Parsons Memorial Lodge
Historic Structure Report

Prepared for
National Park Service
Yosemite National Park, California

Prepared by
Architectural Resources Group, Inc.
San Francisco, CA

August 1, 2018
Table of Contents

Introduction

1. **Study Summary** ... 1
 1.1 Introduction .. 1
 1.2 Contents of the Historic Structure Report .. 2
 1.3 Project Goals .. 2
 1.4 Methodology .. 2
 1.5 Research Findings ... 3
 1.6 Major Issues Identified ... 3
 1.7 Recommendations for Treatment and Use ... 4

Administration Information ... 5

2.1 Building Information ... 5

2.2 Previous Documentation and Studies .. 5

2.3 Project Participants .. 6

Part I: Developmental History

3. **Historical Background & Context** .. 7

3.1 Prehistory and Early History of Tuolumne Meadows ... 7

3.2 Sierra Club .. 10

3.3 Parsons Memorial Lodge .. 12

3.4 Edward Taylor Parsons .. 17

3.5 Architecture .. 18

3.6 Bernard Maybeck, Architect .. 21

Part II: Chronology of Development & Use ... 24

4.1 Chronology of Historic Events ... 24

4.2 Chronology of Physical Construction .. 26

Part III: Physical Description ... 28

5.1 Overview and Site Features .. 28

5.2 Exterior .. 32

5.3 Interior .. 36

5.4 Alterations ... 38

Part IV: Evaluation of Significance ... 40
6.1 Overview of Significance ... 40
6.2 Character-Defining Features ... 41

7. Condition Assessment .. 43
 7.1 Site and Grading ... 43
 7.2 Exterior Walls .. 44
 7.3 Roof Structure and Roofing ... 45
 7.4 Windows .. 47
 7.5 Exterior Door .. 49
 7.6 Interior Flooring ... 51
 7.7 Interior Walls and Casework ... 51
 7.8 Interior Ceiling and Roof Structure ... 53

8. Historic Preservation Objectives ... 54

9. Requirements for Work ... 56
 9.1 Applicable Codes, Laws, and Regulations .. 56
 9.2 Code Requirements .. 57

10. Work Recommendations & Alternatives ... 60
 10.1 Architectural Recommendations ... 60
 10.2 Materials Conservation Recommendations .. 61

11. Bibliography ... 65

APPENDIX A. Historic Photographs ... A-1
APPENDIX B. Drawings & Maps ... B-1
APPENDIX C. Existing Conditions Photographs ... C-1
APPENDIX D. Structural Narrative .. D-1
APPENDIX E. Electrical Narrative ... E-1
APPENDIX F. Secretary of the Interior’s Standards for Preservation ... F-1
Introduction
page intentionally left blank
1. Study Summary

1.1 Introduction

Architectural Resources Group (ARG) has prepared the Parsons Memorial Lodge Historic Structure Report (HSR) to serve as a guide for ongoing maintenance and preservation of the lodge. Parsons Memorial Lodge was constructed in 1915 as a public information center and reading room and as the High Sierra summer headquarters of the Sierra Club. The lodge was designed by noted Bay Area architect Bernard Maybeck. Mark White, Maybeck’s brother-in-law and assistant, and member of the Sierra Club, supervised the construction. Walter L. Huber was the builder and structural engineer. The lodge features characteristics of the First Bay Tradition, an architectural mode Maybeck highly influenced. It was also an important precursor of the development of the Rustic style in Yosemite and other national parks.

In 1912, the Sierra Club acquired 160 acres at Soda Springs, in Tuolumne Meadows, in order to protect the land from future development. After the death of Edward Taylor Parsons (1914), a successful businessman, Sierra Club director, and Outing Committee member, the Sierra Club decided to erect a lodge at Soda Springs in his memory. By the mid-1960s, the Sierra Club found it increasingly difficult to manage the Soda Springs property. The number of campers and visitors to the site had increased significantly after World War II, and the Sierra Club did not have the resources to maintain it. In 1973, the Sierra Club sold the lodge and surrounding acreage to the National Park Service (NPS) for $208,000. In 1977, the non-profit Yosemite Natural History Association (now the Yosemite Conservancy) came to an agreement with the NPS to help operate the lodge. In 1979, the lodge was listed in the National Register of Historic Places, and in 1987, it was dedicated as a National Historic Landmark. In addition to its continued use as an information center, reading room, and meeting place, the lodge currently serves as a venue for evening programs and lectures during the summer.

1 Gray Brechin, “Parsons Memorial Lodge,” 1978, Yosemite National Park Archives; Kenneth H. Cardwell, Bernard Maybeck: Artisan, Architect, Artist (Santa Barbara: Peregrine Smith, Inc., 1977), 243; There have been differing opinions regarding the architect of the lodge. Some resources suggest Mark White, Maybeck’s assistant, was the primary designer of the building. Given the evidence provided in an update to the Parsons Memorial Lodge National Register nomination, statements provided in a letter by UC Berkeley professor Gray Brechin, and the list of Maybeck’s work included in Kenneth Cardwell’s book (cited above), it is assumed Maybeck was the principal architect of the building.

1.2 Contents of the Historic Structure Report

The contents of this HSR comply with NPS Director’s Order 28: Cultural Resource Management Guideline, Chapter 8 and Preservation Brief 43: The Preparation and Use of Historic Structure Reports. This HSR conveys information about the design and construction of Parsons Memorial Lodge in two main sections: 1) Developmental History and 2) Treatment and Use. The Developmental History section comprises a chronology of development and use; a historical background and context; a physical description and list of character-defining features and materials; and a discussion of significance. The Developmental History section also provides a comprehensive analysis of the building’s interior and exterior conditions, and examines the building’s structural and electrical systems.

The second section provides a comprehensive set of treatment and use recommendations for the building, including the conservation of significant materials. The proposed treatment was developed in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (the Standards).

1.3 Project Goals

According to NPS Preservation Brief 43, an HSR provides documentary, graphic, and physical information about a property’s history and existing conditions. Broadly recognized as an effective part of preservation planning, an HSR also provides a thoughtfully considered argument for selecting the most appropriate approach to treatment prior to the commencement of work and outlines a scope of recommended work. The report serves as an important guide for all changes made to a historic property during preservation, rehabilitation, restoration, or reconstruction.

This HSR was prepared at the request of the National Park Service in order to guide the preservation and maintenance of Parsons Memorial Lodge.

1.4 Methodology

The Parsons Memorial Lodge HSR has been developed using information gathered from meetings and interviews with interested parties, archival research, and field investigation. The methodology employed for this report meets the standards and requirements set forth in the following documents:

- Director’s Order 28: Cultural Resource Management Guideline, Chapters 7 and 8
- Preservation Brief 43: The Preparation and Use of Historic Structure Reports
- The Secretary of the Interior’s Standards for the Treatment of Historic Properties
- National Register Bulletin 15: How to Apply National Register Criteria for Evaluation
- National Register Bulletin 39: Researching a Historic Property
Meetings
On October 18, 2016, the project kick-off meeting was held at the Majestic Yosemite Hotel (formerly the Ahwahnee) with personnel from the NPS, ARG, and SOHA Engineers. The project scope, objectives, coordination, schedule, communication, information gathering, and compliance process and procedures were discussed. Additional correspondence was carried out via conference call and email on an as-needed basis with key NPS staff, ARG personnel, and ARG subconsultants in order to confirm direction on the development of the report.

Background Research and Data Collection
In October and November of 2016, ARG reviewed primary and secondary source materials held in the Yosemite Research Library, the William E. Colby Memorial Library, the UC Berkeley Bancroft Library, and the UC Berkeley Environmental Design Archives. Research materials from the Yosemite National Park Archives were reviewed off site. Materials included architectural drawings, historical photographs and newspaper accounts, and other related correspondence. ARG also conducted online research using the following archives and repositories: Online Archive of California, Yosemite Online, and the Sierra Club’s online collections. These materials aided in the preparation of the Developmental History portion of this report.

Field Investigation and Condition Assessments
The project team, including ARG staff and the structural engineering subconsultant, conducted field investigations at Parsons Memorial Lodge on October 19, 2016, to document existing conditions. The building’s exterior and surrounding site were examined and photographed extensively at this time. A follow-up site visit occurred on August 22, 2017, during which the building’s interior conditions were inspected and photographed. The electrical engineering subconsultant visited the site on October 4, 2017.

1.5 Research Findings
This HSR presents information collected through archival research. ARG reviewed correspondence, memoranda, drawings, and photographs held at the Yosemite National Park Archives, the Yosemite Research Library, the UC Berkeley Environmental Design Archives, and the Sierra Club Archives at the UC Berkeley Bancroft Library. This report includes copies, quotations, and references to these materials.

1.6 Major Issues Identified
Parsons Memorial Lodge is in good condition overall and no major issues were identified during this study. Specific locations of minor deterioration or damage are described in the Condition Assessment portion of this report.
1.7 Recommendations for Treatment and Use

Preservation is recommended as the overall treatment approach for Parsons Memorial Lodge. In recognition of its status as a National Historic Landmark, it is essential that all future work is carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings. Continuation of the use of the building as a public information center and reading room is recommended.

The scope of work recommended for preservation of Parsons Memorial Lodge includes only minor repairs at existing materials. Further study is also recommended for evaluation of seismic performance and improvement of accessibility to the building.
2. Administration Information

2.1 Building Information

Original Name: Parsons Memorial Lodge
NPS Preferred Structure Name:
Current Name: Parsons Memorial Lodge
NPS Structure Number: MA03081
LCS Number: 005829
Location: Yosemite National Park, Mariposa County, California
Construction Date: 1915
Architects: Bernard Maybeck (Maybeck and Mark White)
Landscape Architects: N/A
Contractor: Walter L. Huber
Historic Use: Information Center and Reading Room, Sierra Club Headquarters
Current Use: Information Center and Reading Room, Nature Center
Designations: National Register of Historic Places, National Historic Landmark

2.2 Previous Documentation and Studies

For the preparation of this HSR, ARG reviewed a number of sources (listed in the Bibliography) and the following key reports:

2.3 Project Participants

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Company/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>National Park Service</td>
<td>National Park Service</td>
</tr>
<tr>
<td></td>
<td>Yosemite National Park</td>
<td></td>
</tr>
<tr>
<td>COR & Project Manager</td>
<td>Benjamin Stinnett</td>
<td>SOHA Engineers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Art Dell, P.E.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Structural Engineer</td>
</tr>
<tr>
<td>Historian</td>
<td>Lindsay Kozub</td>
<td>O’Mahony & Myer Electrical Engineering and Lighting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pieter Colenbrander, P.E.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrical Engineer</td>
</tr>
<tr>
<td>Prime Architect</td>
<td>Architectural Resources Group, Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kitty Vieth, AIA, LEEP AP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principal-in-Charge</td>
</tr>
<tr>
<td>Project Manager, Architect/Conservator</td>
<td>Lacey Bubnash</td>
<td></td>
</tr>
<tr>
<td>Planner/Architectural Historian</td>
<td>Evanne St. Charles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sarah Hahn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planner/Architectural Historian</td>
</tr>
</tbody>
</table>
Part I: Developmental History
3. Historical Background & Context

3.1 Prehistory and Early History of Tuolumne Meadows and Soda Springs

Around 4,000 years ago, and possibly earlier, American Indians in the Yosemite region began using various trans-Sierra trade and access routes, including what later became known as the Mono Trail through Tuolumne Meadows. In addition to establishing a trade route in the area, tribes, including western Miwok, eastern Paiute, and Washo traveled to the High Sierra to escape the heat and aridity of the lowlands, hunt deer, and explore other food sources.³

Native inhabitants who occupied and visited the High Sierra were left relatively undisturbed until the 1840s. The Gold Rush of 1849 brought hundreds of thousands of American settlers and other non-Indian immigrant groups to the mountains of California. As mining and ranching operations encroached on native land, tensions between the settlers and tribes escalated, leading to multiple attacks on settler trading posts along the Merced River in 1850. In an effort to potentially lesson future conflicts, the federal government sent three U.S. Indian commissioners to California to negotiate with the tribes.⁴ Though a number of tribes sent representatives to talk with the commissioners, others, including the Ahwahneechee, a subset of Southern Sierra Miwok who lived in Yosemite Valley, refused to leave their ancestral land.⁵

On March 27, 1851, the Mariposa Battalion, a local militia formed to protect settler property and rid the region of the perceived threat of Indians, entered Yosemite Valley in pursuit of Chief Tenaya and the Ahwahneechee. (The Ahwahneechee were assumed to have been responsible for trading post attacks in 1850.) In their pursuit, Lieutenant Tredwell Moore and his militia passed through Tuolumne Meadows, likely becoming the first non-native people to lay eyes upon the area. On their return home, Moore and his men collected samples of gold ore along the eastern slopes of the Sierra Nevada.⁶

Moore’s collection of gold samples attracted miners to the eastern Sierra. By 1878, more than 350 independent claims had been made in what had become known as the Tioga Mining District. Shortly thereafter, the newly organized Great Sierra Consolidated Silver Company acquired all the independent claims on Tioga Hill.⁷ In 1882, the Great Sierra Consolidated Silver Company began

⁴ Greene, vol. 1, 16-17.
⁵ Greene, vol. 1, 19.
⁷ Ibid., 36.
boring a tunnel into the east side of Tioga Hill, hoping to intersect the Sheepherder and Great Sierra lodes from this direction. After eight tons of machinery had to be transported to the mouth of the tunnel in order to drill through solid quartzite, the company affiliates decided it would be of benefit to them to construct a graded road to reach the mine. Subsequently, the Great Sierra Wagon Road was completed in September 1883.

Sheepherding in the Tuolumne Meadows area began in the early 1850s in response to the growing demand for meat by nearby mining establishments. It was during this time period that John Muir first visited Tuolumne Meadows while working as a sheepherder in the late 1860s. Muir later became a staunch critic of sheepherding in the region due to the damaging effects grazing had on the region’s ecosystem.

The first permanent settlement in Tuolumne Meadows occurred around 1885 when John Baptiste Lembert (also written Lambert) established a seasonal homestead at Soda Springs, an area of mineral springs in Tuolumne Meadows that had been discovered by members of a California Geological Survey expedition in 1863. Shortly after filing his land claim in accordance with the Homestead Act, Lembert built a one-room cabin (no longer extant) at Soda Springs. He also constructed a wood enclosure around three of the larger springs to protect the water from contamination by sheep and cattle and erected a fence around his property. The enclosure (now known as the Soda Springs Enclosure; listed in the National Register in 1979) is the only extant structure associated with Lembert’s settlement. After an unsuccessful attempt at raising Angora goats in the region (they died in a winter storm in 1889-90), Lembert took to collecting obscure High Sierra butterflies and botanical specimens, which he sold to museums for further research and study. In 1895, 10 years after initially settling on the property, the United States Land Office issued Lembert a patent for 160 acres in the southwest quarter of Section 5, Township I south, Range 24 east, Mount Diablo meridian.

During a backpacking trip in 1889, noted naturalist John Muir and Robert Underwood Johnson, associate editor and later editor-in-chief of Century Magazine, camped on Lembert’s homestead at Soda Springs. Appalled by the widespread degradation that had occurred in the area due to years of mining and overgrazing, the men discussed the need for a national park that would protect Tuolumne Meadows and the surrounding mountainous region. The two men decided to get involved in the campaign for an enlarged Yosemite National Park. Muir wrote two articles on the beauty and importance of Tuolumne, which Johnson then published in Century Magazine in

8 The Great Sierra Mine Historic Site was listed in the National Register in 1978.
9 The Great Sierra Wagon Road was listed in the National Register in 1978. National Park Service, “Cultural Landscapes Inventory, Tuolumne Meadows Historic District,” 37.
1890. Johnson, a native of Washington, D.C., also used his influence back east to lobby on behalf of legislation to create the enlarged park.16

Muir and Johnson were not the first to be concerned with the degradation of Tuolumne Meadows. The Yosemite Grant Act of 1864, which was then managed by the State of California, only provided protection for Yosemite Valley and the Mariposa Grove of giant sequoias. In the state commissioners’ 1885-86 annual report, state engineer William Hammond Hall described several major threats to the park. Among the gravest threats were the unmanaged grazing and timbering in the High Sierra, which had led to deforestation, overgrazing, premature runoff, and soil erosion. In order to better manage the Yosemite region as well as Yosemite Valley itself, Hall recommended that the land grant be enlarged by approximately 200,000 acres to include the entire Tuolumne and Merced watersheds (which included Tuolumne Meadows).17

By the time Muir and Johnson had become aware of the massive degradation that had occurred in Tuolumne Meadows, a nationwide debate had ensued over who should manage the proposed enlarged park. While state commissioners were in favor of keeping control of the park at the state level, individuals with businesses in Yosemite Valley complained of mismanagement by the commissioners (largely due to perceived favoritism). They argued the park should rather be put under control of a federal military administration and managed by a group of civilian experts who would better represent local private interests. Muir and Johnson also believed the park would best be served under federal management, though for the purposes of preservation, not for the benefit of businesses interests. Thus, the two men advocated for the creation of a federally managed national park. Their efforts proved successful, and on October 1, 1890, Congress signed the law establishing Yosemite National Park.18 John Lembert’s homestead remained a private landholding within the park until the 1970s when it was sold by the Sierra Club to the National Park Service.

In 1896, John Lembert was murdered at his cabin on the Merced River.19 His homestead in Tuolumne Meadows passed to his brother Jacob. In 1897, after Lembert’s death, the Soda Springs homestead was sold to John and Fred McCauley, sons of James McCauley, manager of the Mountain House Inn at the top of Glacier Point. The McCauleys built a cabin on the homestead in 1902 (still extant) and used the property for seasonal cattle grazing, a point of controversy with the Army since the brothers had to drive their cattle across federally owned and managed land in order to reach their inholding at Soda Springs.20

With its beautiful scenic views of the High Sierra, Tuolumne Meadows had become a major attraction for “tourists, campers, and California mountain lovers” by the turn of the century.21 In 1901, the Sierra Club, an outdoor recreation and nature conservation club founded by John Muir

16 National Park Service, “Cultural Landscapes Inventory, Tuolumne Meadows Historic District,” 42.
17 Ibid., 41.
18 Ibid., 42.
19 Even after acquiring the Soda Springs property, Lembert continued to spend the winter months at his cabin on the Merced River.
20 Ibid., 25, 40-41.
21 LeConte, “The Soda Springs Property in the Tuolumne Meadows,” 36.
in 1892, held its first wilderness outing from Yosemite Valley to Tuolumne Meadows. Tuolumne’s convenience as a starting point to the Sierra backcountry provoked the Sierra Club to establish it as a base of operations for wilderness excursions on a triannual basis. When the Sierra Club received word that the McCauley family planned to sell the Soda Springs homestead, it jumped on the chance to acquire the land in an effort to hinder future commercial development of the site. The Club bought the 160-acre property in 1912.

In 1915, the Sierra Club built a lodge at Soda Springs in memory of Edward Taylor Parsons, a Sierra Club director and initiator of the wilderness outings to Tuolumne Meadows over a decade prior. In addition to the lodge, which served as an information center, meeting place, and shelter, the Club operated two campgrounds on the property. During its ownership, the Club made multiple improvements to the property, most of which occurred in the 1930s and 1940s under the direction of caretaker Albert Duhme. Improvements included the construction of stone fire rings, trails, tables, pit toilets, and an access road at the campgrounds; the installation of a picnic table, trash vault, and grill adjacent to the lodge; the addition of a grill next to McCauley Cabin; the erection of Bruin Baffle, a small wood-frame structure clad with corrugated metal and used for food storage; and minor interior improvements and exterior maintenance alterations to the lodge. The Sierra Club continued to manage the lodge and surrounding acreage until 1973 when it sold the property to the National Park Service.

3.2 Sierr a Club

The Sierra Club was established in 1892 by John Muir and a prominent group of individuals from the San Francisco Bay Area. The foundation of the Sierra Club can largely be attributed to the lasting impression Yosemite made on Muir during his first visit to Yosemite in 1868. Though he planned to stay for only a brief time, Muir was struck by the magnificence of Yosemite and decided to take up residence. Muir worked as a shepherd in Tuolumne Meadows and as an assistant in a Yosemite Valley sawmill. He built himself a cabin at the foot of Yosemite Falls. In the 1870s, Muir began writing articles for various newspaper publications about Yosemite, the Sierra, and nature conservation in general. Muir spent much of the next 20 years exploring Yosemite and its surroundings and telling tales of his excursions.

After Muir and Robert Underwood Johnson successfully campaigned on behalf of the creation of Yosemite National Park in 1890, the two decided an organization was needed to ensure the

22 Ibid.
24 Margaret Eissler, interview by author, October 14, 2016.
park’s protection. Meanwhile, a group of University of California students and faculty, led by J. Henry Senger, had formed an interest in promoting outdoor recreation through increased accessibility and knowledge of the Sierra Nevada region. In late May 1892, Muir met with the university group and other Bay Area individuals who wished to establish an alpine conservation club. The organizing group included attorney Warren Olney; professors J. Henry Senger, Joseph LeConte, William Dallam Armes, and Cornelius Beach Bradley; and Stanford University President David Starr Jordan, among others. On June 4, 1892, the men formally met in Olney’s law office and the incorporation papers were signed, creating the Sierra Club. The Sierra Club’s mission was “to explore, enjoy, and render accessible the mountain regions of the Pacific Coast; to publish authentic information concerning them; to enlist the support and co-operation of the people and the government in preserving the forests and other natural features of the Sierra Nevada Mountains.”

From its inception, the Sierra Club played a crucial role in the protection of national parks and advocating for environmental conservation throughout the country. Among the Club’s first achievements was the defeat of an 1892 bill, which proposed to reduce the boundaries of Yosemite National Park. In 1906, the Club successfully advocated for the transfer of control of Yosemite Grant land, including Yosemite Valley and Mariposa Grove, from the State of California to the federal government. In the early 1900s, the Club fought against the damming of Hetch Hetchy Valley. Though unsuccessful in stopping the construction of O’Shaughnessy Dam in Hetch Hetchy, the Club greatly increased public awareness about the importance of wilderness preservation and helped strengthen public support for the protection of all national parks. Its efforts proved successful when the Club led the defeat of proposals for large dam projects in Yellowstone National Park in 1920 and the Kings River region in 1923 (this area became part Kings Canyon National Park in 1940). The Sierra Club continued to be involved in various political efforts after World War II, including campaigning against the damming of Glacier National Park (1948-1952), Dinosaur National Monument (1951-1956), and the Grand Canyon (1963-1968); advocating for the foundation of Redwood National Park (1964-1968); and participating in the formation and strengthening of the Wilderness Act (1964), the Clean Air Act (1970), the Water Pollution Control Act (1972), and others. The Sierra Club has continued its environmental advocacy in recent years, helping to protect millions of acres of natural spaces, lobbying against coal mining and oil drilling, and promoting clean energy.

27 Turner, 44-45.
28 Ibid., 47-49.
30 LeConte, “The Sierra Club,” 142.
3.3 Parsons Memorial Lodge

Sierra Club Ownership: 1912-1973

After acquiring the Soda Springs homestead in 1912, the Sierra Club began discussing plans for the construction of a permanent lodge on the property. In his report on the purchase of the property, Sierra Club Secretary William Colby stated:

As soon as the Club shall have acquired this property it will doubtless take steps to erect on it a permanent club lodge. Anyone familiar with the situation of this property will appreciate the great advantage which would result from having headquarters in such a central place from which the many surrounding lakes, peaks, waterfalls, and canyons can be easily reached.32

However, three years passed before the Club established a permanent facility at the property. At the 1914 wilderness outing, shortly after the death of prominent Sierra Club member Edward Taylor Parsons, it was suggested that the lodge at Soda Springs be constructed in his memory. The Soda Springs property at Tuolumne Meadows seemed appropriate for the memorial lodge due to Parsons’s fondness of the site and his role in bringing it under the control of the Club two years prior.33 In addition to its desire to honor Parsons, the Sierra Club experienced an increased demand for a High Sierra headquarters when it began planning its 1915 wilderness outing. With membership on the rise, and members coming from as far as San Diego, the need for a permanent base camp from which its High Sierra excursions would commence was evident.34

Between 1914 and 1915, the Sierra Club raised the necessary funds for the lodge’s construction. The building’s design was likely a collaborative effort between noted Bay Area architect Bernard Maybeck and his brother-in-law, assistant, and primary draftsman, Mark White. Though Mark White, a member of the Sierra Club, was the primary supervisor of the building’s construction, given the evidence provided in an update to the Parsons Memorial Lodge National Register nomination, statements provided in a letter by UC Berkeley professor Gray Brechin, and the list of Maybeck’s work included in *Bernard Maybeck: Artisan, Architect, Artist* by Maybeck historian, Kenneth Cardwell, it is assumed Maybeck was the principal architect of the building.\(^{35}\) Walter L. Huber served as the contractor and structural engineer. Construction on the lodge began in the summer of 1915, as soon as the trails were passable. The granite rocks for the walls and logs for the roof and supports were gathered in the general vicinity of the site. Hardware and cement were brought to the site via pack animals, and the galvanized iron for the roofing was trucked to the property when the Tioga Road opened.\(^{36}\)

\(^{36}\) Colby, LeConte, and Bade, 84; Leslie Starr Hart, National Register of Historic Places Nomination Form, “Parsons Memorial Lodge,” Yosemite National Park, California, listed 1979, Item 8, 3.
The building’s heavy massing was a response to the severe winter weather conditions experienced at Tuolumne Meadows. Walls were built of rough granite surrounded by a concrete core. At the base, they measured nearly 3 feet thick and tapered to 2 feet at the top. The roof was built of hewn logs fastened to the walls with large iron bolts and secured with iron straps. The floor was originally dirt. The windows were equipped with heavy shutters, which could be securely attached when the lodge was closed for the winter season. Construction costs totaled approximately $3,000.37

Parsons Memorial Lodge was completed in time for the Sierra Club’s 1915 wilderness outing, which was held in Yosemite’s backcountry.38 From 1917 through the 1960s, the lodge was generally open from the beginning of July to late September or early October and maintained by a custodian who lived in McCauley Cabin, just southwest of the building. The lodge was built as a

37 Colby, LeConte, and Bade, 84-85.
38 Ibid., 82.
headquarters for the Sierra Club, an occasional shelter from the elements, and a public information center and reading room. The Sierra Club Board of Directors intermittently held meetings at the lodge in the summer, where they congregated around a picnic table adjacent to the building (the original table was constructed ca. 1930s; the existing table replaced the original in 1996).

40 Eissler, interview by author, October 14, 2016.
By the mid-1960s, the Sierra Club found it increasingly difficult to manage the Soda Springs property. The number of campers and visitors to the area had increased significantly after World War II, and the Club did not have the resources to maintain the site. It had become extremely difficult to restrict the number of cars parking in the area, and heavy use of the campgrounds had resulted in major management issues of the property. The Club decided it would be in the best interest of the lodge and surrounding acreage to be sold to the National Park Service, which had the means to maintain such a property. Additionally, one of the objectives of the National Park Service’s nationwide Mission 66 program (1956-1966) was to acquire any remaining private inholdings within national parks, including the Soda Springs property. In 1973, the Sierra Club sold the 160-acre site and its buildings to the NPS for $208,000.

National Park Service Ownership and Administration of the Soda Springs Property: 1973-Present

After acquiring the property in 1973, the National Park Service continued to operate the Soda Springs campgrounds as walk-in campgrounds, and an NPS ranger lived in McCauley Cabin. As the ranger had other duties in addition to supervising the property, the lodge was only open for part of the summer. In 1976, after multiple studies had demonstrated the negative environmental impacts of the substantial number of visitors to Soda Springs, the NPS decided to close the campgrounds and shutter Parsons Memorial Lodge. After banning camping from Soda Springs,
the NPS designated a section of the Tuolumne Meadows Public Campground, developed between 1931 and 1934 and located south of Tioga Road, for walk-in camping.\(^{44}\)

In 1977, the non-profit Yosemite Natural History Association came to an agreement with the NPS to reopen and help operate the lodge. The organization offered classes on the natural and human history of the region, led by naturalist Michael Ross, and reassembled much of the original mountaineering library.\(^{45}\) The association, now known as the Yosemite Conservancy, continues to help operate the lodge during the summer months. In 1992, the NPS created the Parsons Memorial Lodge Summer Series, an evening speaker series which continues to be held every weekend at the building in July and August.\(^{46}\)

Parsons Memorial Lodge was listed in the National Register of Historic Places in 1979 and was designated as a National Historic Landmark in 1987. In 1993, some of the exterior rafters were repaired or replaced. In 1998, the lodge received a new lighting system (connected to the electrical conduit installed in Tuolumne Meadows in 1972), and new exhibits were installed.\(^{47}\) The lodge was listed as a contributor to the Tuolumne Meadows and Tuolumne Meadows Soda Springs historic districts, which were determined to be eligible for listing in the National Register in 2007.\(^{48}\)

The Yosemite National Park Historic Preservation team carried out multiple restoration projects at the lodge and other structures comprising the Soda Springs property. In 1993, the lodge was re-roofed and some of its rafter ends and rafter braces replaced. In 1997, McCauley Cabin (built 1902) underwent restoration, including replacing the lower logs comprising the walls, replacing the chinking, repairing the foundation, and rerouting utilities underground. The wooden Soda Springs enclosure (built ca. 1889) was restored in 2002. Deteriorated logs were removed and replaced with new logs harvested from downed, dead trees. The staircases at the Bruin Baffle (built 1937) were stabilized in 2003.\(^{49}\)

3.4 Edward Taylor Parsons

Born on March 15, 1861, near Rochester, New York, Edward Taylor Parsons was the eldest of five children. He spent his childhood on his family’s farm, attending to the livestock and plowing fields. At the age of 21, Parsons entered Rochester University, where he earned a degree in business.\(^{50}\) He graduated from Rochester in 1886 and became one of the first salesmen for the

\(^{45}\) O’Neill, 35.

\(^{46}\) Eissler, interview by author, October 14, 2016.

\(^{47}\) Ibid.

\(^{48}\) National Park Service, “Cultural Landscapes Inventory, Tuolumne Meadows Historic District.”

\(^{49}\) Ibid.

Sherwin-Williams Company.51 With the company’s headquarters in Chicago, Parsons traveled across the western half of the country on business, visiting Utah, Arizona, California, New Mexico, Hawaii, Washington, and Oregon. An avid outdoorsman, he spent most of his summers mountaineering in the west. In 1896, Parsons joined the Mazamas Club of Portland, Oregon. The Mazamas Club held annual outings, during which members hiked in different wilderness areas across the Pacific Northwest.52 Parsons took up permanent residence on the West Coast when he moved to San Francisco around 1900.53

While on his first trip to Yosemite, Parsons learned of the Sierra Club. Upon returning to San Francisco, he contacted William E. Colby, the Club’s secretary at the time, and expressed interest in holding annual Sierra Club outings, as he did with the Mazamas. The Board of Directors approved the plan, and Parsons was appointed Colby’s chief assistant on the Sierra Club Outing Committee. In 1901, the Sierra Club hosted its first outing, a wilderness excursion from Yosemite Valley to Tuolumne Meadows.54

Parsons continued to be an active member of the Sierra Club, helping to lead outings at mounts Hood, Rainier, Shasta, Dana, Ritter, Brewer, Whitney, and several others. In 1907, Parsons married Marion Randall, a prominent Sierra Club member who later became the first woman elected to the Sierra Club Board of Directors.55 For 13 years, Parsons served as a member of the Outing Committee, a club director, a chairman of the LeConte Memorial Lodge Committee, and a contributor to the Sierra Club Bulletin. In his last years, he was a devoted advocate against the damming of Hetch Hetchy Valley. After a short illness, Edward Parsons died on May 22, 1914.56

3.5 Architecture

Development of a Rustic Style

The Rustic style emerged in national parks in the first decades of the 20th century in an effort to form a more appropriate architectural mode that blended with the natural environment. The Rustic style employed native materials, such as rough-cut stone and unpainted timber, traditional craftsmanship, and naturalistic landscape planning in order to create harmony between the built and natural environments.

The early development of Rustic architecture is partially attributed to railroad companies, the first major concessioners in national parks. One of the first buildings to signify the shift from the vernacular and Victorian-era park buildings of the late 1800s was the Old Faithful Inn in

52 Muir, “Edward Taylor Parsons Tribute.”

53 “Edward Taylor Parsons (1861-1914).”

55 Muir, “Edward Taylor Parsons Tribute;” “Edward Taylor Parsons (1861-1914).”

56 Muir, “Edward Taylor Parsons Tribute.”
Yellowstone National Park. The hotel, designed by architect Robert C. Reamer and constructed in 1903 by the Northern Pacific Railroad, used unpainted logs and rough-cut stone to form a distinct architectural design, “worthy of its awesome natural setting.”57 The success of the Old Faithful Inn led to the creation of other nature-inspired designs, such as the Atchison, Topeka, and Santa Fe Railway’s El Tovar hotel at the Grand Canyon (built in 1905; designed by Charles Whittlesey with interiors designed by Mary Colter).58

After the creation of the National Park Service in 1916, a statement of policy was issued calling for the harmonization of all park buildings with the landscape and the use of trained engineers with knowledge of landscape architecture and/or an appreciation of the natural park aesthetic. This statement of policy provided guidelines for all national park architecture until World War II. The first National Park Service design office, which oversaw this new policy, was based in Yosemite between 1920 and 1923. During the mid-1920s, landscape architect Thomas Vint gathered a team of architects and landscape architects to work with him in the National Park Service Landscape Division (later the Branch of Plans and Design).59 Under the direction of Vint, the employees of the landscape division revised their traditional approach to architecture. Rather than designing buildings to stand out in the landscape, as they had been formally trained to do, the Landscape Division designed buildings that looked as if they grew out of and belonged in the natural environment.60 The team experimented with materials such as stone and timber, and studied the color, texture, massing, and scale of natural materials in an attempt to find an aesthetic that blended with the natural setting. Drawing from the tenets of environmental architecture set forth by designers and architects such as Mary Colter and Bernard Maybeck, the landscape division tailored each master plan and each building to the specific park site and its individual requirements.61

Yosemite played a prominent role in the development of the Rustic style. Buildings such as LeConte Memorial Lodge (1903) and Parsons Memorial Lodge (1915) set precedent for the architectural aesthetic in Yosemite and demonstrated the influence Bernard Maybeck and other architects of the Bay Region Tradition had on the early advancement of the Rustic style. NPS Director Stephen Mather regarded Yosemite as a model for the entire park service, and as such, he believed Yosemite should showcase the Rustic style. In 1920, Mather hired architect Charles Sumner to design the Ranger’s Club, hoping the building would serve as an example for future Rustic buildings in the park. After refining a more distinct Rustic aesthetic, NPS administrators hired Pasadena architect Myron Hunt to develop a plan for the new Administration Building.

58 Harrison, “Architecture in the Parks: A National Historic Landmark Theme Study.”
59 The National Park Service design office was presumably the same as (or located within) the NPS Landscape Division/Branch of Plans and Design.
60 Harrison, “Architecture in the Parks: A National Historic Landmark Theme Study.”
61 Ibid.
(1924), and Herbert Maier designed the Yosemite Museum (1925; Maier went on to design museums for Yellowstone and Grand Canyon National Parks). In 1927, architect Gilbert Stanley Underwood designed Yosemite’s Ahwahnee hotel (currently known as the Majestic Yosemite Hotel), among the most monumental examples of Rustic architecture in the nation.

In the 1930s, under the Emergency Conservation Work Act, the National Park Service was assigned with supervising the development of state, county, and metropolitan recreation areas. In 1938, the NPS published a three-volume manual titled *Park Structures and Facilities* to help guide the design and construction of buildings within these areas. It was in this book that the NPS design approach was referred to as “rustic.” According to the manual, a successfully designed Rustic building was characterized by its “use of native materials in proper scale, and...the avoidance of rigid, straight lines, and oversophistication, giving the feeling of having been executed by pioneer craftsmen with limited hand tools.” This design aesthetic, the NPS believed, would help connect the building with its natural surroundings as well as past traditions.

By the onset of World War II, the use of the Rustic style had begun to decline in favor of new materials and building techniques, as well as the streamlined designs of modernism. The use of the Rustic style ended with the culmination of World War II and the application of the Modern style in national parks throughout the country.

Parsons Memorial Lodge embodies multiple characteristics of the Rustic style, including its site sensitive design, set into the hillside above Tuolumne River with views towards Lembert Dome, Pothole Dome, and Fairview Dome, and its use of locally gathered dry-laid rubble stone for its walls and peeled logs for its rafters. The lodge served as an important forerunner in the development of the architectural mode in Yosemite and other national parks.

First Bay Tradition

The First Bay Tradition is the first of three sub-styles under the Bay Region Tradition, a regional architectural style prevalent in the San Francisco Bay Area from the 1880s to the 1970s. The Bay Region Tradition was a term coined in 1947 by Lewis Mumford to describe the area’s “woodsy, informal, and anti-urban” aesthetic. It was developed in the 1880s in reaction against Beaux Arts architecture, a popular contemporary to the First Bay Tradition that borrowed directly from traditional classical styles such as Greek and Roman architecture. Though the Bay Region Tradition still drew inspiration from classical architectural forms, its integration with natural surroundings and employment of locally sourced materials produced an innovative and modern design aesthetic, comparable to the Arts and Crafts movement. In addition to its emphasis on

63 Harrison, “Architecture in the Parks: A National Historic Landmark Theme Study.”
64 Ibid.
craftsmanship, the style is characterized by its use of local materials, the expression of structure as decoration rather than applied ornamentation, and a sensitivity to site and climate.66

Bernard Maybeck, the Bay Area architect most widely credited with the creation of the Bay Region Tradition, outlined four defining characteristics of First Bay Tradition buildings in *Simple Home* (1904), a book written by his first client. The four aspects included:

- The use of unadulterated natural materials, such as redwood, oak, and stone
- The synthesis of traditional craftsmanship and architectural elements, such as Gothic arches and Corinthian capitals, with modern building materials and technologies, such as reinforced concrete and plate glass windows
- The use of site sensitive designs and the creation of indoor-outdoor spaces
- The formation of an original work that addresses the specific needs of the client and community.67

Apart from Maybeck, several other noted architects are associated with the First Bay Tradition. These include Julia Morgan, Ernest Coxhead, Joseph Worcester, A. Page Brown, Louis Christian Mullgardt, John Galen Howard, A.C. Schweinfurt, and Willis Polk. The First Bay Tradition culminated in the 1920s and was followed by the Second Bay Tradition, which incorporated local materials and elements of the Arts and Crafts movement with the sleek lines and machine aesthetic of European Modernism.68

Parsons Memorial Lodge embodies several features of the First Bay Tradition, including its use of unpainted peeled logs and local rubble stone; its exposed interior roof structure, indicative of its rustic craftsmanship; and its sensitive siting, built into the hillside with views towards multiple natural features.

3.6 Bernard Maybeck, Architect

Bernard Ralph Maybeck was born on February 7, 1862, in New York City. Maybeck was guided to become an artist at an early age. His mother, who died when he was three, had wished it so, and his father, a German-born woodworker, was determined to carry out his wife’s wishes. Throughout his childhood, Maybeck’s father encouraged him to draw and paint rather than play sports, and when he turned 18, he was sent to Paris to study furniture design. While in Paris, Maybeck learned at the École des Beaux-Arts, a well-established art and architecture school across the street from where he apprenticed. His interest in the school was heightened by his newly discovered adoration for Romanesque and Gothic church architecture, which prompted

68 Brown, 79.
him to ask his father’s permission to enroll.69 After studying at the École, Maybeck moved back to the United States in 1886.70

Upon his return to the United States, Maybeck secured a job with former classmate, Thomas Hastings. Hastings, who had previously worked for the architecture firm of McKim, Mead, and White, partnered with another École des Beaux-Arts graduate, John Mervyn Carrère, after receiving a commission to design the Ponce de Leon, a luxury resort hotel in St. Petersburg, Florida. Maybeck joined Hastings and Carrère after the initial hotel designs were under way.71 After the Ponce de Leon was complete, Maybeck moved to Kansas City to work with another former classmate, James Russell. Maybeck and Russell were unable to secure any commissions, however, and the firm quickly dissolved. While in Kansas City, Maybeck had joined a sketch club sponsored by the Kansas City Architectural Society. It was at the club that he had likely met John White and became acquainted with the White family, including John White’s younger sister, Annie. Shortly after, Maybeck began courting Annie White and decided he needed to make more serious plans to establish a professional career in order to support them. Henry White, Annie’s father, suggested he try the West Coast, where opportunities were much more plentiful.72 In 1889, Maybeck set out for San Francisco. The following year, Annie White and he were married, and she joined him in the Bay Area.73 In 1890, John White, who had worked as a draftsman in Kansas City, moved to San Francisco as well. Maybeck and John White collaborated on a handful of residences and commercial buildings before White found work with George H. Howard.74

In 1891, architect A. Page Brown hired Maybeck as a draftsman to work on the Crocker Building. He continued work in Brown’s office on multiple churches in the Bay Area, including the San Francisco Swedenborgian Church, a harmonious building that combined direct structural expression, traditional craftsmanship, and native materials.75 In 1894, Maybeck was hired to teach descriptive geometry at the University of California, Berkeley Department of Drawing. From 1894 to 1903, he served as the university’s first professor of architecture and designed several campus buildings, including the Men’s Faculty Club and Hearst Hall (destroyed by a fire in 1922).76

In 1902, Mark White, the youngest of the White siblings and a UC Berkeley engineering graduate, joined with Maybeck to form the architectural firm of Maybeck and White. The firm operated until 1938, during which White served as Maybeck’s assistant and head draftsman.77 The firm set up practice in San Francisco, where it specialized in designing churches, club buildings, and

69 Esther McCoy, Five California Architects (Los Angeles: Hennessey + Ingalls, 1960), 1-3.
71 Cardwell, 21.
72 Ibid., 26.
73 Ibid., 27.
75 Cardwell, 32.
76 McCoy, 5-6; “Maybeck and His Work.”
77 Laura Soulliere Harrison, National Register of Historic Places Nomination Form, “Parsons Memorial Lodge,” Yosemite National Park, California, listed 1987, Item 8, 2.
residences. Maybeck’s design aesthetic was eclectic, influenced by a variety of styles, including Gothic, Romanesque, Japanese, and Spanish. He freely experimented with new technologies and building materials, such as reinforced concrete, while at the same time he retained a high level of craftsmanship and attention to detail. One of his most notable designs was for the Christian Science Church in Berkeley (1910), a light-filled and highly crafted concrete and exposed redwood structure that combined Gothic tracery, Romanesque columns, Japanese timberwork, and Byzantine ornament.78 The Christian Science Church exemplifies Maybeck’s work in the regional style that would become known as the First Bay Tradition.

Between 1913 and 1915, Maybeck designed one of his most recognized works — the Palace of Fine Arts — at the Panama Pacific Exposition in San Francisco. Initially hired as a draftsman for the exposition, Maybeck was asked by Willis Polk, head of the architectural committee and a former apprentice of Maybeck’s, to put together a scheme for the Palace of Fine Arts building. The result was a classically composed structure inspired by the ancient ruins of Rome.79 Immersed in lush landscaping and appearing as though it floats on top of the lake it fronts, the building exemplifies Maybeck’s ability to design structures in harmony with their natural surroundings. The Palace of Fine Arts building was the most popular structure at the exposition and is the only one from the exposition still standing.80

In 1915, Maybeck and White were commissioned by the Sierra Club to design a lodge at Tuolumne Meadows in memory of Sierra Club director, Edward Parsons. White, a Sierra Club member, assisted with the design and supervised the construction of the lodge. The lodge’s rugged exterior, use of native materials, and site sensitive design served as a model for the development of the Rustic style in the following decade.

Bernard Maybeck continued his practice through the 1920s and 1930s, designing primarily residential and small-scale institutional buildings. His last major commission came in 1930 for the design of the Principia College campus plan in Elsah, Illinois.81 Maybeck designed 11 buildings for the college, most of which featured characteristics of the Tudor Revival style and were constructed of unsurfaced, reinforced concrete. During World War II, Bernard and Annie White Maybeck retreated to a cedar bark cabin Maybeck had designed for them in Twain Harte, Tuolumne County. After the war, the couple returned to their house in the Berkeley Hills, where Maybeck spent his retirement sketching in an open-air studio outside his home. In 1951, Maybeck received the Gold Medal of the American Institute of Architects, its highest honor. Bernard Maybeck died on October 3, 1957.82

78 McCoy, 24; “Maybeck and His Work;” Cardwell, 124-125.
79 McCoy, 37-40.
80 The Palace of Fine Arts building was largely reconstructed in the 1960s; “Maybeck and His Work.”
81 The original campus plan was developed in the 1920s by Maybeck and White for a site in Overland, Missouri. In 1930, the Principia Corporation decided against the Overland site and purchased several thousand acres along the Mississippi River in Elsah, Illinois. Maybeck began redesigning the campus plan for the new site shortly thereafter; “Maybeck at Principia,” Principia College, accessed November 15, 2016, http://content.principia.edu/sites/maybeck/buildings/maybeck-at-principia/.
82 McCoy, 54-57; Cardwell, 235.
4. Chronology of Development & Use

4.1 Chronology of Historic Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca. 4,000 years ago</td>
<td>American Indians in the Yosemite region began using various trans-Sierra trade routes, including what later became known as the Mono Trail through Tuolumne Meadows. Native tribes travelled to the High Sierra to escape the heat and aridity of the lowlands, hunt deer, and explore other food sources.</td>
</tr>
<tr>
<td>1852</td>
<td>Lieutenant Tredwell Moore and a detachment of the Mariposa Battalion were the first documented non-native people to lay eyes upon Tuolumne Meadows.</td>
</tr>
<tr>
<td>1885</td>
<td>John Baptiste Lembert established the first permanent settlement at Tuolumne Meadows; his homestead was located at Soda Springs.</td>
</tr>
<tr>
<td>October 1, 1890</td>
<td>Congress signed the law establishing Yosemite National Park.</td>
</tr>
<tr>
<td>1892</td>
<td>The Sierra Club was established by John Muir and a group of prominent individuals from the San Francisco Bay Area.</td>
</tr>
<tr>
<td>1895</td>
<td>The United States Land Office issued John Lembert a patent for 160 acres in the southwest quarter of Section 5, Township I south, Range 24 east, Mount Diablo meridian (the Soda Springs homestead).</td>
</tr>
<tr>
<td>1896</td>
<td>John Lembert was murdered at his cabin on the Merced River; his Soda Springs property passed to his brother Jacob.</td>
</tr>
<tr>
<td>1897</td>
<td>John and Fred McCauley acquired the Soda Springs property and used it for cattle grazing.</td>
</tr>
<tr>
<td>1901</td>
<td>The first Sierra Club outing was held from Yosemite Valley to Tuolumne Meadows.</td>
</tr>
<tr>
<td>1906</td>
<td>The State of California ceded control of Yosemite Grant land to the federal government; Yosemite Valley became part of Yosemite National Park.</td>
</tr>
<tr>
<td>Year</td>
<td>Event</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>1907</td>
<td>Prominent Sierra Club member Edward Parsons married Marion Randall, a</td>
</tr>
<tr>
<td></td>
<td>Sierra Club member who would go on to be the first woman elected to</td>
</tr>
<tr>
<td></td>
<td>the Board of Directors.</td>
</tr>
<tr>
<td>1912</td>
<td>The Sierra Club bought the McCauley family property (formerly the John</td>
</tr>
<tr>
<td></td>
<td>Baptist Lembert Homestead) at Soda Springs in Tuolumne Meadows.</td>
</tr>
<tr>
<td>May 22,</td>
<td>Edward Taylor Parsons died after a short illness.</td>
</tr>
<tr>
<td>1914</td>
<td></td>
</tr>
<tr>
<td>1914</td>
<td>The Sierra Club decided to erect a lodge at Soda Springs in Parsons’s</td>
</tr>
<tr>
<td></td>
<td>memory and fundraised for the lodge’s construction.</td>
</tr>
<tr>
<td></td>
<td>The Club chose noted architect Bernard Maybeck of the firm Maybeck and</td>
</tr>
<tr>
<td></td>
<td>White to design the lodge; Walter L. Huber was the contractor and</td>
</tr>
<tr>
<td></td>
<td>structural engineer.</td>
</tr>
<tr>
<td>1915</td>
<td>Parsons Memorial Lodge was dedicated and began serving as the base</td>
</tr>
<tr>
<td></td>
<td>camp for Sierra Club wilderness outings to Tuolumne Meadows and the</td>
</tr>
<tr>
<td></td>
<td>High Sierra.</td>
</tr>
<tr>
<td></td>
<td>The Sierra Club donated Tioga Road (formerly the Great Sierra Wagon</td>
</tr>
<tr>
<td></td>
<td>Road) to the Department of the Interior and granted an easement</td>
</tr>
<tr>
<td></td>
<td>through the Soda Springs property for the road’s realignment.</td>
</tr>
<tr>
<td>1915-1960s</td>
<td>The lodge was generally open during the summer months (July through</td>
</tr>
<tr>
<td></td>
<td>September/October) and was maintained by a Sierra Club custodian who</td>
</tr>
<tr>
<td></td>
<td>resided in the McCauley cabin.</td>
</tr>
<tr>
<td></td>
<td>The Sierra Club operated two campgrounds at Soda Springs.</td>
</tr>
<tr>
<td>1973</td>
<td>The National Park Service acquired the building from the Sierra Club.</td>
</tr>
<tr>
<td>1976</td>
<td>After studies demonstrated the negative environmental impacts heavy</td>
</tr>
<tr>
<td></td>
<td>visitor traffic was having on the Soda Springs site, the NPS closed</td>
</tr>
<tr>
<td></td>
<td>the campground and lodge.</td>
</tr>
<tr>
<td>1977</td>
<td>The Yosemite Natural History Association (now the Yosemite Conservancy)</td>
</tr>
<tr>
<td></td>
<td>came to an agreement with the NPS to reopen and help operate the</td>
</tr>
<tr>
<td></td>
<td>lodge.</td>
</tr>
<tr>
<td>1979</td>
<td>The lodge was listed in the National Register of Historic Places.</td>
</tr>
<tr>
<td>1987</td>
<td>The lodge was designated as a National Historic Landmark.</td>
</tr>
<tr>
<td>1992</td>
<td>The NPS created the Parsons Memorial Lodge Summer Series, an evening</td>
</tr>
<tr>
<td></td>
<td>speaker series that continues to be held at the lodge every weekend</td>
</tr>
<tr>
<td></td>
<td>in July and August.</td>
</tr>
</tbody>
</table>
The lodge was found to be a contributor to the National Register-eligible Tuolumne Meadows and Tuolumne Meadows Soda Springs historic districts.

The lodge continues to function as a public education and visitor center.

4.2 Chronology of Physical Construction

1885-1889 Lembert erected a one-room cabin (not extant) and wooden enclosure (known as the Soda Springs Enclosure; listed in the National Register in 1979) on his homestead.

1902 The McCauleys erected a cabin on their Soda Springs property (listed in the National Register in 1977).

1915 Parsons Memorial Lodge construction completed.

The Sierra Club developed two campgrounds at Soda Springs.

The Tioga Road (originally the Great Sierra Wagon Road; completed in 1883) was realigned and passed through the Soda Springs property; a bridge was built over the Tuolumne River.

1923 A water pipeline was installed from Delaney Creek to the lodge.

1930s-1940s The Sierra Club underwent multiple improvements to its Soda Springs land, including upgrades to the campground and the construction of the Bruin Baffle (1937), a trash vault (ca. 1937), cooking grills (ca. 1937), and a picnic table (1930s).

A tall vertical pole, which appears to be a flagpole, was attached to the edge of the roofline at the south (primary) façade gable end. The pole was removed at an unknown date.

1933 The Tioga Road was realigned again; it still passed through the Soda Springs property.

1935 A number of improvements were made, including the following: roof repaired and roofing paper laid; concrete floor poured over original dirt floor; window frames replaced and new heavy winter shutters added; wood planks installed over the built-in stone seats under windows.

ca. 1940 Exterior wood bench seats were added under the windows at the south façade.

1972 New water and power pipelines were constructed through Tuolumne Meadows; this is likely when electricity was first installed in the building.
<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980s</td>
<td>The lodge’s lighting system was upgraded; hanging exhibits were added.</td>
</tr>
<tr>
<td>1993</td>
<td>The lodge was re-roofed and some of the exterior rafter tails and rafter braces repaired/replaced.</td>
</tr>
<tr>
<td>1996</td>
<td>A 1930s picnic table located west of the lodge was replaced with a new picnic table.</td>
</tr>
<tr>
<td>1997-1998</td>
<td>New display lighting and exhibits were installed at the lodge.</td>
</tr>
<tr>
<td>Date(s) unknown</td>
<td>The 1930s wood casement windows were replaced in kind.</td>
</tr>
</tbody>
</table>
5. Physical Description

5.1 Overview and Site Features

Parsons Memorial Lodge is located near the eastern edge and just north of the center of Yosemite National Park. The lodge is in the Soda Springs area at the center of Tuolumne Meadows, equidistant between Pothole Dome and Lembert Dome. The building sits on the north side of the Tuolumne River and Tioga Road at an elevation of 8,640 feet above sea level. It is reached from Tioga Road by a dirt maintenance road (originally part of Tioga Road before it was realigned in 1933), which crosses the Tuolumne River via a stone bridge (built 1915). The building is set into a gently sloping hillside and is surrounded by scattered rocks and conifer trees. It is bordered by low, dry-laid, rubble stone retaining walls on its south and east sides, which were constructed at an unknown date.

The Soda Springs are located east of the building, as is the Soda Springs Enclosure (ca. 1885; listed in the National Register in 1979). Southwest of the building is McCauley Cabin, a one-room log cabin built in 1902 (listed in the National Register in 1977). Beyond McCauley Cabin, further south and west, is the one-and-a-half-story, wood-frame, gable-roof structure known as Bruin Baffle (built 1937). Bruin Baffle was constructed by the Sierra Club for food storage. Between McCauley Cabin and Bruin Baffle is a smaller wood-frame, gable-roof structure comprising a pit privy (built 1990). Remnants of the Sierra Club campgrounds, including fire rings and pit toilets, are located west of Bruin Baffle. A network of dirt trails lined with rocks connects the buildings and structures at the Soda Springs site.

Just south of the entrance to the lodge is its National Historic Landmark (NHL) plaque, which is mounted on a small boulder. A modern wayside exhibit sign is located southeast of the lodge. Approximately 30 feet west of the building is a custom-built wood picnic table. The table, constructed in 1996, is a reconstruction of a ca. 1930s table that was replaced due to extensive deterioration. A stone trash vault with a steel lid (built ca. 1937) is located about 30 feet south and east of the lodge. Two stone cooking grills (built ca. 1937), one next to the picnic table and one next to McCauley Cabin, are also located at the site. For additional information regarding the buildings, structures, and small-scale features in the vicinity of the lodge, and their significance related to the development of the Soda Springs site, refer to the Tuolumne Meadows Soda Springs Historic District Cultural Landscapes Inventory (National Park Service, 2007).

The original design of the lodge remains intact and displays several distinctive features of the Rustic style and First Bay Tradition. Significant features of the lodge related to the Rustic style and

83 The location and description of the Sierra Club campground remnants were derived from National Park Service, “Cultural Landscapes Inventory, Tuolumne Meadows Soda Springs Historic District,” 46.
84 Dates for these features were provided in National Park Service, “Cultural Landscapes Inventory, Tuolumne Meadows Soda Springs Historic District.”
First Bay Tradition include its low, horizontal profile, integrated with the gently sloping landscape of the meadows, its use of local natural materials, such as rubble stone and peeled logs, and its rustic, hand-crafted quality.
Soda Springs Enclosure (ARG, 2017).

McCauley Cabin (ARG, 2017).

Bruin Baffle (ARG, 2017).

Picnic Table (ARG, 2017).

NHL Plaque (ARG, 2017).

Water Spigot (ARG, 2017).

Privy (ARG, 2017).

Wayside Exhibit Sign (ARG, 2017).
5.2 Exterior

Parsons Memorial Lodge is a 1,040-square-foot, one-story, unreinforced masonry building set on a concrete floating slab. The building has a simple rectangular plan and is constructed of pink feldspar and gray granite in an uncoursed rubble bond. The walls are constructed around a concrete core in order to create a dry-laid appearance by concealing mortar joints. It has a low-pitched, front-facing gable roof with overhanging eaves, exposed purlins and rafters, and galvanized corrugated iron roofing. The rafters comprise peeled lodgepole pine logs that are 1 foot to 1½ feet in diameter and are supported by diagonal wood braces that sit on rubble stone buttresses. The rubble stone walls of the lodge are 3 feet thick at the base and taper to 2 feet at the top. Fenestration includes a single wood plank door clad with metal at the south façade and paired multilight wood casement windows throughout.

Parsons Memorial Lodge, south and east façades, view northwest (ARG, 2017).
The building’s south (primary) façade is symmetrical. At the center of the façade is a wood plank door clad with metal and recessed within a round arch opening. This door is the only entrance into the building. The door is painted with a sign that reads “PARSONS MEMORIAL LODGE, SIERRA CLUB.” Photographs taken of the building in the 1930s indicate the painted lettering is not original. On either side of the entrance is a pair of six-light casement windows featuring heavy wood shutters studded with nails. The shutters are recessed within concrete surrounds and retain stone lintels and concrete sills. The windows are further recessed behind the shutters and retain simple wood surrounds. Below the windows are wood bench planks supported by low walls of stone rubble.
The north façade is also symmetrical. It features a large rubble stone chimney that tapers slightly from the base to the top and extends approximately 2 feet above the roof. The north façade is devoid of fenestration.
The east and west façades of the building are nearly identical. Both contain two pairs of eight-light wood casement windows at the center of the façades. The windows feature heavy wood shutters studded with nails. The shutters are recessed within concrete surrounds and retain stone lintels and concrete sills. The windows are further recessed behind the shutters in simple wood surrounds. The windows on the west façade terminate at ground level, whereas the windows on the east façade sit approximately 2 feet above the ground. Five peeled log rafter tails supported by diagonal braces on stone buttresses are evenly spaced along both façades. Due to the sloping topography of the site, the west façade sits approximately 1 foot lower than the east façade.
5.3 Interior

The interior of the lodge consists of a single open room. The building’s roof assembly is exposed at the interior and is composed of peeled logs that are oriented north-west and are supported by peeled log rafters. The rafters are held together by metal straps located along the interior ridgeline and are supported by diagonal braces resting on stone piers. Two metal tracks containing lighting (added in the 1990s) extend north-west at the ceiling and are attached at the corners where each of the rafters meets its support brace. Interior walls consist of exposed rubble stone, and the floor is scored concrete.

Interior overview of Parsons Memorial Lodge, view north (ARG, 2017).
Interior overview of Parsons Memorial Lodge, view south (ARG, 2017).

Parsons Memorial Lodge, close-up of graffiti on the back of the entrance door (ARG, 2017).

Parsons Memorial Lodge, close-up of fireplace (ARG, 2017).
The south end of the lodge interior is composed of an arched entrance (the entrance jamb is made of concrete) flanked by six-light casement windows. The interior of the entrance door retains graffiti written in graphite. Some of the graffiti appears to date to the 1920s and includes the names of former Sierra Club members. At the north end of the lodge interior is a simple fireplace with a large stone lintel. Between the rafter’s support braces, along the east and west sides of the space, are eight-light wood casement windows (two on each side) with brass hinges and locks. Below the windows are wood planks (added in 1935) supported by low stone walls that project from the interior main walls. The planks serve as seating and extend the lengths between the rafter braces. A framed list entitled “BIRDS AT PARSONS LODGE” is mounted to the east wall of the room, adjacent to the door. The list dates to the 1920s. Additional seating, tables, contemporary cabinetry, and displays (added in 1998) are located along the east and west sides of the lodge. A contemporary cabinet containing the building’s electrical equipment is located in the southwest corner of the space.

5.4 Alterations

The exterior of the building is largely intact, with few alterations. A water pipeline was installed from Delaney Creek to the lodge around 1923.85 (A new water pipeline was installed in 1972; a water spigot southwest of the building may have been installed at this time.)86 In 1935, the galvanized iron roof was repaired and roofing paper was laid underneath. That same year, new

85 W.B. Lewis, letter from W.B. Lewis to William E. Colby regarding the water line construction to Parsons Memorial Lodge, July 27, 1923, Bancroft Library.
86 Colburn S. Wilbur, letter from Colburn S. Wilbur, Executive Secretary of the Sierra Club, to Lynn H. Thompson, Superintendent of Yosemite National Park, June 16, 1972, Yosemite National Park Archives.
window frames were mounted, and new heavy shutters studded with nails were installed. The nails were intended to deter bears from breaking into the building during the winter. The 1930s casement windows appear to have been replaced in kind at an unknown date. Around 1935, exterior wood bench seats were added below the windows at the south façade. A power pipeline was run through Tuolumne Meadows to the lodge in 1972. This is likely when an electrical conduit was first installed at the southwest corner of the building. In 1993, the lodge was re-roofed with galvanized sheet metal (similar material and same appearance as the original roofing), and some of the rafter tails and rafter braces were repaired or replaced in kind.

Parsons Memorial Lodge has experienced a few interior alterations. In 1935, a concrete floor was poured, wood planks were cut to cover the built-in stone seats under the windows, and new furniture was added. Electricity was likely installed in 1972 when electrical conduit was constructed through Tuolumne Meadows to the lodge. In the 1980s, track lighting and hanging exhibits were added. A new lighting system and interpretive panels were installed in 1997-1998.

88 “Parsons Memorial Lodge Suggested Front Terrace,” plan, August 22, 1940, Environmental Design Archives.
89 Colburn S. Wilbur, letter from Colburn S. Wilbur, Executive Secretary of the Sierra Club, to Lynn H. Thompson, Superintendent of Yosemite National Park, June 16, 1972, Yosemite National Park Archives.
91 Duhme, 80-81.
92 Harrison, Item 7, 2.
93 Eissler, interview by author, October 14, 2016.
6. Evaluation of Significance

6.1 Overview of Significance

Parsons Memorial Lodge was listed in the National Register of Historic Places (National Register) in 1979 and was dedicated a National Historic Landmark (NHL) in 1987. In 2007, the lodge was found to be a contributor to the National Register-eligible Tuolumne Meadows and Tuolumne Meadows Soda Springs historic districts.94 According to the National Register listing, the lodge is of regional significance in the area of architecture as “an exceptional example of ‘rustic’ style architecture.”95 It embodies the distinctive characteristics of the style, including its use of local stone and logs and its horizontality, which gives “the building the appearance of rising out of the landscape.”96 The listing also found the lodge locally significant in the area of conservation for its association with the Sierra Club, a renowned environmental organization that played a central role in the creation of Yosemite National Park and national parks throughout the country.

The National Historic Landmark listing determined the lodge was of national significance in the area of architecture for its “highly expressive use of simple natural materials indicative of the Bay Area architectural tradition as seen in the work of Bernard Maybeck and others.”97 The listing also found the building significant as “one of the earliest stone rustic buildings in a national park...[and] a most important forerunner of [the] design ethic.”98 The NHL listing states the lodge is also regionally significant in the area of conservation for its association with the Sierra Club.

94 Refer to the “Cultural Landscapes Inventory, Tuolumne Meadows Historic District” (NPS, 2007) and “Cultural Landscapes Inventory, Tuolumne Meadows Soda Springs Historic District” (NPS, 2007) for information related to the significance of other resources in the vicinity of the lodge.
96 Ibid.
98 Ibid.
The building’s period of significance established under the National Register nomination is 1915, the year the lodge’s construction was completed. The NHL nomination establishes a different period of significance, beginning in 1915 with the lodge’s completion, and extends to the present (1987), reflecting its continued use as a visitor center and reading room, now owned and operated by the National Park Service.\(^99\)

6.2 Character-Defining Features

A character-defining feature is an aspect of a building’s design, construction, or detail that is representative of the building’s function, type, or architectural style. Character-defining elements include the overall shape of the building, its materials, craftsmanship, decorative details, interior spaces, and features, as well as the various aspects of the building’s site and environment.

Generally, character-defining features date to a property’s period of significance. For a historic resource to retain its significance, its character-defining features must be retained to the greatest extent possible. An understanding of a building’s character-defining features is a critical step in developing a preservation and maintenance plan for the building. The character-defining features of Parsons Memorial Lodge reflect the design and material characteristics of the First Bay Tradition and the Rustic style as well as the building’s relationship to the Sierra Club and the early conservation movement in the United States. The building has undergone very few alterations and its character-defining features are intact.

Exterior Features and Elements

- Siting and orientation of the building within the landscape (built into the hillside with views of several natural features, including Tuolumne Meadows and Lembert, Pothole, and Fairview domes)
- Rocky, non-landscaped area immediately surrounding the building
- Overall form and massing (low, horizontal emphasis and heavy massing)
- Low-pitched gable roof
- Galvanized corrugated metal roofing
- Open eaves with exposed peeled log purlins and rafters supported by diagonal braces and buttresses
- Pink feldspar and gray granite walls constructed around a concrete core, resulting in a dry-laid appearance
- Rubble stone buttresses
- Massive rubble stone chimney with paired vent holes on all four sides

\(^{99}\) If the Parsons Memorial Lodge National Register nomination or National Historic Landmark nomination is revised in the future, ARG recommends adopting two periods of significance. For the lodge’s significance under the area of architecture, ARG recommends a period of significance of 1915, reflecting its date of construction. For the building’s significance under the area of conservation, ARG recommends a period of significance of 1915-1973, beginning with the year its construction was completed and ending with its transfer from private ownership under the Sierra Club to ownership under the National Park Service.
• Recessed round arch entry
• Wood primary entrance door clad with galvanized metal on the exterior
• Recessed, paired, six- and eight-light wood casement windows
• Heavy wood shutters studded with nails

Interior Features and Elements

• Single open room
• Large fireplace centered on the north wall of the room
• Exposed wood roof structure supported by knee braces and stone piers
• Exposed rubble stone walls
• Scored concrete flooring
• Wood bench seats below windows
7. Condition Assessment

Existing exterior material conditions at Parsons Memorial Lodge were surveyed on October 19, 2016. Interior conditions were surveyed on August 22, 2017. The scope of the existing conditions assessment was limited to visual inspection and did not include any materials testing or destructive investigation. The exterior walls and roof were visually inspected from the ground only. The exterior and interior materials at the lodge are generally in good condition.

7.1 Site and Grading

The building site slopes down to the east at all sides of the building, although a level grade has been created at the front (south) elevation. The existing site grading directs some water toward the west elevation of the building, but no evidence of water ponding or accumulation was observed. The window sills are only about 12 inches above grade at the west wall. Several large stones also rest on the ground within 1 to 2 feet of the building at the west side. An above grade water line also runs along the west side of the site, ultimately connecting to a below-grade valve box near the southwest corner of the building. At the east side of the building, the landscape slopes away from the structure, creating positive drainage away from the site.

100 For information related to the existing conditions of the buildings, structures, and small-scale features adjacent to the lodge, refer to “Cultural Landscapes Inventory, Tuolumne Meadows Soda Springs Historic District” (NPS, 2007).
The building is approached from the southeast via a gently graded trail. A low rubble stone wall creates a site perimeter at the south elevation and southeast corner of the site, including an opening directly opposite the entrance door. The wall varies in height but is consistently less than 2 feet high, and is made up of loosely piled stones. The stone used is the same as at the building walls, which is also found scattered throughout the site. The loose stones appear to shift seasonally, and some wall sections have been broken apart by brush and plant growth.

7.2 Exterior Walls

All building walls are composed of granite and feldspar stone gathered from the adjacent site and roughly laid in a rubble pattern. The stones vary greatly in size, with some having individual exposed faces smaller than 6 square inches, and others with faces 2 to 3 square feet in size. Particularly large stones are concentrated at the projecting piers at the east and west elevations, which are more roughly formed than the main, rubble walls. Large, flat stones are used as window headers, and the door header is an arch formed by voussoirs of varying thickness. The granite used throughout the exterior appears to have a relatively high iron content, with large, naturally-occurring rust stains typical throughout.

Mortar is visible at varying depths at all walls, typically deeply recessed but occasionally visible within 1 to 2 inches from the exterior face of the stone. The mortar is most easily visible at the door opening and some window openings, where it is light brown in color and contains a relatively coarse aggregate mix of sands and gravels. The window openings have been formed
and framed in concrete, with cementitious parge covering the rubble stone at the outer sills. The concrete is in good condition, with a few visible patches but no active deterioration. The parge is typically cracked at the outer edges of the sills, with more advanced cracking and spalling at the west elevation, where the sills are very close to grade. Small, lightly corroded ferrous metal dowels are visible at most concrete window frames, but have been cut flush with the concrete they are embedded in. The dowels may be a remnant from formwork construction, or may have originally been used to attach additional window coverings for winterization.

The large chimney that projects from the north elevation is capped by a flat concrete panel, with some steel lintel components visible at the ventilation openings. The stone masonry adjacent to the openings exhibits some black soot and smoke staining. Sheet metal flashing has been attached to the chimney corners that meet the roof with sealant or a similar waterproofing adhesive.

Overall, the stone masonry is in very good condition. Even at locations with little to no mortar visible, the stones appear intact and the walls solid. The projecting piers at the east and west elevations are particularly rough in form, and may have lost some small stone pieces, but overall remain intact in structure.

7.3 Roof Structure and Roofing

The logs and other rough-hewn wood components that make up the roof structure are in good to fair condition. The heavy timber beams that project at the east and west elevations have been treated at their exposed ends with an unidentified preservative that is slightly orange in color. The exposed ends remain in good condition, however, likely due to the treatment. The three-quarter log roof sheathing, which has exposed ends at the north and south elevations, has also been treated with an orange-colored preservative product and is in fair condition. The sheathing
logs exhibit moderate wood decay at their exposed ends on the south elevation, including substantial splitting and checking at the exposed ends. At the north elevation eave, the exposed sheathing logs exhibit substantially less end decay, but are heavily stained, including large black areas that may indicate rot is active. There are wide splits in the outer, exposed log at the west eave sheathing.

Left: View of heavy timber beam end face in good condition at the west elevation. Note the red-orange color.

Below left: typical staining at north elevation roof sheathing, including black staining at ends.

Below right: typical deterioration at sheathing ends at south elevation, including splitting and checking (all photos ARG, 2016).

The roof itself is corrugated metal and in good condition. Some very minimal warping and deformation of the metal panels is visible at the west side of the roof, but the roof drainage and assembly remain in good condition and appear weathertight. At the north and south ends of the roof, a half log caps the roofing and log sheathing, although the cap is not tightly fitted against the sheathing due to the irregular size of the logs.
7.4 Windows

The windows are concealed by heavy wood shutters during the months that the building is closed and winterized (generally mid-September through mid- to late June). The shutters are made of unfinished wood planks set in a diagonal pattern with a decorative nailing pattern. The nails were intended to deter bears from breaking into the building during the winter months.\(^{101}\) The shutters are in fair condition, with some light warping and biological growth at the east and west elevations. The shutters at the south elevation exhibit moderate weathering and are missing a portion of wood plank at a corner. Galvanized hinges attach the shutters to a wood frame, and some screws used to attach the hinges are now corroding. An iron astragal separates each pair of shutters; corrosion is visible at the south elevation astragals.

The shutters appear to provide adequate protection for the wood casement windows, which are in fair condition overall. Exterior glazing putty is cracked and partially missing at some windows and has been selectively replaced but not painted at others, although many sections of putty remain intact at all glazed elevations. Paint finishes at the window exteriors are typically weathered and in poor condition, particularly at the lower half of each sash. Interior paint finishes are in fair condition, with staining at the top rail at most windows.

Window hardware includes only a small casement latch, which is missing at some windows. A small hook and eye latch has been added below the actual hardware at all windows. The exterior

\(^{101}\) Duhme, 80-81.
casement stay hooks also appear to be a later addition and are typically corroded at their anchored ends.

Detail view of missing glazing putty, deteriorated paint, and corroded hardware at the east elevation of the lodge (ARG, 2017).

View of window interior at west wall, including missing brass hardware and dark staining at top rail (ARG, 2017).
7.5 Exterior Door

The front door is made of vertical wood planks that are clad on the exterior with galvanized sheet metal. The sheet metal, which appears to be original according to historic photographs of the building, is attached to the wood with a horizontal and vertical nailing pattern. The sheet metal is unpainted and in good condition other than some dents and gouges adjacent to the exterior padlock. Two large iron straps run horizontally across the door, and are uniformly covered in a light corrosion layer. The arched concrete header has a medium crack near the top of the arch. The phrase “Parsons Memorial Lodge Sierra Club” has been painted on the door above the upper iron strap, but the paint is failing, making the “Sierra Club” lettering hard to read. Photographs taken of the building in the 1930s indicate the painted lettering is not original, though it has been on the door since at least the 1960s according to 1965 appraisal photos.

Wood benches flank both sides of the front door at the south elevation. The benches are made of a single wood plank, both of which are in good condition but have a slight bow at the center. The bowing is likely due to the haphazardly placed stones below, which provide uneven support and prevent the wood planks from resting flat and uniformly on the stones.

The interior face of the exterior door has exposed vertical wood planks of varying widths coated with a clear, glossy finish. The planks exhibit numerous scratches and some large gouges, particularly along the strike side of the door. Water stains run 12” to 18” up from the base of the
door, likely due to seasonal exposure to snow accumulations and snow melt. The three ferrous metal straps that run horizontally across the interior face of the door have been painted but the finish has deteriorated, revealing moderate corrosion at locations of peeling paint. The hinge assembly also has moderate corrosion along its surface. The graphite graffiti written on the door is in good condition and largely still legible. It appears that most of the graphite was applied before a sealing finish coat.

Note the staining at the base and strike side of the front door interior face (ARG, 2017).
7.6 Interior Flooring

The concrete slab-on-grade flooring exhibits extensive cracking throughout the interior. Directly in front of the door there is a concrete spall, 2 square feet in area, which could pose a tripping hazard. The cracking is concentrated near the center of the building, typically radiating out from the center score line in the concrete. The concrete floor is otherwise smooth, unstained, and in good condition. There is a small stone hearth in front of the fireplace that is lightly soot stained but otherwise in good condition.

![Detail view of concrete spall at floor, including cracks radiating away (ARG, 2017).]

7.7 Interior Walls and Casework

The interior stone walls generally match the exterior stone details, including varying stone sizes set in a rubble pattern with rough mortar joints that are deeply recessed. Mortar is less deeply recessed and appears to have been selectively repointed at some wall locations, including above the fireplace, around the windows, and immediately below the roof line. At the roof line itself, there are several locations of much lighter replacement mortar. There is some dark brown and black staining immediately below the roof line along the east wall, potentially from previous roofing or waterproofing products. There is also dark staining above the fireplace, but it is from smoke and soot staining, producing a more uniform stain rather than the streaky pattern seen below the roof line. Efflorescence is visible at mortar joints directly above the fireplace, indicating water has moved through the area, likely via the chimney above. Building volunteers note that open masonry cavities are providing access for rodents and pests.
The fireplace itself is lined with brick that also exhibits efflorescence, which particularly heavy near the base of the wall. The brick is missing mortar in many areas and is spalled at the center of the back wall. The concrete lintel above the fireplace has efflorescence at its top edge but is in good condition.

The built-in wood benches are in good condition at the east wall, but exhibit multiple holes and deep gouges at the west wall. The southwest bench also has a large previous Dutchman repair that is not visually blended with the original bench. The cement parge surrounding the benches where they touch the masonry has some minor cracking but is in good condition overall.

102 The brick does not appear in a 1915 photograph of the interior of the lodge; however, research did not indicate when the brick was installed.
7.8 Interior Ceiling and Roof Structure

The interior log girders and log rafters are in good condition. Minor scratches and gouges at the center of each girder are typical, likely due to the supports installed during winterization. The rafters exhibit light smoke staining at the ceiling peak, particularly at the north half of the building (which is closer to the fireplace). There is a trail blaze mark at a log rafter on the northern end of the building. The blaze appears to have been carved into the tree before it was harvested for building material.

Detail view of blaze mark on log rafter inside Parsons (ARG, 2017).
Part II: Treatment & Work Recommendations
8. Historic Preservation Objectives

Parsons Memorial Lodge is listed in the National Register of Historic Places and is designated as a National Historic Landmark. The building is also a contributor to the National Register-eligible Tuolumne Meadows and Tuolunme Meadows Soda Springs historic districts. As such, it is important that all future work at the site be carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (the Standards). The Standards provide general information for stewards of historic resources to determine appropriate treatments. They are intentionally broad in scope to apply to a wide range of circumstances and are designed to enhance the understanding of basic preservation principles. The Standards are neither technical nor prescriptive, but are intended to promote responsible preservation practices that ensure continued protection of historic resources. The Standards have four defined levels of potential treatment for a property – preservation, rehabilitation, restoration, and reconstruction – which are defined as follows:

Preservation is the act or process of applying measures necessary to sustain the existing form, integrity, and materials of a historic property.

Rehabilitation is the act or process of allowing for a compatible use for a property through repair, alterations, and additions while preserving those portions or elements that convey its historical, architectural, or cultural values.

Restoration is the act or process of accurately representing the form, features, and character of a property as it appeared at a particular period of time by removing features from other periods in its history and reconstructing missing features from the restoration period.

Reconstruction is the act or process of depicting, by means of new construction, the form, features, and details of a non-extant landscape, site, building, structure, or object for the purpose of reproducing its appearance at a specific period of time and in its historic location.103

Parsons Memorial Lodge possesses a high level of historic significance and retains a high level of its original design and integrity of materials. As such, preservation is the most appropriate treatment approach for the building. The Secretary of the Interior’s Standards for Preservation are included for reference in Appendix F.

Under the preservation approach, exterior and interior treatments focus on the preservation of existing fabric. Replacement is only considered for severely deteriorated or compromised materials, and replacement materials are selected and finished to match the historic materials. In some instances, the preservation approach allows for the retention of changes to a property that have acquired significance in their own right, as well as limited and sensitive upgrades to mechanical, electrical, and plumbing systems and other code-required work to make the property functional.

The ultimate use of Parsons Memorial Lodge is the continuation of its historic use as a public information center and reading room in Tuolumne Meadows. Even with its continued use, there are minor material and structural deficiencies that should be addressed. The following sections, Requirements for Work and Work Recommendations and Alternatives, provide guidelines and recommendations for the preservation of the lodge.
9. Requirements for Work

9.1 Applicable Codes, Laws, and Regulations

Compliance with prevailing building codes is not required for existing buildings, unless they undergo an addition, alteration, repair, or change in use, or if a code deficiency presents a distinct hazard to life safety. This report assumes that repair work may be undertaken at the lodge in the future and provides guidance for this. According to the National Park Service Director’s Order 28, historic structures are “generally expected to meet modern safety, access, and energy efficiency standards,” but it is also understood that the character of the historic resource may limit the interventions that are acceptable. The following preliminary analysis outlines the larger code, fire protection, life safety, and accessibility issues that currently exist at the lodge.

The governing buildings codes for any proposed work include:

- 2015 International Building Code (IBC)
- 2015 International Existing Building Code (IEBC)

Additional applicable codes, laws, and directives include:

- 2015 National Electrical Code (NEC) (NFPA 70)
- 2015 Architectural Barriers Act (ABA) Standards
- Director’s Order 42 (Accessibility for Visitors)
- Director’s Order 16A (Accessibility for Employees)
- Memorandum to Regional Directors and Park Superintendents: Disability Access in the National Park Service, 2006

The prevailing code, the IBC, prescribes solutions to conditions based on new construction models. When conformance with the IBC would adversely affect the historic character of a qualified historic building, the IEBC may be invoked as a means to preserve historic fabric and explore solutions that meet the intent, but not necessarily the letter, of the prevailing codes. As a National Historic Landmark, Parsons Memorial Lodge is considered a historic building under the IEBC and the provisions of IEBC Chapter 11 and IBC Chapter 34 may be used.

In addition, the California State Historic Building Code, (CHBC), may also be referenced, although it is not recognized as a Standard Code by the NPS. The CHBC is a performance-based code, which

allows for alternative solutions to be considered in achieving the intended life-safety objectives of more prescriptive building codes in order to preserve historic features.

In addition to the IBC and IEBC, fire and life safety issues in the national parks are governed by the code of The National Fire Protection Association (NFPA). The primary NFPA code applicable to this building is NFPA 101, the Life Safety Code. Other NFPA codes to be considered include NFPA 70, the National Electric Code; NFPA 72, the National Fire Alarm and Signaling Code; and NFPA 914, Code for Fire Protection in Historic Structures. Like the CHBC, NFPA 914 provides for performance-based approaches and operational solutions that meet the intent of NFPA 101 with the least impact on a building’s historic character.

Although not a building code, the Architectural Barriers Act (ABA) is a federal civil rights law enacted in 1968 that governs disabled access to facilities designed, built, altered, or leased with certain federal funds. The ABA developed the ABA Accessibility Guidelines for Buildings and Facilities to implement the legislation through design requirements. In 2010, new design guidelines were released for new or altered facilities covered by the Americans with Disabilities Act (ADA) and the ABA. The combined ADA-ABA Accessibility Guidelines (ADA-ABA), 2015 edition, have been used in this analysis.

9.2 Code Requirements

Type of Construction

Parsons Memorial Lodge is constructed with a mix of combustible and non-combustible materials. The walls and floor are constructed of non-combustible granite and concrete, respectively. The roofing is constructed of non-combustible corrugated metal. However, the roof structure is constructed of combustible wood framing and sheathing.

As such, the building would be considered Type III-B construction. Type III is described in IBC Section 602.3 as “that type of construction in which the exterior walls are of noncombustible materials and the interior building elements are of any material permitted by this code. Type III-A requires a 1-hour rating at most building elements, while III-B requires only a 2-hour rating at exterior bearing walls and no other fire-resistance ratings.

Occupancy Group

Chapter 3 of the IBC defines the different types of uses for each occupancy group. As a visitor information center and reading room, Parsons Memorial Lodge falls into the Assembly (or A) occupancy group. The IBC further characterizes assembly occupancies by the density of the crowds to be expected in that use. Exhibition halls, lecture halls, libraries, and museums fall into Assembly Group A-3.
Allowable Area and Height

As described previously, per the International Building Code, Parsons Memorial Lodge is categorized as a Type III-B building with an A-3 occupancy. Under those criteria, the height limit is two stories with a maximum height of 55 feet and the area permitted is 9,500 square feet. At one story, approximately 15 feet in height, and 1,040 square feet in size, the lodge is well below code limits.

Occupant Load and Egress Paths

Chapter 10 of the IBC establishes the number of allowable occupants in the building (the occupant load) based on the different building functions and the area of each within the building. The number of required exits and the required width for each exit path is then determined from the occupant loads being served.

Parsons Memorial Lodge has only one room and hence only one functional use: assembly space as an information center and reading room. An exhibit gallery has an occupant load factor of 30 net square feet per occupant, while a reading room would have a factor of 50 net. Due to the flexible space and occasional use for events, the lower number (30 net square feet) is more appropriate for occupant load calculations. Applying these factors to the area of the building interior, the total occupant load for the lodge is 35 occupants.

As long as the building’s occupant load remains at or below 49 occupants, only one exit from the building is required. The building code also stipulates a minimum required width for the exiting doorway, which is exceeded by the existing, four-foot-wide door.

A minimum level of illumination and exit signage is required for all exit paths. The illumination must be provided by lights connected to an emergency power system that will operate when the building power fails. There are no exit signs or emergency lighting at the building, although exit signs are not required in rooms or areas that only require one exit. Main exterior exit doors that are obviously and clearly identifiable as exits need not have exit signs where approved by the building official.

Exit doors also have technical requirements for thresholds to reduce tripping hazards and maximum opening force limits to operate. The current door has a raised wood threshold that is approximately 3/4 inch high and the door is quite heavy. The park typically fixes the door open when the building is in use, which would alleviate the need for any special door hardware.

Toilet Fixtures

The lodge contains no plumbing service or fixtures. Restroom facilities are provided nearby at a pit privy southwest of the building.
Human Safety (Egress)
As noted earlier in this section, the means of egress from the lodge generally comply with the IBC, due largely to the building’s small size and open interior plan.

Fire Protection
Fire protection systems, including fire alarms, smoke detectors, and sprinklers, are not required by code if the building is not undergoing a change in use. There are currently no fire alarm or fire protection systems at the lodge.

Energy Conservation
The NPS is committed to leadership in sustainability practices. New buildings and major renovations are required to meet federal sustainability requirements, but upgrades are only required if a major renovation is planned and executed.

Hazardous Materials Abatement
Lead paint is typically an issue in buildings painted prior to 1978. Due to the structure’s age, lead paint is likely to be found at painted finishes, although those are limited in size and location at the lodge. Lead paint does not need to be removed if current paint coatings remain intact and are not peeling or flaking. Window paint finishes are worn but not currently friable, although maintenance of paint coatings should be prioritized to prevent any future flaking.

Universal Accessibility
In addition to the governing codes, NPS Management Policies require all historic structures to provide the “highest feasible level of physical access to historic properties that is reasonable, consistent with the preservation of each property’s significant historical features.”

A comprehensive accessibility survey was not performed as part of this study, but the lodge is located in a remote site and not an accessible path of travel. The interior of the building is generally accessible, due to its level floor and space for turning clearances. Should an accessible path of travel to the building be created in the future, only minimal alterations would be necessary to achieve universal accessibility.

10. Work Recommendations & Alternatives

10.1 Architectural Recommendations

Parsons Memorial Lodge is composed of one space: an assembly room that serves as an information center and reading room. As such, the reading room and information center area is the only significant space in the building.

Human Safety (Egress)

Since the building is small and there is only 1 exit, events held inside must be limited to 35 attendees or fewer. The existing door provides adequate egress width, although it is heavy and may be difficult to operate for visitors. We recommend that the current door protocol, which includes propping the door open during building operating hours, continue to be followed.

Fire Protection

No fire alarm or smoke detection system was observed at the building. We recommend the installation of an alarm inside the main room, either hardwired or battery operated. It is recommended that such an alarm be mounted in a relatively inconspicuous place (i.e. behind a rafter) to obscure its view from the interior of the room.

Energy Conservation

As a seasonally operated building without plumbing or mechanical systems, the lodge is generally energy efficient in its current configuration. The installation of weather-stripping at windows and the exterior door, and periodic maintenance of roofing could improve occupant comfort by reducing air leakage. Considering the building is only open during summer months and its only heat source is a fireplace, however, these improvements may not make a noticeable difference to interior comfort.

Hazardous Materials Abatement

The weathered paint finishes at the windows require renewal, and we recommend that lead testing be carried out before any work occurs at the windows. Although lead paint does not need to be removed if it is not friable and is not disturbed during work, if it is present it would be advantageous to remove any lead paint remnants now. Once further paint coatings are applied, any lead paint becomes safely encapsulated but will be more difficult to remove in the future.
Universal Accessibility

Further study is needed to evaluate possible options for providing access to the interior for visitors in wheelchairs. We recommend a feasibility study be conducted to investigate alternatives, impacts, and costs of creating an accessible path of travel to the building. At the same time, opportunities for equivalent facilitation, such as digital displays that could be used at accessible areas nearby, such as the Tuolumne Meadows Visitor Center, should be investigated and expanded.

10.2 Materials Conservation Recommendations

General Approach

The following materials conservation recommendations are based on conditions observed during a visual survey of Parsons Memorial Lodge. Recommendations are included for maintenance and repair, generally referred to as treatments. Treatments carried out on historic buildings typically respond to goals related to the preservation of material and elements original to a building’s construction.

Original or historic building materials, also known as historic fabric, contribute to the significance of a building because they signify the degree of physical integrity a building retains. Historic fabric often represents traditional materials or building techniques that are no longer part of common construction practice. Retaining historic fabric increases the authenticity of character-defining features and serves broader preservation goals of advancing knowledge about the history of building design and technology.

In recognition of its status as a National Historic Landmark, it is essential that all future work planned for the lodge is carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (the Standards and the Guidelines). The Standards provide a framework for determining appropriate treatments for historic properties and are discussed in Section 8, Historic Preservation Objectives, of this document. The Guidelines establish a hierarchy of treatments for materials and features that have been identified as character-defining and therefore should be retained and preserved. Under the Guidelines for Preservation (Preservation being the recommended treatment approach for the lodge) protection and repair are emphasized, while replacement is minimized.

Protection generally involves the least degree of intervention possible and includes the maintenance of historic materials through preventative methods such as cleaning, rust removal, caulking, painting, and application of protective finishes.

Repair is recommended when the physical condition of character-defining features and materials warrant additional work and should involve the least degree of intervention
possible. Under treatment Preservation, all repair work should be physically and visually compatible with historic fabric, and documented for future research.

Replacement of a feature is limited under the treatment Preservation. It is permitted when the feature is missing or beyond repair, and only when sufficient evidence or documentation exists to reproduce the feature. Replacement materials should match the old both physically and visually. As such, with the exception of hidden structural reinforcement and new mechanical system components, substitute materials are not appropriate under the treatment Preservation.\(^{106}\)

Treating and Maintaining Historic Buildings

Architectural treatments recommended in this section encompass both repairs and conservation measures. Repairs refer to procedures associated with routine activities such as cleaning and painting, but also address standard maintenance measures that nonetheless require specialized skills and materials to address the needs of the historic building. Conservation treatments refer to methods that save or preserve existing historic materials rather than replacing them. Before they are implemented on historic features, treatment materials and methods should be tested for physical, chemical, and visual compatibility with historic materials.

Proper and timely maintenance is crucial to the long-term preservation of historic buildings. The purpose of maintenance is to prolong the life of building materials and to protect the investments made in their construction and repair. Regular and well-timed preventive measures greatly reduce the cost of maintaining materials and systems by detecting deficiencies and deterioration before they become severe. A written Maintenance Plan can be useful to support planning and implementation of architectural treatments, including preventive maintenance. A Maintenance Plan should provide scoping and conceptual costs for repair projects, identify appropriate materials and methods for treating historic fabric, and establish inspection schedules for the continued upkeep and preventive care of building materials and systems.

Maintenance and repairs to the lodge should focus on retaining and preserving intact character-defining features such as its stone walls, wood windows, and exposed wood roof structure. Preventive maintenance including the periodic renewal of protective coatings, glazing putty, and sealants is critical to the long-term durability of historic fabric. If possible, deteriorated features should not be replaced; rather, they should be rehabilitated using small-scale patching, Dutchman repairs, or replacement of individual components.

Following are recommendations for treatment and maintenance of exterior and interior features of Parsons Memorial Lodge.

Site and Grading

- Improve site grading at west side of building to ensure water drains away from building.
- Remove vegetation and rebuild low rubble stone wall at the south elevation.

Exterior Walls

- Patch spalls and large cracks in parge coat at west façade window sills.

Roof Structure and Roofing

- Repair splitting and checking at sheathing log ends at south façade.
- Repair splits at the exposed log sheathing at the west eave.
- Investigate the removal of the orange preservative treatment on exterior structural logs and re-apply preservative that does not change the historic appearance of the logs.
- Test clear protective finishes at exterior wood elements. An appropriate finish would protect wood members from weathering but be unobtrusive and not alter the original appearance of the members.

Windows

- Apply a clear, non-gloss protective finish to exterior shutters to extend wood lifespan. Test appropriate finishes to balance protection of the shutters without altering their appearance.
- Replace corroding hinges and hardware in kind as required for window and shutter operation.
- Replace missing interior hardware in kind.
- Replace deteriorated glazing putty at windows and touch-up unfinished or poorly installed glazing putty.
- Renew paint finishes at windows.

Exterior Door

- Remove corrosion and paint iron straps at exterior and interior faces of door. Treat corrosion at hinge and ensure smooth operation of door.
- Preserve painted lettering at exterior face of door. Hire a conservator to test and apply a clear protective coating to the existing paint remnants.
- Document graffiti on interior face of door.
- Clean staining from base and strike side of door, taking care not to damage historic graffiti. Renew protective clear finishes at door interior following cleaning.
Interior Flooring

- Repair spall and major cracks at interior concrete slab to prevent tripping hazards. Recognizing that cracks will likely reopen if rigid repair materials are used, balance durability of repairs with desired visual characteristics of repairs.

Interior Walls and Casework

- Investigate north wall and chimney during or soon after a rain event to determine if any active leaks are present.
- Repoint firebrick inside fireplace. Although the firebrick is not original to the building, it appears to be successfully protecting the stone behind it and remains functional.
- If desired for visual effect, clean efflorescence and soot staining from north wall.
- Repair gouges at built-in wood benches on east wall. Refinish previous Dutchman repair to better visually blend with existing bench finish.
- Investigate access points for rodents and install rodent exclusion materials or repair masonry to block access. The fireplace and chimney should be the first priority for investigation.

Interior Ceiling and Roof Structure

- Install protection at ceiling or to temporary roof supports during winterization efforts to prevent future surface damage at log girders.

Building Systems Recommendations

- Investigate the connection between the chimney and roof framing. Add connection elements in keeping with the historic character of the building.
- Perform a seismic assessment.
- Design and install a plywood layer under the exposed roofing during a future re-roofing campaign. The plywood layer must be designed to fit between the interior log sheathing and the sheet metal roofing and not visibly alter the roofline.
8. Bibliography

Publications

Manuscripts

Articles

Online Sources

Archives

Environmental Design Archives, University of California, Berkeley

Bernard Maybeck Collection, 1897-1956

Drawings, Parsons Memorial Lodge, n.d.

University Archives, Bancroft Library, University of California, Berkeley

Sierra Club Records, 1891-

Lewis, W.B. Letter from W.B. Lewis to William E. Colby regarding the water line construction to Parsons Memorial Lodge, July 27, 1923.

Yosemite National Park Archives

Yosemite Association Records, 1923-2010

Wilbur, Colburn S. Letter from Colburn S. Wilbur, Executive Secretary of the Sierra Club, to Lynn H. Thompson, Superintendent of Yosemite National Park, June 16, 1972.

Interviews

Eissler, Margaret. Interview by author, October 14, 2016.
Lectures and Presentations

Appendix A: Historic Photographs
page intentionally left blank
Figure 1. Proposed site for Parsons Memorial Lodge, 1915. Photo by W.L. Huber ([Sierra Club Bulletin, volume IX, plate LXXXII]).
Figure 2. Construction of Parsons Memorial Lodge, 1915. Photo by Herbert W. Gleason (Sierra Club Bulletin, volume X, plate CXIX).
Figure 3. Interior of Parsons Memorial Lodge during construction, 1915. Photo by Marion Randall Parsons (Sierra Club Bulletin, volume X, plate CXLVIII).
Figure 4. Parsons Memorial Lodge, view northwest, 1915. Photo by Tracey I. Storer (Sierra Club Bulletin, volume X, plate CXLVIII).
Figure 5. Parsons Memorial Lodge, view northeast, 1935. Photo by Raymond H. Bailey (Sierra Club Bulletin, volume X, plate CXLVII).
Figure 6. Parsons Memorial Lodge, view northeast, 1916. Photo by R. H. Bailey (Sierra Club Bulletin, volume X, plate CLVII).
page intentionally left blank
Figure 7. Parsons Memorial Lodge, view northeast, 1931 (Yosemite National Park Research Library, RL-5776).
Figure 8. View west of the Soda Springs property, Parsons Memorial Lodge in the background, 1931 (Yosemite National Park Research Library, RL-12630).
Figure 9. Parsons Memorial Lodge, primary entrance view north, 1965 (Appraisal Photos, Yosemite National Park Archives, image provided by the NPS).
Figure 10. Parsons Memorial Lodge, close-up of primary entrance, 1965 (Appraisal Photos, Yosemite National Park Archives, image provided by the NPS).
Figure 11. Parsons Memorial Lodge, close-up of primary façade, view northwest, n.d. (Yosemite National Park Research Library, RL-2418).
Figure 12. Parsons Memorial Lodge, view northwest, 1939. Photo by Ralph H. Anderson (Yosemite National Park Research Library, RL-2419).
Figure 13. Parsons Memorial Lodge, view northeast, n.d. (Yosemite National Park Research Library, image provided by the NPS).
Figure 14. Parsons Memorial Lodge, close-up of west façade, view east, n.d. (Yosemite National Park Research Library, RL-17341).
Figure 15. Parsons Memorial Lodge, east façade, view northwest, 1985 (National Register of Historic Places Nomination Form, "Parsons Memorial Lodge," Yosemite National Park, California, listed 1987).
Figure 16. Parsons Memorial Lodge, north and east façades, view southwest, 1985 (National Register of Historic Places Nomination Form, "Parsons Memorial Lodge," Yosemite National Park, California, listed 1987).
page intentionally left blank
Figure 17. Parsons Memorial Lodge, north façade, view south, 1985 (National Register of Historic Places Nomination Form, "Parsons Memorial Lodge," Yosemite National Park, California, listed 1987).
Figure 18. Interior of Parsons Memorial Lodge, 1985 (National Register of Historic Places Nomination Form, "Parsons Memorial Lodge," Yosemite National Park, California, listed 1987).
Figure 19. Edward Taylor Parsons (left), John Muir (center), and Marion Randall Parsons (right), 1913 (Online Archive of California).
Appendix B: Drawings & Maps

-FRONT ELEVATION-
Figure 1. Parsons Memorial Lodge, Front Elevation and Side Elevation, n.d. (Bernard Maybeck Collection, Environmental Design Archives, University of California, Berkeley).
Figure 2. Parsons Memorial Lodge, Typical Bent, cross section, n.d. (Bernard Maybeck Collection, Environmental Design Archives, University of California, Berkeley).
Figure 3. Parsons Memorial Lodge, Section (longitudinal), n.d. (Bernard Maybeck Collection, Environmental Design Archives, University of California, Berkeley).
Figure 4. Parsons Memorial Lodge, Floor Plan, n.d. (Bernard Maybeck Collection, Environmental Design Archives, University of California, Berkeley).
Figure 5. Sierra Club patented lands map, 1960 (National Park Service Technical Information Center database, YOSE-60323).
Figure 6. Parsons Memorial Lodge interpretive exhibit floor plan, 1996 (National Park Service Technical Information Center database, YOSE-80045).
Figure 7. Parsons Memorial Lodge interpretive exhibit elevations, 1996 (National Park Service Technical Information Center database, YOSE-80045).
Figure 8. Parsons Memorial Lodge lighting floor plan, 1996 (National Park Service Technical Information Center database, YOSE-80045).
Figure 9. Existing floor plan for Parsons Memorial Lodge (Architectural Resources Group, 2016).
Figure 10. Existing elevations for Parsons Memorial Lodge (Architectural Resources Group, 2016).
Appendix C: Existing Conditions Photographs
page intentionally left blank
Figure 1. Overview of Soda Springs property (ARG, 2016).
Figure 2. View north of Soda Springs property with Parsons Memorial Lodge (right) and McCauley Cabin (left) in the background (ARG, 2016).
Figure 3. View northeast of Soda Springs property with Parsons Memorial Lodge in the background (ARG, 2016).
Figure 4. View south of Soda Springs property with Parsons Memorial Lodge in the foreground and McCauley Cabin in the background (ARG, 2016).
Figure 5. Parsons Memorial Lodge, south façade, view north (ARG, 2016).
Figure 6. Close-up of casement windows with heavy shutters, south façade (ARG, 2016).

Figure 7. Close-up of primary entrance and door, south façade (ARG, 2016).
Figure 8. View looking up at arched header over front door (ARG, 2016).

Figure 9. Detail view of mortar at front door opening (ARG, 2016).
Figure 10. View of rafter tails and brackets, south façade (ARG, 2016).

Figure 11. Typical deterioration at roof sheathing ends at south elevation, including splitting and checking (ARG, 2016).
Figure 12. Parsons Memorial Lodge, north façade, view south (ARG, 2016).
Figure 13. Close-up of eaves, purlins, and rafter tails, north façade (ARG, 2016).
Figure 14. Parsons Memorial Lodge, south and east façades, view northwest (ARG, 2016).
Figure 15. Parsons Memorial Lodge, east façade, view northwest (ARG, 2016).
Figure 16. Parsons Memorial Lodge, west façade, view east (ARG, 2016).
Figure 17. Parsons Memorial Lodge, west façade, view southeast (ARG, 2016).
Figure 18. Close-up of window opening and shutters, west façade (ARG, 2016).
Figure 19. Parsons Memorial Lodge, west façade, view looking downhill (east). Note the window sills are very close to grade at this side of the site (ARG, 2016).
Figure 20. View looking west of site wall in front of Parsons Memorial Lodge. Note the loose stone piles and brush growing out of the center of the wall (ARG, 2016).
Figure 21. The stone masonry at the south elevation, east side, is typical for the building, including deeply recessed mortar joints, stones of varying sizes, and large stone window headers (ARG, 2016).
Figure 22. South elevation of the chimney, including view of roof in the foreground. Note dark soot at openings and flashing at roof joint (ARG, 2016).
Figure 23. View of rafter tail end face in good condition at the west elevation. Note the red-orange color. (ARG, 2016).
Figure 24. Typical staining at north elevation roof sheathing, including black staining at ends. (ARG, 2016).
Figure 25. View of window shutter and frame at the east elevation, including black staining on shutter and iron dowel remnant at the concrete frame (ARG, 2016).
Figure 26. Detail view of weathering and raised grain at typical shutter (ARG, 2016).
Figure 27. View north of Soda Springs (ARG, 2017).
Figure 28. View east of Soda Springs enclosure (ARG, 2017).
Figure 29. View north of Parsons Memorial Lodge and setting (ARG, 2017).
Figure 30. View south from entrance to Parsons Memorial Lodge (ARG, 2017).
Figure 31. View northeast of Parsons Memorial Lodge and water spigot (ARG, 2017).
Figure 32. Parsons Memorial Lodge National Historic Landmark plaque (ARG, 2017).
Figure 33. View west of picnic table southwest of Parsons Memorial Lodge (ARG, 2017).
Figure 34. Grill adjacent to picnic table southwest of Parsons Memorial Lodge (ARG, 2017).
Figure 35. Trash vault located southeast of Parsons Memorial Lodge (ARG, 2017).
Figure 36. View southeast of McCauley cabin (ARG, 2017).
Figure 37. View north with McCauley Cabin (left), bench (right), and grill (right) in the foreground and Parsons Memorial Lodge in the background (ARG, 2017).
Figure 38. View southwest of privy in the foreground and Bruin Baffle in the background (ARG, 2017).
Figure 39. View south of Bruin Baffle (ARG, 2017).
Figure 40. Parsons Memorial Lodge, south façade, view north (ARG, 2017).
Figure 41. Parsons Memorial Lodge, south façade, view north (ARG, 2017).
Figure 42. Parsons Memorial Lodge, south and east façades, view northwest (ARG, 2017).
Figure 43. Close-up of shutters, interior wood surrounds, and six-light windows at the south façade (ARG, 2017).
Figure 44. Close-up of wood plank bench seats at the south façade (ARG, 2017).
Figure 45. Parsons Memorial Lodge, north façade, view south (ARG, 2016).
Figure 46. Parsons Memorial Lodge, east façade, view northwest (ARG, 2017).
Figure 47. Close-up of east façade and windows, view west (ARG, 2017).
Figure 48. Close-up of windows and shutters at east façade (ARG, 2017).
Figure 49. Parsons Memorial Lodge, west façade, view east (ARG, 2017).
Figure 50. Interior overview of Parsons Memorial Lodge, view north (ARG, 2017).
Figure 51. Parsons Memorial Lodge, close-up of fireplace (ARG, 2017).
Figure 52. Parsons Memorial Lodge, view northeast of rafters, braces, windows, and seating (ARG, 2017).
Figure 53. Parsons Memorial Lodge, close-up of windows and window seat (ARG, 2017).
Figure 54. Interior overview of Parsons Memorial Lodge, view south (ARG, 2017).
page intentionally left blank
Appendix D: Structural Narrative
Parsons Memorial Lodge
Yosemite National Park
Structural Narrative

DESIGN CRITERIA

Building Code Criteria are based on the 2015 International Building Code.

Dead and Live Loads Dead loads will be as calculated. Floor and roof live loads will be in accordance with the building code. Snow loads will be based on Tuolumne County requirements, estimated at 350 psf ground snow load, modified in accordance with the code for the low sloping roof.

Seismic Loads The project is located in an area of moderate seismic risk. The seismic design coefficients S_D and S_{D1} are approximately 70% of the values for a typical site in San Francisco:

Risk Category	II
Site Class	D (stiff soil/default)
S_D	0.719g (compare 1.00 for San Francisco Site)
S_{D1}	0.364g (compare 0.638 for San Francisco Site)

Seismic Design Category D

Note that the above is based on the default Site Class “D”, for stiff soil. As the building is located at elevation 8900 feet, upslope from the river, it may be more appropriate to use Site Class “B” for rock, or Site Class “A” for hard rock. The forces would thus be reduced by 15 to 25 percent, but the Seismic Design Category would remain “D”.

Wind Loads Wind loads will be in accordance with ASCE 7:

| Basic Wind Speed (3-Second Gust) | 110 mph (V_{ult}) (Verify – Special Wind Region?) |
| Exposure Category | C |

Soils No geotechnical investigation has been prepared for the site. It is anticipated that subsurface conditions include sands, gravels, and silts interspersed with granite boulders, with bedrock level not far from the surface. Allowable soil bearing capacity in accordance with the IBC (without a site-specific geotechnical investigation) are listed below:

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Bearing Capacity (ksf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy gravel, etc</td>
<td>3.0</td>
</tr>
<tr>
<td>Sand, silty sand, clayey sand, etc</td>
<td>2.0</td>
</tr>
<tr>
<td>Clay, sandy clay silt, etc</td>
<td>1.5</td>
</tr>
</tbody>
</table>

BUILDING DESCRIPTION

General Building Description

THE INTERIOR OF THE BUILDING HAS NOT BEEN ACCESSED AS OF THIS REPORT

Parsons Memorial Lodge is a single-story stone masonry building with plan dimensions of approximately 29 feet by 44 feet. The low-pitched gable roof is supported by 5 log girders which support smaller side-by-side logs that span between the girders. Roofing is corrugated metal. There is a stone masonry chimney at the north end that projects approximately 5 feet above the roof peak.

The building was constructed in 1915. In 1935 some improvements were made which reportedly included installation of a concrete slab-on-grade.
Site
The building is located upslope (west) of the Tuolumne River at approximately elevation 8600 feet, in the Tuolumne Meadows area of the park. The site is only very sparsely wooded and granite rock and boulders stud the landscape. The grade slopes up approximately 3 feet from the east side to the west of the building.

Available Drawings
Four sheets, including a plan sheet, longitudinal and transverse section drawings, and a sheet showing the front (south) elevation and side (west) elevation are thought to be part of the original design drawings. The only other document with any relevance to building structure is the National Register of Historic Places Inventory - Nomination Form which gives some information on masonry wall thickness.
Foundation and Walls

Foundations are not visible but are assumed to be stone masonry like the walls. The floor inside the building is said to be concrete slab-on-grade.

Walls are either roughly-cut or un-cut granite and feldspar stone masonry in an irregularly-coursed ashlar bond with some local areas resembling rubble masonry. The chimney is built with more regular coursing and cut stones in the corners. Larger stones are used near the bottom of the walls, at and at the rough pilasters at the log girder locations.

Walls batter outwards, and total thickness is said to be up to 3 feet thick at the bottom, tapering to 2 feet at the top. Wall height at the gable ends is approximately 12 feet above grade, and at the side walls the height is approximately 6 feet at the west side and 8 feet at the east side.

At the log girder locations there are partial height pilasters that extend about 1 foot out from the wall face, with bottom width of up to 3’-6” and top width of approximately 2 feet. These pilasters end approximately 4 to 5 feet above grade and support diagonal log braces at each log girder. The wall also thickens at the corners, full height.

Figure 3 Northeast Side, with Chimney
The mortar joints are very deeply raked – the original plan drawing shows that mortar is to be limited to a 1 foot thick area, generally towards the inside of the walls, and that the appearance is to be that of a dry-laid wall. The description in the nomination form refers to the walls being “laid in a reinforced concrete core”. This does not appear to be correct, although it may be the case that the center portions of the walls are slushed full of mortar and rubble stone, as it typical with rubble stone masonry.

The entry door is arched and stone lintels form the window heads - see Figure 1.

There is also a band of what appears to be reinforced concrete at the jambs of the windows and side wall doors, and at the jambs and head of the entry door. At some of these locations smooth, ½” diameter reinforcing steel ends are visible.

The stone masonry fireplace and chimney at the north end of the building is constructed similarly to the walls except that the coursing is more regular. At the exterior the chimney is 11 feet wide.
by 4 feet (projection out from the exterior wall) at the base, tapering to 9 feet wide at the roof line, before tapering further to approximately 4 feet square at the top. There are “siphon” openings on all 4 sides near the top, and another set of openings just below what appears to be a concrete cap slab. The stone above the siphon openings appears to be supported by a steel angle ledger.

![Figure 6 Chimney with Siphon and Top Slab](image)

Roof Structure

The roof primary structure consists of 5 log girders at approximately 10 feet on center. Log diameter, measured at the eave ends, varies from 13 inches to 19 inches. The two log girders at the gable ends are probably supported at least partially on the masonry walls (no interior access). According to the original drawing section, the girders are further supported by 12 inch diameter log braces that rest on a short pilaster or continuous stone ledge against the interior of the wall which is notched into and through-bolted to the log girder. Outside, at the approximately 4 foot overhang of the girder, there is an additional smaller diagonal log brace that bears on the previously discussed pilaster area, and helps support the end of the girder. These are connected to the girder with \(\frac{1}{2} \) inch diameter drift pins. The log girders butt together at the ridge and are connected together with a bolted plate strap on each side. At the walls, a steel collar, anchored to a plate within the masonry walls, holds the log girder down.
Smaller log rafters, from 4 inches to 9 inches in diameter, laid side-by-side, span between the log girders. The original section drawing shows each of these logs to be anchored to the log girders with a ½-inch diameter drift pin. These logs extend approximately 4 feet beyond the walls at the gable ends.

Above the log rafters is corrugated metal sheathing. The nomination form makes reference to building paper being installed in a 1935 re-roofing effort, but that was not noted. There did not appear to be any other kind of sheathing below the corrugated metal. Sheets are 2’-4” wide, with about ½” deep corrugations, and are lapped two and a half corrugations. Fastening is by galvanized nails through the top flute at 10-1/2” on center parallel to the ridge, and 20” inches on center perpendicular to the ridge. No washer was noted at the fasteners.
The lateral force-resisting system consists of the roof diaphragm which transfers lateral loads to the masonry walls which act as shear walls to transfer the forces to the foundations.

The heavy masonry walls and the heavy roof framing will contribute to relatively large seismic forces.

The masonry walls appear to have sufficient length of wall or wall pier to resist in-plane lateral forces.

Elements that need to resist lateral forces on their own include the masonry walls (for out-of-plane forces due to their own weight, and due to wind); and the chimney (due to its own weight and due to wind).

The masonry walls are quite robust with respect to resisting out-of-plane forces, which work to cause the wall to fail by buckling. The height to thickness ratio, h/t is approximately 4 (96 inches divided by 24 inches), for the side walls and 6 for the highest parts of the gable end walls. This compares very favorably with typical recommendations for unreinforced masonry walls supported at the top and the bottom. The pilasters at the east and west walls and the fireplace also contribute to the overall stability of the masonry walls.

The chimney is a tall un-braced and unreinforced element. There is no indication of how it might be attached to the roof framing, if at all, other than by the end log girder being essentially embedded into the masonry. However, compared to its height, its footprint appears to be large enough to allay concerns regarding potential falling hazards under seismic shaking.

Condition

The building is generally in very good condition.

There are no indications of settlement or movement of the foundation.

Mortar joints in the masonry, generally set deep between the stones due to the instructions from the designer, appeared to be in good condition. In many places it appeared as if a concrete grout with small aggregate had been placed in the joints at a later date, possibly to help out at areas where stones had started to become dislodged. This is particularly evident around windows and at some of the diagonal bracing seats at the exterior.

At the window and door openings there are places where the concrete band has started to crack and spall, and there are exposed ends of reinforcing bars.
The large areas of exposed wood (log girders, rafters, and braces) are in surprisingly good condition. No actual instances of rot were noted.

At the northwest corner, there is some slight evidence of a sag in the roof at the eave. However, no actual distress was noted in the girder or log rafters at this location.

Figure 9 Concrete Band at Window with Exposed Reinforcing

Figure 10 Northwest Corner – Sag in Roof

Deficiencies

Discussion of deficiencies is divided between damage conditions noted and deficiencies in the lateral or gravity load-resisting systems and elements.

Damage Conditions Instances of damage and deterioration of elements of the building are identified above. None of the conditions noted are considered critical to building structural performance.
Structural Deficiencies

No calculations have been performed at this stage to determine loading and to confirm member or system capacity. Structural deficiencies are identified based on experience and engineering judgement.

Gravity Load-Carrying System

No obvious deficiencies have been identified. We note that the original section drawing is annotated to state that timber columns are to be securely wedged into place under the log girder butt joints at the roof ridge as temporary shoring during winter. The nomination form makes reference to this practice being re-instated by Ansel Adams in 1920 but suggests that it has been discontinued without detrimental effect.

Without actually doing calculations, it appears that the log rafters at the rake overhang of 4 feet may not be adequate for snow and drift loads.

Lateral System

The short and robust masonry walls may not be adequate to support themselves along with the limited additional support from the roof diaphragm and framing.

The roof diaphragm is probably not adequate to brace the masonry walls for out-of-plane forces.

The continuity, connections, and capacity of the horizontal elements at the top of the masonry walls that would be required to act as diaphragm chords is probably not adequate for full seismic forces.

Lateral Elements

Masonry Walls The short and robust masonry walls may not be adequate to support themselves.

Chimney The chimney may not be adequately braced against seismic forces.

Treatment Recommendations

Other than the relatively minor structural failures noted and repaired, the building has performed well over the course of many years. However, there does not seem to have been any kind of detailed seismic assessment of this unreinforced masonry building. Since this building is in a remote location and is used for only half of the year, the risks associated with the hazards are reduced.

The deficiencies noted in the lateral force resisting system do not appear to present a substantial risk of partial or total collapse. We feel that some minor improvements to the roof diaphragm, and to the connections and continuity of roof elements at the top of the masonry walls could substantially improve performance under severe earthquake shaking.

The chimney does not represent a severe falling hazard, although it could contribute to overall building damage under strong shaking. The chimney should be connected to the roof framing.

The following list consolidates and details the actions and improvements that should be considered:

- Investigate the connection between the chimney and the roof framing. Add connection elements consistent with the historic asset.
- Perform a seismic assessment.
• The next time re-roofing is considered, add a plywood layer under the corrugated sheathing, along with appropriate connections.
Appendix E: Electrical Narrative
October 6, 2017

Architectural Resources Group
Pier 9 The Embarcadero
San Francisco, CA 94111

Attn: Lacey Bubnash

Re: Parsons Memorial Lodge
Electrical Systems HSR Assessment

Dear Lacey,

O’Mahony & Myer visited the Parsons Memorial Lodge on October 5, 2017. The purpose of our visit was to review the existing conditions of the electrical, lighting, and signal systems, in order to provide this written assessment.

Following is a summary of our findings.

Electric Service and Branch Panel:

The Parsons Lodge site has a dedicated pad mounted Southern California Edison (SCE) single phase transformer #P5419900. This transformer is located approximately 100 feet South/West of the Lodge building, just behind a Restroom structure (See Figure 1). The transformer serves a 200 Amp rated meter #308-248-431, and a 200 Amp rated main panel, mounted on the exterior of the Restroom structure (See Figure 2). The main panel includes a 200A main breaker service disconnect and (3) sub-feed breakers. It appears fairly new ad is in good condition. The sub-feeds include:

- 100A/2P Parsons Lodge Feeder
- 20A/1P Restroom Circuit
- 50A/2P McCauley Cabin

Figure 1 – Utility Transformer
The Parsons Memorial Lodge building is fed with a direct burial #2 AWG Aluminum underground 3-wire feeder to an interior rated 125 Amp, 120/240V, 1-Phase, 3-Wire rated electrical branch panel (See Figure 3). The branch panel does not have a main disconnect. It includes the following branch breakers:

- (4) 15A/1P breakers for track lighting loads
- (1) 20A/1P breaker for convenience receptacles

A main breaker would be required in the panel by code if there were more than (6) branch breakers in the panel. Since there are only (5) branch breakers, it is acceptable not to have a main breaker disconnect. Having a main breaker disconnect, however, would provide the added benefit of a single action full-building safety disconnect, which does not currently exist.

The underground feeder to Parsons Lodge is direct buried, without conduit, and passes through a small exterior pullbox at the South/West corner of the building (See Figure 4). The feeder appears to be fairly new and is in good condition. From the pullbox, the feeder rises up from underground in flexible metallic conduit on the West exterior of the building and penetrates into the building through the rock wall structure (See Figure 5).

The interior branch panel is located directly inside the building at the wall penetration, in a small wooden cabinet. This cabinet also contains (4) light switches for the various track lighting loads in the building (See Figure 6).

The branch panel is a residential grade load center with (5) breakers and (7) available 1-pole spaces. The panel is in good condition and can be retained for further use. It currently serves several truss mounted power receptacles and all lighting loads in the building. It will support up to (7) additional 1-pole branch breakers for any additional loads that may be required.

Circuit identification on the panel is accurate and indicates that each of two sections of dual-circuit overhead lighting track is fed with two dedicated circuits each.

Branch Power System:

Power wiring from the branch panel consists of multiple runs of black small diameter metal clad (MC) cable, routed surface mounted out of the panel / cabinet and up along the exposed trusses in the space (See Figure 7).

There is (1) surface mounted quad receptacle located on the West side of the truss, above the panel, and (1) surface mounted
duplex receptacle located on the East side of the truss, also up high. The MC cable that feeds these receptacles is mounted exposed along the truss work.

Lighting System:

Lighting is limited to two section of surface mounted track lighting in the main space (See Figure 8). The (2) lengths of dual-circuit black track lighting are installed parallel to the lengthwise dimension of the space, perpendicular to the truss work. Each dual circuit track is controlled by (2) switches, for a total of (4) switchable zones of lighting.

The tracks each include larger flood light fixtures and smaller spot type fixtures. The flood lights are on one switch per track and the spot lights are on another switch per track. The switches are located next to the panel, in the cabinet, and are not labeled (See Figure 6).

There are no exterior lighting fixtures at the Parsons Memorial Lodge.

There are no automatic lighting controls at the Parsons Memorial Lodge.

Signal Systems:

There is no telephone service, security system, television, audio-visual, or fire alarm system at the Parsons Memorial Lodge.
If you have any questions or comments on the above assessment, please do not hesitate to call.

Sincerely,

Pieter Colenbrander, P.E.
O'MAHONY & MYER
Appendix F: Secretary of the Interior’s Standards for Preservation
According to the Secretary of the Interior’s *Standards for Preservation*, Preservation is defined as the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. New exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a preservation project.

1. A property will be used as it was historically, or be given a new use that maximizes the retention of distinctive materials, features, spaces, and spatial relationships. Where a treatment and use have not been identified, a property will be protected and, if necessary, stabilized until additional work may be undertaken.
2. The historic character of a property will be retained and preserved. The replacement of intact or repairable historic materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.
3. Each property will be recognized as a physical record of its time, place, and use. Work needed to stabilize, consolidate, and conserve existing historic materials and features will be physically and visually compatible, identifiable upon close inspection, and properly documented for future research.
4. Changes to a property that have acquired historic significance in their own right will be retained and preserved.
5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.
6. The existing condition of historic features will be evaluated to determine the appropriate level of intervention needed. Where the severity of deterioration requires repair or limited replacement of a distinctive feature, the new material will match the old in composition, design, color, and texture.
7. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.
8. Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.¹

¹For more information regarding the Secretary of the Interior’s *Standards for Preservation* refer to: https://www.nps.gov/tps/standards/four-treatments/treatment-preservation.htm.