Company through the 1930s, though it was closed during World War II. After the war, the lodge was proposed for updating. Designed by Ted Spencer, Pine and Oak Cottages were constructed in 1950-1951 and reflected Spencer’s interest in California pioneer style architecture, a style that blended with the original main lodge building, which Spencer had remodeled in 1937. Spencer went on to convert the 1916 Laundry Building into Cedar Cottage in 1954-1955. This project, which has some historical architectural references to the now-demolished Pine and Oak cottages, is modernist in character. Cedar Cottage is representative of the National Park Service’s pre-Mission 66 era that began in 1945 with the introduction of modernism in the parks. Ted Spencer provided several proposals for rehabilitating the original lodge buildings. However, the Park Service wanted a new core complex for guest services, which Ted Spencer designed and constructed in 1955-1956. It was the first joint concessioner and National Park Service project of the 10-year Mission 66 construction program.

The original main building of Yosemite Lodge was demolished in 1956 following the completion of the new core complex. The new buildings included an Office/Lobby Building, a Lounge Building, and the Food Service Building. Accommodations were the earlier frame cabins and canvas tent frame cabins, and the newly renovated Cedar Cottage (former Laundry) as well as Pine and Oak cottages. These three provided motel-type accommodations in guest rooms in larger structures. Fourteen new motel unit “cottages” were constructed beginning in 1963. The last six motel unit cottages, built to the north of the core complex in 1968-1970, completed Yosemite Lodge as part of the Parkscape USA program of the Mission 66 era that ended in 1972. The latter complex was partially built on the site of the original pre-World War II guest services buildings.

Construction of Modern style motel units at Yosemite Lodge was a notable departure from National Park Service norms. According to the Yosemite Lodge Historic District Registration Form:

The Mission 66 era did not effect comprehensive change as to where concession overnight accommodations were located, but it did usher in significant changes in both the types of lodging units and the accompanying services.

8 The National Park Service was formally established in 1916.
While older hotels and lodges with their individual cabins were retained, in many larger parks, the older facilities were augmented with new motel-type units that could more efficiently serve larger numbers of tourists and their automobiles.

Most of the pre-war associated buildings that had survived from the original and subsequent development of Yosemite Lodge were destroyed or severely damaged in the January 1997 flood. The natural disaster resulted in the demolition or removal of 200 structures, including Ted Spencer’s Pine and Oak cottages and nearly all guest cabins that were in the high water flood plain of Yosemite Creek and the Merced River.9

YOSEMITE LODGE FOOD SERVICE BUILDING

The Yosemite Lodge Food Service Building was one of three “core complex” buildings designed in the Modern Movement style by Ted Spencer. Discussions regarding the replacement of the original main lodge building occurred as early as 1925, but at the time the newly formed Yosemite Park & Curry Company was busy with the construction of the Ahwahnee and shortly thereafter with improvements at Camp Curry and a new lodge in the Mariposa Grove. During the Depression years in the 1930s, there was no need for expanded facilities at Yosemite Lodge, and the YP&CC’s primary focus was survival rather than expansion. In 1940, however, discussion of a new Lodge facility resumed and the YP&CC commissioned new plan drawings for submittal. The NPS approved the plans in 1941, but work was ultimately postponed as America entered into World War II following the attack on Pearl Harbor. The 1940-41 Yosemite Lodge plans were revisited following the war, but in 1947 the NPS asked YP&CC to discard these plans and both groups soon undertook new studies on the project.10

In 1955, the NPS came to an agreement on new development at the Lodge site, which would include new main buildings and the conversion of the laundry building into Cedar Cottage, a unit similar to Pine and Oak Cottages (constructed 1950-1951). The Park Service soon approved plans for the new core complex designed by YP&CC architect Ted Spencer, and construction began in early fall of 1955. Crews worked through the winter to complete the new buildings by Spring 1956, in preparation for the summer season.11

The three main buildings of the new core complex included the Office, Lounge, and Food Service Building. As originally designed, the buildings were set around a landscaped courtyard and connected by covered walkways. The original Food Service Building included the cafeteria (now the Food Court) in the south wing, and the open Grill

This March 1956 plan shows the overall layout of the new core complex at the Yosemite Lodge (“Parking Areas & Walks, New Yosemite Lodge, Yosemite National Park,” drawn by the Park Landscape Architect, March 1956). See Appendix C for enlarged plan.
Historical Background

Court in the center. The north wing housed the Grill Restaurant, just north of the Grill Court, a gift shop, post office, bar, and a multi-purpose room at the north end. The kitchen wing was set behind the original Grill Court area.

The YP&CC celebrated the new Yosemite Lodge facilities with a dedication ceremony on June 6, 1956. National Park Service personnel from Washington D.C.; Lawrence C. Merriam, regional Director of Region Four, San Francisco; Sanford Hill, Chief Western Office of Design and Construction; and John C. Preston, Park Superintendent at Yosemite were all in attendance. Also present were Mrs. Mary C. Tresidder, President, and Hilmer Oehlmann, Executive Vice President, of the YP&CC. A news release for the event describes the new development:

Working closely with the Yosemite Park and Curry Co. in Yosemite have been officials from the National Park Service in Washington D.C., in the Regional Office of Region Four and the Western Office of Design and Construction in San Francisco. Yosemite Superintendent John C. Preston has enthusiastically stated that, "The new Yosemite Lodge with its improved facilities for public convenience should contribute materially to the visitor enjoyment of the park."

Ted Spencer’s design intent was to keep the buildings “unobtrusively low and simple in contour,” and to employ the “natural finish of the redwood, the graved roofs, and the glass walls...to create a pleasing effect of impermanence within the granite walls of Yosemite.” Jeanette Dyer Spencer was in charge of interior design for all buildings, and Hedahl Construction Company of Redwood City built the complex.

The new Yosemite Lodge buildings were such a departure from the more rustic style of architecture that visitors were accustomed to seeing in parks, that the YP&CC asked Jeanette Dyer Spencer to develop a narrative explaining the new lodge and its modern design concepts. This narrative describes the overall design intent, but also provides information on original interior features and materials, most of which have been lost over time to modernization:

To define the new Lodge in architectural terms is to say that it is environmental in character, West Coast in feeling, San Franciscan in style, and to be sure, modern. It is environmental because it fits the site formwise...and colorwise and because it always emphasizes the out of doors. The guest is constantly aware of the falls, the cliffs, and the trees. These are his environment; not man-made structures. It is West Coast because of its openness, its indoor-outdoor concept, its informality and its easy flow. It is San Franciscan because of its cleanliness of line and its emphasis on structure as an element of style. It is modern because of its construction: steel frame on concrete slab, predominately glass walls, tar and gravel roof.

To define the new Lodge in terms of its architectural excitement is more rewarding...harmony of form, color and line are basic. New is the contemporary concept of flow. As a result of plan, there is...a well-defined flow of circulation through the buildings and covered walks, and in the informal criss-cross flow through the outer terrace and the Lounge. Flow also expresses itself architecturally in the wood walls that start as part of the structure and continue outside of the line of the buildings to become exterior space dividers. This expression of movement by vertical planes is easy and natural because nowhere are the walls bearing walls, the roof being supported by pipe columns and beams.

The phrase 'truthful use of materials' is an old one. Gertrude Stein's idea, that a painted field may seem more real than the field itself is generally understood. Combine

Historical Background

the two ideas and we have here wood made to seem more like wood because it is roughsawn, always stained, never painted, and likewise, glass that is assertedly glass because it is used as a space divider, a transparent partition between the indoors and outdoors; never a window within a wall.

Finally, structure is most obviously structure. Not only are the steel supporting columns and beams a different color than the ceilings, but they are also a different color than the steel sash. In the painting of the steel, and everywhere, color has been used to emphasize structure.

Clarity of expression in the decoration is the counterpart of clearcut structural definition in the architecture. Wood walls, like glass walls, are largely undorned and the floors and free-standing furniture impart the decorative message: This is modern!

The decoration is American, an elusive term because one of the primary characteristics of interior decoration today is the combination of objects gathered throughout the world. We inherited a world market from our seagoing ancestors; to take advantage of it today is simply good economics.

On the whole...the furnishings are of American manufacture, notably the great hanging lanterns in the lounge, designed of plastic and white metal, the 36 lounge sofas, the 125 tables, and the approximately 725 chairs.

Two rooms depart from the general theme: the Tent Room and the Mountain Room. The Tent Room is the bar, and is pure fantasy. Mirrors, a sloping canvas ceiling, [and] block-printed pine boughs combine to create the illusion of a gaily-striped tent, at least twice the size of the actual room, and the illusion of the night out-of-doors.

The Mountain Room is used as a cocktail room, banquet room, and general meeting room. It gets its name from 20 superb mountain photographs by Ansel Adams. Each photograph, beautiful in itself, is enhanced by its relation to the others and to the architecture. They are all the same size, and equally spaced at a given height on the east and west walls. These walls converge toward the south and the rhythm set up by the photographs intensifies this movement.

Archival materials developed for the dedication describe the interiors of the Food Service Building cafeteria, which was the largest room in the building and designed to seat more than 300. The materials note that the cafeteria “is handsomely decorated, with walls behind the food service areas done in gray and yellow Formica, the outside wall areas in glass, and the floor in multi-colored asphalt tile.”

14 Undated document addressed to all Yosemite Lodge Employees. It contains information from Jeanette Dyer Spencer about the Modern design, materials, finishes, and features of the new Yosemite Lodge core complex. (Yosemite National Park Archives).

Historical Background

Original Yosemite Lodge Food Service Building Cafeteria interior, looking roughly southwest. Late 1950s (Yosemite National Park Archives). See Appendix B for enlarged photograph.

Original Yosemite Lodge Food Service Building Cafeteria interior, looking roughly northwest, late 1950s (Yosemite National Park Archives). See Appendix B for enlarged photograph.

Yosemite Lodge Lounge (left) and Food Service Building (right) shortly after construction. Note transparency created by simple steel framing and glass exterior walls (Yosemite National Park Archives). See Appendix B for enlarged photograph.
Historical Background

Historical Background

The Food Service Building originally housed the Cafeteria in the south wing, and the Grill Restaurant, gift shop, post office, bar, and a multi-purpose room in the north wing. The open Grill Court, set between the Cafeteria and the Grill Restaurant, separated the two wings, and the kitchen areas extended to the rear of the building. Exterior dining terraces were located around the north and south ends of the building.

The Food Service Building is the most altered of all the core complex buildings and received its first modification almost immediately after it was constructed. The open Grill Court, which served the Grill Restaurant, was enclosed with a roof and glazed sliding doors in 1957, providing additional year-round dining space. The next significant modification occurred in 1968, when the north wing was reconfigured to provide updated dining facilities. As shown in the drawing below, the original multi-purpose room at the north end of the building was remodeled for use as the Mountain Room Broiler Restaurant and the post office space was incorporated into a new bar area. As part of these alterations, the hipped roof of the projecting bay at the north end was removed and rebuilt to the apex of the gabled roof. The north wall was fully glazed, improving views towards Yosemite Falls from the restaurant dining room. In addition, the gift shop was combined with the Grill Restaurant space and renamed the Four Seasons Restaurant. The previously-enclosed former Grill Court space was renamed the Redwood Room.16

The north wing of the Food Service Building underwent another round of renovations between 1996-1998 when the Mountain Room Broiler was expanded and renamed the Mountain Room Restaurant, and the Four Seasons Restaurant was converted for use as the

16 National Register of Historic Places Registration Form, “Yosemite Lodge Historic District, 18-19
Historical Background

Garden Terrace Restaurant. This expansion of Mountain Room Broiler space involved removal of all northern elevation fenestration and an extension of the north wing’s gabled roof. The addition included new glazing, concrete curbing, wood wall finishes, and a prominent gable-roofed entrance at the east elevation. The new Mountain Room Restaurant was designed to feature an atrium-like space offering generous views of Yosemite Falls, and included a new kitchen and service corridor. The new Garden Terrace Restaurant replaced the Four Seasons Restaurant and offered a buffet-style type of food service with a soup and salad bar and a variety of carved meats. Alterations included a new buffet line with adjacent buffet rails, skylights, new windows with wood louvers, and new siding. Modifications to the new Environmental Shop in the former Grill Court space included the removal of the original Arislide doors at the east elevation, reconfiguration of the interior partitions, and the addition of new counters and flooring. The north exterior dining terrace was also redesigned to include new curvilinear stone masonry retaining walls, concrete paving, and site furnishings.17

Historical Background

The last major alteration to the Food Service Building was completed in 2000 when the cafeteria was updated for use as the Food Court. Alterations included new food service lines and equipment, installation of two pairs of new aluminum entry doors for relocated primary entrance, new millwork, and replacement of one of the original rectilinear dining terraces with a new curved terrace design.

Following renovation of the cafeteria, the Four Seasons Restaurant space – originally occupied by the Grill Restaurant – was converted for use as a large conference room and the interior was sheathed in vertical resawn cedar.¹⁸

ELDRIDGE (TED) SPENCER, FAIA (1892-1978)

Born in Woodland, California in 1892, Ted Spencer earned a Bachelor’s degree in architecture from the University of California, Berkeley in 1917. During World War I, Spencer joined the Army Signal Corps and was stationed in the U.S. as a pilot. He later was commissioned as a captain of the Army’s Officer’s Reserve Corps. Once he was discharged from the army he returned to Berkeley and enrolled in the graduate program in architecture where he studied under renowned architect Arthur Brown Jr. While in school he worked as a draftsman for Bernard Maybeck, another important Bay Area architect. Spencer also attended the Ecole des Beaux Arts in Paris, where he earned a diploma in 1925.¹⁹

Spencer opened his private architectural practice in 1927 in San Francisco and his first major commission was the Saratoga Village Library. This project involved the design of a new building with careful consideration given to the existing setting. Incorporating buildings with their surroundings would become a hallmark of Spencer’s design approach from that point forward. In 1927, following his wife’s (Jeanette Dyer Spencer) involvement with the interior decoration of the new Ahwahnee Hotel, Mrs. Spencer introduced her husband to Donald Tresidder, president of the Yosemite Park & Curry Company. Shortly thereafter, Ted Spencer was hired as the concessioner’s planner and architect.²⁰

Other Spencer projects at Yosemite included the design and construction of The Ahwahnee Cottages in 1928-1929; the reflection pool, along with the Olmsted Brothers, in 1931; the 1951 bar remodeling and additions; and the addition of the swimming pool in 1964, along with numerous alterations and renovations. Other projects at Yosemite included the Camp Curry Dining Room Pavilion (1928-1929), the Big Trees Lodge (1932-1933), the Badger Pass Ski lodge (1935), the Wawona Hotel Tennis Court (1937), the

²⁰ Ibid.
Historical Background

Ostrander Ski Hut (1940), Yosemite Lodge (1956), the Village Store (1959), and housekeeping units in Housekeeping Camp in the early 1960s. Of the Big Trees Lodge, authors Rodd L. Wheaton and John Feinberg note:

Surviving photographs indicate that the main building reflected his interest in the historical California ranch style updated for modern use such as the outdoor dining terrace adjacent to the dining room with its pairs of glazed doors. In 1937, he was commissioned by the Yosemite Park & Curry Company to redesign the main buildings of Yosemite Lodge in the same California pioneer ranch style. The long façade facing the parking area featured a covered porch that extended nearly the total length of the building with its varied height gabled roofs.21

In 1943, former president of the YP&CC, Don Tresidder, began a five-year term as President of Stanford University. Shortly thereafter, Tresidder appointed Ted Spencer as Stanford’s Director of Planning. During his time at Stanford, Spencer developed a forward-thinking campus plan, helped design the High Energy Physics Lab (1948-49), Stern Hall dormitory, and numerous science buildings. It was partly here that Spencer refined his design style and his work took on more of a post-war Modern aesthetic. He carried this influence with him when he returned to Yosemite to design the new core complex of buildings for Yosemite Lodge (1955-1956).22

Commissioned by the Yosemite Park & Curry Company, Spencer designed the Village Store building that was constructed in the New Yosemite Village area in 1958. Spencer also designed the Yosemite Valley Visitor Center for the National Park Service in 1965. Construction of the building using “tilt-up panels” was completed 1966-1967. His last project for the YP&CC was the design for a new Glacier Point hotel above Yosemite Valley. The hotel was never built because of changes in the YP&CC as a result of its takeover by the U.S. Natural Resources Company, which was not inclined to invest in the park facilities.23

Spencer continued to complete work for the new managing company over the following years, but ended his relationship with the group in June 1972 and retired from his architectural practice that same year. He remained somewhat involved with the firm as an advisor. Ted Spencer passed away on September 22, 1978.

22 Ibid, 45.

23 Ibid, 45-46.
Section Four

Chronology of Development and Use

CHRONOLOGY OF HISTORIC EVENTS

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1864</td>
<td>Congress passes the Yosemite Grant Act, making Yosemite Valley and Mariposa Grove the first public lands to be federally designated for outdoor recreation and preservation</td>
</tr>
<tr>
<td>1890</td>
<td>Yosemite National Park formally established by the United States Congress</td>
</tr>
<tr>
<td>May 1891</td>
<td>U. S. Army assumes protection of Yosemite from headquarters in the Wawona area</td>
</tr>
<tr>
<td>1906</td>
<td>Army relocates to Yosemite Valley, establishes Fort Yosemite headquarters</td>
</tr>
<tr>
<td></td>
<td>State of California cedes control of Yosemite Grant land to the federal government; Yosemite Valley and Mariposa Grove become part of Yosemite National Park</td>
</tr>
<tr>
<td>1914</td>
<td>Military control of national parks relinquished to the Department of the Interior</td>
</tr>
<tr>
<td>1915-1916</td>
<td>Private concessioner Daniel Joseph Desmond of Los Angeles given partial use of Fort Yosemite headquarters buildings for use as guest accommodations</td>
</tr>
<tr>
<td></td>
<td>Desmond establishes the National Park Service Company; modifies two former barracks buildings for use as a lounge and dining room for what would become the core of the original Yosemite Lodge</td>
</tr>
<tr>
<td>1920</td>
<td>Desmond Company reorganized as Yosemite National Park Company</td>
</tr>
<tr>
<td>1922</td>
<td>Yosemite Lodge complex substantially expanded by this date with additional facilities (laundry building, pool); additional frame cabins, bathhouses added through 1930s</td>
</tr>
<tr>
<td>1925</td>
<td>Yosemite National Park Company merges with Curry Camping Company to become Yosemite Park & Curry Company (YP&CC); YP&CC manages Yosemite Lodge through the 1930s until closure in World War II</td>
</tr>
<tr>
<td>1937</td>
<td>YP&CC architect Ted Spencer remolds original main lodge building</td>
</tr>
<tr>
<td>1945</td>
<td>Pre-Mission 66 period begins</td>
</tr>
<tr>
<td>1950-51</td>
<td>Old Yosemite Lodge complex proposed for upgrades following WWII. Pine and Oak Cottages constructed in 1950-1951 (designed by Ted Spencer)</td>
</tr>
<tr>
<td>1954-1955</td>
<td>1916 laundry building converted to Cedar Cottage (redesign by Ted Spencer)</td>
</tr>
<tr>
<td>1955</td>
<td>Pre-Mission 66 period concludes</td>
</tr>
<tr>
<td>1956</td>
<td>Mission 66 program begins, initiated by the National Park Service</td>
</tr>
</tbody>
</table>
Chronology of Development and Use

Original main Yosemite Lodge building demolished (1956) following completion of the new core complex designed by Ted Spencer (Office/Lobby Building, Lounge Building, and the Food Service Building).

The new core complex was first joint concessioner and National Park Service project of the Mission 66 era at Yosemite.

Lodging accommodations present during this period: the earlier frame cabins; canvas tent frame cabins; and Cedar, Pine, and Oak cottages (motel-type accommodations).

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>Construction begins on fourteen new motel unit “cottages”</td>
</tr>
<tr>
<td>1966</td>
<td>Mission 66 program concludes</td>
</tr>
<tr>
<td>1967</td>
<td>Parkscape USA program begins</td>
</tr>
<tr>
<td>1968-70</td>
<td>Last six motel unit cottages completed north of the core complex, thus completing Yosemite Lodge under the Parkscape USA program</td>
</tr>
<tr>
<td>1972</td>
<td>Parkscape USA program concludes</td>
</tr>
<tr>
<td>January 1997</td>
<td>Yosemite devastated by major flood. Over 200 structures damaged or destroyed, including most pre-war associated buildings, Pine & Oak cottages, and all guest cabins; these were demolished or removed from Lodge complex.</td>
</tr>
<tr>
<td>2016</td>
<td>Current concessioner, Yosemite Hospitality, LLC, assumes operation of Yosemite Lodge facility.</td>
</tr>
</tbody>
</table>

Chronology of Physical Construction

1955-1956 Yosemite Lodge Food Service Building designed and constructed as part of new Lodge “core complex,” which also included the Lobby/Office Building and the Lounge Building.

The original Food Service Building included the Cafeteria (now the food court) in the south wing, and the open Grill Court in the center. The north wing housed the Grill Restaurant, just north of the Grill Court, a gift shop, post office, bar, and a multi-purpose room at the north end. The kitchen wing was set behind the original Grill Court area.

1957 Grill Court enclosed and renovated: new composition roof installed over unroofed area, live cedar tree in courtyard removed, three bays along eastern walkway enclosed with Arislide doors, and concrete slab floor installed. New service stands and new interior partitions were installed. Openings connecting the Grill, Kitchen, and Service Passage were reconfigured. The original sliding doors connecting the Grill Restaurant and Grill Court were removed and reinstalled at the Grill Restaurant entry.

The Grill Restaurant and rear dishwashing areas also received minor changes at this time. Alterations to the rear dishwashing area included new conveyors, counters, and dishwashing machines, while the Grill Restaurant received new counters and food preparation equipment that was reconfigured in a new layout.

At the exterior, the existing parapet screen above the Grill Court was altered to include a new section above the newly enclosed Grill Court.

1960s Radiant floor system abandoned, forced air system installed
Chronology of Development and Use

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>The architecture firm of Spencer, Lee & Busse hired to remodel the Mountain Room to include a small kitchen with new millwork and equipment. The kitchen was located in the former west side bay of the restaurant with adjoining storage space accessed from the new kitchen. As part of the alterations, the acoustic tile in the west side bay was replaced with metal acoustic tile and the fireplace was removed.</td>
</tr>
<tr>
<td>1968</td>
<td>Reconfiguration of north wing. Original multi-purpose room remodeled into Mountain Room Broiler restaurant. As part of these alterations, the hipped roof of the projecting bay at the north end was removed and rebuilt to the apex of the gabled roof. The north wall was fully glazed and improved the views towards Yosemite Falls from the restaurant dining room. The gift shop was incorporated into the Grill Restaurant and the space renamed as the Main Dining Room (research suggests this is actually this space became the Four Seasons). The post office space was incorporated into a remodeled bar area, and the previously enclosed former Grill Court was renamed the Redwood Room.</td>
</tr>
<tr>
<td>1988</td>
<td>The covered walkway was extended to include a short section connecting the Mountain Room Broiler and the southwest doorway of the Lounge Building.</td>
</tr>
<tr>
<td>1990</td>
<td>Additional storage and an open kitchen were constructed for the Mountain Room Broiler.</td>
</tr>
<tr>
<td>1996-1998</td>
<td>Renovation and expansion of food services facilities and gift sales in the north wing, Mountain Room Restaurant, Garden Terrace Restaurant, and the Environmental Shop (now the Nature Shop) completed, replacing the Mountain Room Broiler, Four Seasons Restaurant, and Indian Shop respectively. This project was designed by Esherick Homsey Dodge & Davis (EHDD). This expansion of the Food Service Building’s north wing involved removal of all northern elevation fenestration and an extension of the north wing’s gabled roof that more than doubled the size of the Mountain Room Broiler dining room. The addition included new glazing, concrete curbing, wood wall finishes, wait stations, a mechanical room, and a prominent gable-roofed entrance at the east elevation. The restaurant expansion was designed to feature an atrium-like space offering generous views of Yosemite Falls, and included a new kitchen and service corridor for the Mountain Room Restaurant (previously, one kitchen was used to service the Mountain Room Broiler, the Four Seasons Restaurant, and the Cafeteria). The original restrooms under the eastern eaves were expanded and incorporated into the new northeast elevation as part of this expansion. The Garden Terrace Restaurant was established as a buffet-style restaurant, with a soup and salad bar and a variety of carved meats. Alterations included a new buffet line with adjacent buffet rails, skylights, new windows with wood louvers, and new siding. Modifications to the new Environmental Shop included the removal of the original Arislade doors at the east elevation, reconfiguration of the interior partitions, and the addition of new counters and flooring. The covered walkway connecting the south entrance of the Lounge building to the north wing of the Food Services Building (providing access to the walkway extending under the east eave) was removed at this time. The north terrace was redesigned and re-landscaped to include curvilinear stone masonry retaining walls at the north terrace and extending north behind the Lounge Building. A new overhang and deck was added to the southeast portion of the rear loading dock.</td>
</tr>
<tr>
<td>2000</td>
<td>Cafeteria remodeled for new food court (current condition). Alterations included new food service lines and equipment, installation of two pairs of new aluminum entry doors for relocated primary entrance, new millwork, and replacement of the original exterior dining terrace (at the Food Service building’s southeast corner) replaced with a new dining terrace with curved edges and exposed aggregate concrete. The existing transom glazing above the new entry doors and one side lute were replaced with tempered glazing (total 7 lites), while other portions of the transom were removed entirely and replaced with new 2x10 horizontal cedar siding. New horizontal shiplap...</td>
</tr>
</tbody>
</table>
Chronology of Development and Use

siding was also installed between the two new entries at the food court. At this time, a new concrete board form wall was also installed at the location of the new exit doors, extending north to the Environmental Shop.

The addition of new equipment at the grill and food service areas, and points of service, resulted in new equipment platforms and curbs with portions of the existing slab saw-cut and removed, while existing floor sinks were abandoned in place and sealed to accommodate the addition of new floor sinks and drains. At the exterior, above the grill, a new parapet equipment screen, designed to match existing, was added to conceal the new hood exhausts.

Following renovation of the Cafeteria, the Four Seasons Restaurant space – formerly occupied by the Grill Restaurant – was converted into a large conference room and the interior was sheathed in vertical resawn cedar.

c. 2001 Garden Terrace buffet line proved unsuccessful and was removed. The buffet line rails remain in place.

c. 2007 Covered walkway roofs repaired. Improvements included the removal of all existing roof coverings and metal flashings, new copper drip edges to match existing at the Mountain Room, the repair of wood siding above the roof structures, and the reconfiguration and enclosure of walkway utility cabling.

c. 2011 Roof repaired above the boiler room due to fire damage

c. 2013 Food court restrooms remodeled and expanded

2018 The architecture firm of Gould Evans Associates, from Phoenix, AZ, was hired to remodel the food court and rebrand it as Base Camp. Portions of the food court and former Nature Shop were impacted by this rebranding campaign. The Nature Shop became a new Starbucks coffee shop. To accommodate the new coffee shop, original walls at the south and southwest corner were demolished, and the original west wall was partially demolished to install a new door at the northwest.

A new service and grill area was installed at the west and includes several self-service kiosks. Non-original millwork and equipment at previous food service areas at the north and west were demolished. Original tile flooring beneath the non-historic carpet and ceramic tile was removed to provide new carpet and a polished concrete floor.

Additional changes at the interior include new glazed vestibules at the two existing exterior entrances along the east elevation, and modifications to the east portion of the production kitchen to create new storage areas.

At the exterior, a new walk path of square concrete pavers, similar in scale and style to the existing original pavers, was installed at the south to link the southeast patio and southern patio spaces.

*See Appendix J for additional information, including plans and photographs documenting the 2018 remodel. Note the alterations identified here, and documented in Appendix J, post-date the bulk of the development of this HSR and are therefore not incorporated into the alterations and priority diagrams or the existing conditions plan.
Section Five

Physical Description

INTRODUCTION

The Yosemite Lodge Food Service Building was one of three buildings constructed in 1955-1956 as part of the Lodge’s new core complex. The other two buildings were the Lobby/Office and a Lounge that provided a recreation space for guests. The buildings were arranged to frame an open courtyard, which provided a space for interpretive programs. Covered walkways around the perimeter of the courtyard provide sheltered corridors between the buildings. The physical description below is quoted from the Yosemite Lodge Historic District Registration Form completed in 2015.

INTRODUCTION

The Yosemite Lodge Food Service Building was one of three buildings constructed in 1955-1956 as part of the Lodge’s new core complex. The other two buildings were the Lobby/Office and a Lounge that provided a recreation space for guests. The buildings were arranged to frame an open courtyard, which provided a space for interpretive programs. Covered walkways around the perimeter of the courtyard provide sheltered corridors between the buildings. The physical description below is quoted from the Yosemite Lodge Historic District Registration Form completed in 2015.

PHYSICAL DESCRIPTION

The Food Service Building forms the western side of the core complex central courtyard and faces northeast. The building is one story and has a low gabled roof. It has a slightly angled floor plan that is approximately 220 feet long by 87 feet wide. Originally, at the angle of the floor plan was the open Grill Court that visually separated the longer northern wing from the southern wing. The Grill Court, named for the original restaurant directly to the north, was infilled in 1957 and has been used since for retail space. Extending southwest the gabled roof kitchen wing backs the former Grill Court area. Various food service areas are located in the kitchen wing. A dishwashing area is adjacent to the south wing’s Food Court. The kitchen of the north Mountain Room Restaurant also connects to the kitchen wing. As originally designed by Ted Spencer, the north wing included a multipurpose room in the north end, a bar, a post office, a large gift shop, and the Grill Room restaurant. The south wing, now the Food Court, was designed as a cafeteria.

South Elevation of Food Service Building (ARG, December 2016).

The roof structural system is typical of the core complex with tapered steel beams, each spanning 20 feet to the ridge and infilled with steel purlins supporting the roof surface. The structure, 2 feet lower than the Lounge Building, is supported on steel pipe columns set within the interior spaces at 16 feet on center. Below the eaves of the long elevations, are screened transom windows above fixed glazing and Arislde door units, following the same formula as the Lounge Building where the transom mullions are offset from the mullions of the lower glazing. The southern gable end of the Food Court also is similar to the west gable of the Lounge Building. However, the frame wall sections of the south gable end are doubled.

Yosemite Lodge complex with Food Service Building in shadow on left (1961 postcard view, E-Bay).

and the wing wall extends beyond the eave line. Within the space behind the enclosing wall section at each end is a restroom with clerestory windows that are an extension of the narrow transom glazing. The wall sections and the extended wing walls are sheathed in vertical resawn redwood siding that extends to a cap. Similar transom sections extend under the eaves of the side wall construction of the southeast and southwest elevations of each restroom. Within the tympanum area of the southeast gable end, like the west elevation of the Lounge Building, the Mullions are offset from transom Mullions. Each transom bay contains a central pane flanked by half panes. Above, the vertical Mullions are equally spaced and typically extend to the rake of the exposed steel beams. Triangular tent-like sections infill the eave ends of the rake above the restroom transom bands and typically are sheathed in vertical flush siding.

The small, square-plan restrooms partially project beyond the side elevations of the building and are nearly flat roofed below the eaves. From the southeast restroom structure, glazing extends nearly the length of the east façade of the Food Court building to a frame wall section that abutted the former Grill Court south wall. At approximately the center of the northeast façade, the gabled roof extends to form a covered walkway under the eave that is supported on steel pipe columns. The southwest rear elevation of the Food Court has raised window units with two central full bays with slider sash flanked by a fixed sash half bay at each end. The window units are set below a continuous transom band set below a truncated eave. Further north are two window units with triple awning sash at the dishwashing area. The lengthened southwest eave extends over the window units.

At the interior of the south wing Food Court, a bulkhead extends from the walling to the interior columns along the east and west sides from the south restrooms to the north end of the room. Above a projecting soffit, the bulkhead is enclosed for mechanical ductwork. All of the exposed roof structural system is painted white except for indirect lighting tracks at the main beams. Additional light is provided by non-original, two-tiered iron chandeliers with eight lights that hang from the ridge over the dining area of the south end. Food service lines, remodeled in 2000, are located in the north end of the space that opens from new double glazed entry doors. The original entry doors were once centered on the square-plan vestibule under the east eave overhang and at the end of Covered Walkway 1. Now relocated slightly to the south, the entry doors are parallel with the new Food Court serving line checkout stations constructed in 2000. The relocated doors and the third single leaf door located adjacent to the southeast restroom provide access to a redesigned concrete paved terrace at the southern end abutting the wing walls of the southeast elevation and the restroom projections.

\[\text{View toward south end of Food Court (ARG, December 2016)}\]

\[\text{View toward north end of Food Court (ARG, December 2016)}\]

A stepped-plan paved area was removed and replaced with a larger curved edge patio constructed in 2000 of exposed aggregate.
Physical Description

cement. What was once the Grill Restaurant space, and later the Four Seasons Restaurant, was converted into a large conference room north of the small retail space, located in the former Grill Court, after the Food Court was rehabilitated in 2000.

East side of Food Court exterior with curved edge patio (ARG, December 2016)

The original Grill Court at the angled transition of the northern and southern wings of the Food Service Building, enclosed in 1957, is located behind the angled valley of the eaves of the two gabled roofs. Typically, the eaves are supported on steel pipe columns. The columns supporting the eave at the angled area are 8 feet on center with the flanking spacing being 14-foot bays that deviate from the typical 16-foot spacing representing the internal structural system. As originally designed, the court was unroofed and contained a cedar tree. When roofed, the three eastern bays along the eave walkway were enclosed with Arislide doors. At the same time, the northern adjacent space, then the Grill Restaurant, was altered.

As originally designed, the open walkway under the eave of the north wing terminated at an enclosed gallery across the fronts of the Grill Restaurant, the gift shop, the post office, and the Cliff Room Bar. The gallery also provided access to the northern end space originally designed as a multi-purpose room. The space became the Mountain Room Restaurant in 1968, when the northern wing was remodeled following the completion of the merchandizing center/store at the east end of the Lounge Building. The former gift shop space was incorporated into the Grill Restaurant. The post office was removed and relocated, also probably in 1968, and the bar was remodeled incorporating the space. At the northern end, small public restrooms facing northeast were originally located under the eave near the end of the wing; these were substantially enlarged in 1997-1998 and open into a vestibule area behind the portico. A covered walkway of the same design as what exists in the courtyard, extended from the eave walkway and bypassed the enclosed gallery by extending out into the courtyard and back to the Mountain Room Restaurant entrance. When this was removed at an unknown date, the components may have been used to construct Covered Walkway 4

Covered walkway along east elevation (ARG, December 2016)

The original northern end elevation of the Food Service Building, which dated from 1955-1956, was altered in 1968. The gable end was constructed and glazed similarly to the southern gable end. However, the northern elevation had a one-story semi-hexagonal projection that occupied the central three bays. Short side frame walls were perpendicular to the gable end and extended to angled

3 Covered Walkway 4 is the newer Covered Walkway that connects at its east end to Covered Walkway 2. Covered Walkway 2 connected the Food Services Building to the east entrance of the Lounge Building.
Physical Description

Wall sections that extended northward in a prow shape below the hipped roof structure. The roof extended to the height of the transom glazing. Flanking the bay were Arislide doors. Tripartite fixed windows were in the prow. In 1968, the hipped roof of the projecting bay was removed and it was rebuilt to the apex of the gabled roof. It was fully glazed, matching the typical gable end detailing with a row of transom windows below the offset glazing extending to the rake. The alteration, probably designed by Ted Spencer, improved the views towards Yosemite Falls from the dining room.

Beyond what ultimately became the Mountain Room, the north terrace area was buffered by the west elevation of the Lounge Building and was paved for outdoor dining. In plan, the north terrace also was prow-shaped and was connected to the now-removed covered walkway extending from the southwest entrance vestibule of the Lounge Building to northern end of the Food Service Building restrooms and interior gallery vestibule. The paving was scored with a hexagonal pattern. In 1988, a new section of covered walkway was built along the Mountain Room dining room façade to connect between the entrance and the existing covered walkway extending to the west doorway of the Lounge Building.

Current Mountain Room entrance, east elevation (ARG, December 2016)

In 1996, the northern end of the Food Service Building again was altered. San Francisco architect George Homsey designed a new northern addition that provided an extension of the dining room space. The new addition reflects a reinterpretation of the Rustic style. The entire northern elevation fenestration and covered walkway to the Lounge Building were removed. As redesigned, the stepped-plan contains a new dining room addition below an extension of the north wing’s gabled roof. Mirroring the three-stepped plan, the gabled roof is similarly stepped. The eastern slope extending from the northeast wall projects over a single bay, which mimics the original bay system of the wing, and is terminated by the roof ridge. Opposite, the western slope projects over a second and third bay. All three bays stepped to the northwest corner and are uniformly 10 feet at the east and west by 20 feet at the north.

Modern dining room extension at north end of Food Service Building (ARG, December 2016)

The north glazing at the northeast bay terminates at an exterior wait station that partially projects into an inset area providing access to the dining terrace. Inset under the eave, outside access around the northwest corner abuts the mechanical room. The latter is also stepped back from the west kitchen-service corridor space projecting beyond the main eave. The projecting bay of the western slope of the roof is fully glazed on the north and west elevations. The corner mullions of the glazed sections are rough sawn timbers that extend from a concrete curb to a beam at the heads. Slightly projecting at the eaves, the composite shingle roofing is set above a two-tiered cap. The glazing of each vertical window unit of the stepped plan has bronze anodized frames set on the concrete curb and extending to a wooden head. The glazing is typically 5 feet by 7 feet. At the gabled roof elevations, the glazing is raked at the verges. Below the apex of the larger eastern slope of the roof, the glazing is foreshortened in the lower section and elongated at the taller section to maintain uniform horizontal muntin spacing across the section’s glazing. A pair of bronze anodized glazed doors is located within the glazing of the central section of the three bays. The doors open to the northern terrace area. The terrace had trapezoidal scored concrete paving, but now has concrete paving laid out as a grid relating to the stepped plan of the northern elevation.
Physical Description

At the eastern façade, from the new larger restrooms to the north corner of the first bay extension, the concrete foundation supports walling of horizontal resawn wood siding with inset timber pilasters and corner boards. Each vertical member supports a large sawn wood diagonal member spanning to an eave rafter tip. To the south of the restroom walling is a rough sawn timber portico also designed by George Homsey. Four 12-inch by 12-inch rough sawn wood columns on concrete plinths support the front 12-inch-by-18-inch beam. Large rough sawn purlins extend to the verge of the roof. The lowest purlins are supported at the sides by the columns and form the eave structure. The purlins are overlaid with rafter beams and, in turn, support nailers for the decking of the roof surface covered with composition shingles. Within the east tympanum of the portico, vertical posts extend from the lower horizontal beam to the inner five purlins. All the joints are reinforced with metal gussets. In plan, the vestibule behind the portico extends behind the two northern bays of the portico.

Doorways open into the large conference room, once the Four Seasons Restaurant, and into the offset entrance lobby of the Mountain Room Restaurant. At the north, the vestibule also provides access to the enlarged men’s and women’s public restrooms that were rebuilt in 1998. Within the vestibule and to the south, the exterior walls are sheathed in horizontal resawn cedar siding. Green framed metal, glazed doors are typical. The new extension of the covered walkway under the eave replaced the earlier gallery enclosure design of the northeast façade of the northern wing.

Opening the walkway under the eave resolved circulation issues created by the earlier configuration. Along the new walkway section, the original Arislide doors units extending across the conference room space and “The Nature Shop” retail space were removed and replaced with a concrete curb and various width vertical window units with narrow resawn cedar frames. The widths relate to pipe column placement and interior walls. New window units are set below the original glazed transom with its awning vent windows. Construction of the new fenestration included a secondary doorway with double glazed doors into the conference room and a new single glazed door into the retail space located in the former Grill Court. Beyond the retail space is a section of horizontal resawn cedar wailing screening the Food Court serving area, constructed in 2000. The frame walling abuts a new north pair of double doors.

Rear (west) elevation Food Service Building (ARG, December 2016)

The rear, southwest elevation is characterized by the utilitarian needs of the kitchen. Service spaces and offices extend nearly the entire length of the elevation of the northern wing. At the Mountain Room, a new kitchen and service corridor were constructed to provide separate food preparation for the dining room. Behind the retail shop is the food preparation area serving the restaurants, employee service area, and food storage areas. The dishwashing area is located at the north end of the Food Court. All have been altered generally within the existing footprint to meet health/life/safety issues and changing demands most recently in

Mountain Room vestibule (ARG, December 2016)

Opening into the vestibule are two pairs of glazed doors at the northeast and a single pair at the southern side, which lead to the new extension of the walkway under the eave. Within the vestibule,
Physical Description

1998. Loading docks extend along the north side of the vertical board sheathed kitchen wing and open into a paved service yard within concrete retaining walls. The service yard is accessed from the 1956 rectangular parking lot. The western elevation of the northern wing is of similar construction to the northern elevation of the kitchen wing and serves various interior functions including a mechanical room and office. Concrete foundations are exposed.

Enclosed conveyor belt on west exterior of Food Court wing (ARG, December 2016)

One unusual feature of the west elevation is an enclosed addition housing a conveyor belt for cafeteria trays. Placed in the lower half of the wall, it is no longer used and is blocked off at the interior. At the original southwest gabled end of the kitchen wing, vertical resawn redwood siding extends into the gable end following the rake of the roof. The west elevation of the 1998 dining room extension, which is also stepped in plan, is sheathed in horizontal siding. The west wall at the north corner has applied resawn cedar siding to suggest the northern fenestration. Adjacent is a mechanical room with louvered doors and transom. To the south, the rear walling of the remodeled Mountain Room kitchen is sheathed in horizontal resawn cedar siding that merges into the original construction.
Section Six

Evaluation of Significance

PREVIOUS EVALUATIONS

The Yosemite Lodge Food Service Building, completed in 1956, is a contributing building to the Yosemite Lodge National Register Historic District, which was determined eligible through a consensus Determination of Eligibility (DOE) with the State Historic Preservation Office (SHPO) on 3 February 2017. The district is eligible under Criterion A, for association with the National Park Service’s Mission 66 Era of construction, which is defined as pre-Mission 66 (1945-1955), Mission 66 (1956-1966), and Parkscape USA (1967-1972). The district is also eligible under Criterion C, for association with architect Eldridge Theodore “Ted” Spencer and his use of the Modern Movement style in the planning and design of the complex.1

According to the Yosemite Lodge Historic District Registration Form, the district is significant at the state level for association with Mission 66 and Ted Spencer’s use of the “then-new California style of modernism.” This style featured low building profiles and extensive use of glazing to better connect buildings interiors with the exterior landscape. The construction of the core complex, which included the Food Service Building, “was a vanguard of the Modern Movement style utilizing natural materials and modern construction techniques that became the direction for much of the Park Service’s Mission 66 program particularly in the West.”2 Overall, the historic district is in excellent condition and despite alteration retains integrity of design, setting, feeling, association, workmanship, materials, and location.3

Of all the buildings in the core complex, the Food Service Building has undergone the most functional and physical changes over time. Alterations to the building “began soon after construction and have been on-going.”4 The building’s interiors have been significantly “altered and updated from their original configuration to meet requirements of a changing commercial hotel operation,”5 and therefore, most of the Food Service Building’s interiors lack integrity and do not contribute to the physical fabric of the historic district. Only the dining area of the Food Court in the south wing of the building retains integrity and is considered to be a contributing element of the historic district.6

Further, though the Food Service Building retains most of its original form and massing, a number of exterior elements have been altered over time to accommodate changes in program and service. The most notable non-contributing exterior addition is the extension of the Mountain Room Restaurant and associated entrance portico at the northern end of the building.7

CHARACTER-DEFINING FEATURES

A character-defining feature is an aspect of a building’s design, construction, or detail that is representative of the building’s function, type, or architectural style. Character-defining elements include the overall shape of the building, its materials, craftsmanship, decorative details, interior spaces, and features, as well as the various aspects of the building’s site and environment.

The character-defining features of the Yosemite Lodge Food Service Building reflect the Mission 66-era goal of expanding visitor services and amenities in the park, as well as the design and material characteristics of the Modern Movement style. This style was used by Ted Spencer and other Park Service architects of the Mission 66 Era following World War II, and “emphasized the connection of interior spaces with the exterior, principally by the use of lightweight steel framing, which allowed extensive use of glass in the exterior walls, and finish materials evoking nature, such as vertical resawn redwood siding.”8

Exterior Features and Elements
• Overall form and massing (low, horizontal emphasis)
• Low-pitched gable roof form
• Broad eave overhangs with exposed steel framing

1 Rodd L. Wheaton and John Feinberg, National Register of Historic Places Registration Form, “Yosemite Lodge Historic District,” Yosemite National Park, Mariposa County, California (22 June 2015), 35. Note that the 1000s cabins, although within the district, are considered non-contributing to the Mission 66 era and will be evaluated under a separate determination of eligibility.

2 Ibid, 4.

3 Ibid, 4-5, 52.

5 Ibid, 5.

6 Ibid, 5.

7 Ibid, 5.

8 Ibid, 3.
Evaluation of Significance

- Emphasis on connection of interior and exterior spaces
- Extensive use of glass in the exterior walls
- Steel sash window wall at south end of Food Court with Arislide door units
- Fixed glazing and Arislide door units along east elevation
- Raised window units with two central full bays with slider sash flanked by a fixed sash half bay at each end, all set below a continuous transom band set (west elevation of Food Court)
- Remaining original fixed and operable steel sash transom windows along east elevation
- Sheltered walkway along east elevation (original portion shelters Food Court Entry area)
- South exterior dining terrace with original square exposed aggregate/smooth concrete pavers and redwood spacers

Exterior Materials
- Wood soffits and exposed steel framing at eave overhangs
- Extensive use of glass in exterior walls, steel window and door frames
- Resawn redwood siding (around south wing – with exception of corner restrooms, and along rear kitchen elevations)

Interior Features and Elements
- Exposed wood ceiling
- Exposed steel structure (tapered steel beams, steel purlins supporting the roof surface, steel pipe columns)
- Height and volume of space in Food Court
- Overall open plan in Food Court
- Views of Yosemite Falls from north end (though associated Mountain Room space is not character-defining)
- Location of kitchens and food service areas at rear of building, public service areas facing courtyard
- Original full-height spaces with exposed steel structure and wood ceiling in Mountain Room, Garden Terrace/Conference Room, and Nature Shop (Secondary significance)

Interior Materials
- Wood ceiling

- Steel structure
- 1x4 douglas fir above side bay soffits in Food Court

EVALUATION OF SIGNIFICANCE

This section explains the significance ratings for the Yosemite Lodge Food Service Building’s exterior and interior spaces and features as related to the building’s overall historic context and character. For a historic resource to retain its significance, its character-defining features and spaces must be retained to the greatest extent possible. An understanding of a building’s character-defining features is a crucial step in developing a rehabilitation plan that incorporates appropriate levels of restoration, rehabilitation, maintenance, and protection. Management and treatment approaches may vary based on the relative level of importance of spaces. This section defines significance ratings and contains a color-coded floor plan, the Space Priority Diagram, identifying areas by hierarchical importance.

SIGNIFICANCE RATING METHODOLOGY

Defining and assigning significance ratings to important spaces requires consideration of multiple factors: amount of original historic fabric, quality of materials and finishes, extent of prior modification, levels of integrity, and expression of original design intent.

Intrinsic to the building’s historical use as a food service building are the public food service and dining areas, as well as the back-of-house or guest support spaces. The public spaces are concentrated in the east half of the building with an extension onto exterior dining terraces at the south end. The back-of-house areas – kitchens, offices, storage – are focused primarily in the rear or western side of the building.

The original design concept separated these spaces based on function and resulted in varying quality of materials and finishes depending on the public’s access to a particular part of the building. In spaces that were off limits to guests, materials and finishes were less focused on architectural or artistic expression, but they were carefully selected for their durability or efficiency in utilitarian areas.

The Food Service Building’s significance ratings fall into the following four categories: Primary, Secondary, Historic Utilitarian, and Non-Contributing.

Primary

Spaces and features rated Primary are the major components of interior areas or the exterior that exemplify the essence of the building’s design and the reason for its significance. They are the areas that retain the highest degree of historic materials and features and are essential to establishing the character of the historic resource. Considered the building’s most historically or
architecturally important elements, these features must be retained. The Food Court, south exterior dining terrace, and a small section of the covered walkway adjacent to the Food Court’s primary entrance are the only Primary spaces remaining.

Secondary

Secondary areas enhance the understanding of the overall character and importance of the building, its original design and historic contexts, but their modification over time has diminished their integrity. Alteration within these spaces may be necessary in the future to accommodate programmatic or building system requirements; however, change to these areas should be minimized. Secondary elements include modified areas of the building that still retain notable character-defining features reflecting the original design, such as the exposed steel structure and wood ceiling, present in the Nature Shop and at the south end of the Mountain Room. Also included is a section of covered walkway along the east side of the building. The materials for this section have been altered, though the covered walkway in this area reflects the original design intent.

Historic Utilitarian

Historic Utilitarian areas are of historic importance and contribute to the building’s historic function in a different manner than the building’s public spaces. Historic Utilitarian areas provide context associated with behind-the-scenes operation of the restaurant. They include utilitarian, back-of-house areas such as the kitchens, storage spaces, offices, and other work areas. These areas may contain original historic materials and finishes, but are typically devoid of decorative features. Because of limited public exposure, these areas may be more appropriate for accommodating some level of change than public spaces of the restaurant. However, modification in these areas should preserve historic materials and existing spatial relationships to the maximum extent possible. It is not necessary to preserve or retain existing equipment. Examples of Historic Utilitarian spaces include most of the original kitchen spaces in the rear of the building.

Non-Contributing

Non-Contributing areas include spaces extensively altered after the period of significance or later additions that do not contribute to the historic character of the Food Service Building. These areas have been modified over time to meet the changing nature and requirements of food service and preparation within the building. Further alteration of these areas should focus on retaining the historic spatial organizations, including any remaining historic room/wall configurations and their associated uses. Food preparation is a historic use within this building and although the utilities and support structures change over time, the use of these areas should remain that of food preparation and service. Alterations of these areas to return to original materials and/or detailing should be undertaken when the result will protect or enhance the overall historic character of the building. Examples of Non-Contributing areas include the 1998 portion of the Mountain Room Restaurant, Garden Terrace and Nature Shop – all areas that have been heavily modified from the original design.
This page intentionally left blank.
Section Seven

Condition Assessment

The Yosemite Lodge Food Service Building was assessed to determine the overall condition of the building's materials and features and to identify areas of extant historic fabric. The scope of the assessment was limited to visual inspection and did not include any materials testing or destructive investigation. The exterior and roof of the building were primarily inspected from the ground; where possible, however, inspections were conducted from the roof. The Yosemite Lodge Food Service Building is generally in good condition at both the exterior and interior.

The proceeding chart provides an assessment of the existing condition of site and exterior features as well as interior features, with the conditions of each element noted in accordance with the following definitions:

- **Good**: The building / element is mostly intact.
- **Fair**: The building / element is showing signs of wear or deterioration.
- **Poor**: The building / element is badly damaged, missing, or not functioning.
- **Unknown**: The building / element is not accessible for inspection.

Additionally, the original materials and finishes, as per the 1955 construction drawings, are noted in conjunction with the current materials and their respective compatibility.

Architectural and material conservation recommendations based upon the conditions noted in the following chart are provided in Section 10 of this HSR.
Condition Assessment

This page intentionally left blank.
Current Condition Matrix

Exterior

<table>
<thead>
<tr>
<th>Feature</th>
<th>Character-Defining Features</th>
<th>Original Material/Finishes</th>
<th>Current Materials</th>
<th>Compatibility of Alterations</th>
<th>Current Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site and Exterior Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grading and Site</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Loading Dock</td>
<td>Concrete with a 4” x 6” wood bumper</td>
<td>Concrete (original)</td>
<td>Wood decking at the loading dock addition</td>
<td>Compatible</td>
<td>Poor condition</td>
</tr>
<tr>
<td>Patios</td>
<td>Exposed aggregate concrete with redwood joints</td>
<td>Exposed aggregate concrete with redwood joints</td>
<td>Exposed aggregate concrete square cast-in-place panels with redwood joints at the south (original)</td>
<td>Compatible</td>
<td>Fair condition at the patio, some redwood strips missing</td>
</tr>
<tr>
<td>Pedestrian Walkways</td>
<td>Wood soffits and exposed steel framing</td>
<td>Exposed aggregate concrete with redwood joints</td>
<td>Exposed aggregate concrete with redwood joints</td>
<td>Compatible</td>
<td>Good condition at the southeast patio</td>
</tr>
<tr>
<td>Covered Walkways</td>
<td>Broad eave overhangs with exposed steel framing</td>
<td>Exposed steel frame</td>
<td>Exposed steel frame</td>
<td>Compatible</td>
<td>Good condition</td>
</tr>
<tr>
<td>Fence #1 – South fence adjacent the Food Court</td>
<td>N/A</td>
<td>N/A</td>
<td>Painted wood</td>
<td>Compatible</td>
<td>Good condition at section closest the Food Court</td>
</tr>
</tbody>
</table>

- Heavy accumulation of tree duff at grade beginning at the southwest adjacent the power washing room and continuing along the west adjacent the Food Court
- Moisture accumulation has caused some wood deterioration at the north, south, and west elevations at grade
- Significant water damage (erosion down to large aggregate) at the door recess adjacent to Room 121.
- Vertical cracks at the face of the north loading dock
- Approximately half of the original exposed aggregate concrete pavers have been replaced with flush concrete at the south patio
- Good condition at the southeast patio
- Some settling and unevenness of panels at the south patio
- Some accumulation of tree duff and debris
- Southeast path adjacent the breezeway does not match original exposed aggregate concrete design as it is missing the redwood joints
- Good condition at section closest the Food Court
- Poor condition at section adjacent the road
<table>
<thead>
<tr>
<th>FEATURE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| Fence #2 – West fence adjacent the employee trailers | N/A | N/A | Painted wood | Compatible | • Fence tilts north along its length and appears unstable
• Heavy accumulation of tree duff at grade |
| Fence #3 – West fence adjacent the loading dock | N/A | Stained wood atop concrete retaining wall | Painted wood atop original concrete retaining wall | Compatible | • Poor condition
• Fence tilts westward along its length and appears unstable
• Heavy accumulation of tree duff at grade |
| Roofing | Broad eave overhangs with exposed steel framing
• Exposed roof structure at all eaves
• Built-up composite roofing over 2x8 tongue and groove sheathing
• Wood fascia
• Copper sheet metal flashing, downspouts, and gutters | Exposed roof structure at the eaves typical (original)
• Wood soffits present at the Food Court east elevation at the site of the 2001 remodel
• Asphalt shingles typical; standing seam metal roof at the north shed adjacent the Mountain Room Restaurant
• Wood fascia (some original)
• Copper sheet metal flashing, downspouts, and gutters | Compatible | • Fair condition
• Accumulation of tree duff and debris
• Biological growth on some of the asphalt shingles at the east elevation
• Wood Soffit: Staining at the Mountain Room portico
• Wood Fascia: Paint deterioration and staining typical along the south, east and west elevations; openings at some corner joints; a section of the southwest corner was removed due to tree growth
• Sheet Metal Flashing: Flashing displaced by a tree at the southwest corner
• Sheet Metal Gutters: Heavy accumulation of tree duff and debris at the northern shed; gutter separated and turned at the east elevation of the Garden Terrace/Nature Shop
• Downspouts: Disconnected downspout at the east elevation of the Garden Terrace; smashed surface downspout extension at the east elevation of the Mountain Room Restaurant |
| Foundation/Concrete Walls | Concrete | Concrete at the entire south and west elevations (original)
• Board-form concrete beginning at the Food Court east elevation at the site of the 2001 remodel, and continuing north along the building perimeter | Compatible | Fair condition
• Biological growth at the power washing room west elevation; biological growth at the north and east elevations of the Mountain Room Restaurant
• Heavy water staining at the east elevation downsputs of the Mountain Room Restaurant; some staining at the east elevation adjacent the Food Court
• Vertical crack at the east elevation of the Mountain Room Restaurant |
<p>| Siding | Resawn redwood siding | Original and newer sections of v-groove redwood siding, painted | Compatible (except for T-111 siding) | Fair condition | |
| | V-groove redwood siding | | | |</p>
<table>
<thead>
<tr>
<th>FEATURE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| Exterior Windows | • Emphasis on connection of interior and exterior spaces
• Extensive use of glass in the exterior walls
• Steel sash window wall at south end of Food Court with Arislide door units
• Fixed glazing and Arislide door units along east elevation
• Raised window units with two central full bays with slider sash flank by a fixed sash half bay at each end, all set below a continuous transom band set (west elevation of Food Court)
• Fixed and operable steel sash transom windows along east elevation | North Elevation, Mountain Room
Five 3-lite steel framed transom windows with fixed glass
Four panes of steel frame fixed glass windows
North Elevation, Loading Dock
Five steel awning windows
East Elevation
Transom windows with awning windows at the gift sales room and the Food Court
Full-height steel-framed window wall at the Food Court | North Elevation, Mountain Room
4x2D horizontal shiplap Alaska red cedar siding with an oil-based finish at the Mountain Room Restaurant addition extending south along the east elevation and terminating at the east Food Court window wall
Portions of T-111 vertical siding along the west elevation at the boiler room and along the south and east elevations adjacent the power washing room, painted
Metal siding at the return walls of the Mountain Room addition | Compatible (except replacement sliding windows) | Significant water stains at the north elevation of the Mountain Room; water stains at the east elevation base adjacent the Food Court
Damaged and scuffed along the west elevation at the loading dock and along the west elevation adjacent the air handler room
Broken board at the west elevation adjacent the boiler room |
| South Elevation, Kitchen | • Single awning window
Two 3-lite hopper windows | South Elevation, Kitchen
Single awning window
Two 3-lite hopper windows | South Elevation, Kitchen
Steel-framed awning window (original)
Two single awning over fixed lite windows
One fixed window | | |
| South Elevation, Food Court | • Fully glazed steel frame window wall
Two 3-lite transom windows at the restrooms. | South Elevation, Food Court
Fully glazed steel frame window wall (original)
3-lite transom windows at each of the restrooms | | | |
| West Elevation, Food Court | • Four 3-lite awning windows above two fixed panes of glass
Two aluminum horizontal sliding windows
Two panes of fixed glass | West Elevation, Food Court
Four 3-lite awning windows above two fixed panes of glass
Two aluminum horizontal sliding windows
Two panes of fixed glass | | | |
| West Elevation, Dish Room | • Two 3-lite awning windows | West Elevation, Dish Room
Two 3-lite awning windows
One aluminum horizontal sliding window | | | |
Condition Assessment

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Elevation, Loading Dock</td>
<td>West Elevation, Loading Dock</td>
<td>Two 2-lit awning windows</td>
<td>Two 2-lit awning windows (original)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single awning window</td>
<td>Single awning window (original)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Condition Assessment

INTERIOR

ROOM

<table>
<thead>
<tr>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>101, Food Court</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior glazed walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed roof structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor: Quarry tile (6" sq) at service areas; asphalt tile at the public areas</td>
<td>Floor: Ceramic tile at dining and checkout area; carpet tile at dining area; quarry tile (6" sq) behind service counters</td>
<td>Future replacement</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Baseboard: Quarry tile (6" sq) and wood</td>
<td>Baseboard: Ceramic tile at dining and checkout; quarry tile behind service counters</td>
<td>Future replacement</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Walls: 1x10 vertical redwood at the public areas; 1x4 Douglas fir above the side bay soffits; full-height Consoweld plastic laminate at the north service area; three exterior glazed walls; 1x4 vertical Douglas fir above the soffit at the north elevation; perforated sheet metal doors with windows above at the west elevation</td>
<td>Walls: Painted plywood at the conveyor; painted 1x4 Douglas fir above the side bay soffits; gypsum wallboard and aluminum panels at the north service area; three original exterior glazed walls; 1x4 painted vertical Douglas fir above the soffit at the north elevation</td>
<td>Future replacement</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Columns: Unpainted aluminum</td>
<td>Columns: Painted aluminum (original but was unpainted)</td>
<td>Future replacement</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Ceiling: Exposed roof construction with 1x4 Douglas fir and painted steel beams and purlins at the dining area; metal pan acoustic tile at the service areas; acoustic tile at the side bay soffits</td>
<td>Ceiling: Exposed roof construction with painted 1x4 Douglas fir and painted beams (original color) and purlins (color not original) at the dining area; exposed roof construction and gypsum board at the service area; painted gypsum board at the side bay soffits</td>
<td>Future replacement</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Doors: Paired wood doors with clear plate glass and a metal threshold at the east elevation; four steel sliding doors with plate glass at the east elevation; four steel sliding doors with plate glass at the south elevation</td>
<td>Doors: Two paired aluminum storefront doors with factory finish and bronze thresholds at the east elevation (added 2000); single aluminum storefront door at the east elevation; single aluminum storefront door at the south elevation; three original steel sliding doors at the south elevation; three original steel sliding doors at the west elevation</td>
<td>Future replacement</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Lighting: Suspended incandescent, 4'-0" wide x 60'-0" long located at the center of the Food Court; four 6'-0" diameter suspended incandescent fixtures located at the four corners of the central Food Court seating area; Peerless P-649 24" square x 6" deep flush in-bult eggcrate louver fluorescent fixtures located at the side bays</td>
<td>Lighting: Two-tiered iron chandeliers with eight lights at the main ridge beam; two indirect track lights at the main beam; recessed square fixtures at the side bays</td>
<td>Future replacement</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>102, men’s restroom at Food Court</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor: Vitreous ceramic tile</td>
<td>Floor: Large format ceramic tile installed diagonally</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Baseboard: Glazed ceramic tile</td>
<td>Baseboard: Ceramic tile to match floor tile</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Wainscot: 4'-0" glazed ceramic tile</td>
<td>Walls: Medium format ceramic tile</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Walls: Gypsum board</td>
<td>Ceiling: Painted popcorn texture gypsum board</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Ceiling: Acoustic tile</td>
<td>Partitions: Overhead-braced, painted metal</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Partitions: WeatSteel insulated flush galvanized steel, baked enamel finish</td>
<td>Door: Painted flush wood door</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Door: 30" wide flush wood door with metal louvers</td>
<td>Door: 30" wide flush wood door with metal louvers</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>103, women’s restroom at Food Court</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor: Vitreous ceramic tile</td>
<td>Floor: Large format ceramic tile installed diagonally</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Baseboard: Glazed ceramic tile</td>
<td>Baseboard: Ceramic tile to match floor tile</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Wainscot: 4'-0" glazed ceramic tile</td>
<td>Walls: Medium format ceramic tile</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Walls: Gypsum board</td>
<td>Ceiling: Painted popcorn texture gypsum board</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Ceiling: Acoustic tile</td>
<td>Partitions: Overhead-braced, painted metal</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
<tr>
<td>Door: 30" wide flush wood door with metal louvers</td>
<td>Door: Painted flush wood door</td>
<td>Future</td>
<td>Future condition</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Resources Group | Yosemite Lodge Food Service Building
<table>
<thead>
<tr>
<th>ROOM</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| 104, dish room (formerly dishwashing and silver wrapping) | | Floor: Quarry tile
Baseboard: Quarry tile
Walls: Consowieled (plastic laminate)
Windows: Two 3-lite sash hopper windows at the west elevation
Ceiling: Metal pan acoustic tile
Doors: Painted metal covered doors with 12x12 clear wire glass vision lites adjacent the main kitchen; flush wood door with metal louver adjacent the Food Court; flush wood door with metal louver at the silver wrapping room | Floor: Quarry tile
Baseboard: Quarry tile
Walls: FRP
Windows: One horizontal sliding window covered with FRP at the west elevation
Ceiling: FRP | Compatible | Floor: Fair to poor condition, worn areas, ponding, grout failure, and spills
Baseboard: Fair to poor condition
Walls: Fair to good condition
Windows: Poor condition
Ceiling: Fair to good condition |
| 105, power washing room (formerly scullery, vegetable preparation, and a portion of the dish room) | | Floor: Quarry tile
Baseboard: Quarry tile
Walls: Consowieled
Ceiling: Metal pan acoustic tile | Floor: Quarry tile
Baseboard: Quarry tile
Walls: FRP
Ceiling: FRP | N/A | Floor: Fair to poor condition, some worn areas, ponding, grout failure, and spills
Baseboard: Fair to poor condition
Walls: Fair to poor condition, some damage to the FRP at the sink
Ceiling: Fair to good condition |
| 106, men's lockers | | Floor: Concrete with integral color
Baseboard: Concrete with integral color
Walls: Gypsum board over brick
Ceiling: Gypsum board
Door: Flush wood door with metal louver
Lockers: Painted Worley & Company metal 2-tier lockers | N/A | Floor: Fair to poor condition, some worn areas, ponding, grout failure, and spills
Baseboard: Fair to poor condition
Walls: Fair to poor condition, some paint loss and gauges
Ceiling: Fair condition, some water damage
Door: Fair to good condition, some gauges and paint loss at edges
Lockers: Fair condition, original locker tags missing |
| 106A, men's restroom | | Floor: Vitreous ceramic tile
Baseboard: Glazed ceramic tile
Wainscot: 4'-0" glazed ceramic tile
Walls: Gypsum board
Ceiling: Gypsum board
Partitions: WeiSteel insulated flush galvanized steel with a baked enamel finish
Door: Flush wood door with metal louver | Floor: Ceramic tile
Baseboard: Glazed porcelain tile
Wainscot: Ceramic tile
Walls: Painted gypsum board
Ceiling: Painted gypsum board
Partitions: Overhead-braced solid surface partitions
Doors: Painted flush wood door | Compatible | Floor: Good condition
Baseboard: Fair condition
Wainscot: Fair condition, some missing and damaged tiles
Walls: Fair condition, some paint loss and damage
Ceiling: Good condition
Partitions: Good condition
Doors: Fair condition, some scuffs |
| 107, mechanical and electrical equipment | | Floor: Concrete
Walls: Brick
Ceiling: Vermiculite plaster on metal lath
Doors: Hollow metal doors with channel frame and a metal threshold | Floor: Concrete
Walls: CMU
Ceiling: Vermiculite plaster on metal lath
Doors: Painted metal doors with louver | N/A | Floor: Fair condition
Walls: Good condition
Ceiling: Fair to poor condition, some patches
Doors: Fair condition, dented louver |
<p>| 108, | | Floor: Concrete | N/A | Floor: Concrete |</p>
<table>
<thead>
<tr>
<th>ROOM</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>auxiliary generator</td>
<td></td>
<td>Walls: Brick
Ceiling: Vermiculite plaster on metal lath
Doors: Hollow metal doors with channel frame and a metal threshold</td>
<td>Walls: CMU
Ceiling: Vermiculite plaster on metal lath
Doors: Paired metal doors with louvers</td>
<td></td>
<td>Walls: Good condition
Ceiling: Fair to poor condition
Doors: Good condition</td>
</tr>
<tr>
<td>109, boilers</td>
<td></td>
<td>Floor: Concrete
Walls: Brick; metal louvers at the west elevation
Ceiling: Vermiculite plaster on metal lath
Doors: Paired hollow metal doors</td>
<td>Floor: Concrete
Walls: CMU, painted metal louvers at the west elevation
Ceiling: Vermiculite plaster on metal lath
Doors: Paired metal doors</td>
<td>Compatible</td>
<td>Floor: Fair condition, some staining
Walls: Good condition
Ceiling: Fair to poor condition, several patches
Doors: Fair to good condition, some light gouges and paint loss</td>
</tr>
<tr>
<td>110, dry storage</td>
<td></td>
<td>Floor: Concrete
Baseboard: Wood
Walls: Brick and plywood; metal louvers at the west elevation
Ceiling: Exposed roof construction
Doors: Paired hollow metal doors</td>
<td>Floor: Concrete
Walls: CMU and plywood; painted metal louvers at the west elevation
Ceiling: Exposed roof structure; stained wood sheathing (original)
Doors: Single metal door
Stairs: Painted wood</td>
<td>N/A</td>
<td>Floor: Good condition, some water damage near the freezers
Walls: Good condition
Ceiling: Good condition
Door: Fair condition
Stairs: Fair condition</td>
</tr>
<tr>
<td>110A, dry storage mezzanine</td>
<td></td>
<td>Non-original</td>
<td></td>
<td></td>
<td>Floor: Fair condition
Walls: Good condition
Ceiling: Good condition</td>
</tr>
<tr>
<td>111, freezer (former milk & eggs storage refrigerator)</td>
<td></td>
<td>Floor: Concrete over corkboard insulation over structural slab
Baseboard: Cement base
Walls: Cement plaster finish over corkboard insulation
Ceiling: Mastic finish over 4" corkboard insulation over vapor barrier over wood sheathing
Doors: Metal freezer door (original)</td>
<td>Door: Metal freezer door (original)
(Interior not surveyed)</td>
<td>N/A</td>
<td>Door: Good condition</td>
</tr>
<tr>
<td>112, freezer (former fruit & vegetables storage refrigerator)</td>
<td></td>
<td>Floor: Concrete over corkboard insulation over structural slab
Baseboard: Cement base
Walls: Cement plaster finish over corkboard insulation
Ceiling: Mastic finish over 4" corkboard insulation over vapor barrier over wood sheathing
Doors: Metal freezer door (original)</td>
<td>Door: Metal freezer door (original)
(Interior not surveyed)</td>
<td>N/A</td>
<td>Door: Good condition</td>
</tr>
<tr>
<td>113, freezer (former frozen food and ice cream storage refrigerator)</td>
<td></td>
<td>Floor: Concrete over corkboard insulation over structural slab
Baseboard: Cement base
Walls: Cement plaster finish over corkboard insulation
Ceiling: Mastic finish over 4" corkboard insulation over vapor barrier over wood sheathing
Doors: Metal freezer door (original)</td>
<td>Door: Metal freezer door (original)
(Interior not surveyed)</td>
<td>N/A</td>
<td>Door: Good condition</td>
</tr>
<tr>
<td>ROOM</td>
<td>CHARACTER-DEFINING FEATURES</td>
<td>ORIGINAL MATERIAL/FINISHES</td>
<td>CURRENT MATERIALS</td>
<td>COMPATIBILITY OF ALTERATIONS</td>
<td>CURRENT CONDITION</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>114, production kitchen</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>Floor: Poor condition</td>
</tr>
<tr>
<td>(former bakery, corridor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baseboard: Poor condition</td>
</tr>
<tr>
<td>and butchery)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Walls: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Door: Metal freezer door</td>
<td></td>
<td></td>
<td>Ceiling: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Floor: Quarry tile</td>
<td></td>
<td></td>
<td>Doors: Poor condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Baseboard: Quarry tile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Walls: Consoweld 30”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>height buffer strip at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>full height walls,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consoweld 30” wood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>buffer strip and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>stainless steel cap at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4'-4' height walls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(east and west elevations); Consoweld at full-height walls and Consoweld 30” wood buffer strip and stainless steel cap at 4'-4' height walls (north and south elevations)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Metal pan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>acoustic tile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doors: Paired hollow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>metal doors with clear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wire glass vision lites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and fixed transoms with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>clear glass at the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>northwest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115, freezer (former</td>
<td></td>
<td>Floor: Concrete over</td>
<td></td>
<td>N/A</td>
<td>Floor: Poor</td>
</tr>
<tr>
<td>frozen meat)</td>
<td></td>
<td>corkboard insulation (6”</td>
<td></td>
<td></td>
<td>condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thick) over structural</td>
<td></td>
<td></td>
<td>Baseboard: Poor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slab</td>
<td></td>
<td></td>
<td>condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseboard: Cement base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Cement plaster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>finish over corkboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Mastic finish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>over 4” corkboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>insulation over vapor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>barrier over wood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sheathing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Door: Metal freezer door</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(interior to Room 116,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>not surveyed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116, freezer (former</td>
<td></td>
<td>Floor: Concrete over</td>
<td></td>
<td>N/A</td>
<td>Door: Fair</td>
</tr>
<tr>
<td>meat holding)</td>
<td></td>
<td>corkboard insulation (4”</td>
<td></td>
<td></td>
<td>condition, some</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thick) over structural</td>
<td></td>
<td></td>
<td>worn areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseboard: Cement base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Cement plaster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>finish over corkboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Mastic finish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>over 4” corkboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>insulation over vapor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>barrier over wood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sheathing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Door: Metal freezer door</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(interior not surveyed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117, freezer (former</td>
<td></td>
<td>Floor: Concrete over</td>
<td></td>
<td>N/A</td>
<td>Door: Fair</td>
</tr>
<tr>
<td>second cook room (cut</td>
<td></td>
<td>corkboard insulation (3”</td>
<td></td>
<td></td>
<td>condition with</td>
</tr>
<tr>
<td>meat)</td>
<td></td>
<td>thick) over structural</td>
<td></td>
<td></td>
<td>some dents at</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slab</td>
<td></td>
<td></td>
<td>the bottom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseboard: Cement base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Cement plaster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>finish over corkboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Mastic finish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>over 4” corkboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>insulation over vapor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>barrier over wood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sheathing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Door: Metal freezer door</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(interior not surveyed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118, production kitchen</td>
<td></td>
<td>Floor: Quarry tile</td>
<td></td>
<td>N/A</td>
<td>Floor: Fair to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseboard: Quarry tile</td>
<td></td>
<td></td>
<td>poor condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Consoweld plastic</td>
<td></td>
<td></td>
<td>worn areas,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>laminate</td>
<td></td>
<td></td>
<td>ponding, grout</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>failure, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spalls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Condition Assessment

<table>
<thead>
<tr>
<th>ROOM</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>119, freezer (former chef’s room and manager’s office)</td>
<td>• Ceiling: Metal pan acoustic tile
• Door: Paired hollow metal doors with clear wire glass vision lites and fixed transoms with clear glass at the northwest</td>
<td>• Ceiling: Painted plywood
• Doors: Two single stained flush wood doors at the northeast corner; paired hollow metal doors with clear wire glass vision lites and fixed transoms with clear glass at the northwest (original)</td>
<td>• Walls: Fair condition, some staining at the north wall
• Ceiling: Fair condition, some failure at joints
• Doors: Fair condition at the northeast doors, some gauges and scuffs; poor condition at the northwest doors</td>
<td>N/A</td>
<td>Compatible</td>
</tr>
<tr>
<td>120, freezer (former garbage refrigerator)</td>
<td>• Floor: Quarry tile
• Baseboard: Quarry tile
• Walls: Consoweld plastic laminate
• Ceiling: Metal pan acoustic tile
• Door: Metal freezer door</td>
<td>Door: Metal freezer door (Interior not surveyed)</td>
<td>N/A</td>
<td>Compatible</td>
<td></td>
</tr>
<tr>
<td>121, storage (former can washing)</td>
<td>• Floor: Concrete
• Baseboard: Concrete
• Walls: Cement plaster on metal lath
• Ceiling: Cement plaster on metal lath
• Door: Metal covered door with metal louvers</td>
<td>Floor: Quarry tile
• Baseboard: Quarry tile
• Walls: Metal
• Ceiling: Cement plaster on metal lath
• Door: Painted metal door with metal louvers</td>
<td>• Floor: Fair condition, some broken
• Baseboard: Fair condition
• Walls: Fair condition
• Ceiling: Fair condition
• Door: Fair, dented louvers</td>
<td>N/A</td>
<td>Compatible</td>
</tr>
<tr>
<td>122, women’s lockers</td>
<td>• Floor: Concrete with integral color
• Baseboard: Concrete with integral color
• Wainscot: 4'-0" glazed ceramic tile at lavatories
• Walls: Painted gypsum board
• Ceiling: Painted gypsum board
• Door: Flush wood door with louvers
• Lockers: Worley & Company metal 2-tier lockers</td>
<td>Floor: Carpet tile
• Baseboard: Painted concrete
• Wainscot: 4'-0" glazed ceramic tile at lavatories (original)
• Walls: Painted gypsum board
• Ceiling: Painted gypsum board
• Door: Flush wood door with louvers (original)
• Lockers: Painted Worley & Company metal 2-tier lockers (original)</td>
<td>• Floor: Good condition
• Baseboard: Fair condition, some paint loss
• Wainscot: Fair condition, some stains
• Walls: Fair condition, some paint loss
• Ceiling: Good condition
• Door: Fair condition
• Lockers: Fair condition, painted with some loss of detail</td>
<td>N/A</td>
<td>Compatible</td>
</tr>
<tr>
<td>122A, cashier room (former women’s restroom)</td>
<td>• Floor: Concrete with integral color
• Baseboard: Concrete with integral color
• Walls: Gypsum board
• Ceiling: Gypsum board
• Door: Flush wood door with clear glass lite</td>
<td>• Floor: Painted concrete
• Baseboard: Painted concrete
• Walls: Painted gypsum board
• Ceiling: Painted gypsum board
• Door: Painted flush metal door</td>
<td>• Floor: Fair condition
• Baseboard: Fair condition
• Walls: Good condition
• Ceiling: Good condition
• Door: Fair to poor condition</td>
<td>N/A</td>
<td>Compatible</td>
</tr>
</tbody>
</table>
Condition Assessment

<table>
<thead>
<tr>
<th>ROOM</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| 1228, women’s restroom (former women’s toilet) | - Floor: Vitreous ceramic tile
- Baseboard: Glazed ceramic tile
- Wainscot: 4” glazed ceramic tile
- Walls: Gypsum board
- Ceiling: Gypsum board
- Partitions: WallSteel insulated flush galvanized steel with a baked enamel finish
- Door: Flush wood door with metal louveres | - Floor: Quarry tile
- Baseboard: Glazed porcelain tile
- Wainscot: Glazed porcelain tile
- Walls: Painted gypsum board
- Ceiling: Painted gypsum board
- Partitions: Overhead-braced solid surface partitions
- Door: Painted flush wood door | Compatible | - Floor: Good condition
- Baseboard: Good condition
- Walls: Good condition
- Ceiling: Good condition
- Partitions: Good condition
- Door: Fair condition |
| 123, chiller room (former mechanical equipment) | - Floor: Concrete
- Walls: Brick
- Ceiling: Exposed roof construction
- Doors: Pair of flush wood doors at the interior; pair of hollow metal doors at the exterior | - Floor: Concrete
- Walls: Painted CMU
- Ceiling: Exposed roof construction with painted sheathing
- Doors: Pair of painted flush wood doors at the interior; pair of metal doors at the exterior | N/A | - Floor: Fair to good condition
- Walls: Fair to good condition
- Ceiling: Fair to good condition
- Doors: Fair to good condition at the interior; good condition at the exterior |
| 124, office (former gift storage) | - Floor: Concrete
- Baseboard: Wood at plywood walls; none at brick walls
- Walls: Brick and plywood
- Ceiling: Exposed roof construction
- Doors: Flush wood door at the interior; metal covered door at the exterior | - Floor: Carpet
- Baseboard: Resilient base
- Walls: Painted plywood
- Ceiling: Painted plywood
- Door: Painted flush wood dutch door at the interior; door at the exterior removed | N/A | - Floor: Good condition
- Baseboard: Good condition
- Walls: Good condition
- Ceiling: Good condition
- Door: Fair condition, some gouges at the edges |
| 125, hallway (former service passage, part of the service room, part of the trash room) | - Floor: Concrete with integral color at the service passage and he service room; concrete at the trash room
- Baseboard: Concrete with integral color at the service passage and the service room; concrete at the trash room
- Walls: Brick at the mechanical equipment room; plywood with wood buffer strips at the service passage; plywood at the service room; cement plaster on metal lath at the trash room
- Ceiling: Acoustical ceiling tile at the service passage; gypsum board at the service room; cement plaster on metal lath at the trash room
- Door: Metal covered door with clear vision lite at the loading dock; metal covered door at the trash room | - Floor: Quarry tile
- Baseboard: Quarry tile
- Walls: Painted brick at the chiller room; FRP at the north; painted plywood with wood buffer strips at the south and wood quarter round at the ceiling
- Ceiling: Painted plywood
- Door: Painted metal door with vision lite | Compatible | - Floor: Fair condition
- Baseboard: Fair condition
- Walls: Fair condition
- Ceiling: Fair condition
- Door: Fair condition |
| 125A, hallway (former chair and table storage and part of the general purpose room) | - Floor: Concrete floor in the chair and table storage; asphalt tile in the general purpose room
- Baseboard: Wood in the chair and table storage and the general purpose room
- Walls: Plywood in the chair and table storage; vertical 1x10 redwood siding in the general purpose room | - Floor: Quarry tile
- Baseboard: Quarry tile
- Walls: FRP
- Ceiling: Painted plywood | N/A | - Floor: Fair condition
- Baseboard: Fair condition
- Walls: Fair condition
- Ceiling: Fair condition |
<table>
<thead>
<tr>
<th>ROOM</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>N/A</td>
<td>Ceiling: Exposed roof construction in the chair and table storage room; acoustic ceiling tile in the general purpose room</td>
<td>Floor: Quarry tile</td>
<td>N/A</td>
<td>Floor: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doors: Two single flush wood doors at the chair and table storage room</td>
<td>Baseboard: Quarry tile</td>
<td></td>
<td>Baseboard: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Plywood</td>
<td>Walls: FRP</td>
<td></td>
<td>Floors: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Gypsum board</td>
<td>Ceiling: Dropped acoustical tile</td>
<td></td>
<td>Ceiling: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Door: Flush wood door</td>
<td>Door: Flush wood door</td>
<td></td>
<td>Door: Fair condition, some scuffs and chips at the bottom edge</td>
</tr>
<tr>
<td>127</td>
<td>N/A</td>
<td>Floor: Concrete with integral color</td>
<td>Door: Painted flush metal door with metal louvers at the exterior</td>
<td>N/A</td>
<td>Floor: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseboard: Concrete with integral color</td>
<td></td>
<td></td>
<td>Baseboard: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Plywood</td>
<td>Walls: FRP</td>
<td></td>
<td>Floors: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Gypsum board</td>
<td>Ceiling: Dropped acoustical tile</td>
<td></td>
<td>Ceiling: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Door: Flush wood door</td>
<td>Door: Flush wood door</td>
<td></td>
<td>Door: Fair condition, some scuffs and chips at the bottom edge</td>
</tr>
<tr>
<td>128</td>
<td>N/A</td>
<td>Floor: Concrete over corkboard insulation over structural slab</td>
<td>Doors: Painted metal freezer doors [original] (interior not surveyed)</td>
<td>Compatible</td>
<td>Doors: Fair condition, painted with several large scuffs and areas of finish loss at the interior; fair to good condition at the exterior, some minor paint loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseboard: Cement base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Cement plaster finish over corkboard insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Mastic finish over 4" corkboard insulation over vapor barrier over wood sheathing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doors: Butcher Boy super seal model-b metal freezer doors at the interior and the exterior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>N/A</td>
<td>Non-original</td>
<td>Floor: Quarry tile</td>
<td>N/A</td>
<td>Floor: Poor condition, worn in many areas with grout failure</td>
</tr>
<tr>
<td>Mountain Room</td>
<td></td>
<td></td>
<td>Baseboard: Quarry tile</td>
<td></td>
<td>Baseboard: Poor condition</td>
</tr>
<tr>
<td>kitchen</td>
<td></td>
<td></td>
<td>Walls: FRP</td>
<td></td>
<td>Floors: Fair to poor condition, some edge damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ceiling: Painted gypsum board</td>
<td></td>
<td>Ceiling: Fair to poor condition, some worn areas with visible joints</td>
</tr>
<tr>
<td>130</td>
<td>N/A</td>
<td>Non-original</td>
<td>Floor: Unfinished concrete</td>
<td>N/A</td>
<td>Floor: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Walls: Unfinished gypsum board</td>
<td></td>
<td>Baseboard: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ceiling: Exposed roof structure</td>
<td></td>
<td>Floors: Fair to good condition, some scuffs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Doors: Pair of painted metal doors with louvers</td>
<td></td>
<td>Walls: Good condition</td>
</tr>
<tr>
<td>131</td>
<td>N/A</td>
<td>Non-original</td>
<td>Floor: Carpet tile</td>
<td>N/A</td>
<td>Floor: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseboard: Wood</td>
<td></td>
<td>Baseboard: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Floors: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Walls: Good condition</td>
</tr>
<tr>
<td>132</td>
<td>Walls Ceiling</td>
<td>Floor: Asphalt tile</td>
<td>Floor: Carpet tile</td>
<td>Compatible</td>
<td>Floor: Good condition</td>
</tr>
<tr>
<td>Mountain Room</td>
<td></td>
<td>Baseboard: Wood</td>
<td>Baseboard: Wood</td>
<td></td>
<td>Baseboard: Good condition</td>
</tr>
<tr>
<td>Restaurant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Floors: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Walls: Good condition</td>
</tr>
</tbody>
</table>
Condition Assessment

<table>
<thead>
<tr>
<th>ROOM</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(former general purpose room)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Walls: One window wall at the north elevation; vertical 1x10 redwood siding and plywood at the south elevation; vertical 1x10 redwood siding at the east and west elevations</td>
<td>• Walls: One window wall at the north elevation; two window walls at the east elevation; stained vertical wood paneling</td>
<td>Ceiling: Good condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ceiling: Exposed roof construction with 1x4 Douglas fir sheathing in the center; acoustic ceiling tile in the end and side bays</td>
<td>• Ceiling: Exposed roof construction with stained sheathing and painted metal structure; stained sheathing and wood structure in the 1997 addition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Doors: Four pairs of steel sliding doors at the north elevation; two pairs of flush wood doors at the south elevation</td>
<td>• Doors: Paired aluminum storefront doors at the north elevation; stained and paired flush wood doors with vision lites at the west elevation; stained and paired single v-groove panel doors at the east elevation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133, men’s restroom (former part of the general purpose room)</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Floor: Asphalt tile</td>
<td>• Floor: Quarry tile</td>
<td>N/A</td>
<td>• Floor: Good condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Baseboard: Wood</td>
<td>• Baseboard: Glazed porcelain tile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Walls: Vertical 1x10 redwood siding</td>
<td>• Walls: Glazed porcelain tile and painted gypsum board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ceiling: Acoustic ceiling tile</td>
<td>• Ceiling: Stained linear wood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Door: Flush wood door with metal louveres</td>
<td>• Door: Stained flush wood door</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Partitions: Stainless steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134, women’s restroom (former men’s and women’s restroom)</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Floor: Vitreous ceramic tile</td>
<td>• Floor: Quarry tile</td>
<td>N/A</td>
<td>• Floor: Good condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Baseboard: Glazed ceramic tile</td>
<td>• Baseboard: Glazed porcelain tile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wainscot: Glazed ceramic tile, 4’-0” height</td>
<td>• Wainscot: Glazed porcelain tile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Walls: Gypsum board</td>
<td>• Walls: Painted gypsum board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ceiling: Gypsum board</td>
<td>• Ceiling: Stained linear wood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Door: Flush wood door with louvers</td>
<td>• Door: Flush wood door</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Partitions: Stainless steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135, foyer</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Non-original</td>
<td>• Floor: Large format stone pavers</td>
<td>N/A</td>
<td>• Floor: Good condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Baseboard: Wood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Walls: Stained vertical wood paneling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ceiling: Exposed roof construction with stained sheathing and structural members; dropped and stained linear wood ceiling at the restroom vestibule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Doors: Two paired aluminum storefront doors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136, storage (former chair and table storage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Floor: Concrete</td>
<td>• Floor: Quarry tile</td>
<td>N/A</td>
<td>• Floor: Good condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Baseboard: Wood</td>
<td>• Baseboard: Quarry tile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Walls: Cement plaster on metal lath</td>
<td>• Walls: Plastic laminate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ceiling: Exposed roof construction</td>
<td>• Ceiling: Painted gypsum board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Doors: Flush wood door</td>
<td>• Door: Stained wood dutch door with shelf at the interior</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Condition Assessment

<table>
<thead>
<tr>
<th>ROOM</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>137, garden terrace (former grille room, gift sales room, and gallery)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Floor: Quarry tile behind the counter and asphalt tile in the public areas at the grille room; asphalt tile in the gift sales room and the gallery</td>
<td>• Floor: Broadloom carpet in the general seating area; quarry tile at the east elevation and the northeast doors; quarry tile at the Food Court line</td>
<td>Compatible</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Baseboard: Wood in the grille room, the gift sales room, and the gallery</td>
<td>• Baseboard: Wood at wood walls; quarry tile at the Food Court line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Walls: Horizontal 1x10 redwood siding and 2x4 fiberglass panels at the north, east and south elevations of the grille room; horizontal 1x10 redwood siding at the west elevation of the grille room; gypsum board and 2x4 fiberglass panels at the north and south elevations in the gift sales room; fiberglass panels at the east elevation in the gift sales room; gypsum board at the west elevation in the gift sales room; vertical 1x10 redwood siding at the north elevation in the gallery; vertical 1x10 redwood siding at the east and north elevations of the gallery; fixed glass at the south elevation of the gallery</td>
<td>• Walls: Stained vertical wood siding at three walls; stained vertical wood siding and a window wall with a board form concrete curb and window louvers at the east; medium format porcelain tile at the Food Court line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ceiling: Exposed roof structure at the public area and metal pan acoustic tile at the counter in the grille room; exposed roof structure in the gift sales room; acoustic tile in the gallery</td>
<td>• Ceiling: Painted exposed roof construction with painted wood sheathing in the general seating area; painted gypsum board and wood siding at the Food Court line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Doors: Three pairs of wood frame sliding doors with plastic filler panels at the west elevation of the gallery; two pairs of wood doors with full-height clear plate glass and metal thresholds at the east elevation of the gallery; pair of wood doors with full-height clear plate glass and metal threshold at the north elevation of the gallery; two single flush wood doors at the west elevation of the grille room; single flush wood door at the west elevation of the gift sales room</td>
<td>• Doors: Two paired flush wood doors at the west elevation; two paired aluminum storefront doors with glazing at the east elevation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138, nature shop (former grill court)</td>
<td>• Exposed roof structure with painted sheathing</td>
<td>Space enclosed in 1957 (during period of significance)</td>
<td></td>
<td>Compatible</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Floor: Unknown, possibly exposed concrete</td>
<td>• Floor: Large format ceramic tile</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Baseboard: Unknown, possibly concrete</td>
<td>• Baseboard: Wood baseboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Walls: 1x10" wood siding at west wall, Arislide doors to match adjacent rooms at east wall</td>
<td>• Walls: Painted gypsum board, glazed wall on concrete curb at east</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ceiling: Exposed roof structure with painted sheathing</td>
<td>• Ceiling: Exposed roof structure with painted sheathing (original)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Doors: Single glazed aluminum entry door; paired glazed aluminum entry doors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138A, storage (formerly part of outdoor terrace)</td>
<td></td>
<td>Same as 138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Floor: Large format ceramic tile</td>
<td>• Floor: Large format ceramic tile</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Baseboard: None</td>
<td>• Baseboard: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Walls: Painted gypsum board</td>
<td>• Walls: Painted gypsum board</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ceiling: Exposed roof structure with painted sheathing (original)</td>
<td>• Ceiling: Exposed roof structure with painted sheathing (original)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Door: Single flush wood door, painted</td>
<td>• Door: Single flush wood door, painted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139, store room (former post office and cliff room)</td>
<td></td>
<td>Floor: Asphalt tile at the post office; asphalt tile and concrete with integral color behind the bar at the cliff room</td>
<td>Floor: Sheet vinyl</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Baseboard: Wood at the post office and the cliff room</td>
<td>• Baseboard:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Architectural Resources Group | Yosemite Lodge Food Service Building
Condition Assessment

<table>
<thead>
<tr>
<th>ROOM</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>CURRENT MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Walls: Plywood at the post office and the cliff room</td>
<td>Walls: Exposed wood framing at the south wall; painted gypsum board at the remaining walls</td>
<td>Ceiling: Fair to good condition, some failure at joints</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Gypsum board at the post office and the cliff room</td>
<td>Ceiling: Painted gypsum board</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doors: Single flush wood door at the northwest vestibule of the cliff room; single flush wood door at the east entry to the cliff room; single flush wood door at the post office</td>
<td>Doors: Paired flush wood doors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section Eight

Historic Preservation Objectives

HISTORIC PRESERVATION OBJECTIVES

The Yosemite Lodge Food Service Building was determined eligible for listing on the National Register of Historic Places as a contributing building to the Yosemite Lodge Historic District (SHPO 2017). As such, all future work at the site should be completed in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Properties (The Standards). The recommendations and guidelines set out in this HSR are based on The Standards.

The Standards provide general information for stewards of historic resources to determine appropriate treatments. They are intentionally broad in scope to apply to a wide range of circumstances and are designed to enhance the understanding of basic preservation principles. The Standards are neither technical nor prescriptive, but are intended to promote responsible preservation practices that ensure continued protection of historic resources. There are four basic treatments outlined in The Standards: preservation, rehabilitation, restoration, and reconstruction. Each level of treatment has its own set of standards that guide the approach to work. Generally, in planning for anticipated work on a historic structure, one of the four treatment levels is selected as the overall treatment approach.

Due to the needs related to the building’s on-going use as a dining facility for park visitors, the treatment selected for the Yosemite Lodge Food Service Building is rehabilitation. The Secretary of the Interior’s Standards for Rehabilitation are included for reference in Appendix F. According to the Secretary of the Interior:

Rehabilitation is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values.

Rehabilitation is further described as acknowledging “the need to alter or add to a historic property to meet continuing or changing uses while retaining the property’s historic character.”

Rehabilitation assumes that at least some repair or alteration of the historic resource will be needed in order to provide for an efficient contemporary use; however, these repairs and alterations must not damage or destroy materials, features, or finishes that are important in defining the resource’s historic character. For example, certain treatments – if improperly applied – may cause or accelerate physical deterioration of the historic resource. This can include using improper repointing or exterior masonry cleaning techniques, or introducing insulation that damages historic fabric. In almost all of these situations, use of these materials and treatments will result in a project that does not meet The Standards.

In keeping with The Standards, interventions, structural improvements, and ongoing maintenance should be undertaken as necessary while minimizing the loss of historic fabric and retaining the existing form and appearance of the historic features. If possible, interventions should be designed to be reversible. Features should be thoroughly documented photographically before any work is undertaken in order to chronicle changes and to aid in reversing any alterations that become inappropriate in the future.

The ultimate use of the Yosemite Lodge Food Service Building is the continuation of its historic use as a dining facility for visitors to the Yosemite Valley. Even with a continued use, there are material deficiencies that should be addressed. In addition, alterations to the building are needed to provide a universally safe and accessible environment. The following sections detail requirements and recommendations for the treatment of the Yosemite Lodge Food Service Building.

Section Nine
Requirements for Work

APPLICABLE CODES, LAWS, AND REGULATIONS

Compliance with prevailing building codes is not required for existing buildings, unless they undergo an addition, alteration, repair, or change in use or if a code deficiency presents a distinct hazard to life safety. This report assumes that rehabilitation may be undertaken in the future and provides guidance for this. According to NPS Director’s Order 28, historic structures are “generally expected to meet modern safety, access, and energy efficiency standards,” but it is also understood that the character of the historic resource may limit the interventions that are acceptable. The following preliminary analysis by Architectural Resources Group outlines the larger code, fire protection, life safety, and accessibility issues that currently exist at the Yosemite Lodge Food Service Building.

The governing building codes for any proposed work include:

- 2015 International Building Code (IBC)
- 2015 International Existing Building Code (IEBC)

Additional applicable codes, laws, and directives include:

- 2015 International Mechanical Code (IMC)
- 2015 National Electrical Code (NEC) (NFPA 70)
- 2015 International Plumbing Code (IPC)
- 2015 Architectural Barriers Act Accessibility Standards (ABAAS)
- Director’s Order #42 (Accessibility for Visitors)
- Memorandum to Regional Directors and Park Superintendents: Disability Access in the National Park Service, 2006
- 2013 FDA Food Code (for restaurant and kitchen spaces)

The prevailing code, the IBC, prescribes solutions to conditions based on new construction models. When conformance with prevailing code would adversely affect the historic character of a qualified historic building, the IEBC may be invoked as a means to preserve historic fabric and explore solutions that meet the intent, but not necessarily the letter, of the prevailing codes. As a building identified as contributing in the consensus determination of eligibility for the Yosemite Lodge Historic District, the Yosemite Lodge Food Service Building is considered a historic building under the IEBC and the provisions of IEBC Chapter 11 and IBC Chapter 34 may be used.

The California State Historic Building Code, (CHBC), may also be referenced, although it is not recognized as a Standard Code by the NPS. The CHBC is a performance-based code, which allows for alternative solutions to be considered in achieving the intended life-safety objectives of more prescriptive building codes in order to preserve historic features.

In addition to the IBC and IEBC, fire and life safety issues in the national parks are governed by the code of The National Fire Protection Association (NFPA). The primary NFPA code applicable to this building is NFPA 101, the Life Safety Code. Other NFPA codes to be considered include NFPA 70, the National Electric Code; NFPA 72, the National Fire Alarm Code; and NFPA 914, Code for Fire Protection in Historic Structures. Like the CHBC, NFPA 914 provides for performance-based approaches and operational solutions that meet the intent of NFPA 101 with the least impact on a building’s historic character.

Although not a building code, the Architectural Barriers Act (ABA) is a federal civil rights law enacted in 1968 that governs disabled access to facilities designed, built, altered or leased with certain federal funds. In 2015, new design standards were released for new or altered facilities covered by the ABA. The 2015 ABA Accessibility Standards (ABAAS) have been used in this analysis.

CODE REQUIREMENTS

Type of Construction

The Yosemite Lodge Food Service Building is constructed with a mix of combustible and non-combustible materials. In the portion of the building built in 1956, the primary structural beams and columns are non-combustible steel, however, the exterior walls, interior walls, and roof deck are constructed with combustible wood framing. In only a few areas, consisting of the mechanical and boiler rooms, the walls are constructed of concrete masonry unit at both the interior and exterior. In the portion of the building built in 1997, the structural members are heavy timber. As such, the building would be considered Type V-B construction. Type V is described in IBC Section
Requirements for Work

602.5 as “that type of construction in which the structural elements, exterior walls and interior walls are of any materials permitted by this code.” Type V-A requires a 1-hour rated structural frame, while V-B requires no fire-resistance rating of any building elements.

Occupancy Group

Chapter 3 of the IBC defines the different types of uses for each occupancy group. As a cafeteria and restaurant, the Yosemite Lodge Food Service Building falls into the Assembly, or A, occupancy group. The IBC further characterizes assembly occupancies by the density of the crowds to be expected in that use. Restaurants and bars fall into the A-2 group.

Allowable Area and Height

As described above, the Yosemite Lodge Food Service Building is an A-2 occupancy. For A-2 occupancies of Type V-B construction, per Chapter 6 of the IBC, the building is limited to one story with a maximum height of 40 feet and the maximum area permitted is 6,000 square feet. The building is currently one story with a maximum height of 26 feet and 29,294.8 square feet in area. As such, it is not in compliance with the allowable building area requirement set forth in the IBC. This requirement need not be met if the building does not undergo an alteration in use. However, if the building were equipped with an automatic fire sprinkler system throughout, the code limitations would increase to 2 stories with a maximum area of 18,000 square feet. Despite this increase in allowable area, the building would not comply with IBC requirements. Again, compliance is not required if the use does not change.

Occupant Load and Egress Paths

Chapter 10 of the IBC establishes the number of allowable occupants in the building (the occupant load) based on the different building functions and the area of each within the building. The number of required exits and the required width for each exit path is then determined from the occupant loads being served.

The Yosemite Lodge Food Service Building has four functional uses: assembly areas of the Mountain Room Restaurant, Garden Terrace and Food Court, including the commercial kitchen areas (occupant load of 15 net square feet per occupant); mercantile areas of the Garden Terrace (occupant load of 60 gross square feet per occupant); office areas (occupant load of 100 gross square feet per occupant); and accessory storage and mechanical areas (occupant load of 300 gross square feet per occupant). Applying these ratios to the area of the spaces related to these functions, the total occupant load for the building was determined to be 1141 occupants. Floors of a building or individual rooms of Assembly occupancy type with an occupant load exceeding 49 are required to have two exits. This requirement applies to the Food Court, Garden Terrace and Mountain Room Restaurant. Additionally, the two required exits must be separated by a distance not less than one half of the longest diagonal length of the floor in buildings without fire sprinklers. The configuration of the existing exit doors in the aforementioned spaces conform to this requirement.

The building code also stipulates minimum required widths for the exiting doorways and stairs. The combined occupant load of 1141 requires a minimum total exit doorway width of 229 inches. This building is served by 24 doors with a combined width of 1296 inches.

A minimum level of illumination and exit signage is required for all exit paths. The illumination must be provided by lights connected to an emergency power system that will operate when the building power fails. A comprehensive evaluation of these systems was not performed, but it was noted that exit signs and emergency lights are not mounted throughout the building. However, illuminated exit signs are present at the Mountain Room Restaurant and Food Court spaces.

Exit doors also have technical requirements for thresholds to reduce tripping hazards and maximum opening force limits to operate the latching hardware and overcome any door-closer device. A survey of these features was not performed as part of this study.

Toilet Fixtures

Chapter 29 of the IBC provides the requirements for the minimum number of plumbing fixtures based on the occupancy group and the number of occupants (Table 2902.1). The required number of fixtures are eight water closets and three lavatories for each sex (total of 16 water closets and six lavatories), and three drinking fountains. The existing facilities are sufficient to meet the code requirements for water closets and lavatories, as there exists 12 water closets and seven lavatories for male occupants, and 10 water closets and nine lavatories for female occupants (total of 22 water closets and 16 lavatories). The existing facilities contain two drinking fountains, located adjacent the restrooms of the Mountain Room Restaurant. Water is also available to patrons in the Food Court.

Human Safety (Egress)

As noted earlier in this section, the means of egress from the Yosemite Lodge Food Service Building are generally compliant with the IBC. This includes door and corridor widths, number of exits, and length of travel to the exits. The element not in compliance is the
lack of illuminated exit signs and emergency lights throughout the building.

Fire Protection

Fire protection systems including fire alarms, smoke detectors and sprinklers are not required by code if the building is not undergoing a change in use.

Energy Conservation

NPS is committed to leadership in sustainability practices. New buildings and major renovations are required to meet federal sustainability requirements, but upgrades are only required if a major renovation is planned and executed.

Hazardous Materials Abatement

Lead is typically an issue in buildings painted prior to 1978. Due to the building’s age, lead paint is likely to be found throughout the interior and exterior finishes of the Yosemite Lodge Food Service Building. Although lead paint is likely present, it does not need to be removed if the paint coatings remain intact (i.e., they are not crumbling or peeling from the wall surface). Asbestos is also potentially present, typically in insulation, roofing cement or previous floor coverings. Extant asphalt tiles beneath current flooring likely contain asbestos. Abatement of asbestos is not required unless the materials are friable and will be disturbed during demolition work.

Universal Accessibility

In addition to the governing codes, NPS Management Policies require all historic structures to provide the “highest feasible level of physical access to historic properties that is reasonable, consistent with the preservation of each property’s significant historical features.”

A comprehensive accessibility survey was not performed as part of this study. The building appears to provide a high level of physical access for visitors and staff and to be in compliance with the Architectural Barriers Act (ABA).

1 NPS Management Guidelines 2006, 5.3.2.
This page intentionally left blank.
Section Ten

Work Recommendations and Alternatives

ARCHITECTURAL RECOMMENDATIONS

The following architectural recommendations are based on conditions observed during a visual survey of the Yosemite Lodge Food Service Building in late December 2016. The Food Court was identified as the sole area of primary significance. The character-defining features within this space should be retained to the greatest extent possible. Some character-defining features also remain in spaces of secondary significance. Although sensitive alteration of these spaces may be acceptable, the character-defining features should remain intact. Non-contributing service areas have been modified over time, and further alteration of these spaces may be considered.

Human Safety (Egress)

The means of egress from the Yosemite Lodge Food Service Building are generally compliant as previously noted. As the stairs of the loading dock at the south and west elevations either do not have handrails, or the existing handrails do not conform to ADA/ABA standards, it is recommended that these elements are upgraded. Additionally, it is recommended that code compliant illuminated exit signs and emergency lighting are mounted throughout the building to provide safe egress for building occupants in the event of an emergency.

Fire Protection

Although not required, consideration should be given to the installation of a sprinkler system throughout the building to protect the building and its occupants. Of particular concern is the lack of fire sprinklers in a high-density assembly space such as the Food Court.

If sprinklers are added, the system should be carefully designed to avoid impacting the character-defining features and spaces of the building. Design documents should include locations of piping runs as well as sprinkler heads. Locating the piping along exposed structural elements and painting it to match these elements is recommended. This may not be possible in the Food Court unless the light fixtures are replaced or otherwise modified. It appears that the original light fixtures would pose less of a problem with that piping scheme.

Energy Conservation

A general approach to energy conservation at the Yosemite Lodge Food Service Building should include balancing performance with the preservation of historic materials. As long as the historic exterior siding, windows, and doors remain in good condition, they should be maintained in situ. The addition or improvement of weatherstripping at the exterior doors and windows will improve thermal performance. The replacement of existing plumbing fixtures with low-flow devices is also recommended.

Hazardous Materials Abatement

Although lead paint is likely present in the building, it does not need to be removed if the paint coatings remain intact (i.e., they are not crumbling or peeling from the wall surface). A survey to determine if asbestos is present in the building is recommended.

Universal Accessibility

There are no recommendations regarding accessibility at this time.

MATERIAL CONSERVATION RECOMMENDATIONS

General Approach

The materials conservation recommendations in this section are based on conditions observed during a visual survey of the Yosemite Lodge Food Service Building. Recommendations are included for repair and maintenance, generally referred to as treatments. Treatments carried out on historic buildings typically respond to goals related to the preservation of materials and elements original to a building’s construction. Original or historic building materials, also known as historic fabric, contribute to the significance of a building because they inform the degree of architectural integrity a building retains. Historic fabric is tied to two aspects of integrity: “feeling” and “workmanship.” Often historic fabric represents traditional materials or building techniques which are no longer part
Work Recommendations and Alternatives

of common construction practice. Retaining historic fabric increases the authenticity of character-defining elements and serves broader preservation goals of advancing knowledge about the history of building design and technology. Treatments need to be both visually appropriate to retain character-defining features, and physically compatible to minimize loss of and damage to historic building materials.

It is important that all future work to the Yosemite Lodge Food Service Building shall be carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Properties (The Standards and The Guidelines). The Standards provide a framework for determining appropriate treatments for historic properties and are discussed elsewhere in this document. The Guidelines establish a hierarchy of treatments for materials and features that have been identified as character-defining and therefore should be retained and preserved:

- **Protection** generally involves the least degree of intervention possible, and includes the maintenance of historic material through preventive treatments such as cleaning, rust removal, caulking, and painting.

- **Repairing** is recommended when the physical condition of character-defining features and materials warrant additional work and should involve the least degree of intervention possible. Limited replacement in-kind or the use of substitute materials is also allowed.

- **Replacement** of a feature is permitted when it is missing or beyond repair, but only if sufficient evidence or documentation exists to reproduce the feature, and if it is desirable to re-establish the feature. Replacement with a new design may be acceptable if it is compatible with the character-defining features of the building.¹

The Yosemite Lodge Food Service Building historically served as a restaurant and cafeteria, and it continues to be used in this manner today. In keeping with The Standards, recommended exterior and interior treatments will focus on the preservation of existing historic fabric and retaining the existing form and appearance of the historic features. Replacement will only be considered for severely deteriorated or compromised materials, and replacement materials should be selected and finished to match the historic materials (i.e., in-kind replacement).

Treating and Maintaining Historic Buildings

Architectural treatments recommended in this section encompass both repairs and conservation measures. Repairs refer to procedures associated with routine activities such as cleaning and painting, but also address standard maintenance measures that nonetheless require specialized skills and materials to address the needs of the historic buildings. Conservation treatments refer to methods that save or preserve existing historic materials rather than replacing them. Before they are implemented on historic features, new or unproven treatment materials and methods should be tested for physical, chemical, and visual compatibility with historic materials.

Proper and timely maintenance is crucial to the long-term preservation of historic buildings. The purpose of maintenance is to prolong the life of building materials and to protect the investments made in their construction and repair. Regular and well-timed preventive measures greatly reduce the cost of maintaining materials and systems by detecting deficiencies and deterioration before they become severe. A written Maintenance Plan can be useful to support planning and implementation of architectural treatments, including preventive maintenance. A Maintenance Plan should provide scoping and conceptual costs for repair projects, identify appropriate materials and methods for treating historic fabric, and establish inspection schedules for the continued upkeep and preventive care of building materials and systems.

Maintenance and repairs to the Yosemite Lodge Food Service Building should focus on retaining and preserving intact character-defining features such as the exposed steel frame structure and sheathing, glazed walls with associated sliding doors, redwood siding, eave overhangs and wood soffits, wall and ceiling finishes, and the exposed aggregate concrete panels at the south patio. Preventive maintenance including the periodic renewal of protective coatings, glazing putty, and sealants is critical to the long-term durability of historic fabric. Cleaning to remove dirt, debris, stains and biological growth is also recommended to decrease the decay of building materials. If possible, deteriorated features should not be replaced; rather, they should be repaired using small-scale patching, Dutchman repairs, or replacement of individual components.

Work Recommendations and Alternatives

The following are recommendations for treatment and maintenance of the exterior and interior features of the Yosemite Lodge Food Service Building.

Site and Exterior Features

Grading and Site
- Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at masonry and wood surfaces, and duff piles are a fire hazard in dry conditions.
- Remove trees within close enough proximity to cause damage to the building and its foundation presently, and in the future. The tree at the southwest corner of the Food Court should be removed to allow for repairs to the damaged fascia and copper flashing.

Loading Dock
- Clear tree duff periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at masonry, and duff piles are a fire hazard in dry conditions.
- Repair eroded concrete at door recess adjacent to Room 121.
- Repair cracked and spalled concrete at the north elevation.

Fences
- Rebuild/support the tilted fence sections.
- Existing fence at the west, adjacent the loading dock, is consistent with the original design and materials. Repairs and replacements to be in-kind.
- Mitigate rot and moisture damage of wood through the use of wood preservative treatment and repairs in-kind. Repair splits in the wood.
- Prep and paint the entire fence. Treat bare wood with wood preservative. Match the existing paint color.
- Monitor wood for insect and water damage.
- Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at wood surfaces, and duff piles are a fire hazard in dry conditions.

Pedestrian Walkways & Patios
- Wash concrete walkways at low pressure to remove dirt, debris and stains. Use chemical cleaners to remove difficult stains.
- Patch losses in walkway surfaces, matching appearance of the adjacent concrete. At Patio #2, match color and aggregate of the original exposed aggregate pavers.
- Treat the redwood divider strips with preservative and stain. Patch losses or areas of rot, matching adjacent material.
- Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at masonry and wood surfaces.

Covered Walkways
- Clean walkway roofs to remove dirt, tree duff and biological growth periodically.
- Clean the shingles above the walkways to remove biological growth.
- Clean the flashing to remove dirt, debris and stains.
- Renew finishes periodically to prevent cellular structure of the wood from being damaged. Match existing finish type and color.
- Mitigate rot and moisture damage of wood through the use of wood preservative treatment and repairs in-kind. Repair splits in the wood.
- When possible, conduct an analysis to confirm the original finish of the exposed sheathing. Return to original finish when feasible.

Roofing

Roofing
- Clean the roof to remove dirt, tree duff and biological growth periodically.
- Clean the shingles at the east elevation to remove biological growth.
- Clean the flashing to remove dirt, debris and stains. Reinstall displaced fascia at the southwest corner.
- Clean the gutters to remove dirt and debris. Diligent maintenance is necessary to ensure good drainage in heavily vegetated areas.
- Replace the displaced and damaged gutter sections at the east elevation of the Garden Terrace and at the west elevation of the loading dock.
- Renew finishes periodically to prevent cellular structure of the wood from being damaged. Match existing finish type and color.
- Monitor wood for insect and water damage; use resistograph to detect decay and cavities in all wood.
- When the asphalt shingle roof reaches the end of its service life, replace with rolled roofing product to match original (see original drawings). If feasible, recreate the flashing detail to match the original roof edging detail. Refer to the historic drawings for more information.
Work Recommendations and Alternatives

Roof Soffits
- Clean soffit surfaces to remove dirt, debris, and cobwebs periodically.
- Renew finishes periodically to prevent cellular structure of the wood from being damaged. Match existing finish type and color.

Exterior Walls
Foundation/Concrete Walls
- Repair cracked and spalled concrete.
- Clean concrete to remove general soiling and biological growth periodically.
- Provide thorough cleaning at the site of copper downspouts at the east elevation of the restaurant. If feasible, provide a larger gap between the concrete and downspouts. Water pouring over copper adjacent to concrete causes heavy staining.
- Consider applying sealer to the concrete stem wall to provide a barrier against water intrusion and protect against spalling, freeze-thaw damage, stains, deicing salts, and abrasion.
- Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at concrete and promotes biological growth.

Exposed Steel Framing
- When possible, conduct a paint analysis to determine the original color of the beams at the interior and exterior. Original marketing photographs show a different paint color.
- Paint exposed steel framing at the east elevation to match steel framing at other elevations. Currently, these members are painted black while the steel members at the other elevations are painted light beige.

Wood Siding
- Clean to remove dirt, debris, biological growth and stains.
- Prep and paint the siding as required. Treat bare wood with wood preservative. Wood siding exposed to direct sun will require frequent renewal.
- When possible, conduct an analysis to confirm the original finish of the redwood siding. Original photos show a stained rather than painted finish.
- Mitigate rot and moisture damage of historic wood through the use of wood preservative treatments, repairs, and epoxy fills. Losses may be filled as Dutchman repairs or with epoxy repair compound, shaped to match adjacent wood. Where historic wood is too damaged to be repaired, replace in-kind. New wood elements should be the same size and shape as the historic, and if possible be the same wood species.
- At the end of its service life, all non-original siding at original walls should be replaced to match the original tongue and groove redwood siding.
- Repair splits in the wood.
- Monitor wood for insect and water damage; use resistograph to detect decay and cavities in all wood.
- Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture and contributes to wood deterioration and biological growth as evidenced by rot present at the base of the siding.

Exterior Windows and Doors
North Elevation, Kitchen
- Clean to remove dirt, debris, cobwebs and stains.
- Remove paint from the window glass.
- Conduct minor repairs to the steel elements as required.
- Spot paint steel mullion areas where paint has deteriorated. Match existing paint color.
- Lubricate awning windows and doors to ensure smooth and proper operability.
- Renew paint coatings at doors of Room 114 to match existing.
- Replace damaged hardware in-kind.

East, South, & West Elevations, Food Court
- Clean to remove dirt, debris and cobwebs.
- Lubricate awning windows and doors to ensure smooth and proper operability.
- Remove excess paint at window and door glazing.
- When window and door hardware is too damaged to be repaired, replace in-kind.
- If doors are to be operable, provide screens at all sliding doors as per the original drawings.

South Elevation, Kitchen
- Clean to remove dirt, debris and cobwebs.
- Lubricate awning windows and doors to ensure smooth and proper operability.

West Elevation, Mechanical Rooms
- Clean to remove dirt, debris and cobwebs.
Work Recommendations and Alternatives

- Repair the louvered doors at Room 108. Replace the damaged louveres. Renew the paint coatings; match the existing paint color.

West Elevation, Loading Dock
- Clean to remove dirt, debris and cobwebs.
- Lubricate awning windows and doors to ensure smooth and proper operability.
- Remove excess paint at window and door glazing.
- When window and door hardware is too damaged to be repaired, replace in-kind.

Air Vent Covers
- Clean to remove dirt, debris and cobwebs.
- Spot paint covers that have deteriorated paint. Match existing paint color.

Interior Features and Finishes

Ceiling
- Clean the original wood ceiling to remove dirt, debris, and cobwebs periodically.
- Renew finishes periodically to prevent cellular structure of the wood from being damaged. Ceiling areas closer to windows may require more frequent renewal of finish.

Lighting
- Future lighting selections should match the mid-century style from the original era of construction.

Wood Paneling
- Clean to remove dirt and cobwebs. Generally historic surfaces should be cleaned rather than painted. Spot painting should be implemented to the greatest extent possible rather than complete renewal of paint coatings.
- Remove paint at the original wood paneled wall surfaces and stain to match the original treatment. When changes to the wall finishes are considered, returning to the original redwood vertical paneling in the Food Court at the public restrooms is recommended.

Floors
- Clean to remove accumulation of dirt and stains.
- Conserve and maintain original stained concrete floors. Protect with coverings, especially in high traffic areas.
- Repair ceramic tile and quarry tile floor finishes as required. If necessary, replace damaged tiles matching existing tiles whenever possible.

- When changes to the flooring are considered, replicating the historic tile pattern in the Food Court is recommended.

Doors
- Clean to remove dirt, debris and stains.
- Prep and paint existing painted doors as required. Match existing paint color.
- Lubricate hardware periodically. Ensure smooth operability of all doors.
- When changes to the windows are considered, replacing the wood sash window and exterior wall at Peet’s Coffee with a full-height steel-framed window wall to match the original design intent and surrounding Food Court exterior is recommended.

Public Restrooms
- No treatment required.

BUILDING SYSTEMS RECOMMENDATIONS

Structural
- Perform a geotechnical investigation prior to rehabilitation design.
- Analyze the building using the procedures of ASCE 41, “Seismic Rehabilitation of Existing Buildings.”
- Review the main steel frames. Strengthening, if needed, could include improvements at the beam to column joint to increase ductility.
- Strengthen wood shear walls, possibly by adding plywood on the interior, and improving foundation capacity.
- Improve collector continuity and strength by improving connections at the tops of exterior walls.
- Verify deformation capacity of the glazing in the tall window walls.
- Check the cooling tower support frame and strengthen/repair as needed.
- Perform minor strengthening and repairs at the loading dock and service yard area, including strengthening of the 2x4 railing and the loose railing post at the wood-framed walkway; repair of concrete spalls (particularly at walking surfaces, concrete steps, and railing embedment); and repair of the failing fence at the propane gas tank yard.
Work Recommendations and Alternatives

Mechanical

- All fan coil units are past their expected lifespan and are due for replacement. It is recommended that new units are based on 4-pipe fan coils.
- Phase out existing 2-pipe fan coils to unify 4-pipe system throughout the entire facility. This includes the rest of the buildings that are tied to the central plant (boiler + chiller).
- Existing boilers are in working condition but need to be serviced and repaired as necessary. Steam piping, valves and fittings need to be repaired where severe signs of rust are present. Insulation will need to be replaced in those sections where it is damaged.
- In the future, when the boilers are due for replacement, a hydronic system is recommended, eliminating the need for the heat exchangers at the chiller room. The target is to migrate from a steam boiler and 2-pipe system to a 4-pipe system supported by a central plant with a chiller and hydronic boilers.
- Cooling tower serving the chiller is at the end of its lifespan and will be soon due for replacement.
- Split Garden Terrace zone into two different zones served by one unit each.

Plumbing

- Service and repair leaks in domestic hot water expansion tank and piping at the storage tank.
- Video survey the sanitary sewer completely. Repair and replace damaged sections and install root barriers to prevent the problem from repeating.

Electrical

- Replace the electrical panels with modern panel boards and circuit breakers. Panel directories in the older panels should also be updated to more accurately and legibly identify the existing loads served.
- Replace older fluorescent fixtures with more modern and energy efficient LED fixtures.
- Install automatic lighting controls, providing a timeclock and/or occupancy motion sensors in non-public spaces.
- Exit signs should be installed in spaces with occupancy loads greater than 49 to meet current code.
- In the future, install additional or upgrade data cabling to meet increased data bandwidth requirements.

- Upgrade the main fire alarm panel to a newer standard from the same manufacturer. Additional existing devices may also need to be replaced.
- Provide additional fire alarm coverage to meet current NFPA 72 requirements for full public area strobe light and alarm notification horns.
Appendix A

Bibliography

BOOKS

MANUSCRIPTS

ARTICLES

Doane Yawger, “Retired architect has turned his love of art into a profitable passion,” Merced Sun-Star, 21 January 2008.
Appendix A

ONLINE SOURCES

ARCHIVES

Denver Service Center, Technical Information Center, National Park Service, Denver, Colorado

 E-Tic Database

Yosemite National Park Archives (manuscripts, documents, drawings, photographs)

 Concessions Management Records
 Environmental Planning & Compliance Records
 Yosemite Newspaper Collection
 Yosemite Park & Curry Company Collection
 Yosemite Resource Management Records

Yosemite National Park Research Library (manuscripts, documents, drawings, photographs)

 Photograph Collection (YP&CC, Yosemite Lodge)
 Card Catalog

INTERVIEWS

Don Evans, Yosemite National Park, 19 December 2016
Appendix B

Historic Photographs

Yosemite Lodge Food Service Building under construction, December 1955 (Yosemite National Park Research Library Negative Files).
Yosemite Lodge Food Service Building under construction, December 1955 (Yosemite National Park Research Library Negative Files).
Historic Photographs

Yosemite Lodge Food Service Building under construction, December 1955 (Yosemite National Park Research Library Negative Files).
Historic Photographs

Yosemite Lodge Bar & Restaurant, with Food Service Building on the right, after completion, c.1957 (Yosemite National Park Research Library Negative Files).
Yosemite Lodge Food Service Building after completion (south elevation of the Food Court), c.1960 (Yosemite National Park Archives, YP&CC Collection, photographer: Philip Hyde).
Yosemite Lodge Office Building after completion (looking toward southwest corner), c.1956 (Yosemite National Park Archives, YP&CC Collection).
Yosemite Lodge Food Service and Lounge Buildings after completion (looking north toward Lounge Building), c.1960 (Yosemite National Park Archives, YP&CC Collection).
Looking north toward Yosemite Lodge Lounge Building after completion, no date (Yosemite National Park Archives, YP&CC Collection).
Historic Photographs

Yosemite Lodge Dining Patio, north elevation of the Mountain Room Restaurant, c.1960 (Yosemite National Park Archives, YP&CC Collection).
Yosemite Lodge Dining Patio, c.1960 (Yosemite National Park Archives, YP&CC Collection).
Yosemite Lodge Dining Patio, c.1960 (Yosemite National Park Archives, YP&CC Collection, photographer: Philip Hyde).
View of the Yosemite Lodge Lounge Building, north elevation, c.1960 (Yosemite National Park Archives, YP&CC Collection).
View of the Yosemite Lodge Lounge Building, north elevation, c.1960 (Yosemite National Park Archives, YP&CC Collection).
Historic Photographs

View of the Food Court, facing southeast, c.1956 (Yosemite National Park Archives, YP&CC Collection).
View of the Food Court, facing north, c.1960 (Yosemite National Park Archives, YP&CC Collection).
Historic Photographs

View of the Mountain Room, facing north, c.1956 (Yosemite National Park Archives, YP&CC Collection).
View of the Mountain Room, facing northeast toward the Lounge Building and Yosemite Falls, c.1956 (Yosemite National Park Archives, YP&CC Collection).
Historic Photographs

View of the Mountain Room, facing west toward the pass-thru, 1967 (Yosemite National Park Archives, YP&CC Collection).
View of the Mountain Room, facing northwest toward the pass-thru, c.1970 (Yosemite National Park Archives, YP&CC Collection).
Interior view of the Yosemite Lodge Lounge Building, looking toward the Food Service Building, c.1956 (Yosemite National Park Archives, YP&CC Collection).
Historic Photographs

Four Seasons Restaurant, facing northeast, c.1960 (Yosemite National Park Archives, YP&CC Collection).
Appendix C

Selected Drawings
Selected Historic Drawings
Yosemite Lodge - 1955
Eldridge T. Spencer & Wm. Clement Ambrose, Architects
Selected Historic Drawing

Master Plan Development of Recreation, Parking & Public Use Areas, 1956

Eldridge T. Spencer & Wm. Clement Ambrose, Architects
Selected Historic Drawings

Enclosure of Grill Court, Yosemite Lodge, 1957

Eldridge T. Spencer & Wm. Clement Ambrose, Architects
Selected Historic Drawings
Revisions to the Mountain Room Food Service, Yosemite Lodge, 1966
Spencer, Lee & Busse, Architects
Selected Drawings

Yosemite Lodge Food & Bev., Construction Drawings, 1997

Esherick Homsey, Dodge & Davis, San Francisco
EXTERIOR ELEVATION AT COVERED WALK
Appendix D

Existing Condition Photographs

All photographs are by ARG, taken during December of 2016.

EXTERIOR

View of the north elevation at the loading dock.
Existing Condition Photographs

View of the west elevation at the loading dock.

View of the west elevation at Boiler and Dry Storage Rooms.
View of the west elevation at the Air Handler Room and Freezer 130.
Existing Condition Photographs

View of the west elevation at Kitchen 129, looking south.
Existing Condition Photographs

View of the south elevation at the Power Washing and Mechanical & Electrical Equipment Rooms.
Existing Condition Photographs

View of the west elevation at the Dish Room.
Existing Condition Photographs

View of the west elevation at the Food Court and Women’s Restroom.
Existing Condition Photographs

View of the south elevation at the Food Court.
Existing Condition Photographs

View of the southwest elevation at the Food Court.
Existing Condition Photographs

View of the east elevation approach to the Food Court.

View of the east elevation of the Food Court from the covered walkway.
Existing Condition Photographs

View of the east elevation entrance at the Food Court.

View of the east elevation of the Nature Shop, looking south.
Existing Condition Photographs

View of the east elevation of the Garden Terrace.
View of the east elevation of the Mountain Room Restaurant portico, added in 1997.
Existing Condition Photographs

View of the northeast corner, looking south, at the Mountain Room Restaurant 1997 addition.
Existing Condition Photographs

View looking southwest at the Mountain Room Restaurant 1997 addition.

View of the storage shed at the north elevation.
Existing Condition Photographs

Damaged fascia and copper flashing at the southwest corner of the Food Court.
Existing Condition Photographs

Damaged downspout at the Nature Shop, east elevation.

Moisture accumulation at the loading dock.
Existing Condition Photographs

View of the copper downspout at the west elevation adjacent Freezer Room 128. Note the transition from original painted 1x10 vertical redwood siding to the 1997 addition’s vertical cedar siding.
Existing Condition Photographs

Biological growth at the northeast corner of the Mountain Room Restaurant.
Existing Condition Photographs

Stained concrete stem wall at the site of the copper downspouts of the 1997 Mountain Room Restaurant addition.
Existing Condition Photographs

Damaged siding along the west elevation of the Food Court, with heavy duff accumulation and biological growth present.
Looking south in the Food Court toward the window wall.
Looking north in the Food Court toward the food service counters.
Existing Condition Photographs

Looking north in the Food Court toward the food service counters.
Existing Condition Photographs

Looking east in the Food Court.
Existing Condition Photographs

Looking east in the Food Court toward Peet’s Coffee.
Existing Condition Photographs

View of the original asphalt tile beneath new ceramic tile in the Food Court.
Existing Condition Photographs

South elevation of the Men's Restroom, 102.

East elevation of the Men's Restroom, 102.
North elevation of the Nature Shop. Note the original steel transoms and painted original ceiling.
Existing Condition Photographs

West elevation of the Nature Shop.
Existing Condition Photographs

South elevation of the Nature Shop.

East elevation of the Nature Shop.
Existing Condition Photographs

North elevation of the Garden Terrace.
Existing Condition Photographs

South elevation of the Garden Terrace.
East elevation of the Garden Terrace.
Existing Condition Photographs

West elevation of the Garden Terrace.
Existing Condition Photographs

Detail of painting at the west elevation of the Garden Terrace.
Existing Condition Photographs

View of northwest doors to Hallway 125 at the Garden Terrace.

View of the southeast doors at the Garden Terrace.
Existing Condition Photographs

North elevation of the Mountain Room Restaurant.
South elevation of the Mountain Room Restaurant.
Existing Condition Photographs

View toward Storage 136 at the Mountain Room Restaurant.

View toward Foyer 135 at the Mountain Room Restaurant.
Existing Condition Photographs

View of the east elevation at the Mountain Room Restaurant.
Existing Condition Photographs

View of the west elevation at the Mountain Room Restaurant. Note the original steel structure at the left of the photo.
Existing Condition Photographs

Looking south in the Dish Room, Room 104.

View toward the Production Kitchen, in Dish Room, Room 104.
Existing Condition Photographs

Looking north in the Dish Room, Room 104. Note the patched quarry tile.

Looking northeast in the Dish Room, Room 104.
Existing Condition Photographs

Looking east in the Production Kitchen, Room 118.

Looking north in the Production Kitchen, Room 118, toward the original loading dock doors. Note the finish and door hardware condition.
Existing Condition Photographs

View of original built-in shelving and plastic laminate panels in the Production Kitchen, Room 118.

Looking east in the Production Kitchen, Room 118.
Existing Condition Photographs

Looking east in the Production Kitchen, Room 118.

Looking west in the Production Kitchen, Room 118, toward Room 114.
Existing Condition Photographs

Looking north in Kitchen, Room 129.
Appendix E

Existing Conditions Drawings
Existing Conditions Drawings
The Secretary of the Interior’s Standards for Rehabilitation

The Standards are to be applied to specific rehabilitation projects in a reasonable manner, taking into consideration economic and technical feasibility. The Standards apply to historic buildings of all periods, styles, types, materials, and sizes. They apply to both the exterior and the interior of historic buildings. The Standards also encompass related landscape features and the building’s site and environment as well as attached, adjacent, or related new construction.

- The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.
- Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.
- Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.
- Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a historic property shall be preserved.
- Deteriorated historic features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

- Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.
- Significant archeological resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken.
- New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.
- New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.1

1 Secretary’s Standards for Rehabilitation, retrieved July 7, 2016 from https://www.nps.gov/tps/standards/rehabilitation.htm.
DESIGN CRITERIA

Building Code The 2015 International Building Code will be the governing code.

Dead and Live Loads Dead loads will be as calculated. Floor and roof live loads will be in accordance with the building code, which includes a requirement for 100 psf live load for dining rooms and restaurants. Snow loads will be based on Mariposa County requirements, typically 60 psf ground snow load, modified in accordance with the code for the sloping roof.

Seismic Loads The project is located in an area of moderate seismic risk. The seismic design coefficients S_{DS} and S_{D1} are approximately 60% of the values for a typical site in San Francisco:

- Risk Category: II
- Site Class: D (stiff soil/default)
- S_{DS}: 0.579g (compare 1.00 for San Francisco Site)
- S_{D1}: 0.308g (compare 0.638 for San Francisco Site)
- Seismic Design Category: D

Wind Loads Wind loads will be in accordance with ASCE 7:

- Basic Wind Speed (3-Second Gust): 110 mph (V_{ult})
- Exposure Category: B

Soils No geotechnical investigation has been prepared for the site. However, SOHA Engineers is familiar with the site soils based on experience in the area and site observations. It is anticipated that subsurface conditions will include sands, gravels, and silts interspersed with granite boulders. Allowable soil bearing capacities in accordance with the IBC (without a site-specific geotechnical investigation) are listed below:

- Sandy gravel, etc: 3.0 ksf
- Sand, silty sand, clayey sand, etc: 2.0 ksf (Use this value without Report)
- Clay, sandy clay silt, etc: 1.5 ksf

BUILDING DESCRIPTION

General Building Description

The Yosemite Lodge Food Service Building is a one-story building with overall plan dimensions of approximately 220 feet by 87 feet. The floor plan includes three wings. The north and south wings are slightly angled from each other, and a perpendicular wing extends to the west from the reflex side (outside) of the angle. The building was built in 1956. A 1997 project extended the building at the north end including addition of the large heavy timber entry structure to the restaurant.

Foundations are reinforced concrete and the floor is a concrete slab-on-grade. In general, steel framing supports wood floor and roof framing, except that primary support at the extension is provided by heavy timber. Walls are wood-framed.

A steel and wood-framed covered walkway runs along most of the east side, and also extends eastward from the main entrance of the dining area toward the registration building.
There is a lowered service yard area with a loading dock area at the south side, in the area bounded by the north side of the west wing. There is a concrete retaining wall up to 4 feet high at the west side of driveway to the service yard.

Figure 1 - Plan

At the west end of the west wing there is detached cooling tower, supported by structural steel and surrounded by a very tall steel and wood framed screen wall.

Site

The area is lightly wooded with both older and younger trees and there are granite boulders exposed in the landscape. There is one tree up against the roof eave at the southwest corner, and another that has been accommodated in the heavy timber entry structure framing at the northeast.

Figure 2 – Left - Southwest Corner; Right – Entry Structure

The site appears to have been graded relatively flat. There is about a 5 foot rise (possibly fill?) from the roadway up to the south end of the building at the cafeteria, and there is a small rise at the northwest corner that is accommodated by a short retaining wall.
Available Drawings

A fifty-five sheet set of original microfilmed architectural, structural, electrical, mechanical, plumbing design drawings (including drawings for the registration building and lounge building) is available. These drawings are very difficult to read.

Five sheets are available showing the 1957 infill of what had been an open “grill court” area at the east side at the angle point, identified as “The Nature Shop” in Figure 1 above.

A 51 sheet set of architectural drawings for the heavy timber entry structure and addition at the north end is also available. These drawings also include the tall cooling tower screen.

Foundation

Foundations are reinforced concrete. Perimeter foundations are narrow (12 to 14 inches wide) continuous strip footings that also incorporate the 5-inch thick slab-on-grade (or the loading dock slab). The perimeter foundations are buried a minimum of 2 feet below adjacent grade. There are very few continuous interior foundations. Therefore, interior partitions that appear to support ceiling framing in some areas are supported directly on the slab-on-grade. At the mechanical rooms, continuous strip footings support concrete block masonry walls.

Foundations at the 1997 addition are not known, but are assumed to be similar reinforced concrete footings.

Steel columns are supported by isolated, square spread footings which may include short pedestals below the slab-on-grade. The footings at the main frame columns are 6 foot square and 18 inches thick, and the smaller columns (generally at the perimeter and covered walk) are 3 foot or 4 foot square and 15 inches thick. At all locations the steel columns extend through and are supported below the structural slab on grade.

In most locations, there is a topping slab above the 5-inch thick structural slab-on-grade, often incorporating insulation. The slab-on-grade at the 1997 addition is 4 inches thick.
Superstructure

The steel superstructure supporting the roof consists of transverse frames at 16 feet on center. There are eight frames at the south wing, nine frames at the north wing, and six frames at the west wing. Frame columns are 8-inch diameter pipe, schedule 80 ("extra heavy", now called "extra strong."). The main beam is a tapered, built-up member, bent at the ridge. It is 24 inches deep at the ridge and 12 inches deep at the columns. Plans appear to indicate that it was to be cut from a W18 and welded back together at the web, but it actually appears to be a fully built-up member, with flange plates continuously fillet welded to a web plate, all fully welded together at the ridge with complete joint penetration welds.

Figure 4 – Typical Transverse Section

At each end of the frames, there are extension beams, connected to the main beams, and supported typically by 4x4 HSS (tube steel) posts. These beams extend beyond the exterior wall to support the roof eave or covered walkway.

Steel connections are typically made with double angles, which appear to have been riveted to members in the shop and then bolted in the field.

Eight inch deep wide flange steel purlins ("8WF17") at approximately 7 to 8 feet on center and topped with 3x wood nailers, span between the frames to support the 2x8 tongue-and-groove wood roof decking. At the eaves, the bottom flanges of the extension beams are trimmed off, and the resulting T-section supports the steel 8x4 angles that support the ends of the decking.
We understand that the roof deck has been overlaid with a system of 2x sleepers and rigid insulation, covered by plywood. This system is also indicated in the 1997 addition drawings. The connection between the main beam and the column is a bolted, seated connection. A thick plate is welded to the top of the pipe column to receive the beam. Other than the double angles for the connection of the other members, there are no other stiffener elements at the beam to column connection.

The base of the frame columns is reinforced with 8 stiffener plates welded to the 1-1/4-inch thick base plate. The base plate is anchored to the footing with four 1-1/4-inch diameter anchors bolts, with 18 inches of embedment and large washer plates at their ends. This detail appears to be intended to allow the columns to contribute to the resistance to lateral (wind or seismic) forces by fixing the base at the foundation level (see further discussion under “Lateral Load Resisting System” below.)
The axes of the three wings, as defined by the roof ridges, intersect at a single point above the kitchen, where two valley beams frame to a short, level ridge beam that is supported by two columns separated by about 11 feet. In this area, two additional columns with footings were added in the 1957 work that enclosed the formerly open “grill court” just to the east.

There is a mechanical mezzanine below the roof in this area, framed with steel beams that are supported on the main frame columns, on additional small columns exposed in the kitchen area below and on wood columns in the wall below. The mezzanine floor consists of 2x10 joists with 2x8 diagonal sheathing. Some additional mechanical walkway areas above the west wing are supported by 4x4 beams suspended from the steel framing above with steel rods.

The 1997 heavy timber addition and entry structure appear to be fully connected to the original building structure, at least at the superstructure level, without any kind of separation joint.
Columns, beams, and purlins are glu-laminated timber, and connections use bolted steel plates and “buckets”.

Figure 9 – Heavy Timber Entry Structure

Purlin spacing is closer than in the steel-framed original structure, but the roof deck (which is also the ceiling in the restaurant area) appears to be 2x tongue-and-groove. The first heavy timber frame is essentially adjacent to the last (northernmost) steel frame and has a column in the middle at the roof peak.

Figure 10 – Framing Transition at North End

At the roof level, the gable roof extends one more bay at a slightly higher level before transitioning abruptly to a single-pitched roof that slopes down to the west.
Wall framing is generally wood. Wall studs at the perimeter appear to be generally shown as 2x6 at 16 inches on center, with some 2x8 at the taller walls, and details typically appear to indicate some sort of anchor bolts at the sill. The original drawings appear to indicate that there is 3/8-inch plywood under the exterior board sheathing but there was no clear indication that walls that extend up to the roof framing or sheathing were specifically detailed for transfer of lateral forces from the roof diaphragm. The architectural drawings for the 1997 addition indicated ½-inch plywood on the walls, show connection to the frame above, and make reference to structural drawings (not available) for “framing and shear” requirements. Interior partition walls typically either stop at the ceiling level, or extend up to the roof framing, but without any type of sheathing above the ceiling, except where needed to enclose mechanical attic spaces.

The large window walls with fixed glazing in the original structure are framed with steel tube mullions, generally 4 inches square, welded together. The glazing system itself is enclosed between the horizontal and vertical mullions. The lower sections of the south wall and south end of the east wall of the cafeteria are (or were) sliding glass doors.
At the 1997 addition, the tall window walls are framed with 4x8 wood members that are fastened to the sill with steel angle clips. The window system is a separate system from the structural framing, attached to the outside.

![Figure 13 – Left – Mullion Clip at Sill; Right – Window System at North End](image1)

Partially grouted 8-inch concrete masonry unit (CMU) walls enclose the chiller room (#123 – see the Architectural report for room identification numbers) and the boiler and generator rooms (#109 and #108). In general, there is a concrete bond beam at the top of the CMU walls.

Ceilings are generally framed with 2x4 or 2x6 joists supported by partition walls, or are hung from the roof framing above.

At the west side of the south end of the north wing, in the service yard area outside the chiller room (#123), the roof overhang has been extended and a wood walkway added at loading dock level. This links the two original concrete loading docks. This is supported by a ledger bolted to the steel edge angle at the eave, and by 4x4 posts at approximately 8 feet on center. The posts appear to bear on a treated wood member which sits on the asphalt concrete paving of the service yard. The walking surface is supported by 2x6 joists and the walking surface itself appears to be mostly plastic composite lumber (such as Trex). The roof is also framed with 2x6 joists supported by a 4x6 beam which sits on the posts. Roof sheathing is plywood. 2x4 members span between the posts to provide a kind of railing.

![Figure 14 – Left – Walkway with Trex; Right – Walkway Posts and Railing](image2)
Cooling Tower

The cooling tower located west of the boiler room is supported on a steel frame and surrounded by an 18 foot tall steel and wood screen wall. The cooling tower frame sits on a concrete pad with a footprint of 8’-0” x 11’-6”. Four HSS posts, 4.5-inch square and 38 inches tall support a steel frame of W8 steel beams. The cooling tower itself is 14 feet tall, above this frame. The screen wall is supported by vertical 3x8 HSS members that are embedded into 16-inch square concrete piers above 24-inch diameter piers that extend 7 feet into the ground.

![Figure 15 – Screen Wall and Cooling Tower](image)

Lateral Force-Resisting System

The lateral force-resisting system consists of the roof diaphragm that transfers lateral loads to vertical resisting elements (as described below) which transfer the forces to the foundations.

It is not entirely clear from the drawings or from review of the building in the field what was intended to be the vertical resisting elements in the original structure.

The main steel frames themselves, although not detailed at the beam-to-column joint to provide a typical moment frame joint, can be expected to act as moment frames and provide significant strength and stiffness to resist lateral forces in the transverse direction of each wing.

Based on the detailing at the base, it appears that the main steel frame pipe columns are intended to contribute to the lateral stiffness, and possibly the strength of the frames. It is also possible that by cantilever action from the foundation and slab-on-grade, these columns could contribute to the strength and stiffness of the building in the longitudinal direction. However, as their as stiffness as cantilever elements would be much less than that of the wood shear walls (see below), their contribution in the longitudinal direction would not be significantly engaged until higher levels of displacement occurred.

It is also likely that the portions of the exterior wall that are structurally-sheathed with 3/8-inch plywood are acting as shear walls, and the architectural drawings for the 1997 addition indicate that the full height, north-south running interior walls at the Nature Shop (#138), Garden Terrace (#137), and the Mountain Room restaurant (#132) are likely to be specifically detailed as shear walls. In addition, the short east-west running interior walls on the column lines at the Mountain Room are specifically identified as shear walls in the 1997 building section drawings.
The softest and potentially weakest area of the building with respect to resisting lateral forces from wind or earthquakes is the south end in the longitudinal direction due to the lack of shear walls in that area.

Condition

The building is generally in very good condition. There are no indications of settlement or movement of the foundation or any kind of shifting of the superstructure.

No significant steel corrosion was noted other than at the cooling tower frame.

![Corrosion Damage at Cooling Tower Support Frame](image1)

Figure 15 – Corrosion Damage at Cooling Tower Support Frame

No evidence of dry rot or insect damage was noted at wood framing, although the base of the wall was covered with leaves at the west side of the south wing and the south side of the west wing.

![Wall Base Covered with Leaves](image2)

Figure 16 – Wall Base Covered with Leaves
The loading dock and service yard area, including the retaining wall and the fence around the propane gas tanks receives hard usage and the concrete and exterior siding shows considerable wear and tear. The following photographs show some of the minor damage conditions noted at the loading dock area.
Deficiencies

Discussion of deficiencies is divided between damage conditions noted and deficiencies in the lateral or gravity load resisting systems and elements.

Damage Conditions Instances of damage and deterioration of elements of the building are identified above. None of the conditions noted are considered critical to building structural performance.

Structural Deficiencies No calculations have been performed at this stage to determine loading and to confirm member or system capacity. Structural deficiencies are identified based on experience and engineering judgement.

Gravity Load-Carrying System

No obvious deficiencies have been identified in the building structure.

It is likely that the 2x4 railing elements that span between the 4x4 posts at the added walkway at the loading dock area are not adequate for the loads required by the building code.

Lateral System

Although no calculations have been performed, it is likely that wind forces will govern the lateral requirements in the east-west direction, and that seismic forces will control in the north-south direction.

We assume that analysis of the building using current code level values for wind and seismic forces would reveal deficiencies in the vertical resisting elements of the main lateral force resisting system in the original structure.

The steel frames, due to the detailing at the joints would likely need to be treated as ordinary moment frames, which would increase the seismic forces.

Additionally, the shear capacity of 3/8-inch plywood is very limited and there are few walls at the south end of the cafeteria wing that could contribute to shear resistance in the longitudinal (north-south) direction. It also appears likely that collector elements at the top of the exterior walls are not adequately detailed to transfer forces to the available shear walls, and that the very narrow shear wall foundations may not be adequate.

However, the 1997 addition appears to have been well detailed and is likely to be contributing significantly to the overall lateral force-resisting capacity of the building.

We anticipate that the roof diaphragm, as strengthened by the addition of plywood over the 2x straight sheathing, would be found to be adequate, as the close spacing of the steel frames drastically reduces the diaphragm span in the transverse direction at each wing, and the aspect ratio of the diaphragm (length vs width) is favorable in the longitudinal direction at each wing.

As a historic structure, it could be considered appropriate to assess the building using the reduced seismic forces allowed by the California Historic Building Code. However, given the high public occupancy, particularly in the cafeteria wing, we do not feel that that would be good policy.

In general however, this one-story building appears to be at little risk of partial or total collapse due to wind or seismic forces.
The primary life-safety concern due to deficiencies in the lateral system is associated with the many window walls, some of which are quite tall. It is likely that the window systems, particularly in the older areas of the building, are not detailed to accommodate the racking displacements that could occur at the exterior walls. This could lead to the potential for falling glass.

Treatment Recommendations

The following are recommendations that should be given careful consideration as part of any major alteration work:

- Perform a geotechnical investigation prior to rehabilitation design.
- Analyze the building using the procedures of ASCE 41, “Seismic Rehabilitation of Existing Buildings.”
- Review the main steel frames. Strengthening, if needed, could include improvements at the beam to column joint to increase ductility.
- Strengthen wood shear walls, possibly by adding plywood on the interior, and improving foundation capacity.
- Improve collector continuity and strength by improving connections at the tops of exterior walls.
- Verify deformation capacity of the glazing in the tall window walls.
- Check the cooling tower support frame and strengthen/repair as needed.
- Perform minor strengthening and repairs at the loading dock and service yard area, including strengthening of the 2x4 railing and the loose railing post at the wood-framed walkway, repair of concrete spalls (particularly at walking surfaces, concrete steps, and railing embedments), and repair of the failing fence at the propane gas tank yard.
Appendix H

Mechanical Letter Report
Preliminary information:

List Engineering was contacted to complete an evaluation of the existing HVAC and plumbing systems serving the Yosemite Food Service Building in Yosemite National Park.

Existing Documentation Review:

Based on the Documenta Surveys available drawings, the building is a one story building with three defined areas (Cafeteria, Garden Terrace and Mountain Room Restaurant). One large central kitchen serves both the Cafeteria and the mountain room and an additional grill kitchen supports the Cafeteria.

Field findings:

A Visual Inspection of the facility brought the following observations to our attention:

1. Central Plant: There is a central plant with two 4.2MBH diesel fired steam boilers and an indoor 130 Ton chiller with cooling tower located in the back of the house. This plant serves the Yosemite Lodge in addition to the Cafeteria. Two heat exchangers serve as transition from the central plant and the 2 pipe system that serves the facilities so the system is manually switched from heating to cooling. This
configuration results in problems when the weather is so that heating is needed in the morning and cooling is needed in the afternoon.

As part of the central plant, there is a 1,220-gallon Domestic Hot Water storage tank fed from the steam boiler through a heat exchanger (see photo above). This DHW storage tank serves the entire building with a recirculation system. There are signs of leaks at the expansion tank and the piping connected to the storage tank.

2. Cafeteria: Located at the south end of the building, the Cafeteria is an open space with two bathrooms and a grilling serving kitchen with two grease hoods serving griddles and deep fryers. This space is supplied with one fan coil and make up air from a swamp cooler on the Production kitchen’s roof.

3. Central Kitchen:
 a. The central kitchen is served by two large back to back type I hoods connected to six roof mounted exhaust fans. There is an intake louver nearby the exhaust termination that is not compliant with the current Mechanical Code. A swamp cooler provides make up air to the central space.
b. The power washing and dishwashing areas have one exhaust fan serving each dishwasher and a wall fan serving the power washing area. A swamp cooler serves this area.

c. The grease waste from the kitchens is conveyed and run into a sump where it is allowed to cool down prior to be pumped into the 10,500-gallon grease interceptor. This system is reported to work properly.
4. Nature Shop:
 a. Currently unoccupied, the Nature Shop is served by an air handler located in the attic space above the kitchen.

5. Garden Terrace
 a. The garden terrace space is served by two air handlers located in two attics (one at each side of the room). These two air handlers serve the same zone with different thermostats, one located at each side by the return grilles.

 ![Supply from AHU-1](image1)
 ![Supply from AHU-2](image2)

 b. Two thermostats controlling two different units will work independently to condition one zone.

6. Mountain Room Restaurant
 a. The farthest north space is a restaurant that is served by two different Air handling units. One air handler is located in the attic space nearby the unit serving the Garden Terrace. The other
unit is installed in a mechanical room at the northwest corner of the building. Both units have wall mounted supply grilles and under-seat plenum return grilles. These two units are supplemented by baseboard convectors installed along the exterior windows.

7. Building Sanitary System

The sanitary sewer laterals serving the building are reported to have blockages that cause slow drain of the fixtures. It is suspected that tree roots are the cause of the blockages.

Recommended Actions:

Based on the information collected from the available drawings, reports from Don Evans and the field inspection, these are our recommended actions to remediate the deficiencies outlined above:

1. All fan coil units are passed their expected lifespan and are due for replacement. It is recommended that new units are based on 4 pipe coils.
2. Phase out existing 2 pipe fan coils to unify 4 pipe system throughout the entire facility. This includes the rest of the buildings that are tied to the central plant (boiler + chiller).
3. Existing boilers are in working condition but need to be serviced and repaired as necessary. Steam piping, valves and fittings needs to be repaired where severe signs of rust are present. Insulation will need to be replaced in those sections where it is damaged.
4. In the future, when the boilers are due for replacement, a hydronic system is recommended, eliminating the need for the heat exchangers at the chiller room. The target is to migrate from a steam boiler and 2-pipe system to a 4 pipe system supported by a central plant with a chiller and hydronic boilers.
5. Cooling tower serving the chiller is at the end of its lifespan and will be soon due for replacement.
6. Split Garden Terrace zone into two different zones served by one unit each.
7. Service and repair leaks in domestic hot water expansion tank and piping at the storage tank.
8. Video survey the sanitary sewer completely. Repair and replace damaged sections and install root barriers to prevent the problem from repeating.

End of report.
Appendix I

Electrical Letter Report
May 12, 2017

Architectural Resources Group
Pier 9 The Embarcadero
San Francisco, CA 94111

Attn: Kitty Vieth

Re: Yosemite Lodge Food Service Building
Electrical Systems Assessment

Dear Kitty,

O’Mahony & Myer visited the Yosemite Lodge Food Service building on January 31, 2017, to review the existing electrical related conditions at the building. The purpose of our visit was to review the existing conditions of the electrical, lighting, and signal systems, in order to provide this written assessment of the conditions and abilities of each system.

Following is a summary of our findings.

Main Electric Service & Back-Up Generator:

The Yosemite Lodge Food Court building is currently fed from utility transformer #YT106, through meter #106F01, both located at the South exterior of the building, near the rear Loading Dock / Parking area.

The Main Service Switchgear is in a single free-standing enclosure directly adjacent to the utility transformer and includes the utility meter and main 2,000 Amp breaker. The Main Distribution Panel and ATS are in a separate enclosure adjacent to the Main Service Switchgear and are also both rated at 2,000 Amps (120/208V, 3-Phase, 4-Wire).

The entire complex is currently backed-up by a 698kW / 873kVA permanently installed stand-by generator, through a 2,000 Amp Automatic Transfer Switch (ATS). The generator is located at the South/East side of the building, behind the main Dining area. The ATS is an integral part of the Main Distribution Panel and consists of an interlocked set of 2,000A breakers that provide automatic interlocked transfer in the event of normal utility power failure.
The Main Service Switchgear, Main Distribution Panel, and ATS are all rated at 2,000A, 120/208V, 3-Phase, 4-Wire, and feed the various sub-panels throughout the building.

The generator was installed recently (within the last few years) and is in new condition.

The ATS and main panels are slightly older, but are still modern panels and in good condition.

The original vintage Main Panel is located just inside the building (near the service gear) in the Boiler Room. The original panel has been gutted and is now only used as a pull can / splice box for the original outgoing feeders to other parts of the building. This enclosure is full of spliced feeders and appears to have many tags to identify each feeder load. All panel feeder overcurrent devices are now in the newer distribution gear at the South exterior (not in the old panel).

A single 150kVA step-up transformer (from the 208V service voltage to 480V) has been added to the system, across from the old main panel in the Boiler Room, to provide power to the Mountain Room Bar building (Panel L), since the feeder is so long.

Existing Feeders and Branch Panels / Circuits:

Numerous electrical panels in the building appear to have been upgraded or supplemented in the recent years, however there are other older original panels that still exist in several locations.

Circuit identification on the newer panels are in good shape, with panel directories that appear complete and relatively accurate.

Other older panels have haphazard hand-written updates and additional hand-written notes on the panel doors. Actual circuit descriptions may no longer be accurate on these older panels, based on changes over the years.

The various Food Court building panels consist of the following. Other panels exist in the adjoining buildings, fed from the main panel, but are not listed here:

- **Main Panel** (Newer) 2,000A, 120/208V Main Service Panel with main breaker.
- **Panel AP** (Newer) 600A, 120/208V, 3-Phase – feeds mechanical loads and other panels
- **Panel APA** (Newer) 200A, 120/208V, 3-Phase – sub-fed from Panel AP - feeds mechanical loads
- **Panel C** (Newer) 225A, 120/208V, 3-Phase – feeds Kitchen loads
- **Panel C1** (Newer) 150A, 120/208V, 3-Phase – feeds Kitchen loads
- **Panel C2** (Newer) 150A, 120/208V, 3-Phase – feeds Kitchen loads
Panel C3 (Newer) 150A, 120/208V, 3-Phase – feeds Kitchen loads
Panel C4 (Newer) 150A, 120/208V, 3-Phase – feeds Kitchen loads
Panel C5 (Newer) 225A, 120/208V, 3-Phase – feeds Kitchen loads
Panel CP (Newer) 100A, 120/208V, 3-Phase – feeds Kitchen loads
Panel D/DA (Newer) 225A, 120/208V, 3-Phase – feeds Lighting and misc. loads
Panel GE/CE (Newer) 100A, 120/208V, 3-Phase – feeds Kitchen loads
Panel G (Newer) 225A, 120/208V, 3-Phase – feeds Kitchen loads
Panel K (Old) 100A, 120/208V, 1-Phase – feeds Kitchen loads
Panel KE (Old) 100A, 120/208V, 1-Phase, sub-fed from Panel K – feeds Kitchen loads
Panel KP (Old) 600A, 120/208V, 3-Phase – feeds Kitchen loads
Panel KPE (Old) 100A, 120/208V, 3-Phase – feeds Kitchen loads
Panel M (Newer) 225A, 120/208V, 3-Phase – feeds Kitchen loads
Panel P (Newer) 225A, 120/208V – located by old switchboard inside - feeds Kitchen and Boiler Room / Generator mechanical equipment loads.
Panel PA (Newer) 225A, 120/208V – located by old switchboard inside - feeds Kitchen and mechanical pump loads.
Panel S (Newer) 225A, 120/208V, 3-Phase – feeds Garden Terrace loads
Panel X/XA (Newer) 225A, 120/208V, 3-Phase – feeds Kitchen loads

Existing Lighting System:

The lighting systems in the Food Court building consist primarily of older recessed and surface mounted fluorescent fixtures with upgraded T8 lamps. These fixtures still represent a rather inefficient lighting source, due to the older style prismatic acrylic lenses used.

The Dining Room at the Food Court has been upgraded to concealed indirect fluorescent soffit fixtures in the past, providing a nice lighting quality, but most likely still energy inefficient by today’s standards.

Lighting controls consist only of standard switching, with no special time clocks or other automatic controls.

Emergency lighting is accomplished due to the complete system back-up on the generator, so individual battery pack fixtures are not required or used.
Exit sign coverage appears lacking. New exit signs should be added to provide better egress path identification.

Existing Telecom Systems:

There is an Intermediate Distribution Frame (IDF) at the Kitchen Office. This IDF contains both telephone and data system connections, which currently support the Food Court Office areas.

Existing Fire Alarm System:

The building is served by an older style addressable Notifier #AFP-200 Fire Alarm Control Panel, located in the Corridor just outside the Kitchen Office. Notifier is a very reputable system supplier, but the AFP series panels are no longer manufactured or supported.

The system has limited devices connected to it, which include some smoke detectors and very few horn/strobe alarm devices.

It was not clear if the system has off-site monitoring connections as required by code. The building is only partially sprinklered, so the system may include water flow monitoring, but this could not be confirmed.

Treatment Recommendations:

Power:

The older electrical panels in the building could be well served by replacement with modern circuit breakers and panel boards. The panel directories in the older panels should also be updated to more accurately and legibly identify the existing loads served.

Lighting:

Since the lighting systems are primarily older recessed and surface mounted fluorescent fixtures, significant energy savings could be achieved by replacing these sources with modern LED fixtures.

The lack of automatic lighting controls should also be updated. Providing timeclock and / or occupancy motion sensors in non-public spaces can help achieve additional energy savings by turning off lighting when not in use.

Exit sign coverage should also be updated for any public areas with a combined discharge load of greater than 49, to meet current code.

Telecom:

The telecom system in the building is limited, but operational for present food service, sales, and staff computer needs. As data bandwidth requirements increase in the coming years, additional and/or upgraded data cabling may be required.
Fire Alarm:

The building fire alarm panel model is no longer supported by the manufacturer (Notifier). In order to provide a more modern and serviceable system, the main panel could be upgraded to a newer standard from the same manufacturer. Some existing devices may also need to be replaced, but the existing wiring systems could be retained.

The building fire alarm coverage is not up to current NFPA 72 requirements for full public area strobe light and alarm notification horns, so additional coverage would also be warranted to bring the building up to current code.

If you have any questions or comments on the above assessment, please do not hesitate to call.

Sincerely,

Pieter Colenbrander, P.E.
O'MAHONY & MYER
Appendix J

2018 Base Camp Remodel
2018 Base Camp Remodel

Selected Drawings
Base Camp at Yosemite Valley Lodge, 2018
Gould Evans and Associates
EXISTING EQUIPMENT TO BE REMOVED
CONTRACTOR IS TO VERIFY THE EXACT LOCATION OF ALL
DEMO EXISTING LOW WALL LEDGE BELOW GLAZING TO
MAINTAIN THE INTEGRITY OF ALL EXISTING RATED WALLS,
EXISTING WALLS (OR PORTIONS OF WALLS) TO BE
REMOVE EXISTING CONSTRUCTION TO THE EXTENT
7
TYP.
4' 6
EXISTING TILE FLOORING TO BE REMOVED. SEE GEN NOTE
EXISTING WORK TABLE & EQUIP. TO REMAIN.
CONTRACTOR TO PATCH/REPAIR ALL HOLES IN WALLS,
REFER TO MEP DRAWINGS FOR DEMOLITION OF MEP
EXISTING CONDITIONS INFORMATION WAS OBTAINED
WHEN UNANTICIPATED MECHANICAL, ELECTRICAL, OR
LIMITED DEMO OF FLOORING, PREP FOR NEW AS SHOWN.
EXISTING MILLWORK TO BE REMOVED.
EXISTING EQUIPMENT TO BE SALVAGED / RELOCATED.
WHERE EXISTING FINISH FLOOR IS REMOVED, PREPARE
CONTRACTOR SHALL PROTECT ALL EXISTING
EXISTING HOOD TO REMAIN.
3
NOTIFY THE BUILDING OWNER OF ANY MATERIALS,
PATCH FLOORS, WALLS CEILINGS WHICH REMAIN AT
16' 8'
4
EXISTING CARPET FLOORING TO BE REMOVED SEE GEN
13
NOTE #3.
DEMO AS NEEDED TO REPAIR/REPLACE/PATCH BROKEN
TILES AT BOH, TYP. DEMO FULL TILES TYP.
EXPOSE CONCRETE CURB. PATCH AND REPAIR GYP, PREP
TO RECEIVE NEW PAINT FINISH.
9
STRUCTURAL ELEMENTS THAT CONFLICT WITH THE
INTENDED FUNCTION OR DESIGN ARE ENCOUNTERED,
DETERMINE THE NATURE AND EXTENT OF THE CONFLICT
AND NOTIFY THE ARCHITECT IMMEDIATELY FOR
RESOLUTION.
10.
EXISTING UTILITIES PRIOR TO DEMOLITION ACTIVITIES.
11.
REMOVED SHALL BE CUT FLUSH WHERE INTERSECTING
WITH WALLS TO REMAIN. REMAINING WALLS TO BE
PATCHED AND FINISHED SMOOTH.
12.
LOCATIONS WHERE PIPES, CONDUITS, ETC. ARE REMOVED
AS REQUIRED TO MATCH EXISTING CONDITIONS OR FOR
NEW FINISHES.
13.
SURFACE TO RECEIVE NEW FINISH.
Demolition Ceiling Plan

Key Notes:

1. EXISTING ROOF DECKING

Key Points:

1. SEE AD101 FOR GENERAL DEMOLITION NOTES

Demolition Reflected Ceiling Plan

YOSEMITE NATIONAL PARK

BASE CAMP AT YOSEMITE VALLEY LODGE

Concessioner: Aramark, Leisure DBA: Yosemite Hospitality in partnership with The National Park Service Yosemite National Park

Architect: Gould Evans Associates

© 2016 Gould Evans

1101 S. 3rd Street, Suite Ste 100
Phoenix, AZ 85004
602.234.1140
www.gouldevans.com

© 2016 Gould Evans

Project No: AD111

Sheet: 4 of 4

1/8" = 1'-0"
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A100</td>
<td>Floor Plan - Overall</td>
<td>October 13, 2017</td>
</tr>
</tbody>
</table>
EXISTING STEEL COLUMN, PAINTED
NOT USED

TRANSLUCENT 3M WINDOW FILM
EXISTING CONCRETE HARDSCAPE TO REMAIN

LOW WALL FRAMING FOR FRONT COUNTER ASSEMBLY, REF
CONTRACTOR TO PROVIDE 4'-0" HIGH PLYWOOD BACKER BOARD
ORDERING KIOSK, OFCI

4' - 5 1/4"

NEW WALL TO MATCH EXISTING FRAMING AND FINISH
EXISTING REMOTE COMPRESSOR TO REMAIN IN PLACE.

GLASS VESTIBULE
METAL LOUVER FOR AIRFLOR 24 x 24 AT TOP OF WALL.

ENLARGED PLANS MAY BE ROTATED OR MIRRORED
C

E11
B

POWER AND DATA FOR FUTURE POINT OF SALE

ALL ELEMENTS NOT NOTED AS EXISTING TO BE PROVIDED NEW.

3' - 0"

NEW FOOD SERVICE EQUIPMENT - SEE F.S. DWGS.

NEW WOOD CLADDING
NEW COUNTERTOP/MILLWORK

CUSTOM SS WALL CAP; REF TO FS DWGS

2' - 4 3/4"

CONTRACTOR TO FIELD VERIFY ALL MEASUREMENTS AND

KANSAS CITY • LAWRENCE • NEW ORLEANS

PHOENIX • SAN FRANCISCO • TAMPA

© 2016 Gould Evans

General Notes:

NOTE:
SEE F11/A121 FOR ENLARGED
REFLECTED CEILING PLAN

Key Notes:

1. ARCHITECT/OWNER'S REPRESENTATIVE OF ANY

A5

A508

TYP.

2. COORDINATE WITH MAIN FLOOR PLAN.

3. IN ALL MECHANICAL AND ELECTRICAL ROOMS MOUNTED 3'-6"

A1

A3

F3

G11

H

J

5. REF TO WALL FINISH SCHEDULE FOR MILLWORK AND FINISHES

TYP.

6. ARCHITECT TO PROVIDE WALLS AND MILLWORK

G3

1' - 1 1/2"

7. ESSENTIAL NAVIGATION FEATURES TO BE CENTERED AT 90°

G3.11.D

G3.11.P

8. ESSENTIAL NAVIGATION FEATURES TO BE CENTERED AT 90°

G3.11.P

9. ESSENTIAL NAVIGATION FEATURES TO BE CENTERED AT 90°

G3.11.P

10. 521 S. 3rd Street, Suite Ste 100Phoenix, AZ 85004602.234.1140www.gouldevans.com

Project No: 8595/030/01
Date: October 13, 2017
Sheet: A120

110% CONSTRUCTION DOCUMENTS

22. DBA: Yosemite Hospitality

The National Park Service
in partnership with

Yosemite National Park
architect:

Gould Evans Associates
810 11th Ave, Denver, CO 80206
303.528.1800
www.gouldevans.com

12. parseFloat(1 / 10000)

5.321.3840
LIGHTING CONTINUES ABOVE SOFFIT - SEE ENLARGED
EXISTING HOOD/EXHAUST SYSTEM TO REMAIN
GENERALLY ONLY CEILING MOUNTED FIXTURES ARE SHOWN
COORDINATE CAN LIGHT LOCATION WITH EXISTING JOISTS
LIGHTING FIXTURES TO BE CENTERED AND SPACED EQUALLY
NEW LINEAR SLOT DIFFUSERS PER MECH.
NOT USED.

10A
STRUCTURAL BULKHEAD ABOVE SERVERY
COORDINATE LOCATION OF RECESSED CAN WITH JOIST

SEE A120 FOR LIGHTING AT MILLWORK FACADE.

10' - 3"
EXISTING STL. COLUMN, PAINTED - SEE FINISH SCH
RECESSED GYP. EXPANSION BEAD
ALL CEILING AND SOFFIT HEIGHTS ARE GIVEN ABOVE

7
REMOVE EXISTING LIGHT FIXTURE ABOVE WINDOW

16
EXISTING STL. STRUCTURE, PAINTED
CEILING ALIGNS WITH EDGE OF MILLWORK BELOW.
SUSPENDED LIGHTS RECESSED IN LINEAR METAL CEILING
EDGE OF SOFFIT
HOOD - SEE FW DWGS.

NEW BULKHEAD TO MATCH THICKNESS AND FINISH OF
9
EDGE OF COUNTER/EQPT. BELOW
FIXTURE SUSPENDED BELOW CEILING
LIGHT FIXTURES ARE SHOWN FOR DIMENSIONAL PURPOSES

General Notes:
1. FINISHED FLOOR ELEVATION (EL. 0'-0"
2. ADDITIONAL INFORMATION.
3. MEP DRAWINGS. COORDINATE LOCATIONS OF PANELS WITH
ARCHITECT PRIOR TO INSTALLATION. ACCESS PANEL FIRE
RATINGS MUST MATCH CEILING ASSEMBLY FIRE RATINGS.
4. FIXTURE DESIGNATIONS.
5. SECTION
6. CLG-1
7. 100% CONSTRUCTION DOCUMENTS
8. PARTIAL MODULE (INDIA) PER MFR
9. 60" MODULE (INDIA) PER MFR
10. UNLESS NOTED OTHERWISE.
11. " NOT ALL NOTES APPEAR ON THIS SHEET"
12. " NOT ALL NOTES APPEAR ON THIS SHEET"
13. (NOT ALL NOTES APPEAR ON THIS SHEET)
14. © 2016 Gould Evans
1. PROVIDE ALL ROOFING DETAILS BY MANUFACTURERS WARRANTED SYSTEMS.
2. PROVIDE WALKWAY PADS AT ALL ROOF LADDERS AND AT ALL ROOFTOP EQUIPMENT WORKING AREAS.
3. PROVIDE CRICKETS AT ALL ROOFTOP EQUIPMENT TO FACILITATE DRAINAGE.
4. ALL FLAT ROOFS TO SLOPE 1/4" PER FOOT MINIMUM.
5. ALL CRICKETS TO SLOPE 1/4" PER FOOT MINIMUM.
6. USE EXISTING ROOF PENETRATIONS WHERE POSSIBLE.
7. ALL EXPOSED DUCTWORK ON ROOF TO BE PAINTED.

General Notes:
- EXISTING KEF TO BE DEMOLISHED - ROOF TO BE PATCHED AND REPAIRED
- EXISTING KEF TO REMAIN
- EXISTING ROOF ACCESS
- ALL FLAT ROOFS TO SLOPE 1/4" PER FOOT MINIMUM
- ALL CRICKETS TO SLOPE 1/4" PER FOOT MINIMUM
- ALL EXPOSED ROOF PENUMTRATIONS IN ROOF TO BE PAINTED 1" WIDE BAND

Key Notes:
- Roof Plan Legend:
 - EXISTING KEF TO BE DEMOLISHED - ROOF TO BE PATCHED AND REPAIRED
 - EXISTING KEF TO REMAIN
 - EXISTING ROOF ACCESS

Project No: 00-0000-1000
Date: October 13, 2017
Sheet: A151

© 2016 Gould Evans

YOSEMITE NATIONAL PARK

YOSEMITE NATIONAL PARK

Concessioner: Aramark, Leisure DBA: Yosemite Hospitality in partnership with The National Park Service
YOSEMITE NATIONAL PARK

architect: Gould Evans Associates
521 S. 3rd Street, Suite Ste 100
Phoenix, AZ 85004
602.234.1140
www.gouldevans.com

© 2016 Gould Evans
100% CONSTRUCTION DOCUMENTS

1/8" = 1'-0"
MATERIALS AND FINISHES INDICATED APPLY TO ALL SIMILAR ELEMENTS.

COORDINATE EXTERIOR LIGHTING FIXTURE TYPES AND LOCATIONS WITH ELECTRICAL DRAWINGS.

General Notes:

1. EXPOSED STRUCTURE REPAINTED.
2. EXISTING WINDOW MULLIONS, TO BE REPAINTED.
3. EXISTING GLAZING SYSTEM AS OCCURS
4. EXISTING BOARD-FORM CONCRETE STEM WALL. CLEAN AND REPAIR AS REQUIRED.
5. NEW LIGHT FIXTURE - SEE ELEC. DWGS.
6. NEW MILLWORK - SEE MILLWORK DWGS.
7. MATCH EXIST 1x4 DOUGLAS FIR PANELING, PTD WOOD PLANK, SEE FINISH LEGEND FOR MORE DETAILS.
8. NEW KITCHEN EQUIPMENT, SEE FOOD SERVICE DWGS.
10. NEW RECLAIMED WOOD WALL CLADDING, SEE FINISH LEGEND FOR DETAILS. FOR WOOD TO WOOD CORNER TRANSITIONS SEE A1/508.
11. NEW 50" DIGITAL SCREENS, OFCI
12. NEW GLAZING SYSTEM
13. NEW SUSPENDED/CANTILEVERED CEILING SYSTEM, SEE RCP.
14. NOT USED
15. NEW DOOR, SEE DOOR SCHEDULE.
16. EXISTING 1X4 DOUGLAS FIR PANELING.
17. EXISTING COVE FASCIA
18. MECH. DIFFUSER/GRILLE SEE MECH DWG. EXIST. OPENING TO REMAIN. CLEAN/REPLACE AND PAINT TO MATCH ADJACENT FINISH.
19. EXISTING DOOR.
20. EXPOSED ROOF DECKING
21. EXISTING GYP. BOARD
22. NEW METAL SHROUD SURROUND
23. EXISTING DOOR TO REMAIN; PAINTED - P-2
24. BOTTLE FILLING STATION RECESSED IN WALL
25. NEW GYP. BOARD FINISH
26. NOT USED.
27. NOT USED.
28. NEW RECLAIMED WOOD WALL CLADDING, SEE FINISH LEGEND FOR DETAILS.
29. EXISTING EXPOSED DUCTS TO REMAIN.
30. EXISTING WALL TO REMAIN. PATCH AND REPAIR AS NEEDED. MATCH EXISTING PAINT.
1. MATERIALS AND FINISHES INDICATED APPLY TO ALL SIMILAR ELEMENTS.

2. COORDINATE EXTERIOR LIGHTING FIXTURE TYPES AND LOCATIONS WITH ELECTRICAL DRAWINGS.
1. Contractor to field verify all measurements and conditions new and existing. Notify the architect/owner's representative of any discrepancies.

2. Enlarged plans may be rotated or mirrored to coordinate with main floor plans.

3. Contractor to provide 4'-0" high plywood backer board in all mechanical and electrical rooms mounted 3'-6" above floor for perimeter of room.

4. All elements not noted as existing to be provided new.

General Notes:

1. Exposed structure repainted.

2. Existing window mullions, to be repainted.

3. Existing glazing system as occurs.

4. Existing board-form concrete stem wall. Clean and repair as required.

5. New light fixture - see electrical dwgs.

6. New millwork - see millwork dwgs.

7. Match existing 1x4 douglas fir paneling, painted wood plank, see finish legend for more details.

8. New kitchen equipment, see food service dwgs.

10. New reclaimed wood wall cladding, see finish legend for details. For wood to wood corner transitions see A1/508.

11. New 50" digital screens, ofci.

12. New glazing system.

13. New suspended/cantilevered ceiling system, see RCP.

14. Not used.

15. New door, see door schedule.

16. Existing 1x4 douglas fir paneling.

17. Existing cove fascia.

18. Mech. diffuser/Grille see mech dwg. Existing opening to remain. Clean/replace and paint to match adjacent finish.

19. Existing door.

20. Exposed roof decking.

21. Existing gyp. board.

22. New metal shroud surround.

23. Existing door to remain; painted - P-2.

24. Bottle filling station recessed in wall.

25. New gyp. board finish.

26. Not used.

27. Not used.

28. New reclaimed wood wall cladding, see finish legend for details.

29. Existing exposed ducts to remain.

30. Existing wall to remain. Patch and repair as needed. Match existing paint.
CONTRACTOR TO FIELD VERIFY ALL MEASUREMENTS AND CONDITIONS NEW AND EXISTING. NOTIFY THE ARCHITECT/OWNER'S REPRESENTATIVE OF ANY DISCREPANCIES.

ENLARGED PLANS MAY BE ROTATED OR MIRRORED COORDINATE WITH MAIN FLOOR PLAN.

CONTRACTOR TO PROVIDE 4'-0" HIGH PLYWOOD BACKER BOARD IN ALL MECHANICAL AND ELECTRICAL ROOMS MOUNTED 3'-6" A.F.F. FOR PERIMETER OF ROOM

ALL ELEMENTS NOT NOTED AS EXISTING TO BE PROVIDED NEW.

General Notes:
1. EXPOSED STRUCTURE REPAINTED.
2. EXISTING WINDOW MULLIONS, TO BE REPAINTED.
3. EXISTING GLAZING SYSTEM AS OCCURS
4. EXISTING BOARD-FORM CONCRETE STEM WALL. CLEAN AND REPAIR AS REQUIRED.
5. NEW LIGHT FIXTURE - SEE ELEC. DWGS.
6. NEW MILLWORK - SEE MILLWORK DWGS.
7. MATCH EXIST 1x4 DOUGLAS FIR PANELING, PTD WOOD PLANK, SEE FINISH LEGEND FOR MORE DETAILS.
8. NEW KITCHEN EQUIPMENT, SEE FOOD SERVICE DWGS.
10. NEW RECLAIMED WOOD WALL CLADDING, SEE FINISH LEGEND FOR DETAILS. FOR WOOD TO WOOD CORNER TRANSITIONS SEE A1/508.
11. NEW 50" DIGITAL SCREENS, OFCII
12. NEW GLAZING SYSTEM
13. NEW SUSPENDED/CANTILEVERED CEILING SYSTEM, SEE RCP.
14. NOT USED
15. NEW DOOR, SEE DOOR SCHEDULE.
16. EXISTING 1X4 DOUGLAS FIR PANELING.
17. EXISTING COVE FASCIA
18. MECH. DIFFUSER/GRILLE SEE MECH DWG. EXIST. OPENING TO REMAIN. CLEAN/REPLACE AND PAINT TO MATCH ADJACENT FINISH.
19. EXISTING DOOR.
20. EXPOSED ROOF DECKING
21. EXISTING GYP. BOARD
22. NEW METAL SHROUD SURROUND
23. EXISTING DOOR TO REMAIN; PAINTED - P-2
24. BOTTLE FILLING STATION RECESSED IN WALL
25. NEW GYP. BOARD FINISH
26. NOT USED.
27. NOT USED.
28. NEW RECLAIMED WOOD WALL CLADDING, SEE FINISH LEGEND FOR DETAILS.
29. EXISTING EXPOSED DUCTS TO REMAIN.
30. EXISTING WALL TO REMAIN. PATCH AND REPAIR AS NEEDED. MATCH EXISTING PAINT.

Key Notes:

NOT ALL NOTES APPEAR ON SHEET:
1. EXPOSED STRUCTURE REPAINTED.
2. EXISTING WINDOW MULLIONS TO BE REPAINTED.
3. EXISTING GLAZING SYSTEM AS OCCURS.
4. EXISTING BOARD-FORM CONCRETE STEM WALL. CLEAN AND REPAIR AS REQUIRED.
5. NEW LIGHT FIXTURE - SEE ELEC. DWGS.
6. NEW MILLWORK - SEE MILLWORK DWGS.
7. MATCH EXIST 1x4 DOUGLAS FIR PANELING, PTD WOOD PLANK.
8. NEW KITCHEN EQUIPMENT, SEE FOOD SERVICE DWGS.
10. NEW RECLAIMED WOOD WALL CLADDING, SEE FINISH LEGEND FOR DETAILS.
11. NEW 50" DIGITAL SCREENS, OFCII.
12. NEW GLAZING SYSTEM.
13. NEW SUSPENDED/CANTILEVERED CEILING SYSTEM, SEE RCP.
14. NOT USED.
15. NEW DOOR, SEE DOOR SCHEDULE.
16. EXISTING 1X4 DOUGLAS FIR PANELING.
17. EXISTING COVE FASCIA.
18. MECH. DIFFUSER/GRILLE SEE MECH DWG. EXIST. OPENING TO REMAIN. CLEAN/REPLACE AND PAINT TO MATCH ADJACENT FINISH.
19. EXISTING DOOR.
20. EXPOSED ROOF DECKING.
21. EXISTING GYP. BOARD.
22. NEW METAL SHROUD SURROUND.
23. EXISTING DOOR TO REMAIN; PAINTED - P-2.
24. BOTTLE FILLING STATION RECESSED IN WALL.
25. NEW GYP. BOARD FINISH.
26. NOT USED.
27. NOT USED.
28. NEW RECLAIMED WOOD WALL CLADDING, SEE FINISH LEGEND FOR DETAILS.
29. EXISTING EXPOSED DUCTS TO REMAIN.
30. EXISTING WALL TO REMAIN. PATCH AND REPAIR AS NEEDED. MATCH EXISTING PAINT.
ENLARGED PLAN - REF SHROUD

- Maintain min. 1/2" clearance around top & sides of equip., typ.
- Vertical shroud return beyond 1 1/2" plywood substrate with PL-1 finish.
- Intermediate panel within shroud. 1" plywood substrate with PL-1 finish.

OPEN BELOW FOR FOODSERVICE ELEC.

POWER CONNECTION @ FLOOR

TOE KICK WITH SCHEDULED BASE

SCHEDULED FLOORING

© 2016 Gould Evans

Yosemite National Park

Project No: 89/04/005.01
Date: October 12, 2017
Sheet: A502

CONSTRUCTION DOCUMENTS

1" = 1'-0"
1. All finish materials must meet the flame spread ratings per the building code.
2. Refer to interior elevations for specific material locations.
3. Paint all exposed ductwork, conduit, electrical equipment, etc. to match adjacent surfaces.
4. Paint all non-factory finished exposed metal.
5. Refer to typical flooring transition details for all flooring materials.
6. Flooring transitions at doors should be located under the door in the closed position, unless noted otherwise.
7. Contractor will be responsible for protecting finished flooring surfaces from damage during all construction phases.
8. Provide bullnose trim at transitions from ceramic wall tile to other materials, unless noted otherwise.
9. Refer to reflected ceiling plans for ceiling heights.
10. All electrical device covers are to be white unless noted otherwise.
11. Carpet patterns to run parallel to corridor, unless noted otherwise.
12. All hollow metal door frames to be painted to match adjacent wall color.
13. Hatched areas indicate areas outside scope of work.
14. All back of house areas (even those outside of scope) to receive new epoxy floor and coordinating base (EF-1 and EB-1). Coordinate with concessioner.
15. See sheet A604 for all transition details.

Finish Notes:
1. GC to verify in field - transition to occur at existing grout line of existing quarry tile where possible.
2. EF-1 and EB-1 should extend under countertops to low walls beneath typical.

Key Notes:
[Project and client details]
1. All finish materials must meet the flame spread ratings per the building code.
2. Refer to interior elevations for specific material locations.
3. Paint all exposed ductwork, conduit, electrical equipment, etc. to match adjacent surfaces.
4. Paint all non-factory finished exposed metal.
5. Refer to typical flooring transition details for all flooring materials.
6. Flooring transitions at doors should be located under the door in the closed position, unless noted otherwise.
7. Contractor will be responsible for protecting finished flooring surfaces from damage during all construction phases.
8. Provide bullnose trim at transitions from ceramic wall tile to other materials, unless noted otherwise.
9. Refer to reflected ceiling plans for ceiling heights.
10. All electrical device covers are to be white unless noted otherwise.
11. Carpet patterns to run parallel to corridor, unless noted otherwise.
12. All hollow metal door frames to be painted to match adjacent wall color.
13. Hatched areas indicate areas outside scope of work.
14. CON-2: Concrete curb to remain as is, see finish legend for more info.
Selected Photographs
Base Camp at Yosemite Valley
Lodge, 2018
Gould Evans and Associates
2018 Base Camp Remodel
View of the Starbucks, looking north, in the former Garden Terrace space.
View of Base Camp, looking south.
Looking southwest toward the new service and grill areas of Base Camp.
Looking northwest toward the new service and grill areas of Base Camp. Note the self-serve kiosks.
Looking south toward the dining areas of Base Camp.
Looking north in Base Camp, toward the new Starbucks.
Looking east in Base Camp, toward the new glass vestibule.
2018 Base Camp Remodel

This page intentionally left blank.