CLIENT:
National Park Service
Yosemite National Park
5083 Foresta Rd., Bldg 759
El Portal, CA 95318
Ron Gaunt
COR & Project Manager
Erin “Echo” Davenport
Project Specialist
Scott Carpenter
Program Manager for Cultural Resources
Kimball Koch
Yosemite Historic Preservation Officer
Lindsay Kozub
Historian

PRIME ARCHITECT:
Architectural Resources Group, Inc.
Pier 9, The Embarcadero, Suite 107
San Francisco, CA 94111
Kitty Vieth, AIA, LEED AP
Principal-in-Charge, Project Manager
Sarah Hahn
Planner/Architectural Historian
Matthew Davis
Planner/Architectural Historian
Mayank Patel
Architectural Conservator

ARG #13026.08

STRUCTURAL ENGINEER:
SOHA Engineers
48 Colin P. Kelly Street
San Francisco, CA 94107
Art Dell, P.E.

MECHANICAL ENGINEER:
List Engineering
9699 Blue Larkspur Lane, Suite 203
Monterey, CA 93940
Ron Blue, P.E.

ELECTRICAL ENGINEER:
O’Mahony & Myer, Inc.
4340 Redwood Highway, Suite 345
San Rafael, CA 94903
Pieter Colenbrander
Principal
Table of Contents

Introduction

1. Study Summary ... 3
 - Introduction
 - Historic Structure Report Contents
 - Project Goals
 - Methodology
 - Research Findings
 - Major Issues Identified
 - Recommendations for Treatment and Use

2. Administrative Information ... 7
 - Building Information
 - Previous Documentation and Studies
 - Project Participants

Part 1: Development History

3. Historical Background and Context 11
 - Mission 66 in Yosemite
 - Modern Movement Style
 - Mission 66 Concession Buildings
 - The Degnan Family
 - Degnan’s Restaurant
 - Walter Wagner and Partners
 - Barrett Construction Company
Table of Contents continued

4. Chronology of Development and Use... 23
 Chronology of Historic Events
 Chronology of Physical Construction

5. Physical Description.. 27
 Overview
 Exterior
 Interior
 Alterations
 Landscape

6. Evaluation of Significance.. 37
 Character-Defining Features and Spaces
 Contributing Spaces

7. Condition Assessment ... 42
 Site and Exterior Features
 Roofing
 Exterior Walls
 Interior Features and Finishes
 Building Systems
 Current Condition Matrix
Table of Contents continued

Part 2: Treatment and Work Recommendations

8. Historic Preservation Objectives... 81

9. Requirements for Work.. 83
 Applicable Codes, Laws, and Regulations
 Code Requirements

10. Work Recommendations and Alternatives.. 87
 Architectural Recommendations
 Material Conservation Recommendations
 Building Systems Recommendations

Appendices.. 95

 Appendix A. Bibliography
 Appendix B. Historic Photographs
 Appendix C. Selected Historic Drawings from 1957
 Appendix D. Existing Condition Photographs
 Appendix E. Existing Condition Drawings
 Appendix F. The Secretary of the Interior’s Standards for Rehabilitation
 Appendix G. Structural Letter Report
 Appendix H. Mechanical/Plumbing Letter Report
 Appendix I. Electrical Letter Report
July 2017

PREPARED BY:
Architectural Resources Group, Inc.

RECOMMENDED BY:

[Signature]
Scott Carpenter
Cultural Resources Program Manager

7/17/2017
Date

CONCURRED BY:

[Signature]
Joe Meyer
Acting Division Chief of Resources Management and Science

7/25/2017
Date

APPROVED BY:

[Signature]
Palmer L. Jenkins
Acting Superintendent

9/31/2017
Date
Section One

Study Summary

INTRODUCTION

Architectural Resources Group (ARG) has prepared the Degnan’s Restaurant and Loft Historic Structure Report (HSR) to inform the proposed rehabilitation of the building and to serve as a guide for ongoing preservation and maintenance. Degnan’s Restaurant and Loft (Degnan’s) was constructed in 1958 as part of the Mission 66-era expansion of services within Yosemite Village. Degnan’s was designed by Walter Wagner & Partners of Fresno, California and construction was funded by the concessioner Degnan-Donohoe, Inc. Designed in the Modern style, the building originally housed a soda fountain, bakery, delicatessen, and entrance foyer on the first level, and a restaurant on the second level.

John and Bridget Degnan came from Ireland to settle with their family in Yosemite Valley around 1886. By 1898, they had established a bakery and restaurant in the Old Yosemite Village that was overseen by Bridget Degnan for many years. Following Mrs. Degnan’s passing in 1941, two of her children, Miss Mary Ellen Degnan and Dr. John Degnan, managed the family business. In 1947, Mary Ellen Degnan partnered with her nephew, Frank Donohoe, to form Degnan-Donohoe, Inc., which became the management entity for the family’s concession operations within the park. Degnan’s continued as a family business and independent park concessioner until Degnan-Donohoe Inc.’s contract expired in 1972. The building is currently owned by the National Park Service, and food service is provided by Yosemite Hospitality, LLC, a subsidiary of Aramark.

Degnan Family, summer of 1889. Left to right: Bridget Degnan and baby John, Laurence, Daisy, Mary Ellen, and John Degnan (Yosemite National Park Research Library).

Degnan family’s first bakery (“John and Bridget Degnan,” NPS.gov)
HISTORIC STRUCTURE REPORT CONTENTS

The contents of this HSR comply with National Park Service (NPS) Director’s Order 28: Cultural Resource Management Guideline, Chapter 8 and Preservation Brief 43: The Preparation and Use of Historic Structure Reports. The document provides information about the design and construction of Degnan’s Restaurant and Loft in two main sections: 1) Developmental History and 2) Treatment and Use. The Developmental History section comprises a chronology of development and use, historical background and context sections, and a discussion of significance. It also includes a physical description and a list of character-defining features, materials, and spaces. The Developmental History section also presents a comprehensive analysis of the building’s exterior and interior conditions, and examines all of the building systems, including structural, mechanical, plumbing, and electrical.

The Treatment and Use section provides a comprehensive set of treatment and use recommendations for the building, and reviews requirements for rehabilitation. This section concludes with recommendations for the rehabilitation of exterior features and interior spaces, and the conservation of significant materials. The proposed treatment was developed in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (The Standards).

PROJECT GOALS

According to NPS Preservation Brief 43, an HSR provides documentary, graphic, and physical information about a property’s history and existing conditions. Broadly recognized as an effective part of preservation planning, an HSR also provides a thoughtfully considered argument for selecting the most appropriate approach to treatment prior to the commencement of work and outlines a scope of recommended work. The report serves as an important guide for all changes made to a historic property during a preservation, rehabilitation, restoration, or reconstruction project.

This HSR was prepared at the request of the National Park Service in order to guide rehabilitation of the building by the current concessioner.

METHODOLOGY

The Degnan’s Restaurant and Loft HSR has been developed using information gathered from meetings and interviews with interested parties, archival research, and field investigation. The methodology employed for this report meets the standards and requirements set forth in the following documents:

- NPS Director’s Order 28: Cultural Resource Management Guideline, Chapters 7 and 8.
- Preservation Brief 43: The Preparation and Use of Historic Structure Reports
- The Secretary of the Interior’s Standards for the Treatment of Historic Properties
- National Register Bulletin 15: How to Apply National Register Criteria for Evaluation
- National Register Bulletin 39: Researching a Historic Property

Meetings

On March 24, 2016, the project kick-off meeting was held on site with personnel from NPS, Aramark, ARG, and List Engineering. Topics covered included project scope, objectives, coordination, schedule, communication, information gathering, and compliance process and procedures. Coordination meetings were held via conference call on an as-needed basis with key NPS staff, ARG personnel, and ARG subconsultants in order to confirm direction on the development of the report.
Background Research and Data Collection
In March 2016 ARG reviewed primary and secondary source materials held in the Yosemite National Park Archives, Yosemite Research Library, and the NPS Denver Service Center, including architectural drawings, historical photographs and newspaper accounts, correspondence and other related materials. ARG also conducted online research using the following archives and repositories: the University of California’s Calisphere, Online Archive of California, Yosemite Online, Newspapers.com, and the California Digital Newspaper Collection. These materials aided in preparation of the Developmental History portion of this report.

Field Investigation and Condition Assessments
The project team, including ARG staff and mechanical, plumbing and electrical subconsultants, conducted field investigations at Degnan’s Restaurant and Loft on March 24th and 25th of 2016 to document existing conditions. The building exterior, interior and surrounding site were examined and photographed extensively at this time. ARG’s structural subconsultant visited the site on April 12, 2016. A follow up site visit by ARG was completed on May 2, 2016, to collect additional information about the building’s existing conditions and alterations.

RESEARCH FINDINGS
Archival research completed for this study indicates that Degnan’s Restaurant and Loft is eligible for listing in the National Register of Historic Places at the local level of significance under Criterion A for association with the significant expansion of visitor services and accommodations completed as part of the Mission 66 program at Yosemite. Degnan’s was an essential part of overall Mission 66 development within the Yosemite Valley, specifically in the new Yosemite Village area, which was reconfigured during this era to provide new and expanded amenities for the park visitor. Under Criterion C, the building is eligible as a strong representation of the principles of
Study Summary

the Modern Movement, or “Park Service Modern” style, which was central to the Mission 66 program. The Period of Significance under Criterion A is 1958-1966, reflecting the date of construction through the end of the Mission 66 program. The Period of Significance under Criterion C is 1958, the date of construction.

In addition, the property meets the requirements of the National Park Service Mission 66 Era Resources Multiple Property Documentation Form (MPD) as an essential part of an overall Mission 66 park development plan that had extraordinary importance in the history and development of an individual park. Under the NPS significance criteria, the building also displays significance as an outstanding example of the Modern Movement style within the park.

Degnan’s Restaurant and Loft received a consensus determination of eligibility from the California State Historic Preservation Office in early 2017. As of this writing, the building is in the process of being listed in the National Register of Historic Places.

MAJOR ISSUES IDENTIFIED

The Degnan’s Restaurant and Loft building is generally in good condition. No major issues with the building were found through this study. Specific areas of deterioration and disrepair are described in the Condition Assessment section of this report.

RECOMMENDATIONS FOR TREATMENT AND USE

Rehabilitation is recommended as the overall treatment approach for the Degnan’s Restaurant and Loft. All future work shall be carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (The Standards). Continuation of the original use of the building is recommended.

The scope of work recommended for rehabilitation of Degnan’s Restaurant and Loft includes repair of deteriorated features and renewal of the interior and exterior finishes. Each of the building systems also require improvements, including structural, mechanical, electrical, and plumbing upgrades.
Section Two

Administrative Information

BUILDING INFORMATION
Original Name: Degnan's Restaurant
NPS Preferred Structure Name: Degnan's Restaurant
Current Name: Degnan's Restaurant and Loft
NPS Structure Number: TBD
LCS Number: TBD
Location: Yosemite National Park, Mariposa County, California
Construction Date: 1958
Architects: Walter Wagner & Partners, Fresno, CA
Landscape Architects: N/A
Contractor: Barrett Construction Company, San Francisco, CA
Historic Use: Restaurant
Current Use: Restaurant
Designations: National Register listing pending

PREVIOUS DOCUMENTATION AND STUDIES
For the preparation of this HSR, ARG reviewed a number of sources (listed in the Bibliography) and the following previously produced key reports:

PROJECT PARTICIPANTS

CLIENT:
National Park Service
Yosemite National Park

Ron Gaunt
COR & Project Manager

Erin “Echo” Davenport
Project Specialist

Scott Carpenter
Program Manager for Cultural Resources

Kimball Koch
Yosemite Historic Preservation Officer

Lindsay Kozub
Historian

PRIME ARCHITECT:
Architectural Resources Group, Inc.

Kitty Vieth, AIA, LEED AP
Principal-in-Charge, Project Manager

Sarah Hahn
Planner/Architectural Historian

Matthew Davis
Planner/Architectural Historian

Mayank Patel
Architectural Conservator

STRUCTURAL ENGINEER:
SOHA Engineers

Art Dell, P.E.

MECHANICAL ENGINEER:
List Engineering

Ron Blue, P.E.

ELECTRICAL ENGINEER:
O’Mahony & Myer, Inc.

Pieter Colenbrander
Principal

RESEARCH ASSISTANCE ACKNOWLEDGEMENTS:

Don Evans
Director of Facilities for Yosemite Hospitality, LLC, a subsidiary of Aramark

Paul Rogers
Archivist, Yosemite National Park Archives

Virginia Sanchez
Librarian, Yosemite National Park Research Library
Part 1: Development History
Section Three

Historical Background and Context

MISSION 66 IN YOSEMITE

During the post-World War II economic boom, many Americans experienced a significant increase in leisure time, prosperity, and mobility. For national parks across the country, this meant an unprecedented surge in visitation and a consequent strain on park facilities, which were inadequate to serve the rising demand of the postwar era.

The number of visitors to Yosemite rose to record levels in the early 1950s. As visitation surged, it became increasingly evident that the existing infrastructure, concession facilities, and other services were in immediate need of extensive improvements to both protect the park’s precious resources and provide an enjoyable visitor experience. To address the widespread need for essential facilities – not only at Yosemite, but in parks across the country – NPS Director Conrad Wirth organized an ambitious new construction campaign known as Mission 66. Initiated in 1956, the 10-year program would infuse the National Park System with the capital necessary to repair and build new infrastructure, hire additional employees, construct new visitor service facilities, improve employee housing, and acquire land for new parks. As initially planned, the program of improvements was to be completed by 1966, the fiftieth anniversary of the National Park Service.21

The Mission 66 Prospectus for Yosemite, outlining the program of improvements to be completed over the next decade, was issued in July 1956. The prospectus emphasized the protection of Yosemite Valley against overdevelopment, and the limitation of park facilities within the Valley to only those that directly supported the visitor. Other key features of the program included an expanded road and trail system within the park, enhanced interpretation services, improved campgrounds and overnight accommodations, increased concessioner services, and a reorganization of facilities needed for park administration, maintenance staff, and other personnel.22

One of the most substantial changes to the Valley floor during the Mission 66 period involved the removal of obsolete concessioner facilities from the Old Village on the south side of the Merced River and construction of enhanced facilities in the New Village, which was situated on the north side of the river. The New Village – today’s Yosemite Village – was originally established in the 1920s and designed in the Rustic style by architect Myron Hunt, and landscape architects Daniel Hull and Thomas Vint. A central part of the original plan for the New Village was the placement of new administration and concessioner buildings around a central plaza that provided visitor parking. Residential, maintenance, and other support buildings were also constructed in the New Village at this time. Each separate zone was physically and visually separated from the others using vegetation, topography, and design. The New Village continued to grow and expand over the next few decades, most notably in the Mission 66 period when a new restaurant, store, visitor center, and other facilities were constructed.23

MODERN MOVEMENT STYLE

In keeping with the era in which the program originated, the National Park Service employed the Modern Movement style as the basis for design for all new construction that took place during the Mission 66 period. The style combined the use of cost-efficient materials and systems with modernist design concepts to create a distinctive new style of park building representative of the modern era. Prominent components of the Modern Movement style, as it was used in parks, included the use of steel, concrete, and prefabricated elements; incorporation of nontraditional fenestration; integration of interior and exterior spaces; low-profile, horizontal massing; use of exterior colors and textures to blend building and environment; and naturalistic site plantings to screen associated parking lots, sidewalks, and utility areas.\(^\text{24}\)

The Modern style, as applied to NPS properties during the Mission 66 era, reinterpreted the design characteristics of the Rustic style, which was the principal architectural approach applied to new park construction in the decades leading up to World War II. The intent of the Rustic style was to create harmony between the built and natural environments through the use of native materials, traditional craftsmanship, and naturalistic landscape planning. In Mission 66 Visitor Centers: The History of a Building Type, historian Sarah Allaback asserts that the best examples of Modern architecture within parks did harmonize with their setting, “but in a new way.” When “stripped of the ornamentation and associations of rustic design, Mission 66 development could be both more understated and more understated and more efficient.”\(^\text{25}\)

While the NPS embraced Modernism during the Mission 66 era, its use was never formally mandated. According to the National Park Service Mission 66 Era Resources MPD:

No official policy statement regarding the adoption of the Modern Movement style at the National Park Service was ever made. Following the Great Smoky Mountains Superintendents’ Conference, where he was asked to issue an official policy on architectural design, [National Park Service Director Conrad Wirth] responded with a brief statement: ‘Structures should be designed to reflect the character of the area while at the same time following up-to-date design standards. Park structures are to conform, to some extent, with the trend toward contemporary design and the use of materials and equipment accepted as standard by the building industry. However, restraint must be exercised in the design so that the structures will not be out of character with the area and so that the structures will be subordinated to their surroundings.’\(^\text{26}\)

Use of the Modern style within parks met with both criticism and praise throughout the Mission 66 period and beyond. However, Allaback states, the style, “as developed by Park Service designers during the Mission 66 era, became as influential in the history of American national and state park management as the Park Service Rustic style had been.”\(^\text{27}\)

MISSION 66 CONCESSION BUILDINGS

The importance of concessionaire development in the overall Mission 66 program is illustrated in the following passage from the MPD:

Mission 66 construction was funded mainly, but not exclusively, by appropriations. Many national park concession contracts, which were renegotiated under Mission 66, required concessioners to make large capital investments. Between 1956 and 1966, park...\(^\text{26}\)

\(^{24}\) Ethan Carr, et al., National Register Multiple Property Documentation Form, “National Park Service Mission 66 Era Resources” (13 August 2015), Section F, Page 87.

\(^{26}\) Carr, “National Park Service Mission 66 Era Resources,” Section E, Page 10 to Section E, Page 11.

concessioners invested $33 million in new overnight accommodations, restaurants, gas stations, and park stores. Concessioner investments had great impacts on public perceptions of Mission 66 because they resulted in some of the highest profile, earliest Mission 66 construction projects. Concessioners hired their own architects and could initiate work quickly once they secured financing. The National Park Service usually provided the infrastructure. Concession facilities were used heavily by the public and strongly affected early perceptions of Mission 66.28

At Yosemite, concessioner-funded development during the Mission 66 period was focused in the most heavily visited part of the park, the Valley. As outlined in a planning document entitled “Mission 66 for Yosemite National Park”:

> The need...is urgent to replace certain obsolete concessioner facilities in Yosemite Valley; modernize and improve others throughout the park; and, provide additional visitor accommodations at various locations. To this end, the Service has required as a condition for renewing concession contracts that additional investments be made to provide needed visitor accommodations.29

The first concessioner-funded development in the Valley was the Yosemite Lodge, the core complex of which was completed in 1956. The Lodge provided expanded overnight accommodations, visitor services, dining facilities, a swimming pool, and other amenities for the park visitor.

New concessioner developments, replacing those in the Old Village, were also planned for the New Village area. The first was Degnan’s Restaurant, which was completed in 1958 and funded by Degnan-Donohue, Inc., an extension of the original Degnan family concessions business in the park. Upon completion, the building contained a soda fountain, bakery, delicatessen, and entrance foyer on the first level.

The Degnan family in front of their residence, 1890s (Yosemite National Park Research Library).

Another major addition to the New Village by a concessioner was the “Merchandising Center,” or Village Store, which was funded by the Yosemite Park & Curry Company (YP&CC) and completed in 1959. The Village Store housed a new restaurant, a fountain to replace the Old Village Grill, a full-service grocery store, a barber shop, a beauty parlor, restroom facilities, and a shoe repair shop.

Other concessioner-funded improvements in the Valley completed as part of the Mission 66 program included safety and sanitation upgrades at Housekeeping Camp. Outside the Valley, concessioners funded new improvements at Wawona, Tuolumne Meadows, White Wolf, Glacier Point, and at the High Sierra Camps.

THE DEGNAN FAMILY

After immigrating to the United States from Ireland in 1884, John and Bridget Degnan settled in the Yosemite Valley in approximately 1886. They initially lived in a barn near the location of today’s Yosemite Valley Lodge.30 While a handful of hotels in or near Yosemite Valley at this time offered lodging to visitors during the summer months, the

Historical Background and Context

Degnans and their eight children were among a small group of people who lived in the area year-round. (Indeed, the Degnan children were frequently the only children in the Yosemite Valley.) That changed by the end of the century, as the number of visitors to Yosemite increased significantly in the early 1900s, following the establishment of Camp Curry in 1899. Soon after the family’s arrival in Yosemite, Bridget Degnan began baking bread, which she sold to Yosemite visitors and residents. In 1898, John Degnan built a four-bedroom house in Old Yosemite Village near the present chapel. The house included a bakery, which by 1900 featured a large Dutch oven that could bake more than 100 loaves at a time. In the early 1900s, the Degnans supplemented the bakery operation with a small café and grocery store. Over the ensuing decades, the Degnans were permitted to continue to operate their family-run business despite changes in the management of the larger park facilities. Following their parents’ deaths in the 1940s, the Degnan children continued to operate the family business.

Despite the length of the family’s tenure at Yosemite, park correspondence from the 1920s and 1930s indicated an intent to terminate the family’s concession contract upon the death of Bridget Degnan. When Ms. Degnan passed away in 1941, however, park officials recommended a 10-year contract extension for the family business. This contract extension began on January 1, 1942. Mary Ellen Degnan, Bridget’s daughter, led management of the family business until 1947, when she entered into a partnership agreement with her nephew, Francis I. (“Frank”) Donohoe. Shortly thereafter, Frank Donohoe assumed leadership of the family’s business efforts, which subsequently operated under the business name Degnan-Donohoe, Inc.

Francis Donohoe was born in San Francisco in 1922. In 1939, Donohoe came to Yosemite and worked for the Degnan family. Donohoe returned to San Francisco in 1940 to attend the University of San Francisco. In 1945, Donohoe married John and Bridget Degnan’s granddaughter, Helene Angela “Nell” Degnan. Following school, Donohoe pursued a military career and went on to serve in the Marines during the Korean War.

Degnan-Donohoe, Inc. continued to operate food service facilities in the Old Village through the late 1950s. In 1958, a new restaurant (Degnan’s) was completed in the New Village and most Old Village facilities were demolished. One source indicates that the Degnan’s Residence remained in the Old Village area and was used as housing for concessioner employees until 1981, when the bakery portion of the house was moved to the Pioneer Yosemite History Center at Wawona and the remaining residence was demolished.

32 Sargent, 27.
33 “John and Bridget Degnan.”
34 Sargent, 58.
35 “John and Bridget Degnan.”
38 National Park Service staff notes that the property was listed on the National Register in 1975, but removed after 1981 when the house was demolished and the bakery was moved to Wawona (information provided by Lindsay Kozub/NPS to author, 14 September 2016).
DEGNAN’S RESTAURANT

Discussions regarding construction of a Degnan’s facility in the New Village began in the late 1940s and early 1950s. Though the Mission 66 plan had yet to be fully developed, there was already a desire among park officials to move or demolish the aging buildings in the Old Village and return that area to a natural state. Part of this effort meant moving visitor services and expanded concessioner services to the New Village and renegotiating contracts with existing providers.

As expiration of the 1942 contract extension approached, the park drafted a new 10-year contract extension for Degnan-Donohoe, Inc. with a provision for an automatic upgrade to a 20-year extension upon transfer of the company’s operations to the New Village facility. As part of these contract negotiations, Frank Donohoe advocated for the permission to expand the company’s services at the New Village location in order to better compete with their main rival, the Yosemite Park and Curry Company. However, due to a preferential rights provision in the park’s contract with the YP&CC, the type and extent of Degnan-Donohoe operations within the park was limited primarily to the bakery, delicatessen, and fountain business they had traditionally managed.

In 1952, the National Park Service Region IV office in San Francisco released proposed plans for redevelopment of the New Village and $80,000 was allotted for the construction of new roads and parking lots in the area. The park commenced work the following year, announcing that the area would be ready for construction of new concession facilities in the spring of 1954. Citing financial uncertainties, Degnan-Donohoe, Inc. was slow to commit to a program of improvements in the New Village. A February 1954 letter from Yosemite Superintendent John C. Preston notified Mr. Donohoe that a revised 20-year contract had been prepared authorizing his company to operate a restaurant, bakery, fountain, and delicatessen business in the park. Preston emphasized that the contract required Degnan-Donohoe, Inc. to make a new building available for public use by 1955, and suggested that they engage a capable architect soon in order to meet that condition.

By April 1954, Frank Donohoe notified park officials that the company had chosen Frank Lloyd Wright as the architect for the new Degnan’s building and that preliminary plans would be made available soon. Donohoe, along with architect Aaron Green, Wright’s San Francisco representative, met with park officials in April and presented sketches of Wright’s preliminary design, which proposed a collection of circular structures topped by domed roofs. In a memo describing the proceedings and initial drawing review, Lawrence C. Merriam, director of NPS Region IV in San Francisco, commented that the office “[hesitated] to attempt to describe the plans, except to say that the design is a definite contrast to the existing facilities.” Plan development continued over the next few months, and the architecture team submitted a third set of plans to Superintendent Preston by June 1954.

41 Lawrence C. Merriam to NPS Director, Yosemite National Park, 10 May 1954. Yosemite National Park Archives, El Portal, California.
A September 1954 memo issued from the NPS Western Office of the Division of Design and Construction indicated that the concessioner’s contract had not been fully approved, and no further plan preparation should proceed until that had been completed. By that time, the NPS had also met with Aaron Green to communicate their dissatisfaction with the proposed design, the dome roofs in particular. Mr. Green felt “that this would mean a completely new start as far as building design was concerned and indicated it might also require selection of a new architect by the concessioner.” The NPS explained that the “Service desired a style of building that would conform with the general character of the architectural styles already established in the Valley.” It was then concluded that no further plan preparation would be undertaken until contract details had been finalized.

In early December 1954, the Oakland Tribune ran an article entitled, “Park Service Rejects Wright’s Restaurant Plan,” which made public the Park’s ruling on the proposed project. The author writes:

National Park Service officials, cast unwillingly as architectural critics, disclosed today they have rejected a design by noted architect Frank Lloyd Wright for a restaurant building in Yosemite National Park. . . . ‘It was a mushroom dome type of thing,’ Conrad L. Wirth, Park Service director said. ‘A thing to see, instead of being for service rendered.’ The plan was returned to Degnan, Donohoe, Inc. concessioner who operate a bakery within the California park with instructions that

the external design would have to be changed before it could be accepted.” “The Park Service in rejecting the design did not mean to challenge Mr. Wright’s international reputation as an architect, Wirth said. It has rejected numerous plans for buildings in national parks because they failed to fit into park scenery, he said.

Following announcement of the rejection, Wright publically denounced the NPS, citing politics at the Washington level as the reason his design was not approved. An article in the Fresno Bee indicated that Wright thought everyone liked the proposed building, and that he saw the design as something that “might regenerate the whole park architecture and do great things for the park system.” National Park Service Director Conrad Wirth received a range of reactions to the decision, from individuals defending the architect’s work and asking that the Service reconsider their decision, to letters congratulating the NPS for their efforts to protect the park from “flashy [and] weird attention getting designs.” One letter proclaimed:

Heartiest congratulations on Yosemite rejecting Frank Lloyd Wright. To state it briefly, Yosemite is about as real a matter as can be found in the U.S.A. Mr. Wright is about as artificial and unreal as anything that can be found in the United States. The two could hardly coexist!

By 1955, Degnan-Donohoe, Inc. was still operating their deli and bakery out of the Old Village location. The Mission 66 prospectus for Yosemite was completed in July 1956, yet an approved plan for the new Degnan’s Restaurant was not in place. In January 1957, however, Frank Donohoe notified the park that he had chosen Walter Wagner and Partners

42 On June 1, 1954, NPS director Conrad Wirth consolidated the staff from the previously established regional offices of design and construction into two centralized offices in San Francisco and Philadelphia. The Eastern and Western Offices of Design and Construction centralized oversight of Mission 66 projects, and reported directly to professional division offices in Washington, D.C. (Carr, “National Park Service Mission 66 Era Resources,” Section E, Page 3.

44 Ibid.

Historical Background and Context

of Fresno to design their new building. His letter indicated that they had realized that “it would be very difficult, if not altogether impossible to have Mr. Wright design a building that is acceptable to the National Park Service.” Therefore, they selected Mr. Wagner because prior experience with his work had indicated to them that he was “a capable man, qualified to design within the requirements prescribed by the Service.” The project team met at the building site the following month to begin the planning process.

Walter Wagner’s office submitted preliminary plans for the new restaurant in March of 1957 and the NPS issued final approval in May, with recommendations for addressing minor outstanding design issues. Park personnel would complete the rough site grading, drainage work, and provision of utilities to the site, but all finish grading, construction, landscaping, sidewalks, and other improvements within the lease line were the responsibility of the Degnan-Donohoe design team.

Preparation for rough site grading began in late October 1957, and the work was nearly complete by the end of November. Drainage activities began in November, as did rough grading for the new access road behind the restaurant; this work concluded in December. Park personnel also finished placement of concrete curbing along the edge of the front parking area before the end of the year. Final site preparation work and design approval activities continued through January 1958, and construction of the restaurant commenced in February.

An article in the Merced Sun-Star announced the construction:

Supt. John C. Preston of Yosemite National Park

announced today that construction work has been started on the Degnan-Donohoe, Inc. building in Yosemite Village. The building will contain a restaurant, fountain, bakery, and delicatessen to serve park visitors on a year-round basis.

The new structure, located to take advantage of the magnificent scenery offered by Glacier Point, Sentinel Rock, Half Dome, and Yosemite Falls, will be a simple two-story, A-frame building planned to fit into the landscape without detracting from the natural scene. The new restaurant entered its first year of operation, Degnan-Donohoe, Inc. experienced a decline in revenue from that achieved in the old location. The April 1959 Superintendent’s Report described the company’s financial difficulties and noted that several meetings had been held between park officials, creditors, and debtors to address the situation. The financial strains of constructing the new restaurant ultimately forced Degnan-Donohoe, Inc. to file for bankruptcy; however, one of the creditors, Barrett Construction Company, agreed to supply a working fund of $32,000 to keep the business in operation shortly after construction. The creditors selected a manager for the restaurant and made plans to open for the season on May 19, 1959. Frank Donohoe was to have no voice in management affairs as part of these arrangements. The Degnan-Donohoe company served out the remainder of their 20-year contract with the park, which ended in 1972. Don Evans, Director of Facilities with the current concessioner, indicates that the Yosemite Park & Curry operated the restaurant following Degnan-Donohoe, Inc.’s departure. In 1973, the Music Corporation of America (MCA) purchased the YP&CC, though the YP&CC remained a stand-alone entity. The YP&CC then purchased Degnan’s Restaurant in March of 1974. In 1993, MCA sold the YP&CC to the National Park Foundation, who in turn donated all of the buildings previously owned by YP&CC to the National Park Service. The NPS maintains ownership of the building today. Also in 1993, a concessions management contract was awarded to the Delaware North Company (DNC) to manage the hospitality facilities within the park, including Degnan’s Restaurant. The DNC contract expired in 2015, and Degnan’s is currently operated by Yosemite Hospitality, LLC, a subsidiary of Aramark.

WALTER WAGNER AND PARTNERS

The Degnan’s Restaurant building was designed by Walter

56 National Park Service, “John and Bridget Degnan.”
58 Don Evans, interview by author, Yosemite National Park, 2 May 2016.
60 Russell, 235, and Sargent, 155-156.
61 Information provided by Lindsay Kozub, Historian, Yosemite National Park.
Wagner & Partners, an architecture and engineering firm with offices in Fresno and Merced, California. The architectural drawings were signed by Henry DuPertuis, one of the firm’s partners and the manager of the Merced office.

Walter Wagner (1911-1982) was born in Berkeley, California. He earned his architecture degree from the University of California, Berkeley in 1934, and also completed one year of graduate studies in engineering at Harvard. After finishing his studies, Wagner worked in Arizona as a landscape architect for the NPS. (According to his future partner Martin Temple, Wagner did this because there was little architectural work available at the height of the Depression.) Wagner next joined the Capital Company, the real estate rental arm of Bank of America. During World War II, he worked as an engineer for Kaiser Engineers.

Wagner established the Walter Wagner architecture and engineering firm in 1945 in Fresno. The firm grew quickly in response to the post-WWII demand for new public and commercial buildings throughout the San Joaquin Valley. In 1956, the firm was reorganized as Walter Wagner & Partners when Wagner went into partnership with six employees, including five architects (Harry Bode, Henry DuPertuis, Paul Harris, Paul Schoenwald and Will Thomas) and one mechanical and electrical engineer (James A. Blayney). At the time the partnership formed, the firm had a staff of 34, including 6 in its Merced office, making it one of the largest architectural and engineering firms in the San Joaquin Valley. In 1966, Walter Wagner & Partners was disbanded when Walter Wagner formed Walter Wagner—Martin Temple with architect (and Wagner employee) Martin Temple. Walter Wagner retired in 1978.62

Walter Wagner & Partners specialized in institutional buildings, including schools, churches, medical buildings and public buildings. Principal works completed by the firm (located in Fresno unless otherwise noted) include:

- Merced County Courts Building, Merced (1950)
- Trinity Lutheran Church (c. 1955)
- Rhodes Department Store (1958)
- Fresno City College (1960)
- Fresno Police Headquarters (1960)
- Manchester Shopping Center (1955, with addition of Sears 1956)
- Coalinga Junior College, Coalinga (1961)
- Sun Maid Raisin Plant, Kingsburg (1964)
- Ash Mountain Administration Building, Sequoia and Kings Canyon National Parks (1964)
- Fresno County Courthouse (1966)
- King & Rowell Schools (1969)
- Fred Harvey Hotel (1969)
- Fred Harvey Airport Hotel (1970)
- Convention Center, Visalia (1970)
- Internal Revenue Center (1970)

Wagner’s most prominent commission was likely the Fresno County Courthouse, an eight-story, New Formalist building that was constructed in 1966 in Fresno’s Courthouse Square. The building, which “towered above the Mariposa Mall on its raised pilotes (piers) and the ornamental grillwork represented a new modern image for Fresno charged with hopes for progress and change in the future.63

Apart from the Degnan’s Restaurant building, the firm’s National Park-related work appears to be limited to the Ash Mountain Administration Building (now known as the Foothills Visitor Center), which has served as the park headquarters for Sequoia and Kings Canyon National Parks since its construction in 1964. Historical drawings identify

Historical Background and Context

the project architect as Wagner partner Paul Schoenwald.64 The Ash Mountain Administration Building has been determined eligible for listing on the National Register of Historic Places for its association with the Mission 66 program.65 The building embodies many Midcentury Modern design characteristics that are typical of the Mission 66 program, including

- use of large curtain walls
- lack of applied ornamentation
- careful placement of building on site
- concrete walls and pathways
- low-pitched gable roof with wide overhanging eaves
- large windows with partial aluminum sunscreen
- use of common prefabricated materials
- flexible floor plans (due to minimal interior load-bearing walls).66

HENRY DUPERTUIS

After growing up in Fort Collins, Colorado and serving as a paratrooper during World War II, Henry DuPertuis (1921-) graduated from the University of California, Berkeley with a bachelor's degree in architecture in 1948. DuPertuis then went to work for the architectural firm of Walter Wagner in Fresno. He established a Merced office for Wagner in 1949 and became a partner in William Wagner & Partners in 1956. DuPertuis left the Wagner firm c. 1964, forming a partnership with architect Robert Hesse. In 1965, the Degnan-Donohoe, Inc. engaged DuPertuis and Hesse to design an addition to house a bakery sales area, but this addition was not constructed. Hesse and DuPertuis remained partners until DuPertuis’s retirement c. 1997. DuPertuis continues to reside in Merced, where he works as a visual artist in a variety of media, including watercolors, pastels, pen-and-ink, and oil and acrylic paints.67

Barrett Construction Company

John Francis (Frank) Barrett, the son of an early San Francisco building contractor, formed the Barrett Construction Company in 1953, after a long partnership with Harry H. Hilp. Barrett & Hilp established a contracting firm of the same name in 1913, and became well known in the Bay Area. The firm’s projects over time included Saint Mary’s Hospital in San Francisco, the Machine Shop at Mare Island Navy Yard, Holly Park and Sunnydale housing projects in San Francisco, and work on both the Golden Gate and Bay Bridges. Frank Barrett partnered with his two sons, John F. Jr. and Richard H., to form the family construction company after parting ways with Hilp. The Barrett Construction Company was selected as the contractor for the new Degnan’s Restaurant building in 1957; little else is known of the firm’s work. Frank Barrett passed away in 1959, and his sons continued to run the family business. 68

INTEGRITY

Degnan’s Restaurant retains a high degree of integrity related to its period of significance. The building has not been moved and therefore retains integrity of location. Although the immediate surroundings have undergone some modifications over time, such as conversion of the Yosemite Village parking lot to a pedestrian mall in the early 1970s, the restaurant’s setting is generally the same

Historical Background and Context

as it was during the Mission 66 period. Trees and smaller plants have been allowed to mature in the rocky landscape surrounding the building, but this has not negatively affected its setting. As such, the building retains integrity of setting.

The original design is clearly expressed through exterior features including the A-frame structure, glazed window walls, board-formed concrete piers, covered walkway, decorative wood soffit, and redwood siding. Key interior design features also remain in place, including the principal stairways, and the dining room at the second level with central fireplace and skylight, decorative wood ceiling, and exposed steel structure. The overall interior spatial relationships also remain intact, though most of the rear service areas lack integrity because of alterations over time. For these reasons, the building retains integrity of design.

Degnan’s Restaurant retains integrity of materials. Most of the original redwood exterior siding and original glazing materials remain in place, and the steel framing, concrete piers, and decorative wood soffit are intact. The cedar shakes and gable end lattice-work have been removed, and some exterior siding is not original, but these material changes do not compromise the ability of the resource to convey its historic character. Similarly, though interior alterations have been made over time to accommodate changes in use, materials including portions of the original redwood wall paneling; the concrete, steel, and wood components of the principal stairways; the board-formed concrete and iron hood of the upstairs fireplace; and the original wood dining room ceiling remain intact to convey the original design.

Conforming to the tenets of modern architecture, the building is composed of relatively inexpensive and mass-produced building materials. However, the integrity of workmanship is evident in the treatment of these materials. The concrete piers along the west elevation are textured by the wood used to form them, and a textured eave soffit and ceiling finish was created using simple wood boards. These features show craftsmanship despite the simplicity of materials. This aspect of integrity is also evident in the iron and concrete detailing of the dining room fireplace, as well as the concrete fireplace at the first floor. For these reasons, the building possesses integrity of workmanship.

Through a combination of original design features and materials, the restaurant continues to express the Modern aesthetic as adapted to a park setting. These features reflect both the “Park Service Modern” style and the Mission 66 period, and as such the property exhibits integrity of feeling.

Integrity of association involves a direct link between a historic event or person and the subject property. Degnan’s Restaurant retains several character-defining features that convey the property’s association with the Mission 66 period of development within the park, and the property thereby exhibits integrity of association.

CHARACTER-DEFINING FEATURES

A character-defining feature is an aspect of a building’s design, construction, or detail that illustrates the building’s significance. Character-defining elements include the overall shape of the building, its materials, craftsmanship, decorative details, interior spaces and features, as well as various aspects of the building’s site and environment. The character-defining features and spaces of Degnan’s Restaurant reflect the design and material characteristics of the Modern Movement style, and the building’s relationship to the Mission 66 program as a whole. As previously discussed, new structures built under the Mission 66 program were designed to reflect the character of the area in which they were constructed, and at the same time employed modern design standards, simplified detailing, and contemporary materials. The features listed below reflect this design intent.

Exterior Features and Elements

- Overall form and massing (low, horizontal emphasis; division into smaller units)
- A-frame and flat roof forms
Historical Background and Context

- Broad eave overhangs (A-frame roofs)
- Decorative wood soffits at eave overhangs (laminated alternating 2x4s and 2x6s)
- Exposed steel frame structure
- Extensive use of glass in exterior walls (bands of fixed windows, windows with transoms, glazed entry doors with transoms; wood framing)
- Vertical, V-rustic redwood siding
- Triangular, board-formed concrete piers
- Connection of interior/exterior spaces
- Dormer window along west elevation
- Chimney #1 (north end)
- Chimney #2 and associated skylight (central chimney)
- Outdoor dining areas (covered walkway along west elevation and patio at north end) with exposed aggregate paving and redwood spacers
- Setback from roadways on all sides

Interior Features and Elements

- Dining Room (2nd Floor)
- Stair #1 (South Stair), Stair #2 (Central Stair) - steel structure, concrete treads, wooden railing (both); decorative wood screen at Stair #2
- Central fireplaces of board-form concrete and steel, 1st floor gift shop and 2nd floor restaurant
- Wood-burning metal fireplace with brick lining, 1st floor cafeteria (northwest corner)
- Decorative wood ceiling (laminated alternating 2x4s and 2x6s)
- Vertical wood wall paneling (primarily extant in 2nd floor dining room and first floor café, sections of original wall paneling also remain in other areas)
- Dumbwaiter
- View of Yosemite Falls from north wall (2nd floor)
- Original tinted concrete floor at ground level
Section Four

Chronology of Development and Use

CHRONOLOGY OF HISTORIC EVENTS

1884 Degnan family immigrates to United States from Ireland.

c.1886 Degnan family arrives in Yosemite. Bridget Degnan soon begins baking bread for sale to Yosemite visitors and residents.

1898 John Degnan builds a four-bedroom house with attached bakery in Old Yosemite Village.

early 1900s Degnan’s supplement the bakery operation in Old Village with a small café and grocery store.

1941 Bridget Degnan dies.

1942 Degnan family awarded 10-year contract extension. (The original concessioner contract was to end upon the death of Bridget Degnan, but was extended twice following her passing.)

Mary Ellen Degnan assumes management of concession business.

1943 John Degnan dies.

1947 Mary Ellen Degnan partners with her nephew, Francis I. (“Frank”) Donohoe to form the business entity Degnan-Donohoe, Inc.

Frank Donohoe soon assumes leadership position.

Late 1940s Discussions regarding construction of a Degnan’s facility in the New Village begin as NPS pursues efforts to remove outdated facilities from Old Village.

1952 NPS San Francisco office releases proposed plans for redevelopment of the New Village.

New 10-year contract extension prepared for Degnan-Donohoe, Inc.
Chronology of Development and Use

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954</td>
<td>NPS amends 1952 contract to include a 20-year extension, with the condition that the concessioner construct a new facility in the New Village by 1955. Degnan-Donohoe, Inc. selects Frank Lloyd Wright to design new building (April); NPS rejects proposed Frank Lloyd Wright design (December).</td>
</tr>
<tr>
<td>1955</td>
<td>Degnan’s restaurant and bakery still operating out of Old Village facilities; no plans for a New Village facility in progress.</td>
</tr>
<tr>
<td>1956</td>
<td>Mission 66 program initiated by the National Park Service. Yosemite Lodge completed, first major development of the Mission 66 effort in park.</td>
</tr>
<tr>
<td>1957</td>
<td>Frank Donohoe notifies NPS of plans to select Walter Wagner & Partners of Fresno as architect for new building (January). NPS issues final approval of proposed plans for new Degnan’s Restaurant building (May). Grading and drainage activities at construction site initiated and completed (October-December).</td>
</tr>
<tr>
<td>1958</td>
<td>Final site preparation work and design approval activities continue through January. Construction of restaurant begins (February). Degnan’s Restaurant completed in the New Village (June). Most Degnan’s Old Village facilities are demolished. One source indicates that the Degnan’s Residence remained in the Old Village area and was used as housing for concessioner employees until 1981, when the bakery portion of the house was moved to the Pioneer Yosemite History Center at Wawona and the remaining residence was demolished.</td>
</tr>
<tr>
<td>1959</td>
<td>Degnan-Donohoe, Inc. files for bankruptcy; Barrett Construction Company supplies funding to keep the business in operation; Frank Donohoe removed from management affairs.</td>
</tr>
<tr>
<td>1966</td>
<td>Mission 66 program concludes.</td>
</tr>
<tr>
<td>1967</td>
<td>Yosemite Park & Curry Company’s (YP&CC)’s Village Store completed in New Village.</td>
</tr>
</tbody>
</table>
Chronology of Development and Use

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>Degnan-Donohoe, Inc.’s 20-year contract expires and the company’s operations within the park are terminated. Degnan’s continues function as a restaurant, reportedly operated by YP&CC.</td>
</tr>
<tr>
<td>1973</td>
<td>Music Corporation of America (MCA) purchases YP&CC, though YP&CC remains a separate entity.</td>
</tr>
<tr>
<td>1974</td>
<td>YP&CC purchases Degnan’s Restaurant in March.</td>
</tr>
<tr>
<td>1993</td>
<td>MCA sells YP&CC to the National Park Foundation, who in turn donates all buildings previously owned by YP&CC to the National Park Service. A new concessions management contract is awarded to the Delaware North Company (DNC) for management of hospitality facilities within the park, including Degnan’s Restaurant. The DNC contract terminated in February of 2016.</td>
</tr>
<tr>
<td>2016</td>
<td>Current concessioner, Yosemite Hospitality, LLC, assumes operation of Degnan’s Restaurant.</td>
</tr>
</tbody>
</table>

Chronology of Physical Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1958</td>
<td>Degnan’s Restaurant construction initiated (February) and completed (June).</td>
</tr>
<tr>
<td>1959</td>
<td>60-car unsurfaced parking lot with log barricade completed east of Degnan’s Restaurant (June).</td>
</tr>
<tr>
<td>1960</td>
<td>Air conditioning system installed ($8,000); fly fans installed ($2,000); bakery and deli sections of building remodeled ($2,500).</td>
</tr>
<tr>
<td>1961</td>
<td>Small fire causes $200 in damage. (No details available.)</td>
</tr>
<tr>
<td>1962</td>
<td>Walks, curbs, and paving completed for 18-car parking area east of Degnan’s (June); 60-car rear parking lot paved (August).</td>
</tr>
<tr>
<td>1964</td>
<td>Plans completed to expand restaurant at the southeast elevation; these plans never executed.</td>
</tr>
<tr>
<td>1967</td>
<td>Exterior patio roof constructed at north end of building to shade exterior dining area (4” x 12” beams and 2” x 3” lathing, all of redwood).</td>
</tr>
</tbody>
</table>
Chronology of Development and Use

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>Ownership of restaurant passes from Degnan-Donohoe to YP&CC. Alterations completed at this time include modification of kitchen spaces to remove bakery, accommodate new work areas, and add refrigeration; enclosure of first floor fireplace; completion of gift shop space; and renovation of electrical system. Front parking lot removed and pedestrian mall established. Alterations to north exterior wall for hamburger stand pass-through window.</td>
</tr>
<tr>
<td>1988</td>
<td>Men’s and women’s restrooms on the ground floor renovated. Existing ceiling, flooring, doors, wall finishes, and partition walls removed.</td>
</tr>
<tr>
<td>1989</td>
<td>Pizza kitchen on the ground floor modified: new doors added; some existing doors removed, replaced, or relocated; new quarry tile flooring installed in these areas.</td>
</tr>
<tr>
<td>2009</td>
<td>Café remodeled to existing condition.</td>
</tr>
<tr>
<td>2011</td>
<td>Elevator installed at southwest corner of building</td>
</tr>
<tr>
<td>2012</td>
<td>Roof extensions/additions completed to house mechanical equipment.</td>
</tr>
<tr>
<td>2013</td>
<td>Restaurant reroofed.</td>
</tr>
</tbody>
</table>
Section Five

Physical Description

OVERVIEW

Degnan’s Restaurant sits at the east end of the pedestrian plaza in the visitor services area of Yosemite Village, a residential, maintenance, and commercial center near the east end of Yosemite Valley. Pine and incense cedar trees that have matured since the building was constructed in 1958, screen the building along the east, south, and west elevations, and the rocky landscape surrounding the building is dotted with midsized shrubs, small conifers, and scattered patches of grass. Despite the notable A-frame gables at the north and south ends, the building maintains a low, horizontal profile within the landscape.

The original design of Degnan’s Restaurant remains intact and exhibits several components of the Modern Movement style employed within national parks during the Mission 66 period. Significant features related to the style include the use of steel in the A-frame structure; concrete in the exterior piers, interior fireplaces, and interior floor finishes; and prefabricated elements such as the vertical wall paneling and exterior cladding. The nontraditional fenestration seen in the gable end window walls and along the west elevation are also characteristic of the style; this transparency serves to integrate interior and exterior spaces. Other design features evocative of the style are the low-profile, horizontal massing, and the use
Physical Description

of exterior colors and textures that blend the building and environment.¹

The Modern Movement style, as applied to NPS properties in the Mission 66 period (1956-1966), reinterpreted the design characteristics of the Rustic style (1916-1942) ², which was the principal architectural approach applied to new park construction in the decades leading up to World War II. The intent of the Rustic Style was to create harmony between the built and natural environments through the use of native materials, traditional craftsmanship, and naturalistic landscape planning. In Mission 66 Visitor Centers: The History of a Building Type, historian Sarah Allaback asserts that the best examples of Modern architecture within parks did harmonize with their setting, “but in a new way.” When “stripped of the ornamentation and associations of rustic design, Mission 66 development could be both more understated and more efficient.”³ New structures were designed to reflect the character of the area in which they were constructed, and at the same time employed modern design standards, simplified detailing, and contemporary materials.

EXTERIOR

Degnan’s Restaurant is a two-story, 25,766 square foot, steel and wood framed building set on a concrete slab foundation. Complex in plan, the western half of the building features two A-framed volumes, which primarily house the interior dining and public food service areas for the restaurant. The two-story A-frame section comprises the front portion of the south elevation, and the one-story A-frame section extends to the north. The eastern half of the building is dominated by a large, one-story, flat roofed kitchen area, with various rectilinear enclosures at the second-story level. Food preparation and other service functions are housed in these spaces. The A-frame roofs are oriented roughly north-south. The A-framed roof surfaces are covered in asphalt shingles, whereas rolled roofing is used for the flat-roofed and shed-roofed volumes comprising the eastern half of the building. The broad eave overhang of the A-framed roofs feature lined wood soffits, the pattern of which is created with alternating 2”x4” and 2”x6” boards set side to side. The eaves of the secondary elevations are enclosed with simple plywood boards. Exterior walls are clad in painted, V-groove, vertical redwood siding.

The west elevation runs roughly parallel to the pedestrian mall leading into the Village and serves as the restaurant’s primary entry point. The exposed steel frame structure is a prominent original feature on this side of the building, primarily along the covered passageway that runs the length of the ground level. Above the passageway, ten pairs of horizontal beams extend outward to support a flat roof. Ten diagonal beams of the two-story A-frame roofline intersect with each of these horizontals before terminating in a triangular, board-formed concrete pier. This configuration serves to visually divide the ground floor of this elevation into ten bays. The passageway roof soffits are clad in the same distinctive wood pattern as the eaves of the main roof, and the concrete piers feature a tripartite triangular motif that mimics the shape of the A-frame roof forms.

The original exposed aggregate pavement with redwood dividers remains along the western covered passageway; this original paving treatment is also found at the north exterior dining terrace. An additional dining area, more recently paved with asphalt, extends out from the covered walkway to connect with the pedestrian mall to the west.

The window wall along the ground floor of the west elevation contains two pairs of glazed entrance doors and one single glazed entry door that together provide access

¹ Ethan Carr, et al., National Register Multiple Property Documentation Form, “National Park Service Mission 66 Era Resources” (13 August 2015), Section F, Page 87.
Physical Description

to the delicatessen, fountain, and restroom areas on the interior. This wood framed window wall is composed of fixed plate glass windows and a band of fixed and operable transoms; it extends around the corner of the north elevation, creating transparency at the ground floor and a visual relationship between the interior and exterior.

The second story-dormer on the west elevation features a band of fixed-pane windows, arranged in five continuous bays. Each bay has four windows each, with exception of the southernmost bay, which only has two original windows remaining. The other two were removed when the elevator was installed at the building’s southwest corner in 2011. The modern elevator enclosure is clad in vertical wood siding similar to the siding on the original portions of the building, and is topped with a flat roof with a moderate eave overhang and ribbed wood soffit.

Also visible along this elevation are the two chimneys, one near the center of the main gable, and the other at the northwest corner. The central chimney extends through a skylight and maintains its original low profile. The northwest corner chimney is pyramid-shaped with a flat top. Both are constructed of iron panels bolted at the seams.

At the north facade, both the one- and two-story A-frame gable ends are visible at the western half of the elevation, while the more utilitarian service area is set to the east. The one story A-frame gable extends further north than that of the two-story portion, which terminates near the middle of the building. Both gable ends, however, are characterized by a steel framed window wall, continuing the theme of transparency between interior and exterior. An open terrace sheltered by a wood framed shade structure extends from the north exterior wall of the one-story volume, near the northwest corner of the building. A glazed access door at the north window wall opens onto the terrace, and several picnic tables are available for

4 Note: the original plans show that the north one-story gable was to extend out over the dining patio in this area. This extension was not completed and handmade notations on the original drawings shows extension to current location.
Physical Description

outdoor dining. A solid wood fence along the east side of the dining area - a portion of which is original - provides visual separation between the patio and the more utilitarian service yard at the east side of the elevation.

At the west side of the north elevation, the paved service lot slopes down from the access road at the north to reach the loading dock and rear entry points. Visually, this portion of the façade is characterized by a low, one-story horizontal volume that houses the kitchen and back of house functions.

The flat roof of this section features a moderate eave overhang with enclosed eaves. A collection of boxy, flat-roofed enclosures are set on top of the one-story roof, and house mechanical equipment and other utilities. Some of these enclosures are clad in the original vertical wood siding; however, some have been altered and extended, so a patchwork of original material remains in this area.

The east elevation consists of a low, one-story mass, extending the length of the ground floor kitchen area. Mechanical equipment and enclosures, including two small gabled dormers, are visible on the roof of the second story when viewed from the rear parking lot. A solid wood fence connects to the east exterior wall to screen the service yard and associated equipment from view. Mature trees, large rocks and other small plantings also serve to screen this elevation, with the majority of this screening occurring around the southeast corner of the site.

At the south elevation, a full-height, steel-framed window wall fills the prominent A-frame opening, providing a view of the south interior stairway, and serving as a key focal...
Physical Description

A partial concrete wall with signage for the restaurant attaches to the face of the building and extends perpendicular to the south wall a short distance along the south entry walk. This original feature is clad in the same vertical wood siding as the rest of the building, but the actual signage currently displayed is not original. Mature trees and other plantings screen the more utilitarian one-and two-story volumes at the east side of this elevation.

EXTERIOR ALTERATIONS

Though the restaurant has undergone some alteration over time, the building retains its original form and massing, key features of the original design, and many original materials. When initially constructed, the building’s A-frame roof surfaces were clad in coursed wood shakes, and a band of open roof framing, uncovered with shingles, lined the edge of each gable end. This latter feature appears in the original drawings and in early photos, but was removed at an unknown date, likely due to maintenance complications. The shake roof was also removed at an unknown date and has been replaced at least twice with a composition shingle.
physical description

roof, most recently in 2013. In 2011 an elevator was installed in the southwest corner of the building to address accessibility in the building; this required removal of the glazed entryway at the first floor and the two southernmost windows in the second-story shed dormer. The most extensive alterations to the building exterior, however, have occurred at the eastern half of the building, above the kitchen and service areas. Two vented gable dormers were added to the east side of the principal A-frame roof at an unknown date, and the boxy wood-clad enclosures in this location have been extended and altered over time. The most recent known alteration of these enclosures occurred in 2012, when new mechanical equipment was installed.

The available historical record does not include dates for all modifications to the building. A comparison of early photographs and original plan drawings to 2016 photographs reveals some minor alterations over time. Undated modifications to the building exterior include selected infill of glazed openings on the north window wall to accommodate a pass-through service window, the addition of two small storage enclosures at the north exterior kitchen wall, and installation of an arched vent at the central chimney. The transom windows along the ground floor window wall have been painted, but remain in place.

interior

All of the public dining and food services areas of the interior are housed within the A-frame volumes of the building. Public restrooms and a gift shop space are at the south end of the ground level, with the delicatessen at the center, and the fountain café to the north. The eastern portion of the ground floor contains kitchens and food preparation areas, storage rooms, offices, staff restrooms, cold storage, and utility spaces. Three stairways access the

5 Don Evans, interview by author, Yosemite National Park, 2 May 2016.
6 Ibid.
Physical Description

second story from the ground level. Two of the stairways are in the public areas of the building, one at the south end, and the other between the deli and café areas. A third stairway provides access between the first and second story kitchens in the eastern half of the building; a dumbwaiter serving both kitchens is adjacent to this stair. A full height central fireplace begins at the ground floor gift shop and extends up through the second story dining room skylight. Open hearths with integrated concrete benches and shelving are located at each level.

The second story dining room is the most visually striking space in the building, with a dramatic cathedral ceiling, full-height window walls at each end, and a massive central fireplace. The ceiling incorporates the same ribbed wood decking that is used on the exterior soffits, and the exposed steel A-frame structure emphasizes the verticality of the space. The peaked window wall at the north end of the dining room frames a view of Yosemite Falls to the north; the south window wall offers a wooded view of Yosemite Village to the south. The full-height fireplace features a board-formed concrete base and a decorative iron hood that extends through the skylight above.

At its base, the fireplace is roughly triangular in plan, and cantilevered concrete ledges wrap around the perimeter
remains unpainted. When the building was completed, the fountain (café) and the delicatessen areas of the ground floor featured colored concrete floors with a steel trowel finish. This has since been covered with modern tile cladding. All flooring in the upstairs dining room has been replaced several times, covering the original waxed vinyl asbestos tile floor finish.

Service support spaces to the east of the dining room on the second floor include offices, kitchen, food preparation, and dishwashing areas. The wall and floor claddings in these areas have been altered over time, but remnants of the original vertical redwood siding are present in selected areas. Two additional offices are at the top of the central stair, near the northwest corner of the dining room; the exterior walls and interior portions of these offices retain original wall paneling.

INTERIOR ALTERATIONS

The interior spaces, both public and private, have been altered several times since the building was completed in 1958, but the building retains the same overall plan and function that existed upon original construction. The earliest documented alteration to the building was in 1961, when the bakery and deli spaces underwent a $2,500 remodel.7 A new air conditioning system and fly fan system were also installed at this time. Most of the alterations, however, occurred after the Degnan-Donohoe Inc. contract expired in 1972 and the building came under new ownership. Improvements completed at this time include creation of the enclosed gift shop space on the first floor and the enclosure of the fireplace in that space (enclosure removed in 2016), installation of additional refrigeration, and a significant kitchen remodel. Modifications to the kitchen involved elimination of the bakery and expansion of food service functions to include a new grill area at the

7 Francis Donohoe to John C. Preston, Yosemite National Park, 25 January 1961, Yosemite National Park Archives, El Portal, California. Note: no details are provided about the work completed.
north end of the kitchen. The drop ceiling at the first floor was added when the building’s electrical system was renovated, possibly as part of these alterations.

The public restrooms on the first floor underwent a full modernization in 1988, which included removal of all original ceiling, wall, and floor finishes, reconfiguration of partition walls, and removal of original doors. A pizza kitchen was created in the north end of the building in 1989, when the kitchen spaces adjacent to the café area were reconfigured; this part of the kitchen has been altered several times. The back-of-house areas were again altered after the NPS acquired ownership of the building and the Delaware North Company (concessioner) began management of the facility in 1993.

The kitchen and service areas on the second floor have also undergone alteration over time as service needs changed, though the floor plan remains generally unchanged. Like the adjacent kitchen, the second floor dining room has been renovated several times, but generally retains its original plan. Alterations to the dining room include installation of new flooring and modern light fixtures, installation of half-wall dividers within the space to define dining areas, introduction of the elevator at the southwest corner, and addition of wall-mounted televisions and speakers.

Other alterations within the building include replacement of the original hanging light fixtures over the south stair in the early 1970s, attachment of horizontal metal strips to the balustrade of both primary stairways, and painting of the original wood paneled wall surfaces (originally stained for a more natural finish). The stair rail at the south end of the second story dining room was also replaced with a solid half-wall at an unknown date.

LANDSCAPE

The open space to the west of the building is bisected by a paved walkway leading from the pedestrian mall to the restaurant entrance. The southern portion of this open space is enclosed on all sides with a simple wood fence, while the northern portion contains sections of wood fence and intentionally-placed rocks defining preferred paths of travel. At the south end, a paved entry walk leads to the entry doors along the west elevation, and another paved footpath marks the southern boundary of the landscape in this area. Along Village Drive to the east of the building is a paved sidewalk, a wood bus shelter, and a 16-space parking lot. Unpaved footpaths cross through the rocky landscape to the east of the building, some of which are lined with stones and rubble from the site. The bulk of the open area to the north of the building is occupied by the paved service yard, and a paved walkway leads from the rear service road to the exterior dining terrace at the northwest corner of the building.
Physical Description

Research did not identify any original landscape plans for the Degnan’s site, but some information exists regarding alteration to the surrounding landscape over time. When the building was originally completed, the area west of the restaurant was occupied by a paved parking plaza that stretched from the Village Store site south of Degnan’s to the Administration Building at the west end of the central Village. Photographs of the building taken during and shortly after construction show that the site was largely cleared of vegetation during the construction process. Only two mature deciduous trees along the west side of the building appear to have existed upon completion of the building. Historic photographs do show boulders and smaller rocky deposits scattered through the landscape in the areas immediately adjacent to the building during and after construction. The superintendent’s report from June 1958 also notes that park personnel placed large rocks on the grounds in front of the building upon completion.

A postcard view of the building shows that the two deciduous trees along the west side of the restaurant had been removed and replaced with medium to large-sized shrubs around 1970. Aside from these plantings, the surrounding landscape still appeared to be free of trees at that time. As no original landscape plan has been identified for the Degnan’s site, and this later historic view shows a rocky landscape with few plantings, it appears the trees and other vegetation that exist today were added later or allowed to grow in over time.

The 16-car parking lot east of the building, including associated concrete curbing and adjacent sidewalk, was completed in July 1962. A 60-car parking lot was also developed just north of the rear service road later that year (staff housing was installed on this site in 1999).14

Frank Donohoe retained Yoneo Ono, a landscape architect from Bakersfield, to prepare an overall landscape plan for the restaurant site in 1963. Mr. Ono prepared a landscape plan, but Superintendent’s reports suggest the plans were never approved because the proposed design did not fit with the naturalistic landscape approach mandated by the National Park Service.15

The exterior dining areas with exposed aggregate pavement and redwood divider strips were part of the original design and are still intact. The redwood shade structure over the north exterior dining area was constructed of redwood 4”x12” beams and 2”x3” lathing in March of 1967.16

The parking plaza that stretched from the Village Store to the Administration Building was eliminated in 1972 and converted to a pedestrian mall to reduce vehicular traffic in the area.17 The simple wood fencing and other minor alterations to the landscape along the west side of the building may have been completed at this time. The tables and other exterior seating are not original. Various tree stumps have been placed around the exterior dining areas to provide additional seating, but these are not part of a formal or original landscape design.

16 “Exterior Patio-Roof Plan-Section & Details for Degnan’s, Yosemite Valley, California,” one-page plan drawing, 3 March 1967.
Section Six

Evaluation of Significance

This section explains the significance ratings for Degnan’s exterior and interior spaces and features as related to the building’s overall historic context and character. For a historic resource to retain its significance, its character-defining features and spaces must be retained to the greatest extent possible. An understanding of a building’s character-defining features is a crucial step in developing a rehabilitation plan that incorporates appropriate levels of restoration, rehabilitation, maintenance, and protection. Management and treatment approaches may vary based on the relative level of importance of spaces. This section defines significance ratings and contains color-coded floor plans identifying areas by hierarchical importance.

The Period of Significance under Criterion A is 1958-1966, reflecting the date of construction through the end of the Mission 66 program. The Period of Significance under Criterion C is 1958, the date of construction.

SIGNIFICANCE RATING METHODOLOGY - SPACE PRIORITY DIAGRAMS

Defining and assigning significance ratings to important spaces requires consideration of multiple factors: amount of original historic fabric, quality of materials and finishes, extent of prior modification, levels of integrity, and expression of original design intent.

Intrinsic to the building’s historical use as a restaurant are the public food service and dining areas, as well as the back-of-house or guest support spaces. The public spaces are concentrated in the west half of the building and extend to outdoor dining terraces. The back-of-house areas – kitchens, offices, storage – are centered in the eastern half of the building. The original design concept separated these spaces based on function and resulted in varying quality of materials and finishes depending on the public’s access to a particular part of the building. In spaces that were off limits to guests, materials and finishes were less focused on architectural or artistic expression, but they were carefully selected for their durability or efficiency in utilitarian areas.

Degnan’s continuous use as a restaurant has meant that most spaces retain their original functions. Spaces and character-defining features continue to convey the building’s historic contexts to varying degrees. Degnan’s significance ratings fall into the following four categories: Primary, Secondary, Historic Utilitarian, and Non-Contributing.

Primary
Spaces and features rated Primary are the major components of interior areas or the exterior that exemplify the essence of the building’s design and the reason for its significance. They are the areas that retain the highest degree of historic materials and features and are essential to establishing the character of the historic resource. Considered the restaurant’s most historically or architecturally important elements, these features must be retained. Examples of Primary spaces and features include the principal public spaces, such as the second story dining room and adjacent offices, the original exterior dining areas, the fireplaces and main stairs (Stair #1 & #2).

Secondary
Secondary areas enhance the understanding of the overall character and importance of the restaurant, its original design and historic contexts, but their modification over time has diminished their integrity. The delicatessen is one example of such a space. Alteration within these spaces may be necessary in the future to accommodate programmatic
or building system requirements; however, change to these areas should be minimized. Other examples of Secondary areas include gift shop, café, office (Room 204), and the dumbwaiter.

Historic Utilitarian

Historic Utilitarian areas are of historic importance and contribute to the restaurant’s historic function in a different manner than the restaurant’s public spaces. Historic Utilitarian areas may provide context associated with behind-the-scenes operation of the restaurant. They include utilitarian, back-of-house areas such as the kitchens, storage spaces, offices, and other work areas. These areas may contain original historic materials and finishes, but are typically devoid of decorative features. Because of limited public exposure, these areas may be more appropriate for accommodating some level of change than public spaces of the restaurant. However, modification in these areas should preserve historic materials and existing or historic spatial relationships to the maximum extent possible. Examples of Historic Utilitarian spaces include Rooms 107, 109, 111, 114-117, 119, 127, 133-137, 205-207, 210, 212, Stair #3, and the loading dock.

Non-Contributing

Non-Contributing areas include spaces extensively altered after the period of significance or later additions that do not contribute to the historic character of the restaurant. These areas have been modified over time to meet the changing nature and requirements of food service and preparation within the building. Further alteration of these areas should focus on retaining the historic spatial organizations, including any remaining historic room/wall configurations and their associated uses. Food preparation is a historic use within this building and although the utilities and support structures change over time, the use of these areas should remain that of food preparation and service. Alterations of these areas to return to original materials and/or detailing should be undertaken when the result will protect or enhance the overall historic character of the building. Examples of Non-Contributing areas at Degnan’s include the passenger elevator, the public restrooms, and altered portions of the kitchen and service areas.

CHARACTER-DEFINING FEATURES

A character-defining feature is an aspect of a building’s design, construction, or detail that is representative of the building’s function, type, or architectural style. Character-defining elements include the overall shape of the building,

Generally, character-defining features date to a property’s period of significance. The character-defining features and spaces of Degnan’s Restaurant and Loft reflect the design and material characteristics of the Modern Movement style, and the building’s relationship to the Mission 66 program as a whole.

Exterior Features and Elements

- Overall form and massing (low, horizontal emphasis; division into smaller units)
- Gabled and flat roof forms
- Broad eave overhangs (A-frame roofs)
- Connection of interior/exterior spaces
- Sheltered walkway along west elevation with decorative wood soffit (laminated alternating 2x4s and 2x6s)
- Dormer window along west elevation
- Chimney #1 (north end)
- Chimney #2 and associated skylight (central chimney)
- Dining terraces along west elevation and at north end with exposed aggregate pavers and redwood spacers
- Setback from roadways on all sides

Exterior Materials

- Decorative wood soffits at eave overhangs (laminated alternating 2x4s and 2x6s)
- Exposed steel frame structure
- Extensive use of glass in exterior walls (bands of fixed windows, windows with transoms, glazed entry doors with transoms; wood framing)
- Vertical, V-rustic redwood siding
- Triangular, board-formed concrete piers
Evaluation of Significance

- Exposed concrete foundation
- Exposed aggregate concrete with redwood divider strips

Interior Features and Elements
- Central fireplace and integral concrete benches, first floor gift shop
- Central fireplace of board-form concrete and steel, second floor restaurant
- Wood-burning metal fireplace with brick lining, first floor cafeteria
- Dumbwaiter
- Views of Yosemite Village, Yosemite Falls

Interior Materials
- Decorative wood ceiling at first and second floors (laminated alternating 2x4s and 2x6s)
- V-Rustic style wood wall paneling (primarily extant in second floor restaurant, sections of original wall paneling also remain in back of house areas)
- Stair #1 (central stair) and Stair #2 (south stair) - steel structure, concrete treads, wooden railing (both); decorative wood screen at Stair #2
Evaluation of Significance
Plan

NORTH

DEGnan’S RESTAURANT & LOFT - SPACE PRIORITY DIAGRAM

Evaluation of Significance
Section Seven

Condition Assessment

Degnan’s Restaurant and Loft has been assessed to determine the overall conditions of the building’s materials and features and to identify areas of extant historic fabric. The scope of the assessment was limited to visual inspection and did not include any materials testing or destructive investigation. The exterior and roof of the building were primarily inspected from the ground; where possible, however, inspections were conducted from the roof. Degnan’s Restaurant and Loft is generally in good condition at both the exterior and interior.

SITE AND EXTERIOR FEATURES

Grading and Site
The overall slope of the site generally directs water away from the building, however, at the east elevation, the water is directed toward the building. Water pooling against the building during periods of rain has caused wood deterioration and biological growth on the wood siding at grade. There is also heavy accumulation of tree duff around the exterior.

Shade Structure/Patio Roof
The shade structure over the exterior patio/dining area at the north elevation is in fair condition. It is covered in dirt, tree duff, and cobwebs. The paint is cracked and flaking. The wood is in fair to poor condition with typical deterioration conditions including rotting and splitting from water damage. The water damage has also caused wood darkening in some areas. Additionally, the end trim attached to lath at the east side and a few metal straps holding the beams have partially detached.

Loading Dock
The loading dock is in fair condition. The concrete is cracked in a few areas and exhibits general soiling and biological growth.
Condition Assessment

Fences

There are two wood fences at the exterior. Fence #1 at the north elevation between the exterior dining area and service yard has an original fence section. The original fence was extended in both directions at some point and the section that originally wrapped around the exterior dining area was removed. The existing fence is in fair to poor condition, with the original section in poorer condition generally. The fence tilts westward at the north end and appears unstable. It should be repaired to prevent it from completely falling over during strong winds. The wood is deteriorated and typical conditions include rotting and splitting. The wood boards have split at nail attachments. There is also biological growth at the base. The paint is cracked and flaking, but is in generally better condition at areas that receive little or no direct sunlight. Heavy accumulation of tree duff exists at grade.

Fence #2 along the east elevation, which encloses the gas tank, is not original. It stands directly on the ground and is prone to additional damage from rain and snow. The wood and paint are in fair condition. The wood is deteriorated and there are splits along nail attachments in the wood boards. One of the boards is missing.
Condition Assessment

Pavement
The pavement at the exterior dining areas on the north and west elevations is exposed aggregate poured-in-place concrete with redwood divider strips. The pavement is original and still intact. The minimal deterioration includes accumulation of tree duff and debris, stains and localized loss of material. The redwood divider strips are also original and intact. Deterioration is minor and includes a section of sunken divider strips at the west patio. Damaged sections should be replaced in kind. Treat divider strips with preservative and stain.

Loss of pavement material at west elevation.

ROOF

Roofing
The existing roof, installed in 2013, is in overall good condition with deterioration limited to accumulation of tree duff and debris at flat roof areas and in locations directly below overhanging trees. At the north elevation, there is biological growth on some of the asphalt shingles that receive little to no direct sunlight.

The wood fascia exhibits localized paint deterioration, biological growth and insect infestation. There are several holes in the fascia at the east elevation, which appear to have been created by termites. Additionally, the fascia is partially displaced at some locations, and there are openings at corner joints.

The sheet metal flashing is painted. It is covered in dirt and debris and exhibits localized paint deterioration and biological growth. The flashing at the north elevation, adjacent to the two swamp coolers, has white stains. The white material is likely calcium and magnesium salts deposited from a draining or leaky cooler.

The sheet metal gutters are in overall good condition and while a majority of them were free of dirt and tree duff at the time of the survey, a few required cleaning. At the west elevation, the gutter does not extend the entire stretch of the roof. The lack of gutters allows water and debris to be dumped directly on the concrete piers and pavement and encourages concrete deterioration.

Although the current roof is new, it does not replicate the original roof pattern from the period of significance. It is recommended that when the current roof reaches the end of its service life, it is replaced to match the wood shingle roof documented in the original construction drawings.
Condition Assessment

Accumulation of tree duff at the roof, south elevation.

Biological growth on asphalt shingles, north elevation.

Insect infestation, east elevation.

White stains on flashing, east elevation.

Partially displaced fascia adjacent room 123, east elevation.

Gutters filled with dirt and tree duff.
Condition Assessment

Walkway Ceiling and Roof Soffits
The wood ceiling of the covered walkway along the west elevation and roof soffits are in fair condition. They are covered in dirt and cobwebs and the wood has weathered from moisture and heat. Additionally, the stained finishes have faded or disappeared and the wood requires refinishing. Some of the wood has also darkened.

EXTERIOR WALLS

Foundation/Concrete Walls
The foundation/concrete walls are in fair condition. The typical localized conditions include cracks, spalls, and biological growth. The foundation is painted at some locations to match the color of the siding. Where painted, the paint is in good condition with minor localized loss. At the service corridor along the east elevation, the concrete is cracked and spalled. At the south elevation, there are cracks in the concrete wall at the steel mullion locations. The damage is primarily cosmetic and does not currently present any serious hazard.
Condition Assessment

Exposed Steel Framing and Concrete Piers

The diagonal steel beams are bolted to triangular board-formed concrete piers. The steel beams are painted and exhibit localized paint deterioration. The horizontal beams at the ceiling extend beyond the roof line and the exposed ends are more deteriorated, damaged from sun and weather exposure. There is flaking paint and biological growth.

The concrete piers are not painted and are covered in dirt, biological growth, and stains. There are also a few hairline cracks and spalls. The concrete shows exposed aggregate at exterior facing areas, which are not sheltered by the roof and are exposed to greater damage from rain and snow.

- **Paint deterioration and biological growth on the horizontal beams, west elevation.**
- **V-groove siding detail.**
- **Biological growth and exposed aggregate, west elevation.**
- **Paint condition at exterior wood siding. Note the amount of deterioration at areas exposed to direct sunlight versus areas sheltered by the roof overhang.**
- **Insect infestation (left) and splits in wood at nail attachments (right).**
Condition Assessment

Wood Siding
The exterior walls are clad in V-groove vertical redwood siding and plywood siding. The plywood siding used at the second floor is not original. Overall, the vertical siding is in good condition, and the paint is in fair condition. The areas exposed to direct sunlight show greater wood and paint damage. Additionally, the areas closer to the ground have biological growth from water exposure. Some of the wood boards have split at the nail attachments. The wood boards of the service corridor along the east elevation have holes, which appear to have been created by termites. Other localized conditions include stains and partial detachment of wood trim.

Exterior Windows and Doors

North and West Elevations, First Floor
The glazed window wall along the first floor of the west elevation extends around the corner of the north elevation and consists of two pairs of fully-glazed entrance doors and two fully-glazed single doors. Originally, the wall extended around the corner of the south elevation and included a pair of fully glazed doors. The doors were removed when the existing elevator was added at that corner in 2011. Instead, a fully glazed single door was added on the west wall at the south end to compensate for loss of the side entry doors. The glazed wall consists of wood mullions, with steel mullions used at the northwest corner. The glass is single-pane.
Other alterations to the glazed wall include use of composite material panels at the northwest corner and painting of transom windows throughout the first floor. One transom window adjacent to the fireplace does not have glass and the opening is closed with painted plywood.

The aluminum doors are not original, but in good condition. The deterioration is generally limited to the wood mullions, which are in fair condition. Typical localized conditions include paint loss, cracks, scratches, wood loss, and partial displacement of wood elements. There are also unused hardware accessories still attached to the mullions. Generally, the lock jambs have the most paint loss and abrasion. At the second entrance door from the south on the west wall, the automatic door closing box is damaged. There is also accumulation of dirt, debris, and cobwebs. The wood door at the boiler room (Room 117) exhibits soiling and stains and needs to be repainted.

West Elevation, Second Floor
At the west elevation, there is a band of windows beneath the shed dormer roof at the second story. The glass is double-pane. The windows are in good condition, with deterioration limited to accumulation of dirt, debris and cobwebs.
Condition Assessment

North and South Elevations, Glazed Walls
At the north and south elevations, there are full-height glazed window walls with steel mullions. The glass is single-pane. At the north elevation, there was a fully glazed single door at the second floor. The opening was closed off at some point. The windows are in good condition, with deterioration limited to minor paint loss and accumulation of dirt, debris and cobwebs. There is also use of two different shades of tan paint at the exterior mullions.

Hollow-core metal door with two metal louvers at the service yard.

North Elevation, Service Yard
At the service yard, there are five hopper-style transom windows at the first floor, which are in good condition. These windows appear to be original. At the second floor, there is one horizontal wood window, which is in good condition but not original.

There are also different door types at the first floor, which include hollow core wood veneer or metal doors - single or paired. The doors are flush, with a vision lite or with louvers. The doors are in good overall condition with minor deterioration limited to general wear and tear from everyday use. One flush wood door with fiberglass frame exhibits some damage at the lock stile.
Condition Assessment

East Elevation
There are four hopper-style transom windows at the east elevation, which are in good condition. These windows appear to be original.

There are also four pairs of original louvered doors, which are in poor condition. Some of the louvers are missing or damaged. Additionally, the paint on the lower areas closer to the ground is in deteriorated condition. There is also biological growth on the doors.

Air Vent Covers
There are several wood or metal air vents in the exterior siding. They are in fair overall condition with minor deterioration limited to accumulation of dirt and debris and paint deterioration. The wood air vent cover on the south elevation is damaged and missing most of its louvers.
INTERIOR FEATURES AND FINISHES

Ceilings
The ceiling of the cafe, second floor dining room, three second floor offices (Rooms 202, 203 and 204) and four second floor rooms (Rooms 208, 210, 211 and 212) is original and has the same laminated wood finish seen at the first floor walkway and roof soffits at the exterior. The ceiling wood is in overall good condition with limited accumulation of dirt and cobwebs. The stained finishes have faded, and some of the wood has darkened.

Other existing ceiling materials include dropped acoustical tile in the main public areas, gypsum board in the public restrooms and the majority of the service areas, fiberglass-reinforced plastic (FRP) panels in the freezers, and painted plywood in two service area rooms. These ceiling materials are in fair to good condition. There are a few cracked and damaged areas in the gypsum board ceiling in the kitchen (Room 109) and some water damage in the gypsum board ceiling in room 128.

Walls
There are two types of original redwood vertical paneling at the interior. The paneling outside the boiler room (Room 117) and freezer (Room 122) and inside the dining room (Room 201) is V-groove style like the original wood siding at exterior. Originally, the paneling was stained for a more natural finish, but it is painted now. The paneling is in overall good condition.

The second type of paneling is composed of alternating vertical boards of two different widths. It has a different groove pattern. It is found in the cafe, outside the public restrooms, outside the two second floor offices (Rooms 202 and 203), and at few service area walls. This paneling is stained at the walls outside the second floor offices (Rooms 202 and 203) and at most of the walls in the cafe, but it is painted elsewhere. The paneling is in overall good condition.

The wood paneling outside the gift shop is the same V-groove style paneling; however, the wall is not original. The paneling is stained and in overall good condition.
Condition Assessment

Other walls in the building, typically in back-of-house areas, are clad in gypsum board or plywood, sometimes with a partial or full height covering of fiber-reinforced panels or painted masonite. The gypsum board may be original, but the other coverings are not. The public restrooms have a ceramic tile wainscot that was installed in 1988. These walls are in fair to good condition.

Floors
The floor coverings range from ceramic tile in the main public areas, quarry tile in the kitchen areas, and carpet in some of the offices. Some rooms, including the gift shop and employee restrooms (Rooms 114 and 115), have unfinished or painted steel-troweled concrete floors, which are the original finish floor surfaces on the first floor. There are painted decorations (text and leaves) on the gift shop floor (not original). The floors throughout the building are in fair to good condition.

Doors
There are different types of doors at the interior which include: paired stained half-glass wood doors with cross-buck-panel bottom at the gift shop; single and paired aluminum swinging doors with vision lite at the delicatessen; wood door with large metal louvers at the boiler room (Room 117); full-glass wood door at the second
Condition Assessment

Stair #1 (left); damaged rubber covering (right).

Painted redwood screen and stair #2 (left); typical wooden handrail condition (right).

Stair #1; damaged rubber covering (right).

Full-glass wood door at the second story dining room (left) and paired stained half-glass wood doors with cross-buck-panel bottom at the gift shop (right).

Aluminum swinging door with vision lite at the delicatessen (Room 103) and wood door with large metal louvers (right) at the boiler room (Room 117).

Floor dining room; stained wood door with 9-lite top and cross-buck-panel bottom at a second floor office (Room 202); painted wood pocket door (Room 211); 3-paneled wood door with metal mesh insert at top panel (Room 123), several flush wood doors, and paneled wood doors in various configurations. While the majority of the doors have been replaced or added, the fully glazed wood door at the second floor dining room is original. The doors throughout the interior are in good working condition with deterioration limited to minor wear and tear from everyday use.

Stairs

The three sets of stairs at the interior are original. Stair #1 at the south end consists of open reinforced pre-cast concrete treads with rubber coverings for slippage. The rubber is damaged at two treads and is not original. The stair has an angular wood handrail, which is in good condition. The horizontal metal strips on the balustrade are not original. Additionally, the solid half-wall built against the balustrade at the second floor is not original.

Stair #2 is located in the cafe. It is also a steel stair consisting of open reinforced pre-cast concrete treads and angular wood handrail, but without the rubber coverings on the treads. The handrail is in fair condition. The wood finish
Condition Assessment

Stair #3 (left); dumbwaiter (right).

Fireplace #1 in the gift shop.

Fireplace #1 in the gift shop. Note the brick lining and corroded iron flue.

Fireplace #2 in the second floor dining room (left); cracked glass panel at the skylight (right).

Fireplace #3 in the cafe (left); chimney (right).

of the handrail is worn from use. There is also an original redwood screen that makes up the second stair design. The painted screen is in good condition. It was likely unpainted originally.

Stair #3, which is wood with wood handrails and rubber treads and slip-resistant metal tread covers, is located in the service area and is in good condition.

Dumbwaiter
The dumbwaiter is original and in good condition. It needs to be repainted.

Fireplaces
The full-height fireplace #1, which begins at the gift shop
and extends up through the second-story dining room skylight, is in overall good condition. The concrete surfaces are unpainted and covered in soiling and a few stains.

At fireplace #2, the iron flue is corroded and the brick lining is covered in dirt. Additionally, there is a crack and a few chipped edges in the concrete bench. The concrete surfaces are painted. One of the skylight panels through which the chimney rises is cracked.

According to a 2016 assessment by Canady Enterprises Inc., these two fireplaces are not safe to operate unless the chimneys are rebuilt or re-lined.

Fireplace #3 in the cafe, is in good condition. The hearth, chimney and brick lining are covered in soot.

Public Restrooms
The current public restrooms on the first floor were completely remodeled in 1988. Both restrooms are in overall good condition.

Other
The hanging light fixtures over the stair at the south end are not original but in good condition.

The signage found throughout the exterior and interior identifying the name of the building and different spaces is not original, but in good condition.

BUILDING SYSTEMS

In March and April of 2016, a team of engineers inspected the existing building systems of Degnan’s Restaurant and Loft to describe existing systems, evaluate current conditions and make recommendations for repair and upgrade. The following section provides summaries of their findings. For a more complete description refer to the engineering reports in the appendices of this document.

Structural
Degnan’s Restaurant and Loft is a two-story modified “A-frame” building with overall plan dimensions of approximately 132 feet by 121 feet. In general, steel
Condition Assessment

framing supports wood floor and roof framing. Walls are wood framed. There are six major frames at the south end approximately 34 feet high at the peak and spaced at 16'-0" on center, and three shorter frames at the north end approximately 23 feet high, also spaced at 16'-0" on center, with the southern flank aligned with the major frames. Except for the end frame at the south end, the sloping girders of the frame only extend to a ground level foundation on the west side of the building. At the east, the frame girders terminate at the second level with the result that the east end of the building is mostly a one-story flat-roofed structure.

There is a lowered service yard area with a loading dock at the east end of the north side, formed by concrete retaining walls on the east and west up to five feet high.

Foundations are reinforced concrete. Perimeter foundations are very narrow, buried a minimum of two feet below adjacent grade. At the western side at the base of the angles frames, the concrete footing wall extends above grade in a triangular shape to support the end of the frame beam.

Full height window walls exist on the south and north ends of the building, framed in steel; and a continuous window wall extends along the entire western side of the building at the first floor level.

Fireplaces at the ground floor and on the second floor level are constructed out of a mixture of cast-in-place and pre-cast concrete, structural steel, and "black iron" sheet metal.

A wood framed shade trellis structure has been added to the building on the north side. It consists of 4x4 posts with glu-lam beams and 2x3 shade members.

The building structure has had a number of modifications. Although part of the original design drawings, The northernmost A-frame was not constructed. This is significant in that, like the southernmost frame, and unlike all of the other frames, that frame extended to a foundation at the east end, intending to provide a more direct lateral connection to grade.

Additions to the eastern side of the building roof, including added roof structure, mechanical enclosures, and dormers have added additional dead load to the building without any apparent additional structure. Other modifications include addition of an elevator in the southwest corner of the building.

The building’s lateral force resisting system consists of roof and floor diaphragms that transfer lateral loads to vertical resisting elements (such as A-frames and plywood shear walls) which transfer the forces to the foundations. The actual capacity of this system needs further evaluation.

Structural Condition

The building has performed well over its 60-year life, and is in generally good structural condition. There are no indications of settlement or movement of the foundation. No significant steel corrosion was noted. Past repairs to the concrete foundations at the steel A-frame bearing plates appear to be functioning adequately. Minor cracking was noted in the interior slab on grade and in retaining walls. Water was noted draining through the retaining walls at the east side of the loading dock, but it is not causing structural damage. The fence above the west retaining wall is in poor condition. Some rot was noted in the 2x3 top pieces of the shade trellis structure, which may extend into the framing members.

No calculations have been performed at this stage to determine loading and to confirm member or system capacity. The following observed potential structural deficiencies are based on experience and engineering judgment.

- Gravity Load-Carrying System: No obvious deficiencies have been identified. Future building renovations should use current snow loading requirements to check elements of the roof framing particularly the laminated 2x4 & 2x6 roof elements. Also the original flat roof
framing that is now carrying an additional framing level should also be checked for adequacy with the snow and additional dead load.

- **Lateral System**: The overall lateral capacity of the structure is questionable due to the configuration of the A-frames. In addition the wood shear walls with 3/8” plywood have limited capacity, and locations of shear walls particularly the lack of shear capacity along the west window wall should be evaluated. Foundation capacity is also suspect due to the narrow dimensions of the foundations.

- **Lateral Elements—Fireplaces**: These elements are well detailed and do not pose hazards. Potential for falling glass at the skylight around fireplace #2 should be evaluated however.

- **Lateral Elements—Window Walls**: Glazing systems of the tall window walls in the end frames and transition frame areas are not detailed to allow for movement and may deform and break during strong shaking. Structural mullions appear to be adequate for wind loading.

Mechanical
The heating and cooling systems for Degnan’s Restaurant and Loft consist of a mixture of different types and ages of units, which have changed or been altered over time. Below is a limited description of the systems and equipment observed.

First Floor
First floor public areas are conditioned through a mixture of units including:

- Door head mounted electric air curtain units at each entrance
- Swamp cooler units serving the west cafe area, deli and gift shop areas
- Independent electrical unit heaters, spread throughout
- Hot water space heater in the back of house area

Second Floor
- Roof mounted, gas fired DX packaged units. These are reported to have deficiencies in providing adequate heat to the second floor on cold days. (The extensive amount of glazing area’s heat loss contributes to this problem)

Cooking Area Hoods
- 30 foot long, main grease hood for the first floor kitchen, supplied by exhaust fan in the shed on the east roof.
- Type II hood in the first floor storage area, served by a roof mounted fan above.
- Grease hood in the second floor kitchen, utilizing the same exhaust fan as the first floor hood
- Make up air to the grease hood is provided by a swamp cooler on the east roof.

Overall the mechanical systems are in fair to poor condition and suffer from a lack of coordination of design and controllability. A complete rehabilitation and coordination of the mechanical design systems for the building should be considered in any rehabilitation of the building.

Plumbing
Like the mechanical systems, plumbing systems for the building show a series of alterations and remodeling. Although it appears to be functioning, the following observations of systems and deficiencies were made:

- The water supply is a 2” line entering the building at the storage room. No backflow preventer or pressure-reducing valve was found. A pressure gauge at the main showed 105 psi, which is excessive pressure for the plumbing fixture.
- Domestic hot water is provided by a 199 kBTU/h gas fired tank type water heater with two indirect storage tanks. The main heater volume capacity is 100 gallons and each of the storage tanks is 120 gallons capacity. The DHW system has a recirculating loop and pump. The system shows ample signs of Corrosion in the pipes and joints.
- The sanitary sewer system is reported to be collapsed and damaged in several points.
Condition Assessment

- There is no grease interceptor serving the building. Instead, two small grease traps are installed on the second floor. The soda fountain at the second floor discharges on a floor sink with no dilution trap. The corrosion is currently prevented by the staff dumping two gallons of water in the floor sink every night.
- There is a sump pump collecting ground water near the loading dock and discharging it into the sanitary sewer pipe at the mop sink in the back of the house.

Electrical
The following is a summary of observations made of the existing electrical, lighting, IT, and fire alarm systems.

Main Electric Service and Back-Up Generator
- The building is fed with an underground feeder to an 800 Amp, 120/208V, 3-Phase, 4-Wire rated electrical service, from a pad mounted Valley Utility Transformer located outside at the North/East exterior of the building.
- The main service switchboard, located in the rear breezeway of the facility, in a Nema 3R, two section, lockable enclosure, on a suitable housekeeping pad, was recently upgraded and is in good condition.
- The building includes a permanently installed Cummins-Onan 200kW/250kVA 120/208V diesel emergency generator, located at the rear loading dock. The generator backs up the entire building service when in operation. It appears that the sizing is adequate for the current use of the building.

Electrical Distribution System/Panel Boards
- Although the service switchboard and generator/transfer switch are fairly new and in good condition, all of the existing branch panelboards and feeders appear to be either original equipment or very old (installed many years ago). Retrofitted circuit breakers have been installed in some of the panelboards, with slight panel modification to make them fit.
- All of the existing panels appear to be near the end of their useful life and would benefit from replacement to provide a safer system with modern protection and readily available parts.

Lighting Systems
- Lighting in the building consists primarily of older bare (back of house) and lensed (front of house) fluorescent sources in most locations, with some old incandescent fixtures still remaining in small closets at the back of house areas and at the main stairs to the second floor.
- Kitchen lighting (in the food prep areas) consists of bare fluorescent lamps, but each lamp has been provided with a protective shroud (as required by health code) to protect from broken glass.
- Lighting controls in the building consist primarily only of manual switches, with no automatic controls.
- The second floor dining area includes a small (very old) dimming system control panel, but the dimmers have long since been removed. The panel is old and outdated and should be replaced.
- Although currently functioning adequately the overall lighting systems for the building should be upgraded when the building is rehabilitated.

IT Systems
- The telephone and data system in the building is fed from an IT cabinet located in a first floor storage room, behind the cafe space. The wall mounted cabinet contains active data switches and patch panels, for cross connection of various station cables out to point of sale devices and office areas.
- Data and Voice jacks appear to be Category 5 rated (older style) and each terminated on separate patch panels in the cabinet (labeled data and voice), for cross connection to the data and voice systems.
- The IT cabinet has a power panel next to it that feeds the power to the IT equipment, however, this panel (designated IT#1) also feed receptacles and some old equipment from the old cafe space.

Fire Alarm System
- The building has a Silent Knight #5207, 8-Zone (upgradable to 16 zone), Fire Alarm Control Panel that appears to be in good condition and can be maintained.
Condition Assessment

The panel monitors and controls various initiating zones and only a few notification devices throughout the building.

▪ No changes to the system are required at this time, however, there are only two spare zones available at this time. Future changes may require additional zones, which can be accommodated up to the 16 zone maximum.

▪ Future building changes would also require more notification device coverage to bring the renovated areas up to current code. This is feasible with the existing panel.
Condition Assessment
DEGNAN’S RESTAURANT & LOFT - ALTERATIONS DIAGRAM
Condition Assessment

EXTERIOR

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading and Site</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Water is directed toward the building at the east elevation. Water pooling has caused wood deterioration and biological growth at the wood siding at grade. Heavy accumulation of tree duff at grade.</td>
</tr>
<tr>
<td>Shade Structure/Patio Roof</td>
<td>N/A</td>
<td>Non-original; it was added in 1967. Prior to the existing shade structure, there was a self-standing wood trellis structure without a cover based on a few historic photographs.</td>
<td>Redwood 4”x12” beams and 2”x3” lathing</td>
<td>Compatible</td>
<td>Fair condition. Deteriorated wood - rotting, splitting and some wood darkening. Cracked and flaking paint. Partially detached elements. Covered in dirt, tree duff, and cobwebs.</td>
</tr>
<tr>
<td>Loading Dock</td>
<td>N/A</td>
<td>Concrete</td>
<td>Concrete</td>
<td>N/A</td>
<td>Fair condition. Concrete pavement cracked in few areas. General soiling and biological growth.</td>
</tr>
<tr>
<td>Fence #1, at the north elevation between the exterior dining area and service yard</td>
<td>N/A</td>
<td>The original drawings indicate a wood and glass screen, however, it does not appear to have been built. Instead a wood fence was erected, which wrapped around the exterior dining area.</td>
<td>N/A</td>
<td>Compatible (new portions)</td>
<td>Fair to poor condition. Fence tilts westward at the north end and appears unstable. Deteriorated wood - rotting and splitting. Cracked and flaking paint. Heavy accumulation of tree duff at grade.</td>
</tr>
<tr>
<td>Fence #2, along the east elevation, encloses the gas tank</td>
<td>N/A</td>
<td>Non-original</td>
<td>Painted wood fence enclosure</td>
<td>Compatible</td>
<td>Fair condition. Deteriorated wood - splits along nail attachments. Missing board.</td>
</tr>
<tr>
<td>Pavement</td>
<td>Exposed aggregate concrete with redwood divider strips.</td>
<td>Exposed aggregate poured-in-place concrete with 2”x4” redwood divider strips</td>
<td>N/A</td>
<td>N/A</td>
<td>Good condition. Stains and minimal loss of material at concrete. Accumulation of tree duff and debris.</td>
</tr>
</tbody>
</table>

* The original finish schedule refers to both painted and stained finishes as painted.
FEATURE

<table>
<thead>
<tr>
<th>CHARACTERS-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>

ROOFING

- **Roofing**
 - Gabled and flat roof forms
 - Broad eave overhangs
 - Open rafter/roof structure at the ends of the building along with a very distinctive banding in the cedar shakes comprised of double coursed shakes every five feet.
 - Existing asphalt shingled roof was installed in 2013. Currently, there is no evidence of the open rafters since the fascia trim is covered with sheet metal flashing. The open rafters were cut off at some point.
 - Compatible
 - Good condition
 - Accumulation of tree duff and debris
 - Biological growth on some of the asphalt shingles at the north elevation
 - Wood Fascia: Localized paint deterioration, biological growth and insect infestation; partially displaced at some locations; openings at some corner joints
 - Sheet Metal Flashing: Covered in dirt and debris; localized paint deterioration and biological growth
 - Sheet Metal Gutters: Filled with dirt and tree duff at few locations

- **Walkway Ceiling and Roof Soffits**
 - Decorative wood soffits at eave overhangs (laminated alternating 2x4s and 2x6s)
 - Sheltered walkway along west elevation with decorative wood soffits
 - Painted* laminated wood
 - N/A
 - N/A
 - Fair condition
 - Covered in dirt and cobwebs
 - Weathered Wood - Faded or disappeared stained finishes, darkened wood

EXTERIOR WALLS

- **Foundation/Concrete Walls**
 - Exposed concrete foundation
 - Concrete
 - Painted concrete at a few areas
 - Compatible
 - Fair condition
 - Cracks, spills, and biological growth
 - Cracked concrete at the service corridor along the east elevation
 - Cracks in the concrete wall at the steel mullion locations at the south elevation

- **Exterior Steel Framing and Concrete Piers**
 - Exposed steel frame structure and triangular, board-formed concrete piers
 - Board formed concrete piers
 - Painted horizontal and diagonal steel beams
 - N/A
 - N/A
 - Steel Beams: Paint deterioration and biological growth
 - Concrete Piers: Covered in dirt, biological growth, and stains; few hairline cracks and spalls; exposed aggregate at exterior facing areas

- **Wood Siding**
 - Vertical, V-rustic redwood siding
 - Vertical, V-rustic redwood siding
 - Plywood siding at the second floor above the band of windows
 - Compatible
 - Splits in siding at nail attachments
 - Insect infestation at the service corridor
 - Stains and partial detachment of wood trim
 - Localized paint deterioration and biological growth

* The original finishes schedule refers to both painted and stained finishes as painted.
Condition Assessment

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Windows and Doors</td>
<td>Extensive use of glass in exterior walls (bands of fixed windows, windows with transoms, glazed entry door with transoms; wood framing) Connection of interior/exterior spaces</td>
<td>West Elevation, First Floor: Alternating groups of two fixed and two hopper-style transom windows with wire glass Wood (oak) full glass doors with bronze threshold and metal jamb West Elevation, Second Floor: Band of windows beneath the shed dormer roof North and South Elevations, Glazed Walls: Full-height glazed window walls with steel mullions Wood (oak) full glass door with bronze threshold and metal jamb at the second floor at the north elevation North Elevation, Service Yard: Five hopper-style transom windows at the first floor East Elevation: Five hopper-style transom windows at the east elevation</td>
<td>West Elevation, First Floor: Painted glass at transom windows; one lite replaced with plywood infill Aluminum full glass doors replaced original doors North and South Elevations, Glazed Walls: Fully glazed single door was converted into a window North Elevation, Service Yard: One horizontal wood window (added) at the second floor Hollow core wood veneer or metal doors - single or paired (replaced)</td>
<td>Compatible</td>
<td>Windows: Wood mullions in fair condition; localized conditions include paint loss, cracks, scratches, wood loss and partial displacement of wood elements Accumulation of dirt, debris and cobwebs Doors: Fair to good condition Minor wear and tear from everyday use General soiling and stains Four pairs of louvred doors on the east elevation in poor condition; missing and damaged louvers, deteriorated paint</td>
</tr>
<tr>
<td>Air Vent Covers</td>
<td>N/A</td>
<td>Wood or metal</td>
<td>Wood</td>
<td>Compatible</td>
<td>Air Vent Covers: N/A Wood or metal Fair condition Accumulation of dirt and debris Paint deterioration Damaged and missing most of the louvers at an air vent cover on the south elevation</td>
</tr>
</tbody>
</table>

* The original finishes schedule refers to both painted and stained finishes as painted.
INTERIOR

<table>
<thead>
<tr>
<th>SPACE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| Stair #1, in 101 | Entire stair | ▪ Open reinforced pre-cast concrete treads
▪ Steel bar balustrade
▪ Angular wood (oak) handrail
▪ Steel barricade along edge of stair | ▪ Horizontal strips added to the balustrade
▪ Rubber coverings added to the treads
▪ Solid half-wall built against the balustrade at the second floor | Compatible | ▪ Good condition, but rubber coverings damaged at two treads |
| Stair #2, in 104 | Entire stair | ▪ Open reinforced pre-cast concrete treads
▪ Steel bar balustrade
▪ Angular wood (oak) handrail
▪ Redwood screen, likely unpainted originally | ▪ Redwood screen, painted
▪ Horizontal strips added to the balustrade | Compatible | ▪ Good condition, but worn finish at the handrail |
| Stair #3, service area | Entire stair | ▪ Wood with rubber treads
▪ Wood handrail, one side
▪ Walls: Painted* gypsum or plywood, wood trim at wainscot level
▪ Ceiling: Painted* gypsum board | ▪ Slip-resistant metal tread covers added
▪ Vinyl tile at landing added | Compatible | ▪ Ceiling: Fair condition, cracked gypsum board |
| Fireplace #1 | Entire fireplace assembly | ▪ Open hearths with integrated concrete benches and shelving with oak seatbacks
▪ Iron hoods
▪ Full-height central fireplace begins at the ground floor gift shop (Room 102)
▪ Unpainted board-formed concrete | ▪ Iron hoods removed | N/A | ▪ Inoperable due to the flue condition
▪ Corroded iron flue
▪ Crack in the concrete bench |

* The original finishes schedule refers to both painted and stained finishes as painted.
### SPACE	CHARACTER-DEFINING FEATURES	ORIGINAL MATERIAL/FINISHES	ALTERED MATERIALS	COMPATIBILITY OF ALTERATIONS	CURRENT CONDITION
Fireplace #2 | Entire fireplace | • Open hearths with integrated concrete benches and shelving
• Extends up through the dining room (Room 201) skylight
• Decorative iron hood with bolted standing seam
• Brick lining
• Fireplace openings covered with a simple metal grille at three openings | • Painted board-formed concrete | Non-compatible | • Inoperative due to the flue condition
• One cracked skylight panel
Fireplace #3 | Entire fireplace | • Steel plate hearth with concrete base
• Raised concrete fire box lined with brick
• Decorative iron hood | • Metal panels added between the fireplace and exterior walls | Non-compatible | • Chimney and brick lining covered in soot
Dumbwaiter | Entire dumbwaiter | • Atlas Elevator Co., San Francisco, CA
N/A | N/A | N/A | Fair condition
101, outside the elevator (former foyer) | Exterior glazed wall
Stair #1 | • Floor: Steel-troweled colored concrete
• Walls: Painted* redwood paneling; two exterior glazed walls
• Ceiling: Acoustical plaster | • Floor: Brick ceramic tile
• Walls: Gypsum board at the elevator; plywood (mostly rough-sawn) at the gift shop; Painted redwood paneling with recesses at bathrooms
• Ceiling: Dropped acoustical tile | Non-compatible | • Floor: Good condition, new tiles on the floor next to the elevator
• Walls: Gypsum board in good condition; plywood in fair condition; chamfered board and wood paneling with recesses in fair to good condition
• Ceiling: Fair condition
102, gift shop (former foyer) | Fireplace #1
Floor | • Floor: Steel-troweled colored concrete
• Walls: Painted* redwood paneling
• Ceiling: Acoustical plaster | • Walls: Painted retail wood paneling
• Ceiling: Dropped acoustical tile
• Wood shelving and counter | Non-compatible | • Floor: Good condition, with few scratches
• Walls: Good condition
• Ceiling: Good condition
• Wood Shelving and Counter: Good condition
103, delicatessen | Exterior glazed wall | • Floor: Steel-troweled colored concrete
• Walls: Painted* redwood paneling; one exterior glazed wall
• Ceiling: Acoustical plaster
• Doors: Single and paired hollow-core redwood swinging doors with vision lite | • Floor: Brick ceramic tile
• Walls: Two retail wood paneling; one rough-sawn plywood
• Ceiling: Dropped acoustical tile
• Doors: Single and paired aluminum swinging doors with vision lite (replaced original) | Non-compatible | • Floor: Fair to good condition, some missing tiles and grout deterioration
• Walls: Good condition
• Ceiling: Good condition
• Doors: Fair condition

* The original finishes schedule refers to both painted and stained finishes as painted.
SPACE

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Character-Defining Features</th>
<th>Original Material/Finishes</th>
<th>Altered Materials</th>
<th>Compatibility of Alterations</th>
<th>Current Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>104, cafe (former fountain room)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>105, storage</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>106, storage (former service kitchen)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>107, (former compressor room)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>108, hallway</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* The original finishes schedule refers to both painted and stained finishes as painted.
Condition Assessment

<table>
<thead>
<tr>
<th>SPACE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| 109, kitchen | N/A | - Floor and Baseboard: Quarry tile (6" sq)
- Walls: Painted gypsum board with ceramic tile (6" sq) wainscot
- Ceiling: Painted* perforated masonite | - Walls: Painted gypsum board with FRP wainscot
- Ceiling: Painted gypsum board | Compatible | - Floor: Fair to good condition, few damaged tiles
- Walls: Good condition, few damaged areas
- Ceiling: Fair condition, few cracked and damaged areas |
| 110, snowblower storage (formerly part of loading dock/bottle storage area) | N/A | - Floor: Broom finish concrete | - Walls: FRP
- Ceiling: FRP
- Door: Hollow wood | Compatible | - Floor: Fair condition
- Walls: Fair condition
- Ceiling: Fair condition
- Door: Poor condition |
| 111, former garbage room | Windows | - Floor and Baseboard: Steel-troweled concrete
- Walls: Painted gypsum board with ceramic tile (6" sq) wainscot
- Ceiling: Painted gypsum board
- Windows: Four hopper-style transom in the exterior wall
- Door: Metal door with metal louvers | - Floor: Sheet vinyl
- Walls: Painted gypsum board with metal wainscot | Compatible | - Floor: Poor condition
- Walls: Fair condition
- Ceiling: Good condition
- Windows: Fair condition
- Door: Good condition |
| 112, formerly part of loading dock | N/A | - Floor: Broom finish concrete | - Floor: Sheet vinyl
- Walls: FRP
- Ceiling: FRP | Compatible | - Floor: Poor condition
- Walls: Good condition
- Ceiling: Good condition |
| 114, women’s employee restroom | Floor | - Floor: Steel-troweled colored concrete
- Baseboard: Quarry tile (6" sq)
- Walls: Painted gypsum board with ceramic tile (6" sq) wainscot
- Ceiling: Painted gypsum board
- Door: Hollow core wood door with metal louvers
- Wood toilet partition | - Floor: Painted concrete
- Walls: Painted gypsum
- Ceiling: Painted gypsum
- Door: Flush wood door (replaced original) | Compatible | - Floor: Concrete - good condition; paint - fair condition
- Walls: Good condition
- Ceiling: Good condition
- Door: Good condition |

* The original finishes schedule refers to both painted and stained finishes as painted.
Condition Assessment

<table>
<thead>
<tr>
<th>SPACE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| 115, men's employee restroom | Floor | • Floor: Steel troweled colored concrete
• Baseboard: Quarry tile (6" sq)
• Walls: Painted* gypsum board with ceramic tile (6" sq) wainscot
• Ceiling: Painted gypsum board
• Door: Hollow core wood door with metal louvers | • Floor: Painted concrete
• Walls: Painted gypsum
• Ceiling: Painted gypsum
• Door: Flush wood door
• Newer urinal partition | Compatible | • Floor: Concrete - good condition; paint - poor condition
• Walls: Good condition
• Ceiling: Good condition
• Door: Good condition |
| 116, locker room | Floor | • Floor: Steel troweled colored concrete
• Baseboard: Steel-troweled concrete
• Walls: Painted* gypsum board
• Ceiling: Painted gypsum board
• Door: Metal half-glass door with metal louvers | • Floor: Painted concrete floor
• Walls: Painted gypsum
• Ceiling: Painted gypsum
• Door: Painted wood door (replaced original) | Compatible | • Floor: Concrete - good condition; paint - fair condition
• Walls: Good condition
• Ceiling: Good condition
• Door: Fair condition |
| 117, boiler room (former equipment room) | Floor
• Walls
• Ceiling | • Floor and Baseboard: Steel-troweled concrete
• Walls: Painted* gypsum board
• Ceiling: Painted gypsum board
• Door: Hollow metal door with metal louvers | • Door: Wood door with metal louvers (replaced original)
• Walls: Metal lath on studs added
• Ceiling: Painted gypsum board
• Door: 3-panel wood door with metal lath in the top panel added | N/A | • Floor: Good condition, stained
• Walls: Poor condition
• Ceiling: Fair condition
• Door: Fair condition |
| 118, electric room (formerly part of 123) | Floor
• Baseboard | • Floor: Steel troweled colored concrete
• Ceiling: Painted gypsum board
• Baseboard: Steel-troweled concrete | • Walls: Metal lath on studs added
• Floor: 3-panel wood door with metal lath in the top panel added | Compatible | • Floor: Fair condition
• Walls: Fair condition
• Ceiling: Fair condition
• Door: Good condition |
| 119, office (former janitor room) | Floor
• Baseboard | • Floor: Steel troweled colored concrete
• Baseboard: Steel-troweled concrete
• Walls: Painted* gypsum board
• Ceiling: Painted gypsum board
• Door: Hollow metal door with metal louvers | • Door: Painted flush hollow metal door (replaced original) | Compatible | • Floor: Fair condition
• Walls: Fair condition
• Ceiling: Fair condition
• Door: Good condition |

* The original finishes schedule refers to both painted and stained finishes as painted.
Condition Assessment

<table>
<thead>
<tr>
<th>SPACE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| 120, (formerly part of room 123) | • Floor
 • Windows | • Floor: Steel-troweled colored concrete
 • Ceiling: Painted* gypsum board
 • Windows: Two hopper-style transom windows in the exterior wall | • Walls: Painted plywood
 • Ceiling: Painted plywood
 • Door: Flush wood door | Compatible | • Floor: Good condition, stained
 • Walls: Good condition
 • Ceiling: Good condition
 • Windows: Fair condition
 • Door: Good condition |
| 121, (formerly part of room 123) | • Floor | • Floor: Steel-troweled colored concrete
 • Ceiling: Painted* gypsum board | • Floor: Unfinished concrete
 • Walls: Painted plywood
 • Ceiling: Painted plywood
 • Door: Flush wood door | Compatible | • Floor: Fair condition
 • Walls: Fair condition
 • Ceiling: Fair condition
 • Door: Good condition |
| 122, freezer (formerly part of room 123) | • Floor | • Floor: Steel-troweled colored concrete
 • Ceiling: Painted* gypsum board | • Walls:
 • Door: Heavy metal refrigerator door added | Compatible | • Floor: Fair condition
 • Walls: Fair condition
 • Ceiling: Fair condition
 • Door: Fair condition |
| 123 | • Floor | • Floor: Steel-troweled colored concrete
 • Baseboard: Steel-troweled concrete
 • Walls: Painted* gypsum board
 • Ceiling: Painted* gypsum board | • Walls: Painted gypsum with masonite wainscot | Compatible | • Floor: Fair condition, crack in the concrete
 • Walls: Fair condition, wainscot - damaged at one wall
 • Ceiling: Good condition |
| 124, storeroom (formerly part of room 123) | • Floor | • Floor: Steel-troweled colored concrete
 • Baseboard: Steel-troweled concrete
 • Walls: Painted* gypsum board
 • Ceiling: Painted* gypsum board | • Door: Flush wood door | N/A | • Floor: Good condition, stained
 • Walls: Fair condition, holes and unfinished edge
 • Ceiling: Good condition
 • Door: Good condition |

* The original finishes schedule refers to both painted and stained finishes as painted.
Condition Assessment

<table>
<thead>
<tr>
<th>SPACE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>125, elevator machine room</td>
<td>† Floor</td>
<td>† Floor: Steel-troweled colored concrete
† Baseboard: Steel-troweled concrete
† Walls: Painted gypsum board
† Ceiling: Painted gypsum board</td>
<td>† Walls: Painted gypsum board, louver in one wall
† Door: Flush wood door</td>
<td>Compatible</td>
<td>† Floor: Fair condition
† Walls: Fair condition
† Ceiling: Fair condition
† Door: Fair condition</td>
</tr>
<tr>
<td>(formerly part of room 124)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126, office (formerly</td>
<td>† Floor</td>
<td>† Floor: Steel-troweled colored concrete
† Baseboard: Steel-troweled concrete
† Walls: Painted gypsum board
† Ceiling: Painted gypsum board</td>
<td>† Door: Wood panel door added</td>
<td>Compatible</td>
<td>† Floor: Uneven at threshold
† Walls: Good condition
† Ceiling: Good condition
† Door: Fair condition, few chips</td>
</tr>
<tr>
<td>part of room 123)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127, (former Bakery)</td>
<td>† Floor</td>
<td>† Floor and Baseboard: Quarry tile (6” sq)
† Walls: Painted gypsum board with ceramic tile (6” sq) wainscot
† Ceiling: Painted perforated masonite
† Door: Hollow core wood door with vision lite</td>
<td>† Walls: Painted gypsum board with wood wainscot, pass through window filled in
† Ceiling: Painted gypsum board
† Doors: Flush wood door; metal freezer door; aluminum swinging door with vision lite added</td>
<td>Compatible</td>
<td>† Floor: Good condition
† Walls: Good condition, wood wainscot in fair condition
† Ceiling: Good condition
† Doors: Fair to good condition; aluminum swinging door in poor condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128, storage (former office)</td>
<td>† Floor</td>
<td>† Floor: Steel-troweled concrete
† Baseboard: Painted hardwood (oak)
† Walls: Painted hardwood (oak)
† Ceiling: Acoustic plaster (integral color)
† Doors: Two hollow core flush wood doors with metal louvers</td>
<td>† Floor: Painted concrete
† Walls: Painted gypsum board
† Ceiling: Painted gypsum board
† Doors: One flush wood door with one way glass (replaced original)</td>
<td>Compatible</td>
<td>† Floor: Concrete - good condition, paint - fair condition
† Walls: Fair to poor condition, few scrapes and holes
† Ceiling: Fair to poor condition, some water damage
† Doors: Fair to good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129, men's public restroom</td>
<td>N/A</td>
<td>† Floor and Baseboard: Ceramic tile (6” sq)
† Walls: Painted gypsum board with ceramic tile (6” sq) wainscot
† Ceiling: Painted gypsum board
† Door: Hollow core flush wood door with wood louvers</td>
<td>† Floor: Quarry tile
† Walls: Painted skim coat gypsum board with high tile wainscot
† Ceiling: Painted skim coat gypsum board
† Door: Painted flush wood door
† Phenolic toilet partitions
† Tile sink counter</td>
<td>Compatible</td>
<td>† Floor: Good condition
† Walls: Good condition
† Ceiling: Good condition
† Door: Good condition
† Toilet Partitions: Good condition
† Tile Sink Counter: Good condition</td>
</tr>
</tbody>
</table>

* The original finishes schedule refers to both painted and stained finishes as painted.
Condition Assessment

<table>
<thead>
<tr>
<th>SPACE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| 130, women's restroom, public | N/A | • Floor and Baseboard: Ceramic tile (6" sq)
 • Walls: Painted* gypsum board with ceramic tile (6" sq) wainscot
 • Ceiling: Painted gypsum board
 • Door: Hollow core flush wood door with wood louvers | • Floor: Quarry tile
 • Walls: Painted skim coat gypsum board with high tile wainscot
 • Ceiling: Painted skim coat gypsum board
 • Door: Painted flush wood door
 • Phenolic toilet partitions
 • Tile sink counter | Compatible | • Floor: Good condition
 • Walls: Good condition
 • Ceiling: Good condition
 • Door: good condition
 • Toilet Partitions: Good condition
 • Tle Sink Counter: Good condition |
| 131 | N/A | • Floor: Steel-troweled colored concrete
 • Baseboard: Steel-troweled concrete
 • Walls: Painted* gypsum board
 • Ceiling: Painted* gypsum board
 • Doors: Paired hollow core redwood swinging with vision lite | • Floor: Brick tile
 • Walls: Painted gypsum board, one board form concrete area
 • Ceiling: Painted gypsum
 • Doors: Paired aluminum swinging doors (replaced original); large metal door with wire glass vision lite; paired flush wood doors | Compatible | • Floor: Good condition, some grout damage
 • Walls: Good condition
 • Ceiling: Good condition
 • Doors: Fair to good condition |
| 132 (formerly part of room 133) | • Floor | • Floor: Steel-troweled colored concrete
 • Baseboard: Steel-troweled concrete
 • Walls: Painted* (fire-ban) plaster
 • Ceiling: Painted* (fire-ban) plaster | • Walls: Painted gypsum board
 • Doors: Hollow-core wood door, ventilation mesh above the door | Compatible | • Floor: Good condition
 • Walls: Good condition
 • Ceiling: Fair condition
 • Door: Good condition |
| 133, freezer | • Floor | • Floor: Steel-troweled colored concrete
 • Baseboard: Steel-troweled concrete
 • Walls: Painted* (fire-ban) plaster
 • Ceiling: Painted* (fire-ban) plaster
 • Door: Flush plywood veneered refrigerator door | • Walls: FRP
 • Ceiling: FRP
 • Doors: Heavy metal refrigerator doors (replaced original) | Compatible | • Floor: Good condition
 • Walls: Fair condition
 • Ceiling: Fair condition
 • Door: Good condition |

* The original finishes schedule refers to both painted and stained finishes as painted.
Condition Assessment

<table>
<thead>
<tr>
<th>SPACE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>134-137, freezers</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floor and Baseboard: Steel-troweled colored concrete</td>
<td></td>
<td></td>
<td>Compatible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Painted* (fire-ban) plaster</td>
<td></td>
<td></td>
<td>Floor: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Painted* (fire-ban) plaster</td>
<td></td>
<td></td>
<td>Walls: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doors: Flush plywood veneered refrigerator door</td>
<td></td>
<td></td>
<td>Ceiling: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Doors: Good condition</td>
</tr>
<tr>
<td>201</td>
<td>Ceiling</td>
<td>Floor: Waxed vinyl asbestos tile</td>
<td>Floor: Textured quarry tile</td>
<td>Compatible</td>
<td>Floor: Fair to good condition</td>
</tr>
<tr>
<td></td>
<td>Fireplace #2</td>
<td>Baseboard: Waxed rubber cove base</td>
<td>Walls: FRP</td>
<td></td>
<td>Walls: Painted chamfered wood - fair condition, painted gypsum board with skim coat - fair to good condition</td>
</tr>
<tr>
<td></td>
<td>Stair #1</td>
<td>Walls: Painted* redwood (all heart) paneling</td>
<td>Ceiling: FRP</td>
<td></td>
<td>Ceiling: Fair to good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Painted* laminated wood</td>
<td>Doors: Heavy metal refrigerator doors (replaced original)</td>
<td></td>
<td>Doors: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doors: One Painted* redwood shiplap paneling door with plywood backing at the utility closet, two full-glass wood (oak) doors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Casework: Painted* hardwood (oak)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201A, formerly rooms 201A, 208 and 209 were a combined space</td>
<td>Ceiling</td>
<td>Floor: Waxed vinyl asbestos tile</td>
<td>Floor: Decorative tile (12 by 12 inches)</td>
<td>Compatible</td>
<td>Floor: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseboard: Painted* hardwood (oak)</td>
<td>Walls: Painted gypsum board with skim coat</td>
<td></td>
<td>Walls: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Painted* redwood (all heart)</td>
<td></td>
<td></td>
<td>Ceiling: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Painted* laminated wood</td>
<td></td>
<td></td>
<td>Ceiling: Fair to good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Doors: Good condition</td>
</tr>
<tr>
<td>202, office (formerly rooms 202 and 203 were a combined space)</td>
<td>Ceiling</td>
<td>Floor: Waxed vinyl asbestos tile</td>
<td>Floor: Carpet</td>
<td>Compatible</td>
<td>Floor: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseboard: Waxed rubber cove base</td>
<td>Walls: Painted gypsum board</td>
<td></td>
<td>Walls: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Painted* gypsum board</td>
<td>Window: Aluminum slider</td>
<td></td>
<td>Ceiling: Fair to good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Painted* laminated wood</td>
<td>Door: Stained wood door with 9-lite top and cross-buck-panel bottom</td>
<td></td>
<td>Window: Fair condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Door: Hollow core wood door with metal louvers</td>
<td></td>
<td></td>
<td>Door: Fair condition</td>
</tr>
<tr>
<td>203, office (formerly rooms 202 and 203 were a combined space)</td>
<td>Ceiling</td>
<td>Floor: Waxed vinyl asbestos tile</td>
<td>Floor: Carpet</td>
<td>Compatible</td>
<td>Floor: Fair condition, worn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseboard: Waxed rubber cove base</td>
<td>Walls: Painted gypsum board</td>
<td></td>
<td>Walls: Good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walls: Painted* gypsum board</td>
<td>Door: Painted flush wood door</td>
<td></td>
<td>Ceiling: Fair to good condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceiling: Painted* laminated wood</td>
<td></td>
<td></td>
<td>Door: Good condition</td>
</tr>
</tbody>
</table>

* The original finishes schedule refers to both painted and stained finishes as painted.
Condition Assessment

<table>
<thead>
<tr>
<th>SPACE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>204, office (formerly part of room 201)</td>
<td>▪ Walls with original wood paneling ▪ Ceiling</td>
<td>▪ Floor: Waxed vinyl asbestos tile ▪ Baseboard: Waxed rubber cove base ▪ Walls: Painted* redwood (all heart) paneling ▪ Ceiling: Painted* laminated wood</td>
<td>▪ Floor: Carpet ▪ Walls: Plywood paneling on one wall ▪ Windows: Wood frame fixed - A/C unit, metal mesh ▪ Door: 3-panel wood door</td>
<td>Compatible</td>
<td>▪ Floor: Fair condition ▪ Walls: Good condition ▪ Ceiling: Fair to good condition ▪ Window: Fair condition ▪ Door: Good condition</td>
</tr>
<tr>
<td>205, dishwashing room</td>
<td>N/A</td>
<td>▪ Floor and Baseboard: Quarry tile (6” sq) ▪ Walls: Painted* gypsum board with ceramic tile (6” sq) wainscot ▪ Ceiling: Painted* gypsum board ▪ Doors: Painted* wood and metal</td>
<td>▪ Floor: Textured quarry tile ▪ Walls: Painted gypsum board with high wood wainscot</td>
<td>Compatible</td>
<td>▪ Floor: Good condition ▪ Walls: Fair condition ▪ Ceiling: Good condition</td>
</tr>
<tr>
<td>206, (next to the dumbwaiter)</td>
<td>▪ Dumbwaiter</td>
<td>▪ Floor and Baseboard: Quarry tile (6” sq) ▪ Walls: Painted* gypsum board with ceramic tile (6” sq) wainscot ▪ Ceiling: Painted* gypsum board ▪ Doors: Painted* wood and metal</td>
<td>▪ Walls: Painted gypsum board with high wood wainscot</td>
<td>Compatible</td>
<td>▪ Floor: Fair condition, steep slope at opening between 206 and 207 ▪ Walls: Fair condition ▪ Ceiling: Good condition</td>
</tr>
<tr>
<td>207</td>
<td>N/A</td>
<td>▪ Floor: Waxed vinyl asbestos tile ▪ Baseboard: Waxed rubber cove base ▪ Walls: Painted* gypsum board ▪ Ceiling: Painted* laminated wood</td>
<td>▪ Floor: Sanded quarry tile ▪ Walls: Painted gypsum board; some FRP ▪ Ceiling: Painted gypsum board</td>
<td>Compatible</td>
<td>▪ Floor: Fair condition ▪ Walls: Fair to good condition, FRP in good condition ▪ Ceiling: Good condition</td>
</tr>
<tr>
<td>207A, (formerly part of room 201)</td>
<td>▪ Original panelled walls</td>
<td>▪ Floor: Waxed vinyl asbestos tile ▪ Baseboard: Waxed rubber cove base ▪ Walls: Painted* redwood (all heart) paneling ▪ Ceiling: Painted* laminated wood</td>
<td>▪ Floor: Sanded quarry tile ▪ Walls: One original wood wall, other painted plywood ▪ Doors: Painted aluminum swinging doors with vision lite</td>
<td>Compatible</td>
<td>▪ Floor: Fair condition ▪ Walls: Fair condition ▪ Doors: Good condition</td>
</tr>
</tbody>
</table>
Condition Assessment

<table>
<thead>
<tr>
<th>SPACE</th>
<th>CHARACTER-DEFINING FEATURES</th>
<th>ORIGINAL MATERIAL/FINISHES</th>
<th>ALTERED MATERIALS</th>
<th>COMPATIBILITY OF ALTERATIONS</th>
<th>CURRENT CONDITION</th>
</tr>
</thead>
</table>
| 208 (formerly rooms 201A, 208 and 209 were a combined space) | • Original laminated wood ceiling | • Floor: Waxed vinyl asbestos tile
• Baseboard: Painted* hardwood (oak)
• Walls: Painted* redwood (all heart) paneling
• Ceiling: Painted* laminated wood | • Floor: Sanded quarry tile; limited area of 12x12 faux stone tile
• Walls: Painted gypsum board; some FRP
• Ceiling: Painted gypsum or plywood in some areas | Compatible | • Floor: Fair condition, chipped and broken tiles
• Walls: Fair condition
• Ceiling: Good condition |
| 209 (formerly rooms 201A, 208 and 209 were a combined space) | N/A | • Floor: Waxed vinyl asbestos tile
• Baseboard: Painted* hardwood (oak)
• Walls: Painted* redwood (all heart) paneling
• Ceiling: Painted* laminated wood | • Floor: 12 by 12 inches faux stone
• Walls: Painted gypsum board; some retail wood cladding
• Ceiling: Painted gypsum board or plywood | Compatible | • Floor: Good condition
• Walls: Good condition
• Ceiling: Good condition |
| 210, office (former storage) | • Ceiling | • Floor: Waxed asphalt tile
• Baseboard: Waxed rubber cove base
• Walls: Painted* gypsum board
• Ceiling: Unpainted laminated wood
• Doors: Hollow-core flush wood doors with metal louvers | • Floor: Carpet
• Doors: One hollow-core panel wood door; one sliding (pocket) wood door | Compatible | • Floor: Fair to good condition
• Walls: Fair condition
• Ceiling: Fair to good condition
• Doors: Fair condition |
| 211 | • Ceiling | • Floor: Waxed asphalt tile
• Baseboard: Waxed rubber cove base
• Walls: Painted* gypsum board
• Ceiling: Unpainted laminated wood
• Doors: Hollow-core flush wood door with metal louvers | • Floor: Carpet tile
• Walls: Two painted gypsum board; one painted rough-sawn plywood with high baseboard
• Doors: One hollow-core panel wood door (replaced original); one sliding (pocket) wood door
• Closet: Carpet tile; painted gypsum board walls; original wood ceiling; no door; wood cased opening | Compatible | • Floor: Fair to good condition
• Walls: Fair condition
• Ceiling: Fair to good condition
• Doors: Wood paneling and pocket - fair condition; wood hollow core “panel” door - fair condition
• Closet: Walls - fair condition; ceiling - good condition; cased opening - fair condition |
| 212, mechanical penthouse | N/A | • Floor: Unpainted plywood
• Walls: Exposed studs
• Ceiling: Unpainted wood sheathing and framing
• Door: One Painted* redwood shiplap siding door with plywood backing | • Floor: One painted plywood siding door with plywood backing (replaced original) | Compatible | • Floor: Fair condition
• Walls: Fair condition
• Ceiling: Fair condition
• Door: Fair condition |
Part 2: Treatment and Work Recommendations
Section Eight

Historic Preservation Objectives

The Degnan’s Restaurant and Loft building is currently being considered for eligibility for the National Register of Historic Places. It is expected to be determined eligible for individual listing under the Mission 66 Multiple Property District nomination. As such, it is important that all future work at the site be carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Properties (The Standards). The recommendations and guidelines set out in this HSR are based on The Standards.

The Standards provide general information for stewards of historic resources to determine appropriate treatments. They are intentionally broad in scope to apply to a wide range of circumstances and are designed to enhance the understanding of basic preservation principles. The Standards are neither technical nor prescriptive, but are intended to promote responsible preservation practices that ensure continued protection of historic resources. There are four basic treatments outlined in The Standards: preservation, rehabilitation, restoration, and reconstruction. Each level of treatment has its own set of standards that guide the approach to work. Generally, in planning for anticipated work on a historic structure, one of the four treatment levels is selected as the overall treatment approach.

Due to the needs related to the building’s on-going use as a dining facility for park visitors, the treatment selected for Degnan’s Restaurant and Loft is rehabilitation. The Secretary of the Interior’s Standards for Rehabilitation are included for reference in Appendix F. According to the Secretary of the Interior, Rehabilitation is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values.

Rehabilitation is further described as acknowledging “the need to alter or add to a historic property to meet continuing or changing uses while retaining the property’s historic character.” Rehabilitation assumes that at least some repair or alteration of the historic resource will be needed in order to provide for an efficient contemporary use; however, these repairs and alterations must not damage or destroy materials, features, or finishes that are important in defining the resource’s historic character. For example, certain treatments – if improperly applied – may cause or accelerate physical deterioration of the historic resource. This can include using improper repointing or exterior masonry cleaning techniques, or introducing insulation that damages historic fabric. In almost all of these situations, use of these materials and treatments will result in a project that does not meet the Standards.

In keeping with The Standards, interventions, structural improvements, and ongoing maintenance should be undertaken as necessary while minimizing the loss of historic fabric and retaining the existing form and appearance of the historic features. If possible, interventions should be designed to be reversible. Features should be thoroughly documented photographically before any work is undertaken in order to chronicle changes and to

Historic Preservation Objectives

aid in reversing any alterations that become inappropriate in the future.

The ultimate use of Degnan’s Restaurant and Loft is the continuation of its historic use as a dining facility for visitors to the Yosemite Valley. Even with a continued use, there are material deficiencies that should be addressed. In addition, alterations to the building are needed to provide a universally safe and accessible environment. The following sections detail requirements and recommendations for the treatment of the Degnan’s Restaurant and Loft building.
Section Nine

Requirements for Work

APPLICABLE CODES, LAWS, AND REGULATIONS

Compliance with prevailing building codes is not required for existing buildings, unless they undergo an addition, alteration, repair, or change in use or if a code deficiency presents a distinct hazard to life safety. This report assumes that rehabilitation may be undertaken in the future and provides guidance for this. According to NPS Director’s Order 28, historic structures are “generally expected to meet modern safety, access, and energy efficiency standards,” but it is also understood that the character of the historic resource may limit the interventions that are acceptable. The following preliminary analysis by Architectural Resources Group outlines the larger code, fire protection, life safety, and accessibility issues that currently exist at Degnan’s Restaurant and Loft.

The governing building codes for any proposed work include:

▪ 2015 International Building Code (IBC)
▪ 2015 International Existing Building Code (IEBC)

Additional applicable codes, laws, and directives include:

▪ 2015 International Mechanical Code (IMC)
▪ 2015 National Electrical Code (NEC) (NFPA 70)
▪ 2015 International Plumbing Code (IPC)
▪ 2015 International Energy Conservation Code (IECC)
▪ NFPA 101 Life Safety Code
▪ 2015 Architectural Barriers Act (ABA) Standards
▪ Director’s Order #42 (Accessibility for Visitors)
▪ Director’s Order #16A (Accessibility for Employees)
▪ Memorandum to Regional Directors and Park Superintendents: Disability Access in the National Park Service, 2006
▪ 2013 FDA Food Code (for restaurant and kitchen spaces)

The prevailing code, the IBC, prescribes solutions to conditions based on new construction models. When conformance with prevailing code would adversely affect the historic character of a qualified historic building, the IEBC may be invoked as a means to preserve historic fabric and explore solutions that meet the intent, but not necessarily the letter, of the prevailing codes. As a building found eligible for the listing in the National Register of Historic Places, Degnan’s Restaurant and Loft is considered a historic building under the IEBC and the provisions of IEBC Chapter 11 and IBC Chapter 34 may be used.

In addition, the California State Historic Building Code, (CHBC), may also be referenced, although it is not recognized as a Standard Code by the NPS. The CHBC is a performance-based code, which allows for alternative solutions to be considered in achieving the intended life-safety objectives of more prescriptive building codes in order to preserve historic features.

In addition to the IBC and IEBC, fire and life safety issues in the national parks are governed by the code of The National Fire Protection Association (NFPA). The primary NFPA code applicable to this building is NFPA 101, the Life Safety Code. Other NFPA codes to be considered include NFPA 70, the National Electric Code; NFPA 72, the National Fire Alarm Code; and NFPA 914, Code for Fire Protection in Historic Structures. Like the CHBC, NFPA 914 provides for performance-based approaches and operational solutions that meet the intent of NFPA 101 with the least impact on a building’s historic character.

Although not a building code, the Architectural Barriers Act (ABA) is a federal civil rights law enacted in 1968 that governs disabled access to facilities designed, built,
altered or leased with certain federal funds. In 2015, new design standards were released for new or altered facilities covered by the ABA. The 2015 ABA Accessibility Standards have been used in this analysis.

CODE REQUIREMENTS

Type of Construction
Degnan’s Restaurant and Loft is constructed with a mix of combustible and non-combustible materials. The primary structural beams and columns are non-combustible steel, however, the exterior walls, interior walls, roof deck, and floor decks are constructed with combustible wood framing. In only a few areas is the structural framing covered by fire resistant finishes. As such, the building would be considered Type V-B construction. Type V is described in IBC Section 602.5 as “that type of construction in which the structural elements, exterior walls and interior walls are of any materials permitted by this code.” Type V-A requires a 1-hour rated structural frame, while V-B requires no fire-resistance rating of any building elements.

Occupancy Group
Chapter 3 of the IBC defines the different types of uses for each occupancy group. As a restaurant and bar, the Degnan’s Restaurant and Loft building falls into the Assembly, or A occupancy group. The IBC further characterizes assembly occupancies by the density of the crowds to be expected in that use. Restaurants and bars fall into the A-2 group.

Allowable Area and Height
As described below, the Degnan’s Restaurant and Loft is an A-2 occupancy. For A-2 occupancies of Type V-B construction, the height limit is one story with a maximum height of 40 feet and the area permitted is 6,000 square feet. The building is currently two stories with a maximum height of 33 feet and 16,953.4 square feet in area. As such, it is not in compliance with the number of stories and area requirements. These requirements need not be met if the building does not undergo a change in use. However, if the building were equipped with an automatic fire sprinkler system throughout, the code limitations would increase to 2 stories with a maximum of 18,000 square feet, and the building would be in compliance with the IBC requirements.

Occupant Load and Egress Paths
Chapter 10 of the IBC establishes the number of allowable occupants in the building (the occupant load) based on the different building functions and the area of each within the building. The number of required exits and the required width for each exit path is then determined from the occupant loads being served.

The Degnan’s Restaurant and Loft building has four functional uses: assembly areas of the restaurant and bar use, including the commercial kitchen areas (occupant load of 15 net square feet per occupant); mercantile areas of the gift shop and deli (occupant load of 60 gross square feet per occupant); office areas (occupant load of 100 gross square feet per occupant); and accessory storage and mechanical areas (occupant load of 300 gross square feet per occupant). Applying these ratios to the area of the spaces related to these functions, the total occupant load for the building was determined to be 156 occupants for the first floor and 230 occupants for the second floor.

Floors of a building or individual rooms of Assembly occupancy type with an occupant load exceeding 49 are required to have two exits. This requirement applies to the restaurant space on the second floor, and the cafe and deli spaces on the first floor. Additionally, the two required exits must be separated by a distance of not less than one half the longest diagonal length of the floor. The configuration of the existing exit stairs conforms with this requirement.

The building code also stipulates minimum required widths for the exiting doorways and stairs. For the current second floor occupant load, the total required stairway width is 69 inches. The building has three stairways with a total stairway width of 126 inches. The second floor restaurant occupants and the ground floor cafe, deli, and gift shop occupants converge at the west side of the ground floor.
Requirements for Work

The combined occupant load of 349 requires a minimum total exit doorway width of 70 inches. This area is served by six doors with a combined width of 239 inches.

A minimum level of illumination and exit signage is required for all exit paths. The illumination must be provided by lights connected to an emergency power system that will operate when the building power fails. A comprehensive evaluation of these systems was not performed, but exit signs with emergency lights are mounted throughout the building.

Exit doors also have technical requirements for thresholds to reduce tripping hazards and maximum opening force limits to operate the latching hardware and overcome any door-closer device. A survey of these features was not performed as part of this study.

Toilet Fixtures

Chapter 29 of the IBC provides the requirements for the minimum number of plumbing fixtures based on the occupancy group and the number of occupants (Table 2902.1). Within the A-2 occupancy group, the code table further differentiates between facilities operated as restaurants and bars. More fixture are required for bar or nightclub facilities. The Degnan’s building has historically had a blend of these two uses, so the appropriate fixture number is open to some judgment. However, even if the entire facility were characterized as a bar, the existing facilities are sufficient to meet the code requirements, which would be three water closets and two lavatories for each sex (total of six water closets and four lavatories), one drinking fountain and one service sink. These requirements are still met with the existing facilities in the building.

Human Safety (Egress)

As noted earlier in this section, the means of egress from the Degnan’s Restaurant and Loft building are generally compliant with the IBC. This includes door and corridor widths, number of exits, and length of travel to the exits. The only non-compliant elements occur at the stairs, where the handrails do not meet code requirements for extensions requirements. In addition, the handrails at the two public stairways do not meet graspability requirements. Per the IEBC, all of these existing handrails may remain if they are not structurally dangerous.

Fire Protection

Fire protection systems including fire alarms, smoke detectors and sprinklers are not required by code if the building is not undergoing a change in use.

Energy Conservation

NPS is committed to leadership in sustainability practices. New buildings and major renovations are required to meet federal sustainability requirements, but upgrades are only required if a major renovation is planned and executed.

Hazardous Materials Abatement

Lead is typically an issue in buildings painted prior to 1978. Due to the building’s age, lead paint is likely to be found throughout the interior and exterior finishes of the Degnan’s Restaurant and Loft building. Although lead paint is likely present, it does not need to be removed if the paint coatings remain intact (i.e., they are not crumbling or peeling from the wall surface). Asbestos is also potentially present, typically in insulation, roofing cement or previous floor coverings. Abatement of asbestos is not required unless the materials are friable and will be disturbed during demolition work.

Universal Accessibility

In addition to the governing codes, NPS Management Policies require all historic structures to provide the “highest feasible level of physical access to historic properties that is reasonable, consistent with the preservation of each property’s significant historical features.”

A comprehensive accessibility survey was not performed as part of this study. The building appears to provide a high level of physical access for visitors and staff and to be in compliance with the Architectural Barriers Act (ABA) Standards.

1 NPS Management Guidelines 2006, 5.3.2.
Requirements for Work
Section Ten

Work Recommendations and Alternatives

ARCHITECTURAL RECOMMENDATIONS

The public spaces of Degnan’s Restaurant and Loft are the most significant areas in the building. The character-defining features of these spaces should be retained to the greatest extent possible. Some character-defining features also remain in the spaces of secondary significance. Although sensitive alteration of these spaces may be acceptable, the character-defining features should remain intact.

The service areas have been modified over time to meet the changing nature and requirements of food service and preparation within the building. Further alteration of these areas should focus on retaining historic spatial organization including any remaining historic room/wall configurations and their associated uses. Food preparation is a historic use within this building and although the utilities and support structures change over time, the historic use of these areas remains that of food preparation.

Human Safety (Egress)
There are no recommendations regarding egress at this time.

Fire Protection
The building has a limited fire alarm and smoke detection system. The system should be repaired as necessary and maintained regularly. Expansion of the system in the future should be considered. Although not required, consideration should be given to the installation of a sprinkler system to protect the building and its occupants.

Energy Conservation
A general approach to energy conservation at the Degnan’s Restaurant and Loft building should include balancing performance with preservation of historic materials. As long as the historic exterior siding, windows, and doors remain in good condition, they should be maintained in situ. The addition or improvement of weatherstripping at the exterior doors and any operable windows will improve thermal performance. The building’s energy performance could be improved through upgrades to the building HVAC system. Replacement of single-pane glazing with insulated glazing units at the window walls would also improve energy performance somewhat, the increase to the glazing thickness would significantly impact the exterior appearance of the building.

Hazardous Materials Abatement
Although lead paint is likely present in the building, it does not need to be removed if the paint coatings remain intact (i.e., they are not crumbling or peeling from the wall surface). A survey to determine if asbestos is present in the building is recommended.

Universal Accessibility
There are no recommendations regarding accessibility at this time.

MATERIAL CONSERVATION RECOMMENDATIONS

General Approach
The following material conservation recommendations are based on conditions observed during a visual survey of the Degnan’s Restaurant and Loft building. Recommendations are included for repair and maintenance, and are generally referred to as treatments. Treatments carried out on historic buildings typically respond to goals related to the preservation of materials and elements original to a building’s construction. Original or historic building materials, also known as historic fabric, contribute to the significance of a building because they inform the degree
of architectural integrity a building retains. Historic fabric is tied to aspects of integrity including “materials” and “workmanship,” which often represent traditional materials or building techniques which are no longer part of common construction practice. Retaining historic fabric increases the authenticity of character-defining elements and serves broader preservation goals of advancing knowledge about the history of building design and technology. Treatments need to be both visually appropriate to retain character-defining features, and physically compatible to minimize loss of and damage to historic building materials.

It is critical that all future work to the Degnan’s building shall be carried out in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (The Standards and The Guidelines). The Standards provide a framework for determining appropriate treatments for historic properties and are discussed elsewhere in this document. The Guidelines establish a hierarchy of treatments for materials and features that have been identified as character-defining and therefore should be retained and preserved:

- **Protection** generally involves the least degree of intervention possible, and includes the maintenance of historic material through preventive treatments such as cleaning, rust removal, caulking, and painting.

- **Repairing** is recommended when the physical condition of character-defining features and materials warrant additional work and should involve the least degree of intervention possible. Limited replacement in-kind or the use of substitute materials is also allowed.

- **Replacement** of a feature is permitted when it is missing or beyond repair, but only if sufficient evidence or documentation exists to reproduce the feature, and if it is desirable to re-establish the feature. Replacement with a new design may be acceptable if it is compatible with the character-defining features of the building.¹

Recommended exterior and interior treatments will focus on the preservation of existing historic fabric. Replacement will only be considered for severely deteriorated or compromised materials, and replacement materials should be selected and finished to match the historic materials (i.e., in-kind replacement).

Treating and Maintaining Historic Buildings

Architectural treatments recommended in this section encompass both repairs and conservation measures. Repairs refer to procedures associated with routine activities such as cleaning and painting, but also address standard maintenance measures that nonetheless require specialized skills and materials to address the needs of the historic buildings. Conservation treatments refer to methods that save or preserve existing historic materials rather than replacing them. Before they are implemented on historic features, new or unproven treatment materials and methods should be tested for physical, chemical, and visual compatibility with historic materials.

Proper and timely maintenance is crucial to the long-term preservation of historic buildings. The purpose of maintenance is to prolong the life of building materials and to protect the investments made in their construction and repair. Regular and well-timed preventive measures greatly reduce the cost of maintaining materials and systems by detecting deficiencies and deterioration before they become severe. A written Maintenance Plan can be useful to support planning and implementation of architectural treatments, including preventive maintenance. A Maintenance Plan should provide scoping and conceptual costs for repair projects, identify appropriate materials and methods for treating historic fabric, and establish inspection schedules for the continued upkeep and preventive care of building materials and systems.

Work Recommendations and Alternatives

Maintenance and repairs to the Degnan’s Restaurant and Loft building should focus on retaining and preserving intact character-defining features such as exposed steel frame structure, board-formed concrete piers, glazed walls, redwood siding, decorative wood soffit and broad eave overhangs, dining patio, interior wood wall and ceiling finishes, fireplaces and associated chimneys, and two steel stairs. Preventive maintenance including the periodic renewal of protective coatings, glazing putty, and sealants is critical to the long-term durability of historic fabric. Cleaning to remove dirt, debris, stains and biological growth is also recommended to decrease decay of building materials. If possible, deteriorated features should not be replaced; rather, they should be rehabilitated using small-scale patching, Dutchman repairs, or replacement of individual components.

The following are recommendations for treatment and maintenance of exterior and interior features of the Degnan’s Restaurant and Loft building.

Site and Exterior Features

Grading and Site

▪ Correct the grade at east elevation to eliminate earth/wood contact and to create a positive slope away from the building.

▪ Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at masonry and wood surfaces, and duff piles are a fire hazard in dry conditions.

▪ Remove trees close to the east elevation to prevent future damage to the building. The tree at the south elevation should be removed to reestablish the view from the glazed wall.

Shade Structure/Patio Roof

Note: The shade structure is a non-contributing building element and as such, total replacement or removal are viable options. Therefore, the following recommendations are advisable if the existing shade structure is retained rather than replaced.

▪ Mitigate rot and moisture damage of historic wood through the use of wood preservative treatments, repairs and epoxy fills. Losses may be filled as Dutchman repairs or with epoxy repair compound, shaped to match adjacent wood. Where historic wood is too damaged to be repaired, replace in-kind. New wood elements should be the same size and shape as the historic, and if possible be the same wood species.

▪ Repair splits in the wood.

▪ Reset the displaced wood elements.

▪ Reinstall partially detached metal straps.

▪ Prep and paint the entire shade structure. Treat bare wood with wood preservative. Match existing paint color.

▪ Monitor wood for insect and water damage; use resistograph to detect decay and cavities in all wood elements.

▪ Clean to remove dirt, cobwebs, and tree duff periodically. Diligent maintenance is necessary to ensure good working order and minimize wood deterioration in heavily vegetated areas.

Loading Dock

▪ Clear tree duff periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at masonry, and duff piles are a fire hazard in dry conditions.

Fence #1

▪ Rebuild/support the tilted fence section.

▪ Mitigate rot and moisture damage of historic wood through the use of wood preservative treatments, repairs, and epoxy fills. Losses may be filled as Dutchman repairs or with epoxy repair compound, shaped to match adjacent wood. Where historic wood is too damaged to be repaired, replace in-kind. New wood elements should be the same size and shape as the historic, and if possible be the same wood species.

▪ Repair splits in the wood.
Work Recommendations and Alternatives

- Prep and paint the entire fence. Treat bare wood with wood preservative. Match existing paint color.
- Monitor wood for insect and water damage; use resistograph to detect decay and cavities in all wood.
- Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at wood surfaces, and duff piles are a fire hazard in dry conditions.

Fence #2
- Replace the missing wood board.
- Monitor wood for insect and water damage; use resistograph to detect decay and cavities in all wood.
- Provide a gap at the base of the fence to facilitate air flow and mitigate potential deterioration.
- Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at wood surfaces, and duff piles are a fire hazard in dry conditions.

Pavement
- Wash concrete pavement at low pressure to remove dirt, debris and stains. Use chemical cleaners to remove difficult stains.
- Patch losses in the pavement at the patio, matching color and aggregate of the original pavement.
- Treat wood divider strips with preservative and stain.
- If too deteriorated to retain, replace in-kind.
- Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture at masonry and wood surfaces.

Roof

Roofing
- Clean the roof to remove dirt, tree duff and biological growth periodically. Clean flat roof areas more frequently.
- Clean the shingles at the north elevation to remove biological growth.
- Clean the flashing to remove dirt, debris and stains. Spot paint flashing areas with deteriorated paint.
- Clean the gutters to remove dirt and debris. Diligent maintenance is necessary to ensure good drainage in heavily vegetated areas.
- Install gutters throughout the entire stretch of the west elevation.
- Treat infested wood with fumigant treatment. Liquid borate preservatives applied to bare wood surfaces are also effective against insect infestation.
- Fill the cavities in the fascia using an epoxy repair compound and paint to match adjacent areas.
- Reinstall the displaced fascia elements at the east facade. See Page 46 for an image.
- Spot paint wood areas where paint has deteriorated. Match existing paint color.
- Monitor wood for insect and water damage; use resistograph to detect decay and cavities in all wood.
- When the asphalt shingle roof reaches the end of its service life, replace with wood shingles detailed to match original (see original drawings in Appendix C). If feasible, recreate fascia extensions to match original detail.

Walkway Ceiling and Roof Soffits
- Clean the ceiling to remove dirt, debris, and cobwebs periodically.
- Renew finishes periodically to prevent cellular structure of the wood from being damaged. Match existing finish type and color.

Exterior Walls

Foundation/Concrete Walls
- Repair cracked and spalled concrete.
- Clean concrete to remove general soiling and biological growth periodically.
- If continuing to paint concrete, paint all walls. Some walls are not painted currently. Match existing paint color.
Work Recommendations and Alternatives

Exposed Steel Framing and Concrete Piers
- When possible, conduct a paint analysis to determine original color of the beams. Where the existing paint is chipped, a different previous color is seen.
- Renew paint coatings at the steel beams. Match original color as determined by paint analysis.
- Remove no-smoking signs attached to the steel beams.
- Repair cracked and spalled concrete.
- Clean concrete piers to remove general soiling, biological growth, and stains. Clean periodically.
- Apply sealer to concrete piers to provide a barrier against water intrusion and protect against spalling, freeze-thaw damage, stains, deicing salts, and abrasion.

Wood Siding
- Clean to remove dirt, debris, biological growth and stains.
- Prep and paint the siding as required. Treat bare wood with wood preservative. Wood siding exposed to direct sun will require frequent renewal of paint. Match existing paint color.
- Conduct a paint analysis to confirm original color for the siding.
- Mitigate rot and moisture damage of historic wood through the use of wood preservative treatments, repairs, and epoxy fills. Losses may be filled as Dutchman repairs or with epoxy repair compound, shaped to match adjacent wood. Where historic wood is too damaged to be repaired, replace in-kind. New wood elements should be the same size and shape as the historic, and if possible be the same wood species.
- Repair splits in the wood.
- Monitor wood for insect and water damage; use resistograph to detect decay and cavities in all wood.
- Clear tree duff away periodically. Clear snow as soon as possible. Accumulation of duff and snow retains moisture and contributes to wood deterioration and biological growth.

Exterior Windows and Doors
- North and West Elevations, First Floor
 - Clean to remove dirt, debris, cobwebs and stains.
 - Remove paint from the transom windows glass.
 - Replace composite material adjacent Fireplace #3 with fire-rated glass.
 - Remove unused hardware accessories.
 - Conduct minor repairs to the wood elements as required.
 - Spot paint steel and wood mullion areas with deteriorated paint. Match existing paint color.
 - Repair the damaged automatic door closing box at the entrance door.
 - Lubricate hopper-style windows and doors to ensure smooth and proper operability.
- West Elevation, Second Floor
 - Clean to remove dirt, debris and cobwebs.
- North and South Elevations, Glazed Walls
 - Clean to remove dirt, debris and cobwebs.
 - Prep and paint the north elevation mullions to match the south elevation. Currently, there is use of two different shades of tan paint.
- North Elevation, Service Yard
 - Clean to remove dirt, debris and cobwebs.
 - Lubricate hopper-style windows and doors to ensure smooth and proper operability.
- East Elevation
 - Clean to remove dirt, debris and cobwebs.
 - Lubricate hopper-style windows and doors to ensure smooth and proper operability.
 - Repair the original louvered doors. Replace the missing and damaged louvers. Renew the paint coatings; match existing paint color.
Work Recommendations and Alternatives

Air Vent Covers
- Clean to remove dirt, debris and cobwebs.
- Repair the damaged air vent cover at the south elevation. Replace missing louvers and other wood elements.
- Spot paint covers with deteriorated paint. Match existing paint color.

Interior Features and Finishes

Ceiling
- Clean the original wood ceiling to remove dirt, debris, and cobwebs periodically.
- Renew finishes periodically to prevent cellular structure of the wood from being damaged. Ceiling areas closer to windows may require more frequent renewal of finish.

Lighting
- Future lighting selections should match the mid-century style from the original era of construction.

Wood Paneling
- Clean to remove dirt and cobwebs. Generally historic surfaces should be cleaned rather than painted. Spot painting should be implemented to the greatest extent possible rather than complete renewal of paint coatings.
- Remove paint at the original wood paneled wall surfaces and stain to match original treatment.

Floors
- Clean to remove accumulation of dirt and stains.
- Conserve and maintain original steel-troweled concrete floor. Remove painted text from the concrete in the gift shop. Protect with coverings, especially in high traffic areas.
- Repair ceramic tile and quarry tile floor finishes as required. If necessary, replace damaged tiles matching existing tiles whenever possible.
- When changes to the flooring are considered, returning to the historic concrete floor is recommended at the first floor.

Doors
- Clean to remove dirt, debris and stains.
- Prep and paint existing painted doors as required. Match existing paint color.
- Lubricate hardware periodically. Ensure smooth operability of all doors.

Stair #1
- Replace the rubber coverings at the two treads. The rubber tread coverings are not historic, so they may be removed if desired from all the treads.

Stair #2
- Renew the handrail finish. Match existing finish type and color.

Dumbwaiter
- Renew paint coatings.

Fireplace #1
- Clean concrete and brick lining to remove general soiling, efflorescence and stains. Remove corrosion from inside of the iron flue. Reconstruct black iron hood at fireplace and oak seatbacks at concrete benches, per the original drawings (see Appendix C).
- Rebuild or re-line chimney to restore fireplace to use.

Fireplace #2
- Remove paint from the concrete surfaces at the second floor to restore the original non-painted finish.
- Repair the cracked skylight glass panel.
- Rebuild or re-line chimney to restore fireplace to use.

Fireplace #3
- Clean hearth, brick lining and chimney to remove soot.

Public Restrooms
- No treatment required.
Work Recommendations and Alternatives

BUILDING SYSTEMS RECOMMENDATIONS

Structural

- Perform a geotechnical investigation prior to rehabilitation design.
- Analyze the frames. Strengthening could include adding shear walls or bracing in the line of the frames in the back-of-house areas.
- Strengthen wood shear walls, possibly by adding plywood on the interior.
- Provide additional shear resisting elements in the north south direction at the west side of the building, possibly by adding a steel frame in the window wall, or by converting the north-south wall outside the south wall from a wood-framed wall to a concrete wall. The concrete could be covered by the existing vertical siding.
- Verify deformation capacity of the glazing in the tall window walls.
- Repair or replace the trellis shade structure.

Mechanical

- Replacement of HVAC units to unify system types. New rooftop units providing heating and cooling to be selected upon calculations completed by a mechanical engineer and replace the existing units. Installation of programmable thermostats will provide an efficient method of conditioning the occupied areas. Kitchen areas will still need swamp coolers to make up for the air exhausted by the hoods.
- Retrofit the grease exhaust fans. Thoroughly clean and reseal the ducts, service the fans and provide zero-clearance wrapping for the grease hoods to prevent the combustible materials from being exposed to high temperatures caused by the hot airstream coming from the hoods.
- A review of the kitchen needs is recommended to evaluate the need for two kitchens and their optimal layout. This may reduce the number of hoods or their size.
- If the fireplaces are refurbished and brought up to working condition, provisions for make-up combustion air will be required.

Plumbing

- Repair of all sanitary lines, using trenchless techniques for underground pipes is strongly recommended. Installation of a grease interceptor. A new venting line for floor sink in second floor is also needed.
- Replacement of the water heaters with condensing type is recommended. At least repairing the multiple damaged and corroded pipes throughout the entire system.
- If the kitchens are re-evaluated, a more efficient layout of the plumbing system is suggested. This will require sawcutting the kitchen slab.
- Ground water sump pump should be tied directly into the SS line away from plumbing fixtures to avoid pressure surges caused by the pump to overflow the mop sink.

Electrical

- Replace existing panelboards and feeders.
- Replace dimming system control panel at second floor dining area.
- Expand the fire alarm and smoke detection system.
Work Recommendations and Alternatives
Appendix A

Bibliography

BOOKS

MANUSCRIPTS

Bibliography

ARTICLES

Doane Yawger, “Retired architect has turned his love of art into a profitable passion,” Merced Sun-Star, 21 January 2008.

WEBSITES

Bibliography

ARCHIVES
Denver Service Center, Technical Information Center, National Park Service, Denver, Colorado (E-Tic Database).
Yosemite National Park Archives, Yosemite Park & Curry Company Collection, Yosemite Lodge.
 Manuscripts, documents
 Drawings
 Photographs
Yosemite National Park Research Library
 Manuscripts, documents
 Drawings
 Photographs

INTERVIEWS
Don Evans, Yosemite National Park, 2 May 2016.
Appendix B

Historic Photographs

Degnan’s Restaurant under construction (south elevation), June 1958, Mission 66 Cooperative project photograph (Yosemite National Park Research Library Negative Files).
Historic Photographs

Degnan's Restaurant under construction (west elevation), June 1958, Mission 66 Cooperative project photograph (Yosemite National Park Research Library Negative Files).
Historic Photographs

Degnan’s Restaurant under construction (north elevation), June 1958, Mission 66 Cooperative project photograph (Yosemite National Park Research Library Negative Files).
Historic Photographs

Degnan’s Restaurant after completion, c. 1960 (Yosemite National Park Research Library Negative Files).
Historic Photographs

Degnan’s Restaurant after completion (south elevation), no date (Yosemite National Park Research Library Negative Files, photographer: Jack E. Boucher).
Degnan’s Restaurant after completion (west elevation), no date (Yosemite National Park Research Library Negative Files, photographer: Jack E. Boucher).
Historic Photographs

Degnan’s Restaurant after completion (looking toward southwest corner, no date (Yosemite National Park Research Library Negative Files, photographer: Jack E. Boucher).
Historic Photographs

Degnan’s Restaurant (on right) after completion, no date; post office in background (Yosemite National Park Research Library Negative Files, photographer: Jack E. Boucher).
Historic Photographs

View of the stair #1, facing west, 1977 (Yosemite National Park Archives, YP&CC Collections).
Historic Photographs

- Matchbook cover, date unknown (via Ebay)

- Matchbook cover, date unknown (via Ebay)
Degnan’s is the oldest business in Yosemite National Park and is wholly owned and operated by descendants of the founders. This family business includes a Bakery, Smorgasbord Restaurant, gift store and delicatessen.

Degnan’s postcard, date unknown (via Ebay). The hand-written date “c-1940’s” on the back of the postcard is incorrect since the construction was not started until 1958.
Historic Photographs
Appendix C

Selected Historic Drawings from 1957
Selected Historic Drawings from 1957
INDEX TO DRAWINGS

1. SITE & GRADING PLAN - ROOF PLAN - DRAWING ICN-000 - ENGINEERING PAGES 1 & 2 - DETAIL NOTES
2. FOUNDATION DETAILS - DETAIL NOTES
3. SECOND FLOOR PLAN - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES
4. ELECTRICAL PLAN - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES
5. EXTERIOR ELEVATIONS - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES
6. INTERIOR DETAILS - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES
7. MAIN FLOOR PLAN - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES
8. SECOND FLOOR PLAN - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES
9. THIRD FLOOR PLAN - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES
10. ROOF PLAN - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES - DETAIL NOTES

ARCHITECTS AND ENGINEERS
WALTER WAGNER & PARTNERS
1530 SAN MARIS ANAHEIM, CALIFORNIA
INABURGHE BUILDING MERCED, CALIFORNIA
TELEPHONE (209) 674-9607 - TELEPHONE MERCEDES, CALIFORNIA 0-090

DEGNAAMS
AT ATTENTION TO
YOSMIE NATIONAL PARK

S48

APPROVED

DEGNAAMS

S48

9-2-67

WALTER WAGNER

PAAK, HARSHA

ZELTNER, TRACEY

ADAMS, JACOB

PAK, SCHOFIELD

PAK, SCHOFIELD
Appendix D

Existing Condition Photographs

All photographs are by ARG, taken during March and May 2016.

EXTERIOR

View of the south-west corner.
Existing Condition Photographs

South elevation.
Existing Condition Photographs

South-east corner.
Existing Condition Photographs

South elevation.
Existing Condition Photographs

Board-formed concrete pier at the south elevation.
Existing Condition Photographs

South elevation.
Existing Condition Photographs

South-west corner (left); Degnan's sign on the west elevation wall at the south-west corner (right).
Existing Condition Photographs

West elevation. Note the glazed window wall and second story dormer windows.
Existing Condition Photographs

Covered walkway and outdoor dining area along the west elevation. Note the board-formed concrete piers, steel structural beams and decorative soffit.
Covered walkway along the west elevation. Note the board-formed concrete piers, steel structural beams and decorative soffit.
Existing Condition Photographs

Outdoor dining area along the west elevation.
Existing Condition Photographs

North elevation, dining patio.
Existing Condition Photographs

North elevation exterior dining area.
North-west corner showing the metal chimney in the first floor cafe.
Existing Condition Photographs

North elevation, service yard.
Existing Condition Photographs

North elevation, looking roughly south-west from the service road.
Existing Condition Photographs

Looking generally south along the east elevation.
Existing Condition Photographs

East elevation and roof enclosures.
Existing Condition Photographs

Mechanical equipment and bus shelter along the east elevation.
Existing Condition Photographs

East elevation
Existing Condition Photographs

INTERIOR, FIRST FLOOR

South hall, looking east toward the public restrooms (left); south stair (right).
Existing Condition Photographs

Stair #1, looking up.
Existing Condition Photographs

Men's public restroom.
Existing Condition Photographs

Women's public restroom.
Existing Condition Photographs

South hall, looking west (left); elevator at the south-west corner (right).
Existing Condition Photographs

Looking north along the west wall toward the delicatessen and cafe (left); looking north along the west wall of the delicatessen (right).
Existing Condition Photographs

View toward the east wall of the delicatessen.

View toward the north wall of the delicatessen.
Existing Condition Photographs

Looking north into the cafe.

Cafe, looking south.
Existing Condition Photographs

Cafe, ceiling (left); cafe, fireplace #3 (right).
Existing Condition Photographs

Stair #2 and wood screen.
Existing Condition Photographs

View kitchen (109) from the cafe (top-left); kitchen, looking north (bottom-left); kitchen, looking south toward the service stair (right).
Existing Condition Photographs

Storeroom (123) (left); storeroom office (right).
Existing Condition Photographs

Service hall (133).
Existing Condition Photographs

Gift shop, looking north-west.

Gift shop, looking north at enclosed fireplace #1.
Existing Condition Photographs

Gift shop, looking north at exposed fireplace #1.

Gift shop, looking east.
Existing Condition Photographs

Painted transom windows at the west elevation.

Original floor safe.
Existing Condition Photographs

INTERIOR, SECOND FLOOR

Overview looking north-west (left); looking west from the top of the south stair (right).
Looking north along the service wall from the top of the south stair.
Existing Condition Photographs

South window wall.
Existing Condition Photographs

North window wall.
Existing Condition Photographs

Looking north-east.
Existing Condition Photographs

Looking south-east.
Existing Condition Photographs

Looking north (left); looking south (right).
Existing Condition Photographs

West wall, looking north.
Existing Condition Photographs

Looking north at the north-west corner and central stair access.
Existing Condition Photographs

Central stair and office (202) at the north end (left); offices (202 and 203) at the top of the central stair (right).
Existing Condition Photographs

West wall, looking south-west (left); east wall, north-east corner (right).
Existing Condition Photographs

East wall, looking north-east.

East wall, looking roughly east.
Existing Condition Photographs

East wall, looking at the south-east corner (left); looking south along the east wall toward the top of the south stair (right).
Existing Condition Photographs

Fireplace #2 detail, looking south (left); fireplace detail, looking south-east (right).
Existing Condition Photographs

Skylight detail.

Fireplace, poured concrete detail.
Existing Condition Photographs

Kitchen, prep and storage area (207).

Dishwashing area (205).
Existing Condition Photographs

Pizza kitchen area (208).

Service counter, looking west into the dining room (209).
Existing Condition Photographs

Dumbwaiter.
Existing Condition Photographs

Stair #3, looking down.
Existing Condition Photographs

Second floor offices (203 and 202) at the south-east corner.
Existing Condition Photographs

SETTING

South access road.
Existing Condition Photographs

West side.
Existing Condition Photographs

West side (left); view of the Yosemite Falls (right).
Existing Condition Photographs

Looking west from the outdoor patio at the north elevation.
Existing Condition Photographs

Looking north from the east side.
Existing Condition Photographs

Looking west from the south-east corner.
Existing Condition Photographs

Looking north from the south-east corner.
Existing Condition Photographs

Looking north from the south-east corner.
Appendix E

Existing Conditions Drawings
Existing Conditions Drawings
Existing Conditions Drawings
Appendix F

The Secretary of the Interior’s Standards for Rehabilitation

The Standards are to be applied to specific rehabilitation projects in a reasonable manner, taking into consideration economic and technical feasibility. The Standards apply to historic buildings of all periods, styles, types, materials, and sizes. They apply to both the exterior and the interior of historic buildings. The Standards also encompass related landscape features and the building’s site and environment as well as attached, adjacent, or related new construction.

1. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

2. Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.

3. Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.

4. Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a historic property shall be preserved.

5. Deteriorated historic features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

6. Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.

7. Significant archeological resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken.

8. New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

9. New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.¹

¹ Secretary’s Standards for Rehabilitation, retrieved July 7, 2016 from https://www.nps.gov/tps/standards/rehabilitation.htm.
The Secretary of the Interior's Standards for Rehabilitation
Appendix G

Structural Letter Report
Structural Letter Report
DEGNAN’S DELI

Yosemite National Park

April 29, 2016

Structural Narrative

DESIGN CRITERIA

Building Code The 2015 International Building Code will be the governing code.

Dead and Live Loads Dead loads will be as calculated. Floor and roof live loads will be in accordance with the building code, which includes a requirement for 100 psf live load for dining rooms and restaurants. Snow loads will be based on Mariposa County requirements, typically 60 psf ground snow load, modified in accordance with the code for the steeply sloping roof and the flat roofs.

Seismic Loads The project is located in an area of moderate seismic risk. The seismic design coefficients S_{DS} and S_{D1} are approximately 60% of the values for a typical site in San Francisco:

- Site Category II
- Site Class D (stiff soil/default)
- $S_{DS} = 0.579g$ (compare 1.00 for San Francisco Site)
- $S_{D1} = 0.308g$ (compare 0.638 for San Francisco Site)

Seismic Design Category D

Wind Loads Wind loads will be in accordance with ASCE 7:

- Basic Wind Speed (3-Second Gust) 110 mph (V_{ult})
- Exposure Category B

Soils No geotechnical investigation has been prepared for the site. However, SOHA Engineers is familiar with the site soils based on experience in the area and site observations. It is anticipated that subsurface conditions will include sands, gravels, and silts interspersed with granite boulders. The original drawings indicate that an estimated allowable soil pressure of 2500 psf was used for the design. Allowable soil bearing capacity in accordance with the IBC (without a site-specific geotechnical investigation) are listed below:

- Sandy gravel, etc 3.0 ksf
- Sand, silty sand, clayey sand, etc 2.0 ksf (Use this value without Report)
- Clay, sandy clay silt, etc 1.5 ksf

BUILDING DESCRIPTION

General Building Description

Degnan’s Deli is a two-story modified “A-frame” building with overall plan dimensions of approximately 132 feet by 121 feet. In general, steel framing supports wood floor and roof framing. Walls are wood-framed. There are 6 major frames at the south end approximately 34 feet high at the peak and spaced at 16'-0” on center, and three shorter frames at the north end approximately 23 feet high, also spaced at 16'-0” on center, with their southern flank aligned with the major frames. Except for the end frame at the south end, the sloping girders of the frame only extend to a ground level foundation on the west side of the building. At the east, the frame girders terminate at the second floor level with the result that the east end of the building is mostly a one-story flat roofed structure.

There is a lowered service yard area with a loading dock area at the east end of the north side, formed by concrete retaining walls on the east and west up to 5 feet high.
There is a wood-framed shade/trellis structure attached to the building at the west end of the south side with a footprint of approximately 30 feet by 30 feet.

Site

The site is lightly wooded with both older and younger trees and there are granite boulders exposed in the landscaping. At the east side there are several trees that are quite close to the building.

Outside the west wall where the public entrances are located the area is graded level and paved with exposed aggregate concrete. The site slopes up slightly from the south to the north and from the west to the east, with the result that the foundation wall at the east side retains up to 2 feet of soil and there are six steps in the pathway at the southwest end that leads up to paved area outside the public entrances at the west side.

Available Drawings

Forty-one original microfilmed architectural, structural, electrical, mechanical, plumbing and food service design drawings are available. The structural drawings are missing sheet S1, and are very difficult to read, particularly with respect to the north end of the building.

As built drawings are available for the addition of the elevator in the southwest corner.

Foundation

Foundations are reinforced concrete. Perimeter foundations are very narrow, buried a minimum of 2 feet below adjacent grade, with maximum width of 10”. Similar foundations appear to be indicated for interior wood-framed bearing walls and walls that may be intended to function as shear walls.

The frame footings are 12 feet long by 2’-8” wide below grade, transitioning to 1’-4” wide above grade in a triangular shape to support the end of the frame beam, with a work point 3 feet above grade. A 1”-0” wide grade beam connects the frame footings at the frame beam work point.
Rectangular and square isolated spread footings support steel columns in the interior and there are also square spread footings, connected by a grade beam, supporting steel columns at the storefront area on the west side.

The narrow foundations at the north end of the east side include a 6” thick stem wall that retains up to 2 feet of soil. Retaining wall foundations for the loading dock area are L-shaped. Width is not readable on the plans.

The ground floor and the exterior paving at the upper part of the loading dock is a concrete slab-on-grade.

Superstructure

Steel columns include wide flange sections, double angles or channels connected together to form a square section, and pipe columns. The sloped A-frame beams are built up from channels (C15x33.9) welded together face-to-face to form a rectangular box 15” deep by 6-3/4” wide. The beams supporting second floor framing at the frames are also double channels (C12x20.7) and function as tie beams for the frames by “sandwiching” the frame beams. Fillet welds connect the tie beams to the frame beams all around. The tie beams extend out beyond the frame beams at the west wall to form a covered overhang, and at the east end of the frame there is a bolted connection to the frame beam, and a wide flange column below. C12 channels also extend out (by cantilever) beyond the frame beams on the
west side to form an “eyebrow” with windows at the second floor level, and on the east side (supported by small pipe columns) to provide roof framing for the east end of the second floor.

At the second floor and low roof, 2x14 joists span north-south between the frames, and east-west at the northeast corner, supported by a wood framed bearing wall at mid span. Floor and low roof sheathing is identified as ½" structural plywood.

Roof framing between the frames and at the eyebrows consists of alternating 2x4 and 2x6 wood members on edge, laminated by nailing together, and spliced in a staggered fashion at the ¼ points of the 16 foot span.

The members are visible from below, and there does not appear to be any separate sheathing above. Roofing was originally wood shakes over 1x3 strips, which has since been removed and replaced with composition shingles.

Wall framing is wood, generally 2x6 at 16” on center. Exterior walls are sheathed with 3/8” plywood as are certain interior walls. The perimeter walls at the low roof area are bearing walls, as is the north-south wall east of the boiler room and restrooms.

There is a north-south wood framed wall with concrete foundation extending out from the building at the west end of the south wall. This wall aligns with the edge of the second floor stair opening.

The north and south end walls of the A-frames, and the wall where the A-frames transition from the major frames to the shorter frames are window walls full height. Vertical and horizontal mullions are made up of structural steel channels with a plate welded across the flanges to form a
rectangular box beam. Vertical mullions are embedded in the foundation and supported at the second floor level by the frame tie beams and at the top by the sloping frame members. Glazing is held in place by steel bars tack welded and screwed to the mullions.

The west wall is a window wall from the foundation to the second floor level, full length.

Fireplaces

Fireplace “A” is a tapered triangular shaped structure, with a firebox on the ground floor and the second floor, and is constructed of cast-in-place concrete, precast concrete, structural steel members, and “black iron” sheet metal. It appears as if the double channel tie beams of frame #8, a pipe column and a W12 floor beam are incorporated into the south side of the structure. At the roof line, steel members frame to and around the structure to form a glassed in skylight. Extension above the roof line is minimal.

Fireplace “B” is a tapered rectangular structure with a single firebox at the ground floor, constructed of cast in place concrete at the base with steel angles and “black iron” sheet metal above. At the roof line additional angle framing provides anchorage to the roof deck (the 2x4 and 2x4 laminate). Extension above the roof line is approximately 9 feet when measured from the low side of the sloped roof.
Shade Trellis

The trellis at the north end of the building is supported by nine 4x4 posts as well as by attachment to the building on its south side. The posts are nominally anchored to the concrete paving below by light-gage steel post bases. The superstructure is framed with glu-lam beams approximately 4x12, and the shade elements at the top are 2x3 members set on edge. Lateral stability is provided by the connection to the building at the south end and by 4x4 knee braces at the tops of the posts.

Modifications to Building Structure

- The northernmost A-frame (one of the shorter frames) was either not constructed or it was removed making the building 16 feet shorter than indicated on the original drawings. This is significant in that, like the southernmost frame (and unlike all the other frames), that frame extended to a foundation at the east end.
- The flat roof area at the east appears to have been designed for use as a deck. It has since had the railing system removed, and additional framing added above the original framing to form hips, apparently to enhance drainage. This results in significant added dead load.
- An elevator with a reinforced concrete pit, HSS steel columns and framing, and sheathed with plywood, was added to the southwest corner. The steel framing ties into the southernmost A-frame, and the existing steel framing at the second floor stair opening. The elevator extends through the roof.
- Additional wall and roof framing was added above the second floor roof at the east side of the major A-frames, extending most of the length of the south end of the building and enclosing a small, original mechanical enclosure. This was apparently done to enclose
new mechanical equipment. Two dormers with louvers were also added above. This results in significant added dead load.

Lateral Force-Resisting System

The lateral force-resisting system consists of roof and floor diaphragms that transfer lateral loads to vertical resisting elements (such as the A-frames and plywood shear walls) which transfer the forces to the foundations.

It appears that the in-plane stiffness of the frames is relied upon to resist forces in the east-west direction. The exterior structurally-sheathed walls at the north and south at the east end are likely to contribute also. In the north-south direction there are interior and exterior shear walls at the eastern part of the building. The north-south wood framed wall with concrete foundation extending out from the building at the west end of the south wall is also likely to be intended to function as a shear wall.

Condition

The building is generally in good condition.

There are no indications of settlement or movement of the foundation.

No significant steel corrosion was noted. Water sheeting off the roof at east side of the south end fame is staining the frame beam and causing moss growth on the foundation:

At each frame foundation on the west side, there appears to have been repairs to the concrete under the bearing plate. There are no current signs of distress:
At the southernmost frame, the flanges of the exterior tie beam have been cut off at the connection to the sloped frame beam, at the east end, probably to prevent build-up of debris:

Minor cracking was noted in the interior slab-on-grade and in retaining walls:

The exterior slab-on-grade at the loading dock is substantially cracked:
At the time of the site visit (April 12, 2016) water was coming through weep holes in the retaining walls at the east side of the loading dock. This is obviously a long-standing problem as there is a permanent sump installed. No distress was noted in the retaining walls:

The fence at the top of the west retaining wall at the loading dock area is in poor condition and leaning at the north end:

Some of the 2x3 top wood pieces at the shade trellis at the north end of the building appear to be rotting and there appears to be some rot in some of the framing members.
Deficiencies

Discussion of deficiencies is divided between damage conditions noted and deficiencies in the lateral or gravity load resisting systems and elements.

Damage Conditions Instances of damage and deterioration of elements of the building are identified above. None of the conditions noted are considered critical to building structural performance.

Structural Deficiencies No calculations have been performed at this stage to determine loading and to confirm member or system capacity. Structural deficiencies are identified based on experience and engineering judgement.

Gravity Load-Carrying System

No obvious deficiencies have been identified. It will be important going forward with the building renovations to use current snow loading requirements to check elements of the roof framing, particularly the laminated 2x4 & 2x6 roof elements. The original flat roof framing that is now carrying an additional framing level should also be checked for adequacy with the snow load and the additional dead load.

Lateral System

The use of the A-frames to resist lateral forces in the east-west direction is questionable, except at the south end where the sloped frame members extend fully to the foundation level. The removal of the original shorter frame at the north end has likely reduced the overall lateral capacity. It will be important to analyze the frames in their current configuration and with the additional dead loads that have been added to the structure. It may be wise to check these frames using a very low response modification factor (to ensure that stresses remain in the elastic range) as their configuration and detailing is not consistent with any currently accepted frame types that resist seismic forces by inelastic deformation. The close spacing of the multiple frames which results in a small tributary area for each to support will limit the forces.

The wood shear walls used to resist forces in the north-south direction should be checked, as the 3/8” plywood sheathing has limited capacity. There also appear to be insufficient shear walls at the west side of the building, given that the entire west wall is a glass storefront, and the only contributing wall is the wall outside the south end and the sheathed walls of the elevator.
It will be important to verify foundation capacity under lateral forces, as the shear wall foundations are very narrow.

We estimate that roof and floor diaphragms are adequate. Connections between the diaphragms and the vertical resisting elements, and reinforcing at diaphragm openings should be checked.

Lateral Elements – Fireplaces The fireplace chimneys are well detailed and do not represent the same kind of hazard associated with unreinforced stone or masonry chimneys. There could be some risk of falling glass associated with movement of the chimney of Fireplace A under earthquake shaking.

Lateral Elements – Window Walls The glazing in the tall window walls at the end frames and the transition from the major frames to the shorter frames is probably not detailed for movement sufficient to account for frame deformations under strong shaking. The structural steel vertical mullions are probably adequate for wind loading.

Treatment Recommendations

- Perform a geotechnical investigation prior to rehabilitation design.
- Analyze the frames. Strengthening could include adding shear walls or bracing in the line of the frames in the back-of-house areas.
- Strengthen wood shear walls, possibly by adding plywood on the interior.
- Provide additional shear resisting elements in the north-south direction at the west side of the building, possibly by adding a steel frame in the window wall, or by converting the north-south wall outside the south wall from a wood-framed wall to a concrete wall. The concrete could be covered by the existing vertical siding.
- Verify deformation capacity of the glazing in the tall window walls.
- Repair or replace the trellis shade structure.
Appendix H

Mechanical/Plumbing Letter Report
Mechanical/Plumbing Letter Report
MEMORANDUM

TO: Kitty Vieth – Architectural Resources Group
DATE: 27 APR 2016
ADDRESS: Pier 9, The Embarcadero, San Francisco, CA
JOB #: 16014.00
FROM: Jaime Zaldivar
RE: YNP Degnan’s Deli HSR
ACTION: Provide Evaluation Report

Preliminary information:
List Engineering was contacted to complete an evaluation of the existing HVAC and plumbing systems serving the Degnan’s Deli building in Yosemite Village in Yosemite National Park.

Existing Documentation Review:
Based on the Documenta Surveys available drawings, the building has two stories and two kitchens, one at each floor. Condensers serving the coolers and freezers are located at an attached shed in the back of the house.

Field findings:
A Visual Inspection of the facility brought the following observations to our attention:

1. The first floor is conditioned using multiple technologies and approaches for different spaces.
 a. The public access area is conditioned by a series of electric curtain heaters at each entrance door (6 total).
b. The cafeteria area (west corner) is also supplied with cooling only swamp coolers (x2) that were winterized during the visit and acted as fresh air supply fans.

c. The Deli area has an evaporative cooler (winterized at the time of the visit) supplying cold air into the open space and the temporarily closed gift shop.

d. In addition, a series of electric heaters are installed.

e. There is one heating unit in the back of the house that is connected to the domestic hot water loop.

All these systems operate independently and “fight” each other due to the lack of controllability. Poor temperature control capabilities have been reported for the first floor.
2. The second floor is conditioned with two gas fired DX cooling packaged units (Carier 188MBH HTG) but Don Evans has reported insufficient heating capacity to maintain the second floor comfortable temperature when it is cold outside.

The extensive glazed area constitutes a significant thermal bridge whose heat loss might exceed the heating capacity of the two units.

3. There are three hoods in the building:

 a. 1 grease hood, 30' long approximately, in the first floor kitchen. The exhaust fan serving this hood is housed in a wood shed on the roof. Required clearances are not met, and
b. 1 type II hood in the first floor storage. Exhaust fan serving this hood is a roof mounted fan on the roof above.

c. 1 grease hood in the second floor kitchen. The exhaust fan for this hood is located in the same fan room as the first floor grease hood.

d. Make up air is provided to the second floor kitchen through a swamp cooler installed on the roof between the gas fired packaged units serving the second floor.

4. Domestic hot water is provided by a 199 kBTU/h gas fired tank type water heater with two indirect storage tanks. The main water heater volume capacity is 100 gal and each of the two storage tank is 120 gallons.
The DHW system has a recirculating loop and pump (Grundfos UP25-64). The system presents ample signs of corrosion in pipes and joints.

5. The water supply is a 2” line entering the building at the storage room. No backflow preventer or pressure reducing valve was found. A pressure gauge at the main showed 105 psi which is excessive pressure for the plumbing fixtures.

6. The sanitary sewer system is reported to be collapsed and damaged in several points. There is no grease interceptor serving the building. Instead, two small grease traps are installed on the second floor. In the dishwashing area. The soda fountain at the second floor discharges on a floor sink with no dilution trap. The corrosion is currently prevented by the staff dumping 2 gallons of water in the floor sink every night.

7. There is a two stage propane tank serving the building.

8. There is a sump pump collecting ground water and discharging it into the sanitary sewer pipe at the mop sink in the back of the house.

Recommended Actions:

Based on the information collected from the available drawings, reports from Don Evans and the field inspection, these are our recommended actions to remediate the deficiencies outlined above:

1. Replacement of HVAC units to unify system types. New rooftop units providing heating and cooling to be selected upon calculations completed by a mechanical engineer and replace the existing units. Installation of programmable thermostats will provide an efficient method of conditioning the occupied areas. Kitchen areas will still need swamp coolers to make up for the air exhausted by the hoods.
2. Retrofit the grease exhaust fans. A thorough clean and resealed of the ducts, service the fans and provide zero clearance wrapping for the grease hoods to prevent the combustible materials from being exposed to high temperatures caused by the hot airstream coming from the hoods.
3. A review of the kitchen needs is recommended to evaluate the need for two kitchens and their optimal layout. This may reduce the number of hoods or their size.
4. Repair of all sanitary lines, using trenchless techniques for underground pipes is strongly recommended. Installation of a grease interceptor. A new venting line for floor sink in second floor is also needed.
5. Replacement of the water heaters with condensing type is recommended. At least repairing the multiple damaged and corroded pipes throughout the entire system.
6. If the kitchens are re-evaluated, a more efficient layout of the plumbing system is suggested. This will require sawcutting the kitchen slab.
7. If the fireplace is refurbished and brought up to working condition, provisions for make-up combustion air will be required.

8. Ground water sump pump should be tied directly into the SS line away from plumbing fixtures to avoid pressure surges caused by the pump to overflow the mop sink.

End of report.
Appendix I

Electrical Letter Report
Electrical Letter Report
June 17, 2016

Architectural Resources Group
Pier 9 The Embarcadero
San Francisco, CA 94111

Attn: Kitty Vieth

Re: Degnan’s Restaurant & Loft
Electrical Systems Assessment

Dear Kitty,

O’Mahony & Myer visited the Degnan’s Restaurant & Loft Building on March 25, 2016, to review the existing electrical related conditions of the building. The purpose of our visit was to review the existing conditions of the electrical, lighting, and signal systems, to provide this written assessment of the conditions and abilities of each system.

Following is a summary of our findings.

Main Electric Service & Back-Up Generator:

The building is fed with an underground feeder to an 800 Amp, 120/208V, 3-Phase, 4-Wire rated electrical service, from a pad mounted Valley Utility Transformer located outside at the North/East exterior of the Building.

Transformer # YT-219 (at exterior)
Meter # 219F01 (at exterior)

The main service switchboard was recently upgraded (replaced) and is in good condition. It is located in the rear breezeway of the facility, in a Nema 3R, two-section, lockable enclosure, on a suitable housekeeping pad. The board is a Square D switchboard and includes a transient voltage surge suppressor device.

The building includes a permanently installed Cummins- Onan 200kW/250kVA, 120/208V, diesel emergency generator, located at the rear loading dock. It has a 275 gallon belly mounted fuel tank and appears to be in good condition. The generator is wired to the service switchboard through an 800 amp rated, Zenith, automatic transfer switch, with an 800 amp rated feeder.
The generator backs up the entire building service when in operation, so there is no specific load that will be cut-off during a power outage. The rating of the generator (250kW, 694 amps) is the limiting factor to how much power can be consumed during an outage. Large motor loads on the service may also affect the generator operation, but since there are no reports of past issues, it appears that the sizing is adequate for the current use of the building.

During our site review, the switchboard digital meter indicated an average load of 99 amps per phase (on the 800 amp rated board with a 694 amp rated generator). The first floor of the building was in use on a sunny day, with an average number of visitors present. Higher loads should be expected if the 2nd floor Restaurant is put into use, or additional cooling is in operation or added to the building.

Electrical Distribution System / Panel Boards:

Although the service switchboard and generator/transfer switch are fairly new and in good condition, all of the existing branch panelboards and feeders appear to be either original equipment or very old (installed many years ago).

The original panel boards are as manufactured by Delta Switchboard Company (circa 1958) and parts are no longer available. Retrofitted circuit breakers have been installed in some of the panelboards, with slight panel modifications to make them fit.

Some of the branch panels have been changed or added over the years to newer units, but these are also rather old and in poor condition.

Circuit identification on the panels is rather haphazard, with hand-written updates over the years and additional hand-written notes on the panel doors. Actual circuit descriptions may no longer be accurate, based on changes over the years.

All of the existing panels appear to be near the end of their useful life and would benefit from replacement to provide a safer system with modern protection and readily available parts.

A summary of the panel boards currently on the system is as follows:

Main Electric Room – First Floor:
1. Panel B (fed from MSB)
2. Panel C (fed from MSB)
3. Panel D (fed from MSB)

Kitchen – First Floor:
1. Panel E (fed from MSB)
2. Panel H (fed from Panel B)
3. Panel J (fed from Panel B)
4. Panel L (fed from Panel D)
5. Panel Q (fed from Panel B)

Rear Hallway – First Floor (Near office):
1. Panel K (fed from Panel B)
Cafeteria – First Floor:
1. Panel J1 – under stairs (unknown source)

Storage / IT Room – First Floor:
1. Panel IT-1 (unknown source)

HVAC Room – First Floor North Exterior:
1. Panel P1 (unknown source)

Kitchen – Second Floor:
1. Panel D7A (unknown source)
2. Panel F (fed from MSB)
3. Panel G (fed from Panel B)
4. Panel J3 (unknown source)

Lighting Systems:

Lighting in the building consist primarily of older bare (back-of-house) and lensed (front-of-house) fluorescent sources in most locations, with some old incandescent fixtures still remaining in small closets at the back-of-house areas and at the main stairs to the 2nd Floor. Some older screw-in bases have been retrofitted with screw-in LED lamps. There is also at least one very old metal halide downlight at the Cafeteria space ceiling.

Kitchen lighting (in Food Prep areas) consists of bare fluorescent lamps, but each lamp has been provided with a protective shroud (as required by health code) to protect from broken glass.

Lighting controls in the building consist primarily only of manual switches, with no automatic controls.

The 2nd Floor Dining area includes a small (very old) dimming system control panel, but the dimmers have long since been removed. The panel is old and outdated and should be replaced.

IT Systems:

The telephone and data system in the building is fed from an IT cabinet located in a First Floor Storage Room, behind the Cafeteria space. The wall mounted cabinet contains active data switches and patch panels, for cross connection of various station cables out to point of sale devices and office areas.

Data and Voice jacks appear to be Category 5 rated (older style) and each are terminated on separate patch panels in the cabinet (labeled data and voice), for cross connection to the data and voice systems.

The IT Cabinet has a power panel next to it that feeds the power to the IT equipment, however, this panel (designated IT#1) also feeds receptacles and some old equipment from the old Cafeteria space.
Fire Alarm System:

The building has a Silent Knight #5207, 8-Zone (upgradable to 16 zone), Fire Alarm Control Panel that appears to be in good condition and can be maintained. The panel monitors and controls various initiating zones and only a few notification devices throughout the building, as follows:

Initiation Zones:
1. Deli Cashier – front
2. Upstairs
3. First Floor Kitchen
4. First Floor Restroom
5. Second Floor Ansul System
6. Elevator Recall

Notification Devices (fairly limited):
1. One horn/strobe upstairs.
2. One horn/strobe at the elevator on the first floor.

No changes to this system are required at this time, however, there are only (2) spare zones available at this time. Future changes may require additional zones, which can be accommodated up to the (16) zone maximum.

Future building changes would also require more notification device coverage to bring the renovated areas up to current code. This is feasible with the existing panel.

If you have any questions or comments on the above assessment, please do not hesitate to call.

Sincerely,

Pieter Colenbrander, P.E.
O’MAHONY & MYER