LeConte Memorial Lodge
Yosemite Conservation Heritage Center
Historic Structure Report

Prepared for
National Park Service
Yosemite National Park, California

Prepared by
Architectural Resources Group, Inc.
San Francisco, CA

August 1, 2018
Table of Contents

Introduction

1. Study Summary ..1
 1.1 Introduction ...1
 1.2 Contents of the Historic Structure Report ..1
 1.3 Project Goals ...2
 1.4 Methodology ...2
 1.5 Research Findings ...3
 1.6 Major Issues Identified ..3
 1.7 Recommendations for Treatment and Use ...3

2. Administration Information ..5
 2.1 Building Information ..5
 2.2 Previous Documentation and Studies ...5
 2.3 Project Participants ..6

Part I: Developmental History

3. Historical Background & Context ...7
 3.1 Pre-History and Early History of Yosemite Valley ..7
 3.2 Sierra Club ..11
 3.3 LeConte Memorial Lodge ...12
 3.4 Joseph LeConte ..20
 3.5 Architecture ..22
 3.6 John White, Architect ...26

4. Chronology of Development & Use ..27
 4.1 Chronology of Historic Events ...27
 4.2 Chronology of Physical Construction ..28

5. Physical Description ...30
 5.1 Overview ..30
 5.2 Exterior ..32
 5.3 Interior ...36
 5.4 Alterations ...40
6. Evaluation of Significance ... 41
 6.1 Overview of Significance ... 41
 6.2 Significant Spaces ... 42
 6.3 Character-Defining Features .. 42

7. Condition Assessment ... 44
 7.1 Site and Grading ... 44
 7.2 Exterior Walls ... 46
 7.3 Roof Structure and Roofing .. 47
 7.4 Windows ... 48
 7.5 Exterior Door .. 49
 7.6 Interior Flooring ... 49
 7.7 Interior Walls and Casework ... 50
 7.8 Interior Ceiling and Roof Structure .. 51
 7.9 Interior Doors ... 51
 7.10 Special Interior Features ... 52

Part II: Treatment & Work Recommendations

8. Historic Preservation Objectives .. 53

9. Requirements for Work ... 55
 9.1 Applicable Codes, Laws, and Regulations 55
 9.2 Code Requirements .. 56

10. Work Recommendations & Alternatives ... 59
 10.1 Architectural Recommendations ... 59
 10.2 Materials Conservation Recommendations 60

11. Bibliography .. 65

APPENDIX A. Historic Photographs ... A-1
APPENDIX B. Existing Conditions Photographs B-1
APPENDIX C. Existing Conditions Drawings and Maps C-1
APPENDIX D. Structural Narrative ... D-1
APPENDIX E. Electrical Narrative .. E-1
APPENDIX F. Secretary of the Interior’s Standards for Preservation F-1
Introduction
page intentionally left blank
1. Study Summary

1.1 Introduction

Architectural Resources Group (ARG) has prepared the LeConte Memorial Lodge Historic Structure Report (HSR) to serve as a guide for ongoing maintenance and preservation of the lodge. LeConte Memorial Lodge was constructed in 1903 as a public information center and reading room and as the Yosemite Valley summer headquarters of the Sierra Club. The lodge was designed by Berkeley architect John White; Charles Alsup was the builder. The lodge features characteristics of the Tudor Revival style and First Bay Tradition and was an important forerunner of the development of the Rustic style in Yosemite and other national parks.

In 1901, after the death of Sierra Club charter member and noted professor and geologist, Joseph LeConte, the Sierra Club initiated plans to erect a memorial lodge in LeConte’s honor. The lodge was constructed in Yosemite Valley and replaced the original visitor center, which was temporarily housed in Sinning’s Cottage (built in 1898). In 1919, in order to allow for the westward expansion of Camp Curry, the lodge was moved and rebuilt by the Gutleben Brothers in its current location.1 That same year, the Sierra Club and the University of California joined together to create the LeConte Memorial Lecture series, which became the model for National Park Service (NPS) interpretive programs throughout the country.2 The Sierra Club continues to operate the building as public education and information center.

LeConte Memorial Lodge was listed in the National Register of Historic Places in 1977 and dedicated as a National Historic Landmark in 1987.

1.2 Contents of the Historic Structure Report

The contents of this HSR comply with NPS Director’s Order 28: Cultural Resource Management Guideline, Chapter 8 and Preservation Brief 43: The Preparation and Use of Historic Structure Reports. This HSR conveys information about the design and construction of LeConte Memorial Lodge in two main sections: 1) Developmental History and 2) Treatment and Use. The Developmental History section comprises a chronology of development and use; a historical background and context; a physical description and a list of character-defining features and materials; and a discussion of significance. The Developmental History section also provides a

1 Camp Curry was later renamed Curry Village, and it was most recently renamed Half Dome Village.
comprehensive analysis of the building’s interior and exterior conditions and examines the building’s structural and electrical systems.

The second section provides a comprehensive set of treatment and use recommendations for the building, including the conservation of significant materials. The proposed treatment was developed in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (the Standards).

1.3 Project Goals

According to NPS Preservation Brief 43, an HSR provides documentary, graphic, and physical information about a property’s history and existing conditions. Broadly recognized as an effective part of preservation planning, an HSR also provides a thoughtfully considered argument for selecting the most appropriate approach to treatment prior to the commencement of work and outlines a scope of recommended work. The report serves as an important guide for all changes made to a historic property during preservation, rehabilitation, restoration, or reconstruction.

This HSR was prepared at the request of the National Park Service in order to guide the preservation and maintenance of LeConte Memorial Lodge.

1.4 Methodology

The LeConte Memorial Lodge HSR has been developed using information gathered from meetings and interviews with interested parties, archival research, and field investigation. The methodology employed for this report meets the standards and requirements set forth in the following documents:

- Director’s Order 28: Cultural Resource Management Guideline, Chapters 7 and 8
- Preservation Brief 43: The Preparation and Use of Historic Structure Reports
- The Secretary of the Interior’s Standards for the Treatment of Historic Properties
- National Register Bulletin 15: How to Apply National Register Criteria for Evaluation
- National Register Bulletin 39: Researching a Historic Property

Meetings

On October 18, 2016, the project kick-off meeting was held at the Majestic Yosemite Hotel (formerly The Ahwahnee) with personnel from the NPS, ARG, and SOHA Engineers. The project scope, objectives, coordination, schedule, communication, information gathering, and compliance process and procedures were discussed. Additional correspondence was carried out via conference call and email on an as-needed basis with key NPS staff, ARG personnel, and ARG subconsultants in order to confirm direction on the development of the report.
Background Research and Data Collection

In October and November of 2016, ARG reviewed primary and secondary source materials held in the Yosemite Research Library, the William E. Colby Memorial Library, and the University of California, Berkeley Bancroft Library. Research materials from the Yosemite National Park Archives were reviewed off-site. Materials included architectural drawings, historical photographs and newspaper accounts, and other related correspondence. ARG also conducted online research using the following archives and repositories: Online Archive of California, Yosemite Online, and the Sierra Club’s online collections. These materials aided in the preparation of the Developmental History portion of this report.

Field Investigation and Condition Assessments

The project team, including ARG staff and the structural engineering subconsultant, conducted field investigations at LeConte Memorial Lodge on October 17 and October 18 of 2016 to document existing conditions. The building’s interior, exterior, and surrounding site were examined and photographed extensively at this time. In May of 2017, ARG staff conducted a second site visit to re-photograph the interior of the building.

1.5 Research Findings

This HSR presents information collected through archival research. In the Yosemite National Park Archives, Yosemite Research Library, and the Sierra Club Archives at the UC Berkeley Bancroft Library, ARG reviewed correspondence, memoranda, drawings, and photographs. This report includes copies, quotations, and references to these materials.

1.6 Major Issues Identified

LeConte Memorial Lodge is generally in good condition and no major issues were identified during this study. Specific locations of minor deterioration or disrepair are described in the Conditions Assessment section of this report.

1.7 Recommendations for Treatment and Use

Preservation is recommended as the overall treatment approach for LeConte Memorial Lodge. All future work shall be carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (the Standards). As the building was originally used as a public information center and library, its continued use as such is compatible to its historic function.
The scope of work recommended for preservation of LeConte Memorial lodge includes minor repair of existing materials. Further study is also recommended for improvement of accessibility to and within the building, and to evaluate seismic performance.
2. Administration Information

2.1 Building Information

Original Name: LeConte Memorial Lodge (alternatively, Le Conte Memorial Lodge)

NPS Preferred Structure Name:

Current Name: Yosemite Conservation Heritage Center, LeConte Memorial Lodge

NPS Structure Number: VA00609

LCS Number: 005783

Location: Yosemite National Park, Mariposa County, California

Construction Date: 1903, moved/rebuilt 1919

Architect(s): John White

Landscape Architect(s): N/A

Contractor: Charles Alsup, Gutleben Brothers

Historic Use: Information Center and Reading Room, Sierra Club Headquarters

Current Use: Information Center and Reading Room

Designations: National Register of Historic Places, National Historic Landmark

2.2 Previous Documentation and Studies

For the preparation of this HSR, ARG reviewed a number of sources (listed in the Bibliography) and the following key reports:

2.3 Project Participants

Client

National Park Service

Yosemite National Park

Benjamin Stinnett

COR & Project Manager

Lindsay Kozub

Historian

Prime Architect

Architectural Resources Group, Inc.

Kitty Vieth, AIA, LEEP AP

Principal-in-Charge

Lacey Bubnash

Project Manager, Architect/Conservator

Evanne St. Charles

Planner/Architectural Historian

Sarah Hahn

Planner/Architectural Historian

Structural Engineer

SOHA Engineers

Art Dell, P.E.

Structural Engineer

Electrical Engineer

O’Mahony & Myer Electrical Engineering and Lighting

Pieter Colenbrander, P.E.

Electrical Engineer
Part I: Developmental History
3. Historical Background & Context

3.1 Prehistory and Early History of Yosemite Valley

Archeological evidence suggests people began occupying the Yosemite region nearly 10,000 years ago. The earliest inhabitants of the region were most likely seasonal hunters and gatherers, who left behind stone spearpoints and scraping tools. While little evidence of these early peoples exist, their population was likely small and their settlements ephemeral. Between 4,000 and 1,000 years ago, native peoples had begun to settle in Yosemite Valley in greater numbers. Yosemite’s abundance of game, fish, plant foods, and water made it the ideal location for settlement. During this time, hunting technology had evolved from use of spearpoints and darts to use of bows and arrows, and inhabitants conducted systematic prescribed burns to maintain willow, oak, grass, and other useful plant crops.³

Before European discovery of the Yosemite Valley, the Yosemite region was inhabited by ancestors of the traditionally associated tribal groups in this region, including the Miwok, Paiute, Mono, and Chuckchansi. A subset of the Southern Sierra Miwok known as the Ahwahnechee (also known as the Yosemite Indians) inhabited the region for several centuries. The Ahwahnechee and other bands established multiple villages, several of which were located along the Merced River. Among the largest villages were Koomine, just below Yosemite Falls, Ahwahne, east of Koomine and the largest village on open, level ground, and Yowatchke, at the mouth of Indian Canyon.⁴ In 1800, the Ahwahnechee contracted a fatal disease, potentially obtained through interaction with coastal tribes who had contact with Europeans, and suffered a tremendous loss of life. Survivors retreated from the Valley, leaving it unoccupied for several years. Around 1821, Tenaya, the son of a headman of the Ahwahnechee, gathered the last of the tribe’s members and moved back to the Valley.⁵

Prior to the 1840s, native inhabitants of the Sierra Nevada were left relatively undisturbed. The Spanish, who had begun colonizing California’s coastal areas and using its inhabitants for cheap

⁵ Ibid., 2-3. Greene notes the only account of the Ahwahneechee’s retreat and return to the Valley is in the publication Discovery of the Yosemite, and the Indian War of 1851, Which Led to That Event, by Dr. Houghton Lafayette Bunnell, a member of the Mariposa Battalion that entered the Valley in 1851.
labor several decades prior, had no interest in the mountainous region of the state. However, the Gold Rush of 1849 beckoned thousands of American settlers to the California mountains and areas of native ancestral territory. As mining and ranching operations encroached on native land, tensions between the settlers and tribes escalated, leading to multiple attacks on American trading posts along the Merced River in 1850. In an effort to mediate future conflict, the federal government sent three U.S. Indian commissioners to California to negotiate with the tribes.6

On March 27, 1851, the Mariposa Battalion, a local militia formed to protect settler property and rid the region of the perceived threat of Indians, entered Yosemite Valley in pursuit of Chief Tenaya and the Ahwahneechee, who were assumed to have been responsible for the 1850 trading post attacks. Though their efforts proved futile (descendants of Miwok, Paiute, and other tribes lived in established communities in Yosemite Valley until 1969, and many native peoples live in the park and surrounding communities today), members of the Mariposa Battalion were the first Anglo Europeans to descend upon the Valley.7

In 1855, the first tourist party visited Yosemite Valley. The party was organized by James Hutchings, a magazine publisher who had become enthralled with the beauty of the Valley when he first entered it as a member of the Mariposa Battalion. Other individuals in the tourist group included artist Thomas A. Ayres, Wesley Millard, and Alexander Stair. Upon returning to San Francisco, Hutchings submitted an article about the scenic expedition to the Mariposa Gazette. Hutchings’ article became the first published description of Yosemite Valley.8

Between 1855 and 1864, the number of tourists visiting the Valley totaled 653. Due to the long and arduous journey required to reach the Valley, visitors stayed for multiple days. The number of tourists, which greatly increased in the 1870s after the completion of the first stage roads into the area, necessitated hotel accommodations and a reliable food source. The first hotel, known as the Lower Hotel, was constructed on the south side of Merced River below Glacier Point in 1856.9 In the following decades, additional lodging and tourist facilities were constructed, and meadows were used for crops and livestock grazing. By 1890, approximately 200 acres of the Valley floor had been cultivated.10

By the mid-nineteenth century, much of America’s pristine wilderness had fallen victim to overgrazing, improper forest management, and overhunting. In reaction to this widespread degradation, a countermovement had emerged in an effort to protect America’s wildlife, scenery, and natural resources. The movement was popularized through the writings of Henry David Thoreau and Ralph Waldo Emerson, as well as landscape paintings by George Catlin. Yosemite Valley, which had not been spared from this land mismanagement, became the symbol of scenic

6 Ibid., 16-17.
8 Ibid., 33.
9 Ibid., 44.
nationalism and the forerunner of the American conservation movement. Multiple individuals played a role in the preservation of Yosemite Valley, among them noted geologist Josiah Dwight Whitney, Central American Steamship Transit Company representative Israel Raymond, and renowned landscape architect Frederick Law Olmsted. In March 1864, at the urging of these individuals and several other noted Californians, Senator John Conness introduced a bill in Congress to preserve Yosemite Valley and the Mariposa Big Tree Grove. On June 30, 1864, Congress passed the Yosemite Grant Act, making Yosemite Valley and Mariposa Grove the first public lands federally designated for outdoor recreation and preservation. The Yosemite Grant comprised 36,111 acres of land entrusted to the State of California and established precedent for the creation of Yellowstone as America’s first national park in 1872. On September 28, 1864, California Governor Frederick F. Low appointed eight commissioners to manage the Yosemite Grant land. Frederick Law Olmsted was chair.\(^{11}\)

The creation of the Yosemite Grant resulted in additional land surveys to provide more accurate travel information to Valley visitors and to help with the formation of more roads, trails, footpaths, and bridges throughout the Valley.\(^{12}\) By the 1880s, two small developments comprising residences, hotels, and other visitor facilities, had formed near the base of Glacier Point and south of the Merced River, opposite Yosemite Falls.\(^{13}\) The developments were known as Lower Village (no longer extant) and Upper Village (now referred to as Old Yosemite Village). The Yosemite Valley Chapel, constructed in 1879 in Lower Village and relocated to Upper Village in 1901, is the oldest remaining structure in the Valley.\(^{14}\)

In 1890, in response to the public’s mounting concerns about rapid growth and development in the Yosemite region as well as the Board of Yosemite Commissioners’ perceived mismanagement of the Valley, Congress voted to set aside 1,400 square miles surrounding Yosemite Valley as a national park.\(^{15}\) On October 1, 1890, Yosemite National Park was established. In order to ensure the preservation of the park and its natural resources, it was placed under management by the United States military.\(^{16}\) However, the Yosemite Grant land remained under control of the State of California until 1906.\(^{17}\)

In 1898, the California State Board of Yosemite Commissioners requested that the Sierra Club, a prominent environmental organization with early ties to Yosemite, establish a public reading room and information center in the Valley for visitors. As a result, the Club rented two rooms in Sinning’s Cottage, a small building at the south end of the Valley originally owned by woodworker

\(^{11}\) Greene, vol. 1, 51-54.
\(^{12}\) Ibid., 77-79.
\(^{15}\) Land and Community Associates, I-4.
\(^{16}\) Greene, vol. 1, 311.
\(^{17}\) Ibid., 317.
Adolph Sinning. The Club equipped the cottage with a small library, photographs, maps, and a herbarium. The first attendant of the information center was William E. Colby, a young law school graduate who would go on to become one of the Club’s most significant leaders.

In an effort to provide a more affordable option to the Valley’s hotels, David and Jenny Curry established Camp Curry in 1899. Its site was largely chosen for its views of Half Dome, Glacier Point, Washington Column, and the Royal Arches. The Curries erected tent cabins and served communal meals to Valley visitors in a central dining hall. The camp was tremendously popular and grew from a dozen tents to hundreds in only a few years. Though Camp Curry’s growth slowed during the Great Depression and the camp closed during World War II, tourism in the Valley increased tremendously in the postwar period. By 1959, Camp Curry had grown to 500 tents and 200 cabins. It is the oldest operating tent camp in Yosemite.

In 1901, on the eve of the Sierra Club’s first wilderness outing from Yosemite Valley to the High Sierra, Sierra Club charter member and noted University of California geology professor, Joseph LeConte, died at Camp Curry. Following LeConte’s death, the Sierra Club obtained permission from the Board of Yosemite Commissioners to erect a lodge in his memory. Sited behind Camp Curry on a gentle slope underneath Glacier Point, LeConte Memorial Lodge replaced Sinning’s Cottage as the Club’s visitor center and reading room when it was completed in 1903.

In 1906, the State of California ceded control of Yosemite Grant land to the federal government, and Yosemite Valley and Mariposa Grove became part of Yosemite National Park. The United States Army took over administration of the Valley shortly thereafter, a position it held until civilian management began in 1914. During its management, the U.S. Army completed multiple road and trail building projects and oversaw the removal of several dilapidated buildings across the Valley floor. After the formation of the National Park Service in 1916, more elaborate plans for visitor facilities were implemented, and efforts were made to reduce the impacts on the scenic quality as well as the natural environment of the Valley. Under the guidance of Stephen Tyng Mather, the first director of the NPS and a prominent member of the Sierra Club, the NPS relocated Valley administrative facilities to a new Yosemite Village north of the river, “where they would not detract from the scenic appearance of the meadows.” Mather specified the construction of buildings with a rustic aesthetic, more appropriate to the Valley’s natural setting. The new Yosemite Village was dedicated in 1924.

Yosemite Valley experienced a tremendous increase in tourism in the late 1910s and 1920s. In order to accommodate the influx of visitors, Camp Curry expanded westward, resulting in the

20 “History of LeConte Memorial Lodge.”
21 Greene, vol. 1, 410-411.
23 Ibid.
relocation and rebuilding of LeConte Memorial Lodge in 1919 on its current site at the base of Glacier Point.24

3.2 Sierra Club

The Sierra Club was established in 1892 by John Muir and a prominent group of individuals from the San Francisco Bay Area. The foundation of the Sierra Club can largely be attributed to the lasting impression Yosemite made on Muir during his first visit to Yosemite in 1868. Though he planned to stay for only a brief time, Muir was struck by the magnificence of Yosemite and decided to take up residence. Muir worked as a shepherd in Tuolumne Meadows and as an assistant in a Yosemite Valley sawmill. He built himself a cabin at the foot of Yosemite Falls. In the 1870s, Muir began writing articles for various newspaper publications about Yosemite, the Sierras, and nature conservation in general.25

Muir spent much of the next twenty years exploring Yosemite and its surroundings and telling tales of his excursions. One outing in particular played a key role in the formation of the Sierra Club. During an 1889 expedition to Tuolumne Meadows with Century Magazine editor Robert Underwood Johnson, Muir and Johnson were shocked by the widespread degradation of the meadows caused by overgrazing, logging, and mining. The two men decided something needed to be done to halt the destruction and began planning a campaign for Yosemite National Park. The campaign, which led to the creation of the park the following year, prompted the two to consider an organization that would ensure the park’s protection.26 Meanwhile, a group of University of California students and faculty, led by J. Henry Senger, had formed an interest in promoting outdoor recreation through increased accessibility and knowledge of the Sierra region. In late May 1892, Muir met with the university group and other Bay Area individuals who wished to establish an alpine conservation club. The organizing group included attorney Warren Olney; professors J. Henry Senger, Joseph LeConte, William Dallam Armes, and Cornelius Beach Bradley; and Stanford University President David Starr Jordan, among others.27 On June 4, 1892, the men formally met in Olney’s law office and the incorporation papers were signed, creating the Sierra Club. The Club’s mission was “to explore, enjoy, and render accessible the mountain regions of the Pacific Coast; to publish authentic information concerning them; to enlist the support and co-

24 Carr, et al., 22.
26 Turner, 44-45.
27 Ibid., 47-49.
operation of the people and the government in preserving the forests and other natural features of the Sierra Nevada Mountains.”

From its inception, the Sierra Club played a crucial role in the protection of national parks and advocating for environmental conservation throughout the country. Among its first achievements was the defeat of an 1892 bill, which proposed to reduce the boundaries of Yosemite National Park. In 1906, the Club successfully advocated for the transfer of control of Yosemite Grant land, including Yosemite Valley and Mariposa Grove, from the State of California to the federal government, and in the early 1910s, it fought against the damming of Hetch Hetchy Valley. Though unsuccessful in stopping the construction of O’Shaughnessy Dam in Hetch Hetchy, the Club greatly increased public awareness about the importance of wilderness preservation and helped strengthen public support for the protection of all national parks. Its efforts proved successful when the Club led the defeat of proposals for large dam projects in Yellowstone National Park in 1920 and the Kings River region in 1923. (This area became part of Kings Canyon National Park in 1940.) The Sierra Club continued to be involved in various political efforts after World War II, including campaigning against dams at Glacier National Park (1948-1952), Dinosaur National Monument (1951-1956), and the Grand Canyon (1963-1968); advocating for the foundation of Redwood National Park (1964-1968); and participating in the formation and strengthening of the Wilderness Act (1964), the Clean Air Act (1970), and the Water Pollution Control Act (1972), among others. The Sierra Club has continued its environmental advocacy in recent years, helping to protect millions of acres of natural spaces, lobbying against coal mining and oil drilling, and promoting clean energy.

3.3 LeConte Memorial Lodge

Following the death of Sierra Club charter member Joseph LeConte in 1901, the Sierra Club sought to commemorate LeConte through the creation of a new information center and public reading room in Yosemite Valley. Rather than constructing a traditional monument to memorialize the noted professor, the Sierra Club believed a memorial lodge that would also serve as a public information center “would be much more appropriate and more in keeping with the wishes of Prof. Le Conte, were he to express them.” After receiving permission from the California State Board of Yosemite Commissioners, the Club began fundraising for the lodge’s construction. In 1902, Sierra Club members were taxed $1 for the construction of the building. Other contributors included prominent local merchants; students, alumni, and faculty from the

29 LeConte, “The Sierra Club,” 142.

32 “History of LeConte Memorial Lodge.”
University of California; geologists and mining engineers; and LeConte’s friends and relatives. LeConte’s widow, Caroline Elizabeth, contributed twenty-eight gold nuggets the couple had received on their golden wedding anniversary from LeConte’s former students in South Africa.33

The location of the lodge in Yosemite Valley was primarily chosen for its scenic views and setting. As described by William Colby shortly after the lodge’s completion, “The location of the lodge in the valley is most pleasing from a scenic standpoint. It is almost immediately under the towering walls of Glacier Point...and has a background setting of a grove of beautiful trees. From the entrance of the building a fine view of Half Dome is obtained.”34 In addition to its picturesque views, the location of the lodge was said to have been Joseph LeConte’s “favorite spot in the valley,” and within 100 yards of where he died.35

Architect John White, brother-in-law of noted Bay Area architect Bernard Maybeck, donated his time for the design of the lodge. Like Maybeck, White believed a building should be in harmony with its natural setting through the use of local materials and the application of appropriate scale, colors, and textures that relate the building to its surroundings. Though research did not indicate White’s exact intent for creating such an unusual design for the memorial lodge (its Tudor Revival design was unprecedented in national parks), it is clearly in keeping with White’s (and Maybeck’s) design principles. Specifically, the rough textured stone exterior, careful siting at the base of Glacier Point, and steep roof pitch evoking the verticality of Yosemite Valley’s granite walls are characteristic of the First Bay Tradition, a regional architectural style that developed in the San Francisco Bay area near the turn of the twentieth century and stressed craftsmanship, site sensitive design, and the use of natural materials.36 It is probable Bernard Maybeck’s work, particularly his concurrent design for the Wyntoon Estate, influenced White’s design for the building, notably its steeply pitched roof, exposed hammer beams, and scissor-truss roof structure, which were signatures of Maybeck.37 Construction of the lodge cost approximately $5,000, and local contractor Charles Alsup built it.38

35 “Le Conte Memorial Lodge in Yosemite Valley is Impressively Dedicated by the Sierra Club,” The San Francisco Call, July 4, 1904, 5.
36 See Section 3.5: Architecture, for more information on the First Bay Tradition.
37 Wyntoon Estate is a Gothic-style residential estate in Siskiyou County, California, designed by Bernard Maybeck, Julia Morgan, and Willis Polk for Phoebe Hearst, wife of Senator George Hearst and mother of newspaper magnate William Randolph Hearst. Bonnie Gisel, interview by author, October 17, 2016.
38 Bonnie Johanna Gisel, “LeConte Memorial Lodge: One Hundred Years of Public Service in Yosemite National Park” (California State Historic Resources Commission, Vallejo, CA, August 8, 2003); “Glacier Point Rises Guard-Like Over LeConte Memorial Building,” The San Francisco Call, October 1, 1903, 3.
LeConte Memorial Lodge was dedicated on July 3, 1904. Reverend C.T. Brown of San Diego gave the invocation, and addresses were delivered by Alexander Eells, president of the Alumni Association of the University of California, Professor A.C. Lawson of the Geological Department at the University of California, and Dr. G.K. Gilbert of the U.S. Geological Survey. Various poems were read and songs sung, and a bronze plaque inscribed to Joseph LeConte was inserted into the face of the chimney inside the building.39

In addition to serving as a visitor center and public reading room, the memorial lodge functioned as the Sierra Club headquarters in Yosemite Valley during the summer months. The lodge was typically open to the public from early May through mid-September.40 The first caretaker of the lodge was Robert L. McWilliams, and Edward T. Parsons was the first chair of the LeConte Memorial Lodge Committee. Other notable caretakers included prominent naturalist and photographer Ansel Adams; Marion Randall Parsons, the first woman elected to the Sierra Club Board of Directors; and Joseph N. LeConte, a photographer, UC Berkeley professor, and son of the elder LeConte.

39 “History of LeConte Memorial Lodge.”
40 The lodge’s months of operation are noted in several Sierra Club Bulletin articles from the 1900s through the 1930s.
LeConte Memorial Lodge, 1917 (before relocation and rebuilding). Note absence of windows in the side wings (windows were included in the original plans, but were not added until the 1919 rebuilding) and presence of dormers (not included in the new building). Photo by J.N. LeConte (Sierra Club Bulletin, volume X, plate CLVIII).

Interior of original LeConte Memorial Lodge, view north, 1910s (before relocation). Note the wood flooring (the 1919 building was built with a concrete floor), lack of doors in the side rooms, and curved profile of the wings on the built-in seating (the wings on the current seating have an angular profile) (“History of LeConte Memorial Lodge,” Sierra Club).
LeConte Memorial Lodge was originally located behind Camp Curry, where its visitors could admire views of North Dome, the Royal Arches, Sierra Point, and Yosemite Falls.

However, the increase of tourism to the Yosemite Valley in the 1910s and the resulting expansion of Camp Curry led to the lodge’s relocation. In 1919, Jenny Curry (owner of Camp Curry) paid the Gutleben Brothers Construction Company to move the lodge less than a mile westward. Due to the difficulty of transporting a solid stone building, most of the original walls, floor, steps, and fireplace remained at Camp Curry. The Gutleben Brothers removed the roof of the building and rebuilt the rest of the lodge using John White’s drawings.

Fenestration and some furniture from the original lodge appear to have been salvaged and reused in the new building. Rough-cut granite was brought from Knowles Quarry in Madera County for the construction of the new lodge’s walls.

41 “Glacier Point Rises Guard-Like Over LeConte Memorial Building,” 3.
42 Photos of the original building indicate the original fenestration appears to match the configuration and profile of the fenestration in the lodge when rebuilt in 1919. Research indicates some of the furniture, including four mission chairs, may have been salvaged and reused in the new building. The painted built-in benches, though similar to the built-ins in the original building, have a different wing profile than the built-ins that currently exist.
43 Conflicting statements exist regarding the reuse of stone from the original building. Some sources indicate some of the original granite, quarried from the Merced River, was reused in the rebuilding. Other sources state none of the original granite was used when rebuilt. Gisel, interview by author, October 17, 2016; Letter to Marshall H. Kuhn regarding the history of LeConte Memorial Lodge, July 1, 1974, author unknown, Yosemite National Park Research Library; Steve Harrison, “The Le Conte Memorial Lodge,” Yosemite Sentinel, no date, incomplete source, Yosemite National Park Research Library.
In 1919, after the lodge’s relocation, the Sierra Club joined with the University of California to establish the LeConte Memorial Lecture series. The lectures, which were typically held in an outdoor auditorium adjacent to the lodge (no longer extant), occurred annually in the summer and featured prominent western scholars who spoke on geology, art, natural history, and ethnology. Speakers included François Matthes, a U.S. Geological Survey geologist conducting groundbreaking research on the formation of Yosemite Valley; Willis Linn Jepson, a distinguished botanist from the University of California; Alfred L. Kroeber, an acclaimed University of California anthropologist; and William F. Badè, professor of theology at the Pacific School of Religion in Berkeley and literary executor of the John Muir estate. The lecture series operated from 1919 to 1924 and became the model for National Park Service interpretive programs throughout the country.44

In 1941, the first Memorandum of Agreement between the Sierra Club and the U.S. Department of the Interior was signed. The agreement outlined the duties and responsibilities of both parties, specifically, the Sierra Club’s position as the caretaker and operator of the lodge during the summer months, and the National Park Service’s role as proprietor of the lodge. The agreement has been renewed, with minor changes, every ten years since. As described in the contract, the formation of annual educational programs and displays would be a joint effort between the Sierra Club and the NPS.45 The Club served as the primary instigator of new displays and programs, while the NPS provided guidance and final approval.

45 It is unclear whether the NPS owned the building prior to the 1941 Memorandum of Agreement. Oscar L. Chapman, Francis D. Tappaan, and William E. Colby, Memorandum of Agreement between the United States Department of the Interior and the Sierra Club, June 3, 1941, Bancroft Library; Michael McClosky, Letter from Michael McClosky, Executive Director of the Sierra Club, to Leslie P. Arnberger, Superintendent
Beginning in the 1950s, the Sierra Club initiated a more elaborate display program than had been executed in the decades prior. In 1955, Ansel Adams, together with photography critic Nancy Newhall, mounted an exhibit at the lodge entitled *This Is the American Earth*, which featured nature and wilderness photos taken by 32 different artists. The exhibit, along with the 1960 book of the same title, were instrumental in the foundation of the modern environmental movement and led to the Club’s extremely successful “exhibit format” book series.\(^4^6\) Adams participated in the design of several lodge exhibits through the 1970s.\(^4^7\) In the late 1980s and early 1990s, new exhibit cases and built-in cabinets were installed in the lodge.\(^4^8\)

![LeConte Memorial Lodge](image.jpg)

47 Ansel Adams, correspondence regarding the installation of exhibits in LeConte Memorial Lodge (Sierra Club, 1956, 1962, 1967, 1972), Bancroft Library.

48 Gisel, interview by author, October 17, 2016.
LeConte Memorial Lodge was listed in the National Register of Historic Places in 1977 and dedicated as a National Historic Landmark in 1987. In the 1990s, the building underwent structural repairs and received a new lighting system.49 The building has been re-roofed multiple times, the last of which occurred in the early 2000s.50 New exhibits were installed, and the book collection was expanded between 2002 and 2003. The lodge celebrated its Centennial in 2004 with a Word for Wilderness writing program and a wildflower exhibit, a recreation of a 1907 display. The Centennial celebration was held on July 3 and 4. A rededication ceremony took place, where curator Dr. Bonnie Gisel addressed the crowd.51

In 2012, the National Park Service and the U.S. Geological Survey published a rock-fall hazard and risk assessment report for Yosemite Valley.52 LeConte Memorial Lodge was found to be in a rock-

49 The 1921 \textit{Sierra Club Bulletin} (vol. 11, no. 2) notes the need for improved lighting and wiring in the lodge. Given this date, two years after its relocation, it is presumed the lodge was rebuilt with a lighting system in place. In its history of LeConte Memorial Lodge, the Sierra Club website notes the lighting system installed in 1998, consisting of “Craftsman-style chandeliers and box lighting,” replaced an antiquated lighting system that had been installed in the 1930s (remnants of knob-and-tube wiring were found during the condition assessment conducted for this report). However, a 1968 lodge inspection report states the lodge’s wiring was in good condition and was installed “in rigid conduit and...properly fused by use of circuit breaker panels,” indicating the electrical system was likely upgraded between 1930 and 1998. The exact date of the intermediate upgrade is unknown.

50 “History of LeConte Memorial Lodge;” Gisel, interview by author, October 17, 2016.

fall hazard zone and was required to comply with the rock-fall mitigation plan. Accordingly, the number of evening events at the building have been reduced and its accessibility to the public has been limited. Nonetheless, the lodge’s mission to provide educational programs and general information about Yosemite and the Sierra Nevada region to the public has remained the same. The building continues to be operated and managed by the Sierra Club as an information center and reading room during the summer.

In October 2015, in a letter to Jonathan Jarvis, then-Director of the National Park Service, Sierra Club Board President Aaron Mair and Sierra Club Executive Director Michael Brune requested that the NPS rename LeConte Memorial Lodge. Mair and Brune cited Joseph LeConte’s “unabashed...racist views,” which were widely published in books such as The Race Problem in the South (1892), decades after the Civil War, as being the reason for the name request. The Club was particularly concerned about making visitors to the lodge feel uncomfortable and unwelcome. At the request of the Sierra Club Board of Directors, the National Park Service renamed LeConte Memorial Lodge the Yosemite Conservation Heritage Center between April and May 2016. The historic name of LeConte Memorial Lodge is still retained in official documents and historic records, including the building’s National Register and National Historic Landmark nomination forms, NPS building files, and other documents.

3.4 Joseph LeConte

Born on February 26, 1823, in Liberty County, Georgia, Joseph LeConte spent his childhood at Woodmanston, a slave-holding plantation near Savannah. After graduating from the University of Georgia, LeConte attended the College of Physicians and Surgeons in New York, where he received a Doctorate of Medicine in 1845. Upon earning his doctorate, LeConte found work as a physician in Macon, Georgia. However, he soon developed an interest in scientific research and education and, after studying under renowned Harvard geologist Dr. Louis Agassiz, he began teaching at the University of Georgia. Prior to the Civil War, LeConte taught geology and chemistry at South Carolina College. When the college closed during the war, he served as a chemist and Confederate officer, producing medicines and supervising the manufacturing of explosives. Due to his sympathies towards the Confederacy, LeConte was ineligible for employment at the university after the war ended. As such, LeConte and his brother John decided to move to California, where they contributed to the founding of the University of California. While his brother taught physics and served as the university’s first president, LeConte became the university’s first professor of natural history, botany, and geology, a position he held

53 Gisel, interview by author, October 17, 2016.
54 “History of LeConte Memorial Lodge.”
55 Aaron Mair and Michael Brune, letter to the National Park Service, request to re-name LeConte Memorial Lodge, Yosemite National Park, October 28, 2015.
up until his death. 57 LeConte’s research in geology, evolutionary philosophy, and biology gained recognition across the country. In 1891, he was elected to the presidency of the American Association for the Advancement of Science and the International Geological Congress. 58

In 1870, LeConte made his first visit to Yosemite and the Sierra Nevada with a group of ten students from the University of California. In his report, A Journal of Ramblings through the High Sierras of California, LeConte described his initial impressions of Yosemite: “I have heard and read much about this wonderful valley, but I can truly say I have never imagined the grandeur of the reality.” 59 It was during this trip that LeConte met Sierra Club founder and renowned naturalist, John Muir. LeConte was deeply moved by Muir’s environmental philosophy and passion for conservation and was a key proponent of Muir’s theory about the glacial origins of Yosemite Valley. LeConte was a charter member of the Sierra Club, participating in its formation in 1892. He served on the Sierra Club Board of Directors from 1892 to 1898. 60

On July 6, 1901, the eve of the Sierra Club’s first wilderness excursion, Joseph LeConte died at Camp Curry due to heart failure. He left behind five children, including Joseph N. LeConte (“Little Joe”), who was an engineering professor at the University of California and a prominent member of the Sierra Club, serving the Club for over 50 years. 61

LeConte was a noted professor and renowned scientist whose “knowledge of the high Sierras was probably more extensive than any other man in California.” 62 LeConte’s greatest contributions were to the subject of geology, particularly glacial geology and the formation of mountains. His Elements of Geology (1877) was a highly popular textbook used for nearly half a century in college classrooms throughout the United States. 63 Regarded by Sierra Club Director Edward Taylor Parsons as the “Nestor of California mountaineers,” LeConte participated in over fifteen excursions to Yosemite and the Sierra Nevada region between 1870 and his death in 1901. 64 After his first visit to Yosemite in 1870, he dedicated much of the rest of his life studying its origins, development, and history. LeConte was among the first to publish John Muir’s theory regarding the glacial formation of the Yosemite Valley in his 1873 American Journal of Science article, “On

57 “Dr. Joseph LeConte.”
58 Godfrey, 66.
60 “Dr. Joseph LeConte.”
62 “Le Conte Memorial Lodge in Yosemite Valley is Impressively Dedicated by the Sierra Club,” 5.
63 Richard G. Beidleman, California’s Frontier Naturalists (Berkeley: University of California Press, 2006), 367.
Some of the Ancient Glaciers of the Sierras.” He contributed much to the advancement of knowledge of the Pacific Coast mountain region, a principle at the heart of Sierra Club’s mission.

3.5 Architecture

Development of a Rustic Style

The Rustic style emerged in national parks in the first decades of the 20th century in an effort to form a more appropriate architectural mode that blended with the natural environment. The Rustic style employed native materials, such as rough-cut stone and unpainted timber, traditional craftsmanship, and naturalistic landscape planning in order to create harmony between the built and natural environments.

The early development of Rustic architecture is partially attributed to railroad companies, the first major concessioners in national parks. One of the first buildings to signify the shift from the vernacular and Victorian-era park buildings of the late 1800s was the Old Faithful Inn in Yellowstone National Park. The hotel, designed by architect Robert C. Reamer and constructed in 1903 by the Northern Pacific Railroad, used unpainted logs and rough-cut stone to form a distinct architectural design, “worthy of its awesome natural setting.” The success of the Old Faithful Inn led to the creation of other nature-inspired designs, such as the Atchison, Topeka, and Santa Fe Railway’s El Tovar hotel at the Grand Canyon (built in 1905; designed by Charles Whittlesey with interiors designed by Mary Colter).

After the creation of the National Park Service in 1916, a statement of policy was issued calling for the harmonization of all park buildings with the landscape and the use of trained engineers with knowledge of landscape architecture and/or an appreciation of the natural park aesthetic. This statement of policy provided guidelines for all national park architecture until World War II. The first National Park Service design office, which oversaw this new policy, was based in Yosemite between 1920 and 1923. During the mid-1920s, landscape architect Thomas Vint gathered a team of architects and landscape architects to work with him in the National Park Service Landscape Division (later the Branch of Plans and Design). Under the direction of Vint, the employees of the landscape division revised their traditional approach to architecture. Rather

67 Harrison, “Architecture in the Parks: A National Historic Landmark Theme Study.”
68 The National Park Service design office was presumably the same as (or located within) the NPS Landscape Division/Branch of Plans and Design.
than designing buildings to stand out in the landscape, as they had been formally trained to do, the Landscape Division designed buildings that looked as if they grew out of and belonged in the natural environment. The team experimented with materials such as stone and timber, and studied the color, texture, massing, and scale of natural materials in an attempt to find an aesthetic that blended with the natural setting. Drawing from the tenets of environmental architecture set forth by designers and architects such as Mary Colter and Bernard Maybeck, the landscape division tailored each master plan and each building to the specific park site and its individual requirements.

Yosemite played a prominent role in the development of the Rustic style. Buildings such as LeConte Memorial Lodge (1903, rebuilt 1919) and Parsons Memorial Lodge (1915) set precedent for the architectural aesthetic in Yosemite and demonstrated the influence Bernard Maybeck and other architects of the Bay Region Tradition had on the early advancement of the Rustic style. NPS Director Stephen Mather regarded Yosemite as a model for the entire park service, and as such, he believed Yosemite should showcase the Rustic style. In 1920, Mather hired architect Charles Sumner to design the Ranger’s Club, hoping the building would serve as an example for future Rustic buildings in the park. After refining a more distinct Rustic aesthetic, NPS administrators hired Pasadena architect Myron Hunt to develop a plan for the new Administration Building (1924), and Herbert Maier designed the Yosemite Museum (1925; Maier went on to design museums for Yellowstone and Grand Canyon National Parks). In 1927, architect Gilbert Stanley Underwood designed Yosemite's Ahwahnee hotel (currently known as the Majestic Yosemite Hotel), among the most monumental examples of Rustic architecture in the nation.

In the 1930s, under the Emergency Conservation Work Act, the National Park Service was assigned with supervising the development of state, county, and metropolitan recreation areas. In 1938, the NPS published a three-volume manual titled Park Structures and Facilities to help guide the design and construction of buildings within these areas. It was in this book that the NPS design approach was referred to as “rustic.” According to the manual, a successfully designed Rustic building was characterized by its “use of native materials in proper scale, and...the avoidance of rigid, straight lines, and oversophistication, giving the feeling of having been executed by pioneer craftsmen with limited hand tools.” This design aesthetic, the NPS believed, would help connect the building with its natural surroundings as well as past traditions.

By the onset of World War II, the use of the Rustic style had begun to decline in favor of new materials and building techniques, as well as the streamlined designs of modernism. The use of the Rustic style ended with the culmination of World War II and the application of the Modern style in national parks throughout the country.

69 Harrison, “Architecture in the Parks: A National Historic Landmark Theme Study.”
70 Ibid.
72 Harrison, “Architecture in the Parks: A National Historic Landmark Theme Study.”
73 Ibid.
LeConte Memorial Lodge embodies multiple characteristics of the Rustic style, including its site sensitive design, set into the hillside with scenic views of multiple monuments in the Valley; its use of rough-cut granite, the same texture and color palette as the boulders surrounding it; and its steeply pitched roof, which emulates the mountain peaks behind it. The lodge served as an important forerunner of the development of the architectural mode in Yosemite and other national parks.

Tudor Revival Architecture

Tudor Revival Architecture emerged in America in the 1890s as a subset of the Arts and Crafts movement, an anti-industrial movement that stressed traditional building approaches over modern mechanized building practices. Early principles of the Arts and Crafts movement, which originated in mid-nineteenth century England, included sensitive site layout, practical design, use of local materials, and reverence for traditional construction techniques.74 Among California’s most prominent architects to emerge from the Arts and Crafts movement were Charles and Henry Greene, Pasadena-based architects known for their Craftsman-style residences, and Bernard Maybeck, San Francisco Bay Area architect and creator of the Bay Region Tradition.75

Tudor Revival Architecture drew inspiration from a variety of medieval English prototypes, from thatched-roof cottages to prestigious manor houses. The Tudor Revival style embodied the picturesque qualities of the English countryside and therefore aligned closely with the traditional, rustic imagery the Arts and Crafts movement attempted to evoke.76 Characteristics of the style include complex, asymmetrical floor plans and roof forms, steeply pitched roofs, masonry cladding, prominent chimneys, half-timbering, and arched window and door openings.

Still relatively uncommon at the turn of the twentieth century, with most examples being grand architect-designed estates, the Tudor Revival style was popularized through published drawings and pattern books, and flourished in residential suburbs across the country during the mid-1910s and 1920s. Later examples of the style were typically more modest in size and simpler in design. Popularity of the Tudor Revival style waned in the 1940s and the onset of World War II.

LeConte Memorial Lodge is an extremely rare example of a Tudor Revival building in a national park setting. The lodge retains several characteristics of the Tudor Revival style, including its steeply pitched roof with flared eaves, masonry cladding, arched door openings, and massive stone chimney. The lodge also embodies multiple principles of the Arts and Crafts movement, such as its site sensitive design, set into the gently sloping hillside of Glacier Point, its use of local

granite and timber, and its application of traditional building practices, expressed through its exposed wood roof structure and rough-cut stone walls.

First Bay Tradition

The First Bay Tradition is the first of three sub-styles under the Bay Region Tradition, a regional architectural style prevalent in the San Francisco Bay Area from the 1880s to the 1970s. The Bay Region Tradition was a term coined in 1947 by Lewis Mumford to describe the area’s “woody, informal, and anti-urban” aesthetic. It was developed in the 1880s in reaction to Beaux Arts architecture, a popular contemporary to the First Bay Tradition that borrowed directly from traditional classical styles, such as Greek and Roman architecture. Though the Bay Region Tradition still drew inspiration from traditional architectural forms, its integration with natural surroundings and employment of locally sourced materials produced an innovative and modern design aesthetic, comparable to the Arts and Crafts movement. In addition to its emphasis on craftsmanship, the style is characterized by its use of local materials, the expression of structure as decoration rather than applied ornamentation, and a sensitivity to site and climate.

Bernard Maybeck, the Bay Area architect most widely credited with the creation of the Bay Region aesthetic, outlined four defining characteristics of First Bay Tradition buildings in *Simple Home* (1904), a book written by his first client. The four aspects included:

- The use of unadulterated natural materials, such as redwood, oak, and stone
- The synthesis of traditional craftsmanship and architectural elements, such as Gothic arches and Corinthian capitals, with modern building materials and technologies, such as reinforced concrete and plate glass windows
- The use of site sensitive designs and the creation of indoor-outdoor spaces
- The formation of an original work that addresses the specific needs of the client and community.

Apart from Maybeck, several other noted architects are associated with the First Bay Tradition. These include Julia Morgan, Ernest Coxhead, Joseph Worcester, A. Page Brown, Louis Christian Mullgardt, John Galen Howard, A.C. Schweinfurt, and Willis Polk. The First Bay Tradition culminated in the 1920s and was followed by the Second Bay Tradition, which incorporated local materials and elements of the Arts and Crafts movement with the sleek lines and machine aesthetic of European Modernism.

80 Brown, 79.
LeConte Memorial Lodge embodies several features of the First Bay Tradition, including its sensitive siting, built into a hillside with the backdrop of Glacier Point; its unadorned, rough-cut granite walls; and its exposed wood truss ceiling, a direct expression of its structural system.

3.6 John White, Architect

John White was born in Kansas City, Missouri, in 1870 to Henry and Eleanor White. He was the middle child with two siblings, Annie and Mark. White began his architectural career as a draftsman for Henry Van Brunt and Frank Howe in Kansas City. In 1890, White’s sister, Annie, met architect Bernard Maybeck and the two married and moved to San Francisco; John followed soon after. Upon arriving in the Bay Area, John White and Bernard Maybeck set up practice together, designing a handful of houses in the Berkeley Hills. In 1900, White began work as a draftsman and later a partner in the San Mateo architectural firm of George H. Howard, Jr. The firm was best known for its design of residential estates and civic buildings in the Bay Area. Between 1906 and 1907, John White and George Howard shared an office and collaborated on several commissions with Bernard Maybeck and Mark White (John White’s brother and Maybeck’s assistant on the Sierra Club’s Parsons Memorial Lodge, among other buildings), who had formed the firm Maybeck and White in 1902. For fifteen months, the four men practiced under the name Maybeck, Howard, and White until parting ways, again assuming the names Maybeck and White (Mark), and Howard and White (John).

As with most Bay Area architects during the time, White’s design principles aligned with the First Bay Tradition, an eclectic regional design aesthetic with roots in the English Arts and Crafts Movement as well as a variety of traditional architectural styles. White’s most noted works include the Wallace/Sauer House and the Hillside Club, both City of Berkeley Landmarks, as well as LeConte Memorial Lodge, one of the first rustic stone buildings in a national park.

81 United States Census Bureau, Census Records, 1870.
85 “John White, Architect.”
4. Chronology of Development & Use

4.1 Chronology of Historic Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1864</td>
<td>Congress passed the Yosemite Grant Act, making Yosemite Valley and Mariposa Grove the first public lands to be federally designated for outdoor recreation and protection.</td>
</tr>
<tr>
<td>1870</td>
<td>Joseph LeConte, renowned scientist and noted professor of geology and natural history at UC Berkeley, first visited Yosemite with a group of students, where he met John Muir.</td>
</tr>
<tr>
<td>1892</td>
<td>The Sierra Club was established by John Muir and a group of prominent individuals from the San Francisco Bay Area.</td>
</tr>
<tr>
<td>1892-1898</td>
<td>LeConte was a charter member of the Sierra Club, participating in its formation. He served on the Sierra Club Board of Directors until 1898.</td>
</tr>
<tr>
<td>1898</td>
<td>The Sierra Club established Yosemite’s first public information center and reading room at Sinning’s Cottage in Yosemite Valley.</td>
</tr>
<tr>
<td>July 6, 1901</td>
<td>Joseph LeConte died at Camp Curry of a heart attack on the eve of the Sierra Club’s first wilderness outing.</td>
</tr>
<tr>
<td>1901</td>
<td>Directors of the Sierra Club appointed a commission to decide on an appropriate memorial to LeConte. The Commission thought it would be most appropriate to honor him through constructing a memorial lodge that would also serve as a public information center and reading room.</td>
</tr>
<tr>
<td>1902</td>
<td>The Sierra Club fundraised to build a new information center and reading room in LeConte’s honor.</td>
</tr>
<tr>
<td>1903</td>
<td>LeConte Memorial Lodge was completed. It was designed by Berkeley architect John White and constructed by Charles Alsup. The lodge became the Sierra Club’s summer headquarters in Yosemite Valley and housed a portion of the Club’s library, maps, and photographs. It replaced Sinning’s Cottage as an information center and public reading room in the Valley.</td>
</tr>
<tr>
<td>Date</td>
<td>Event Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>July 3, 1904</td>
<td>The lodge’s dedication ceremony was held. Robert L. McWilliams served as the first caretaker of the lodge, and Edward T. Parsons was the first chair of the Sierra Club’s LeConte Memorial Lodge Committee.</td>
</tr>
<tr>
<td>1906</td>
<td>The State of California ceded control of Yosemite Grant land to the federal government, and Yosemite Valley became part of Yosemite National Park.</td>
</tr>
<tr>
<td>1919</td>
<td>Jennie Curry (co-founder of Camp Curry) paid the Gutleben Brothers Construction Company to relocate the lodge to its current site so Camp Curry could expand.</td>
</tr>
<tr>
<td>1919-1924</td>
<td>LeConte Memorial Lectures were instituted by the Sierra Club and the University of California. The lectures were held in the summer and continued until 1924.</td>
</tr>
<tr>
<td>1941</td>
<td>The terms for the Sierra Club’s continued use of the lodge was outlined in a Memorandum of Agreement between the Sierra Club (assumed to be the caretaker) and the U.S. Department of the Interior/National Park Service (assumed to be the proprietor). The agreement has been renewed every ten years since.</td>
</tr>
<tr>
<td>1977</td>
<td>The lodge was listed in the National Register of Historic Places.</td>
</tr>
<tr>
<td>1987</td>
<td>The lodge was dedicated as a National Historic Landmark.</td>
</tr>
<tr>
<td>2002-2003</td>
<td>Sierra Club expanded the lodge’s book collection.</td>
</tr>
<tr>
<td>2004</td>
<td>The lodge celebrated its Centennial.</td>
</tr>
<tr>
<td>2006</td>
<td>The lodge was listed as a contributor to the Yosemite Valley Historic District.</td>
</tr>
<tr>
<td>April/May 2016</td>
<td>At the request of the Sierra Club Board of Directors, the National Park Service renamed the lodge the Yosemite Conservation Heritage Center.</td>
</tr>
<tr>
<td>2018</td>
<td>LeConte Memorial Lodge continues to function as a public education and visitor center.</td>
</tr>
</tbody>
</table>

4.2 Chronology of Physical Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1903</td>
<td>LeConte Memorial Lodge construction was completed.</td>
</tr>
<tr>
<td>1919</td>
<td>The Gutleben Brothers Construction Company moved and rebuilt the lodge using original drawings. The original roof and likely the fenestration was reused in the rebuilding. The lodge’s walls were rebuilt out of rough-cut granite from Knowles Quarry in Madera County. Some furniture was likely salvaged and reused in the new lodge.</td>
</tr>
<tr>
<td>Year</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>1921</td>
<td>New doors were added to the wings of the building and shelves constructed in one of the side rooms; a telephone was added.</td>
</tr>
<tr>
<td>1928-1929</td>
<td>Window casings were repaired and some glazing replaced.</td>
</tr>
<tr>
<td>1920s-2000s</td>
<td>The building was re-roofed multiple times, most recently between 2002 and 2003.</td>
</tr>
<tr>
<td>1930s</td>
<td>New interior lighting replaced lighting dating to the rebuilding of the lodge.</td>
</tr>
<tr>
<td>1955</td>
<td>Ansel Adams and Nancy Newhall mounted the This Is the American Earth exhibit, a display of the work of 32 photographers.</td>
</tr>
<tr>
<td>1950s-2000s</td>
<td>New exhibits were mounted.</td>
</tr>
<tr>
<td>1968</td>
<td>An automatic rear screen film projector was installed.</td>
</tr>
<tr>
<td>1985-1987</td>
<td>A concrete walkway leading up to the lodge was added.</td>
</tr>
<tr>
<td>Late 1980s/early 1990s</td>
<td>Additional built-in cabinets and exhibit cases were constructed.</td>
</tr>
<tr>
<td>1991-1992</td>
<td>The lodge underwent structural improvements, including the replacement/addition of wood structural members at the chimney and roof truss, and the installation of metal plates under the trusses. Restoration of the exterior of the lodge occurred, including the removal of efflorescence on the exterior stone, repointing of mortar in some areas, and patching and sealing concrete stone wall caps.</td>
</tr>
<tr>
<td>1998</td>
<td>The interior lighting system was renovated (including the installation of chandeliers and box lights), and new displays were mounted.</td>
</tr>
<tr>
<td>Early 2000s</td>
<td>New shelving was added to the office wing.</td>
</tr>
<tr>
<td>2004</td>
<td>A Harman 25th Anniversary cast iron stove was installed in the fireplace.</td>
</tr>
<tr>
<td>2004-2006</td>
<td>A bus stop was added east of the parking lot.</td>
</tr>
<tr>
<td>Dates Unknown</td>
<td>The window in the northwest wing was replaced with a wood board and acrylic glass.</td>
</tr>
<tr>
<td></td>
<td>The electrical system was upgraded between the 1930s and 1998 renovation.</td>
</tr>
<tr>
<td></td>
<td>Overhead power lines were removed north of the lodge, likely before the mid-1950s.</td>
</tr>
<tr>
<td></td>
<td>Paved surface parking was added north of the lodge.</td>
</tr>
</tbody>
</table>
5. Physical Description

5.1 Overview

LeConte Memorial Lodge is located at the eastern end of Yosemite Valley. The building faces north and is sited on the south side of the Merced River, along Southside Drive. East of the building is Half Dome Village (formerly Camp Curry/Curry Village), and north of the building is Housekeeping Camp. The lodge is set into a gently sloping hillside at the base of Glacier Point and is surrounded by large scattered boulders and conifer trees. A contemporary bus stop and paved parking lot are located at the foot of the hillside, along Southside Drive and north of the building. A concrete walkway leads from the parking lot to the lodge. At the head of the concrete path is contemporary interpretive signage, and near the terminus of the path is a plaque attached to a boulder indicating the building’s status as a National Historic Landmark (1987). The plaque was installed in 1990.

According to a 2007 article in SF Gate, the bus stop was added between 2004 and 2006. Photographic evidence suggests the concrete walkway was added between 1985 and 1987. Research did not indicate when the parking lot was constructed.
Though new trees have grown around the building, more boulders are present than were originally due to rock falls over the years, and hardscape has been added to accommodate visitor transportation to the lodge, the lodge’s overall setting has largely remained the same since it was relocated and rebuilt in 1919.

The original design of LeConte Memorial Lodge remains intact and displays several distinctive features of the Rustic style, the First Bay Tradition, and Tudor Revival architecture. Significant features of the lodge associated with the Rustic style and First Bay Tradition include its site sensitive design, set into the hillside with purposeful views of multiple Valley monuments; its steeply pitched roof, which emulates the mountain peaks behind it; and its use of local natural materials, such as rough-cut granite and un-painted timber. The building’s steep roof pitch and flared eaves, pointed arch entry, and massive stone chimney are reminiscent of Tudor Revival architecture.
5.2 Exterior

LeConte Memorial Lodge is a one-story, roughly 1,200-square-foot, unreinforced masonry building set on a stone foundation. The building is partially below grade at its south end. The main section of the building has a rectangular plan. Two wings extend from the northwest and northeast corners of the primary section, forming a “Y” shape. The building is constructed of rough-cut granite set in cement mortar and arranged in a rough course ashlar pattern. The main portion of the lodge has a steeply pitched roof that terminates in a three-sided hip at the north (front) and south (rear) façades. The smaller northwest and northeast wings have gable roofs, which sit lower than the main roof structure. The roofs over the wings terminate in stone parapet walls capped with concrete at their gable ends. All of the roofs are covered with wood shingles and have flared open eaves with exposed wood rafter tails. Valley, edge, and chimney flashing appears to be made of lead. Fenestration includes a single wood door at the north façade and single and paired multilight wood casement windows throughout. A fixed single-light window is in the gable end of the northeast wing, and a boarded-up window opening is in the gable end of the northwest wing. The window in the northeast wing is backed with a painted wood board that features a crescent moon-shaped cutout.

The building’s north (primary) façade is symmetrical and is fronted by a porch that extends the length of the corner wings, filling in the top of the building’s “Y” shape. The porch is reached via
five shallow granite steps. It has a sloped concrete floor and is partially enclosed by two granite walls that extend inward at 90-degree angles, forming its unique hexagonal shape. The walls are roughly 4’ in height and are capped with concrete. The end of the west wall features a bronze plaque with engraved text memorializing Joseph LeConte. The building’s entrance comprises a Dutch door made of stained wood vertical planks. The door is slightly recessed in a pointed arch opening and has a simple painted wood surround. It is accessed via three granite and concrete steps. On either side of the primary entrance are single six-light wood casement windows. Two additional six-light wood casement windows are in the northwest and northeast wings at the primary façade. All of the windows are painted a light blue-gray, slightly recessed, and feature solid granite lintels and concrete sills. The entrance patio also features a stone drinking fountain capped with a concrete bowl. It is located near the center of the east patio wall. The drinking fountain is inoperable, and its faucet has been removed.

87 A Sierra Club Bulletin article indicates this “blue-gray” color may have been the original chosen paint color for the building’s fenestration. F.C. Holman, “LeConte Memorial Lodge,” Sierra Club Bulletin 16, no. 1 (1931): 95.
The south façade of the building is also symmetrical. At the center of the south façade is a massive granite chimney. The top of the chimney is slightly lower than the ridgeline of the roof. The east and west corners of the south façade are chamfered and contain paired recessed nine-light wood casement windows. The corners are supported by low concrete and stone buttresses located below the windows.
The east and west façades of the building are identical. At both façades, two pairs of nine-light wood casement windows with three-light transoms are located along the main section of the building, north of center. Single six-light wood casement windows are in the wings at the east and west façades. All windows are recessed and have concrete sills.
5.3 Interior

The interior of LeConte Memorial Lodge comprises one large room, two stories in height, with two smaller rooms located in the northeast and northwest wings. The interior of the main room has an exposed wood roof structure, rough-cut granite walls, and a concrete slab floor. The roof structure is composed of two scissor trusses supported by hammer beams. Two non-original chandeliers, each containing four light pendants, hang from the king posts of the trusses and additional non-original light pendants hang from the bottom of the hammer beams. Hanging from the roof structure at the south end of the space are two non-ferrous metal (copper or brass) light pendants with opalescent glazing. (The pendants were installed during a 1990s renovation, but appear older and may have been salvaged from another building.) Four engaged granite piers line the east and west walls of the space (eight piers in total). The piers flare outward at the top, creating a base to support the hammer beams. Paired casement windows are located between the three northernmost piers on both sides.
The south end of the main space sits at a lower level than the larger, northern portion of the room and is reached via two concrete steps. The sunken level is furnished with painted built-in seating and shelving, as well as more contemporary unpainted wood bookcases that house the building’s library collection. The built-ins form an “L” shape on both sides of and facing the fireplace. The backs of the seating facing the fireplace extend above the sunken level and serve as a divider between the lower and upper levels of the main space.
A large granite fireplace and chimney are centered on the south wall of the main space at the sunken level. The fireplace comprises an arched opening lined with brick. A cast iron Harman 25th Anniversary stove (installed in 2004) sits at its center. Above the fireplace mantel, at the base of the chimney, is a low-relief bronze sculpture of Joseph LeConte set into the granite. The words “JOSEPH LECONTE SCIENTIST AND SAVANT DIED IN THIS VALLEY JULY VI MCM!” are engraved above and below the portrait. Paired casement windows flank the fireplace and chimney.
The wings of the main lodge room contain an office (northeast wing) and storage room (northwest wing). Both wings are entered through pointed arch openings. The office is secured by a slightly recessed, cross-braced, beadboard paneled door with a peaked header. The door to the storage room has been removed. The interiors of the storage room and office are similar to the main room. Their roof structures are exposed, walls are rough-cut granite, and floors are concrete. The storage room also contains the electrical switchboard for the building.

Interior roof structure, exposed granite walls, and electrical switchboard of northwest wing/storage room (ARG, 2016).

Cross-braced wood door at the entry to the northeast wing/office (ARG, 2016).

Interior roof structure, exposed granite walls, and wood board with crescent moon-shaped cutout in the northeast wing/office (ARG, 2017).
5.4 Alterations

The exterior of LeConte Memorial Lodge is almost completely intact. Window casings were repaired and some glazing replaced after the lodge was broken into in 1928 and 1929.88 The building has been re-roofed multiple times; it was last re-roofed in kind with wood shingles between 2002 and 2003.89 In the early 1990s, exterior restoration of the lodge occurred, including the removal of efflorescence on the stone and mortar, repointing of mortar in some areas, and patching and sealing concrete stone wall caps.90 The window glazing in the northwest wing was replaced with a painted wood board and acrylic glass at an unknown date.

The lodge has undergone a few interior alterations since its relocation and rebuilding in 1919. New doors were added to the wings, shelves were constructed in one of the wings, and a telephone was added in 1921.91 New shelving was added to the office wing in the early 2000s.92 New interior lighting was installed in the 1930s and renovated (including the installation of chandeliers and box lighting) in 1998.93 Various exhibits have been mounted since the 1950s, the most recent of which date to the early 2000s.94 An automatic rear screen film projector was installed in 1968.95 Built-in cabinets and exhibit cases were installed in the late 1980s and early 1990s.96 In the early 1990s, the building underwent a series of interior structural improvements, including the replacement/addition of wood structural members at the chimney and roof truss, and the installation of metal plates under the trusses.97 A cast iron stove replaced an older stove in the fireplace in 2004.98

\footnotesize
\begin{itemize}
 \item 89 Gisel, interview by author, October 17, 2016. Sierra Club Lodge and Lands Committee Annual Reports indicate that the building has been re-roofed multiple times.
 \item 91 Ansel E. Adams, “Le Conte Memorial Lodge – Season 1921,” \textit{Sierra Club Bulletin} 11, no. 3 (1922): 308. The 1921 telephone and shelves are no longer extant.
 \item 92 Gisel, interview by author, October 17, 2016.
 \item 93 Research indicates the electrical system was likely upgraded between 1930 and 1998; however, it is unknown when this intermediate update occurred. “History of the LeConte Memorial Lodge.”
 \item 94 Gisel, interview by author, October 17, 2016.
 \item 96 Gisel, interview by author, October 17, 2016.
 \item 97 Silva, 4-6.
 \item 98 Gisel, interview by author, October 17, 2016. It is unknown when the first stove was added to the fireplace.
\end{itemize}
6. Evaluation of Significance

6.1 Overview of Significance

LeConte Memorial Lodge was listed in the National Register of Historic Places (National Register) in 1977 and was dedicated a National Historic Landmark (NHL) in 1987. The building was also listed as a contributor to the Yosemite Valley National Register Historic District in 2006.

According to the National Register listing, the lodge is of local significance in the area of architecture, exhibiting characteristics of both the Tudor Revival and Rustic styles. The nomination also found the lodge significant at the regional level for its association with the early conservation movement in the United States and with the Sierra Club, a prominent environmental organization that played a central role in the creation of Yosemite National Park and national parks throughout the country. Lastly, the lodge was found significant at the local level in the area of education as “the first center of naturalist activities for Park visitors.”

The National Historic Landmark listing found the lodge significant for its Tudor Revival and First Bay Tradition architecture. It retains distinctive features of the First Bay Tradition, including its steeply pitched roof, emulating Yosemite Valley’s steep granite walls, and its use of local materials, such as granite and timber. The building’s steep roof pitch, masonry walls, and prominent chimney are distinguishing features of the Tudor Revival style. The listing states the lodge is a “unique building for a national park: it is a transitional structure of strong European roots combined with the revolutionary way that Bay Area environmental designers used building materials.” The NHL listing also found the building regionally significant in the area of conservation as “the principal foothold of the Sierra Club in the mountains from which they took their name.”

The National Register nomination established three distinct periods of significance for the building: 1898 (the year the Sierra Club initially requested to build a public reading room and information center in Yosemite), 1903 (the original construction date of the lodge), and 1919 (the date the lodge was relocated and rebuilt). The NHL nomination establishes a different period of significance, which begins in 1919, corresponding with the relocation and rebuilding of the lodge.

100 The NHL nomination does not specify which level of significance the building retains under the area of architecture.
102 Ibid.
and is left open-ended, reflecting the lodge’s continued use as a public education and visitor center operated by the Sierra Club.103

6.2 Significant Spaces

For a historic resource to retain its significance, its character-defining features and spaces must be retained to the greatest extent possible. Management and treatment approaches may differ according to the relative level of importance of spaces. In LeConte Memorial Lodge, the central/main room is considered a primary space – it retains the highest degree of historic materials and features, and is essential to establishing the historic character of the building. Alterations to this space should be kept to a minimum and its character-defining features retained.

Utilitarian in nature, the office and storage wings are considered secondary spaces – while they provide context associated with behind-the-scene functions of the lodge, these spaces are not as essential to maintaining the historic character of the building. Because of limited public exposure, some degree of alteration, such as the addition of new services, may be acceptable in these areas. However, modification in these spaces should preserve historic materials and existing spatial relationships to the maximum extent possible.

6.3 Character-Defining Features

A character-defining feature is an aspect of a building’s design, construction, or detail that is representative of the building’s function, type, or architectural style. Character-defining elements include the overall shape of the building, its materials, craftsmanship, decorative details, interior spaces, and features, as well as the various aspects of the building’s site and environment. An understanding of a building’s character-defining features is a critical step in developing a plan that incorporates appropriate levels of restoration, preservation, and maintenance for the building.

The character-defining features of LeConte Memorial Lodge reflect the design and material characteristics of the First Bay Tradition, Tudor Revival architecture, and the National Park Service Rustic style, as well as the building’s relationship to the Sierra Club and the early conservation

103 If the LeConte Memorial Lodge National Register nomination and/or National Historic Landmark nomination is updated in the future, ARG recommends a period(s) of significance that more accurately reflects the building’s major periods of development. The building’s major periods of development are indicated in the Chronology of Development and Use section of this report (i.e. 1919-1941, representing the lodge’s relocation and rebuilding up to the creation of the first Memorandum of Agreement between the Sierra Club and the Department of the Interior; and 1942-1977, reflecting the period after the signing of the first MOA up to the lodge’s listing in the National Register).
movement in the United States. The building has undergone very few alterations, and therefore retains nearly all of its original character-defining features.

Exterior Features and Elements

- Siting (built into hillside)
- Overall form and massing (Y-shaped plan and heavy massing)
- Steeply pitched hipped roof with wood shingle roofing
- Open flared eaves with exposed wood rafter tails
- Heavy granite walls arranged in a rough ashlar pattern and laid in cement
- Massive granite chimney
- Front porch partially enclosed with tall knee walls
- Poured concrete porch flooring
- Wood plank Dutch door in recessed pointed arch entry
- Recessed, paired and single, multilight, painted wood casement windows
- Wood board with crescent moon cutout in the northeast wing window
- Stone drinking fountain built into the east patio wall

Interior Features and Elements

- Central open room, two stories in height
- Smaller office and storage rooms in the northeast and northwest wings
- Exposed wood roof structure composed of two scissor trusses supported by hammer beams and granite piers
- Exposed rough-cut granite walls
- Poured concrete flooring
- South end of central room, stepped down from the main section
- Large granite fireplace centered on the south wall at the sunken level of the main room
- Low-relief bronze sculpture of Joseph LeConte inset into the chimney, above the fireplace mantel
- Built-in painted wood bookcases and seating surrounding the fireplace at the sunken level
- Pointed arch entrances leading into the office and storage rooms
- Cross-braced, beadboard paneled door leading to the northeast wing/office
7. Condition Assessment

Existing exterior and interior material conditions at LeConte Memorial Lodge were surveyed on October 17 and 18, 2016. The scope of the existing conditions assessment was limited to visual inspection and did not include any materials testing or destructive investigation. The walls, ceiling, and roof were visually inspected from the ground only. The survey occurred after the building had been winterized and closed for the season, meaning interior light was limited and access was not available to all interior wall and window surfaces. The door to the small office wing at the northeast corner of the building was locked and that room was inaccessible during the survey. Interior photographs will be updated in 2017, once the building has reopened for the summer season.

Many individual materials and features have been given overall condition ratings of good, fair, or poor. Good condition indicates that the material does not show signs of active deterioration and is not currently in need of repair. Materials identified as being in fair condition exhibit active deterioration, but in limited quantities or locations. Poor condition means the material or feature will require extensive repair or possibly replacement in kind. The historic materials at LeConte Memorial Lodge are generally in good to fair condition.

7.1 Site and Grading

The building is set on a sloping site, with the front stair landing 7 to 8 feet below the grade level at the rear of the building. Plant growth and tree debris are typical immediately against the building at the upper slope sections, contributing to lingering damp conditions at grade following rain.
A series of wide concrete landings step up to the granite stairs that provide access to the front patio. The concrete is typically spalled at the edges, and the white paint providing visual contrast at each step is faded and weathered. The granite stairs have inconsistent riser heights, largely due to variations in stone size and surface, and there is no handrail. The mortar joints between stones at the stairs are eroded, creating even more uneven surfaces. Some sections of stone have been patched with a concrete repair mortar, which does create a more level stair surface, but the repairs are highly visible and do not match the stone.

Detail view of previous concrete repairs at granite steps leading to entrance patio (ARG, 2016).

The concrete entrance patio has no drains, but appears adequately sloped to drain effectively toward the stairs. An extensive network of small and medium-sized surface cracks covers the concrete surface, but their condition appears stable and deterioration is not active.
7.2 Exterior Walls

The stone walls are in overall good condition. The exposed stone appears to all be granite, which closely matches the appearance of the large and small granite stones found throughout the site. The roughly-cut stone was laid in a random ashlar pattern and has a very rustic finish, which creates some uneven wall planes and difficult mortar joint details. Minor cracking and small losses were observed at mortar joints on all elevations, but no severe mortar deterioration. Moderate to heavy biological growth is typical at lower wall sections, and is heaviest at mortar joints on both sides of the site walls that enclose the entrance patio. A variety of biological growth forms are present, including lichens and biofilms that are black, dark brown, white, and green in color. The biological growth appears to be contributing to accelerated mortar deterioration, as many of the observed mortar loss locations were at or adjacent to biological growth.

The northwest face of the small, projecting west wing has heavy efflorescence crusts at the lower two to three feet of stone wall. Although the efflorescence is unsightly and contrasts dramatically with the adjacent dark biological growth at that wall, it does not appear to be damaging the stone substrate behind it. Previous reports indicate that this condition has existed since at least ca. 1990, despite previous cleaning treatments.

The day after heavy rain, a large wet spot remained at the south wall directly below the chimney, indicating water is leaking through the roof and flashing above. The lead chimney flashing is uneven at the joint where the lower roof and south chimney face meet, and includes several layers of flashing, indicating repairs may have been made over time. A reglet has been cut into the stone just above the existing flashing, but the flashing has been removed at that location and the joint is now open. The top of the chimney has heavy moss growth at several faces.

Most concrete window sills and wall caps are in good condition with only minor cracking and biological growth. Some sections have a lightly eroded surface texture, but the concrete matrix remains intact. The cap on top of the low patio walls has some larger cracks, which have previously been filled with sealant that is now failing. There is light ponding at the concrete drinking fountain cap following rain, indicating that the basin does not fully slope to the center drain.

A bronze plaque mounted in the low west patio wall adjacent to the building’s entrance is in fair condition, with an uneven patina and corrosion staining at the plaque perimeter.

7.3 Roof Structure and Roofing

The steeply sloped roof is covered with wood shingles and appears to shed water and snow well. The shingle pattern appears to generally match the roofing visible in historic photographs, and should be maintained during any future roofing projects. The wood shingles currently exhibit minor lifting and cupping throughout, and are in overall fair condition. The lead roof flashing is
slightly warped and lifting at the gable ends, and has been covered with additional lead flashing layers at the chimney sides and base. Some of that added flashing material is stained and curling at its edges. Despite the steep roof slope, some tree debris has still accumulated in the valley flashing where the side gable roofs meet the primary roof.

The exposed wood sheathing at the eaves is typically in good condition, although a section of board sheathing at the east side of the building is unfinished and exhibits heavy mildew and biological growth. The exposed rafter tails are recessed behind the roof edge, and are in good to fair condition. They are typically stained at their ends, but do not exhibit any serious wood deterioration beyond normal weathering.

7.4 Windows

The wood casement windows are in good condition throughout the building. There is some minor wood splitting and weathering, which is most pronounced at the north and east elevations. Paint finishes are typically in very good condition. One window at the east elevation appears to have been sealed shut with duct tape or another strong adhesive in the past, and the paint finish is damaged at the window sash.
perimeters. Each gable face of the short wings has a fixed wood panel at its outside face. The panels are deeply recessed within each opening and appear in very good condition.

7.5 Exterior Door

The heavy wood Dutch door at the entrance is heavily weathered. It appears that the door was previously stained a dark brown color, but that stain is now uneven and partially missing. The lower half is faded and scuffed, with multiple open nail holes or small gouges. The upper half has more intact stained finishes, but is still weathered and has an open hole from previous hardware. The interior face of the door is also in poor condition, with very heavy scuffing and a section of Dutchman repair that does not match the adjacent wood. Interior and exterior door hardware is ferrous metal and lightly corroded throughout.

![Exterior view of weathered front door (ARG, 2016).](image1)

![Interior view of front door, including highly visible Dutchman repair at the right side (ARG, 2016).](image2)

7.6 Interior Flooring

The interior concrete floor, including two steps down to the hearth, is in good condition with very limited locations of damage and deterioration. Hairline cracking exists at several locations near the exterior walls, but the cracks are small and appear old. The stair edges exhibit minor chipping and spalling, likely due to impact damage. The edges have also been painted white, to create a visual contrast and meet modern accessibility codes. Multiple wood remnants from old attachments or formwork remain embedded in the concrete at the center of the space; they have been cut flush with the concrete floor and one location has been covered with duct tape.
Brick covers the floor inside the fireplace and hearth, and is in fair condition with typically eroded mortar.

7.7 Interior Walls and Casework

The interior walls and chimney face exhibit the same rustic granite masonry as the exterior and are in overall good condition. There are small spots of mortar loss at the interior, typically near window openings or corners. Mortar throughout the interior is white in color but has been unevenly installed. For example, the mortar joints around the fireplace are uniformly heavy, while the side walls have areas with both light and heavy mortar details. The door opening at the storage room has been patched with a dark repair mortar that does not match the adjacent mortar or stone, and there are still some gaps between the door frame and masonry. There is some dark staining at the upper chimney front and sides that appears to be from previous roof leaks. Several of the stone piers have red-brown staining that appears to run down the sides of the piers. It appears that this staining may be related to the woodwork above it.

Some interior window sills have sections of a cement parge/built-up mortar covering the stone, which is typically spalled and broken at its edges. Other sections of window sill are exposed stone, however, so this treatment may not have been uniformly installed.

There are two types of interior wood casework: painted wood benches and bookcases that appear older than 50 years old, and stained wood display cabinetry that was installed ca. 1990. The painted wood casework is in fair condition, with heavy scuffing at all exposed edges and corners, and a typically scratched paint finish. The benches have a number of large surface gouges at their seats and faces. A messy adhesive joint is visible at the west bench where it meets the concrete steps. The stained cabinetry is in good condition, with a few locations of damaged finish and minor scuffing and scratches. Several pieces of cabinet hardware are missing.
7.8 Interior Ceiling and Roof Structure

The interior ceiling is composed of exposed roof sheathing and framing, including timber “scissor” trusses with decoratively carved wood hammer beams. The trusses do not align with the projecting stone pilaster below; this issue is discussed in Appendix D: Structural Narrative. The exposed wood components are in overall fair condition. At the roof peak at the north end of the building, a large fungal bloom is growing out of the framing components. The wood sheathing boards exhibit several long, large splits throughout the space. Some of the heavy timber framing appears very gray in appearance, possibly as a result of water damage and related staining. The sheathing has dark staining around the chimney and near the roof/wall joint. A small sliver of daylight is visible at the east side of the chimney, indicating that location may not be entirely weathertight. Modern electrical conduits are exposed and run up the backside of most trusses, while abandoned knob and tube wiring is visible at the roof/wall joint at the east and west walls.

7.9 Interior Doors

The interior wood door to the office (northeast wing) is in good condition. The interior door to the storage room (northwest wing) was removed at an unknown date. The office door has a light-brown stained finish that is heavily scuffed at the bottom rail and adjacent to the door hardware. The edges of the stiles and rail at the lower half of the door are typically scratched and gouged.
7.10 Special Interior Features

The interior features two non-ferrous metal pendant light fixtures with opalescent glazing that are in fair condition. They were installed during the 1990s renovation, but appear old and may have been salvaged from another location. The copper or brass frames have a heavy but uneven patina, with varying shades of green, brown and white corrosion at the surface. Similar fixtures, including two central chandeliers and multiple pendants at the east and west sides of the room, date to the 1998 electrical renovation. The newer fixtures each have an un-painted copper frame and translucent white glazing in good condition.

The bronze plaque above the fireplace mantel features a bust of Joseph LeConte and has corrosion staining at its perimeter, particularly the top edge, where mortar is in contact with the bronze. The cast iron stove inside the fireplace is in good condition.
Part II: Treatment & Work Recommendations
page intentionally left blank
8. Historic Preservation Objectives

LeConte Memorial Lodge is listed in the National Register of Historic Places and is dedicated as a National Historic Landmark. The building is also a contributor to the Yosemite Valley National Register Historic District. For these reasons, it is important that all future work at the site be carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (the Standards). The Standards provide general information for stewards of historic resources to determine appropriate treatments. They are intentionally broad in scope to apply to a wide range of circumstances and are designed to enhance the understanding of basic preservation principles. The Standards are neither technical nor prescriptive, but are intended to promote responsible preservation practices that ensure continued protection of historic resources. The Standards have four defined levels of potential treatment for a property – preservation, rehabilitation, restoration, and reconstruction – which are defined as follows:

- **Preservation** is the act or process of applying measures necessary to sustain the existing form, integrity, and materials of a historic property.

- **Rehabilitation** is the act or process of allowing for a compatible use for a property through repair, alterations, and additions while preserving those portions or elements that convey its historical, architectural, or cultural values.

- **Restoration** is the act or process of accurately representing the form, features, and character of a property as it appeared at a particular period of time by removing features from other periods in its history and reconstructing missing features from the restoration period.

- **Reconstruction** is the act or process of depicting, by means of new construction, the form, features, and details of a non-extant landscape, site, building, structure, or object for the purpose of reproducing its appearance at a specific period of time and in its historic location.\(^{104}\)

LeConte Memorial Lodge possesses a high level of historic significance and retains a high level of its original design and integrity of materials. As such, preservation is the most appropriate treatment approach for the building. The Secretary of the Interior’s Standards for Preservation are included for reference in Appendix F.

Under the preservation approach, exterior and interior treatments focus on the preservation of existing fabric. Replacement is only considered for severely deteriorated or compromised...

materials, and replacement materials are selected and finished to match the historic materials. In some instances, the preservation approach allows for the retention of changes to a property that have acquired significance in their own right, as well as limited and sensitive upgrades to mechanical, electrical, and plumbing systems and other code-required work to make the property functional.

LeConte Memorial Lodge retains its historic use as public information center and library in Yosemite Valley. Even with its continued use, there are minor material and structural deficiencies that should be addressed. The following sections, Requirements for Work and Work Recommendations & Alternatives, provide guidelines and recommendations for the preservation of the lodge.
9. Requirements for Work

9.1 Applicable Codes, Laws, and Regulations

Compliance with prevailing building codes is not required for existing buildings, unless they undergo an addition, alteration, repair, or change in use, or if a code deficiency presents a distinct hazard to life safety. This report assumes that repair work may be undertaken at LeConte Memorial Lodge in the future and provides guidance for this. According to the National Park Service Director’s Order 28, historic structures are “generally expected to meet modern safety, access, and energy efficiency standards,” but it is also understood that the character of the historic resource may limit the interventions that are acceptable.105 The following preliminary analysis outlines the larger code, fire protection, life safety, and accessibility issues that currently exist at the lodge.

The governing buildings codes for any proposed work include:

- 2015 International Building Code (IBC)
- 2015 International Existing Building Code (IEBC)

Additional applicable codes, laws, and directives include:

- 2015 National Electrical Code (NEC) (NFPA 70)
- 2015 Architectural Barriers Act (ABA) Standards
- Director’s Order 42 (Accessibility for Visitors)
- Director’s Order 16A (Accessibility for Employees)
- Memorandum to Regional Directors and Park Superintendents: Disability Access in the National Park Service, 2006

The prevailing code, the IBC, prescribes solutions to conditions based on new construction models. When conformance with the IBC would adversely affect the historic character of a qualified historic building, the IEBC may be invoked as a means to preserve historic fabric and explore solutions that meet the intent, but not necessarily the letter, of the prevailing codes. As a National Historic Landmark, LeConte Memorial Lodge is considered a historic building under the IEBC and the provisions of IEBC Chapter 11 and IBC Chapter 34 may be used.

In addition, the California State Historic Building Code, (CHBC), may also be referenced, although it is not recognized as a Standard Code by the NPS. The CHBC is a performance-based code, which allows for alternative solutions to be considered in achieving the intended life-safety objectives of more prescriptive building codes in order to preserve historic features.

In addition to the IBC and IEBC, fire and life safety issues in the national parks are governed by the code of The National Fire Protection Association (NFPA). The primary NFPA code applicable to this building is NFPA 101, the Life Safety Code. Other NFPA codes to be considered include NFPA 70, the National Electric Code; NFPA 72, the National Fire Alarm and Signaling Code; and NFPA 914, Code for Fire Protection in Historic Structures. Like the CHBC, NFPA 914 provides for performance-based approaches and operational solutions that meet the intent of NFPA 101 with the least impact on a building’s historic character.

Although not a building code, the Architectural Barriers Act (ABA) is a federal civil rights law enacted in 1968 that governs disabled access to facilities designed, built, altered, or leased with certain federal funds. The ABA developed the ABA Accessibility Guidelines for Buildings and Facilities to implement the legislation through design requirements. In 2010, new design guidelines were released for new or altered facilities covered by the Americans with Disabilities Act (ADA) and the ABA. The combined ADA-ABA Accessibility Guidelines (ADA-ABA), 2015 edition, have been used in this analysis.

9.2 Code Requirements

Type of Construction

LeConte Memorial Lodge is constructed with a mix of combustible and non-combustible materials. The walls and floor are constructed of non-combustible granite and concrete, respectively; however, the roof structure and roofing are constructed of combustible wood framing, sheathing, and shingles. The roof structure is not covered with fire resistant materials.

As such, the building would be considered Type III-B construction. Type III is described in IBC Section 602.3 as “that type of construction in which the exterior walls are of noncombustible materials and the interior building elements are of any material permitted by this code. Type III-A requires a 1-hour rating at most building elements, while III-B requires only a 2-hour rating at exterior bearing walls and no other fire-resistance ratings.

Occupancy Group

Chapter 3 of the IBC defines the different types of uses for each occupancy group. As a visitor information center and reading room, the lodge falls into the Assembly (or A) occupancy group. The IBC further characterizes assembly occupancies by the density of the crowds to be expected in that use. Exhibition halls, lecture halls, libraries, and museums fall into Assembly Group A-3.
Allowable Area and Height

As described previously, per the International Building Code LeConte Memorial Lodge is categorized as a Type III-B building with an A-3 occupancy. Under those criteria, the height limit is two stories with a maximum height of 55 feet and the area permitted is 9,500 square feet. At one story, approximately 40 feet in height, and 980 square feet in size, the lodge is well below code limits.

Occupant Load and Egress Paths

Chapter 10 of the IBC establishes the number of allowable occupants in the building (the occupant load) based on the different building functions and the area of each within the building. The number of required exits and the required width for each exit path is then determined from the occupant loads being served.

LeConte Memorial Lodge has multiple functional uses: assembly space in the main room, business space in the northeast wing curator’s office, and accessory storage and mechanical space in the small northwest wing. The assembly space has an occupant load of 30 net square feet per occupant for an exhibit gallery or museum, while the accessory spaces in the small office and storage wings have an occupant load of 100 or 300 gross square feet per occupant respectively. Reading rooms have an occupant load factor of 50 net, but the lower number (30 net square feet) has been used to better reflect the typical use of the space. Applying these ratios to the area of the building interior, the total occupant load for the building is 34 occupants.

As long as the building’s occupant load remains at or below 49 occupants, only one exit from the building is required. The building code also stipulates a minimum required width for the exiting doorway, which is exceeded by the existing, four-foot-wide door.

A minimum level of illumination and exit signage is required for all exit paths. The illumination must be provided by lights connected to an emergency power system that will operate when the building power fails. There are no exit signs or emergency lighting at the building, although exit signs are not required in rooms or areas that only require one exit. Main exterior exit doors that are obviously and clearly identifiable as exits need not have exit signs where approved by the building official.

Exit doors also have technical requirements for thresholds to reduce tripping hazards and maximum opening force limits to operate. The current door has a raised wood threshold that is approximately 3/4 inch high and the door is quite heavy. It is our understanding that the door is typically fixed open when the building is in use, which would alleviate the need for any special door hardware.

Toilet Fixtures

The lodge contains no plumbing service or fixtures. Restroom facilities are provided nearby at Half Dome Village (formerly Curry Village) and Housekeeping Camp.
Human Safety (Egress)

As noted earlier in this section, the means of egress from the lodge generally comply with the IBC, due largely to the building’s small size and open interior plan. The non-compliant elements lie at the building exterior, where stairs at the patio lack handrails.

Fire Protection

Fire protection systems, including fire alarms, smoke detectors, and sprinklers, are not required by code if the building is not undergoing a change in use. There are currently no fire alarm or fire protection systems at the lodge.

Energy Conservation

NPS is committed to leadership in sustainability practices. New buildings and major renovations are required to meet federal sustainability requirements, but upgrades are only required if a major renovation is planned and executed.

Hazardous Materials Abatement

Lead paint is typically an issue in buildings painted prior to 1978. Due to the structure’s age, lead paint is likely to be found at painted finishes, although those are limited in size and location at LeConte Memorial Lodge. Lead paint does not need to be removed if current paint coatings remain intact and are not peeling or flaking. Paint finishes at the lodge are currently in good condition and do not require abatement.

Universal Accessibility

In addition to the governing codes, NPS Management Policies require all historic structures to provide the “highest feasible level of physical access to historic properties that is reasonable, consistent with the preservation of each property’s significant historical features.”

A comprehensive accessibility survey was not performed as part of this study. The building is accessed only via stairs, which limits physical access for visitors or staff in wheelchairs. LeConte Memorial Lodge does not comply with the Architectural Barriers Act (ABA) Standards.

10. Work Recommendations & Alternatives

10.1 Architectural Recommendations

LeConte Memorial Lodge is composed of three spaces: the main space, comprising the reading room and information center, and the northeast and northwest wings, comprising the curator’s office and storage room. The reading room and information center area is the most significant space in the building, although some character-defining features also exist in the spaces of secondary significance.

Human Safety (Egress)

Since there is only 1 exit from the building, events held inside must be limited to 49 attendees or fewer. Handrails should be installed at all exterior stairs to ease access and egress, and the addition of contrast striping at stair treads is not required but is recommended to improve access for the visually impaired.

Fire Protection

No fire alarm or smoke detection system was observed at the building. We recommend the installation of an alarm inside the main room, either hardwired or battery operated.

Energy Conservation

As a seasonally operated building without plumbing or mechanical systems, the lodge is generally energy efficient in its current configuration. The installation of weather-stripping at windows and the exterior door, and periodic maintenance of roofing could improve occupant comfort by reducing air leakage. Considering the building is only open during summer months and its only heat source is a cast iron stove, however, these improvements may not make a noticeable difference to interior comfort.

Hazardous Materials Abatement

Although lead paint may be present in the building, it does not need to be removed if the existing paint coatings remain intact. There are no recommendations for hazardous materials abatement at this time.
Universal Accessibility

Further study is needed to evaluate possible options for providing access to the interior for visitors in wheelchairs. We recommend a feasibility study be conducted to investigate alternatives, impacts, and costs of creating an accessible entrance and path of travel to the building. At the same time, opportunities for equivalent facilitation, such as digital displays that could be used outside, should be investigated and expanded.

10.2 Materials Conservation Recommendations

General Approach

The following materials conservation recommendations are based on conditions observed during a visual survey of LeConte Memorial Lodge. Recommendations are included for maintenance and repair, generally referred to as treatments. Treatments carried out on historic buildings typically respond to goals related to the preservation of material and elements original to a building’s construction.

Original or historic building materials, also known as historic fabric, contribute to the significance of a building because they signify the degree of physical integrity a building retains. Historic fabric often represents traditional materials or building techniques that are no longer part of common construction practice. Retaining historic fabric increases the authenticity of character-defining features and serves broader preservation goals of advancing knowledge about the history of building design and technology.

In recognition of its status as a National Historic Landmark, it is essential that all future work planned for LeConte Memorial Lodge is carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (the Standards and the Guidelines). The Standards provide a framework for determining appropriate treatments for historic properties and are discussed in Section 8, Historic Preservation Objectives, of this document. The Guidelines establish a hierarchy of treatments for materials and features that have been identified as character-defining and therefore should be retained and preserved. Under the Guidelines for Preservation (Preservation being the recommended treatment approach for the lodge) protection and repair are emphasized, while replacement is minimized.

Protection generally involves the least degree of intervention possible and includes the maintenance of historic materials through preventative methods such as cleaning, rust removal, caulking, painting, and application of protective finishes.

Repair is recommended when the physical condition of character-defining features and materials warrant additional work and should involve the least degree of intervention possible. Under treatment Preservation, all repair work should be physically and visually compatible with historic fabric, and documented for future research.
Replacement of a feature is limited under the treatment Preservation. It is permitted when the feature is missing or beyond repair, and only when sufficient evidence or documentation exists to reproduce the feature. Replacement materials should match the old both physically and visually. As such, with the exception of hidden structural reinforcement and new mechanical system components, substitute materials are not appropriate under the treatment Preservation.107

Treating and Maintaining Historic Buildings

Architectural treatments recommended in this section encompass both repairs and conservation measures. Repairs refer to procedures associated with routine activities such as cleaning and painting, but also address standard maintenance measures that nonetheless require specialized skills and materials to address the needs of the historic building. Conservation treatments refer to methods that save or preserve existing historic materials rather than replacing them. Before they are implemented on historic features, treatment materials and methods should be tested for physical, chemical, and visual compatibility with historic materials.

Proper and timely maintenance is crucial to the long-term preservation of historic buildings. The purpose of maintenance is to prolong the life of building materials and to protect the investments made in their construction and repair. Regular and well-timed preventive measures greatly reduce the cost of maintaining materials and systems by detecting deficiencies and deterioration before they become severe. A written Maintenance Plan can be useful to support planning and implementation of architectural treatments, including preventive maintenance. A Maintenance Plan should provide scoping and conceptual costs for repair projects, identify appropriate materials and methods for treating historic fabric, and establish inspection schedules for the continued upkeep and preventive care of building materials and systems.

Maintenance and repairs to the lodge should focus on retaining and preserving intact character-defining features such as its stone walls, wood windows, and exposed wood roof structure. Preventive maintenance including the periodic renewal of protective coatings, glazing putty, and sealants is critical to the long-term durability of historic fabric. If possible, deteriorated features should not be replaced; rather, they should be rehabilitated using small-scale patching, Dutchman repairs, or replacement of individual components.

Following are recommendations for treatment and maintenance of exterior and interior features of LeConte Memorial Lodge.

Site and Grading

- Clear plant growth and tree debris from base of walls. Plant growth retains moisture at masonry surfaces, while tree duff and related debris can become a fire hazard in dry conditions.
- Repair stone entrance stairs to create level and even treads. These repairs are most easily completed concurrently with the installation of handrails and contrast striping at stair treads.
- Monitor surface cracking at concrete entrance patio. Cracks should be repaired when they become large enough to inhibit drainage at the patio or create a tripping hazard.

Exterior Walls

- Clean moss and other biological growth from granite surfaces. Biological growth retains moisture at the masonry surface and can contribute to mortar deterioration.
- Repair cracks at concrete cap on top of low patio walls. The existing sealant should be removed from the cracks, the cracks routed out, and cementitious repair materials used to match the existing substrate.
- Patch the previous reglet cut into a stone at the chimney face using mortar or a masonry patching compound.
- Investigate function of drinking fountain at patio.
- Clean corrosion staining from bronze plaque at patio wall and apply a protective coating to exposed surfaces.

Roof Structure and Roofing

- Budget for future roof replacement in kind, which will likely be needed in 7 to 15 years.
- Clean biological growth and mildew from roof sheathing at east elevation. Investigate roofing above mildew location from close proximity to determine if roofing is related to mildew.

Windows

- Clean seasonally to remove dirt, stains, and adhesive residues. Touch up paint finishes where weathered or damaged and match existing paint color.

Exterior Door

- Repair and refinish exterior door, including Dutchman and epoxy repairs to wood, new stain and clear finishes, and maintenance of door hardware.

Interior Flooring

- Periodically inspect cracking and embedded components in flooring. These items do not require repair at this time, but could become tripping hazards if they expand or change.
- Repoint firebrick inside hearth with new mortar to match the existing.
Interior Walls and Casework

- Clean staining from interior granite masonry, including at chimney and below wood beams.
- Repair parge spalls at window sills using a cementitious repair mortar to create level sills and a well-defined window opening.
- Design and document a mortar replacement standard for the building to match the primary mortar color. Although no masonry repointing is recommended at this time, this standard should be used for all future masonry work to avoid creating additional areas of mismatching mortar.
- Refinish historic, painted wood benches and bookcases. A historic paint analysis is recommended to determine a historic paint color prior to repainting. Following finish work, clean up old sealant and adhesive joints and reinstall casework.
- Replace missing cabinet hardware to match existing.

Interior Ceiling and Roof Structure

- Clean fungal growth from ceiling peak and investigate roof sheathing and framing for signs of water infiltration or dry rot while accessing area.

Interior Doors

- Locate and reinstall interior wood door to storage room, or replace with new, custom wood door to match the other door. The existing door frame is intact and should be reused.
- Refinish and make minor repairs at interior door to office, including epoxy repairs to wood, new stain and clear finishes, and maintenance of door hardware.

Special Interior Features

- Clean corrosion staining from bronze plaque at chimney and apply a protective coating to exposed surfaces.

Building Systems Recommendations

- Perform a detailed seismic assessment of the building.
- Brace or strengthen the chimney to prevent a falling hazard during a seismic event. This could be done by removing the top and installing a steel bracing system inside the flue opening; hiding, embedding bracing wire in the mortar joints and tying them to the adjacent hip beams (the regular coursing of the chimney may facilitate this), or improving and extending the rod bracing to actually engage the roof diaphragm.
- Using straps, clips, and anchors, improve the continuity of the connections between the roof framing and the top of the walls. This work could be hidden behind the existing two 2x10 horizontal finish members.
- Consider designing a temporary bracing system for the truss top chords and the hip beams at the chimney that could be installed when the building is shut down for the winter.
- Install permanent circuit identification labels on the electrical branch panel inside the building.
11. Bibliography

Publications

Manuscripts

United States Census Bureau, Census Records, 1870.
Articles

“Glacier Point Rises Guard-Like Over LeConte Memorial Building.” *The San Francisco Call*, October 1, 1903.

“Le Conte Memorial Lodge in Yosemite Valley is Impressively Dedicated by the Sierra Club.” *The San Francisco Call*, July 4, 1904.

Online Sources

Archives

University Archives, Bancroft Library, University of California, Berkeley

Sierra Club Records, 1891-

Arnberger, Leslie P. Letter from Leslie P. Arnberger, Superintendent of the National Park Service, to Michael McClosky, Executive Director of the Sierra Club, regarding ownership and use of LeConte Memorial Lodge, July 9, 1976.

McClosky, Michael. Letter from Michael McClosky, Executive Director of the Sierra Club, to Leslie P. Arnberger, Superintendent of the National Park Service, regarding ownership and use of LeConte Memorial Lodge, March 9, 1976.

Yosemite National Park Research Library

Letter to Marshall H. Kuhn regarding the history of LeConte Memorial Lodge, July 1, 1974. Author unknown.

Online Archives: Sierra Club

Mair, Aaron, and Michael Brune. Letter to the National Park Service, request to re-name LeConte Memorial Lodge, Yosemite National Park, October 28, 2015.

Interviews

Gisel, Bonnie. Interview by author, October 17, 2016.

Lectures and Presentations

National Park Service Reference Documents

Appendix A: Historic Photographs
page intentionally left blank
Figure 1. Dedication ceremony for LeConte Memorial Lodge, 1904 (Tom Turner, *Sierra Club: 100 Years of Protecting Nature*).
Figure 2. Le Conte Memorial Lodge with backdrop of Glacier Point, ca. 1910 (before relocation and rebuilding) (Yosemite National Park Research Library Negative Files, RL-19809).
Figure 3. Close-up of LeConte Memorial Lodge, 1915 (before relocation and rebuilding) (Yosemite National Park Research Library Negative Files, RL-16515).
Figure 4. LeConte Memorial Lodge, 1917 (before relocation and rebuilding). Note absence of windows in the wings (windows were included in the original plans, but were not added until the 1919 rebuilding) and presence of dormers (not included in the new building). Photo by J.N. LeConte (Sierra Club Bulletin, volume X, plate CLVIII).
Figure 5. Interior of LeConte Memorial Lodge, view north, 1910s (before relocation and rebuilding) ("History of LeConte Memorial Lodge," Sierra Club).
Figure 6. Interior of LeConte Memorial Lodge, view south, 1913 (before relocation and rebuilding) (William C. Tweed, Laura E. Souliere, and Henry G. Law, “NPS Rustic Architecture: 1916-1942”).
Figure 7. LeConte Memorial Lodge, view southwest, 1927 (Yosemite National Park Research Library Negative Files, RL-7605).
Figure 8. View southwest of LeConte Memorial Lodge and hillside setting, 1927 (Yosemite National Park Research Library Negative Files, RL-7621).
Figure 9. LeConte Memorial Lodge, view southwest, 1947. Photo by R.H.A. (Yosemite National Park Research Library Negative Files, RL-2786).
Figure 10. LeConte Memorial Lodge, view southeast, 1955. Photo by R.N. McIntyre (Yosemite National Park Research Library Negative Files, RL-1661).
Figure 11. LeConte Memorial Lodge with backdrop of Glacier Point, ca. 1962. Photo by Ansel Adams (postcard sourced from http://www.yosemite.ca.us/library/lights_and_shadows/old_landmarks.html).
Figure 12. LeConte Memorial Lodge, north façade, view south, 1972. Photo by Al Der (Yosemite National Park Research Library Negative Files, RL-2783).
Figure 13. LeConte Memorial Lodge, north façade, view south, 1985. Photo by Laura Soulliere Harrison (National Register of Historic Places Nomination Form, “LeConte Memorial Lodge,” Yosemite National Park, California, listed 1987).
Figure 14. LeConte Memorial Lodge, north and east façades, view southwest, 1985. Photo by Laura Soulliere Harrison (National Register of Historic Places Nomination Form, “LeConte Memorial Lodge,” Yosemite National Park, California, listed 1987).
Figure 15. LeConte Memorial Lodge, east façade, view west, 1985. Photo by Laura Souliere Harrison (National Register of Historic Places Nomination Form, “LeConte Memorial Lodge,” Yosemite National Park, California, listed 1987).
Figure 16. LeConte Memorial Lodge, entrance at north façade, 1985. Photo by Laura Soulliere Harrison (National Register of Historic Places Nomination Form, "LeConte Memorial Lodge," Yosemite National Park, California, listed 1987).
Figure 17. LeConte Memorial Lodge, front door at north façade, 1985. Photo by Laura Souliere Harrison (National Register of Historic Places Nomination Form, “LeConte Memorial Lodge,” Yosemite National Park, California, listed 1987).
Figure 18. Remnants of the original LeConte Memorial Lodge, n.d. (Bonnie J. Gisel, “LeConte Memorial Lodge: First Permanent Visitor Center in Yosemite Valley & Home of the Sierra Club in Yosemite National Park”).
Figure 19. University Excursion Party, Dr. Joseph LeConte pictured standing at the center, 1870 (Yosemite National Park Research Library).
Appendix B:
Existing Conditions Photographs
Figure 1. View south of LeConte Memorial Lodge and hillside setting with backdrop of Glacier Point (ARG, 2016).
Figure 2. LeConte Memorial Lodge, gable end of northeast wing (ARG, 2016).
Figure 3. LeConte Memorial Lodge, north façade, view south (ARG, 2016).
Figure 4. LeConte Memorial Lodge front door, at center of north façade (ARG, 2016).
Figure 5. LeConte Memorial Lodge, detail view of window at north façade (ARG, 2016).
Figure 6. LeConte Memorial Lodge dedication plaque adjacent to front porch (ARG, 2016).
Figure 7. LeConte Memorial Lodge, exterior view of west and south façades, view northeast (ARG, 2016).
Figure 8. LeConte Memorial Lodge, view of southeast corner elevation (ARG, 2016).
Figure 9. LeConte Memorial Lodge, detail view of buttress and window sill at southeast corner of building (ARG, 2016).
Figure 10. LeConte Memorial Lodge, detail view of window at southwest corner elevation (ARG, 2016).
Figure 11. LeConte Memorial Lodge, east façade, view west (ARG, 2016).
Figure 12. LeConte Memorial Lodge, detail view of exterior rafters and sheathing at east elevation (ARG, 2016).
Figure 13. LeConte Memorial Lodge, gable end of northwest wing (ARG, 2016).
Figure 14. LeConte Memorial Lodge, west façade, view east (ARG, 2016).
Figure 15. LeConte Memorial Lodge, National Historic Landmark plaque located north of the front porch/patio (ARG, 2016).
Figure 16. Interior overview of the lodge, view northwest (ARG, 2016).
Figure 17. Interior overview of the lodge, view south (ARG, 2016).
Figure 18. Le Conte Memorial Lodge, interior view of roof structure and non-original light fixtures (ARG, 2016).
Figure 19. LeConte Memorial Lodge, interior view hammer beam at west side of building (ARG, 2016).
Figure 20. Interior overview of the lodge, view northwest (ARG, 2016).
Figure 21. LeConte Memorial Lodge, interior view looking southwest including cabinetry installed ca. 1990 (ARG, 2016).
Figure 22. LeConte Memorial Lodge, interior window face, view looking west (ARG, 2016).
Figure 23. LeConte Memorial Lodge, interior view of chimney and hearth (ARG, 2016).
Figure 24. LeConte Memorial Lodge, close-up of bronze plaque at chimney (ARG, 2016).
Figure 25. LeConte Memorial Lodge, interior view of historic benches and bookcases looking west (ARG, 2016).
Figure 26. LeConte Memorial Lodge, close-up of cast iron stove, installed in 2004 (ARG, 2016).
Figure 27. LeConte Memorial Lodge, interior office door (ARG, 2016).
Figure 28. Arched entry into northwest wing/storage room (ARG, 2016).
Figure 29. Interior roof structure of northwest wing/storage room (ARG, 2016).
Figure 30. Typical view of damp conditions at the building, including the southeast west corner (ARG, 2016).
Figure 31. Detail view of previous concrete repairs at granite steps leading to entrance patio (ARG, 2016).
Figure 32. View of efflorescence and biological growth at the west wing (ARG, 2016).
Figure 33. LeConte Memorial Lodge, detail view of rustic stone finish and unusual mortar joint details at north elevation (ARG, 2016).
Figure 34. LeConte Memorial Lodge, detail view of typical moss and biological growth at entrance patio wall (ARG, 2016).
Figure 35. View of chimney flashing and open reglet cut at south elevation. Note the varying flashing colors and staining (ARG, 2016).
Figure 36. LeConte Memorial Lodge, detail view of typical lifting and curling wood shingles (ARG, 2016).
Figure 37. LeConte Memorial Lodge, detail view of multi-layered flashing at east side of chimney. Note that the outer flashing is lifting at its lower corners (ARG, 2016).
Figure 38. Detail view of window at east elevation with adhesive-damaged paint finishes (ARG, 2016).
Figure 39. Exterior view of weathered front door (ARG, 2016).
Figure 40. Interior view of front door, including highly visible Dutchman repair at the right side (ARG, 2016).
Figure 41. Detail view of very heavy interior mortar joints adjacent to the fireplace opening (ARG, 2016).
Figure 42. Detail view of interior window sill with a partially broken parge coat finish (ARG, 2016).
Figure 43. There is a large fungus or similar growth at the interior ceiling peak at the north end of the building (ARG, 2016).
Figure 44. Interior overview of the lodge, view northwest (ARG, 2017).
Figure 45. Interior overview of the lodge, view south (ARG, 2017).
Figure 46. Sunken reading section of the lodge with historic built-ins and new cabinetry, view southeast (ARG, 2017).
Figure 47. Sunken reading section of the lodge with historic built-ins and new furniture, view west (ARG, 2017).
Figure 48. Interior overview of the lodge, view northeast (ARG, 2017).
Figure 49. Interior of lodge office wing, view northeast (ARG, 2017).
Figure 50. Exposed roof structure, granite walls, new shelving, and wood board with moon-shaped cutout (ARG, 2017).
Figure 51. Services at the roof structure in the lodge office wing (ARG, 2017).
Appendix C:
Existing Conditions Drawings & Maps
Figure 1. Curry Village c. 1890-1905 Landscape Chronology Map showing former location of LeConte Memorial Lodge highlighted in red (Yosemite Valley Cultural Landscape Report, 2004).
Figure 2. Curry Village c. 1906-1915 Landscape Chronology Map showing former location of LeConte Memorial Lodge highlighted in red (Yosemite Valley Cultural Landscape Report, 2004).
Figure 3. Curry Village c. 1916-1931 Landscape Chronology Map showing former location of LeConte Memorial Lodge highlighted in red (Yosemite Valley Cultural Landscape Report, 2004).
LeConte Memorial Lodge is located on the cooler, forested side of Yosemite Valley, within the shadow line of the steep southern cliffs. The lodge is directly south of Housekeeping Camp, across Southside Drive. At the northern edge of the talus line and surrounded by large, dispersed boulders, the stone building fits well into the sloping terrain. The scale and spacing of trees, allowing for dappled sunlight, and the lack of substantial understory give the setting the sense of a managed, parklike estate. The building’s generous distance from Southside Drive and the multiuse path also contributes to the serene setting of this memorial structure.

Figure 4. Current site plan at LeConte Memorial Lodge (from A Sense of Place: Design Guidelines for Yosemite National Park, p. 240).
Figure 5. Current site plan at LeConte Memorial Lodge (Architectural Resources Group, 2017).
Figure 6. Existing floor plan for LeConte Memorial Lodge (Architectural Resources Group, 2016).
Figure 7. Existing elevations for LeConte Memorial Lodge (Architectural Resources Group, 2016).
Appendix D: Structural Narrative
page intentionally left blank
DESIGN CRITERIA

Building Code Criteria are based on the 2015 International Building Code.

Dead and Live Loads Dead loads will be as calculated. Floor and roof live loads will be in accordance with the building code. Snow loads will be based on Mariposa County requirements, typically 60 psf ground snow load, modified in accordance with the code for the steeply sloping roof and the slightly flatter roofs at the wings.

Seismic Loads The project is located in an area of moderate seismic risk. The seismic design coefficients S_D and S_{D1} are approximately 60% of the values for a typical site in San Francisco:

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Site Class</th>
<th>S_D</th>
<th>S_{D1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>D (stiff soil/default)</td>
<td>0.589g</td>
<td>0.310g</td>
</tr>
</tbody>
</table>

Seismic Design Category D

Wind Loads Wind loads will be in accordance with ASCE 7:

- Basic Wind Speed (3-Second Gust) 110 mph (V_{ult})
- Exposure Category B

Soils No geotechnical investigation has been prepared for the site. However, SOHA Engineers is familiar with the site soils based on experience in the area and site observations. It is anticipated that subsurface conditions include sands, gravels, and silts interspersed with granite boulders. Allowable soil bearing capacity in accordance with the IBC (without a site-specific geotechnical investigation) are listed below:

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Allowable Soil Bearing Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy gravel, etc</td>
<td>3.0 ksf (Use this value without Report)</td>
</tr>
<tr>
<td>Sand, silty sand, clayey sand, etc</td>
<td>2.0 ksf</td>
</tr>
<tr>
<td>Clay, sandy clay silt, etc</td>
<td>1.5 ksf</td>
</tr>
</tbody>
</table>

BUILDING DESCRIPTION

General Building Description

LeConte Memorial Lodge is a single-story stone masonry building with overall maximum plan dimensions of approximately 47 feet by 57 feet, including the porch area at the front of the building. The main rectangular portion of the building measures approximately 30 feet by 40 feet and there are two small projecting wings at each side of the entry that enclose the entry porch and give the building an overall Y-shape. The steeply-pitched gable/hipped roof of the main section and the gable roofs of the small wings are wood framed. There is a stone masonry chimney at the southwest end that projects well above the roof.

The building was originally constructed in 1903 and was moved to the current site in 1919, apparently by disassembly and re-assembly.

There are stone walls at each side of the entry porch. These walls as well as the gable end walls of the wings are capped with concrete.
Site

The building is located near the base of the cliffs that define the west side of Yosemite Valley. The site is lightly wooded with both older and younger trees and there are many large granite boulders nearby. The grade slopes up approximately 7 feet from the porch entry to the rear of the building with the result that, at the north end the walls are retaining a two feet of soil or so below the slab, and at the south end the walls are retaining two feet of soil or so outside of the wall.

Available Drawings

No original design or as-built drawings are available. Documents relevant to building structure include the National Register of Historic Places Inventory - Nomination Form and the 1991-1992
Completion Report. That report includes an inspection report from 1988, a structural report from 1990 that identifies structural issues and proposes repairs, and two structural sheets by Rau, Haydon, Bordessa, Franz and Associates that detail the proposed repairs.

Foundation and Walls

Foundations are not visible but are assumed to be stone masonry as mentioned in the nomination. The floor inside the building is a concrete slab-on-grade, as is the paving of the entry porch. The slab steps down approximately 11 inches at the south end of the building.

Walls are roughly-cut granite stone masonry in an irregularly-coursed ashlar bond with some local areas resembling rubble masonry. Wall thickness is approximately 18 inches. There are four 18 inch wide pilasters at each side of the east and west interior walls for support of the roof trusses. These pilasters are 16 inches deep at the bottom of the wall and corbel out to approximately 22 inches deep at the top of the wall where the truss members land. The top of the walls is approximately 9’-8” above the upper slab level.

The entry door is arched and stone lintels form the window head at the smaller windows (at the entry and the wings – See Figure 1).

At the six windows in the main portion of the building, the window openings extend up to the top of the masonry walls.

![Figure 3 Window Opening Full Height](image)

The stone masonry fireplace and chimney at the sound end of the building is constructed similarly to the walls. The fireplace is approximately 9 feet by 4’-8” in plan, up to the mantel stone above the firebox, after which the chimney tapers down to a rectangular section approximately 3 feet by 4 feet. The chimney interface with the steep roof framing is very long, and the top of the chimney is approximately at the same height as the peak of the roof.
Figure 4 Rear View with Chimney

There is a 1-inch diameter steel rod that appears to be embedded in the masonry near the top of the chimney that acts as a tie to the roof framing.

Figure 5 Chimney - Top Detail with Steel Rod

Roof Structure

The roof of the main building is supported by 4 timber “scissor” trusses with 4x8 top chord members, double 2x8 crossed scissor web members, a vertical 4x4 post, and a 2x8 or 1x8 collar tie. Truss members are connected by bolting at the connections of larger members and at the collar ties, and probably by large nails or spikes at the rafters, and where the scissor members lap over the top chord.

Between the trusses, 4x4 rafters at approximately 3 feet on center support what appear to be 1x12 sheathing boards. The notes on the 1991 structural drawings for the repairs suggest that $\frac{1}{2}$" plywood sheathing be installed over the board sheathing “the next time the building is re-roofed”. There was some visual evidence that plywood sheathing had been installed.
The lower portion of the trusses includes short, horizontal “hammer” beams and a 4x8 off-vertical post. The upper hammer beam and the top of the 4x8 post are visible in Figure 6 above. The hammer beams are either double 4x12s (at the bottom) or 8x12 members that have been notched around the 4x8 top chord. These elements do not actually appear to contribute to the strength of the trusses.

Figure 7 Scissor Truss – Sketch from Structural Report

However, it is the bottom hammer beams that bear at the top of the masonry pilasters – the top chord, which is bolted through to the hammer beams, appears to terminate at the top of the hammer beam.
At the north and south ends of the main roof, 4x8 hip beams runs full height from the top of the wall to the top of the end truss.

Figure 9 Hip Beams (Top of Photo) at North End
At the south end, due to the chimney, the center hip beam is replaced by two not-full-height 4x8 roof support members – one on each side of the chimney. These frame to the other hip beams near the top (Figure 10) and support the ends of the 4x4 rafters that terminate at the chimney. One of these beams had failed, possibly due to snow or ice build-up around the valley created by the chimney, and both were replaced in the 1991 repair project.
There is also a vertical 4x8, intended to bear on a corbel on the inside of the chimney up near where it finally exits the roof diaphragm. As it does not actually bear on the corbel (Figures 10 and 11) a steel bracket, installed as part of the 1991/92 repair project, secures the base to the chimney. This member extends to the roof peak, and the 1” diameter rod from the chimney was attached to the side of this member as part of the 1991/92 repair project.

The main trusses were anchored to the tops of the wall pilasters as part of the 1991/92 repair project. As a result of the reconstruction, there is a misalignment of the trusses with the pilasters, such that the hammer beams at the base of the trusses are not centered on the pilasters. In fact, the northernmost and southernmost trusses do not fully bear on the pilasters.
The anchorage hardware has accommodated that misalignment using a fabricated T-plate. The horizontal leg extends under the hammer beam and is anchored to the pilaster, and the vertical leg is through-bolted to the hammer beam.

At the top of the masonry wall between the trusses, and between the hip beams at the ends of the building, there is a sill plate that has been anchored to the masonry. The hip beams have also been anchored with steel angles. Inboard of the sill plates, two finished 2x10 members fastened in an L-configuration close off the top of the wall conditions from view (the vertical 2x10 is visible in Figure 13 and both are visible in Figure 15).
Figure 14 Sill Plate and Hip Beam Anchorage

The base of the roof features flared eaves (see Figure 1). These are framed with short 4x4 rafters that appear to be toe-nailed to the lowest 4x4 rafter, and bear at the outboard edge of the sill plate, or in some locations on notched blocking that bears on the sill.

Figure 15 Eave Rafter Connections - Interior
Only the west wing was accessible at the time of the site visit. At the gable-roofed wings the roof is framed with 4x4 rafters at approximately 3 feet on center, which appear to be slightly offset at what appears to be a 2x6 ridge beam. Sheathing is 1x board sheathing. At the ridge, 2x4 ties have been added just below the ridge beam, but due to the offset of the rafters, the ties are shimmed. Additional 2x4 collar ties lower down were added in the 1991 repairs along with a set of rafters up against the masonry at the end wall. The interface between this low gable roof and the steeply pitched main roof could not be observed.

Lateral Force-Resisting System

The lateral force-resisting system consists of the roof diaphragm which transfers lateral loads to the masonry walls which act as shear walls to transfer the forces to the foundations.

The heavy masonry walls and the heavy (due to the height) roof framing will contribute to large seismic forces, while the tall roof will attract significant wind forces.
The steeply pitched roof of the main part of the building, coupled with the truss configuration (no low bottom chord) limits the effectiveness of the roof diaphragm as an out-of-plane support for the walls and as an element to transfer lateral forces to the perpendicular walls.

Except for the front (north) wall of the main building, the masonry walls appear to have sufficient length of wall or wall pier to resist in-plane lateral forces. At the front wall, the Y-shaped piers at the intersection with the wings will likely provide adequate resistance.

Elements that need to resist lateral forces on their own include the masonry walls (for out-of-plane forces due to their own weight, and due to wind); the chimney (due to its own weight and due to wind); and the roof truss top chords (due to wind).

The masonry walls are relatively robust with respect to resisting out-of-plane forces, which work to cause the wall to fail by buckling. The height to thickness ratio, h/t is approximately 6.7 (120 inches divided by 18 inches). This compares favorably with typical recommendations for unreinforced masonry walls supported at the top and the bottom. The pilasters at the east and west side of the walls of the main room, the fireplace, and the small horizontal spans of the wings also contribute to the overall stability of the masonry walls.

The chimney is a tall un-braced and unreinforced element. As it passes through the roof sheathing, there are no attachments to anything with any structural capacity. Although the thickness of the stone around the flue is not known, and the historical record indicates that the flue is not lined, it seems clear that this chimney is a potential falling hazard due to its height. The 1 inch diameter rod discussed above is only capable of working in one direction, is not likely to be adequately anchored, and the member to which it is anchored is not likely to be adequate for the forces it could see from the chimney.

Condition

The building is generally in very good condition.

There are no indications of settlement or movement of the foundation.

Mortar joints in the masonry, which were substantially re-pointed in the 1991/92 repairs, remain in good condition. One small area of cracking was noted and there are many instances where the mortar is stained or moss coated. These areas appear to be related to water sheeting off of the roof or penetrating the mortar or concrete cap.
Although a major effort was made in the 1991/92 repairs to remove efflorescence, there are still significant areas affected.

Figure 19 West Wing – Efflorescence and Mortar Staining
Figure 20 Entry Porch – Efflorescence and Mortar Staining
The slab on grade at the entry porch is substantially cracked. Although these cracks are large, no vertical offset was noted across the cracks. Cracking in the slab at the interior was noted across the openings into each wing.

Figure 21 Entry Porch – Slab Cracking
No significant signs of rot were noted in the wood framing although clearly there is or has been some water penetration around the chimney. Other than the misalignment problems noted, the wood framing appears to have been performed well, as were the 1991/92 repairs.

Deficiencies
Discussion of deficiencies is divided between damage conditions noted and deficiencies in the lateral or gravity load-resisting systems and elements.

Damage Conditions Instances of damage and deterioration of elements of the building are identified above. None of the conditions noted are considered critical to building structural performance.
Structural Deficiencies No calculations have been performed at this stage to determine loading and to confirm member or system capacity. Structural deficiencies are identified based on experience and engineering judgement.

Gravity Load-Carrying System

No obvious deficiencies have been identified.

However, the fact that the 1988 inspection identified a damaged roof truss top chord and a damaged hip member at the chimney indicates that some of the roof framing members may be undersized for maximum loading conditions.

It also appears likely that the support for the short eave rafters is not adequate for snow load, or wind uplift. No problems have been reported with these members however.

Lateral System

It is not likely that the anchorage of the masonry walls to the roof diaphragm would be found to be adequate for seismic forces.

The roof diaphragm, due to its very steep pitch, is probably not adequate to brace the masonry walls for out-of-plane forces.

The continuity, connections, and capacity of the horizontal elements at the top of the masonry walls that would be required to act as diaphragm chords is probably not adequate for full seismic forces. The elements include the sill plate, the lowest rafter, and the blocking between eave rafters.

Lateral Elements

Masonry Walls The out-of-plane strength of the masonry walls may not be adequate for full seismic forces. The gable end walls of the wings may be the most vulnerable due to their extra height.

Chimney The high chimney is not adequately braced against seismic forces, and may not be adequate for wind forces.

Treatment Recommendations

Other than the relatively minor structural failures noted and repaired, the building has performed well over the course of many years. However, there does not seem to have been any kind of detailed seismic assessment of this unreinforced masonry building.

The deficiencies noted in the lateral force resisting system do not appear to present a substantial risk of partial or total collapse. We feel that some minor improvements to the connections and continuity of elements at the top of the masonry walls could substantially improve performance under severe earthquake shaking.

However, for preservation of this historical asset, and life safety protection of occupants (particularly if occupancy increases) we recommend that a seismic assessment be performed and improvements that are consistent with the historical aspects of the building be implemented.

The chimney is a falling hazard, although the hazard is a least partially mitigated by the limited use of the building and the area around it. The chimney should be braced.
The following list consolidates and details the actions and improvements that should be considered:

- **Brace/strengthen the chimney.** This could be done by removing the top and installing a steel bracing system inside the flue opening; hiding, embedding bracing wire in the mortar joints and tying them to the adjacent hip beams (the regular coursing of the chimney may facilitate this); improving and extending the rod bracing to actually engage the roof diaphragm.

- **Perform a seismic assessment.**

- **Using straps, clips, and anchors, improve the continuity of the connections between the roof framing and the top of the walls.** This work could be hidden behind the existing two 2x10 horizontal finish members.

- **Consider designing a temporary bracing system for the truss top chords and the hip beams at the chimney that could be installed when the building is shut down for the winter.**
page intentionally left blank
Appendix E: Electrical Narrative
March 8, 2017

Architectural Resources Group
Pier 9 The Embarcadero
San Francisco, CA 94111

Attn: Lacey Bubnash

Re: Le Conte Memorial Lodge
Electrical Systems HSR Assessment

Dear Lacey,

O’Mahony & Myer visited the Le Conte Memorial Lodge on November 10, 2016. The purpose of our visit was to review the existing conditions of the electrical, lighting, and signal systems, in order to provide this written assessment.

Following is a summary of our findings.

Electric Service and Branch Panel:

The building is fed with an underground feeder to an exterior rated 125 Amp, 120/240V, 1-Phase, 3-Wire rated electrical service meter panel with main breaker. The meter panel is located on a utility pole just to the North of the structure. Meter #309-524-798 (See Figure 1). The meter panel is in good condition and can be utilized to continue serving the building.

The service panel is fed underground from the Housekeeping Camp area to the North/East. A secondary underground conduit feeds from the meter panel into the building, with a visible schedule 80 PV conduit stub-up at the North exterior of the structure (See Figure 2). The feed enters the building and serves a branch panelboard inside a Storage Closet.

Figure 1
The branch panel inside the building is a residential grade load center with (8) breakers and (7) available 1-pole spaces (See Figure 3). The panel is in fair condition and can be retained for further use. It currently serves all power receptacles, a projector, and all lighting loads in the building. It will support up to (7) additional 1-pole branch breakers for any additional loads that may be required.

Circuit identification on the panel is rather haphazard, with hand-written updates and some taped labels added over the years.

The Storage Closet also includes a wall mounted Lutron Dimmer System, with a Grafik Eye controller (See Figure 4). The dimmer system is fed from a 2-pole breaker in the branch panel and serves the various lighting fixtures in the main Lodge space, as noted below under “Lighting System”. The system is in fair condition and can be retained.

The Grafik Eye controller allows for preset scenes (See Figure 5). The system currently includes scenes for daytime, pre-slideshow, post-slide show, and non-slide show programs.

Branch Power Systems:

Power wiring inside the building includes a combination of surface mounted EMT conduit, MC cable, and some remnants of old knob and tube wiring (See Figure 6). The knob and tube wiring appears to be disconnected and not in use, but is still visible at some locations (See Figure 7).

Power receptacles are surface mounted at each window opening, with surface mounted conduit and boxes.

There is also a wood burning stove in the main room with an electrical cord connection.

Lighting System:

The main room includes a series of historic looking pendant chandeliers with dimmable lamps (See Figure 8). Additional wall or truss mounted quartz or MR16 accent lights have been added over the years as well. All lighting in the main space is on dimmer control, from the Lutron panel in the Storage Room and several stand-alone wall-box dimmers.

Additional lighting controls in the building consist only of manual switches, with no automatic controls.
Exterior lighting is limited to (2) soffit mounted spot lights at the front Porch area (See Figure 9), as well as (2) small bollard lights along the pathway from the parking lot to the Porch (See Figure 10). The soffit lights appear to be non-operational (old, rusted, and missing lamps). The pathway bollards have been retrofitted with compact fluorescent lights. A photocell is mounted on the utility pole at the main power panel and a mechanical time clock is located in the Storage Closet by the electrical panel (both assumed to be feeding the exterior lights).

Signal Systems:

Telephone service is fed to the building via an overhead line from the utility pole that the main power meter panel is mounted to (See Figure 1).

The service wire feeds into the building at the South/West corner of the structure, though a small telephone service termination box (See Figure 11). The service then feeds into the building with exposed wiring to the Office location at the South/East corner of the Structure.

There is no Fire Alarm or Security System in the building.

If you have any questions or comments on the above assessment, please do not hesitate to call.

Sincerely,

Pieter Colenbrander, P.E.

O'MAHONY & MYER

(See next page for additional photos – Figures 8 to 11)
Appendix F: Secretary of the Interior’s Standards for Preservation
According to the Secretary of the Interior’s *Standards for Preservation*, Preservation is defined as the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. New exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a preservation project.

1. A property will be used as it was historically, or be given a new use that maximizes the retention of distinctive materials, features, spaces, and spatial relationships. Where a treatment and use have not been identified, a property will be protected and, if necessary, stabilized until additional work may be undertaken.

2. The historic character of a property will be retained and preserved. The replacement of intact or repairable historic materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.

3. Each property will be recognized as a physical record of its time, place, and use. Work needed to stabilize, consolidate, and conserve existing historic materials and features will be physically and visually compatible, identifiable upon close inspection, and properly documented for future research.

4. Changes to a property that have acquired historic significance in their own right will be retained and preserved.

5. Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.

6. The existing condition of historic features will be evaluated to determine the appropriate level of intervention needed. Where the severity of deterioration requires repair or limited replacement of a distinctive feature, the new material will match the old in composition, design, color, and texture.

7. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

8. Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.¹
