Legacy on the Landscape—
30 years after the 1988 fires.

Yellowstone Resources and Issues Handbook
2018
Yellowstone Park and Protection Act

In 1872, the US Congress established Yellowstone National Park. The Yellowstone National Park Protection Act states, “the headwaters of the Yellowstone River…is hereby reserved and withdrawn from settlement, occupancy, or sale…and dedicated and set apart as a public park or pleasuring-ground for the benefit and enjoyment of the people.”

The Organic Act of the National Park Service

On August 25, 1916, President Woodrow Wilson signed the act creating the National Park Service, a federal bureau in the Department of the Interior. The Organic Act of the National Park Service states “the Service thus established shall promote and regulate the use of Federal areas known as national parks, monuments and reservations…by such means and measures as conform to the fundamental purpose of the said parks, monuments and reservations, which purpose is to conserve the scenery and the natural and historic objects and the wild life therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoyment of future generations.”

ON THE COVER

The Maple Fire began August 8, 2016. It eventually covered 45,425 acres—most of which was located on the site of the North Fork Fire of 1988. The Maple Fire presented the first opportunity for Yellowstone managers and researchers to observe large-scale fire behavior in a previous burn area.

“These fires [of 1988] left a legacy on the landscape that can be felt not only for decades, but for centuries to come.”

—Roy Renkin, NPS Vegetation Management Specialist.

Photo: August 14, 2016. NPS/Jerrett.
Yellowstone Resources and Issues Handbook
2018
An annual compendium of information about Yellowstone National Park

U.S. Department of the Interior • National Park Service • Yellowstone National Park
Yellowstone National Park, Wyoming 82190
Yellowstone National Park thanks Yellowstone Forever for support of this publication.

Yellowstone Resources and Issues is produced and reviewed annually by Yellowstone National Park staff.

Janine Waller, editor and designer
Tami Blackford, managing editor
Linda Young, executive editor

Copyrights
All material is in the public domain unless copyright is owned by a listed person or organization.
All graphics are by the National Park Service unless credited otherwise.

Suggested citation

Available free online at www.nps.gov/yell or for purchase through Yellowstone Forever. www.yellowstone.org
Contents

Welcome ... v
 Second Century of Service v

Park Facts .. 1

Frequently Asked Questions 3
 Canyon Village Area 5
 Fishing Bridge, Lake, and Bridge Bay 6
 Madison and West Yellowstone Area 7
 Mammoth Hot Springs Area 8
 Norris Area .. 9
 Old Faithful Area 10
 Tower–Roosevelt Area 11
 West Thumb and Grant Village Area 12

History of the Park 13
 The Earliest Humans in Yellowstone 14
 Increased Use ... 15
 The Little Ice Age 16
 Historic Tribes ... 16
 The Tukudika: “Sheep Eaters” 17
 European Americans Arrive 18
 Looking for Gold 18
 Expeditions Explore Yellowstone 18
 Birth of a National Park 20
 Formative Years 21
 The Army Arrives 23
 The National Park Service Begins 23
 Boundary Adjustments 25
 World War II ... 26
 Mission 66 .. 26
 Modern Management 26
 Involving Native Americans 26
 Complex Issues ... 27
 A Living Legacy ... 27

Preserving Cultural Resources 29
 Archeology .. 29
 Native American Affairs 32
 Historic Structures, Districts, and Cultural Landsapes .. 34
 Collections .. 49

Greater Yellowstone Ecosystem 53
 Heart of an Ecosystem 53
 Influence of Geology 54
 Air Quality ... 55
 Soundscapes .. 55
 Water .. 56
 Cycles and Processes 61
 Winter Ecology .. 66
 Climate Change .. 69
 Changes in Yellowstone Climate 71
 Examining the Evidence 76

Beyond Boundaries 82
 Research in the Park 84
 Land use ... 89
 Wilderness ... 90
 Winter Use ... 93
 Sustainable and Greening Practices 100
 Dark Skies ... 105

Geology ... 107
 What Lies Beneath 107
 At a Glance ... 108
 Geologic History of Yellowstone 109
 Hydrothermal Systems 115
 Yellowstone Lake Geology 119
 Earthquakes ... 122
 Glaciers .. 124
 Sedimentation and Erosion 126
 Fossils .. 127

Life in Extreme Heat 131
 About Microbes .. 132
 Thermophilic Bacteria 134
 Thermophilic Archaea 135
 Thermophilic Eukarya 136
 Thermophilic Viruses 138
 Thermophilic Communities 139
 Thermophiles in Time and Space 141

Vegetation .. 143
 Vegetation Communities 143
 Forests ... 146
 Other Vegetation Communities 151
 Wildflowers ... 152
 Rare Plants ... 153
 Invasive Plants .. 157
 Restoring Native Plants 159

Fire ... 161
 Ignition ... 162
 Fire Behavior .. 163
 Frequency of Fire 164
 Consequences of Fire 164
 Managing a Natural Process 167
 History of Fire Management 167
 The 1988 Fires .. 168

Wildlife ... 175
 Mammals ... 176
 Bears .. 177
 Bison ... 189
 Bighorn Sheep ... 201
 Mountain Goats .. 203
 Elk ... 204
 Moose ... 209
 Deer ... 211
Welcome

Yellowstone National Park is as wondrous as it is complex. The park has rich human and ecological stories that continue to unfold. When Yellowstone was established as the world’s first national park in 1872, it sparked an idea that influenced the creation of the National Park Service and the more than 400 sites it protects today across the United States. Yellowstone National Park also forms the core of the Greater Yellowstone Ecosystem. At 34,375 square miles, it is one of the largest, nearly intact temperate-zone ecosystems on Earth. The park continues to influence preservation and science, and we are pleased to share its stories with you.

Many people have dedicated their lives and careers to studying Yellowstone and the park has a long history of research and public interest. The park hosts more than 150 researchers from various agencies, universities, and organizations each year. They produce hundreds of papers, manuscripts, books, and book chapters on their work annually—a volume of information that is difficult to absorb. This compendium is intended to help you understand the important concepts about Yellowstone’s many resources and contains information about the park’s history, natural and cultural resources, and issues.

In addition to the references listed for each topic covered in this handbook, here are some interdisciplinary sources:

- www.nps.gov/yell
- Yellowstone Science, free from the Yellowstone Center for Resources, in the Yellowstone Research Library, or online at www.nps.gov/yellowstonescience.
- The park newspaper distributed at entrance gates and visitor centers.
- Site bulletins, published as needed, provide more detailed information on park topics such as trailside museums and the grand hotels. Free; available upon request from visitor centers.
- Trail guides, available at all visitor centers. A $1 donation is requested.

Second Century of Service

On August 25, 2016, the National Park Service celebrated its 100th birthday. For a century the National Park Service has cared for and protected wildlife, land, waterways, accomplishments, lessons, and stories belonging to the citizens of the United States. And we are ready to connect with and create the next generation of park visitors, supporters, and advocates.
Park Facts

Yellowstone National Park was established on March 1, 1872. Yellowstone is the world’s first national park.

GEOGRAPHY

3,472 square miles (8,991 km²)
2,221,766 acres or 899,116 hectares. Note: No area figures have been scientifically verified. Efforts to confirm the park’s total area continue.

63 air miles north to south (102 km)
54 air miles east to west (87 km)
96% in Wyoming, 3% in Montana, 1% in Idaho
Highest Point: 11,358 feet (3,462 m; Eagle Peak)
Lowest Point: 5,282 feet (1,610 m; Reese Creek)
Larger than Rhode Island and Delaware combined

About 5% covered by water; 15% by grassland; and 80% by forests

Precipitation

Annual precipitation ranges from 10 inches (26 cm) at the north boundary to 80 inches (205 cm) in the southwest corner

Temperature

Average daily, at Mammoth:
January: 9°F (–13°C)
July: 80°F (27°C)

Records:
High: 99°F (37°C), 2002 (Mammoth)
Low: –66ºF (–54ºC), 1933 (West Entrance, Riverside Station)

Yellowstone Lake

131.7 square miles of surface area (341.1 km²)
141 miles of shoreline (227 km)
20 miles north to south (32 km)
14 miles east to west (22 km)
Average depth: 138 feet (42 m)
Maximum depth: 430 feet (131 m)

VEGETATION

9 species of conifers (more than 80% of forest is lodgepole pine)
1,000+ species of native flowering species (3 endemic)
225 species of invasive plants
186 species of lichens

26 associated Native American tribes
More than 1,800 known archeological sites
More than 300 ethnographic resources (animals, plants, sites)
25 sites, landmarks, and districts on the National Register of Historic Places; many more eligible for listing

WILDLIFE

67 species of mammals, including:
7 species of native ungulates
2 species of bears
285 species of birds (150 nesting)
16 species of fish (5 nonnative)
More than 7 aquatic nuisance species (3 having significant detrimental effect)
5 species of amphibians
6 species of reptiles
2 threatened species: Canada lynx, grizzly bears

GEOLOGY

An active volcano
One of the world’s largest calderas at 45 x 30 miles (72 x 48 km)
1,000–3,000 earthquakes annually
More than 10,000 hydrothermal features
About 500 active geysers (more than half the world’s active geysers)
About 290 waterfalls Tallest waterfall near a road: Lower Falls of the Yellowstone River at 308 feet (94 m)

WILD LIFE

More than 720,000 museum items, including 30 historic vehicles
Millions of archived documents
More than 20,000 books (many rare), manuscripts, periodicals

EMPLOYEES

National Park Service (Dec. 2017)
Permanent (362 total)
Full time, year-round: 189
Career Seasonal: 169
Part time: 4
Term (variable duration): 12
Seasonal: 406

Concessioners

About 3,200 people work for concessioners at summer peak.

FACILITIES

11 visitor centers, museums, and contact stations
9 hotels/lodges (2,000+ hotel rooms/cabins)
7 NPS-operated campgrounds (450+ sites)
5 concession-operated campgrounds (1,700+ sites)

ROADS AND TRAILS

5 park entrances
466 miles (750 km) of roads (310 miles [499 km] paved)

More than 15 miles (24 km) of boardwalk, including 13 self-guiding trails

Approximately 1,000 miles (1,609 km) of backcountry trails

92 trailheads
301 backcountry campsites

CULTURAL RESOURCES

26 associated Native American tribes
More than 1,800 known archeological sites
More than 300 ethnographic resources (animals, plants, sites)
25 sites, landmarks, and districts on the National Register of Historic Places; many more eligible for listing

1 National Historic Trail
More than 900 historic buildings

BUDGET

Fiscal Year 2017 (in millions)
Total: $67.6
Federal Funding:
Congressional Annual Appropriations:
Operations and staff (base): $39.7
Wildland Fire: $1.2
Other Appropriations: $5.4
Other Funding:
Donations and Grants: $2.3

DISTRIBUTION OF BUDGET

Administration: 5%
Includes human resources, contracting, budget and finance, property management, telecommunications, and information technology

Facility Operations and Maintenance: 53%
Includes utilities, roads, trails, structures, historic preservation coordination, construction management

Resource Protection: 19%
Includes research and monitoring of natural and cultural resources, invasive species management

Visitor Services: 23%
Includes interpretation and education, law enforcement, emergency medical services, search and rescue, entrance station operations, structural fire activities, and park concessions management

VISITATION

The last time the park recorded fewer than 3 million annual recreational visits was in 2006, with 2.87 million visits.

Detailed park visitation information is available at https://irma.nps.gov/Stats/

Top 10 Visitation Years

1. 2016 4,257,177
2. 2017 4,116,524
3. 2015 4,097,710
4. 2010 3,640,184
5. 2014 3,513,484
6. 2012 3,447,727
7. 2011 3,394,321
8. 2009 3,295,187
9. 2013 3,188,030
10. 2007 3,151,343

Frequently Asked Questions

How did Yellowstone get its name?
Yellowstone National Park is named after the Yellowstone River, the major river running through the park. According to French-Canadian trappers in the 1800s, they asked the name of the river from the Minnetaree tribe, who live in what is now eastern Montana. They responded “Mi tse a-da-zi,” which translates as “Yellow Stone River” The trappers translated this into French and in 1797, explorer-geographer David Thompson first used the English translation. Lewis and Clark called the Yellowstone River by the French and English forms. Subsequent use formalized the name “Yellowstone.”

Is Yellowstone the largest national park?
No. More than half of Alaska’s national park units are larger, including Wrangell–St. Elias National Park and Preserve, which is the largest unit (13 million acres) in the National Park System. Until 1994, Yellowstone (at 2.2 million acres) was the largest national park in the contiguous United States. That year Death Valley National Monument was expanded and became a national park—it has more than 3 million acres.

Is Yellowstone the most visited national park?
No. Yellowstone is in the top five national parks for number of recreational visits. Great Smoky Mountains National Park has the most—more than 11.3 million in 2017. The Grand Canyon (6.2 million) Rocky Mountain (4.4 Million) and Yosemite (4.3 million) also received more recreational visits than Yellowstone (4.12 million) in 2017. Visit the website https://irma.nps.gov/Stats/ to find out more details about how many visitors come to our national parks.

What is the difference between a national park and a national forest?
National parks are administered by the Department of the Interior and national forests by the Department of Agriculture. The National Park Service is mandated to preserve resources unimpaired, while the Forest Service is mandated to wisely manage resources for many sustainable uses. Six national forests surround Yellowstone National Park.

How many rangers work in Yellowstone?
Approximately 780 people work for the National Park Service during the peak summer season. Approximately 190 are permanent, year-round employees. Park rangers work in education, resource management, law enforcement, emergency medical services, and backcountry operations. Other employees specialize in research, maintenance, management, administration, trail maintenance, fire management, and fee collection.

Can we swim in rivers and lakes?
Swimming is not recommended, and is occasionally prohibited, because most lakes and streams are dangerously cold. Firehole Canyon, near Madison Junction, has a swimming area popular in summer. Soaking in thermal features is illegal. The area known as the Boiling River, north of Mammoth Hot Springs, allows soaking in the Gardner River near thermal outflow, but not in the feature itself. Soaking is allowed during daylight hours only and at your own risk.

What is the highest peak in the park?
Eagle Peak in the southeastern part of Yellowstone is the highest at 11,358 feet (3,462 m).

What is the highest peak in the park?
Eagle Peak in the southeastern part of Yellowstone is the highest at 11,358 feet (3,462 m).

Why is Yellowstone called a biosphere reserve and a world heritage site?
The United Nations designated Yellowstone National Park as a biosphere reserve and a world heritage site in recognition of the worldwide significance of its natural and cultural resources. These designations have nothing to do with how Yellowstone is managed—the United Nations has no authority to dictate federal land management decisions in the United States—nor do they change the fact that Yellowstone is under the legal authority of the United States of America.

The October 26, 1976, United Nations designation of Yellowstone as a biosphere reserve stated:

Yellowstone National Park is recognized as part of the international network of biosphere reserves. This network of protected samples of the world’s major ecosystem types is devoted to conservation of nature and scientific research in the service of man. It provides a standard against which the effect of man’s impact on the environment can be measured.
The September 8, 1978, United Nations designation of Yellowstone as a world heritage site, requested by US President Richard Nixon and Congress, stated:

Through the collective recognition of the community of nations … Yellowstone National Park has been designated as a World Heritage Site and joins a select list of protected areas around the world whose outstanding natural and cultural resources form the common inheritance of all mankind.

To find out more, visit www.unesco.org/mab.

What is the Continental Divide?
Think of the Continental Divide as the crest of the continent. Theoretically, when precipitation falls on the west side of the Divide, it eventually reaches the Pacific Ocean. When it falls on the east side of the Divide, it eventually reaches the Atlantic Ocean. In Yellowstone (as elsewhere), this ridgeline is not straight. You cross the Continental Divide three times between the South Entrance and the Old Faithful area. Craig Pass is the highest crossing, at 8,262 feet (2,518 m).

How did Mt. Washburn form?
At 10,243 feet (3,122 m), this peak can be seen from many locations in the park. It is a remnant of an extinct volcano from the Absaroka Volcanics of about 50 million years ago. The volcano was literally cut in half by a volcanic eruption 640,000 years ago. Only the northern part of the original volcano is still visible.
Canyon Village Area

Notable Areas and Structures
• Artist Point
• Grand Canyon of the Yellowstone River
• Mount Washburn
• Hayden Valley

How tall are the falls?
Upper Falls: 109 feet (33 m); Lower Falls: 308 feet (94 m).

How big is the Grand Canyon of the Yellowstone?
This huge canyon is roughly 20 miles (32 km) long, more than 1,000 feet (305 m) deep, and 1,500–4,000 feet (457–1,219 m) wide at various points.

How did the canyon form?
Scientists continue to develop theories about its formation. After the Yellowstone Caldera eruption, 640,000 years ago, lava flows and volcanic tuffs buried the canyon area, but hydrothermal gases and hot water weakened the rock. The river eroded this rock, carving a canyon in the Yellowstone River beginning at Tower Fall and heading upstream to Lower Falls.

Where can I see the canyon and falls?
North Rim Drive: Walkways at Lookout Point and Brink of the Lower Falls lead to views of both waterfalls. The longest stretch of accessible trail can be accessed from parking lots at Lookout or Grand View. You can also see the Lower Falls from Red Rock and Inspiration points.

South Rim Drive: See the Lower Falls at Artist Point, from Uncle Tom’s Trail, and from a few places along the South Rim Trail; see the Upper Falls from two viewpoints at Uncle Tom’s Point.

Visit **Brink of Upper Falls** from a viewing area just off the Grand Loop Road south of Canyon Junction, between the entrances to North and South Rim drives.

Where can I see both falls at once?
The canyon bends between the Upper and Lower falls, so there is no location where they can be seen at the same time.

What causes the different colors in the canyon?
You could say the canyon is “rusting.” The colors are caused by oxidation of iron compounds in the rhyolite rock, which has been hydrothermally altered (“cooked”). The colors indicate the presence or absence of water in the individual iron compounds and hydration of minerals in the rock. Most of the yellows in the canyon result from iron and sulfur in the rock.

How much water goes over the falls?
The volume varies from 63,500 gallons (240,000 l) per second at peak runoff to 5,000 gallons (18,900 l) per second in the late fall.

What causes the Lower Falls’ green stripe?
The natural color of the water. A notch in the lip of the brink makes the water deeper and keeps it from mixing with air and becoming frothy, so the color is visible as it goes over the edge.

Who was “Uncle Tom”?
“Uncle Tom” Richardson was an early concessioner in the canyon area. From 1898–1905, he guided visitors to the canyon floor down a steep trail using rope ladders. Today the trail descends partway into the canyon via steep steel steps.

Can I get to the bottom of the canyon?
Only one trail in this area leads to the bottom of the canyon—Seven Mile Hole Trail, a strenuous, steep round trip of 10.2 miles.

Is Artist Point the location where Thomas Moran painted his Grand Canyon of the Yellowstone?
No, it is thought that some sketches were made from Moran Point and that a compilation of canyon views were incorporated into the painting.

What animals can I see in this area?
Inside the canyon, look for osprey soaring over the river or perched on their five-foot (1.5 m) diameter nests. They nest here from late April until early September. Also look for ravens and swallows. During July, a variety of butterflies feast on the abundant flowers in the meadows.

Hayden Valley, approximately five miles (8 km) south of Canyon Junction, is one of the best places in the park to view a wide variety of large mammals. Grizzly bears and black bears are often seen in the spring and early summer. Large herds of bison may be seen in the spring, early summer, and during the rut in August. Coyotes can almost always be seen in the valley; wolves are often seen as well.

Mount Washburn is an excellent place for viewing wildlife. Bighorn sheep and marmots can be seen on its slopes in the summer. Elk and bison frequent the valley north of the mountain.
Why can’t we fish from Fishing Bridge?
Overfishing for cutthroat trout here contributed to their decline in the lake. The trout also spawn here. For these reasons, fishing is prohibited from the bridge. It's still a good place to watch trout.

How cold is Yellowstone Lake?
During late summer, Yellowstone Lake becomes thermally stratified with several water layers having different temperatures. The topmost layer rarely exceeds 66°F (18.8°C), and the lower layers are much colder. Because of the extremely cold water, survival time for anyone in the lake is estimated to be only 20 to 30 minutes. In winter, ice thickness on Yellowstone Lake varies from a few inches to more than two feet with many feet of snow on top of the ice.

What happened to the old campground at Fishing Bridge?
The National Park Service campground was located where bears came to fish, and many conflicts with bears occurred. It was closed in 1989. A recreational vehicle park, operated by a concessioner, still exists in the area. Only hard-sided camping units or RVs are allowed at this campground.

What animals can I see in this area?
The lake is home to the largest population of Yellowstone cutthroat trout in North America. You can see these trout and longnose suckers from Fishing Bridge. In spring, you might be able to see trout leaping upstream at LeHardy’s Rapids, three miles north of Fishing Bridge. Also look for white pelicans, bald eagles, osprey, and a variety of ducks and other water birds.

The Fishing Bridge area, including Pelican Valley to the north and east, is especially significant to bears and other wildlife because lake, river, and terrestrial ecosystems merge here to create a diverse natural complex. Bears visit numerous streams in the spring and early summer to eat spawning trout. A bison herd winters in Pelican Valley, and individuals can be seen throughout the area. Moose used to be seen in the Yellowstone Lake area much more than they are today; look along water edges and in marshes. At Bridge Bay Marina, look for river otters.

What’s that smell at Mud Volcano?
That “rotten egg” smell comes from hydrogen sulfide gas. Sulfur, in the form of iron sulfide, gives the features their many shades of gray.
The Madison River is a good place to watch wildlife. Elk live along the river year-round and use meadows along the river during the spring for calving.

Madison and West Yellowstone Area

Historic Areas and Structures
- Madison Information Station

How did Madison Junction get its name?
Here, the Gibbon River joins the Firehole River to form the Madison River. (The Gibbon River flows from Grebe Lake through the Norris area to Madison Junction. The Firehole River starts south of Old Faithful and flows through the park’s major hydrothermal basins north to Madison Junction.) The Madison joins the Jefferson and the Gallatin rivers at Three Forks, Montana, to form the Missouri River.

What forms the cliffs around Madison Junction?
Part of what you see is the rim of the Yellowstone Caldera, plus lava flows. National Park Mountain is actually part of the lava flows. Some of these lava flows come down to the road through Firehole Canyon, approximately one mile (1.6 km) south of Madison Junction. Gibbon Falls, four miles (6.4 km) north of the junction, drops 84 feet (26 m) over a remnant of the caldera rim.

Why is the bridge between Madison and the West Entrance called “Seven Mile Bridge”?
Seven Mile Bridge is located midway between (and seven miles from both) the West Entrance and Madison Junction. This landmark serves as a convenient reference point and separates the rugged lava-lined Madison Canyon east of the bridge from gentle hills to the west.

Where is the swimming area?
South of Madison Junction is the entrance to the Firehole Canyon Drive, a one-way route that follows the Firehole River. Along this route are views of the Firehole Falls and a swimming area where the water is influenced by thermal activity below the surface. Swimming is undertaken at your own risk. Please note that climbing the cliffs around the swimming area erodes the thin topsoil and damages area habitat. Jumping from the cliffs is very dangerous and is forbidden.

What animals can I see in this area?
Along the Madison River, approximately 100 elk live year-round. The meadows adjacent to the Madison and Gibbon rivers are prime elk-calving areas in the spring. During the fall rut, elk frequent the meadows from Seven Mile Bridge to Madison Junction.

During spring, fall, and winter, herds of bison favor the same meadows. Bison often use the entrance road to travel from one foraging area to another. In summer, they move to Hayden Valley, their traditional summer habitat and breeding area.

Bald eagles have nested west of Seven Mile Bridge in recent years. Several pairs of ospreys also nest along the Madison. You might also see trumpeter swans, Canada geese, mallards, Barrow’s goldeneyes, and other water birds.

What is the National Park Mountain story?
The legend, which you can read about at the Madison Information Station, tells of explorers camping here in 1870 and deciding Yellowstone should be set aside as a national park. It is a wonderful story, but it isn’t true. Explorers did camp at the junction in 1870, but they apparently did not discuss the national park idea.

They camped in a location where people have camped for millennia. Archeologists have found campfire remnants, obsidian flakes, and bone fragments dating back at least 10,000 years.
Mammoth Hot Springs Area

Historic Areas and Structures
- Mammoth Hot Springs Historic District
- Fort Yellowstone Historic Landmark District
- Obsidian Cliff National Historic Landmark
- US Post Office
- Administrative Headquarters
- Roosevelt Arch

Are the springs drying up?
No, the overall activity and volume of water discharge remain relatively constant; most of the water flows underground.

Why are the dry springs so white?
Limestone, a naturally white rock, underlies this area. Hot water dissolves the compound calcium carbonate from the limestone, which is deposited at the surface to form travertine. Colors in the hot springs come from thermophilic organisms (thermophiles).

Where does the water come from?
In the surrounding mountains, rain and snow soak through the ground. The water is heated below the surface. As it rises, it dissolves the limestone rock that lies beneath the Mammoth area. Sometimes the water is concentrated in a few springs while at other times it may spread across many outlets. In every case, water follows the path of least resistance, which could be above ground or underground. Scientists estimate that, at any given time, about 10% of the water in the Mammoth Hot Springs system is on the surface; the other 90% is underground.

Does the heat for the hot springs come from the Yellowstone Caldera?
Mammoth Hot Springs lies to the north of the caldera. Scientists continue to study where the heat for the hot springs comes from. One possibility is the volcano’s magma chamber, similar to the heat source for other thermal areas closer to the 640,000-year-old caldera. There may also be basaltic magma bodies, related to the Yellowstone volcano, deep underground between Norris and Mammoth, which could be a contributing heat source.

Can we soak in the hot springs?
No, the travertine features are very fragile. You may soak in bodies of water fed by runoff from hydrothermal features, such as Boiling River north of Mammoth. It is open in daylight hours and closed during times of high water.

How was Bunsen Peak formed?
At 8,564 feet (2610 m), Bunsen Peak (south of Mammoth) is an intrusion of igneous material (magma) formed approximately 50 million years ago. Bunsen Peak and the “Bunsen burner” were named for physicist Robert Wilhelm Bunsen. He was involved in pioneering geyser research in Iceland. His theory on geyser activity was published in the 1800s, and is still considered accurate.

What were these old buildings?
Many of the older buildings grouped together in Mammoth belong to Fort Yellowstone, built by the US Army from 1891 to 1913, when it managed the park. A self-guided trail goes through this National Historic Landmark District.

What is the 45th parallel?
On the road between the North Entrance and Mammoth, a sign marks the 45th parallel of latitude, which is halfway between the Equator and the North Pole. The majority of the Montana–Wyoming state line does not follow the parallel through the park.

What forms the canyon north of Mammoth?
The canyon is the face of Mount Everts, 7,841 feet (2390 m) high. It consists of layered sandstones and shales—sedimentary deposits from a shallow inland sea 70–140 million years ago. Its steep cliffs—eroded by glaciers, floods, and landslides—provide habitat for bighorn sheep. It was named for explorer Truman Everts, a member of the 1870 Washburn Expedition who became lost. He was found east of the mountain, near Blacktail Plateau.

What animals can I see in this area?
Elk live here all year, and are wild and unpredictable. Each year visitors are chased, trapped, and sometimes injured by elk. Look for Uinta ground squirrels in front of the visitor center and among the hotel cabins during summer. You might see bighorn sheep in the canyon north of Mammoth. South of Bunsen Peak is Swan Lake Flat, where visitors often see elk, bison, and sometimes grizzlies and wolves. It is also an excellent place for watching cranes, ducks, and other birds.
The Norris Geyser Basin periodically experiences wide-spread change lasting a few days to a few weeks, often referred to as “thermal disturbance.”

Norris Area

Historic Areas and Structures
- Norris Soldier Station (now the Museum of the National Park Ranger)
- Norris Geyser Basin Museum

When will Steamboat Geyser erupt?
Steamboat’s major eruptions (more than 300 feet high) are unpredictable and often many years apart. Its most recent major eruption occurred September 14, 2014. Its frequent “minor phase” eruptions eject water 10 to 40 feet high.

When does Echinus Geyser erupt?
Once very predictable, Echinus’s eruptions are now months to years apart, but could become frequent again.

Why is Norris so colorful?
The colors here, like in other hydrothermal areas, are due to combinations of minerals and life forms that thrive in extreme conditions. At Norris, silica or clay minerals saturate some acidic waters, making them appear milky. Iron oxides, arsenic, and cyanobacteria create the red-orange colors. *Cyanidium* glows bright green. Mats of *Zygogonium* are dark purple to black on the surface where they are exposed to the sun, bright green beneath. Sulfur creates a pale yellow hue.

Is Norris Geyser Basin within the Yellowstone Caldera?
Norris is not in the Yellowstone Caldera, but it is close to the caldera rim, with its associated ring fractures and faults. The northern edge of the first caldera lies near the southern base of Mount Holmes, which is north of Norris. The Yellowstone Caldera’s rim is south and east of Norris.

What will I see on Virginia Cascade Drive?
This one-way drive east of Norris follows the Gibbon River upstream, alongside outcrops of volcanic rock (Lava Creek Tuff). Here, you are close to the Yellowstone Caldera’s rim. Virginia Cascade is formed by the Gibbon River as it crosses the tuff.

How did Norris get its name?
The area is named for Philetus W. Norris, the second superintendent of Yellowstone, who provided early detailed information about the hydrothermal features. Two historic buildings remain in this area: The Norris Geyser Basin Museum and the Museum of the National Park Ranger, which is located in the Norris Soldier Station, one of the only remaining soldier stations in the park.

What caused the roar of Roaring Mountain?
Early visitors would recount “roars” from Roaring Mountain, a large, acidic hydrothermal area (solfatara) with many fumaroles. The number, size, and power of the fumaroles has ebbed and flowed over time. Today the fumaroles are most easily seen in the cooler, low-light conditions of morning and evening.

Are mudpots in this area?
Yes, at Artists’ Paintpots, which is located 3.8 miles south of Norris Junction. The trail to the mudpots is steep, and one-mile (1.6 km) round-trip.

What animals can I see in this area?
Black and grizzly bears are sometimes seen. Grizzlies feed on carcasses of elk and bison that died in the hydrothermal areas during the winter.

Norris is one of the few areas in the park where sagebrush lizards live. They can survive here due to the warmth of hydrothermal activity. Listen for chorus frogs in spring.

Killdeer are found in the basin year-round, taking advantage of the brine flies and other insects that live in the warm waters.
Old Faithful Area

Notable Places
- Upper, Midway, and Lower geyser basins

Historic Areas and Structures
- Nez Perce National Historic Trail
- Old Faithful Inn
- Old Faithful Lodge
- Old Faithful Historic District
- Both general stores
- Queen’s Laundry, begun in 1881 but never finished, in Sentinel Meadows

How often does Old Faithful Geyser erupt; how tall is it; how long does it last?
The average interval between eruptions of Old Faithful Geyser changes; as of October 2015, the usual interval is 94 minutes ± 10 minutes, with intervals ranging from 51 to 120 minutes. Old Faithful can vary in height from 106 to more than 180 feet (32.3–54.8 m), averaging 130 feet (40 m). Eruptions normally last between 1½ to 5 minutes and expel from 3,700 to 8,400 gallons (14,000–31,800 l) of water. At the vent, water is 203ºF (95.6ºC).

Is Old Faithful Geyser as “faithful” as it has always been?
Since its formal discovery in 1870, Old Faithful has been one of the more predictable geysers. Over time, the average interval between Old Faithful’s eruptions has increased, in part due to ongoing processes within its plumbing. Changes also result from earthquakes. Prior to the Hebgen Lake Earthquake (1959), the interval between Old Faithful’s eruptions averaged more than one hour. Its average interval increased after that earthquake and again after the 1983 Borah Peak Earthquake, centered in Idaho. In 1998, an earthquake near Old Faithful lengthened the interval again; subsequent earthquake swarms further increased intervals. Sometimes the average interval decreases.

How can you predict it, if it changes so much?
Old Faithful Geyser has been analyzed for years by mathematicians, statisticians, and dedicated observers. They have shown that a relationship exists between the duration of Old Faithful’s eruption and the length of the following interval. During a short eruption, less water and heat are discharged; thus, they recharge in a short time. Longer eruptions mean more water and heat are discharged and they require more time to recharge. In the early morning, staff use information posted online by geyser enthusiasts who are in the basin or watching Old Faithful on the webcam outside regular visitor education center operating hours.

What else can I see at this geyser basin?
The Upper Geyser Basin has 150 geysers in one square mile, plus hundreds of hot springs. Five large geysers are predicted regularly by the education ranger staff. You can reach these and other features on boardwalks that loop through this basin. Walk or drive to nearby Black Sand Basin and Biscuit Basin to view their features.

What will I see at Midway Geyser Basin?
This geyser basin, six miles (9.6 km) north of the Old Faithful area, is small but spectacular. Excelsior Geyser is a 200 x 300 foot (61–91.4 m) crater that constantly discharges more than 4,000 gallons (15,142 l) of water per minute into the Firehole River. Grand Prismatic Spring, Yellowstone’s largest hot spring, is 200–330 feet (61–100 m) in diameter and more than 121 feet (36.8 m) deep.

Can I see mudpots in this area?
You’ll see all four types of thermal features (geysers, hot springs, fumaroles, and mudpots) at Fountain Paint Pot, eight miles north of Old Faithful and two miles north of Midway Geyser Basin. Be sure to drive the Firehole Lake Drive, where you can walk past hot cascades, hot springs large and small, and view geysers such as White Dome and Great Fountain.

What animals can I see in this area?
Hydrothermal basins provide important habitat for wildlife in the Old Faithful area. Bison, coyotes, and ravens live here year-round. In the winter, bison take advantage of the warm ground and thin snow cover. Both black and grizzly bears are seen, especially during the spring when winter-killed animals are available. In summer, yellow-bellied marmots are frequently seen in the rocks behind Grand Geyser and near Riverside Geyser. Thermophiles live in the runoff channels of hot springs and geysers, providing food for tiny black ephydrid flies. The flies, in turn, lay their eggs in salmon-colored clumps just above the water surface where they are then preyed upon by spiders. Killdeer also feast on the adult flies.
The rock columns in the canyon north of Tower Fall were formed by a lava flow that cracked into hexagonal columns as it slowly cooled.

Tower–Roosevelt Area

Notable Places
- Lamar Valley
- Northeast Entrance Road

Historic Areas and Structures
- Lamar Buffalo Ranch
- Northeast Entrance Station
- Tower Ranger Station Historic District
- Roosevelt Lodge Historic District
- Roosevelt Lodge

Why is this area called “Tower”?
The area is named for its major waterfall, Tower Fall, which is named for the tower-like rock formations at its brink.

How tall is Tower Fall?
132 feet (40 m).

Old pictures show a big boulder at the brink of Tower Fall. When did it fall?
W.H. Jackson’s photograph in 1871 clearly shows the boulder. For more than a century, visitors wondered when it would fall. It finally did in June 1986.

Can I hike to the bottom of Tower Fall?
No, the lower part of the trail is closed because of severe erosion. You can walk past the Tower Fall Overlook for 0.75-mile (1.2 km), ending with a view of Tower Creek flowing into the Yellowstone River. If you have heart, lung, or knee problems, you may want to enjoy the view from the overlook.

What formed the rock columns in the canyon north of Tower Fall?
The rock columns were formed by a basaltic lava flow that cracked into hexagonal columns as it slowly cooled. You can see other basalt columns at Sheepeater Cliff along the Gardner River between Mammoth and Norris.

How did Petrified Tree become petrified?
Petrified Tree, west of Tower Junction, is an excellent example of an ancient redwood. Petrification of this and other trees occurred for two main reasons. They were buried rapidly by volcanic deposits and mudflows 45–50 million years ago, which minimized decay. The volcanic deposits also contributed high amounts of silica to the groundwater. Over time, the silica precipitated from ground water, filled the spaces within the trees’ cells, and petrified the trees.

In Yellowstone, glacial ice, running water, and wind have uncovered vast areas of petrified trees. With proper optical aids, you can see some of these areas from the road that follows the base of Specimen Ridge, east of Tower Junction.

Did Teddy Roosevelt really stay at Roosevelt Lodge?
No, but President Theodore Roosevelt camped nearby during his visit to Yellowstone in 1903. The lodge opened in 1920. The area is registered as the Roosevelt Lodge Historic District. Contrary to popular belief, it was not President Roosevelt but President Ulysses S. Grant who signed the order that created Yellowstone National Park.

What animals can I see in this area?
Elk, bison, deer, and pronghorn thrive in the grasslands of this area, known as the northern range. Some of the largest wild herds of bison and elk in North America are found here. The northern range is critical winter habitat for these large animals, which in turn provide food for several packs of wolves. Coyotes are also common, and occasional bobcat, cougar, or red fox are reported.

The gorge and cliffs between the junction and Tower Fall provide habitat for bighorn sheep, osprey, peregrine falcons, and red-tailed hawks. Both grizzly and black bears are sighted throughout the area, particularly in the spring. Black bears are more commonly seen around Tower Fall and Tower Junction. Grizzlies are sometimes seen in the Lamar Valley and on the north slopes of Mount Washburn, particularly in the spring when elk are calving. Road pullouts provide excellent places from which to watch wildlife.

What is the purpose of the fenced areas north of the Blacktail Ponds?
Many park researchers have used the fenced areas on the northern range to study the long-term effects of grazing by fencing out large herbivores. Researchers can use existing data from the permanent plots or collect new data.
West Thumb and Grant Village Area

Why is this area called West Thumb?
Yellowstone Lake resembles the shape of a human hand; West Thumb is the large western bay that would be the thumb. The bay is a caldera within a caldera. It was formed by a volcanic eruption approximately 174,000 years ago. The resulting caldera later filled with water, forming an extension of Yellowstone Lake. West Thumb is also the largest geyser basin on the shore of Yellowstone Lake—and its hydrothermal features lie under the lake too. The heat from these features can melt ice on the lake’s surface.

How did Fishing Cone get its name?
People learned they could stand on this shoreside geyser, catch a fish in the cold lake, and cook it in the hot spring. Fortunately for anglers, this geyser has only two years of known eruptions: In 1919, it erupted frequently to 40 feet and in 1939 to lesser heights. Fishing here is now prohibited.

How hot are the springs at West Thumb?
Temperatures vary from less than 100ºF (38ºC) to just over 200ºF (93ºC).

How deep are Abyss and Black pools?
Abyss is about 53 feet deep; nearby Black Pool is 35–40 feet deep.

The mudpots here aren’t like they used to be. What happened?
Like all hydrothermal features, the West Thumb Paint Pots change over time. During the 1970s and 1980s, they were less active; they became more active in the 1990s.

What happened to the development at West Thumb?
Early visitors would arrive at West Thumb via stagecoach from the Old Faithful area. They could continue on the stagecoach or board the steamship “Zillah” to reach the Lake Hotel. Later, a gas station, marina, photo shop, store, cafeteria, and cabins were built here. They were removed in the 1980s to protect the hydrothermal features and improve visitor experience. Grant Village now provides most of these facilities. West Thumb still has restrooms, picnic tables, and a bookstore and information desk in the historic ranger station.

What can I do in the Grant Village and West Thumb area?
This area provides numerous opportunities for adventure. Take in the spectacular views of West Thumb and the Absaroka Mountains from the shores of Yellowstone Lake. Explore the hot springs, mud pots, and geysers of the West Thumb Geyser Basin. Hike one of the local trails, like the Scenic Lake Overlook or begin an overnight backpacking excursion at one of the many wilderness trailheads. Also, private and commercial paddling excursions launch from the Grant Village Marina.

Why does Grant Campground open so late in the year?
Grizzly and black bears frequent this area in spring when cutthroat trout spawn in five nearby streams. To protect bears and people, the campground opens after most of the spawn is over.

Isn’t there a unique lake nearby?
That’s Isa Lake, at Craig Pass. At one time, it was probably the only lake on Earth that drained naturally backwards to two oceans, the east side draining to the Pacific and the west side to the Atlantic. If this still occurs, it is only at the peak of snow melt after winters with deep snowfall.

What’s that big lake you see south of Craig Pass?
Shoshone Lake is the park’s second largest lake, and is thought to be the largest lake in the lower 48 states that cannot be reached by road. Its maximum depth is 205 feet (62.4 m) and it has an area of 8,050 acres (32.6 km²). The Shoshone Geyser Basin contains one of the highest concentrations of geysers in the world—more than 80 in an area 1,600 x 800 feet (488 x 244 m).

What animals can I see in the West Thumb area?
In addition to the bears that frequent this area in spring, elk cows and their new calves are often seen here in May and June. Bald eagles and osprey dive into the bay to catch cutthroat trout. Other birds include ravens, common loons, and bufflehead and goldeneye ducks.

In winter, pine martens are sometimes seen. River otters pop in and out of holes in the ice. Coyotes and bald eagles eat their fish scraps.
History of the Park

The human history of the Yellowstone region goes back more than 11,000 years. The stories of people in Yellowstone are preserved in objects that convey information about past human activities in the region, and in people’s connections to the land that provide a sense of place or identity.

Today, park managers use archeological and historical studies to help explain how humans left their mark in times gone by. Ethnography helps us learn about how groups of people identify themselves and their connections to the park. Research is also conducted to learn how people continue to affect and be affected by places that have been relatively protected from human impacts. Some alterations, such as the construction of roads and other facilities, are generally accepted as necessary to accommodate visitors. Information on the possible consequences of human activities both inside and outside the parks is used to determine when restrictions are needed to preserve each park’s natural and cultural resources as well as the quality of the visitors’ experience.

People have spent time in the Yellowstone region for more than 11,000 years. Rock structures like this are evidence of the early presence of people in the area.

History of Yellowstone National Park

Precontact
- People have been in Yellowstone more than 11,000 years, as shown by archeological sites, trails, and oral histories.
- Although Tukudika (a.k.a. Sheep Eaters) are the most well-known group of Native Americans to use the park, many other tribes and bands lived in and traveled through what is now Yellowstone National Park prior to and after European American arrival.

European Americans Arrive
- European Americans began exploring in the early 1800s.
- Osborne Russell recorded early visits in the 1830s.
- First organized expedition explored Yellowstone in 1870.

Protection of the Park Begins
- Yellowstone National Park established in 1872.
- Railroad arrived in 1883, allowing easier visitor access.
- The US Army managed the park from 1886 through 1918.
- Automobiles allowed into the park in 1915, making visits easier and more economical.
- National Park Service created in 1916.
- First boundary adjustment of the park made in 1929.

Park Management Evolves
- 1963: “Leopold Report” released. Recommended changes to how wildlife is managed in the park.
- 1988: “Summer of Fire.”
- 1995: Wolves restored to the park.
- 1996: Federal buyout of gold mine northeast of Yellowstone protected the park.
The Earliest Humans in Yellowstone

Human occupation of the greater Yellowstone area seems to follow environmental changes of the last 15,000 years. How far back is still to be determined—there are no known sites in the park that date to this time—but humans probably were not here when glaciers and a continental ice sheet covered most of what is now Yellowstone National Park. They left behind rivers and valleys people could follow in pursuit of Ice Age mammals such as the mammoth and the giant bison. The last period of ice coverage ended 13,000–14,000 years ago, and sometime after that and before 11,000 years ago, humans where here on this landscape.

Archeologists have found little physical evidence of their presence except for their distinctive stone tools and projectile points. From these artifacts, scientists surmise that they hunted mammals and gathered berries, seeds, and plants.

As the climate in the Yellowstone region warmed and dried, the animals, vegetation, and human lifestyles also changed. Large Ice Age animals that were adapted to cold and wet conditions became extinct. The glaciers left behind layers of sediment in valleys in which grasses and sagebrush thrived, and pockets of exposed rocks that provided protected areas for aspens and fir to grow. The uncovered volcanic plateau sprouted lodgepole forests. People adapted to these changing conditions and were eating a diverse diet including medium and small animals such as deer and bighorn sheep as early as 9,500 years ago. They may have also established a distinct home territory in the valleys and surrounding mountains.

This favorable climate would continue more than 9,000 years. Evidence of these people in Yellowstone remained un-investigated, even long after archeologists began excavating sites elsewhere in North America. Archeologists used to think high-elevation regions such as Yellowstone were inhospitable to humans and thus, did little exploratory work in these areas. However, park superintendent Philetus W. Norris (1877–82) found artifacts in Yellowstone and sent them to the Smithsonian Institution in Washington, D.C. Today, archeologists study environmental change as a tool for understanding human uses of areas such as Yellowstone.

More than 1,850 archeological sites have been documented in Yellowstone National Park, with the majority from the Archaic period. Sites contain evidence of successful hunts for bison, sheep, elk, deer, bear, cats, and wolves. Campsites and trails in Yellowstone also provide evidence of early use. Some trails have been used by people since the Paleoindian period.

Some of the historic peoples from this area, such as the Crow and Sioux, arrived sometime during the 1500s and around 1700, respectively. We have little scientific evidence to conclusively connect other historic people to prehistoric tribes, but oral histories provide links. Prehistoric vessels known as “Intermountain Ware” have been found in the park and surrounding area, and link the Shoshone to the area as early as approximately 700 years ago.
Increased Use
People seem to have increased their use of the Yellowstone area beginning about 3,000 years ago. During this time, they began to use the bow and arrow, which replaced the atlatl, or spear-thrower, that had been used for thousands of years. With the bow and arrow, people hunted more efficiently. They also developed sheep traps and bison corrals, and used both near the park, and perhaps in it. This increased use of Yellowstone may have occurred when the environment was warmer, favoring extended Paleolithic Periods.

Archaic Period (8,000–1,500 years ago)

7,000 years ago
Vegetation similar to what we find today begins to appear. Projectile points begin to be notched.

Beginning 9,000 years ago until 1,000 common era (CE), people leave traces of camps on shores of Yellowstone Lake.

3,000 years ago
Oral histories of the Salish place their ancestors in the Yellowstone area.

1,500 years ago
Bow and arrow begins to replace atlatl (throwing spear); sheep traps (in the mountains) and bison corrals (on the plains) begin to be used in the Rocky Mountain region.

Obsidian Cliff

Location
Grand Loop Road between Mammoth and Norris.

Significance
- Obsidian is found in volcanic areas where the magma is rich in silica and lava has cooled without forming crystals, creating a black glass that can be honed to an exceptionally thin edge.
- Unlike most obsidian, which occurs as small rocks strewn amid other formations, Obsidian Cliff has an exposed vertical thickness of about 98 feet (30 m).
- Obsidian was first quarried from this cliff for toolmaking more than 11,000 years ago.
- It is the United States’ most widely dispersed source of obsidian by hunter-gatherers. It was gradually spread along trade routes from western Canada to Ohio.
- Obsidian Cliff is the primary source of obsidian in a large concentration of Midwestern sites, including about 90% of obsidian found in Hopewell mortuary sites in the Ohio River Valley (about 1,850–1,750 years ago).

Recent History
About 90% of the forest on Obsidian Cliff plateau burned in 1988. The fire did not damage the cliff face and cleared the surface; creating optimal conditions for archeological surveys. The surveys have added substantially to knowledge about how and where obsidian was mined from the bedrock and collected as cobbles deposited within the overlying glacial till. The site was designated a National Historic Landmark in 1996. Thick stands of lodgepole pine have now re-covered the area.

The kiosk at Obsidian Cliff, constructed in 1931, was the first wayside exhibit in a US national park. It was listed on the National Register in 1982.
seasonal use on and around the Yellowstone Plateau. Archeologists and other scientists are working together to study evidence such as plant pollen, landforms, and tree rings to understand how the area’s environment changed over time.

The Little Ice Age

Climatic evidence confirms the Yellowstone area experienced colder temperatures during what is known as the Little Ice Age—mid-1400s to mid-1800s. Archeological evidence indicates fewer people used this region during this time, although more sites dating to this period have been located. Campsites appear to have been used by smaller groups of people, mostly in the summer. Such a pattern of use would make sense in a cold region where hunting and gathering were practical for only a few months each year.

Historic Tribes

Greater Yellowstone’s location at the convergence of the Great Plains, Great Basin, and Plateau Indian cultures means that many tribes have a traditional connection to the land and its resources. For thousands of years before Yellowstone became a national park, it was a place where people hunted, fished, gathered plants, quarried obsidian, and used the thermal waters for religious and medicinal purposes.

Tribal oral histories indicate more extensive use during the Little Ice Age. Kiowa stories place their ancestors here from around 1400 to 1700. Ancestors to contemporary Blackfeet, Cayuse, Coeur d’Alene, Bannock, Nez Perce, Shoshone, Crow, Sioux, Lakota, and Umatilla, among others, continued to travel the park on the already established trails. They visited geysers, conducted ceremonies, hunted, gathered plants and minerals, and engaged in trade. The Shoshone report family groups came to Yellowstone to gather obsidian, which they used to field dress bison. Some tribes used the Fishing Bridge area as a rendezvous site.

The Crow occupied the area generally east of the park, and the Blackfeet occupied the area to the north. The Shoshone, Bannock, and other tribes of the plateaus to the west traversed the park annually to hunt on the plains to the east. Other Shoshonean groups hunted in open areas west and south of Yellowstone.

In the early 1700s, some tribes in this region began to acquire the horse. Some historians believe the
horse fundamentally changed their lifestyles because tribes could now travel faster and farther to hunt bison and other animals of the plains.

The Tukudika: “Sheep Eaters”
Some groups of Shoshone who adapted to a mountain existence chose not to acquire the horse. These included the Tukudika, or Sheep Eaters, who used their dogs to transport food, hides, and other provisions. Sheep Eaters acquired their name from the bighorn sheep whose migrations they followed. Bighorn sheep were a significant part of their diet, and they crafted the carcasses into a wide array of tools. For example, they soaked sheep horns in hot springs to make them pliable for bows. They traded these bows, plus clothing and hides, to other tribes.
European Americans Arrive
In the late 1700s, fur traders traveled the great tributary of the Missouri River, the Yellowstone, in search of Native Americans with whom to trade. They called the river by its French name, “Roche Jaune.” As far as historians know, pre-1800 travelers did not observe the hydrothermal activity in this area but they probably learned of these features from Native American acquaintances.

The Lewis and Clark Expedition (1804–1806), sent by President Thomas Jefferson to explore the newly acquired lands of the Louisiana Purchase, bypassed Yellowstone. They had heard descriptions of the region, but did not explore the Yellowstone River beyond what is now Livingston, Montana.

A member of the Lewis and Clark Expedition, John Colter, left that group during its return journey to join trappers in the Yellowstone area. During his travels, Colter probably skirted the northwest shore of Yellowstone Lake and crossed the Yellowstone River near Tower Fall, where he noted the presence of “Hot Spring Brimstone.”

Not long after Colter’s explorations, the United States became embroiled in the War of 1812, which drew men and money away from exploration of the Yellowstone region. The demand for furs resumed after the war and trappers returned to the Rocky Mountains in the 1820s. Among them was Daniel Potts, who also published the first account of Yellowstone’s wonders as a letter in a Philadelphia newspaper.

Jim Bridger also explored Yellowstone during this time. Like many trappers, Bridger spun tall tales as a form of entertainment around the evening fire. His stories inspired future explorers to travel to see the real thing.

Osborne Russell wrote an account of his fur trapping in and around Yellowstone during the 1830s and early 1840s.

As quickly as it started, the trapper era ended. By the mid-1840s, beaver became scarce and fashions changed. Trappers turned to guiding or other pursuits.

Looking for Gold
During 1863–1871, prospectors crisscrossed the Yellowstone Plateau every year and searched every crevice for gold and other precious minerals. Although gold was found nearby, no big strikes were made inside what is now Yellowstone National Park.

Expeditions Explore Yellowstone
Although Yellowstone had been thoroughly tracked by tribes and trappers, in the view of the nation at large it was really “discovered” by formal expeditions. The first organized attempt came in 1860 when Captain William F. Raynolds led a military expedition, but it was unable to explore the Yellowstone Plateau because of late spring snow. The Civil War preoccupied the government during the next few years. Afterward, several explorations were planned but none actually got underway.

The 1869 Folsom-Cook-Peterson Expedition
In 1869, three members of one would-be expedition set out on their own. David E. Folsom, Charles W. Cook, and William Peterson ignored the warning of a friend who said their journey was “the next thing to suicide” because of “Indian trouble” along the way. From Bozeman, they traveled down the divide.
and refueled the excitement of scientists who decided to see for themselves the truth of the party’s tales of “the beautiful places we had found fashioned by the practiced hand of nature, that man had not desecrated.”

The 1870 Washburn-Langford-Doane Expedition

In August 1870, a second expedition set out for Yellowstone, led by Surveyor-General Henry D. Washburn, politician and businessman Nathaniel P. Langford, and attorney Cornelius Hedges. Lt. Gustavus C. Doane provided military escort from Fort Ellis (near present-day Bozeman, Montana). The explorers traveled to Tower Fall, Canyon, and Yellowstone Lake, followed the lake’s eastern and southern shores, and explored the Lower, Midway, and Upper geyser basins (where they named Old Faithful). They climbed several peaks, descended into the Grand Canyon of the Yellowstone, and attempted measurements and analyses of several of the prominent natural features.

The 1871 Hayden Expedition

Ferdinand V. Hayden, head of the US Geological and Geographical Survey of the Territories, led the next scientific expedition in 1871, simultaneous with a survey by the US Army Corps of Engineers. The history of science in Yellowstone formally began with Hayden’s expeditions. Hayden’s 1871 survey team included two botanists, a meteorologist, a zoologist, an ornithologist, a mineralogist, a topographer, and an agricultural statistician/entomologist, in addition to an artist, a photographer, and support staff. The Hayden Survey brought back scientific corroboration of the earlier tales of thermal activity. The expedition gave the world an improved map of Yellowstone and visual proof of the area’s unique curiosities through the photographs of William Henry Jackson and the art of Henry W. Elliot and Thomas Moran. The expedition’s reports excited the scientific community and aroused even more national interest in Yellowstone.
Hayden noted that in terms of scientific value, “The geysers of Iceland...sink into insignificance in comparison with the hot springs of the Yellowstone and Fire-Hole Basins.”

Birth of a National Park

One of the most enduring myths of Yellowstone National Park involves its beginning. As the myth goes, in 1870, explorers gathered around a campfire at the junction of two pristine rivers, overshadowed by the towering cliffs of the Madison Plateau. They discussed what they had seen during their exploration and realized that this land of fire and ice and wild animals needed to be preserved. Thus, the legend goes, the idea of Yellowstone National Park was born.

Though it is a myth, the explorers were real and their crowning achievement was helping to save Yellowstone from private development. They promoted a park bill in Washington in late 1871 and early 1872.

Flight of the Nez Perce

Summer 1877 brought tragedy to the Nez Perce (or, in their language, Nim’ipu or Nee-Me-Poo). A band of 800 men, women, and children—plus almost 2,000 horses—left their homeland in what is now Oregon and Idaho pursued by the US Army. Settlers were moving into their homeland and the US Government was trying to force them onto a reservation. At Big Hole, Montana, many of their group, including women and children, were killed in a battle with the Army. The remainder of the group continued fleeing, and entered Yellowstone National Park on August 23.

In Yellowstone

Only a small part of the route taken by the Nez Perce who fled from the US Army in 1877 went through Yellowstone, and they largely eluded their pursuers while in the park. However, the 13 days that the Nez Perce spent in Yellowstone became part of the tragic story they continue to pass down to their children.

During the time they crossed the park, the Nez Perce encountered about 25 visitors in the park, some more than once. Warriors took hostage or attacked several of these tourists, killing two. The group continued traveling through the park and over the Absaroka Mountains into Montana. The Army stopped them near the Bear’s Paw Mountains, less than 40 miles (64 km) from the Canadian border. This is where it is believed the flight ended and Chief Joseph said, “From where the sun now stands, I will fight no more forever.”

Some Nez Perce escaped to Canada, but after fierce fighting and a siege, the rest of the band surrendered on October 5 and most of the survivors were sent to the Indian Territory in Oklahoma.

Nez Perce Commemorative Sites

The Nez Perce National Historical Park, established by Congress in 1965 and managed by the National Park Service, includes 38 sites in Idaho, Montana, Oregon, and Washington that have been important in the history and culture of the Nez Perce.

Many of these sites are also on the 1,170-mile (1,882-km) Nez Perce National Historic Trail, established in 1986 and managed by the US Forest Service. The route extends from Wallowa Lake, Oregon, to the Bear’s Paw Mountains in Montana. The historic trail goes through the park, and it is considered a sacred place by many Nez Perce who continue to honor their ancestors and carry on their memories through ceremonies conducted in the park.

- Nez Perce National Historical Park: http://www.nps.gov/nepe/
1872 that drew upon the precedent of the Yosemite Act of 1864, which reserved Yosemite Valley from settlement and entrusted it to the care of the state of California. To permanently close to settlement an expanse of the public domain the size of Yellowstone would depart from the established policy of transferring public lands to private ownership. But the wonders of Yellowstone—shown through Jackson’s photographs, Moran’s paintings, and Elliot’s sketches—had caught the imagination of Congress. Thanks to their continued reports and the work of explorers and artists who followed, the United States Congress established Yellowstone National Park in 1872. On March 1, 1872, President Ulysses S. Grant signed the Yellowstone National Park Protection Act into law. The world’s first national park was born.

The Yellowstone National Park Protection Act says “the headwaters of the Yellowstone River . . . is hereby reserved and withdrawn from settlement, occupancy, or sale . . . and dedicated and set apart as a public park or pleasuring-ground for the benefit and enjoyment of the people.” In an era of expansion, the federal government had the foresight to set aside land deemed too valuable to develop.

Formative Years

The park’s promoters envisioned Yellowstone National Park would exist at no expense to the government. Nathaniel P. Langford, member of the Washburn Expedition and advocate of the Yellowstone National Park Act, was appointed to the unpaid post of superintendent. (He earned his living elsewhere.) He entered the park at least twice during five years in office—as part of the 1872 Hayden Expedition and to evict a squatter in 1874. Langford did what he could without laws protecting wildlife and other natural features, and without money to build basic structures and hire law enforcement rangers.

Political pressure forced Langford’s removal in 1877. Philetus W. Norris was appointed the second superintendent, and the next year, Congress authorized appropriations “to protect, preserve, and improve the Park.”

Norris constructed roads, built a park headquarters at Mammoth Hot Springs, hired the first “game-keeper,” and campaigned against hunters and vandals. Much of the primitive road system he laid out remains as the Grand Loop Road. Through constant

FREQUENTLY ASKED QUESTION:

Did other national parks exist before Yellowstone?

Some sources list Hot Springs in Arkansas as the first national park. Set aside in 1832, forty years before Yellowstone was established in 1872, it was actually the nation’s oldest national reservation, set aside to preserve and distribute a utilitarian resource (hot water), much like our present national forests. In 1921, an act of Congress established Hot Springs as a national park.

Yosemite became a park before Yellowstone, but as a state park. Disappointed with the results 26 years later in 1890, Congress made Yosemite one of three additional national parks, along with Sequoia and General Grant, now part of Kings Canyon. Mount Rainier followed in 1899.

As an older state park, Yosemite did have a strong influence on the founding of Yellowstone in 1872 because Congress actually used language in the state park act as a model. It’s entirely possible that Congress may have preferred to make Yellowstone a state park in the same fashion as Yosemite, had it not been for an accident of geography that put it within three territorial boundaries. Arguments between Wyoming and Montana territories that year resulted in a decision to federalize Yellowstone.
exploration, Norris also added immensely to geographical knowledge of the park.

Norris’s tenure occurred during an era of warfare between the United States and many Native American tribes. To reassure the public that they faced no threat from these conflicts, he promoted the idea that Native Americans shunned this area because they feared the hydrothermal features, especially the geysers. This idea belied evidence to the contrary, but the myth endured.

Norris fell victim to political maneuvering and was removed from his post in 1882. He was succeeded by three powerless superintendents who could not protect the park. Even when ten assistant superintendents were authorized to act as police, they failed to

Soldiers pose with bison heads captured from poacher Ed Howell. When Howell returned to the park that year, he was the first person arrested and punished under the National Park Protection Act, passed in 1894.

Guidance for Protecting Yellowstone National Park

Yellowstone Purpose Statement
Yellowstone National Park, the world’s first national park, was set aside as a public pleasuring ground to share the wonders and protect the scenery, cultural heritage, wildlife, geologic and ecological systems and processes in their natural condition for the benefit and enjoyment of present and future generations.

Significance of Yellowstone
- Yellowstone National Park is the world’s first national park, an idea that spread throughout the world.
- Yellowstone was set aside because of its geothermal wonders—the planet’s most active, diverse, and intact collections of combined geothermal, geologic, and hydrologic features and systems, and the underlying volcanic activity that sustains them.
- The park is the core of the Greater Yellowstone Ecosystem, one of the last, largest, nearly intact, natural ecosystems in the temperate zone of Earth. It preserves an exceptional concentration and diversity of terrestrial, aquatic, and microbial life. Here, natural processes operate in an ecological context that has been less subject to human alteration than most others throughout the nation—and indeed throughout the world. This makes the park not only an invaluable natural reserve, but a reservoir of information valuable to humanity.
- Yellowstone contains a unique and relatively pristine tapestry of prehistoric and historic cultural resources that span more than 11,000 years. The archeological, architectural, historical, and material collections constitute one of the largest and most complete continua of human occupation in the Western U.S. and collectively represent the material remains of the birth of the National Park and conservation movement.
- Yellowstone was the first area set aside as a national public park and Pleasuring ground for the benefit, enjoyment, education, and inspiration of this and future generations. Visitors have a range of opportunities to experience its unique geothermal wonders, free-roaming wildlife, inspiring views, cultural heritage, and spectacular wilderness character.

Yellowstone Mission Statement
Preserved within Yellowstone National Park are Old Faithful and the majority of the world’s geysers and hot springs. An outstanding mountain wildland with clean water and air, Yellowstone is home of the grizzly bear and wolf and free-ranging herds of bison and elk. Centuries-old sites and historic buildings that reflect the unique heritage of America’s first national park are also protected. Yellowstone National Park serves as a model and inspiration for national parks throughout the world. The National Park Service preserves, unimpaired, these and other natural and cultural resources and values for the enjoyment, education, and inspiration of this and future generations.
1918–1939 CE

1918

US Army turns over park management to the National Park Service.

1929

President Hoover signs first law changing park’s boundary.

1932

President Hoover expands the park again (by executive order).

1933

Civilian Conservation Corps established, works in Yellowstone through 1941.

1934

The National Park Service Director’s Order prohibits killing predators.

1935

The Historic Sites Act sets a national policy to “preserve for future public use historic sites, buildings, and objects.”

Two “Organic Acts”

The laws creating Yellowstone National Park and the National Park Service are both called “The Organic Act” because each created an entity. (Also called “enabling legislation.”) However, the name most often refers to the law that created the National Park Service. To avoid confusion, we refer to the laws by their names as listed in the US Code Table of Popular Names: The Yellowstone National Park Protection Act and The National Park Service Organic Act.

National Park Service Organic Act

Passed in 1916, this law created the National Park Service and established its mission:

> “to conserve the scenery and the natural and historic objects and the wildlife therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoyment of future generations.”

National Park Service Mission

The National Park Service preserves unimpaired the natural and cultural resources and values of the National Park System for the enjoyment, education, and inspiration of this and future generations. The National Park Service cooperates with partners to extend the benefits of natural and cultural resource conservation and outdoor recreation throughout the United States and the world.

helped set the stage for the creation of an agency whose sole purpose was to manage the national parks. Promoters of this idea gathered support from influential journalists, railroads likely to profit from increased park tourism, and members of Congress. The National Park Service Organic Act was passed by Congress and approved by President Woodrow Wilson on August 25, 1916.

Yellowstone’s first rangers, which included veterans of Army service in the park, became responsible for Yellowstone in 1918. The park’s first superintendent under the new National Park Service was Horace M. Albright, who served simultaneously as assistant to Stephen T. Mather, Director of the National Park Service. Albright established a management framework that guided administration of Yellowstone for decades.

stop the destruction of wildlife. Poachers, squatters, woodcutters, and vandals ravaged Yellowstone.

The Army Arrives

In 1886 Congress refused to appropriate money for ineffective administration. The Secretary of the Interior, under authority given by the Congress, called on the Secretary of War for assistance. On August 20, 1886, the US Army took charge of Yellowstone.

The Army strengthened, posted, and enforced regulations in the park. Troops guarded the major attractions and evicted troublemakers, and cavalry patrolled the vast interior.

The most persistent menace came from poachers, whose activities threatened to exterminate animals such as the bison. In 1894, soldiers arrested a man named Ed Howell for slaughtering bison in Pelican Valley. The maximum sentence possible was banishment from the park. Emerson Hough, a well-known journalist, was present and wired his report to *Forest & Stream*, a popular magazine of the time. Its editor, renowned naturalist George Bird Grinnell, helped create a national outcry. Within two months Congress passed the National Park Protection Act, which increased the Army’s authority for protecting park treasures. (This law is known as the Lacey Act, and is the first of two laws with this name.)

Running a park was not the Army’s usual line of work. The troops could protect the park and ensure access, but they could not fully satisfy the visitor’s desire for knowledge. Moreover, each of the 14 other national parks established in the late 1800s and early 1900s was separately administered, resulting in uneven management, inefficiency, and a lack of direction.

The National Park Service Begins

National parks clearly needed coordinated administration by professionals attuned to the special requirements of these preserves. The management of Yellowstone from 1872 through the early 1900s
Today’s National Park Service

Implementing the National Park Service Mission
The National Park Service mission statement expresses the dual responsibility of preserving parks in their natural state (or, at historical areas, to preserve a scene as nearly as it appeared on a certain date), and making these areas accessible for public use and enjoyment. These two fundamental goals can be incompatible and present difficult choices; two policies provide some direction:

- **Natural resources** (biological and physical, esthetic values such as scenic vistas, natural quiet, and night skies, etc.) are managed to maintain, rehabilitate, and perpetuate their inherent integrity. Native species that have been exterminated should be reintroduced and nonnative species eliminated, if possible. Livestock grazing, hunting, and resource extraction are prohibited in National Park System areas, with a few exceptions.

- **Cultural resources** (prehistoric and historic structures, landscapes, archeological and ethnographic resources, and museum collections) are preserved.

International Leadership
The National Park Service example has inspired countries around the world to establish more than 100 national parks—modeled in whole or part on Yellowstone National Park and the National Park Service idea. Additionally, the National Park Service lends its experienced staff to other countries to evaluate park proposals, management plans, and resource issues. As the first national park, Yellowstone also continues to be a leader in developing and implementing policies in the National Park Service.

The National Park Service manages approximately 83 million acres in all 50 states, the Virgin Islands, Puerto Rico, Guam, and American Samoa.

- **National parks** are the oldest, most well-known part of the system and are usually areas of spectacular natural scenery relatively untouched by human development. National parks are established by acts of Congress.

- **National monuments** are areas of historic or scientific interest established by presidential proclamation.

- **National historical parks** and national historic sites are both set aside to commemorate some facet of the history of the people of those areas.

- Many **national memorials** fit the description for national historical parks or sites, but some of these are also set aside because of important historical issues not specifically linked to the site of the memorial, such as Mt. Rushmore and Vietnam Veterans.

<table>
<thead>
<tr>
<th>Total National Park Service sites = 417</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Battlefields</td>
</tr>
<tr>
<td>National Battlefield Parks</td>
</tr>
<tr>
<td>National Battlefield Site</td>
</tr>
<tr>
<td>National Military Parks</td>
</tr>
<tr>
<td>National Historical Parks</td>
</tr>
<tr>
<td>National Historic Sites</td>
</tr>
<tr>
<td>International Historic Sites</td>
</tr>
<tr>
<td>National Lakeshores</td>
</tr>
<tr>
<td>National Memorials</td>
</tr>
<tr>
<td>National Monuments</td>
</tr>
<tr>
<td>National Parks</td>
</tr>
<tr>
<td>National Parkways</td>
</tr>
<tr>
<td>National Preserves</td>
</tr>
<tr>
<td>National Reserves</td>
</tr>
<tr>
<td>National Recreation Areas</td>
</tr>
<tr>
<td>National Rivers</td>
</tr>
<tr>
<td>National Wild and Scenic Rivers and Riverways</td>
</tr>
<tr>
<td>National Scenic Trails</td>
</tr>
<tr>
<td>National Seashores</td>
</tr>
<tr>
<td>Other Designations</td>
</tr>
<tr>
<td>Total Units</td>
</tr>
</tbody>
</table>

As of March 28, 2018.

For a complete list see www.nps.gov/faqs.htm

When Frances Pound applied for a position in 1926, Yellowstone Superintendent Albright suggested she use her nickname, Jim. She was one of the first women hired to do law enforcement in Yellowstone. Today’s National Park Service workforce aims to reflect our nation’s diversity.
Boundary Adjustments
Almost as soon as the park was established, people began suggesting that the boundaries be revised to conform more closely to natural topographic features, such as the ridgeline of the Absaroka Range along the east boundary. Although these people had the ear of influential politicians, so did their opponents—which at one time also included the United States Forest Service. Eventually a compromise was reached and in 1929, President Hoover signed the first bill changing the park’s boundaries: The northwest corner now included a significant area of petrified trees; the northeast corner was defined by the watershed of Pebble Creek; the eastern boundary included the headwaters of the Lamar River and part of the watershed of the Yellowstone River. (The Yellowstone’s headwaters remain outside the park in Bridger-Teton National Forest.)

In 1932, President Hoover issued an executive order that added more than 7,000 acres between the north boundary and the Yellowstone River, west of Gardiner. These lands provided winter range for elk and other ungulates.

Efforts to exploit the park also expanded during this time. Water users, from the town of Gardiner to the potato farmers of Idaho, wanted the park’s water. Proposals included damming the southwest corner of the park—the Bechler region. The failure of these schemes confirmed that Yellowstone’s wonders were so special that they should be forever preserved from exploitation.

World War II
World War II drew away employees, visitors, and money from all national parks, including Yellowstone. The money needed to maintain the park’s facilities, much less construct new ones, was directed to the war effort. Among other projects, the road from Old Faithful to Craig Pass was unfinished. Proposals again surfaced to use the park’s natural resources—this time in the war effort. As before, the park’s wonders were preserved.

Visitation jumped as soon as the war ended. By 1948, park visitation reached one million people.

This box represents the original boundary of Yellowstone National Park. Adjustments were made in 1929 and 1932.
per year. The park’s budget did not keep pace, and the neglect of the war years quickly caught up with the park.

Mission 66
Neglected during World War II, the infrastructure in national parks continued to deteriorate as visitation soared afterward, leading to widespread complaints. In 1955, National Park Service Director Conrad Wirth persuaded Congress to fund an improvement program for completion by the National Park Service’s 50th anniversary in 1966. Also designed to increase education programs and employee housing, Mission 66 focused mainly on visitor facilities and roads. Trained as an architect, Wirth encouraged the use of modern materials and prefabricated components to quickly and inexpensively construct low-maintenance buildings. This architectural style, which became known as Park Service Modern, was a deliberate departure from the picturesque, rustic buildings associated with national parks; their “fantasy land” quality was considered outmoded and too labor-intensive for the needed scale of construction.

Mission 66 revitalized many national parks; in Yellowstone, intended to be the program’s showpiece, its legacy is still visible. It was a momentous chapter in the park’s history, and as the park continues to reflect changing ideas about how to enhance the visitor’s experience while protecting the natural and cultural resources, the question of how to preserve the story of Mission 66 is being addressed.

Work in Yellowstone included the development of Canyon Village. Aging visitor use facilities were replaced with modernistic visitor use facilities designed to reflect American attitudes of the 1950s. Visitor services were arranged around a large parking plaza with small cabins a short distance away. Canyon Village opened in July 1957, the first Mission 66 project initiated by the National Park Service.

Modern Management
Until the mid-1960s, park managers actively managed the elk and bison of Yellowstone. Elk population limits were determined according to formulas designed to manage livestock range. When elk reached those limits, park managers “culled” or killed the animals to reduce the population. Bison were likewise heavily managed.

In 1963, a national park advisory group, comprised of prominent scientists, released a report recommending parks “maintain biotic associations” within the context of their ecosystem, and based on scientific research. Known as the Leopold Report, this document established the framework for park management still used today throughout the National Park System. By adopting this management philosophy, Yellowstone went from an unnatural managing of resources to “natural regulation”—today known as Ecological Process Management.

The Leopold Report’s recommendations were upheld by the 2002 National Academy of Science report, Ecological Dynamics On Yellowstone’s Northern Range.

Involving Native Americans
Yellowstone National Park has 26 associated tribes. Some have evidence of their ancestral presence in Yellowstone National Park through ethnohistoric documentation, interviews with tribal elders, or
ongoing consultations. Others are affiliated because of documented spiritual or cultural connection to places or resources. Many park resources remain important to these tribes’ sense of themselves and in maintaining their traditional practices.

In addition, tribes are sovereign nations whose leaders have a legal relationship with the federal government that is not shared by the general public. Consequently, representatives of Yellowstone’s associated tribes participate in consultation meetings with park managers. They bring tribal perspectives to current issues such as bison management. Tribes also comment on park projects that could affect their ethnographic resources.

Complex Issues

Change and controversy have occurred in Yellowstone since its inception, in the last three decades many issues have arises involving natural resources.

One issue was the threat of water pollution from a gold mine outside the northeast corner of the park. Among other concerns, the New World Mine would have put waste storage along the headwaters of Soda Butte Creek, which flows into the Lamar River and then the Yellowstone River. After years of public debate, a federal buyout of the mining company was authorized in 1996.

In an effort to resolve other park management issues, Congress passed the National Parks Omnibus Management Act in 1998. This law requires using high quality science from inventory, monitoring, and research to understand and manage park resources.

Park facilities are seeing some improvements due to a change in funding. In 1996, as part of a pilot program, Yellowstone National Park was authorized to increase its entrance fee and retain 80% of the fee for park projects. (Previously, park entrance fees did not specifically fund park projects.) In 2004, the US Congress extended this program until 2015 under the Federal Lands Recreation Enhancement Act. Projects funded in part by this program include a major renovation of Canyon Visitor Education Center, campground and amphitheater upgrades, preservation of rare documents, and studies on bison.

A Living Legacy

The legacy of those who worked to establish Yellowstone National Park in 1872 was far greater than simply preserving a unique landscape. This one
act has led to a lasting concept—the national park idea. This idea conceived wilderness to be the inheritance of all people, who gain more from an experience in nature than from private exploitation of the land.

The national park idea was part of a new view of the nation’s responsibility for the public domain. By the end of the 1800s, many thoughtful people no longer believed that wilderness should be fair game for the first person who could claim and plunder it. They believed its fruits were the rightful possession of all the people, including those yet unborn. Besides the areas set aside as national parks, still greater expanses of land were placed into national forests and other reserves so the United States’ natural wealth—in the form of lumber, grazing, minerals, and recreation lands—would not be consumed at once by the greed of a few, but would perpetually benefit all.

The preservation idea spread around the world. Scores of nations have preserved areas of natural beauty and historical worth so that all humankind will have the opportunity to reflect on their natural and cultural heritage and to return to nature and be spiritually reborn. Of all the benefits resulting from the establishment of Yellowstone National Park, this may be the greatest.

More Information

Staff Reviewers
Tobin Roop, Chief of Cultural Resources
Beth Horton, Archeologist
Lee Whittlesey, Historian
Preserving Cultural Resources

Yellowstone’s cultural resources tell the stories of people, shown here around 1910 near the Old Faithful Inn, and their connections to the park. The protection of these resources affects how the park is managed today.

Yellowstone National Park’s mission includes preserving and interpreting evidence of past human activity through archeology and historic preservation; features that are integral to how a group of people identifies itself (ethnographic resources); and places associated with a significant event, activity, person or group of people that provide a sense of place and identity (historic buildings, roads, and cultural landscapes). All of these materials and places tell the story of people in Yellowstone. Collectively, they are referred to as cultural resources.

Archeology

Archeological resources are the primary—and often the only—source of information about humans in Yellowstone for nearly the entire time that people have been in the area. Archeological evidence indicates that people began traveling through and using the area that was to become Yellowstone National Park more than 11,000 years ago. Because the intensity of use varies through time as environmental conditions shift, archeological resources also provide a means for interdisciplinary investigations of past climate and biotic change.

Many thermal areas contain evidence that early people camped there. At Obsidian Cliff, a National Historic Landmark, volcanic glass was quarried for the manufacture of tools and ceremonial artifacts that entered a trading network extending from western Canada to the Midwest. These remnants of past cultures must be preserved as they are invaluable in our understanding of early people in the

Quick Facts

Archeological
- More than 1,850 known prehistoric and historic Native American archeological sites and historic European American archeological sites

Ethnographic
- More than 300 ethnographic resources (animals, plants, sites, etc.)

Historic
- 25 sites, landmarks, and districts listed on the National Register of Historic Places; many more eligible for listing
- More than 900 historic buildings
- 1 National Historic Trail

Collections
Housed in the Yellowstone Heritage and Research Center

- Museum collection of more than 720,000 museum items, including 30 historic vehicles
- Archives containing millions of historic documents
- Research library holds more than 20,000 books and periodicals available to the public, plus manuscripts and rare books available to historians and other researchers
area. Historic archeological sites in Yellowstone include the remains of early tourist hotels and army soldier stations.

Findings in Yellowstone

Although more than 1,850 archeological sites have been documented since the archeology program began in 1995, less than 3% of the park has been inventoried. Most documented sites are in developed areas because archeological evidence has been identified there inadvertently, or as part of National Historic Preservation Act compliance related to construction, hazard fuel reduction, or other projects.

Condition assessments performed on most of the documented sites found 1013 in good condition, 383 were fair, 190 sites were in poor condition. Twenty-five of the sites no longer existed because of natural factors or disturbance as a result of construction or other authorized activity, and 238 are lacking condition data. Emergency excavations have been conducted at some sites where archeological remains are especially vulnerable to disturbance or loss through erosion or illegal collecting.

Multiple significant sites along the Yellowstone River have been nominated to the National Register of Historic Places. These contain projectile points or arrowheads, scrapers and other tools, and concentrations of burned and butchered bone, including the first evidence of fishing found in the park.

Radiocarbon dating is used to establish the age of organic artifacts such as charcoal or bone. However, organic materials (wood, bone, basketry, textiles) rarely persist in the Yellowstone environment because of the acidic thermally-influenced soils. Stone artifacts provide most of the chronological information on Yellowstone’s prehistory. Most of the stone tools that can be associated with a particular time period are projectile points. At Malin Creek, campsites from five distinct periods of indigenous use spanning over 9,000 years are stacked upon each other starting at five feet below the surface. These occupations have revealed how tool manufacture and foodways changed over time.

The earliest evidence of humans in Yellowstone is an 11,000-year-old Clovis type spear point found near the park’s north entrance in Gardiner, Montana, made of obsidian from Obsidian Cliff. (Obsidian from different lava flows can be chemically fingerprinted using x-ray fluorescence analysis.) Later in time, point types increase in number and type which may indicate that the number of people in the area was becoming larger as well as more diverse. Most documented sites in the park date to the Archaic period (8,000 to 1,800 years ago), suggesting that it was the most intense period of use by prehistoric people.

Recent archeological surveys have identified a large number of sites dating to later periods in prehistory (approximately 1400–1800 CE). Distinguishing use of these sites by different ethnic groups or tribes, however, has not yet been possible.

Cultural Resource Laws

The Antiquities Act (1906)

Provides for the protection of historic, prehistoric, and scientific features and artifacts from federal lands.

The Historic Sites Act (1935)

Sets a national policy to “preserve for future public use historic sites, buildings, and objects.”

The National Historic Preservation Act (1966)

Requires that federal agencies take into account effects of their undertakings on historic properties. Authorizes the creation of the National Register of Historic Places and gives extra protection to National Historic Landmarks and properties in the National Register. National parks established for their historic value automatically are registered; others, such as Yellowstone, must nominate landmarks and properties to the register.

The Archeological and Historic Preservation Act (1974)

Provides for the preservation of significant scientific, historic, and archeological material and data that might be lost or destroyed by federally sponsored projects. For example, federal highway projects in Yellowstone include archeological surveys.

American Indian Religious Freedom Act (1978)

Protects and preserves American Indian access to sites, use and possession of sacred objects, and the freedom to worship through ceremonial and traditional rites.

The Archeological Resources Protection Act (1979)

Provides for the preservation, protection, and custody of excavated materials, records, and data.

The Native American Graves Protection and Repatriation Act (1990)

Assigns ownership or control of Native American human remains, funerary objects, and sacred objects of cultural patrimony to culturally affiliated Native American groups.

Executive Order 13007

Guarantees access to and ceremonial use of Indian sacred sites by Indian religious practitioners to ensure that these sites are not adversely affected.
The earliest intact cultural deposits in the park have been found at a site on the shore of Yellowstone Lake.

Yellowstone Lake

Some of the earliest intact archeological deposits in the park have been found at a site on the shore of Yellowstone Lake. The site was excavated because it was at risk of erosion, and revealed evidence of a 9,350-year-old camp likely occupied by several families. People used this area while hunting bear, deer, bighorn, and rabbits, and perhaps making tools and clothes. Artifacts dating to 3,000 years ago have also been discovered on islands in the lake, leading some archeologists to speculate that indigenous peoples used watercraft to travel there, or crossed over on the frozen lake.

Town Site of Cinnabar, Montana

In 1932, Yellowstone National Park increased in size by 7,609 acres to the north, on the west side of the Yellowstone River. Most of what are called the “boundary lands” was purchased from willing owners; the rest was taken by eminent domain. But the town of Cinnabar had been abandoned long before. Construction of the branch line from Livingston in 1883 made Cinnabar a hub for passengers and freight until the last three miles to the park entrance were built 20 years later. Nothing remains of the town today except archeological evidence through which we can learn about the lives of its residents in the late 1800s.

Assessing Wildland Fire Impacts

Archeological resources can inform us about paleoclimate, paleoenvironment, and the human response to climate change over the last 11,000 years. Long-term climate data suggest current temperature rise and precipitation contributes to longer annual droughts and shorter wet seasons. Given changing environmental conditions, in 2016 the park embarked on a project to assess wildfire impacts on archaeological resources from the 2016 Maple Fire and Tatanka Fire Complex. Condition assessments have been completed for over 70 sites and analysis of data is ongoing. Preliminary results indicate sites subjected to intense heat and loss of vegetation are more susceptible to post-fire erosion, flooding, and other landscape processes which expose or threaten archeological resources.

Lewis and Snake River Headwaters Survey

In 2014, archeology staff completed an intensive inventory of 60 square kilometers of the Lewis and Snake river valleys, which served as major transportation corridors for many nomadic people. Newly identified sites include prehistoric quarries, campsites, and lithic scatters dating to between 10,000 and 1,500 years ago, as well as historic period quarries, campsites, and refuse dumps. The prehistoric sites are changing our understanding of how early humans procured stones and made them into tools. Most sites show heavy reliance on Obsidian Cliff materials and chert, a cryptocrystalline sedimentary rock. However, along the Lewis and Snake Rivers a more diverse range of materials were used. Obsidian was primarily locally sourced from local Warm Spring, Teton Pass, and Park Point quarries, while orthoquartzite, a clastic sedimentary rock, was the most common material used for manufacturing tools.

More Information

Native American Affairs

Yellowstone’s location at the convergence of the Great Plains, Great Basin, and Plateau Indian cultures means that many native American tribes have a traditional connection to the land and its resources. For thousands of years before the park was established, it was a place where Indians hunted, fished, gathered plants, quarried obsidian, and used the thermal waters for religious and medicinal purposes. Yellowstone’s “ethnographic” resources are the natural and cultural features that are significant to tribes. They include sites, plant and animal species, objects associated with routine or ceremonial activities, and migration routes. Federal law requires the National Park Service to consult with Yellowstone’s associated tribes on a government-to-government basis on decisions which affect resources that are significant to tribes.

Consultation and Associated Tribes

The first tribes to request association came forward in 1996. Now 26 tribes are formally associated with Yellowstone. Since 2002, park managers have met periodically with tribal representatives to exchange information about park projects and ethnographic resources. The tribes have requested to participate in resource management and decision-making, to conduct ceremonies and other events in the park, and to collect plants and minerals for traditional uses.

Bison

Tribes are most concerned about the management of bison that leave the park; many tribes have a physical and spiritual connection to bison in Yellowstone. Since 2007, some associated tribes have had the opportunity to conduct bison hunts outside the park boundaries. Since November 2009, the Confederated Salish & Kootenai Tribes, the InterTribal Buffalo Council, and the Nez Perce Tribe have joined the Interagency Bison Management Plan and participate in the development of adaptive management strategies for bison and Brucellosis in the areas immediately outside Yellowstone National Park.

Representation

In 2018, the park will consult with associated tribes on increasing opportunities for non-consumptive ceremonial use of the park. Consultants will also review park educational media and programming for representation of native peoples and perspectives. Previous education consultation focussed on the Yellowstone segment of the Nez Perce National
Historic Trail and the associated sites and events of the 1877 Nez Perce War.

Park Names

In 2016 the Executive Committee of the Blackfoot Nation contacted Yellowstone National Park to request that the names of two locations inside the park be changed. National place names are managed by the United States Geologic Survey (USGS) and the representatives were referred to the USGS Board of Geographic Names at that time.

The committee requested the park change Mount Doane to “First People’s Mountain” and that Hayden Valley be changed to “Buffalo People’s Valley”. They requested the changes to reflect an acknowledgement of Lieutenant Gustavus C. Doane’s involvement in the 1870 Marias massacre of the Piikani (Peigan) tribe, and Ferdinand V. Hayden’s insistence on the settlement or “extermination” of native people in the Yellowstone area.

Native Student Opportunities

Currently, Yellowstone hosts an internship program which places Native American students from the University of Montana into resource management and resource education jobs with the National Park Service. In addition, Yellowstone also hosts Native American youth conservation volunteers through the Montana Conservation Corps.

The Yellowstone Youth Conservation Corps provides an opportunity for young people aged 14-17 to come work, live, and learn in Yellowstone National Park.

More Information

Staff Reviewer

Tobin Roop, Chief of Cultural Resources
Historic Structures, Districts, and Cultural Landscapes

In addition to archeological sites and artifacts associated with pre-historic human use of the region, there are many historic districts, historic structures, and cultural landscapes that are essential to the inherent value of Yellowstone National Park.

Many of the park’s developed areas are within historic districts that contain hundreds of cultural resources such as buildings, bridges, trails and roads (linear resources), and cultural landscape features (overlooks, vegetation) that have historic, architectural, and/or engineering significance. The majority of Yellowstone’s hotels, lodges, general stores, residences, maintenance shops, and offices are listed on or eligible for listing on the National Register of Historic Places.

The need to protect and understand the importance of these resources affects how the park is managed today. So far, 895 buildings, trails, roads, bridges, utility structures, and grave markers have been documented as culturally significant. Many more of Yellowstone’s properties have still not been thoroughly evaluated including: 173 structures on the List of Classified Structures, approximately 127 buildings constructed during the NPS Mission 66 period (1945–1972), and 124 trails. Only seven (25%) of the park’s cultural landscapes have been inventoried and evaluated for their historical significance.

Fort Yellowstone National Historic Landmark District is located within Mammoth Hot Springs Historic District and is the headquarters for Yellowstone National Park. Historic buildings, structures (Roosevelt Arch, Powerhouse), and sites (parade grounds, cemetery) contribute to the significance of this district. Yellowstone is also home to five influential examples of park “rustic” architecture—the Old Faithful Inn, the Northeast Entrance Station, and the Norris, Madison, and Fishing Bridge museums. Preserving a historic structure requires minimizing the rate at which historic fabric is lost and ensuring additions and alterations are compatible with historic character. Many structures in the park require in-kind replacement of historic materials and strengthening to withstand seismic events to avert structural failure.

The Geyser Baths Bathhouse, opened in 1914, was a swimming pool at Old Faithful and was razed in 1951. Historic structures and the historical character of the park are carefully considered in park planning.

Yellowstone National Park. Historic buildings, structures (Roosevelt Arch, Powerhouse), and sites (parade grounds, cemetery) contribute to the significance of this district. Yellowstone is also home to five influential examples of park “rustic” architecture—the Old Faithful Inn, the Northeast Entrance Station, and the Norris, Madison, and Fishing Bridge museums. Preserving a historic structure requires minimizing the rate at which historic fabric is lost and ensuring additions and alterations are compatible with historic character. Many structures in the park require in-kind replacement of historic materials and strengthening to withstand seismic events to avert structural failure.

Historic Designations

The National Register of Historic Places is the nation’s official list of historic places worthy of preservation. Authorized by the National Historic Preservation Act of 1966, the National Register coordinates and supports efforts to identify, evaluate, and protect historic and archeological resources that are significant in American history, architecture, archeology, engineering, and culture. Properties from Yellowstone include:

- Grand Loop Road Historic District
- Fishing Bridge Historic District
- Lake Fish Hatchery Historic District
- Lamar Buffalo Ranch Historic District
- Mammoth Hot Springs Historic District
- North Entrance Road Historic District
- Old Faithful Area Historic District
- Roosevelt Lodge Historic District
- Obsidian Cliff Kiosk
- Queen’s Laundry Bathhouse
- Mammoth Post Office

National Historic Landmarks are nationally significant historic places designated by the Secretary of the Interior because they possess exceptional value or quality in illustrating or interpreting the heritage of the United States. Today, fewer than 2,500 historic places bear this national designation. In Yellowstone they include:

- Fishing Bridge, Madison, and Norris Trailside Museums
- Fort Yellowstone; includes Norris and Bechler River soldier stations, and Roosevelt Arch.
- Northeast Entrance Station
- Obsidian Cliff Archeological Site
- Old Faithful Inn
- Lake Hotel
Lake Hotel, 1891
The Lake Hotel is the oldest operating hotel in the park. It was designated a National Historic Landmark in 2015. When it opened in 1891, the building resembled other hotels financed by the Northern Pacific Railroad. In 1903, the architect of the Old Faithful Inn, Robert Reamer, designed the Ionic columns, extended the roof in three places, and added the 15 false balconies, which caused it to be known for years as the “Lake Colonial Hotel.” By 1929, additional changes—dining room, porte-cochere (portico), sun-room, plus interior refurbishing—put the finishing touches on the “grande damme” we see today.

Yellowstone Lake Fish Hatchery, 1930
People began stocking western high-elevation lakes with fish in the 1800s. Hatchery operations at Yellowstone Lake became part of this undertaking when fish hatched from Yellowstone’s trout were used to stock waters in the park and elsewhere, sport-fishing was promoted to encourage park visitation, and satisfying a recreational interest took precedence over protection of the park’s natural ecology. Built in 1930 by the National Park Service, the hatchery’s log-framed design is also an example of the period of rustic architectural design in national parks.

The hatchery was thought to be among the most modern in the West. The main room was outfitted with tanks and raceways for eggs, fingerlings, and brood fish taken from 11 streams that flowed into the lake. Small fry were fed in three rectangular rearing ponds in a nearby creek until they were ready for planting. Superintendent Horace Albright explained that the hatchery had also been designed with visitor education in mind, by making it possible “to take large crowds through the building under the guidance of a ranger naturalist without in any way impairing the operations of the Bureau of Fisheries.”

Yellowstone was the largest supplier of wild cutthroat trout eggs in the United States, and its waters received native and nonnative fish. A rift developed, however, between the federal fish agencies and the National Park Service, which began moving away from policies that allowed manipulation of Yellowstone’s natural conditions. In 1936 Yellowstone managers prohibited the distribution of nonnative fish in waters that did not yet have them and opposed further hatchery constructions in the park’s lakes and streams. After research showed that it impaired fish reproduction, egg collection was curtailed in 1953. Four years later, the fish hatchery ceased operations and the US Fish and Wildlife Service transferred ownership of the building to the National Park Service. Official stocking of park waters ended by 1959.

Current Status
Vegetation and stream flow have largely reclaimed the rearing ponds on Hatchery Creek, but their outlines can still be detected, and the most serious results of fish planting are irreversible. Nonnative fish can alter aquatic ecology through interbreeding or competition with native species. Although its condition has deteriorated, the hatchery building has changed relatively little. Nearly all of the exterior and interior materials are original to the building or have been repaired in kind. Now used as a storage facility, it is the primary structure of the nine buildings in the Lake Fish Hatchery Historic District, which was listed on the National Register in 1985.
Mammoth Hot Springs Historic District and Fort Yellowstone Historic Landmark District

The Mammoth Hot Springs Historic District includes Fort Yellowstone, where 35 structures remain from the 1890s and early 1900s when the US Army administered the park. Significant conservation policies were developed here that led to the origin of the National Park Service. The Mammoth Hot Springs Historic District has statewide significance as the administrative and concession headquarters of the largest national park in Wyoming. Fort Yellowstone is also listed as a National Historic Landmark District, the highest designation.

Mail Carrier’s Cabin, 1800s

The origins of the building at the edge of Fort Yellowstone that became known as the mail carrier’s house are unclear, but it is significant as the only 1800s log structure still standing in Mammoth Hot Springs. Its style is more typical of construction of the area and time than the buildings put up by the US Army for Fort Yellowstone. It was probably built in the mid-1890s, and over the years it has provided quarters for mail carriers as well as employees of concessions and the National Park Service.

History

When mail delivery was not yet provided in rural areas, mail carriers delivered the mail from railroad distribution points to post offices, where people traveled, often from many miles away, to pick up their mail, their only link to the rest of the world. In the 1800s, a mail carrier was contracted to transport mail from the railroad station in Livingston, Montana, to Mammoth Hot Springs and then to Cooke City, Montana, before returning to Livingston, a trip of several days’ duration.

The cabin was either built by or later sold to an early park concession, the Yellowstone Park Association. A lean-to with a shed roof was built onto the back of the two-room structure in about 1903 to serve as a kitchen and dining area. In the 1930s, a mudroom and bathroom were added to the north side of the building, bringing the total square footage to 512. In the early 2000s, removal of the insulation added to the walls and ceilings in the 1930s exposed a layer of newspapers beneath, announcing the 1903 flight of the Wright Brothers at Kittyhawk.

In 1972, the building, then owned by a park concessioner, was “in a state of general deterioration.” Historic structure experts recommended that the vacant house be demolished because they doubted that it “could serve any useful function” that would justify the “great cost” of restoration. However, the house was listed on the National Register in 1982. Despite the building’s poor condition, it continued to house park staff for another two decades. It was structurally stabilized in 2009.
Mammoth Post Office, 1938
Yellowstone’s main post office was one of 1,007 post offices constructed from 1935 to 1938 “with a view to relieving countrywide unemployment.” Using standardized plans developed from guidelines provided by the Treasury Department, these post offices were built in sizes and styles that reflect transitions in architectural design and the context of the communities in which the offices were located. The Yellowstone Post Office is a concrete building with a hipped roof in the French Renaissance Moderne style, compatible with the Art Moderne style ornament on the nearby Mammoth Hot Springs Hotel, which was partially rebuilt in 1936. The post office lobby has walls of travertine from a quarry outside the park’s north entrance.

Current Status
The Yellowstone post office was listed on the National Register of Historic Places in 1987 with 11 other Wyoming post offices built from 1908 to 1939. The buildings were said to “record the evolution of both the political/economic philosophies and the design philosophies of the federal government” during a period when building design was used “to provide a symbol of the monumental presence of the federal government in its post offices.”

Roosevelt Arch, 1903
The road (five miles in length) from the park’s boundary at Gardiner, Montana, to its headquarters at Mammoth Hot Springs, Wyoming, was built in 1884. The arch constructed over the road became known as Roosevelt Arch because President Theodore Roosevelt, who happened to be vacationing in the park, spoke at the ceremony to lay the cornerstone in 1903. The plaque on the arch is inscribed with a phrase from the legislation that established Yellowstone National Park: “For the benefit and enjoyment of the people.” Today it would be considered inappropriate to embellish the park’s landscape with such a conspicuous, non-functional structure, but Roosevelt Arch continues to serve as a historical marker for a time when cultural values called for a monumental entrance to Yellowstone.

The Roosevelt Arch is in the North Entrance Road Historic District and is part of the Fort Yellowstone Historic Landmark District. The structure was conceived by US Engineer Hiram Chittenden; architect N.J. Ness contributed to the design, and Robert Reamer may have also worked on it.

The two bears at the post office entrance were added in 1941 and commissioned by the Federal Works Agency to enhance federal buildings with artwork. Gladys Caldwell Fisher sculpted the cubs from Indiana limestone based on her observations of grizzly bears at one of the feeding grounds then permitted in the park. The three-ton bears were shipped by rail from Denver to Gardiner, Montana. The Roosevelt Arch, pictured here on a Haynes postcard.
Old Faithful Historic District

The Old Faithful Historic District, which includes the inn and many of the surrounding buildings, was listed on the National Register of Historic Places in 1982. Like the Inn, the district is historically significant because of its rustic architecture and its role in the development of concessions to accommodate growing tourism in the early 1900s. The Old Faithful Lodge, located near the Inn, reached its present configuration in 1928 after numerous changes. The consolidation into one complex was designed by NPS Landscape architect Daniel Hull in collaboration with Gilbert Stanley Underwood, a famous architect of the time.

Old Faithful Inn, 1904

Named for the geyser near which its construction began in 1903, the Old Faithful Inn exemplifies the use of rustic architecture at a large scale to complement a natural landscape. The rhyolite that formed Yellowstone’s caldera during volcanic upheavals provided the stone for the building’s foundation, and local lodgepole pine the logs for its walls. Skilled craftsmen embellished the windows and stairways with gnarled wood selected for its inherent beauty. As designed by architect Robert Reamer, the inn combines rugged materials and organic motifs in a way that expresses both frontier sensibilities and elegance.

History

After the only hotel in the Upper Geyser Basin burned down in 1894, park officials pressured the Yellowstone Park Association, which held the lease on the property, to replace it with something more substantial. In 1902 the president of the concession, Harry Child, obtained financing from the Northern Pacific Railroad for a new structure, the first parts of which would become known as the Old House. The lobby, rising six stories beneath a steeply sloped roof, was flanked by a dining room and two three-story wings containing guest rooms.

The Old Faithful Inn opened in 1904, and was equipped with electric lighting, but Reamer designed the light fixtures to look like candlesticks. Both the electricity and the radiators were fueled by a steam generator. Evening meals were accompanied by a string quartet, and dancing was customary six nights a week. The east wing was added in 1913 and the west wing in 1927, both under Reamer’s supervision and bringing the inn’s total number of guest rooms to about 340.

The August 1959 Hebgen Lake earthquake shook the Old House from its foundation and damaged the roof and chimneys, but no guests were seriously injured, and after closing early for the winter, the inn opened the following summer. Another evacuation took place in September 1988 when the North Fork Fire destroyed some small buildings nearby, but the Old Faithful Inn was preserved with the help of firefighters and roof sprinklers installed the...
Current Status

The Old Faithful Inn was designated a National Historic Landmark in 1987. A major renovation program of the Old House was launched in 2004 to meet current building codes and restore the lobby so that it more closely replicates Reamer’s original design. The walls and roof were reinforced with steel to make the structure more seismically stable, and electrical, plumbing, and heating systems were replaced and made less conspicuous. With the completion of this program, the Old Faithful Inn is considered to be in good condition.

Queen’s Laundry Bathhouse, 1881

On a sinter slope in the Lower Geyser Basin miles from any other structure, the bathhouse at Queen’s Laundry spring was one of two buildings constructed by Superintendent Philetus Norris in 1881. It is the only building that remains from the first era of civilian park administration (1872–1886) and the first building in a national park constructed by the government for public use. According to its National Register listing, the Queen’s Laundry bathhouse represents the “earliest recognition that providing for visitor accommodation was a legitimate use of federal funds within a National Park.” It also turned out to be the first step toward what became a conflict between accommodating visitors and leaving the park’s thermal features intact.

The roofless bathhouse is located on the edge of a sinter mound formed by the Queen’s Laundry (hot spring), where deposition from the pool’s run-off has engulfed it. The pine logs used to construct the building have been partially preserved by the silica and other minerals from the water that has permeated them. There is no evidence of a floor, but it may be buried beneath the silica deposits.

Lamar Buffalo Ranch Historic District, 1906

The extermination of bison herds throughout the West in the 1800s nearly eliminated them from Yellowstone; even after the park was established in 1872 poachers faced few deterrents. With only 25 bison counted in the park in 1901, Congress appropriated $15,000 to augment the herd by purchasing 21 bison from private owners. As part of the first effort to preserve a wild species through intensive management, these bison were fed and bred in Lamar Valley at what became known as the Buffalo Ranch.
As the herd grew in size, it was released to breed with the park’s free-roaming population and used to start and supplement herds on other public and tribal land. Today the Yellowstone bison population of approximately 4,000 is one of the largest in North America and among the few that is genetically pure because it has not been interbred with cattle. The buffalo ranch is therefore significant for its role in the history of wildlife management and the preservation of the American bison.

Current Status
A program to raise bison like domestic cattle in Yellowstone may seem incongruous and unnecessary in retrospect, but the buffalo ranch stands as a reminder that today’s well-intended wildlife management policies may have unintended consequences and be overturned by changing values and advances in ecological knowledge.

The Lamar Buffalo Ranch Historic District includes five buildings: a ranger station, constructed in 1915 as the buffalo keeper’s residence; a pole fenced corral built and rebuilt from 1915 to the 1930s, a log barn for hay and horses (1927), a bunkhouse (1929), and a residence used for the assistant buffalo keeper. The vegetation around the ranch is mostly sagebrush and nonnative grasses that were planted during the period of hay cultivation or migrated into the area. Remnants of irrigation ditches, fencing, and water troughs can still be found.

The bunkhouse is used by the Yellowstone Forever Institute, which conducts classes and seminars during the summer and by Expedition Yellowstone, the park’s overnight program for school groups. In 1993 Yellowstone Forever (then the Yellowstone Association) replaced the old tourist cabins with insulated and heated cabins. Except for the phone line, the cabins and other buffalo ranch facilities are off grid. The main source of power is a 7-kilowatt photo voltaic array installed in 2000 with industrial battery storage and two alternating 12-kilowatt engine generators.

Funding from the park’s non-profit partner, Yellowstone Forever, is enabling the National Park Service to use the buffalo ranch as a model for off-grid environmental stewardship by adding more solar panels, low-flow water fixtures, micro-hydropower, on-demand hot water, zero-waste and recycling programs, and more energy-efficient windows, while preserving the historic integrity of the original structures.

More Information
Roosevelt Lodge Historic District
The Roosevelt Lodge Historic District, which includes 130 buildings, was listed on the National Register of Historic Places in 1983, with a period of significance from 1906 to 1948. The accommodations are still rustic, with unpaved roads into and around the lodge and cabins.

The area has undergone intermittent expansion and changes as visitor use has changed and facilities have aged over the years. The architectural appearance of the original lodge is retained only in the lounge and dining room. The other sections of the building have been modified. The interior has become congested with multiple activities, some of which were not part of the original building—a bar, vending machines, gift shop, and offices.

In 2009, the National Park Service completed an environmental assessment for the Tower–Roosevelt area in order to protect the area’s natural resources and preserve its historical character, including the rustic architecture of Roosevelt Lodge and the view from the lodge porch across the meadow to the distant mountains. The plan also calls for pulling the parking lot away to improve views and reduce congestion near the lodge.

Roosevelt Lodge, 1920
Indians, fur trappers, and explorers on the Bannock Trail camped in this area where a sagebrush meadow was encircled by Douglas fir, quaking aspen, and a mountain stream that tumbled toward the Yellowstone River. President Chester Arthur camped in this area in 1883. In 1906, the Wylie Permanent

Camping Company built a tent camp that became known as “Camp Roosevelt,” though Theodore Roosevelt never camped there. The tents were replaced by a lodge and cabins in the 1920s, and Lost Creek has shifted course, but people still enjoy staying at this scenic spot on the park’s northern range.

For Dudes and Scientists
Camp Roosevelt’s location provided an overnight stop for visitors traveling between Mammoth Hot Springs and Canyon. As at other Wylie camps, guests slept in striped tents with wood floors, gathered at a larger tent for communal meals and sing-alongs, and were transported around the park in the Wylie company’s vehicles. The successor to the Wylie company, the Yellowstone Park Camping Company, built the park’s first and smallest lodge at Camp Roosevelt in 1919. The lodges were built to accommodate the increasing number of visitors arriving in their own automobiles who wanted something more than a tent but less expensive and formal than the park’s hotels. During the 1920s and 1930s, the old hotels often stood empty while the new lodges overflowed with visitors.

At Camp Roosevelt, the concessioners wanted to create the atmosphere of a dude ranch, and Superintendent Horace Albright described it as “a place visitors would like to stay indefinitely.” It did provide a base for fishing parties and saddle-horse trips, but it was also expected to serve as a field laboratory where teachers and their students could conduct research at minimum expense, a purpose that the first director of the National Park Service, Stephen Mather, was promoting for the parks. In what was a forerunner to the educational programs found in the parks today, the National Park Service
hired H.S. Conard, a naturalist at Grinnell College, to present lectures and conduct daily field trips for Camp Roosevelt visitors and collect botanical specimens for the park museum. Scientists based at the hotel conducted studies on the park’s wildlife. From 1921 to 1923, the lodge was the headquarters for a boy’s summer camp run by Alvin Whitney of the New York State School of Forestry at Syracuse University.

The Buildings
The lodge, constructed of unpeeled logs and completed in 1920, was originally surrounded by 43 small log cabins, the first of which were completed in 1922. Over the years, the Roosevelt Lodge area became a repository for guest cabins brought from areas in the park where they were no longer wanted. By 1982, the corral had been moved farther from the cabins, of which there were now 110 of four main types.

Northeast Entrance, 1935
The entrance station and ranger residence at Yellowstone’s northeast entrance were constructed in 1935 in a rustic style that was becoming emblematic of national park architecture. According to its listing as a National Historic Landmark in 1987, the entrance station “subconsciously reinforced the visitor’s sense of the western frontier and the wilderness he was about to enter. The building was not only the physical boundary, but the psychological boundary between the rest of the world and what was set aside as a permanently wild place.” The station is considered “the best of its type remaining in the National Park System.”

The entrance station was constructed with two traffic lanes passing through it. When it became necessary to accommodate the increasing number of recreation vehicles too tall to fit in the passage, a lane was added to each side of the building rather than alter it.

The station is currently considered to be in good condition. Extensive rehabilitation of the entrance station in 1984 repaired log ends and replaced log rafters and the roof. The oakum rope chinking remains. Two street lights and a flagpole were added, and concrete bollards were placed on the east and west side to prevent vehicles from driving into the building. The interior of the checking station has undergone little change over the years. Although the original plans called for earth floors, the rooms have concrete floors that were probably poured sometime after construction. The original wood stove that heated the central portion of the station was replaced with an oil stove in the same location.
Historic Roads, 1905
The road construction that began in Yellowstone in the 1870s became the United States’ first large-scale road plan and served as a model for other parks, especially in its use of local materials. Even after Yellowstone could be reached by train in 1883, the difficulty of transport and road construction in a geologically and climatically challenging terrain required enormous labor and innovative engineering. The development of a road system was essential in making Yellowstone more accessible to the public. Over the years, advances in road standards and construction technology have led to changes in the roads’ appearance, but the overall design has remained largely intact, along with many historical features such as bridges, culverts, and guardrails.

Hiram Chittenden
The 310-mile (500 km), figure-eight road system that connects Yellowstone’s five entrances, developed areas, and major attractions remains largely the same as when engineer Major Hiram Chittenden finished his work on it in 1905. Through his role in designing Yellowstone’s roads, bridges, and other structures, Chittenden had a lasting effect on the appearance of our national parks. While stating that they should be maintained “as nearly as possible in their natural condition, unchanged by the hand of man,” he would use masonry and add or remove trees and other landscaping so that “the roads will themselves be made one of the interesting features of this interesting region.”

Throughout the park, he replaced many wooden bridges with steel or concrete. His most difficult project was the replacement of the rickety trestle at Golden Gate with a 200-foot (61-meter) viaduct, a series of 11 concrete arches built into the cliff wall over a canyon. In 1902 he persuaded Congress to make the appropriation needed to complete the park’s road system. This included some of Chittenden’s signature achievements: the road over Sylvan Pass, the road to Mount Washburn (now called Chittenden Road), and the bridge over the Yellowstone River above the Upper Falls, which at last provided a means of getting to the east bank of the river without going all the way north to Baronett’s bridge. Over the years, the Golden Gate viaduct had to be reconstructed, and the bridge over the Yellowstone River was condemned in 1959. A campaign to preserve the original bridge by building the new Chittenden Memorial Bridge in a different place was thwarted by the discovery that Chittenden had used the only logical location.

Before leaving Yellowstone in 1906, Chittenden was also responsible for overseeing the redesign of the park’s north entrance, including construction of the arch and, through irrigation, fertilization, and the planting of alfalfa, transforming 50 acres adjacent to Gardiner into a green field that would provide winter forage for pronghorn and other game animals. Today, efforts are being made to restore the field to its natural condition, but the Roosevelt Arch endures.

Touring the Park
At first, travel to and within the park was difficult. Visitors had to transport themselves or patronize a costly transportation enterprise. In the park, they found only a few places for food and lodging. Access improved in 1883 when the Northern Pacific Railroad reached Cinnabar, Montana, a town near the north entrance.

A typical tour began when visitors descended from the train in Cinnabar, boarded large “tally ho” stagecoaches (above), and headed up the scenic Gardner Canyon to Mammoth Hot Springs. After checking into the hotel, they toured the hot springs. For the next four days, they bounced along in passenger coaches called “Yellowstone wagons,” which had to be unloaded at steep grades. Each night visitors enjoyed a warm bed and a lavish meal at a grand hotel.

These visitors carried home unforgettable memories of experiences and sights, and they wrote hundreds of accounts of their trips. They recommended the tour to their friends, and each year more came to Yellowstone to see its wonders. When the first automobile entered in 1915, Yellowstone truly became a national park, accessible to anyone who could afford a car.
Preservation

Trailside Museums (1929–1932)
The museums at Fishing Bridge, Madison Junction, and Norris Geyser Basin were designated National Historic Landmarks in 1982 because their exaggerated features and organic forms exemplify rustic design in the national parks and served as models for hundreds of park buildings constructed during work relief programs of the 1930s. As envisioned by the chairman of the American Association of Museums, Hermon Bumpus, they also established the idea of “trailside museums” where visitors could learn about an area within a park. Bumpus regarded national parks as “roofless museums of nature” with unlabeled exhibits and the trailside museum as the place to provide the labels.

Designed by Herbert Maier in a style that became known as “Parkitecture,” the museums have the battered rubble masonry and clipped gables of a traditional bungalow style, but use locally available materials left in their natural condition to reflect the scale and roughness of the landscape. The asymmetrical boulders and gnarled logs display the irregularities of nature. Maier, who also designed museums for Grand Canyon and Yosemite, regarded buildings in national parks as “necessary evils” because even the best was “somewhat of an intruder.” Their National Register nomination described the trailside museums as “a perfect solution for an architecture appropriate to the outdoors: informal through the use of natural materials and horizontal lines,” but with “a strength of design and heavy-handed expressions” that “suggested the smallness of man in relation to nature.”

History
In 1928, Yellowstone Superintendent Horace Albright proposed the construction of “small local museums” to provide visitors with information that would “make their sojourn educationally as well as recreationally profitable.” With a grant from a foundation set up by John D. Rockefeller and the guidance of Dr. Bumpus, the American Association of Museums built four such museums in Yellowstone.

The Museum of Thermal Activity, constructed at Old Faithful in 1929, was razed and replaced by a visitor center in 1971. It opened in 1929 to acclaim for its quality materials and construction, and for the way it blended into its surroundings. The exteriors of the other museums have changed little since their completion by 1932, but the interiors have undergone small and large alterations in design and use. Only the Norris Geyser Basin Museum still has its original name.

In a 1942 report, park naturalist Bert Long pointed out that “due to lack of funds,” there were “many obvious gaps and inadequately told phases” of the Yellowstone story as told in its museums, and that many of the exhibits contained obsolete scientific theories. “Every attempt should be made to include in each museum information pointing out what there is to do of a recreational nature in its surroundings,” Long urged. “Get the people out of their cars, on the trails to the features and half the battle is more than won.” The difficulty of funding and keeping exhibits up to date has not lessened over the years, nor has the goal of getting people out of their cars changed, but the efforts to do so have.

Fishing Bridge Museum, 1931
Now called the Fishing Bridge Visitor Center, the building was designed so that visitors approaching from the parking lot could see through it to Yellowstone Lake, where stone steps lead down to the shore.

Antlers, rams’ horns, and bighorn sheep skulls still decorate the two wrought-iron chandeliers, but they were removed from the log frame around the screen in the adjacent amphitheater, where the original log seats were replaced with thick plank seats. No longer used, the fireplace beneath the large stone chimney is concealed from public view in a small area used for offices. Other changes include the linoleum tiles over the concrete floor, fluorescent lighting, plywood covers on some of the windows to allow removable walls for the exhibits, and replacement of the window glass with green plastic to accommodate lighting for exhibits.

The Fishing Bridge Visitor Center, 2007.
Norris Museum, 1929

The open foyer through the middle of the Norris Museum still functions as the visitor’s gateway to the Norris Geyser Basin. One of the two rooms on either side of the foyer originally contained bird specimens; both now have exhibits explaining geothermal activity and life in thermal areas. Also designed by Maier with rustic architectural features, the nearby comfort station, as it was then called, was converted to a Yellowstone Forever bookstore after a larger restroom of more contemporary style was built closer to the parking lot.

Madison Museum, 1929

Overlooking a meadow beyond which the Gibbon and Firehole rivers join to form the Madison River, the Madison Museum was intended to focus on park history, especially the nearby site where the 1870 Washburn expedition was thought to have originated the idea of a national park as a way to protect the thermal areas from commercial development. In accordance with Bumpus’s vision of the museum’s “function as a national monument,” a large glass transparency created from a 1930 photograph was placed prominently in a window where the light shone through a re-enactment of the Washburn party gathered around a campfire.

In 1940, a park naturalist suggested that the main room’s floor, made of large, uneven pieces of rhyolite, should be covered with oak or pine to “avoid possible hazards to visitors from stumbling falls” and make it easier to clean. That did not happen, but when the building was transformed into the “Explorers’ Museum” as part of Yellowstone’s 1972 centennial celebration, carpeting and track lighting were installed, the wood stove that used to heat the building was removed, and the exhibits were redesigned.

In acknowledgement of evidence long put forth by historian Aubrey Haines that refuted the “campfire story,” the re-enactment image and references to the Washburn party’s role in establishing the first national park were removed from the museum. However, in deference to Albright, still influential in retirement, and National Park Service officials who would not abandon the story, the purported campfire discussion was commemorated in a sign placed outside the museum: “…there emerged an idea…that there should be no private ownership of these wonders but that the area should be preserved for public enjoyment.” The sign is still there, but by 1975 the museum was unstaffed and vandalized.

What remained of the exhibits was removed and the building was vacant until 1991, when it became home to an “Artists in Residence” program for several years. Since 1995, Yellowstone Forever has had a bookstore there, and what is now called the “Madison Information Station” also bears a “Junior Ranger Station” sign, making it a stop for those earning their badges.
Haynes Photo Shops

As leaders in concessions development in Yellowstone from 1884 to 1962, Frank Jay Haynes and his son Jack Ellis Haynes constructed many buildings for their enterprises. Among the few that remain, the Haynes stores at Old Faithful (1897, and 1927) and in Mammoth Hot Springs (1929) were most important to the primary business of taking, developing, and selling photographs. By helping Yellowstone gain international recognition for its natural wonders, the Haynes’ photography promoted both tourism in the West and the idea of a national park.

The Old Faithful building is an example of the rustic style that was becoming popular in western parks, while the Mammoth building displays a transitional architectural style influenced by the Crafts movement, a departure from more traditional revival styles prevalent in Mammoth that was unrelated to the rustic architecture prevalent elsewhere in the park.

History

F. Jay Haynes first photographed Yellowstone National Park in 1881 to publicize the Northern Pacific Railroad. Encouraged by Superintendent Philetus Norris, who wanted to promote park visitation, Haynes built stores on land leased in Mammoth Hot Springs in 1884 and at Old Faithful in 1897. After he retired, his son Jack took over the business, and in 1927 built stores, called photo or picture shops, in the Mammoth and Fishing Bridge campgrounds, and a larger facility near what was then the Old Faithful Auto Camp. Eventually, 13 Haynes stores were opened in hotels or their own buildings.

The 1927 Old Faithful store, designed and constructed in two months by contractor George Larkin, had living quarters on the second floor over a photo finishing operation as well as a retail shop. A two-story dormitory for Haynes employees was added in 1951, and an addition to the rear of the building several years later.

The Mammoth Hot Springs facility, designed by Fred Willson and completed in 1929, served as the headquarters for the Haynes photographic business in the park. It included a dormitory, an overnight photo finishing service, and retail space that carried an assortment of photographs, books, camera film and other supplies. The drive-through canopy acknowledged the growing influence of the automobile on architectural design.

Current Status

Jack Haynes operated the family business until his death in 1962. After running the company for another five years, his wife Isabel sold it to Hamilton Stores, owned by the Povah family. After most of the Old Faithful building was moved in three pieces and reconfigured near the newly constructed Snow Lodge in 1971, Hamilton Stores renovated the dormitory and added a front porch. Nearly all of the exterior materials on the original store are still present or have been replaced by the same materials. By 1998, the original Snow Lodge had been razed and a new Snow Lodge opened immediately adjacent to the Hamilton Store.

When the Hamilton Stores contract expired in 1999, the National Park Service purchased the buildings at Old Faithful and Mammoth. The Old Faithful store detracted from the appearance of the new Snow Lodge, and after considering several alternatives, in 2009 the National Park Service dismantled the dormitory and moved the original portion of the building to a site near its original location. Yellowstone Forever now occupies the old Photo Shop. Its former site has been landscaped as public open space.

After a considerable rehabilitation and restoration project, the park concessioner, Yellowstone Park Lodges has relocated several of their offices to the building. However, some of the areas are also open for public view.
Preserving Cultural Resources

Lodging No Longer Standing
Marshall’s Hotel, which stood near the present-day intersection of Fountain Flats Drive and Grand Loop Road, was built in 1880 and was the second hotel in the park. Later renamed the Firehole Hotel, it was mostly razed in 1895, with other buildings removed later.

Fountain Hotel opened in 1891 north of Fountain Paint Pot. This was one of the first Yellowstone hotels where bears were fed for the entertainment of guests. The hotel closed after 1916 and was torn down in 1927.

Four lodging facilities were built at Norris. Three were built between 1886 and 1892; the first two burned. The last hotel at Norris, which overlooked Porcelain Basin, served the public from 1901 to 1917.

Three hotels were built in succession at Canyon, the last being the largest structure in the park. Sited where the horse stables are now, the Canyon Hotel was closed in 1958 due to financial and maintenance problems and burned in 1960.

These and other sites of former park facilities are historic archeological sites. They are studied and documented for what they reveal about past visitor use in the park.

More Information
Flather, B. Red Sowash and the Round Prairie Saloon Yellowstone Science 11(4).

Construction of Other Park Buildings
Lake General Store, 1920
Lake Ranger Station, 1922–23
Mammoth Chapel, 1912–13
Mammoth Gas Station, 1920
Old Faithful Gas Station (Lower), 1920, 1925
Old Faithful Lower General Store, 1897, 1921 addition
Old Faithful Upper General Store, 1929–30
South Entrance Ranger Station Duplex, 1928
Tower General Store, 1932
West Thumb Ranger Station 1925; now an information station

Staff Reviewers
Zehra Osman, Landscape Architect
Lee Whittlesey, Historian

Cultural Landscapes

Cultural landscapes are settings that human beings have created in the natural world. They are geographic areas that have been shaped by human manipulation of natural and cultural resources and are associated with historic events, people, or activities in the park. They reflect significance of the historic setting and recognize the influence of human beliefs and actions over time on the natural landscape. A cultural landscape is an indicator of cultural patterns, values, and heritage through the way the land is organized and divided, patterns of settlement, land use, circulation, and the types of structures that are built and their placement in the landscape.

Yellowstone National Park contains an array of landscapes that reflect the park’s history, development patterns, and a changing relationship between people and the unique Yellowstone environment. In Yellowstone, these landscapes are often a physical record of the early and on-going efforts to balance resource preservation and facility development for public enjoyment. They include sites such as Artist Point and Apollinaris Spring and the landscape features and patterns that contribute to the character of the Roosevelt Lodge Historic District. They also include areas significant to Native American cultures, such as Obsidian Cliff and sacred sites. Yellowstone’s cultural landscapes are being inventoried to identify landscapes eligible for the National Register and to ensure new undertakings are compatible with them.

More Information

This iconic view of the Lower Falls of the Yellowstone River was photographed from Artist’s Point. Artist’s Point was named to recognize the crucial role of the work of artists in the creation of Yellowstone National Park. The work of photographers and painters like Thomas Moran, persuaded distant legislators of Yellowstone’s awesome beauty and natural and cultural significance.

Grand Canyon of the Yellowstone River. Oil on Canvas 1872 by Thomas Moran.

Staff Reviewer

Zehra Osman, Landscape Architect
Collections

Yellowstone’s collections document the cultural and natural history of the world’s first national park and the conditions of its resources. The historic collections document the park from pre-history through the present. The collections include objects and written records that document the history and science of the park, changes in perception and meaning over time, and the interaction between people and nature. Specimens range from geologic and natural history to Native American and European American cultural materials.

It is National Park Service policy to collect, protect, preserve, provide access to, and use objects, specimens, and archival and manuscript collections to aid understanding and advance knowledge. Collections play important roles in resource management, research, and education programs, and function as baseline databases for park natural and cultural resources.

With several million items, Yellowstone has one of the largest collections in the National Park Service. Yellowstone National Park’s collections grow continuously with the addition of archival records (generated mostly by National Park Service staff), archeological and natural science objects, important donations, and occasional purchases.

Heritage and Research Center

For years, the collections were housed in various locations within and outside of the park, where they were frequently threatened by flood, fire, environmental degradation, theft, and inattention. With the opening of the Heritage and Research Center in 2005, the collections of “Wonderland” are finally housed together, with the exception of the historic vehicles, and their storage brought up to the standards demanded by the National Park Service, the American Alliance of Museums, and the National Archives and Records Administration.

Quick Facts

Numbers in Yellowstone

- More than 720,000 museum items, including 30 historic vehicles
- The archives housing several million records, including manuscripts, photos, maps, films, oral histories, administrative records, and scientific data that documents the natural and cultural resources of the park as well as its development and management
- A research library containing more than 20,000 books, periodicals, theses and dissertations, unpublished manuscripts, microfilm and other micrographic formats of historical newspapers and scrapbooks, brochures, technical reports, and audio visual material

Together, several million items, one of the largest in the National Park Service.

Where to See

Gardiner, Montana

- The Heritage and Research Center is open Monday–Friday, 8 am–5 pm (except federal holidays); the public is welcome to tour the temporary exhibits located in the lobby.
- The library is open to the public Monday–Friday.
- The archives, herbarium and museum collections may be accessed for research purposes by appointment.
- Public tours may be available from June to September. Call (307) 344-2264 to reserve a space.

Conducting Collections Research

Researchers range from local high school students working on term papers to tourists re-tracing an ancestor’s visit, and from park staff developing education programs or researching climate change to filmmakers preparing a miniseries for PBS.

Researchers are encouraged to complete their preliminary research at other archives, libraries, and/or museum collections with a broad topical focus before approaching the holdings of Yellowstone National Park. Yellowstone has limited reference staff and resources that must be made available to researchers whose work focuses on materials available only at the park. Access to materials is dependent upon their physical condition and the level of processing to date by the park staff. All research must be done on-site in the museum research room or the library reading room.

For more information, visit www.nps.gov/yell/learn/historyculture/collections.htm
Most of these items are kept in the Heritage and Research Center, which is located in Gardiner, Montana. The Heritage and Research Center is a collections storage facility that also houses the park’s herbarium and archeology lab, and features small rotating exhibits in the lobby.

Museum Collection

Yellowstone’s museum collection contains more than 720,000 items that, along with the archives and library collection, document the cultural and natural history of the park. The museum collection consists of natural history, archeological, and cultural objects, including obsidian points, skulls from the first wolves reintroduced in the park, Thomas Moran’s original watercolor field sketches, William Henry Jackson’s photographs, furniture from the historic hotels and other historic structures, and an extensive historic vehicle collection ranging from stagecoaches and wagons, through early buses and automobiles, to fire trucks and a snowmobile.

The collection is used each year by park staff and other researchers looking for background information on Yellowstone history, specific reference material, and illustrations for commercial products, school programs, special events, and adult education. The televised series, “The National Parks: America’s Best Idea,” by Ken Burns contained hundreds of images from Yellowstone’s collections.

While the Heritage and Research Center does have some rotating exhibits in the lobby area, the facility was not designed to be a museum, but rather a research center and a state-of-the-art storage facility. With exception of some restricted collections, such as Thomas Moran’s original watercolor field sketches, William Henry Jackson’s photographs, and other rare or fragile items, the museum collections are accessible to researchers by appointment only and require at least 24-hours advanced notice.

Historic Vehicle Collection

Yellowstone National Park’s historic vehicle collection currently includes thirty horse-drawn and motorized vehicles. They range from stagecoaches operated by the Yellowstone Park Transportation Company (later the Yellowstone Park Company) and Monida and Yellowstone Stage Company (later the Yellowstone-Western Stage Company), to early Yellowstone Park Transportation Company touring cars, buses, and service trucks, to National Park Service scooters and a fire engine. Also represented in the collection are numerous human-powered vehicles, including fire hose carts and handcarts, or “Mollys” used by hotel maids and bellmen.

The vehicle collection is one of the largest in the National Park Service. Currently housed in an historic structure (a former Yellowstone Park Transportation Company structure built in 1925 to replace the original transportation facilities destroyed by fire), it is hoped that a more suitable storage/exhibit facility will eventually be constructed, possibly as a wing of the Yellowstone Heritage and Research Center. The vehicle collection is currently not open to the public.

The majority of the vehicles were received from TW Recreational Services, Inc. (successor of the
Yellowstone Park Company) in 1991. Others have been added to the collection (such as the Willys fire truck, pictured on page 164) when they became obsolete or surplus to National Park Service needs. In 2016, a 1965 Bombardier Model R-12 snowcoach (#706) became the most recent addition to the historic vehicle collection when the park phased out the use of these coaches.

Volunteers performed initial cleaning of the vehicles, and the Yellowstone Association and Yellowstone Park Foundation (which merged in 2016 to become Yellowstone Forever) have also provided funding for preservation and conservation efforts.

More recently, some federal funding was provided for extensive preventative conservation treatment (cleaning and stabilizing some of the vehicles) by National Park Service staff. Some of the vehicles have been loaned to other museums and institutions for special exhibits, and the entire collection was the focus of a segment in “Hidden Yellowstone,” a film aired by the Discovery Channel.

Archives
The Yellowstone National Park archives houses records that document natural and cultural resources of the park as well as how the national park idea developed after Yellowstone’s establishment, how policies for managing the world’s first national park were developed, and how they continue to develop today. The Yellowstone Archives is an affiliate of the US National Archives and Records Administration and houses a unique record of physical and administrative development beginning with early civilian superintendents and pioneer entrepreneurs, through the turn-of-the-century military era, to the founding and development of the National Park Service.

The collections include documents from the military administration of the park (1886–1918), administrative records from the establishment of the National Park Service (1916) to the present, resource management records that document how the natural and cultural resources are protected, records of major projects that have occurred in the park, the records of park concessioners such as the Yellowstone Park Company, and donated manuscripts. The collection also contains historic maps, photographs, films, oral histories, administrative records, and scientific data.

The park is allowed to permanently hold federal records created by the park’s administration instead of transferring them to the National Archives because of its affiliation with the National Archives and Records Administration (NARA). While legal custody of these records belongs to NARA, physical custody is kept by Yellowstone National Park to allow researchers to have the best access to both current and historical resources in one location. Finding aids, or detailed descriptions, of the collections as well as information about accessing the documents may be found on the Yellowstone Archives webpage.

Research Library
The mission of the Yellowstone Research Library is to collect published and unpublished materials related to Yellowstone and to make these materials available to park staff, researchers, and the general public. The library collection consists of more than 20,000 books, periodicals, theses and dissertations,
unpublished manuscripts, microforms of historic newspapers and scrapbooks, brochures, technical reports, and audio visual material.

The Map Room collection includes a large number of published maps from 1865 to the present. In the Rare Book Room are the personal papers and books of notable figures from Yellowstone history, including Major Hiram Chittenden and several early superintendents. Donations from Yellowstone Forever (formerly the Yellowstone Association and Yellowstone Park Foundation), and private donors, as well as funding provided by the National Park Service, have made possible an impressive, possibly unsurpassed, example of Yellowstone National Park resources.

The library has also hosted teacher training seminars focusing on primary documents and teacher-led high school writing groups. In 2006, the library staff began a bookmobile service that travels around the park interior once a month during the summer. Participation in the program has grown by at least 30% every year since it began.

The Yellowstone Library and Museum Association, predecessor of the Yellowstone Association (now Yellowstone Forever), was organized in 1933 in part “to assist in the establishment and development of a Yellowstone Park Library for the use of rangers, ranger naturalists and others dealing with park visitors and the public.” While the library collection is now the property of the National Park Service, Yellowstone Forever continues to support the library by employing librarians and providing most of the funding for purchases and subscriptions as well as for specific library projects.

Staff Reviewer
Colleen Curry, Supervisory Museum Curator

FREQUENTLY ASKED QUESTION: Can I access the collections online?

The Yellowstone Research Library’s catalog is available through the Wyoming Library Databases consortium (wyld.state.wy.us/ylr/) and the National Park Service’s libraries (www.library.nps.gov). Records that are available online are linked through the library catalog. Finding aids for processed archives collections may be accessed at www.nps.gov/yell/historyculture/archives.htm.

The Yellowstone Research Library is working to digitize more of the library’s collections. The library’s digitization project, “History of Gardiner,” is available on the Montana Memory Project website: montanamemory.org. Electronic files of published scientific articles are available in the Data Store on the Integrated Resources Management Applications (IRMA) website, irma.nps.gov/Portal.
Yellowstone National Park forms the core of the Greater Yellowstone Ecosystem. At 34,375 square miles (89,031 km²), it is one of the largest nearly intact temperate-zone ecosystems on Earth. Greater Yellowstone’s diversity and natural wealth includes the hydrothermal features, wildlife, vegetation, lakes, and geologic wonders like the Grand Canyon of the Yellowstone River.

Heart of an Ecosystem
Yellowstone National Park was established in 1872 primarily to protect geothermal areas that contain about half the world’s active geysers. At that time, the natural state of the park was largely taken for granted. As development throughout the West increased, the 2.2 million acres (8,903 km²) of habitat that now compose Yellowstone National Park became an important sanctuary for the largest concentration of wildlife in the lower 48 states.

The abundance and distribution of these animal species depend on their interactions with each other and on the quality of their habitat, which in turn is the result of thousands of years of volcanic activity, forest fires, changes in climate, and more recent natural and human influences. Most of the park is above 7,500 feet (2,286 m) in elevation and underlain by volcanic bedrock. The terrain is covered with snow for much of the year and supports forests

Quick Facts

Space and Ownership
- 12–22 million acres; 18,750–34,375 square miles (Sizes, boundaries, and descriptions of any ecosystem can vary.)
- States: Wyoming, Montana, Idaho
- Encompasses state lands, two national parks, portions of five national forests, three national wildlife refuges, Bureau of Land Management holdings, private and tribal lands.

Wildlife
- One of the largest elk herds in North America
- Largest free-roaming, wild herd of bison in United States
- One of few grizzly populations in contiguous United States
- Rare sightings of wolverine and lynx

Management Challenges
- Climate change
- Invasive species
- Managing an ecosystem across political boundaries
- Land use change
- In Yellowstone:
 - Bison management
 - Grizzly bear management
 - Native fish conservation
 - High Visitation

As development throughout the West increased, the 2.2 million acres (8,903 km²) of habitat that now compose Yellowstone National Park became an important sanctuary for the largest concentration of wildlife in the lower 48 states.

The abundance and distribution of these animal species depend on their interactions with each other and on the quality of their habitat, which in turn is the result of thousands of years of volcanic activity, forest fires, changes in climate, and more recent natural and human influences. Most of the park is above 7,500 feet (2,286 m) in elevation and underlain by volcanic bedrock. The terrain is covered with snow for much of the year and supports forests
dominated by lodgepole pine and interspersed with alpine meadows. Sagebrush steppe and grasslands on the park’s lower-elevation ranges provide essential winter forage for elk, bison, and bighorn sheep.

Influence of Geology

Geological characteristics form the foundation of an ecosystem. In Yellowstone, the interplay between volcanic, hydrothermal, and glacial processes, and the distribution of flora and fauna are intricate. The topography of the land from southern Idaho north-east to Yellowstone probably results from millions of years of hot spot influence. Some scientists believe the Yellowstone Plateau itself is a result of uplift due to hot spot volcanism. Today’s landforms even influence the weather, channeling westerly storm systems onto the plateau where they drop large amounts of snow.

The volcanic rhyolites and tuffs of the Yellowstone Caldera are rich in quartz and potassium feldspar, which form nutrient-poor soils. Thus, areas of the park underlain by rhyolites and tuffs generally are characterized by extensive stands of lodgepole pine, which are drought tolerant and have shallow roots that take advantage of the nutrients in the soil.

In contrast, andesitic volcanic rocks that underlie the Absaroka Mountains are rich in calcium, magnesium, and iron. These minerals weather into soils that can store more water and provide better nutrients than rhyolitic soils. These soils support more vegetation, which adds organic matter and enriches the soil. You can see the result when you drive over Dunraven Pass or through other areas of the park with Absaroka rocks. They have a more diverse flora, including mixed forests interspersed with meadows. Lake sediments deposited during glacial periods, such as those underlying Hayden Valley, form clay soils that allow meadow communities to out-compete trees for water. The patches of lodgepole pines in Hayden Valley grow in areas of rhyolite rock outcrops.

Because of the influence rock types, sediments, and topography have on plant distribution, some scientists theorize that geology also influences wildlife.
distribution and movement. Whitebark pine nuts are an important food source for grizzly bears during autumn. The bears migrate to whitebark pine areas such as the andesitic volcanic terrain of Mount Washburn. Grazing animals such as elk and bison favor the park’s grasslands, which grow best in soils formed by sediments in valleys such as Hayden and Lamar. The many hydrothermal areas of the park, where grasses and other food remain uncovered by snow, provide sustenance for animals during winter.

Air Quality
The Clean Air Act Amendments of 1977 designated Yellowstone and Grand Teton among the 156 national parks and wilderness areas that are Class I airsheds, requiring the most stringent air quality protection within and around their boundaries. Yellowstone and Grand Teton are in compliance with federal air quality standards for human health. However, air-quality trends may be affecting other aspects of the ecosystem. Even at relatively low levels, such as those found in the Greater Yellowstone Ecosystem, air pollution and the subsequent deposition of pollutants in water and soil can leach nutrients from the earth, injure vegetation, and acidify and over-fertilize lakes and streams.

The thin soils, sparse vegetation, short growing seasons, and snow-based water supply of these high elevation areas limits the amount of nitrogen that can be effectively used. Those conditions make the area more vulnerable to the effects of acidification and nutrient enrichment from nitrogen deposition. For example, nitrogen in precipitation has increased at many western sites as a result of fertilizer use and feedlots. Although nitrogen is a nutrient needed for plant growth, too much nitrogen disrupts native plant communities that are adapted to low-nitrogen conditions; high nitrogen levels can advance the spread of nonnative species that increase fire frequency. Acidification of high alpine lakes from sulfur and nitrogen deposition can cause the loss of macroinvertebrates and fish. Long-term changes in the composition of algae in several alpine lakes in Yellowstone and Grand Teton are correlated with increased nitrogen.

Naturally occurring ozone in the upper atmosphere protects life by absorbing the sun’s ultra-violet rays, while ground-level ozone is a pollutant that forms when nitrogen oxides from vehicles, power plants, and other sources combine with volatile organic compounds. Ozone concentrations in Yellowstone typically peak in spring rather than summer, indicating that human influences are less significant than changes in atmospheric circulation and lengthening daylight. Nonetheless, in addition to potentially causing respiratory problems in people, ozone levels during the growing season may be high enough to prevent sensitive species, such as aspen, from reaching full growth potential.

Sources of Particulate Matter
The largest source of particulate matter in Greater Yellowstone is smoke from wildland fires, which is considered part of the area’s “natural background conditions” and is taken into consideration in establishing the threshold for “good” visibility. Emissions from prescribed fires have been relatively insignificant. Because of prevailing winds, Wyoming oil and gas development has not had a detectable effect on air quality in Yellowstone.

Soundscapes
The Greater Yellowstone Ecosystem has many biological sounds with important ecological functions for reproduction and survival. Birds, mammals, amphibians, and insects often need to hear or produce sounds to attract mates, detect predators, find prey, and/or defend territories. The occurrence of sounds in a particular area forms the soundscape.

The natural soundscape of the Greater Yellowstone Ecosystem delights visitors during the fall elk rut, during birds’ spring choruses, along rushing streams, and in the still and profoundly quiet days and nights of winter. Natural soundscapes are a resource and are protected by National Park Service policies. Many park visitors come to national parks to enjoy serenity and solitude and expect to hear sounds of nature. Sounds associated with human activity, including road traffic, aircraft, and snowmobiles often impact these natural soundscapes and are an important and growing source of concern. Aircraft noise, which is the most widespread human-caused sound in the park, is heard on average for less than 10 percent of the day. Yellowstone and Grand Teton national parks initiated a soundscape monitoring program in 2003.

More Information
National Park Service Air Resources Division: www.nature.nps.gov/air.
Water

The water that flows through Yellowstone National Park and the Greater Yellowstone Ecosystem (GYE) is a vital national resource. The headwaters of seven great rivers are located in the GYE, and flow from the Continental Divide through communities across the nation on their way to the Pacific Ocean, the Gulf of California, and the Gulf of Mexico. Precipitation (rain and snow) in the mountains and plateaus of the Northern Rockies flows through stream and river networks to provide essential moisture to much of the American West; and water resources provide recreational opportunities, plant and wildlife habitat, and scenic vistas.

Water also drives the complex geothermal activity in the region and fuels the largest collection of geysers on earth. Precipitation and groundwater seep down into geothermal “plumbing” over days, and millennia, to be superheated by the Yellowstone Volcano and rise to the surface in the form of hot springs, geysers, mudpots, and fumaroles.

Yellowstone contains some of the most significant, near-pristine aquatic ecosystems found in the United States. More than 600 lakes and ponds comprise approximately 107,000 surface acres in Yellowstone—94 percent of which can be attributed to Yellowstone, Lewis, Shoshone, and Heart lakes. Some 1,000 rivers and streams make up approximately 2,500 miles of running water. Thousands of small wetlands—habitats that are intermittently wet and dry—make up a small (approximately 3%) fraction of the Yellowstone landscape.

Lakes

Yellowstone’s inland lakes are essential aquatic habitat for resident species. They are largely protected from many of the environmental stresses to which waters outside the park boundaries may be victim. These lakes maintain freshwater biodiversity, support elaborate food webs, and underpin plant and animal communities. Understanding the complexities of Yellowstone’s lake ecosystems allows park managers to successfully conserve Yellowstone’s lake resources in the face of nonnative invasive species, climate change, and pollution.

Yellowstone Lake

Yellowstone Lake is the largest high-elevation lake (above 7,000 ft) in North America, covering up to 139 square miles, with an average depth of 138 feet, and just over 12,000,000 acre-feet of water. The lake is covered by ice from mid-December to May or June.

Yellowstone Lake Quick Facts

- Elevation: 7,731 feet (2,357 m)
- Surface area: 131.8–135.9 mi² (341–352 km²)
- Perimeter (Shoreline): 141 miles (227 km)
- Deepest point is due east of Stevenson Island at 430 feet (131 m)
Entering Yellowstone Lake are more than 141 tributaries, but only one river. The Yellowstone River, which enters at the south end of the southeast arm, dominates the inflow of water and sediment flows out. The only outlet of the lake is at Fishing Bridge, where the Yellowstone River flows north and discharges 2,000–9,000 cubic feet per second.

Powerful geologic processes in Yellowstone National Park have contributed to the unusual shape of Yellowstone Lake, which straddles the southeast margin of the Yellowstone caldera. A smaller caldera-forming event about 174,000 years ago, comparable in size to Crater Lake, Oregon, created the West Thumb basin. Several significant glacial advances and recessions continued to shape the lake and overlapped the volcanic events. Glacial scour deepened the central basin of the lake and the faulted south and southeast arms. More recent dynamic processes shaping Yellowstone Lake include currently active fault systems, development of a series of postglacial shoreline terraces, and postglacial hydrothermal-explosion events, which created the Mary Bay crater complex and other craters. (See “Yellowstone Lake Geology” in chapter four, for more information.) Many of the area’s 1,000 to 3,000 annual earthquakes occur under Yellowstone Lake, causing uplift and subsidence events which continually reshape the shoreline of the lake.

Yellowstone Lake is also the site of one of the most extensive conservation efforts in the National Park Service. Lake trout (Salvelinus namaycush) which were illegally introduced to Yellowstone Lake have jeopardized the survival of the native population of cutthroat trout (Oncorhynchus clarkii bouvieri). See “Native Fish Species” and “Lake Trout” in the wildlife chapter for more information.

Lewis and Shoshone Lakes
Lewis Lake is fed by the Lewis River and other tributaries. Shoshone Lake, the park’s second largest lake, is located at the head of the Lewis River southwest of West Thumb. Shoshone Lake is a valuable wilderness resource. Only accessible by foot, or by boat through the Lewis River Channel, one of the park’s amazing geyser basins lies near the northwest shore. Shoshone Lake is 205 feet at its maximum depth, has an area of 8,050 acres, and contains lake trout, brown trout (Salmo trutta), and Utah chub (Gila atraria). Originally, Shoshone Lake was barren of fish owing to waterfalls on the Lewis River. The two types of trout were planted beginning in 1890, and the Utah chub was apparently introduced by bait fishermen. This large lake is the source of the Lewis River, which flows to the Pacific Ocean via the Snake River system. The U.S. Fish and Wildlife Service believes that Shoshone Lake may be the largest lake in the lower 48 states that cannot be reached by road.

Heart Lake
Heart Lake is located at the south end of the park near the base of Mt. Sheridan. It sits in prime bear habitat, and there are several thermal areas along the northwest shore.

Rivers
Watersheds, or drainage basins, represent the surface area that contributes runoff to a particular river. The boundaries of a watershed are ridges or elevated areas which determine the direction surface water will flow. Any rain or snow that falls within the watershed will flow downstream to the basin’s mouth, unless it is removed from the flow by evaporation, freezing, absorption as groundwater, or diversion for human use.

Yellowstone River
The Yellowstone River is 671 miles long. It is the longest undammed river in the lower 48 states. The headwaters of the Yellowstone are outside the
southeast park boundary on Younts Peak (Wyoming) and flows into Yellowstone Lake. It leaves the lake at Fishing Bridge, and continues north-northwest until it leaves the park near Gardiner, Montana. The Yellowstone River continues north and east through Montana and joins the Missouri River just across the North Dakota state line. Its watershed drains one-third of the state of Montana. It carves out the Grand Canyon of the Yellowstone in the middle of the park and runs over the Upper and Lower Falls and is home to Yellowstone cutthroat trout.

The Yellowstone River is among the top recreational river destinations in the US and provides opportunities for boating and fishing enthusiasts, birders, and for recreation. Additionally, the Yellowstone River serves many downstream communities (e.g., Billings, Montana) and is recognized regionally and nationally for economic importance to agriculture, industry, and municipalities.

Lamar River

The Lamar River originates on the east side of the park. Park boundaries were adjusted in 1929 to include the entire Lamar watershed in order to protect this major tributary of the Yellowstone River. The Lamar River is joined by Soda Butte Creek as it flows across the northern range to the outflow of Yellowstone Lake. The Lamar River Valley is home to wild pronghorn, bison rutting, bear habitat, the most consistent viewing of wild wolves in the world, and first-rate fly fishing.

Gardner River

The Gardner River originates in the northwest corner of the park and flows to the Missouri River. The Gardner flows into the Yellowstone first, joining near Rattlesnake Butte at the north entrance to the park.

Snake River

The Snake River—a major tributary of the Columbia River—originates in Yellowstone National Park, and then turns south, passing through the John D. Rockefeller, Jr., Memorial Parkway into Grand Teton National Park. The river flows through Idaho and joins the Columbia River in Washington. The Snake River is 1,040 miles long (1,674 km); 42 miles (68 km) of it are in Yellowstone National Park. The river feeds Jackson Lake—a natural lake augmented by a dam, resulting in regulated downstream flows since 1907.

Visitors enjoy a multitude of recreational opportunities on the river such as rafting, fishing, and photography. The river is home to a wide variety of riparian and aquatic species, including the native Yellowstone cutthroat trout and an endemic variety, the Snake River fine-spotted cutthroat trout (*Oncorhynchus clarkii behnkei*). The 2009 Snake River Headwaters Legacy Act designated the river above Jackson Lake as a Wild and Scenic River. The Lewis River is a tributary of the Snake River.

Firehole River

Home to several species of trout, the Firehole River is a favored fly fishing spot. Most of the outflow from the park’s geyser basins empties into the Firehole River causing it to be warmer with larger concentrations of dissolved minerals (chemically richer) than

FREQUENTLY ASKED QUESTION

Does the Missouri River begin here?

No, but its three tributaries begin in the greater Yellowstone area. The Jefferson River begins in the Centennial Mountains, west of the park. The Madison River forms inside the park at Madison Junction, where the Gibbon and Firehole rivers join. The Gallatin River also begins inside the park north of the Madison River. It flows north through Gallatin Canyon and across the Gallatin Valley, joining the Madison and Jefferson rivers at Three Forks, Montana, to form the Missouri River.
other watersheds. The Gibbon and Firehole rivers join to form the Madison River. The Madison flows to Hebgen Lake, joins the Jefferson River and eventually the Missouri River on its way to the Gulf of Mexico.

Water Quality
The quality of the nation’s waters is protected by laws and policy at local, state, and federal levels. To understand and maintain or improve water quality and aquatic ecosystems, resource managers take inventory and actively monitor water resources throughout the region. Water quality in a national park may reflect activities taking place upstream of the park’s surface waters as well as within the park. The water quality in Grand Teton and Yellowstone national parks, where most of the watersheds originate on federally protected land, is generally very high. However, it is vulnerable to impacts such as road construction, recreational activities, and deposition from atmospheric pollutants.

All Yellowstone waters are classified as Outstanding National Resource Waters, which receive the highest level of protection for surface waters under the Clean Water Act. Because of the relatively pristine nature of the park’s surface waters, they are often used to establish reference conditions for the northern Rocky Mountain region. Although most of the park’s watersheds originate within its boundaries and are minimally affected by human activities, they are vulnerable to impacts such as road construction, dewatering, atmospheric deposition, sewage spills, climate change, and runoff from mining sites outside park boundaries.

Long-term Water Quality Monitoring
Monitoring water quality continues to be a high priority for Yellowstone, with standardized data collected at fixed sites since 2002. This long-term data is used to evaluate overall ecosystem health, ascertain impacts of potential stressors (e.g., upstream impacts from legacy mines), identify changes that may be associated with water quality degradation, and guide resource management decisions related to water quality.

The characteristics of Yellowstone’s surface waters are influenced by season, elevation, precipitation, and weather. Some waters are also affected by the park’s geothermal features, generally resulting in warmer temperatures and higher dissolved ion concentrations. Park staff monitors water temperature, dissolved oxygen, pH, specific conductance, turbidity, and total suspended solids at 11 stream sites and 7 sites on Yellowstone Lake. Staff collect chemical parameters from 10 stream sites, including anions, cations, and nutrients.

Most waters in Yellowstone meet or surpass national and state water quality standards. Geothermal influence on some park waters can result in failure to meet state drinking or recreational water quality standards. For example, arsenic levels in the Madison River at West Yellowstone exceeded the State of Montana’s criteria on most sampling occasions. Arsenic in the Madison River is likely naturally occurring from geothermal geology in the watershed. Park staff also monitor three sites on the park boundary where stream segments in the Yellowstone River drainage have been listed as impaired by the State of Montana.
Reese Creek
Irrigation by landowners north of the park has often reduced the lowermost reach of the stream during mid-summer and fall. The water flow becomes unsuitable for sustaining native trout and overall biological integrity. The adjudicated water rights stipulate that the creek is to have a minimum flow of 1.306 ft³/sec from April 15 to October 15. A stakeholder group of federal agencies, private citizens, and conservation organizations are working together on projects to increase the flows in the main channel.

Soda Butte Creek
Soda Butte Creek is located near the park boundary, approximately 5 miles (8 km) downstream of the former location of the McLaren Mill and Tailings site. As a result of metal contamination from previous mining activity, dissolved and total metals (arsenic, copper, iron, and lead) persist in the floodplain. State and federal agencies completed a three-year effort to relocate mine tailings away from the floodplain and to reconstruct the former channel in 2014. Results from 2015 and 2016 monitoring activities in Soda Butte Creek downstream of the reclamation work show that iron levels associated with the former tailing site have been dramatically reduced.

The resulting data from recent monitoring also led to a determination in November 2017 by the Montana Department of Environmental Quality (DEQ) that metals conditions in Soda Butte Creek support designated beneficial uses. Montana DEQ has now recommended removing Soda Butte Creek from the state’s impaired water 303(d) list. The reclamation of McLaren Mill and Tailings site and subsequent removal from the 303(d) list represent important milestones in the restoration of Soda Butte Creek.

Yellowstone River at Corwin Springs
Similar to prior years, water samples were collected on the Yellowstone River from late February to early November 2017 and indicated that sites exceeded the EPA drinking water standard of 0.01 mg/L total arsenic but not the aquatic life criterion (0.15 mg/L). The higher total arsenic values in this drainage may be due to natural geological or geothermal influences on water chemistry.

More Information

Staff Reviewer
Andrew Ray, Ecologist, Greater Yellowstone Network.
Jeff Arnold, Fishery Biologist.
Cycles and Processes

Cycles and processes are essential connections within an ecosystem. Photosynthesis, predation, decomposition, climate, and precipitation facilitate the flow of energy and raw materials. Living things absorb, transform, and circulate energy and raw materials and release them again.

Life forms are active at all levels. Microbes beneath Yellowstone Lake thrive in hydrothermal vents where they obtain energy from sulfur instead of the sun. Plants draw energy from the sun and cycle nutrients such as carbon, sulfur, and nitrogen through the system. Herbivores, from ephydrid flies to elk, feed on the plants and, in turn, provide food for predators like coyotes and hawks. Decomposers—bacteria, fungi, other microorganisms—connect all that dies with all that is alive.

The ecosystem is constantly changing and evolving. A wildland fire is one example of an integral, dynamic process. Fires rejuvenate forests on a grand scale. Some species of plants survive the intense burning to re-sprout. Some cones of lodgepole pines pop open only in heat generated by fires, spreading millions of seeds on the forest floor. After fire sweeps through an area, mammals, birds, and insects quickly take advantage of the newly created habitats. Fires recycle and release nutrients and create dead trees or snags that serve a number of ecological functions, such as the addition of organic matter to the soil when the trees decompose.

These cycles and processes are easily and frequently observed on Yellowstone’s northern range, which refers to the broad grassland that borders the Yellowstone and Lamar rivers in the northern portion of the park and into Montana. This area sustains one of the largest and most diverse communities of free-roaming large animals seen anywhere on Earth. Many of the park’s ungulates spend the winter here. Elevations are lower and the area receives less snow than elsewhere in the park. Often the ridge tops and south-facing hillsides are clear of snow, a result of wind and sun. Animals take advantage of this lack of snow, finding easier access to forage.

As a result of its incredible biodiversity, relatively complete ecosystem integrity, and year-round access, research conducted on the northern range has informed much of our current scientific understanding of native species and the ecological processes that sustain them.

Biodiversity

Each species—no matter how small—has an important role to play in a functioning ecosystem. They all participate in various ecosystem processes like transferring energy, providing nutrient storage, or breaking down pollutants. That is why biological diversity, or biodiversity, is a benchmark for measuring the health of an ecosystem. Biodiversity can be measured in many ways, including the number of different species (also called richness) and the abundance of each species (also called evenness).

The biodiversity and ecological processes that are protected in the park support a healthy ecosystem. Significantly, Greater Yellowstone’s natural diversity is essentially intact. The region appears to have retained or restored its full historical complement of vertebrate wildlife species—something unique in the wildlands of the contiguous 48 states. The extent of wildlife diversity is due, in part, to the different habitats found in the region, ranging from high alpine areas to sagebrush country, hydrothermal areas, forests, meadows, and other habitat types. All of these are connected by landforms through links provided by streams and rivers that course through the changing elevations, and in the air that circulates between them.
Biodiversity also supports the resilience of an ecosystem. When a variety of organisms contribute to ecosystem processes, an ecosystem can be more flexible through dynamic events like floods or fire. Knowledge of the park’s biodiversity expanded in 2009 with Yellowstone’s first bioblitz.

Intricate Layers

The reintroduction of the wolf to Yellowstone restored an important element of ecological completeness in the Greater Yellowstone Ecosystem. This region now contains every large wild mammal, predator or prey, that inhabited it when Europeans first arrived in North America, though not necessarily in the same numbers or distribution. But the wolf is only one factor in the extremely complex and dynamic community of wild Yellowstone. Since wolves were restored, scientists have discovered layers of complexity reaching far beyond the large mammals. For example, the carcasses of elk, bison, and other large mammals each become ecosystems of their own. Researchers have identified at least 57 species of beetle associated with these ungulate carcasses on the northern range. Only one of those species eats ungulate meat. The rest prey on other small scavengers, especially the larvae of flies and beetles. Others consume carcass by-products such as microscopic fungal spores. In this very busy neighborhood, thousands of appetites interact until the carcass melts away and everybody moves on.

Thus the large predators point us toward the true richness, messiness, and subtlety of wild Yellowstone. For a wolf pack, an elk is dinner waiting to happen; for beetles, flies, and many other small animals, the elk is a village waiting to happen.

Trophic Cascade

Wolf reintroduction created the chance to observe how a top predator influences its plant-eating prey and how changes in those prey influence plants. By reducing the abundance of herbivores or changing their feeding behavior, predators free plants from being eaten. This series of effects is called a “trophic cascade.”

Accumulated studies show that the loss of wolves from the food web on the northern range in the 1930s led to a loss of willows and other woody plants by allowing excessive grazing by elk. Most researchers agree that reintroduced wolves have contributed to fewer elk and changes in elk behavior. Some studies have shown a correlation between the presence of wolves and increased growth in willows. However, not all scientists agree that this relationship is causal. For example, some researchers say elk don’t linger in willow or aspen areas where visibility is poor and that this behavioral change prevents them from eating as much willow or aspen. Other scientists argue that fluctuations in the availability of ground water explain much of the growth patterns in woody vegetation. Ecologists have documented a substantial rise in temperature in the northern range: from 1995 to 2005, the number of days above freezing increased from 90 to 110. Changes in precipitation and effects of global climate change are also affecting vegetation growth.

It is too soon to know for sure if this trophic cascade is actually happening, and how extensive it might be—or if it is just one of many factors at work. Ongoing, long-term scientific research will continue to examine the complex fabric of the Greater Yellowstone Ecosystem.

Predators and Prey

For the visitor, this community’s complexity has been highlighted primarily through the large predators and
their prey species. This ecological “suite” of species provides a rare display of the dramatic pre-European conditions of wildlife in North America.

Consider the northern Yellowstone elk herd, which decreased in numbers from 1994–2010. Computer models prior to wolf recovery predicted a decline in elk and the decline has exceeded those predictions. However, prey populations that share their habitat with more species of predators are now thought to fluctuate around lower equilibria, and wolf recovery occurred simultaneously with increased grizzly bear and mountain lion populations, sustained human hunting of elk (especially female or “antlerless”) north of the park, and an extended drought.

Elk are subject to predation by many species in the ecosystem, including bears, wolves, coyotes, and mountain lions. Also, the northern Yellowstone elk population is subject to several hunts each year. Elk that migrate out of the park may be legally hunted during an archery season, early season backcountry hunt, general autumn hunt, and in past years a Gardiner, Montana late hunt, all of which are managed by the Montana Department of Fish, Wildlife and Parks. The primary objective of the Gardiner late hunt was to regulate the northern Yellowstone elk population that migrated outside the park during winter and limit grazing of crops on private lands. During 1996–2002, approximately 5–19% (mean approximately 11%) of the adult female portion of counted elk were harvested each year during the late hunt. However, the hunt has not been held since 2009 due to decreased elk numbers.

Animal populations are not static, and don’t always stay at levels pleasing to humans. Instead, a more dynamic variability is present, which probably characterized this region’s wildlife populations for millennia. The complex interdependence of these relationships results in fluctuations in the elk population—when there are lots of elk, predator numbers increase, which, in part, helps reduce elk numbers and recruitment (elk calf survival). Nature does have balances, but they are fluid rather than static, flexible rather than rigid, and experience dynamic fluctuation as opposed to a steady state.

While some people delight in the chance to experience the new completeness of the Yellowstone ecosystem, others are alarmed and angered by the changes. But with so few places remaining on Earth where we can preserve and study such ecological completeness, there seems little doubt about the extraordinary educational, scientific, and even spiritual values of such a wild community.

Grazing and Migration

Grasses are an important part of the diet of most hoofed animals (ungulates) in Yellowstone. Bighorn sheep, bison, and elk rely on grasses for 50–80% of their food. Ungulates in this temperate mountain environment migrate seasonally and move selectively across the landscape following the new growth of grasses, when forage is at its most nutritious.

These ungulates eat green plants in the spring at lower-elevation winter ranges, before migrating higher in elevation with the wave of young, nutritious vegetation later in the growing season. Ungulates then return to the winter range in late autumn to access mostly dead, low-quality foods when deep snow covers the higher-elevation areas.

Intense grazing can degrade plant communities by removing vegetation, compacting soils, and reducing...
the diversity of plants. Dense ungulate populations can also shift the composition and structure of plant communities. Studies of the northern range began to address the issue of overgrazing in the 1960s and have continued to the present. Early studies identified some over-browsing of riparian plants, but no clear evidence of overgrazing.

The results of years of research and analysis, published in *Ecological Dynamics on Yellowstone’s Northern Range* (2002), concluded that “the best available scientific evidence does not indicate ungulate populations are irreversibly damaging the northern range.” The northern range is healthy and elk do not adversely affect the overall diversity of native animals and plants. It was also determined that ungulate grazing actually enhances grass production in all but drought years, and grazing also enhances protein content of grasses, yearly growth of big sagebrush, and establishment of sagebrush seedlings.

There is some indication that the dynamic northern grassland system is in a state of flux. The density of northern Yellowstone elk decreased to approximately 3 to 5 per square kilometer during 2006 through 2011 from a high of 12 to 17 per square kilometer in the late 1980s and early 1990s before wolf reintroduction. Fewer elk resulted in less forage consumed and less intense feedbacks by elk on soil and plant processes, which likely contributed to lower plant production and forage quality.

However, the effects of an increasing bison population on soil and plant processes remain to be determined. Bison and elk have a substantial degree of dietary and habitat overlap, which may result in competition between bison and elk for food resources. Also, large concentrated groups of bison that repeatedly graze sites throughout the summer could potentially have quite different effects on the dynamics of Yellowstone’s northern range than herds of elk that graze sites for relatively short periods during their migration to high elevation summer range.

Research has been initiated to explore the influence of recent changes in the Yellowstone grazing community on ecosystem processes such as the spatial pattern and intensity of ungulate grazing and grassland energy and nutrient dynamics. Scientists predict that the transition to an increasing population of bison will influence the grasslands in northern Yellowstone differently than elk.

Seasons and Weather

A warming climate could influence the diet, nutrition, and condition of Yellowstone wildlife. Likely scenarios suggest a 1–3 degrees Celsius increase in average temperature during the 21st century with a corresponding increase in annual rainfall—though it is unknown precisely how precipitation patterns will change and how those changes will affect the Yellowstone system.

“Too Many” or “Too Few”

The northern range has been the focus of one of the most productive, if sometimes bitter, dialogues on the management of a wildland ecosystem. For more...
than 80 years this debate focused on whether there were “too many” elk on the northern range. Although early counts of the elk in the park, especially on the northern range, are highly questionable, scientists and managers in the early 1930s believed that grazing and drought in the early part of the century had reduced the range’s carrying capacity and that twice as many elk were on the range in 1932 as in 1914. Due to these concerns about overgrazing and overbrowsing, park managers removed ungulates—including elk, bison, and pronghorn—from the northern range by shooting or trapping from 1935 to the late 1960s. More than 26,000 elk were culled or shipped out of the park to control their numbers and to repopulate areas where over-harvesting or poaching had eliminated elk. Hunting outside the park removed another 45,000 elk during this period. These removals reduced the annual elk counts from approximately 12,000 to less than 4,000 animals.

As the result of public pressure and changing National Park Service conservation philosophy, park managers ended elk removals in the late 1960s and let a combination of weather, predators, range conditions, and outside-the-park hunting and land uses influence elk abundance. Without any direct controls inside the park, annual elk counts increased to approximately 12,000 elk by the mid-1970s, 16,000 elk by 1982, and 19,000 elk by 1988. This rapid population increase accentuated the debate regarding elk grazing effects on the northern range.

The restoration of wolves into Yellowstone and their rapid increase changed the debate from concerns about “too many” elk to speculation about “too few” elk because of wolf predation. Elk are the most abundant ungulate on the northern range and comprised more than 89% of documented wolf kills during winters from 1997 to 2008. Also, from 2002 to 2008, elk calf survival (recruitment) and total number of the northern elk herd declined. Many factors (e.g., other predators, drought, winterkill, hunting) contributed to the low recruitment and decreased elk numbers. These trends cause some people to think wolves are killing off elk, despite the fact that elk continue to populate the northern range at relatively high density compared to other areas.

Opinions about “too many” or “too few” assume there is an ideal, static, ecosystem state to which we compare current conditions. Scientifically, no such condition exists. But in the scope of human values, everyone has an idea about how things “ought to be.”

Controversy arises when those different experiences and values conflict. For example, many urban dwellers live among intensively managed surroundings (community parks and personal gardens and lawns) and are not used to viewing wild, natural ecosystems. Livestock managers and range scientists, on the other hand, tend to view the landscape in terms of the number of animals that a unit of land can optimally sustain. Range science has developed techniques that allow intensive human manipulation of the landscape for this goal, which is often economically based. Furthermore, many ecologists and wilderness managers have come to believe that the ecological carrying capacity of a landscape is different from the concept of range or economic carrying capacity. They believe variability and change are the only constants in a naturally functioning wilderness ecosystem.

More Information

Staff Reviewers
P.J. White, Branch Chief of Wildlife and Aquatic Resources
Doug Smith, Supervisory Wildlife Biologist
Chris Geremia, Wildlife Biologist
Though the wildlife and plants of Greater Yellowstone are adapted to its cold, snowy winters, surviving the winter season can be a struggle.

Winter Ecology
As remarkable as Greater Yellowstone and Yellowstone National Park are during the rest of the year, the park in winter is a magical place: steam and boiling water erupt from natural cauldrons in the park’s ice-covered surface, snow-dusted bison exhale vaporous breaths as they lumber through drifts of white, foxes and coyotes paw and pounce in their search for prey in the deep snow, and gray wolves bay beneath the frozen moon.

Yellowstone in winter also is a place of vulnerability. Wildlife endure extremes of cold, wind, and the absence of ready food, their tracks through deep snow tell of tenacious struggles through the long winter. Park conditions in this most severe of seasons become critical to the mortality of wildlife and even to survival of park species.

No wonder the park is so popular in this magical, vulnerable season with those who have enjoyed its charms. It is often said among park staff who live in Yellowstone that winter is their favorite season. Many park visitors who try a winter trip to Yellowstone come back for more.

Animal Adaptations
Deep snow, cold temperatures, and short days characterize winter in the Greater Yellowstone Ecosystem, conditions to which plants and animals are adapted. For example, conifers retain their needles through the winter, which extends their ability to photosynthesize. Aspens and cottonwoods contain chlorophyll in their bark, enabling them to photosynthesize before they produce leaves.

Behavioral
- Red squirrels and beavers cache food before winter begins.
- Some birds roost with their heads tucked into their back feathers to conserve heat.
- Deer mice huddle together to stay warm.
- Deer, elk, and bison sometimes follow each other through deep snow to save energy.
- Small mammals find insulation, protection from predators, and easier travel by living beneath the snow.

FREQUENTLY ASKED QUESTIONS:

Is Yellowstone open in winter?
Yes, though not all roads are open to cars. You can drive into the park through the North Entrance year-round. The winter season of services, tours, activities, and ranger programs typically spans from mid-December to mid-March.

At Mammoth, you can take self-guiding tours of Fort Yellowstone and the Mammoth Terraces, join a guided walk or tour, cross-country ski, snowshoe, ice skate (sometimes), rent a hot tub, watch wildlife, attend ranger programs, and visit the Albright Visitor Center. Visitors may legally soak in the Gardner River where hot thermal water mixes with cool river water. You can also arrange for oversnow tours to Norris Geyser Basin, Old Faithful, and the Grand Canyon of the Yellowstone River.

From Mammoth, you can drive past Blacktail Plateau, through Lamar Valley, and on to Cooke City, Montana. You may see coyotes, bison, elk, wolves, eagles, and other wildlife along the way. You can also stop to cross-country ski or snowshoe a number of trails along this road.

The interior of the park is open to various oversnow vehicles. Tours can be arranged through the park concessioner or operators at the various gates.

You can also stay at Old Faithful Snow Lodge, from which you can walk, snowshoe, or ski around the geyser basin, take shuttles to cross-country ski trails, or join a tour to other parts of the park such as West Thumb, Hayden Valley, and the Grand Canyon of the Yellowstone River.

How cold is Yellowstone in winter?
Average winter highs are 20–30°F (−6 to −1°C); average lows are 0–9°F (−17 to −13°C). The record low was −66°F (−54°C) at Riverside Ranger Station, near the West Entrance, on February 9, 1933.
• Grouse roost overnight by burrowing into snow for insulation.
• Bison, elk, geese, and other animals find food and warmth in hydrothermal areas.

Morphological and Physical

• Mammals molt their fur in late spring to early summer. Incoming guard hairs are longer and protect the underfur. Additional underfur grows each fall and consists of short, thick, often wavy hairs designed to trap air. A sebaceous (oil) gland, adjacent to each hair canal, secretes oil to waterproof the fur. Mammals have muscular control of their fur, fluffing it up to trap air when they are cold and sleeking it down to remove air when they are warm.

• River otters’ fur has long guard hairs with interlocking spikes that protect the underfur, which is extremely wavy and dense to trap insulating air. Oil secreted from sebaceous glands prevents water from contacting the otters’ skin. After emerging from water, they replace air in their fur by rolling in the snow and shaking their wet fur.

• Snowshoe hares, white-tailed jackrabbits, long-tailed weasels, and short-tailed weasels turn white for winter. White provides camouflage but may have evolved primarily to keep these animals insulated as hollow white hairs contain air instead of pigment.

• Snowshoe hares have large feet to spread their weight over the snow; martens and lynx grow additional fur between their toes to give them effectively larger feet.

• Moose have special joints that allow them to swing their legs over snow rather than push through snow as elk do.

• Chickadees’ half-inch-thick layer of feathers keeps them up to 100 degrees warmer than the ambient temperature.

Biochemical and Physiological

• Mammals and waterfowl exhibit counter-current heat exchange in their limbs that enables them to stand in cold water: cold temperatures cause surface blood vessels to constrict, shunting blood into deeper veins that lie close to arteries. Cooled blood returning from extremities is warmed by arterial blood traveling towards the extremities, conserving heat.

• At night, chickadees’ body temperature drops from 108°F to 88°F (42–31°C), which lessens the sharp gradient between the temperature of their bodies and the external temperature. This leads to a 23% decrease in the amount of fat burned each night.

• Chorus frogs tolerate freezing by becoming severely diabetic in response to cold temperatures and the formation of ice within their bodies. The liver quickly converts glycogen to glucose, which enters the blood stream and serves as an antifreeze. Within eight hours, blood sugar rises 200-fold. When a frog’s internal ice content reaches 60–65%, the frog’s heart and breathing stop. Within one hour of thawing, the frog’s heart resumes beating.
Winter Soundscapes

Greater Yellowstone’s soundscape is the aggregate of all the sounds within the park, including those inaudible to the human ear. Some sounds are critical for animals to locate a mate or food, or avoid predators. Other sounds, such as those produced by weather, water, and geothermal activity, may be a consequence rather than a driver of ecological processes. Human-caused sounds can mask the natural soundscape. The National Park Service goal is to protect or restore natural soundscapes where possible and minimize human-caused sounds while recognizing that they are generally more appropriate in and near developed areas. The quality of Greater Yellowstone’s soundscape therefore depends on where and how often non-natural sounds are present as well as their levels.

Human-caused sounds that mask the natural soundscape used by wildlife and enjoyed by park visitors are to some extent unavoidable in and near developed areas. However, the potential for frequent and pervasive high-decibel noise from oversnow vehicles has made the winter soundscape an issue of particular concern in Yellowstone. Management of the park’s winter soundscape is important because oversnow vehicles are allowed on roads in much of the park.

More Information

Abstract

Staff Reviewer

Christina Mills, Outdoor Recreation Planner
Climate Change

Today, climate change is no longer a vague threat in our future; it is the changing reality we live with, and requires continuous planning and adaptation. Climate change presents significant risks to our nation’s natural and cultural resources. Though natural evolution and change are an integral part of our national parks, their physical infrastructure, natural and cultural resources, visitor experience, and intrinsic values are at risk from the effects of climate change. Climate change is fundamentally transforming protected lands and will continue to do so for many years to come. Climate change will affect everyone’s experience of our national parks.

Some effects are already measurable. Warmer temperatures are accelerating the melting of mountain glaciers, reducing snowpack, and changing the timing, temperature, and amount of streamflow. These changes are expected to result in the loss or relocation of native species, altered vegetation patterns, and reduced water availability in some regions. Wildfire seasons have expanded, and fires have increased in severity, frequency, and size. More acres burned in the fire season of 2016 than in any year in the last century, except for 1988. Conditions that favor outbreaks of pests, pathogens, disease, and nonnative species invasion occur more frequently than in the recent past. In Alaska, melting sea ice threatens marine mammals as well as coastal communities, while thawing permafrost disrupts the structural basis of large regions, jeopardizing the physical stability of natural systems as well as buildings, roads, and facilities. Rising sea levels, ocean warming, and acidification affect wildlife habitat, cultural and historic features, coastal archeological sites, and park infrastructure, resulting in damage to and the loss of some coastal resources. Some studies suggest that extreme weather events such as thunderstorms, hurricanes, and windstorms that damage park infrastructure and habitat are increasing in frequency and intensity. Climate change will manifest itself not only as changes in average conditions, creating a “new normal,” but also as changes in particular climate events (e.g., more intense storms, floods, or drought). These extreme climate events may cause widespread and fundamental shifts in conditions of park resources.

A 2014 assessment of the magnitude and direction of ongoing climate changes in Yellowstone National Park showed that recent climatic conditions are already shifting beyond the historical range of variability. Ongoing and future climate change will likely affect all aspects of park management, including natural and cultural resource protection as well as park operations and visitor experience. In order to deal with the predicted impacts, effective planning and management must be grounded in concrete information about past dynamics, present conditions, and projected future change.

Atmospheric concentrations of CO₂ began a marked increase that coincides with the Industrial Revolution. CO₂ levels rose by more than 20% from 1958 to 2008.
Climate Science History

- 1700s: The Industrial Revolution is underway; manufacturing begins producing greenhouse gases such as carbon dioxide and methane.
- 1827: Jean-Baptiste Joseph Fourier describes what is later termed, the “greenhouse effect.”
- 1896: Svante Arrhenius calculates that increasing atmospheric greenhouse gases will cause global warming.
- 1963: Keeling warns of 10.8°F temperature rise in next century.
- 1965: First Global Climate Models (GCM) developed.
- 1969: Weather satellites begin providing atmospheric data.
- 1978: Satellites begin measuring sea ice in both the Arctic and Antarctic.
- 1988: The Intergovernmental Panel on Climate Change (IPCC) is established.
- 1997: The Kyoto Protocol sets targets for greenhouse gas emissions for most industrialized nations (US does not sign).
- 2007: IPCC begins its 4th report, “Warming of the climate system is unequivocal.”
- 2009: Secretary Salazar signed Secretarial Order 3289 which mandates a department-wide strategy to address climate change. This order also established 8 Climate Science Centers, to conduct high-level climate science. DOI established 21 Landscape Conservation Cooperatives where climate science is being applied for resource management.
- 2009: Copenhagen Summit held; an accord reached for nonbinding actions to address climate change.
- 2009: The EPA Administrator, Lisa Jackson, signed an Endangerment Findings for greenhouse gases which says the current and projected concentrations of the six key well-mixed greenhouse gases — carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) — in the atmosphere threaten the public health and welfare of current and future generations (See: http://www.epa.gov/climatechange/endangerment/).
- 2010: The NPS releases:
 - The Climate Change Response Strategy: science, adaptation, mitigation, and communication.
 - The Green Parks Plan to help guide parks in sustainable operation.
- 2012: Yellowstone Center for Resources creates a Physical and Climate Resources branch.
- 2013: IPCC releases 5th report, detailing the current state of scientific knowledge about global warming trends.

(a) Observed global mean combined land and ocean surface temperature anomalies, from 1850 to 2012 from three data sets. Top panel: annual mean values. Bottom panel: decadal mean values including the estimate of uncertainty for one dataset (black). Anomalies are relative to the mean of 1961–1990. (b) Map of the observed surface temperature change from 1901 to 2012 derived from temperature trends determined by linear regression from one dataset (orange line in panel a). (From http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SPM_FINAL.pdf Summary for Policy makers, IPCC report 5th, 2013.)
Changes in Yellowstone Climate

The Greater Yellowstone Ecosystem is a complex region, encompassing approximately 58,000 square miles and 14 mountain ranges. Weather varies greatly across steep elevational changes, bringing snowfall to some areas, and warm, dry conditions to others. This dynamic system has provoked the curiosity of researchers for a long time.

Across Space and Time

Space and time are critical to the evaluation of real-world data, and every study defines their parameters differently. This can make it difficult to get a sense of what is actually occurring. Climate summaries over longer periods of time and across larger areas tend to mask local extremes. Conversely, a continuously changing set of short-term reference averages (weather “normals”) could unintentionally obscure the long-term magnitude of change. It is important to look at climate information across many scales and to use available data and models to arrive at reasonable answers to our questions about how climate has changed, how those changes will affect the park, and what impacts we may be able to anticipate in the future.

Analyze smaller areas within the Greater Yellowstone Ecosystem (GYE), say in Yellowstone National Park or on the Northern Range, poses specific challenges. Small regions have fewer actual monitoring stations to feed data to computer models and gridded weather data is often used to fill in the gaps. As a consequence, small-area analyses may not be as accurate. Local field observations from stream gauge and weather stations can be used to verify some of the observed trends, and to describe local conditions to which the ecological system may be responding. This “ground-truthing” allows researchers to arrive at reasonable conclusions about ecological activity.

Temperature and Precipitation

Global temperature is the master force affecting climate. Everything else that climate affects—sea level rise, growing season, drought, glacial melt, extreme storms—is driven by changes in temperature. Weather stations have been maintained within the GYE since 1894, resulting in some of the longest running records of temperature and precipitation anywhere in the United States. These days, increasingly sophisticated satellite technology as well as data sets yielded by the science of climate modeling, also help climate experts and park managers assess the current situation in the GYE across several scales.

There is evidence that climate has changed in the past century and will continue to change in the future. Researchers looking at annual average temperatures report an increase of 0.31°F/decade within the GYE, consistent with the continuing upward trend in global temperatures. Recent studies show mean annual minimum and maximum temperatures have been increasing at the same rate of 0.3°F/decade for the GYE. Conditions are becoming significantly drier at elevations below 6,500 ft. In fact, the rise in minimum temperatures in the last decade exceeds those of the 1930s Dust Bowl Era.

Future Temperature and Precipitation

All global climate models predict that temperatures in the GYE will continue to increase. Projections of future precipitation vary based on differing scenarios that account for future levels of greenhouse gas emissions, which depend upon economic, policy, and institutional improvements, or lack thereof. Any potential increases in precipitation that may or may not occur will be overwhelmed by temperature increases. Considering the most recent trends in which warmer temperatures have been exacerbating drought conditions during the summers, a warmer, drier future for
the GYE appears likely in the coming decades. By the latter part of the 21st century, the hot, dry conditions that led to the fires of 1988 will likely be the norm, representing a significant shift from past norms in the GYE toward the type of climate conditions we currently see in the southwestern United States.

Snowpack and Snow Cover
Snowmelt in the alpine areas of the Rocky Mountains is critical to both the quality and quantity of water throughout the region, providing 60–80 percent of streamflow in the West. Throughout the GYE, snow often lingers into early summer at high elevations. Each year, a large spike in water flow occurs when snow starts to melt at lower elevations, usually in late February and early March. Peak flow is reached when the deep snow fields at mid and high elevations begin to melt more quickly, typically in June. Minimum flow occurs during winter when all the previous year’s snow has melted, temperatures have dropped, and precipitation comes down as snow instead of rain so only water flowing from underground sources can supply the streams. By contrast, the proportion of stream flow due to rain storms is significantly lower than the contributions of snow melt.

Climate change is expected to affect both snow accumulation and rate of spring melt. In some places, warmer temperatures will mean more moisture falling as rain during the cooler months and the snowpack melting earlier in the year. The reduction in snowpack is most pronounced in spring and summer, with an overall continued decline in snowfall projected for Yellowstone over the coming decades. The Yellowstone, Snake, and Green rivers all have their headwaters in Yellowstone. As major tributaries for the Missouri, Columbia, and Colorado rivers, they are important sources of water for drinking, agriculture, recreation, and energy production throughout the region. A decrease in Yellowstone’s snow will affect millions of people beyond the boundaries of the GYE who depend this critical source of water (see watersheds pg 57).

Future Snowpack and Snow Cover
The interaction between snowpack, temperature, and precipitation involves a complex interchange between heat and light. Warming temperatures increase evaporation; increased moisture in the air could lead to more snowfall and cloud cover. The increased cloud cover could block additional heat from reaching the surface of the earth resulting in cooler

FREQUENTLY ASKED QUESTIONS:

Why do you say climate change now, instead of global warming?
Though the overall global temperature is increasing, the term “climate change” includes more of the actual impacts that we see as a result of this increase. Changing amounts of greenhouse gases in the atmosphere also lead to severe storms, drought, sea level rise, insect infestations, and other consequences that can be different anywhere on earth.

What is causing climate change?
Changes in climate are due primarily to human-caused emission of heat-trapping gases such as carbon dioxide (CO2). These greenhouse gases have been on the rise since the 1800s, and their effect on climate will persist for many more decades. Levels of carbon dioxide and methane (another greenhouse gas) in the atmosphere are higher now than in the last 650,000 years. As humans continue burning more and more fossil fuels, scientists believe the impacts of global warming will accelerate.

Has global climate warmed before?
Yes, but never this much, and never this fast. Prehistoric fossil records show us that Earth’s climate is warming 40 times faster than any other period in the planet’s history.

Can you tell about climate from changes in the weather?
Weather is the temperature and precipitation patterns that occur over days or weeks. Climate is a trend in weather conditions over decades or centuries. While weather does play a part in our experience of climate, it is just one small corner of a much bigger picture.
temperatures below. However, increased temperature could possibly limit snowfall instead—by converting it to rain or by melting snow rapidly once it falls, thereby driving snowlines further up the mountains. Recently modeling work indicates that snowpack will almost certainly decline in the long-term.

Changes in the area covered by snow are especially important as snow reflects more solar radiation out to space (albedo) than bare ground and tends to keep the surface cool. When land is exposed, sunlight is absorbed by the surface of the earth. This raises the overall surface temperature, which leads to more melting and less snowcover.

Climate change will affect streams differently, but increased variability is expected along with a shift in the timing of peak flows.

Stream Flow and Water Temperature

Glaciers, snowpack, and rainfall produce water that flows through streams, lakes and rivers, and these waterways are critical to life. Analyses of streams during 1950–2010 in the Central Rocky Mountains, including those in the GYE, show an 89% decline in stream discharge. Reduced flows were most pronounced during the summer months, especially in the Yellowstone River. In addition, stream temperatures have changed across the range of the Yellowstone, with a warming of 1.8°F (-16.8°C) over the past century. Continued warming could have major implications to the management and preservation of the many aquatic resources we have today.

Climate Change and the Greater Yellowstone Ecosystem

The Issue

The global climate is changing, and is already affecting the Greater Yellowstone Ecosystem.

- Average temperatures in the park are higher now than they were 50 years ago, especially during springtime. Nighttime temperatures seem to be increasing more rapidly than daytime temperatures.
- In the last 50 years, the growing season (the time between the last freeze of spring and the first freeze of fall) has increased by roughly 30 days in some areas of the park.
- At the northeast entrance, there are now 80 more days per year above freezing than there were in the 1960s.
- There are approximately 30 fewer days per year with snow on the ground than there were in the 1960s.

Climate change impacts are detected by studying

- Vegetation
- Snowpack
- Phenology (timing of significant biological events like the budding of trees or arrival of migratory birds in the spring)
- Alpine habitats
- Wildlife movement patterns
- Water
- Fire
- Insect infestations
- Wetlands

The continued rise in temperature will fundamentally alter Yellowstone’s ecosystem:

- Likely affecting the composition of plants and animals throughout the park.
- Altering the amount and timing of spring snowmelt, which affects water levels, vegetation growth, and the movement of wildlife from migrating bison to spawning trout to the arrival of pollinators. As headwaters to significant water basins, any change in the rivers flowing out of Yellowstone affects downstream users like ranchers, farmers, towns, and cities.
- Fire frequency and season length could increase.

One of the most precious values of the national parks is their ability to teach us about ourselves and how we relate to the natural world. This important role may prove invaluable in the near future as we strive to understand and adapt to a changing climate.

—National Park Service Director Jon Jarvis
Changes in volume and timing of spring runoff may disrupt native fish spawning and increase nonnative aquatic species expansion.

Growing Season
The Intergovernmental Panel on Climate Change (IPCC) predicts that overall forest growth in North America will likely increase 10–20% as a result of extended growing seasons and elevated CO₂ during the next century but with important spatial and temporal variations. Forests in the Rocky Mountain/Columbia Basin region are expected to have less snow on the ground, a shorter snow season, a longer growing season due to an earlier spring start, earlier peak snowmelt, and about two months of additional drought. Despite a longer growing season, Yellowstone forests will likely be less dense, more patchy, and have more diverse age structure. In fact, experts project less tree cover in much of the park as well as potential migration of new species like Ponderosa pine. Complicating matters, increased drought stress and higher temperatures may increase the likelihood of widespread die-offs of some vegetation.

The integrated runoff response from the Yellowstone River has been toward earlier spring runoff peaks, which suggests that the majority of the park is experiencing shorter winters and longer summers as a result of snowpack changes. Changes in these seasonal patterns will likely disrupt vegetation growth and development, causing plants to bud, flower, fruit and die at different times of the year than they do now. Those changes, in turn, would alter or seriously disrupt wildlife migrations, one of the key resources for which Yellowstone National Park is globally treasured.

Extreme Events: Insect Activity
Although outbreak dynamics differ among species and various forests, climate change appears to be driving current insect outbreaks. Western spruce budworm outbreaks were more widespread and lasted longer in the 20th century than in the 19th century primarily because of fire suppression and increasing fir populations. However, patterns of spruce budworm outbreaks have been tied to climate nationwide.
Summer and spring precipitation are positively correlated with increased frequency of outbreaks over regional scales and long time frames, but experimental evidence suggests that drought may promote infestations. Although bark beetle infestations are a force of natural change in forested ecosystems, several concurrent outbreaks across western North America are the largest and most severe in recorded history. From 2004 to 2008, the area of mountain pine beetle outbreaks increased across Wyoming from 1,000 to 100,000 acres. At the end of 2016, 26% of whitebark pine trees in the GYE had been killed as a result of mountain pine beetle, whitepine blister rust, wildland fire, and other factors. Since 1999, an eruption of mountain pine beetle events has been observed that exceed the frequencies, impacts, and ranges documented during the last 125 years. Aerial assessment of whitebark pine species populations within the GYE has indicated a 79% mortality rate of mature trees. These changes may be early indicators of how GYE vegetation communities will shift due to climate change.

These outbreaks of bark beetles in the West have coincided with increased temperatures and changes in precipitation patterns, suggesting a response to a changing climate. Warming temperatures and the loss of extreme cold days reduce winter overkills of insects, speed up life cycles, modify damage rates, and lead to range expansions, particularly in the north.

Future Insect Activity
Climate change, and particularly warming, will have a dramatic impact on pest insects, and the recent trends of increasing outbreaks are expected to worsen. The greatest increase in mountain pine beetle outbreaks is expected to occur at high elevations, where models predict warmer temperatures will increase winter survival. At low elevations, however, mountain pine beetle populations may decrease as warmer temperatures disrupt the insects’ seasonality. Climate change will also alter host susceptibility to infestation. Over the short-term, trees will likely increase in susceptibility to pests due to stress from fires, drought, and high temperatures; over the long-term, these stresses will cause tree ranges and distributions to change. Moreover, climate change and changes in CO2 and ozone may alter the conifers’ defensive mechanisms and susceptibility to beetles through their effects on the production of plant secondary compounds.

Insect infestations are damaging millions of acres of western forests and there is clear evidence that damage is increasing. Nonetheless, future predictions of the extent of infestations remain uncertain because our understanding of insect infestations is incomplete. Key uncertainties include the influence of drought and precipitation changes, how altered forest/host composition will alter outbreaks, the biochemical response of trees and evolution of defensive mechanisms, regional differences, and the interactive effects of fire, plant disease, and insect outbreaks.

Extreme Events: Fire Activity
The increasing frequency of warm spring and summer temperatures, reduced winter precipitation, and earlier snowmelt in the West during the last 20 years has led to an increase in the frequency of very large wildfires and total acres burned annually. The relative influence of climate on fire behavior varies regionally and by ecosystem type, but generally current-year
drought, low winter precipitation, wind conditions, and high summer temperature are determining factors for area burned in the Rockies.

Fire dynamics have been altered by climate indirectly through its effects on insect infestations and forest health. By changing the forest environment, bark beetles can influence the probability, extent, and behavior of fire events, but despite the widely held belief that bark beetle outbreaks set the stage for severe wildfires, few scientifically and statistically sound studies have been published on this topic. That fire promotes beetle infestations is clearer; the fire-caused injury changes conifers’ volatile emissions, increasing their susceptibility to bark beetles.

Future Fires
Most evidence suggests that climate change will bring increases in the frequency, intensity, severity, and average annual extent of wildland fires. Models project that numerous aspects of fire behavior will change, including longer fire seasons, more days with high fire danger, increased natural ignition frequency and fire severity, more frequent large fires, and more episodes of extreme fire behavior. The best evidence is for increases in the average annual area burned. However, the charcoal in lake sediment cores is telling a different story in Yellowstone. These records extend back 17,000 years, and were taken from Cygnet Lake on the Central Plateau. Charcoal from 8,000 years ago, when temperature increases equal what we are now experiencing, shows more frequent but smaller fires than today.

Projecting the influences of climate change on future patterns of fire is extremely difficult. Fuels, along with fire weather, determine fire size and severity: the stand-replacing fires of today open up the forests where stands have been burned, limiting fuels for the next fire. As a result, areas with frequent fires also tend to have small fires. Other factors, such as increases in non-native, annual grass invasions, may alter fire dynamics, making predictions based on climate alone difficult.

Examining the Evidence

Insights from Paleoecology
As we think about and prepare for the future, it is important to learn what we can from past episodes of climate change. The study of paleoecology has provided insight into prehistoric changes in the ecosystem, including evidence of ancient plant and animal movements that have been preserved in fossil records. Studies conducted in the last 20 years have provided critical insights into past climate change and its ecological consequences in the GYE.

During the transition from glacial to Holocene conditions (ca. 14,000–9,000 years ago), temperatures rose at least 9°F–12°F (-13°C–11°C). As a result of rising temperatures, plant species expanded their ranges into newly available habitats forming new plant communities. Throughout the Holocene, climate variation of a lesser magnitude continued to occur, resulting in smaller shifts in species distributions and increased fire frequency during hotter and drier periods.

Though the changes documented in the paleo record occurred over longer periods of time, drawing from the past of this region can help to gauge the potential for future changes. If future climate change is of similar magnitude to the changes that occurred in the past 9,000 years, it is likely that Yellowstone’s ecosystems will change to some extent, but probably not to any great degree. However, if the magnitude of future change is comparable to that of the glacial to Holocene transition, then enormous changes are possible—even likely.
Heeding the signs of change

Aspen
Findings from research focusing on aspen forests indicate a possible shift in the distribution of this important species may already be underway. By comparing documentation of aspen regeneration before and after the 1988 fires, experts found evidence suggesting that the sexual reproduction of aspen in the Rocky Mountains occurs primarily after large severe fires. Prior to 1988, aspen regeneration was understood to occur primarily via vegetative root sprouting. Aspen seedlings, rarely documented prior to the fires, were observed in 1988 burn areas, including areas where aspen had not been present before the fires, often many kilometers from pre-fire aspen stands. Aspen seedlings have persisted in many areas, and in some instances expanded into higher elevations since 1988. Meanwhile, aspen forests at the lowest elevations and on the driest sites have declined throughout much of the western U.S. in response to severe drought in the early 2000s. Research is ongoing to fully understand the processes at work, but the pattern is consistent with expectations of shifts in species ranges from a warming climate.

Whitebark pine
Five-needle pine trees are foundational species in high-elevation ecosystems across the West. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable habitat, reducing its distribution within its historic range over the next century. Whitebark pine is associated with lower summer maximum temperatures and adequate springtime snowpack for survival.

Modeling of whitebark pine habitat in the greater Yellowstone area predicts that suitable habitat will decrease over time and the species may only be able to survive at the highest elevations, although it is likely that there will remain microrefugia (small areas with suitable climates) of whitebark pine throughout the region.

Given the ecological importance of whitebark pine, and that 98% of the species occurs on public lands, an interagency whitebark pine monitoring group, including the National Park Service, US Forest Service, Bureau of Land Management, and US Geological Survey, has been monitoring the status and trend of whitebark pine stands since 2004.

Sagebrush Steppe
Sagebrush steppe is one of the most altered ecosystems in the intermountain West. Substantial sagebrush areas have been converted to agriculture, heavily grazed, and degraded through altered fire regimes and the invasion of nonnative plants. Changes in climate are expected to further alter fire regimes and increase invasive species in sagebrush steppe and low-elevation woodlands. Yellowstone National Park also has upland vegetation data that may be useful in addressing climate change responses in sagebrush-steppe and grassland systems and initiated a long-term monitoring program of sagebrush steppe habitats across the park in 2015.

Alpine Vegetation and Soils
The cold and relatively little-studied alpine ecosystems, are among those where climate change impacts are expected to be pronounced and detectable early on. The Greater Yellowstone and Rocky Mountain networks collaborated to implement alpine vegetation and soils monitoring in high elevation parks. National parks including Glacier, Yellowstone, Rocky Mountain, and Great Sand Dunes are now participants in the Global Observation Research Initiative in Alpine Environments (GLORIA) monitoring.

Whitebark pine trees, living on the edge in high elevations, are vulnerable to climate change.
network. Monitoring includes sampling of vascular plants, soil temperature, air, and temperature at a set of four alpine summits along an elevation gradient. This set of sites span alpine environments from northwest Montana to southern Colorado. Information is available through the GLORIA website at http://www.gloria.ac.at/

Wetlands

Wetlands in Yellowstone are few and far between, and include small lakes and kettle ponds, which are already drying up. Scientists don’t know how much ground-water recharge they will need to recover. However, precipitation and snowpack will likely continue to decrease, which will continue to decrease surface and ground water—and thus the lakes and ponds may not recover. Recognizing that many of these small water basins are already drying, the park began to monitor groundwater hydrology in 2012 to understand the drivers and variability in groundwater flow patterns. The baseline information obtained from these select sites further informs the anticipated consequences under changing climatic conditions. As wetlands diminish, sedges, rushes, and other mesic (water-loving) plants will likely decline. In turn, amphibians and some birds will also lose habitat.

Annual monitoring data suggest chronic repetition of dry, warm years, could lead to a decline in upwards of 40% of the region’s wetlands. This decline could ultimately reduce the distribution and abundance of wetland-dependent species, including boreal chorus frogs.

Chorus frogs prefer shallow, ephemeral wetland habitats, making them especially vulnerable to climate change. Boreal chorus frog breeding habitat responded negatively to dry, warm years. Some sites where breeding was documented dried up prior to completion of amphibian metamorphosis, which can cause reproductive failure. The strong relationship between annual runoff, wetland inundation, and chorus frog breeding occurrence suggests increasingly difficult conditions for amphibians if projected drought increases occur.

Declines in water levels and drying conditions could affect other species which are dependent on inundated wetlands for survival like, moose, beaver, trumpeter swans, and sandhill cranes. In addition, wetland loss is expected to reduce plant productivity, which in turn impacts the carbon sequestration potential of landscapes, affects hydrologic flow paths and water storage within floodplains and uplands, alters soundscapes, affects wildlife viewing opportunities, and potentially removing natural fire breaks important for managing low to moderate intensity wildfires.

Wildlife

Understanding how climate change will influence wildlife requires a comprehensive understanding of the park’s climate system and how it interacts with both plants and animals. Clear predictions are difficult to make, but many current and potential impacts have been identified.

- Wolverines require deep snow to build the dens in which they breed and raise their young. Decrease in annual snowpack may cause a decline in wolverine populations.
- Wolves take advantage of deep snow to prey upon long-legged, small footed ungulates who are less agile in extreme winter conditions. Decrease in annual snowpack may decrease wolf hunting success.
- Elk and pronghorn migration is triggered by a number of factors including hours of daylight—a factor unaffected by climate change. However, early spring green-up could leave them migrating after their forage has lost much of its initial nutritional value, or earlier peak stream water flow could force them to change their migration routes.
- The tiny pika tolerates a very narrow habitat...
range. As the climate zone they live in shifts to higher elevation, pika must move with it.

- Due to extended warm temperatures in fall, male grizzly bears are tending to den later, which exposes them to risks associated with hunting of elk outside of the park boundary.
- Foxes have to adapt to harder snow surfaces. Harder snow surfaces decrease access to rodents but increase access to carcasses.
- Increased water levels over extended periods on Yellowstone Lake have interfered with pelican reproduction. Extended periods of high water caused by snowmelt in early summer not only flood existing nests, but prevent pelicans from re-nesting. High lake levels also reduce foraging success.

Climate change is anticipated to cause changes in the distribution and abundance of many species in Yellowstone. Thanks to the growing library of field studies and the availability of increasingly fine-tuned global climate models, ecologists are in a good position to deepen our understanding of how plants, animals, ecosystems, and whole landscapes respond to climate change, and consequently, to think about how the GYE is likely to change in the coming century.

Management and monitoring

Many national parks and other protected areas were set up to safeguard a wide range of plant and animal life assuming a certain set of climate conditions. As the climate drivers change, the natural ecosystem and human use of that landscape are bound to change. Even subtle shifts in climate can create substantial changes—nature will begin to rearrange itself, and our ability to protect and manage national parks will be challenged.

In 2010, the National Park Service released its Climate Change Response Strategy. The Climate Change Response Strategy provides direction to our agency and employees to address the impacts of climate change. It describes goals and objectives to guide our actions under four integrated components:

Science
Park scientists conduct research to help us understand the effects of climate change on national parks. The National Park Service also collaborates with other scientific agencies and institutions to discover the best available climate science. This information is then applied to address the specific needs of park managers and park partners as they confront the challenges of climate change.

The Greater Yellowstone Network (GRYN) conducts high-quality natural resource monitoring and collects robust inventory data to track changes in resources as they occur. In support of this reporting the interactive web site www.climateanalyzer.org provides climate data for many locations across the country. GRYN is part of the National Park Service High Elevation Climate Change Response Monitoring Program, along with the Rocky Mountain Network and the Upper Columbia Basin Network, created to measure changes in resources as a result of climate change.

Mitigation
The most effective way to lessen the long-term effects of climate change is to reduce greenhouse gas emissions. The National Park Service aims to be a leader in reducing its carbon footprint through energy efficient practices and integrating climate-friendly practices into administration, planning, and workforce culture.

The Green Parks Plan defines a collective vision and a strategic plan for sustainable operations in the National Park Service. The plan is framed around nine categories and sets ambitious goals to make the National Park Service a worldwide leader in sustainability:

- Continuously Improve Environmental Performance
- Be Climate Friendly and Climate Ready
- Be Energy Smart
- Be Water Wise
• Green Our Rides
• Buy Green and Reduce, Reuse, Recycle
• Preserve Outdoor Values
• Adopt Best Practices
• Foster Sustainability Beyond Our Boundaries

The Climate Friendly Parks (CFP) Program, of which Yellowstone is a member, is one component of the NPS Green Parks Plan. The program supports parks in developing an integrated approach to address climate change through implementing sustainable practices throughout their operations. Since 2003, the program has assist parks with:
- Measuring park-based greenhouse gas (GHG) emissions
- Educating staff, partners, stakeholders, and the public about climate change and demonstrate ways individuals and groups can take action to address the issue
- Developing strategies and specific actions to address sustainability challenges, reduce GHG emissions, and anticipate the impacts of climate change on park resources.

The CFP Program includes over 120 member parks dedicated to reducing resource consumption, decreasing GHG emissions, and educating park staff and the public about climate change and sustainable initiatives taking place across the agency.

Adaptation
Climate change will alter park ecosystems in fundamental ways. The National Park Service must remain flexible amidst this changing landscape and uncertain future. In some cases we must take bold and immediate actions, while in others we may be methodical and cautious. Many techniques will be utilized, evaluated, and refined as new science becomes available and the future of climate change unfolds.

Communication
National parks are visible examples of how climate change can affect natural and cultural resources. Park rangers engage visitors about climate change by sharing information concerning the impacts to parks and steps the agency is taking to preserve our heritage.

Outlook
The complexity of the global climate system means that there is no one, “best” model for predicting the future climate everywhere on the earth. Instead, scientists use a group of different models that are all good at predicting some part of the answer. Usually, the greatest differences among predictions are not caused by the mathematical methods used to model the climate system. Most uncertainty is due to the difficulty in predicting what people will do. If climate scientists knew what choices humans were going to make about limiting greenhouse gas emissions, then their predictions about climate change would be much more certain.

Climate change is generally not an easy or pleasant conversation piece. However, it is a conversation that we need to have, and a process we must continue to study. Humans will need to adapt, as will wildlife and ecosystems. Through better understanding, we may arrive at more informed decisions to help conserve and adapt to our changing environment.

More Information

Staff Reviewers
Kristin Legg, Greater Yellowstone Network Program Manager
Ann Rodman, Branch Chief for Physical Resources and Climate Science
ECOSYSTEM

Beyond Boundaries

Managing Resources and Impacts Across Political Lines

Despite the size of the ecosystem, Greater Yellowstone’s biodiversity is not guaranteed. Many of its plant and animal species are rare, threatened, endangered, or of special concern, including more than 100 plants, hundreds of invertebrates, six fish species, several amphibian species, at least 20 bird species, and 18 mammal species. These are estimates because comprehensive inventories have not been completed. A healthy Yellowstone is important for meeting the park’s mandate to preserve resources and values in a manner that provides for their enjoyment by people. At the same time, a healthy Yellowstone enhances the lives of people living outside the park, by providing sustainable resources such as clean water, wildlife populations, and vegetation communities.

Several factors strongly influence the Greater Yellowstone Ecosystem and its management:
- The Greater Yellowstone Ecosystem spans different climate regimes and vegetation zones, crosses multiple jurisdictional boundaries, and is the last remaining large, intact native ecosystem in the contiguous United States.
- The park’s geographic location also attracts humans who want to occupy increasing amounts of space in the ecosystem. This leads to habitat modification, which poses a serious threat to both biodiversity and to ecosystem processes. For example, when homes are built close to wilderness boundaries, they fragment habitats and isolate populations of plants and animals, cutting them off from processes necessary for survival.
- Yellowstone National Park was created before the surrounding states existed, which makes its relationship to its neighbors different from many national parks. This park has exclusive jurisdiction over managing wildlife within the park boundary; wildlife management is driven by National Park Service mission and federal mandates, rather than state wildlife management objectives. However, the National Park Service recognizes ecological boundaries do not match the social and political boundaries established in the ecosystem. Thus, most managers in the park have established relationships with neighboring agencies to coordinate actions that, in some cases, are quite different on each side of the park boundary. The park works with the states on most issues, including wolf and bison management.
- Time also affects how this ecosystem changes and at what pace. What are the intervals between volcanic eruptions? Between fires? How has forest composition changed in the past 100 years? How will climate change alter these patterns? These are the types of “time” questions that influence management of Yellowstone. Ecosystem managers face these challenges by addressing the whole ecosystem, including preserving individual components and their relationships and linkages between them. Maintaining healthy, functioning ecosystems preserves species more effectively than do emergency measures to bring back threatened species from the brink of extinction.

Partners

Effective management also requires strong partnerships. Several management and research partnerships exist among state, federal and tribal agencies to help focus resources and provide collaborative problem-solving on regional issues. Many of these partnerships include academic and non-profit institutions as well.
Greater Yellowstone Network
The Greater Yellowstone Network (GRYN) was established by the National Park Service Inventory and Monitoring Program in 2000 to help enhance the scientific basis for stewardship and management of natural resources in Bighorn Canyon National Recreation Area, Grand Teton National Park (including John D. Rockefeller, Jr. Memorial Parkway), and Yellowstone National Park. The GRYN is one of 32 units nationwide that group some 270 national parks into networks based on geographic similarities, common natural resources, and resource protection challenges. This collective approach to inventory and monitoring helps to facilitate collaboration and information sharing between the parks and with other natural resource management agencies and interests. For more information about this program, visit science.nature.nps.gov/im/units/gryn.

Rocky Mountains Cooperative Ecosystem Studies Unit
The Rocky Mountains Cooperative Ecosystem Studies Unit brings together the region’s best scientific talent and scholarship to help manage resource problems across social, cultural, economic, political, and environmental arenas. The Rocky Mountains Cooperative Ecosystem Studies Unit conducts research, education, and technical assistance on both agency-specific issues and on issues concerning areas of mixed ownership. This information is made available to those who need it, including land managers, and political and industry leaders. For more information about this program, visit www.cfc.umt.edu/CESU.

Greater Yellowstone Coordinating Committee
In 1964, the managers of the national parks and national forests in the Greater Yellowstone Ecosystem formed the Greater Yellowstone Coordinating Committee (GYCC) to seek solutions to common issues. One of the nation’s earliest land management partnerships, the GYCC reportedly first signed a Memorandum of Understanding in 1964. The GYCC now includes managers from two national parks, five national forests, two national wildlife refuges, and the Bureau of Land Management in Montana, Idaho, and Wyoming. During its five decades, the GYCC has provided guidance and decisions for managing the Greater Yellowstone Ecosystem. The GYCC managers set priorities for interagency coordination, and allocate staff and funding to advance these priorities. Interagency staff and partners collaborate on topic-specific committees to address priority issues and to coordinate operations such as wildfire management. Current GYCC priorities are:

• Ecosystem health: air and water quality, invasive species management, species on the brink (bears, cutthroat trout, whitebark pine) and climate change adaptation.
• Connecting people to the land.

Great Northern Landscape Conservation Cooperative
The Great Northern Landscape Conservation Cooperative is an alliance of conservation partners with common landscape conservation goals for building ecosystem resilience within the Great Northern geographic area, extending from the Columbia Basin, Rocky Mountains, and Sage Steppe of the Interior West in the United States and Canada. The partnership shares data, science, and capacity and works across boundaries and jurisdictions. The cooperative links local resource needs with national conservation priorities. For more information about this program, visit greatnorthernlcc.org.

More Information
Greater Yellowstone Coordinating Committee: www.fedgycc.org

Staff Reviewer
Jennifer Carpenter, Chief, Yellowstone Center for Resources
Research in the Park

In part because Yellowstone National Park was established by Congress in 1872, early in the European American history of the West, the park is one of the last, nearly intact, natural ecosystems in the temperate zone of Earth. Natural processes operate in an ecological context that has been less subject to human alteration than most others throughout the nation and throughout the world. This makes the park not only an invaluable natural reserve, but a reservoir of information valuable to humanity.

In Yellowstone, scientists conduct research ranging from large studies of landscape-level changes affecting the local ecosystem to studies of tiny organisms that have the potential to change the lives of people the world over. Yellowstone also has a rich history that includes an archeological record of more than 11,000 years of human use. As the world’s first national park, Yellowstone’s modern history is no less significant; the park’s Heritage and Research Center houses materials documenting the development of the national park idea, the history of science in the park, and major efforts in American wildlife conservation, as well as the park’s broader natural and human history.

A Long History of Scientific Study

As a research location, Yellowstone has long attracted scientists. In any given year, 150–200 scientific researchers are permitted to use study sites in the park, and many more conduct research at the park’s Heritage and Research Center. Yellowstone is one of the most high-profile research locations in the National Park Service and has one of the most active research programs. Researchers from universities, other agencies, and the National Park Service come to Yellowstone to conduct scientific studies. In 2016, permitted researchers came from more than 30 states and 9 foreign countries.

Some of the first written accounts about the

Research in Yellowstone

Number in Yellowstone
2016: approx. 137 permitted scientific researchers

All scientists in Yellowstone work under research permits and are closely supervised by National Park Service staff.

Types of Research
In 2015, permitted research included:
- Biological resources (including microbiology): 51%
- Physical resources: 31%
- Inventory and monitoring: 4%
- Visitor use, recreation, management, social science: 6%
- Landscape processes: 4%
- Other: 2%
- Archeology: 1%
- Mapping: 1%

Conducting Research
- Research permits are required for studies and collections (except for archival research conducted at the Heritage and Research Center facility). The Research Permit Office, located in the Yellowstone Center for Resources, is responsible for issuing and tracking research permits, and provides support to permitted researchers in the park.
- Each permit application undergoes a formal, standard process for research permit review and issuance.
- All researchers are required to submit an annual report of their study progress and results. These annual reports are available online at https://irma.nps.gov/rprs.
- Publications resulting from research may be on file in the Yellowstone Heritage and Research Center Library.
wildlife and thermal features of the Greater Yellowstone area were in journals and letters from settlers, trappers, Indian scouts, and the military. These early accounts brought about expeditions to explore Yellowstone in the 1860s and 1870s (See also: “History”). It is in these explorations that the history of science in Yellowstone formally began with the expeditions of geologist Ferdinand V. Hayden, who led official government expeditions to the Yellowstone area in the 1870s.

Modern Research

By the 1960s, scientific research in Yellowstone had extended beyond the study of the park itself. Yellowstone was also a place where researchers advanced techniques for scientific study. The National Park Service changed its permitting policy at this time, requiring researchers to demonstrate their projects directly benefited park managers and would help make important decisions. As a result, many permits were denied. This gave some permit-seekers the impression that research in the park was not as welcome as it had been in the past. Around this time, the National Park Service also adopted a goal to host mission-oriented research, and managers sometimes felt free to suggest researchers accordingly adjust their proposals to meet that goal.

As important as wildlife science has been in Yellowstone’s history, the park’s hot springs have been a major focus of scientific study in Yellowstone.

History of Science in Yellowstone

- 1877–1882: Park superintendent Philetus Norris establishes scientific inquiry as an important aspect of park management and argues for employing a resident scientist in the park.
- 1935: Eugene Thomas Allen and Arthur Lewis Day publish *Hot Springs of the Yellowstone National Park* (Carnegie Institution), the definitive literature on the park’s thermal environment for many decades.
- 1959–1971: A team of researchers led by John and Frank Craighead use the park to pioneer the field of radio telemetry in their groundbreaking studies of Yellowstone’s grizzly bears. The Craigheads were also at the forefront of technological innovation in other methods of identifying and classifying grizzly bears.
- 1967–1971: Park managers differed with the Craigheads over some of their scientific conclusions and were disinclined to implement most of their recommendations. The Craigheads concluded their work in the park. The disagreements were so well-publicized in the news media that a widespread, enduring mythology developed that the National Park Service was generally anti-research, especially when it came to outside researchers.
- 1960s: The National Park Service changes its research permitting policy, only permitting projects that are of direct benefit to park managers and would help make important decisions.
- 1966: Park researcher Dr. Thomas Brock discovers *Thermus aquaticus* in a Yellowstone hot spring. An enzyme discovered in the microorganism is eventually used to rapidly replicate DNA.
- 1968: Yellowstone begins “natural regulation” management. The resource management philosophy has been highly controversial over the years, and has itself become a major focus of scientific study in Yellowstone.
- 1970s and 1980s: Evolving management priorities—in which the need for scientific research became progressively more compelling both politically and practically—combined with increasing attention and interest in Yellowstone by the scientific community was reflected in an increase in the volume of research.
- 1984: Total research permits exceed 100 for the first time.
- 1987: Total research permits exceed 200.
- 1990s–2000s: Total research permits average about 250 annually.
- 2009–2016: Total research permits are approximately 150 annually.
demonstrated immeasurable scientific value. In 1966, researcher Thomas Brock discovered *Thermus aquaticus*, a microorganism capable of surviving in temperatures extreme enough to kill most other living organisms, in a Yellowstone hot spring. In 1985, the Cetus Corporation obtained a sample of *T. aquaticus* for use in developing the Polymerase Chain Reaction (PCR) process for rapidly replicating DNA.

Amplifying a segment of DNA to a billion exact copies in a few hours gives a scientist enough material to seriously study. The use of an enzyme discovered in *T. aquaticus*, called Taq polymerase (which does not break down at the high temperatures required in the PCR process), made PCR practical and is seen as the biggest advance in PCR. Today, PCR is still the main process used to study nucleic acids, and DNA sequencing is a multi-billion dollar business. More than 53 patents involve research from Yellowstone.

Research studies provide valuable information to the park. Dozens of comprehensive studies were completed in the 20 years following the 1988 fires. The restoration of wolves in 1995 lead to increased research interest on the complex interactions on the northern range and continues today. The active volcanic ecosystem also fuels a wide variety of geologic studies. Many of these scientific studies have ramifications far beyond Yellowstone National Park.

Research Projects in Yellowstone

Today, permitted researchers study everything from archeology to zoology. Current research examples include:

- Evaluating the effects of winter recreation on air quality, wildlife, and natural soundscapes.
- Understanding prehistoric and historic use of the park, with emphasis on Yellowstone Lake and park developed areas.
- Monitoring plant and animal populations and physical parameters that are, or may be, affected by changing climatic conditions.
- Studying the interrelationship between carnivores, herbivores, and vegetation on Yellowstone’s northern range.
- Conducting detailed population ecology studies on mammals such as wolves, elk, bison, grizzly bears, bighorn sheep, mountain goats, and moose.
- Understanding the effects of landscape-scale disturbances (such as fires, insect outbreaks, and disease outbreaks) on the park’s forests.
- Surveying rare, unusual, or thermally-adapted flora.
- Monitoring of various geophysical systems that provide indicators of change within the Yellowstone caldera (e.g., seismicity; heat, chemical, or gas flux; deformation; subsidence and uplift).
- Monitoring geochemical cycling in hot springs and thermally-influenced waterways.
- Identifying new microbial species (and their survival mechanisms) found in the park’s numerous and diverse thermal features.
- Studying the ecology and life-history strategies of nonnative plants and aquatic species to better understand ways to control or eradicate them.
- Using tree ring data, pollen records, and charcoal evidence to understand past climatic patterns.

More Information

National Park Service Research Permit and Reporting System: https://irma.nps.gov/rprs

Staff Reviewers

Christie Hendrix, Science Program
Sarah Haas, Science Program Coordinator
Bioprospecting: Innovation Through Science

Yellowstone’s extremophiles, especially thermophiles, have been the subject of scientific research and discovery for more than 100 years. The discovery of *Thermus aquaticus* bacteria in the 1960s has had scientific and economic benefits far beyond what anyone could have imagined and has played into the growing scientific interest in bioprospecting and extremophiles—calling greater attention to the research potential of Yellowstone.

Today, several scientific research projects sponsored by universities, federal agencies, and corporations are underway in the park to investigate extremophiles. Some of their discoveries have helped researchers create inventions suitable for commercial purposes. When this happens, we call it bioprospecting. Bioprospecting does not require the sort of grand-scale resource consumption required by the kinds of extractive industries typically associated with the term “prospecting,” such as logging and mining. In this case, the “prospecting” is for new knowledge. Research is encouraged in Yellowstone if it does not adversely impact park resources and visitor use and enjoyment. Importantly, only research results, i.e., information and know-how gained during research on park specimens, may be commercialized—not the specimens themselves.

Park Science Informs Inventing

Yellowstone’s geology provides a wide variety of high-temperature physical and chemical habitats that support one of the planet’s greatest concentrations of extremophilic biodiversity. Research on these extremophiles can discover new enzymes that can

<table>
<thead>
<tr>
<th>Bioprospecting and Benefits-sharing in Yellowstone</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The Issue</td>
<td>Many different extremophiles have been studied. A few extremophile researchers have also created inventions that might be used commercially, which can be the basis of benefits-sharing for Yellowstone and the National Park Service. Researchers who study material obtained under a Yellowstone National Park research permit are required to enter into benefits-sharing agreements with the National Park Service before using their research results for any commercial purpose.</td>
</tr>
<tr>
<td>Definitions</td>
<td>Bioprospecting is the discovery of useful scientific information from genetic or biochemical resources. It does not require large-scale resource consumption typical of extractive industries associated with the term “prospecting,” such as logging and mining. Benefits-sharing is an agreement between researchers, their institutions, and the National Park Service that returns benefits to the parks when results of research have potential for commercial development. Extremophile: A microorganism living in extreme conditions such as heat and acid, and cannot survive without these conditions. Thermophile: Heat-loving extremophile.</td>
</tr>
<tr>
<td>History in Yellowstone</td>
<td>1960s: The discovery of Thermus aquaticus bacteria in the 1960s has had scientific and economic benefits far beyond what anyone could have imagined and has played into the growing scientific interest in bioprospecting and extremophiles—calling greater attention to the research potential of Yellowstone. 1980s: Yellowstone National Park first becomes aware that biological specimens from the park are potentially being studied for commercial applications and that patent applications are being made involving study of park organisms. In 1989, Taq polymerase, a commercial enzyme discovered in a Yellowstone extremophile and reproduced in the laboratory, becomes Science magazine’s first-ever “Molecule of the Year.” 1995: The National Park Service begins work on prototype contracts between the park and industry. A conference convened by Yellowstone, “Biodiversity, ecology and evolution of thermophiles,” draws 180 attendees from industry, universities, and agencies and includes a roundtable on bioprospecting and benefit sharing. 1999: The National Parks Omnibus Management Act of 1998 increased the emphasis on scientific research activities in the national parks. The law authorizes “negotiations with the research community and private industry for equitable, efficient benefits-sharing arrangements” in connection with research activities conducted in units of the National Park System. 1999–2012: Many Yellowstone extremophiles are under study, some of them are grown in researchers’ laboratories so they can be studied for decades. Research on a few microbes developed from specimens collected as early as 1986 leads to about a dozen patented inventions with potential for commercial use. 2010: The National Park Service decides to adopt benefits-sharing following the completion of the Benefits-Sharing Environmental Impact Statement.</td>
</tr>
</tbody>
</table>
withstand harsh manufacturing processes better than inorganic catalysts, improving efficiency, which saves energy. In some cases, using enzymes instead of inorganic chemicals can also help reduce toxic industrial by-products. Research on these extremophiles has recently helped scientists invent a wide variety of potential commercial applications, from methods for improving biofuel production to helping agricultural crops withstand drought and high temperatures.

Biggest Innovation from Yellowstone, So Far

Until the 1980s, our ability to study DNA was limited. Things we take for granted today such as DNA fingerprinting to identify criminals, DNA medical diagnoses, DNA-based studies of nature, and genetic engineering did not exist. But in 1985, the polymerase chain reaction (PCR) was invented. PCR is an artificial way to do something that living things do every day—replicate DNA. PCR is the rocket ship of replication, because it allows scientists to make billions of copies of a piece of DNA in a few hours.

Without PCR, scientists could not make enough copies of DNA quickly enough to perform their analyses. However, the heat necessary to do the PCR process inactivated the enzymes making the process extremely slow and expensive. They found the solution to this problem in one of the hot spring organisms isolated from Yellowstone by park researcher Thomas Brock in the 1960s; *Thermus aquaticus*. An enzyme discovered in *T. aquaticus*—called Taq polymerase—made PCR practical. Because it came from an extremophile, Taq polymerase can withstand the heat of the PCR process without breaking down like ordinary polymerase enzymes. In 1989 Taq polymerase was named *Science* magazine’s first-ever “Molecule of the Year.” Many laboratory-made versions of this enzyme are still in use allowing DNA studies to be practical, effective, and affordable. Companies that sell the Taq enzymes have earned profits, but Yellowstone National Park and the United States public receive no direct benefits even though this commercial product was developed from the study of a Yellowstone microbe.

Benefits Sharing

Federal legislation authorizes the National Park Service to negotiate benefits-sharing agreements that provide parks a reasonable share of profits when park-based research yields something of commercial value. The National Park Service examined benefits-sharing options and decided to require it for new inventions made through study of park resources. Servicewide procedures for benefits sharing have been developed and can be viewed in the Benefits-Sharing Handbook at https://parkplanning.nps.gov/.

More Information

www.nature.nps.gov/benefitssharing

Staff Reviewer

Sue Mills, Natural Resource Management Specialist
Christie Hendrix, Science Program
Sarah Haas, Science Program Coordinator
Exurban development (top right) and forest dieback (bottom left) in the Gallatin Valley of Montana, in the Greater Yellowstone Ecosystem.

Land use
How land is used outside the park can disrupt ecological processes within the park. Though still sparse in the early 2000s, the population in Greater Yellowstone has grown steadily since 1970. Data compiled by the Greater Yellowstone Inventory and Monitoring Network show that from 1990 to 2010, the population in and near the Greater Yellowstone Ecosystem increased nearly 50% (approximately 220,000 to 323,000). About 27% of land in the counties that comprise the Greater Yellowstone ecosystem is privately owned. Much of the growth occurred in rural residential areas. Development density is expected to increase, but with rural residential development continuing to dominate. The distribution of population growth on private land in recent decades is having a larger impact on the ecosystem than the population increase itself.

Private land in the Greater Yellowstone ecosystem is primarily located in valley bottoms and flood plains, which generally have longer growing seasons and higher plant productivity than the higher elevation areas that are protected as public land. In addition, new homes have been disproportionately located in areas that are important for biodiversity, especially grizzly bear habitat, bird hot spots, and riparian zones. The percentage of the Greater Yellowstone ecosystem used for agriculture remained relatively constant from 1920 to 1990, but has declined slightly since then to about 18%. Agriculture is still a significant use of the land. In 2007, the percentage of agricultural crop land in the counties in and near the Greater Yellowstone Ecosystem ranged from less than 5% to more than 50%.

More Information
Yellowstone National Park has always managed its backcountry to protect natural and cultural resources and to provide visitors with the opportunity to enjoy a pristine environment within a setting of solitude. Yet none of the park is designated as federal wilderness under the Wilderness Act of 1964.

In 1972, in accordance with that law, the Secretary of the Interior recommended 2,016,181 acres of Yellowstone’s backcountry be designated as wilderness. Although Congress has not acted on this recommendation, all lands that fall within Yellowstone’s Recommended Wilderness are managed to maintain their natural wilderness character so as not to preclude wilderness designation in the future. The last Yellowstone wilderness recommendation sent to Congress was for 2,032,721 acres.

Wilderness in the National Park System
Congress specifically included the National Park Service in the Wilderness Act and directed the National Park Service to evaluate all its lands for suitability as wilderness. Lands evaluated and categorized as “designated,” “recommended,” “proposed,” “suitable,” or “study area” in the Wilderness Preservation System must be managed in such a way as to (1) not diminish their suitability as wilderness, and (2) apply the concepts of “minimum requirements” to all management decisions affecting those lands, regardless of the wilderness category. Some activities that are typically prohibited under the Wilderness Act are motorized or mechanized equipment use and the installation of structures.

Director’s Order 41
In 1999, Director’s Order 41 was issued to guide National Park Service efforts to meet the 1964 Wilderness Act, directing that recommended wilderness must be managed to protect wilderness resources and values.

Revised in 2013, Director’s Order 41, provides clearer guidance on contemporary issues in wilderness stewardship and management. It provides accountability, consistency, and continuity to the National Park Service’s Wilderness Stewardship Program, and guides the National Park Service efforts to meet the letter and spirit of the 1964 Wilderness Act. Instructions include:

- “The NPS will apply the guidance contained in [Director’s Order 41] to all of its wilderness stewardship activities. For the purpose of

Quick Facts

The Issue
In 1972, 90% of Yellowstone National Park was recommended for federal wilderness designation. Congress has not acted on this recommendation.

Backcountry Statistics
- Approximately 1,000 miles of trail.
- 72 trailheads within the park; 20 trailheads on the boundary.
- 301 designated campsites.
- Approximately 13% of users travel with boats, 6% with stock.
- In 2016, 20,783 visitors camped in the backcountry.

Management Concerns
- Accommodating established amount of visitor use.
- Protecting natural and cultural resources.
- Managing administrative and scientific use.
- Monitoring wilderness character.
- Educating users in Leave No Trace practices.

Current Status
Yellowstone does not have an approved wilderness management plan.
applying guidance, unless specifically noted, the term “wilderness” includes the categories of eligible, proposed, recommended, and designated. Potential wilderness may be identified within the proposed, recommended, or designated categories.”

- “For every designated wilderness, a Wilderness Stewardship Plan will guide management actions to preserve wilderness character… Parks with lands determined eligible, proposed, or recommended should also develop plans to preserve wilderness character… Preservation of wilderness character will be incorporated into appropriate sections of park planning and management documents.”

Minimum Requirement Analysis
National Park Service Management Policies (6.3.5) requires park Superintendent’s to implement a Minimum Requirement Policy to evaluate proposed management actions within recommended wilderness areas, saying “all management decisions affecting wilderness must be consistent with the minimum requirement concept.” This concept allows managers to assess:

1. If the proposed management action is appropriate or necessary for administering the area as wilderness and does not impact wilderness

FREQUENTLY ASKED QUESTION:
Does Yellowstone include a federally designated wilderness?
No. Most of the park was recommended for this designation in 1972, but Congress has not acted on the recommendation.

Proposed wilderness (light gray) in Yellowstone National Park. Ninety percent of the park is recommended for federally designated wilderness. Areas near roads, around major visitor areas, around backcountry ranger cabins, and in previously disturbed areas are not included.
A wilderness, in contrast with those areas where man and his own works dominate the landscape, is ... an area where the earth and its community of life are untrammeled by man, where man himself is a visitor who does not remain ... retaining its primeval character and influence, without permanent improvements or human habitation, which is protected ... so as to preserve its natural condition....

—The Wilderness Act of 1964

significantly (Why must the activity occur in recommended wilderness?)

2. What techniques and type of equipment are needed to minimize impacts to the wilderness resource. (If the project is necessary to conduct in wilderness, what is the appropriate means to conduct it that will cause the minimum impact to the wilderness resource, character, and experience that will still get the job done?)

Superintendents apply the minimum requirement concept to all administrative practices, proposed special uses, scientific activities, and equipment use in wilderness. They must consider potential disruption of wilderness character and resources before, and give significantly more weight than, economic efficiency and convenience. If the wilderness resource or character impact is unavoidable, the only acceptable actions are those preserving wilderness character or having localized, short-term adverse impacts.

Wilderness Designation and Current Practices

Yellowstone’s Backcountry Management Plan and environmental assessment were drafted in 1994, but were never signed. Though unofficial, both began to provide management guidance to park managers. As managers consider wilderness in Yellowstone today, they must determine how current practices in the park will be handled within areas that are managed as wilderness:

- Protecting natural and cultural resources while also maintaining the wilderness character of the park’s lands managed as wilderness.
- Managing administrative and scientific use to provide the greatest contribution with the minimum amount of intrusion on lands managed as wilderness.
- Monitoring wilderness character to develop and enact long-range strategies to better protect wilderness resources and enhance visitor experiences.
- Minimizing visitor wilderness recreation impacts by educating users in Leave No Trace outdoor skills and ethics that promote responsible outdoor recreation and stewardship.
- Evaluating the impacts to wilderness resources among other parameters for all research projects that will take place on lands managed as wilderness in Yellowstone.

Outlook

Yellowstone managers will continue to steward lands managed as wilderness in such a way that sustains the wilderness resource and wilderness character while providing wilderness recreational opportunities for park visitors. If or when Congress acts upon the recommendation to designate much of Yellowstone as wilderness, park managers will continue to manage those areas accordingly.

More Information

50th Anniversary of the Wilderness Act (2014):
www.wilderness50th.org
Leave No Trace: www.lnt.org
National Park Service Wilderness Resources: wilderness.nps.gov and www.youtube.com/user/NPSWilderness
National Wilderness Preservation System: www.wilderness.net

Staff Reviewer
The enjoyment of Yellowstone and its unique resources during the wintertime has drawn deep and passionate interest in the park since the 1930s. Here, skiers pass bison on Slough Creek trail.

Winter Use

The National Park Service (NPS) mission is a dual mandate: preserve Yellowstone’s resources, and make the park available and accessible for enjoyment and appreciation. The ways in which visitors access Yellowstone in winter can affect the park’s plants, animals, and wild character in ways more profound—and potentially more damaging—than at other times of the year. To meet its mission, the NPS has worked carefully to develop a long-term plan for winter use in Yellowstone that both protects the park’s resources and provides outstanding opportunities “for the benefit and enjoyment of the people.”

For years, the National Park Service managed the park in winter with interim management plans in the face of repeated courtroom challenges over snowmobiles and other winter operations. The final rule, published in October 2013, established long-term management of winter use in Yellowstone and concluded more than 15 years of planning efforts and litigation.

History of the Debate

The popularity of visiting the park in winter, coupled with concerns over impacts to resources from visitation, has made winter use planning for Yellowstone one of the most contentious issues for park managers and visitors. The debate spans more than 80 years, with each participant asking: should the park be accessible in winter? If so, what type of transportation has the least harmful impact on resources, while providing for meaningful visitor experiences?

In the early 1930s communities around the park began asking the NPS to plow Yellowstone’s roads year-round so tourist travel and associated spending in their communities would be stimulated. Each time, the NPS resisted these requests citing non-winterized buildings, harsh weather conditions, and roads too narrow for snow storage. Meanwhile, snowbound entrepreneurs in West Yellowstone began experimenting with motorized vehicles capable of traveling over snow-covered roads. In 1949, they drove the first motorized winter visitors into Yellowstone in snowplanes, which consisted of passenger cabs.

Quick Facts

The Issue

National Park Service Regulation 36 CFR 2.18 prohibits snowmobile use in national parks when there is no specific rule authorizing their use. This is known as the “closed unless open rule”—without a specific rule, oversnow vehicles would be prohibited from entering Yellowstone.

Winter Use Management Goals

- Provide a high quality, safe and educational winter experience
- Protect wilderness character and values
- Preserve pristine air quality
- Preserve natural soundscapes
- Mitigate impacts to wildlife
- Coordinate with partners and gateway communities

Concerns Raised by the Public

- Overcrowding
- Visitor impacts on natural resources
- Noise and air pollution
- Availability of facilities and services

- Restricting snowmobiles, including requiring guides
- Importance of winter visitation to the local and regional economy
- Wildlife using groomed roads
- Displacing wildlife
- Health and human safety

Updates: www.nps.gov/yell/planyourvisit/winteruse.htm
set on skis and blown about (without becoming airborne) with a rear-mounted airplane propeller and engine. In 1955, they began touring the park on snowcoaches (then called snowmobiles), enclosed oversnow vehicles (OSV) capable of carrying about 10 people. Finally, in 1963 the first visitors on modern snowmobiles entered Yellowstone. Not long after, snowmobiling became the dominant way to tour the park in winter.

Still, pressure to plow park roads persisted, and Yellowstone authorities knew that they could not accommodate both snowmobiles and automobiles. The matter culminated in a congressional hearing in Jackson, Wyoming, in 1967. By this time, park managers felt plowing would dramatically alter the look and feel of the park’s winter wilderness. They thought snowmobiles offered a way to accommodate visitors while preserving the winter time experience.

By 1968, an OSV program was formalized. In 1971, park managers began grooming snowmobile routes to provide smoother, more comfortable touring, and also opened Old Faithful Snow Lodge so visitors could stay overnight at the famous geyser.

Throughout the 1970s, 80s, and early 90s, visitation by snowmobile grew consistently. This brought unanticipated problems such as air and noise pollution, conflicts with other users, and wildlife harassment. Meanwhile, in 1972, President Nixon signed Executive Order 11644 which described how off-road vehicles, including snowmobiles, should be managed. This Executive Order requires each agency to: establish policies and provide for procedures that will ensure that the use of off-road vehicles on public lands will be controlled and directed so as to protect the resources of those lands, to promote the safety of all users of those lands, and to minimize conflicts among the various uses of those lands.

In 1990, park managers completed the Winter Use Plan Environmental Assessment for Yellowstone and Grand Teton national parks and the John D. Rockefeller, Jr. Memorial Parkway to address known and developing problems with snowmobile use. This plan formalized the park’s existing winter use program and included a commitment to examine the issue further if winter visitation exceeded the threshold of 140,000 visitors. That threshold was exceeded in the winter of 1992–1993, eight years earlier than the plan predicted.

In accordance with the 1990 plan, the NPS began an analysis of all types of winter recreation on all

Visitor Use in National Parks

Use by visitors is both a primary reason for the establishment of national parks and a factor in the condition of many of the natural and cultural resources that the parks are intended to protect. While poaching and road collisions have immediate consequences for wildlife, most visitor impacts are less obvious. The long-term consequences of some previous park policies carried out for the presumed benefit of visitors—such as predator control and the introduction of nonnative fish—continue to be evident in the parks today. In addition, ongoing visitor activities and associated infrastructure affect many park resources, including:

- air and water quality, and the natural soundscape;
- wildlife habitat, distribution and habituation;
- the spread of nonnative plants, diseases, and aquatic organisms;
- the functioning of geothermal features; and
- the preservation of archeological sites and other cultural artifacts.

After exceeding 3 million visits for the first time in 1992, annual visitation at Yellowstone fluctuated between 2.8 and 3.1 million until new records were set in 2009 (3.3 million) and 2016 (more than 4 million). About 70% of the visitation occurs from June through August. Although there are no day-use quotas, lodging and campgrounds in the park can accommodate only about 14,300 overnight visitors during the summer, while daily visitation during July 2010 averaged 30,900. Fall visitation has increased since the 1980s and now comprises about 21% of annual use; winter visitation has never been more than 6% of the annual total.

Similar to trends at other western parks, overnight backcountry use in Yellowstone peaked in 1977 at more than 55,000 “people use nights” (the total number of nights spent in the backcountry). Since the mid-1990s backcountry use has remained fairly steady, ranging between 37,000 and 46,000 person use nights annually.
NPS and Forest Service (FS) lands in the greater Yellowstone area. Park and forest staff used scientific studies, visitor surveys, and public comments to analyze the issues or problems with winter use. The final report, Winter Use Management: A Multi-Agency Assessment, published in 1999, made many recommendations to park and forest managers and summarized the state of knowledge regarding winter use at that time.

Unfortunately, the assessment did not change conditions in the parks. By the late 1990s, an average of 795 snowmobiles entered the park each day. All were two-stroke machines, which used a mix of oil and gas for combustion, resulting in high levels of pollution. Carbon monoxide pollution was especially severe, coming close to violating the Clean Air Act’s standards at the West Entrance in one event. Air particulate and some hydrocarbon levels were also high. Two-stroke machines were also loud, making it difficult to experience natural silence in the Firehole Valley on many days. Many visitors traveling by snowmobile lacked the experience necessary to pass bison and other wildlife without causing harassment.

Planning and Litigation

The winter of 1996–1997 was one of the harshest winters of the 1990s, with abundant snow, cold temperatures, and a thick ice layer in the snowpack. Unable to access the forage under the ice, more than 1,000 bison left the park and were shot or shipped to slaughter amid concerns they could transmit brucellosis to cattle in Montana (see chapter 8). Concerned that groomed roads increased the number of bison leaving the park and being killed, the Fund for Animals and other groups filed suit in the US District Court for the District of Columbia against the NPS.

Litigation and Planning History

- **1932:** First request to park managers to plow roads year-round.
- **1949:** First visitors using motorized oversnow vehicles (snowplanes).
- **1955:** Snowcoaches enter the park.
- **1963:** First snowmobiles (six, total) enter the park.
- **1967:** Congressional hearing on plowing park roads year-round.
- **1968:** Yellowstone managers formalize oversnow use instead of plowing.
- **1971:** Managers begin grooming roads; Yellowstone Park Co. opens Old Faithful Snow Lodge.
- **1990:** NPS issues first winter-use environmental assessment (EA) for Yellowstone and Grand Teton.
- **1992:** Winter visitation exceeds threshold of 140,000 people per year, 8 years earlier than expected.
- **1993:** NPS begins to evaluate winter recreation in the greater Yellowstone area.
- **1997:** NPS develops a new winter use plan and environmental impact statement (EIS) in response to a lawsuit alleging bison use groomed roads to leave the park, leading to their slaughter.
- **1999:** Draft EIS released; 46,000 public comments received. Organizations petition to prohibit trail grooming and snowmobile use in all national parks.
- **2000:** Final EIS released and Record of Decision signed, banning snowmobiles and converting to snowcoach-only transportation. Snowmobile enthusiasts sue to challenge the ban.
- **2001:** NPS settles with snowmobilers’ group, agrees to prepare a supplemental EIS (SEIS).
- **2002:** Draft SEIS released; 357,000 comments received.
- **2003:** Dec. 11: Final rule published in Federal Register to allow 950 BAT, guided snowmobiles in the park daily; 122,000 comments received.
 - December: final rule published in Federal Register.
- **2008:** September–December: Federal court decisions cancel the new winter plan.
- **2009:** Winter season opens under interim plan during EIS process, allows 318 BAT, guided snowmobiles and 78 snowcoaches daily for the next two winters.
- **2010:** The National Park Service begins preparing a next long-term plan.
- **2013:** February: Final Winter Use Plan/SEIS released, proposing to manage oversnow vehicles based on “transportation events” rather than the number of snowmobiles and snowcoaches allowed in the park each day.
- **2013:** October: Final Rule for winter use released authorizing OSV use based on Transportation Events.
in May 1997. The groups alleged that the NPS had failed to examine the environmental impacts of winter use. In 1999, the Bluewater Network filed a legal petition with the NPS to ban snowmobiles from all national park units nationwide. These two actions inaugurated more than 15 years of winter use planning and associated lawsuits, and catapulted the issue into one of the NPS’s most visible and enduring environmental controversies.

As part of a court mediated settlement, the NPS produced a draft EIS (in 1999) that proposed plowing the road from West Yellowstone to Old Faithful. Public comment did not favor plowing, and unmanaged snowmobile use was deemed to impair park resources. Therefore, park managers opted to ban snowmobiles and allow only snowcoaches in the final EIS published in fall of 2000. At the time, snowmobiles which used new technology to dramatically reduce emissions and somewhat reduce noise (what we now refer to as “Best Available Technology” or BAT) were not widely available commercially.

Since that initial EIS, other environmental compliance documents have proposed addressing winter-use impacts using a combination of new technologies, limits on vehicle numbers, mandatory guiding, and monitoring winter-use impacts on park resources. All of these environmental compliance planning documents have proposed allowing a combination of snowmobiles and snowcoaches, with the snowmobile numbers decreasing from plan to plan and snowcoach numbers remaining relatively consistent. By 2002, BAT snowmobiles were commercially available. Requiring visitors to tour with snowmobile guides or in commercially guided snowcoaches reduced the conflicts with wildlife. Resource monitoring allowed the NPS to gauge the effects of these actions and take further protective actions. These changes aimed to eliminate the problems of the past.

Each of the subsequent winter use plans was litigated. The Fund for Animals, the Greater Yellowstone Coalition, and other environmental groups consistently sue in the US District Court for the District of Columbia. The International Snowmobile Manufacturer’s Association, the State of Wyoming, the BlueRibbon Coalition, and others consistently file their lawsuits in the US District Court for the District of Wyoming. Litigants have found some traction in each of their courts, with varying degrees of success on any given environmental document. Certainly, the litigation is one of the factors accounting for the ongoing nature of the winter use debate. In each decision against it, the National Park Service has responded by addressing the concerns of the courts.

Beginning in 2009, winter use was managed with an interim plan. In 2011, the NPS released a draft Environmental Impact Statement (EIS) for public review on the potential effects of the plan for motorized oversnow travel in the park. Nearly 60,000 comments were filed during a more than 60-day public comment period that followed the draft document’s release. After months of public comment and review, the NPS decided additional study was needed before putting a long-term plan in place and the planning process was extended for another year. Among the subjects identified for further study were requirements for entry into the park by 10:30 am daily, sound and air quality computer modeling assumptions, “best available technology” standards for snowcoaches, the impacts of Sylvan Pass avalanche hazard mitigation, and opportunities for park access by non-commercially guided snowmobile groups.

Management by “Transportation Events”
In 2012 the NPS released a draft Supplemental EIS, the seventh environmental document since 2000. This document introduced the idea of managing oversnow vehicles by “transportation events.” Recognizing that a group of snowmobiles traveling together is comparable to a snowcoach in terms of impacts, a transportation event is defined as a group of up to 10 snowmobiles, averaging 7 seasonally, or 1 snowcoach. As OSVs meet stricter air and noise emission standards, group size can increase from a
seasonal average of 7 to 8 snowmobiles and from 1 snowcoach to an average of 1.5 across the season. Previous management alternatives were based on managing by absolute numbers of OSVs. Through analysis of monitoring data and computer simulations, the park discovered that by packaging traffic into transportation events (i.e., groups) and limiting the total number of transportation events allowed access into the park each day, the park is able to lessen disturbances to wildlife and improve natural soundscape conditions, in addition to allowing more visitors to see the park in winter. Based on monitoring data, the NPS demonstrated that snowmobile and snowcoach transportation events have comparable impacts on Yellowstone’s resources and values.

In February 2013, the NPS published a final Winter Use Plan/Supplemental EIS to guide the future of winter use in Yellowstone National Park with management by transportation events as the preferred alternative. A proposed rule was published in the Federal Register in April 2013 and the Record of Decision, which officially concludes the SEIS process by selecting management by transportation events as the final alternative, was signed in August 2013.

Visitor Survey Results

The University of Montana conducted a survey of winter visitors in 2007–2008:

- Almost 90% of those surveyed agreed that Yellowstone is a place for natural quiet and to hear natural sounds.
- 83% were somewhat or very satisfied with their experience of natural sounds.
- 71% indicated that they found the level of natural sound they desired for half or more of the time they desired it.
- 87% were “very satisfied” with their overall experience. The remaining 13% were “satisfied.”
- 71% considered the opportunity to view bison to be extremely important.
- 87% reported that the wildlife viewing aspect of their Yellowstone winter experience was very satisfying.
- 99% who saw bison in winter were able to see them behaving naturally.
- 21% witnessed an encounter where the bison were hurried, took flight, or acted defensively.
- More than 72% largely considered the bison-human interactions they witnessed and the park setting as a whole as “very” appropriate and/or acceptable.

A Final Rule for Winter Use in Yellowstone

National Park Service Regulation 36 CFR 2.18 prohibits snowmobile use in national parks when there is no specific rule authorizing their use. This is known as the “closed unless open rule”—without a specific rule, oversnow vehicles would be prohibited from entering Yellowstone.

The final Rule authorizing OSV use in Yellowstone was published in the Federal Register on October 23, 2013 and was based upon the environmental analyses contained within the 2013 SEIS and Record of Decision. The final Rule provides mechanisms to make the park cleaner and quieter than previously authorized; provides greater flexibility for OSV commercial tour operators; rewards new oversnow technologies; allows for increases in public visitation.

The specific parameters established by the final Rule for winter use in Yellowstone are:

- Up to 110 daily transportation events.
- 46 reserved for commercially guided snowmobiles,
- 4 reserved for non-commercially guided snowmobiles
- No less than 60 events reserved for snowcoaches;
- New “best available technology” (New BAT) is required for snowmobiles. Under New BAT, snowmobile transportation events can be up to 10 snowmobiles in a group, with group size averaging 7 each winter.
- BAT is required for all snowcoaches.
- Voluntary “Enhanced BAT” (E-BAT) certification will allow commercial tour operators to increase the average numbers of snowmobiles

Research indicates that disturbance by winter visitors is not a primary influence on the distribution, movements, or vital rates (how fast vital statistics change within a population) of bison, trumpeter swans, elk, coyotes, and bald eagles.
in their groups from 7 to 8 and snowcoaches from 1 to 1.5 across the season.

- One non-commercially guided group of up to five snowmobiles is permitted to enter through each of the four park entrances every day.
- OSVs may continue to use Sylvan Pass; however, the pass may be closed at any time due to avalanche danger or mitigation efforts.
- Park managers are collaborating with the public by implementing an Adaptive Management Program, which will combine science with public input, to ensure that OSV use impacts stay within limits predicted in the final Plan/SEIS.

Adaptive Management Program

The final Rule authorizes an adaptive management program to inform and improve winter use management. Adaptive management is a three-step process: Management, monitoring, and evaluation improve resource protection by blending science and public engagement. It enables natural resource managers to acknowledge uncertainties in the management of natural systems and respond to changing conditions while working with the public and interested stakeholders. Collaborative adaptive management, the approach Yellowstone is taking, emphasizes joint learning and an active partnership between managers, scientists, and other stakeholders, including the public.

The objectives of the program are to:

- Evaluate the impacts of OSV use and help managers implement actions that keep impacts within the range predicted under the final Plan/SEIS.
- Gather additional data to compare impacts from a group of snowmobiles versus a snowcoach.
- Reduce impacts on park resources after implementation of the final Rule by gathering additional data on the overall social and ecological impacts of winter use.

To meet these objectives, the NPS has collaborated with the public and other partners to develop a long-term, sustainable adaptive management plan for winter use in Yellowstone National Park. This plan outlines a process for public engagement and for prioritizing indicators to address scientific uncertainty and monitor resources of interest. NPS staff released the final adaptive management plan for winter use to the public in December 2016. Public input is included through participation in the Adaptive Management Team and the Adaptive Management Working Group. Meetings are also held throughout the region and have been available remotely via webinar.

More Information

FREQUENTLY ASKED QUESTION:
Do winter use regulations effectively protect park resources?
Recent studies on winter use indicate park resources are in very good condition. Research shows that snowmobiles and snowcoaches contribute similarly to the impacts of winter use. The perception that snowmobiles contribute to the vast majority of observed effects, and that those effects would greatly diminish by limiting travel to snowcoaches only, is not supported. When managed, both modes of transportation provide opportunities for visitors to enjoy the park. Each can offer different experiences for visitors, just as cross-country skiing, snowshoeing, and walking offer different opportunities for visitors to enjoy the park in the winter.

Wildlife
The impact of oversnow vehicles (OSV) on wildlife is a key issue in winter use policies. OSVs are required to stay on groomed roads, but the roads are often situated where wildlife may concentrate in winter. Research indicates that disturbance by winter visitors is not a primary influence on the distribution, movements, or population size and composition of bison, trumpeter swans, elk, coyotes, and bald eagles. Monitoring OSV use in Yellowstone shows that nearly all OSV users remain on groomed roads and behave appropriately toward wildlife, rarely approaching unless animals are on or adjacent to the road. In most of 7,603 encounters observed between people on OSVs and wildlife, the animals either had no apparent response or looked and then resumed what they were previously doing.

Road grooming does not increase bison migration out of the park. Data on bison road use and off-road travel collected from 1997 to 2005 found bison on the road less often from December to April when the roads were groomed than during the rest of the year, and no evidence that bison preferentially used groomed roads during winter.

Compared to similar studies done in other places, the relatively low intensity of wildlife responses in Yellowstone suggests that because the encounters near roads are predictable and apparently not harmful to the animals, some habituation to OSVs and associated human activities may be occurring.

Making all visitors use a guide has nearly eliminated wildlife harassment. Guides enforce proper touring behaviors, such as passing wildlife on or near roads without harassment and ensuring that wildlife do not obtain human food. Monitoring indicates that snowcoaches have a slightly higher probability of disturbing wildlife than do snowmobiles.

Air Quality
Winter air quality in Yellowstone depends primarily on proximity to roads, parking areas, employee housing, and visitor lodging. Although visitation is far lower in the winter than in the summer, OSVs produce more emissions. Prolonged exposure to air pollutants such as carbon monoxide (CO), fine particulate matter (PM <2.5 micrometers), and hydrocarbons can pose health risks.

Levels of carbon monoxide and particulates fell dramatically after 2002 with conversion to BAT snowmobiles and reduced OSV numbers. Hydrocarbon and air toxic concentrations are also no longer a concern, with the possible exception of formaldehyde and benzene levels, which are being closely monitored. Carbon monoxide and particulate matter are monitored at the West Entrance and Old Faithful, where OSVs are most concentrated. BAT snowmobiles and snowcoaches produce a similar amount of air pollution on a per passenger basis. Under the Clean Air Act Amendments of 1977, Yellowstone is one of 156 national parks and wilderness areas that are designated Class I airsheds, requiring the most stringent protection.

Soundscape
Noise levels have also fallen somewhat with the conversion to BAT snowmobiles, mandatory commercial guiding, and limited numbers of snowmobiles. Although snowmobiles and snowcoaches are commonly heard during certain periods of the day, their noise is absent during other times—even in developed areas like Old Faithful and along busy corridors like the West Entrance Road.

Oversnow vehicles are audible 61% of the day at Old Faithful and 51% of the day at Madison Junction, per the 2010–2011 monitoring report, down from 67 and 54%, respectively. (National Park Service vehicles account for approximately one-fourth of this noise.) The BAT requirements for snowcoaches, which will be implemented in 2016, will reduce noise even more. Snowcoaches account for 94% of the loud oversnow vehicles. Guided snowmobile groups and snowcoaches contribute nearly equally to the percentage of time oversnow vehicles are heard.

Incidents
With guiding has come a 50% reduction of law enforcement incidents, even when accounting for the drop in visitation. Arrests have virtually disappeared. Calls for medical assistance are the only statistic that has increased since the conversion to mandatory guiding.

Staff Reviewers
Christina White, Outdoor Recreation Planner
Alicia Murphy, Outdoor Recreation Planner
Sustainable and Greening Practices

The National Park Service mission articulates a clear ethic of environmental stewardship. In order to achieve the goal of protecting and preserving parks a number of executive orders and acts of legislation direct the federal government in the development of sustainable operations and facility adaptation. The National Park Service has developed the Green Parks Plan to provide goals and standards for lasting and conscientious improvements to American national parks.

Yellowstone National Park has embraced these goals and has been working toward becoming a greener park for many years. Early efforts in sustainability included building a regional composting facility, operating alternatively fueled vehicles, replacing toxic cleaning products, and overhauling the park’s recycling program. The park’s continued commitment to sustainability is made more urgent by changing climate and increasing impacts to natural resources both locally and globally. Historic increases in visitation and visitor impact has created a need for the park to continue to improve and expand our sustainability efforts.

Yellowstone’s size and complexity create challenges that require collaboration among park managers and considerable assistance from partners. In 2012, Yellowstone staff, concessioners, educational institutions, and corporate partners developed Yellowstone’s Strategic Plan for Sustainability. The Yellowstone National Park strives to demonstrate and promote sound environmental stewardship. Through these efforts, more than 5,000 small propane cylinders are crushed and redeemed as steel each year.

Sustainable and Greening Practices in Yellowstone

The Issue
Demonstrating and promoting sound environmental stewardship through regional and national partnerships.

History
- 1995: Biodiesel truck donated to park to test alternative fuel.
- 1997: Park celebrates 125th anniversary and “greening” efforts increase.
- 1998: Old Faithful wood viewing-platform replaced with recycled plastic lumber; employee Ride-Share Program begins.
- 1999: Yellowstone National Park begins using nontoxic janitorial supplies and offers ethanol blended fuel to visitors.
- 2002: The park’s diesel fleet converts to biodiesel blend; the Greater Yellowstone/Teton Clean Energy Coalition receives federal designation.
- 2003: Regional composting facility opens; park demonstrates the first fuel cell in a national park; park begins testing prototype alternatively-fueled multi-season vehicles.
- 2004: Park employees begin using hybrid vehicles; Xanterra employee housing receives LEED designation.
- 2007: Park completes a greenhouse gas inventory, leading to initiatives to reduce greenhouse gas emissions; interns begin gathering data for sustainability efforts.
- 2011 and 2013: Representatives from corporate partners and educational institutions participate in “Greening Yellowstone Conference.”

Park Waste Diverted from Landfills
2017: 60% of waste diverted (42% recycled, 18% compost)
- newspapers, magazines, office paper: 46 tons
- aluminum and steel: 32 tons
- glass: 155 tons
- plastics: 58 tons
- cardboard: 343 tons
- food waste and other garbage composted: 434 tons
- manure: 251 tons
Greater Yellowstone Ecosystem plan builds on servicewide direction and focuses on specific goals to reduce greenhouse gas emissions, energy use, water use, and waste production, to adapt facilities, and conduct operations in an environmentally responsible manner. Many of these sustainability efforts are facilitated by the Yellowstone Environmental Coordinating Committee. The committee consists of representatives from the National Park Service, Xanterra Parks & Resorts, Delaware North Companies, the Yellowstone Association, Medcor, Yellowstone Park Service Stations, and the Yellowstone Park Foundation. The plan for presents a clear direction by which everyone—employees, visitors, and partners—can work collaboratively to make Yellowstone greener.

Energy Conservation

Yellowstone National Park is the largest consumer of energy in the National Park Service. Currently, most of Yellowstone’s energy comes from coal-fueled power plants and fossil fuels, but the park is reducing energy use by making facilities more energy efficient and increasing the use of renewable energy where possible.

Improving efficiency is the most basic, and the most valuable step we can take toward our energy goals. Constructing, remodeling, and updating Yellowstone’s buildings present opportunities for improving energy conservation. Most of Yellowstone’s aging buildings need energy efficiency improvements. New windows, improved insulation, and weather stripping on doors can improve our energy efficiency without compromising the historic character of the buildings. Installing new, efficient heating and lighting systems with easy-to-control switches and thermostats also reduces energy use. All improvements to outdoor lighting minimize energy use while protecting the darkness and clarity of the night sky.

New construction provides opportunities for us to implement more efficient designs. The Old Faithful Visitor Education Center, completed in 2010, is LEED (Leadership in Energy and Environmental Design) certified and the Old Faithful Haynes Photoshop was Yellowstone’s first LEED historic renovation.

Yellowstone now has several small renewable energy systems in operation and we continue to look for new opportunities. Photovoltaic (PV) solar energy systems have been a great success at locations that do not have main line electric power. At Bechler, a portable trailer with a 9 kW solar panel array meets 90% of the electrical needs in the summer season. The 44 kW solar panel system at Lamar Buffalo Ranch is expected to meet 100% of electrical needs and will use hybrid vehicle batteries for storage.

In 2012, a microhydro generator was brought online in Mammoth Hot Springs, providing renewable electric power to the grid. The generator produces about 1.4 million KW-hours for the park annually, saving approximately $95,000 in electricity costs and 900 metric tons of greenhouse gas emissions each year. Feasibility studies are underway to address further development of solar PV, solar heated water, and micro hydro capabilities. Tapping natural thermal energy in Yellowstone is not being considered by park managers as the effects could be detrimental to the park’s hydrothermal features.

This portable photovoltaic system at Bechler provides power during the summer season, meeting 90% of the site’s electrical needs.

The aging irrigation system used to water the historic lawns of Fort Yellowstone and Mammoth Hot Springs, pictured here in 1916, was upgraded in 2012.
Water Conservation

Climate change is expected to cause drier conditions in the Rocky Mountain West, so it is critical that the park conserves water and ensures that facilities and operations have minimal impact on water resources. Currently, over 280 million gallons are used for hydrating, flushing, and washing each year. Yellowstone plans to reduce overall potable water consumption and reduces use of potable water by using water-smart technology and design. Park staff are replacing toilets and faucets with more efficient models as well as repairing leaks in old water pipe infrastructure throughout the park.

The historic lawns of Mammoth Hot Springs, 37 acres total, have been irrigated since they were planted by the US Cavalry in 1902. In 2012, smart controllers that sense weather and soil moisture were installed to reduce the irrigation water by 30%, or 3.5 million gallons per year.

Natural water systems are critical to the hydrothermal features and ecological processes protected in Yellowstone. As we strive for efficient water use, it is also imperative that we assess future demand and the impacts of structures on natural surface water systems. Water vulnerability studies were conducted for the Old Faithful and Tower areas to identify opportunities for improvement in water treatment, distribution, and wastewater collection.

Fleet and Transportation

Yellowstone has ambitious goals to reduce fossil fuel consumption by fleet vehicles by decreasing the size of our fleet, replacing the existing fleet with more fuel-efficient vehicles, and choosing the most efficient vehicles for each job. Today, about 19% of the cars and truck used for work in Yellowstone are hybrid vehicles. Yellowstone is also working to educate employees and visitors about fuel-efficient driving and maintenance practices. Yellowstone has partnered with the Greater Yellowstone/Teton Clean Energy Coalition on several fuel-reduction projects including a recent idle-reduction campaign.

Through a partnership with Michelin, the park has recorded savings on gas consumption, by using experimental fuel-efficient tires on park vehicles. Since 1998, Yellowstone has had an employee ride share program for approximately 45 employees living north of the park—some more than 50 miles away—who help finance the program. The ride share program reduces fuel consumption and air pollution, improves safety, reduces parking needs, and saves employees money. Other group transit options for employees or visitors, like the Linx bus shuttles operating in the park 2012–2014, have not yet found a sustainable operating model.

In order to improve support for alternative fuels, the park has installed electric vehicle (EV) charging stations for visitor use at Mammoth Hot Springs, Canyon Village, and Old Faithful.

Environmental Purchasing and Waste Reduction

The park minimizes waste by purchasing environment-ally-preferred items. Compliant with EPA recommendations, we preferentially purchase items with minimal packaging, biodegradable or recyclable materials, and without toxic components as well as items requiring minimal energy to produce and transport. Yellowstone employees use office paper with 30% post-consumer recycled content and paper towels made of 100% recycled paper. The purchase of single-use plastics is also being reduced.

Yellowstone has more than 15 miles of wood boardwalk, most of which is several decades old. As these boardwalks age, toxic chemicals from wood preservatives may leach into the ground and nearby waterways. To reduce pollutants and the amount of new wood products used, the park has replaced some wood walkways with boards made of recycled plastic. This effort began in 1998 when Lever Brothers Company donated plastic lumber, the equivalent of three million plastic milk jugs, for the Old Faithful Geyser viewing platform and continues with renovation projects like the porch replacement on the Administrative building in 2014.
Yellowstone is experimenting with permeable pavement for sensitive resource areas. The park installed a permeable recycled glass pavement at the Old Faithful Visitor Education Center and Haynes Photo Shop in 2011 and in 2015, and used tires from Yellowstone fleet vehicles were recycled into a durable, porous, paving material used to resurface part of the geyser hill walkway in the Upper Geyser Basin.

Compost and Recycling
A study done in 1994 showed that 60–75% of the solid waste generated in the park could be composted. The National Park Service worked with partners to build an industrial-grade composting facility near West Yellowstone. The facility began operating in July 2003. With the West Yellowstone compost facility operating at regular capacity, the park had been able to divert (compost and recycle) up to 60% of waste generated. Unfortunately, the wetmill at the facility experienced several breakdowns and in 2015, Yellowstone concessioners switched to source separating compostable and non compostable materials to aid the overall operation and maintain composting rates.

The recycling program in Yellowstone is expansive. It accepts glass, plastic, paper, aluminum, steel, cardboard, electronic items, batteries, and number of other automotive and commercial items. In 2016, park employees, visitors, and partners diverted approximately 48% of waste from the landfill through recycling and composting initiatives. Recycling of construction waste has been increased. Recycled plastic from Yellowstone is used in carpet backing through a partnership with the park’s recycling contractor and Universal Textiles and Signature Crypton Carpet.

In 2016, park employees, visitors, and partners diverted approximately 60% of waste from the landfill through recycling and compost initiatives.

In 2005, Yellowstone became the first national park to recycle the small propane cylinders used for lanterns and camp stoves. More than 5,000 cylinders are crushed and redeemed as steel each year. In 2011, Yellowstone and its partners began recycling bear spray containers. Some equipment breakdowns have delayed the recycling process for these canisters. However, the park continues to collect them and park staff members are working with Montana State University engineers to redesign and improve the machines in order to resolve the backlog.

Greening of Concessions
Yellowstone National Park’s major concessioners have more interaction with visitors through food service, lodging, fuel and automotive services, and retail operations than any National Park Service facilities. Our concession partners have made corporate commitments to use environmental management systems that meets international business standards for sustainability and further the success of our Yellowstone’s sustainable operation goals.

Our Softer Footprint
Xanterra, which provides lodging and other guest services in the park, is committed to solid waste diversion, energy and water conservation, and environmental purchasing. It also

• Supplies sustainable and locally-sourced cuisine. Serves organic, fair-trade coffee (pesticide-free, grown and harvested in a manner supporting habitats for birds and other wildlife, purchased from local farmers at a fair price), and serves sustainable foods including meat from local ranches raised without hormones or
antibiotics.

- Supports green building by requiring contractors for all remodeling and new construction projects to divert at least 50% of resulting waste from landfill disposal through reuse or recycling. They must also complete a Waste Reduction Plan prior to contract approval, and submit a quarterly project report detailing all activities related to waste minimization and recycling.

- Promotes “green retail” by carrying 35% sustainable products in stores and created the For Future Generations: Yellowstone Gifts retail store, which is devoted to educating guests about the threats of climate change and supporting sustainable retail products through a unique environmental scorecard system.

GreenPath: Delaware North

Delaware North Companies, which operates twelve general stores in the park, calls its award winning system “GreenPath®.” This environmental management system was the first in Yellowstone to attain ISO 14001 Registration, which means it exceeds strict environmental standards recognized internationally. Practices include:

- Purchasing responsibly and using biodegradable dishware and cutlery in all food service operations, which are then composted at a local facility.
- Conserving energy by improving fleet efficiency with hybrid technology, retrofitting old lights with new LED and compact fluorescent bulbs, and purchasing Energy Star rated equipment.
- Conserving water by installing low-flow water fixtures.
- Reducing or eliminating the use of hazardous materials and production of waste.
- Operating an aggressive recycling program where approximately 55% of waste is recycled—with composting, nearly 62% of all waste is diverted from the landfill.
- Installing free water-filling stations to reduce the production, shipping, and use of approximately 35,000 plastic water bottles.
- Using renewable energy sources to help heat water at the Grant Village dormitory.

Delaware North was awarded the first ever certification to the Greater Yellowstone Framework for Sustainable Development for accomplishments on the Lake and Tower stores. Delaware North was also the first facility within a national park to receive a Zero Waste Certificate for its operation of the Yellowstone General Stores warehouse. In 2016 the warehouse facility reduced, reused, or recycled more than 271,000 pounds of material.

More Information

National Park Service Green Parks Plan: www.nps.gov/greenparksplan

Yellowstone’s sustainable practices: http://www.nps.gov/yell/getinvolved/sustainability.htm

GreenPath at Delaware North: http://www.delawarenorth.com/about/values/greenpath

Staff Reviewers

Lynn Chan, Landscape Architect
Molly Nelson, Civil Engineer
Lloyd Kruger, Green Team Member
Janine Waller, Green Team Member
Dark Skies
Light pollution occurs in areas all over the world where artificial lighting is placed to light the night. Excess light shines into the atmosphere and creates a glow that diminishes visibility of the natural night sky. Approximately 2.2 billion dollars in energy consumption is wasted annually from light shining directly into the sky. Inefficient use of technology and the resulting light pollution is a growing concern.

Effects on Human Health and Wildlife
Daily light-dark cycles are necessary for maintaining human health and wildlife activity. Artificially lighted areas create light pollution which masks these cycles. Artificially lighted areas disrupt behavior, reproduction, nourishment cycles and predator-prey relationships in wildlife. In Yellowstone, this manifests in negative impacts to long-eared bats, blotched tiger salamanders, and various songbirds. In humans, excessive light levels are known to impact behavior, melatonin production, sleep patterns, and may contribute to the development of various types of cancer.

Yellowstone by Night
Most of Yellowstone is free of artificial light. However, in developed areas throughout the park there are more than 5,000 light fixtures. In the past, visitors often encountered bright light fixtures illuminating streets and buildings in the park making it difficult to view the natural night sky. Now, light fixtures are being replaced with low wattage, energy efficient, fully shielded fixtures that direct light only downward. Currently, only 46% of light fixtures are on at night and 75% those are fully shielded; helping to further preserve nighttime wilderness.

More Information

Authors
Rebecca Carman, Ohio Northern University
Elizabeth Tremains, Ohio Northern University
Janine Waller, Green Team Member

Quick Facts
Good Lighting Design Should:
• Avoid glare
• Be no brighter than necessary.
• Use uniform lighting so eyes can adjust easily
• Light only areas where light is needed (eliminate uplighting)
• Avoid deep shadows.
• Create smooth, gentle transitions from light to dark
• Be energy efficient
The landscape of the Greater Yellowstone Ecosystem is the result of various geological processes over the last 150 million years. Here, the Earth’s crust has been compressed, pulled apart, glaciated, eroded, and subjected to volcanism. All of this geologic activity formed the mountains, canyons and plateaus that define the natural wonder that is Yellowstone National Park.

While these mountains and canyons may appear to change very little during our lifetime, they are still highly dynamic and variable. Some of the Earth’s most active volcanic, hydrothermal (water + heat), and earthquake systems make this national park a priceless treasure. In fact, Yellowstone was established as the world’s first national park primarily because of its extraordinary geysers, hot springs, mudpots and steam vents, as well as other wonders such as the Grand Canyon of the Yellowstone River.

What Lies Beneath

Yellowstone’s geologic story provides examples of how geologic processes work on a planetary scale. The foundation to understanding this story begins with the structure of the Earth and how this structure shapes the planet’s surface.

The Earth is frequently depicted as a ball with a central core surrounded by concentric layers that culminate in the crust or outer shell. The distance from the Earth’s surface to its center or core is approximately 4,000 miles. The core of the earth is divided into two parts. The mostly iron and nickel inner core (about 750 miles in diameter) is extremely hot but solid due to immense pressure. The iron and nickel outer core (1,400 miles thick) is hot and molten. The mantle (1,800 miles thick) is a dense, hot, semisolid layer of rock. Above the mantle is the relatively thin crust, three to forty-eight miles thick, forming the continents and ocean floors.

In the key principles of Plate Tectonics, the Earth’s crust and upper mantle (lithosphere) is divided into...
many plates, which are in constant motion. Where plate edges meet they may slide past one another, pull apart from each other, or collide into each other. When plates collide, one plate is commonly driven beneath another (subduction). Subduction is possible because continental plates are made of less dense rocks (granites) that are more buoyant than oceanic plates (basalts) and thus, “ride” higher than oceanic plates. At divergent plate boundaries—like mid-ocean ridges—the upwelling of magma pulls plates apart from each other.

Many theories have been proposed to explain crustal plate movement. Scientific evidence shows that convection currents in the partially molten asthenosphere (the zone of mantle beneath the lithosphere) move the rigid crustal plates above. The volcanism that has so greatly shaped today’s Yellowstone is a product of plate movement combined with convective upwellings of hotter, semi-molten rock we call mantle plumes.

At a Glance
Although a cataclysmic eruption of the Yellowstone volcano is unlikely in the foreseeable future, real-time monitoring of seismic activity, volcanic gas concentrations, geothermal activity, and ground deformation helps ensure public safety. Yellowstone’s seismograph stations, monitored by the by the University of Utah for the Yellowstone Volcano Observatory, detect several hundreds to thousands of earthquakes in the park each year. Scientists continue to improve our capacity to monitor the Yellowstone volcano through the deployment of new technology.

Beginning in 2004, scientist implemented very precise Global Positioning Systems, capable of accurately measuring vertical and horizontal ground-motions to within a centimeter; and satellite radar imagery of ground movements called InSAR. These measurements indicated that parts of the Yellowstone caldera were rising at an unprecedented rate of up to seven centimeters (2.75 in) per year (2006), while an area near the northern caldera boundary started to subside. The largest vertical movement was recorded at the White Lake GPS station, inside the caldera’s eastern rim, where the total uplift from 2004 to 2010 was about 27 centimeters (10.6 in). The caldera began to subside during the first half of 2010, about five centimeters (2 in) at White Lake so far. Episodes of uplift and subsidence have been correlated with changes in the frequency of earthquakes in the park.

On March 30, 2014 at 6:34 AM Mountain Daylight Time, an earthquake of magnitude 4.8 occurred four miles north-northeast of Norris Geyser Basin. The M4.8 earthquake was felt in Yellowstone National Park, in the towns of Gardiner and West Yellowstone, Montana, and throughout the region. This is the largest earthquake at Yellowstone since the early 1980s. Analysis of the M4.8 earthquake indicates a tectonic origin (mostly strike-slip motion) but it was also involved with unusual ground uplift of 7 centimeters at Norris Geyser Basin that lasted 6 months.

Energy and groundwater development outside the park, especially in known geothermal areas in Island Park, Idaho, and Corwin Springs, Montana, could alter the functioning of hydrothermal systems in the park.

More Information
Lillie, R.J. 2005. Parks and plates: The geology of our national parks, monuments, and seashores. New York: W.W. Norton

Staff Reviewers
Jefferson Hungerford, Park Geologist
Bob Smith, Distinguished Research Professor and Emeritus Professor of Geophysics, University of Utah
Geologic History of Yellowstone

Most of Earth’s history (from the formation of the earth 4.6 billion years ago to approximately 541 million years ago) is known as the Precambrian time. Rocks of this age are found in northern Yellowstone and in the hearts of the nearby Teton, Beartooth, Wind River, and Gros Ventre mountain ranges. During the Precambrian and the subsequent Paleozoic and Mesozoic eras (541 to 66 million years ago), the western United States was covered at times by oceans, sand dunes, tidal flats, and vast plains. From the end of the Mesozoic through the early Cenozoic, mountain-building processes formed the Rocky Mountains.

During the Cenozoic era (approximately the last 66 million years of Earth’s history), widespread mountain-building, volcanism, faulting, and glaciation sculpted the Yellowstone area. The Absaroka Range along the park’s north and east sides was formed by numerous volcanic eruptions about 50 million years ago. This period of volcanism is not related to the present Yellowstone volcano.

Approximately 30 million years ago, vast expanses of today’s West began stretching apart along an east–west axis. This ongoing stretching process increased about 17 million years ago and created the modern basin and range topography (north–south mountain ranges with long north–south valleys) which characterizes much of the West, including the Yellowstone area.

About 16.5 million years ago, an intense period of volcanism initiated near the borders of present-day Nevada, Oregon, and Idaho. Subsequent volcanic eruptions can be traced across southern Idaho towards Yellowstone. This 500-mile trail of more than 100 calderas was created as the North American plate moved in a southwestern direction over a shallow body of magma. About 2.1 million years ago, the movement of the North American plate brought the Yellowstone area closer to the shallow magma body. This volcanism remains a driving force in Yellowstone today.

Yellowstone Geologic History

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Geologic Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>542 to 66 Ma</td>
<td>Area covered by inland seas</td>
</tr>
<tr>
<td>50 to 40 Ma</td>
<td>Absaroka volcanics</td>
</tr>
<tr>
<td>30 Ma to present</td>
<td>“Basin and Range” forces creating Great Basin topography</td>
</tr>
<tr>
<td>16 Ma</td>
<td>Volcanism begins again in present day Nevada and Idaho</td>
</tr>
<tr>
<td>2.1 Ma</td>
<td>1st Yellowstone super eruption</td>
</tr>
<tr>
<td>1.3 Ma</td>
<td>2nd Yellowstone super eruption</td>
</tr>
<tr>
<td>640 ka</td>
<td>3rd Yellowstone super eruption</td>
</tr>
<tr>
<td>174 ka</td>
<td>West Thumb eruption</td>
</tr>
<tr>
<td>160 to 151 ka</td>
<td>Bull Lake Glaciation underway</td>
</tr>
<tr>
<td>21 to 16 ka</td>
<td>Pinedale Glaciation maximum</td>
</tr>
</tbody>
</table>

Ma = mega annum, or millions of years ago
ka = kilo annum, or one thousand years ago
FREQUENTLY ASKED QUESTIONS:

Is Yellowstone a volcano?
Yes. Within the past two million years, some volcanic eruptions have occurred in the Yellowstone area—three of them super eruptions.

What is the caldera shown on the park map?
The Yellowstone caldera was created by a massive volcanic eruption approximately 640,000 years ago. Later lava flows filled in much of the caldera, now it is 30 x 45 miles. Its rim can best be seen from the Washburn Hot Springs overlook, south of Dunraven Pass. Gibbon Falls, Lewis Falls, Lake Butte, and Flat Mountain Arm of Yellowstone Lake are part of the rim.

When did the Yellowstone volcano last erupt?
Approximately 174,000 years ago, creating what is now the West Thumb of Yellowstone Lake. There have been more than 60 smaller eruptions since then and the last of the 60–80 post-caldera lava flows was about 70,000 years ago.

Is Yellowstone’s volcano still active?
Yes. The park’s many hydrothermal features attest to the heat still beneath this area. Earthquakes—700 to 3,000 per year—also reveal activity below ground. The University of Utah Seismograph Station tracks this activity closely at http://quake.utah.edu

What is Yellowstone National Park doing to stop or prevent an eruption?
Nothing can be done to prevent an eruption. The temperatures, pressures, physical characteristics of partially molten rock, and immensity of the magma chamber are beyond human ability to impact—much less control.

What is a supervolcano?
A “supervolcano” refers to volcano capable of an eruption more than 240 cubic miles of magma. Two of Yellowstone’s three major eruptions met the criteria.

Will the Yellowstone volcano erupt soon?
Another caldera-forming eruption is theoretically possible, but it is very unlikely in the next thousand or even 10,000 years. Scientists have also found no indication of an imminent smaller eruption of lava in more than 30 years of monitoring.

How do scientists know the Yellowstone volcano won’t erupt?
Scientists from the Yellowstone Volcano Observatory watch an array of monitors in place throughout the region. These monitors would detect sudden or strong earthquake activity, ground shifts, and volcanic gases that would indicate increasing activity. No such evidence exists at this time.

In addition, Yellowstone Volcano Observatory scientists collaborate with scientists from all over the world to study the hazards of the Yellowstone volcano. To view current data about earthquakes, ground movement, and stream flow, visit volcanoes.usgs.gov/yvo/.

If Old Faithful Geyser quits, is that a sign the volcano is about to erupt?
All geysers are highly dynamic, including Old Faithful. We expect Old Faithful to change in response to the ongoing geologic processes associated with mineral deposition and earthquakes. Thus, a change in Old Faithful Geyser will not necessarily indicate a change in volcanic activity.
Magma, Hot Spots, and the Yellowstone Supervolcano

Magma (molten rock from below the Earth’s crust) is close to the surface in the greater Yellowstone area. This shallow body of magma is caused by heat convection in the mantle. Plumes of magma rise through the mantle, melting rocks in the crust, and creating magma reservoirs of partially molten, partially solid rock. Mantle plumes transport heat from deep in the mantle to the crust and create what we call “hot spot” volcanism. Hot spots leave a trail of volcanic activity as tectonic plates drift over them. As the North American Plate drifted westward over the last 16.5 million years, the hot spot that now resides under the greater Yellowstone area left a swath of volcanic deposits across Idaho’s Snake River Plain.

Heat from the mantle plume has melted rocks in the crust, and created two magma chambers of partially molten, partially solid rock near Yellowstone’s surface. Heat from the shallowest magma chamber caused an area of the crust above it to expand and rise. Stress on the overlying crust resulted in increased earthquake activity along newly formed faults. Eventually, these faults reached the magma chamber and magma oozed through the cracks. Escaping magma released pressure within the chamber, which also allowed volcanic gasses to escape and expand explosively in a massive volcanic eruption. The eruption spewed copious volcanic ash and gas into the atmosphere and produced fast, super-hot debris flows (pyroclastic flows) over the existing landscape. As the underground magma chamber emptied, the ground above it collapsed and created the first of Yellowstone’s three calderas.

This eruption 2.1 million years ago—among the largest volcanic eruptions known to man—coated 5,790 square miles with ash, as far away as Missouri. The total volcanic material ejected is estimated to have been 6,000 times the volume of material ejected during the 1980 eruption of Mt. St. Helens, in Washington.

A second significant, though smaller, volcanic eruption occurred within the western edge of the first caldera approximately 1.3 million years ago. The third and most recent massive volcanic eruption 640,000 years ago created the present 30 by 45-mile-wide Yellowstone Caldera. Since then, 80 smaller eruptions have occurred. Approximately 174,000 years ago, one of these created what is now the West Thumb of Yellowstone Lake. During and after these explosive eruptions huge lava flows of viscous rhyolitic lava and less voluminous basalt lava flows partially filled the caldera floor and surrounding terrain. The youngest of these lava flows is the 70,000 year old Pitchstone rhyolite flow in the southwest corner of Yellowstone National Park.

Since the last of three caldera-forming eruptions, pressure from the shallow magma body has formed two resurgent domes inside the Yellowstone Caldera. Magma may be as little as 3–8 miles beneath Sour Creek Dome and 8–12 miles beneath Mallard Lake Dome, and both domes inflate and subside as the volume of magma or hydrothermal fluids changes...
beneath them. The entire caldera floor lifts up or subsides, too, but not as much as the two domes. In the past century, the net inflation has tilted the caldera floor toward the south. As a result, Yellowstone Lake’s southern shores have subsided and trees now stand in water, and the north end of the lake has risen into a sandy beach at Fishing Bridge.

Recent Activity

Remarkable ground deformation has been documented along the central axis of the caldera between Old Faithful and White Lake in Pelican Valley in historic time. Surveys of suspected ground deformation began in 1975 using vertical-motion surveys of benchmarks in the ground. By 1985 the surveys documented unprecedented uplift of the entire caldera in excess of a meter (3 ft). Later GPS measurements revealed that the caldera went into an episode of subsidence (sinking) until 2005 when the caldera returned to an episode of extreme uplift. The largest vertical movement was recorded at the White Lake GPS station, inside the caldera’s eastern rim, where the total uplift from 2004 to 2010 was about 27 centimeters (10.6 in).

The rate of rise slowed in 2008 and the caldera began to subside again during the first half of 2010. The uplift is believed to be caused by the movement of deep hydrothermal fluids or molten rock into the shallow crustal magma system at a depth of about 10 km beneath the surface. A caldera may undergo episodes of uplift and subsidence for thousands of years without erupting. Notably, changes in uplift and subsidence have been correlated with increases of earthquake activity. Lateral discharge of these fluids away from the caldera, and the accompanying earthquakes, subsidence, and uplift

Where to See Volcanic Flows

1. Sheepeater Cliff: columnar basalt
2. Obsidian Cliff: lava
3. Virginia Cascades: ash flow
4. Gibbon Falls: Near caldera rim
5. Tuff Cliff: ash flow
6. West Entrance Road, Mt. Haynes and Mt. Jackson: columnar rhyolite, Lava Creek tuff
7. Firehole Canyon: lava
8. Lewis Falls: Near caldera rim
9. Lake Butte: On edge of caldera, overall view of caldera
10. Washburn Hot Springs Overlook: overall view of caldera
11. Between Tower Fall and Tower Junction: columnar basalt
relieves pressure and could act as a natural pressure release valve balancing magma recharge and keeping Yellowstone safe from volcanic eruptions.

Future Volcanic Activity
Will Yellowstone’s volcano erupt again? Over the next thousands to millions of years? Probably. In the next few hundred years? Not likely.

The most likely activity would be lava flows, such as those that occurred after the last major eruption. A lava flow would ooze slowly over months and years, allowing plenty of time for park managers to evaluate the situation and protect people. No scientific evidence indicates such a lava flow will occur soon.

To monitor volcanic and seismic activity in the Yellowstone area the Yellowstone Volcano Observatory (YVO) was established in 2001. YVO is a cooperative partnership between the US Geological Survey, National Park Service, University of Utah, University of Wyoming, University NAVSTAR Consortium and State Geological Surveys of Wyoming, Montana and Idaho. The observatory is a long-term, instrument-based monitoring program designed for observing volcanic and earthquake activity in the Yellowstone National Park region.

The principal goals of the Yellowstone Volcano Observatory are:
- assess the long-term potential hazards of volcanism, seismicity, and explosive hydrothermal activity in the region;
- provide scientific data that enables reliable and timely warnings of significant seismic or volcanic events and related hazards in the Yellowstone region;
- notify the NPS, other local officials, and the public in the event of such warnings;
- improve scientific understanding of tectonic and magmatic processes that influence ongoing seismicity, surface deformation, and hydrothermal activity, and concentrations in major rivers. A monthly activity summary, real-time monitoring of seismicity and water flow, and near real-time monitoring of ground deformation, can be found at the Yellowstone Volcanic Observatory website.

More Information

Staff Reviewers
Jefferson Hungerford, Park Geologist
Bob Smith, Distinguished Research Professor and Emeritus Professor of Geophysics, University of Utah
Hydrothermal Systems

Yellowstone was set aside as the world’s first national park because of its hydrothermal wonders. The park contains more than 10,000 thermal features, including the world’s greatest concentration of geysers as well as hot springs, mudpots, and steam vents. Research on heat-resistant microbes in the park’s thermal areas has led to medical, forensic, and commercial uses. Oil, gas, and groundwater development near the park and drilling in “Known Geothermal Resources Areas” identified by the US Geological Survey in Island Park, Idaho, and Corwin Springs, Montana, could alter the functioning of hydrothermal systems in the park.

Under the Surface

The park’s hydrothermal system is the visible expression of the immense Yellowstone volcano; they would not exist without the underlying partially molten magma body that releases tremendous heat. They also depend on sources of water, such as the mountains surrounding the Yellowstone Plateau. There, snow and rain slowly percolate through layers of permeable rock riddled with cracks. Some of this cold water meets hot brine directly heated by the shallow magma body. The water’s temperature rises well above the boiling point but the water remains in a liquid state due to the great pressure and weight of the overlying water. The result is superheated water with temperatures exceeding 400°F.

The superheated water is less dense than the colder, heavier water sinking around it. This creates convection currents that allow the lighter, more buoyant, superheated water to begin its journey back to the surface following the cracks and weak areas through rhyolitic lava flows. This upward path is the natural “plumbing” system of the park’s hydrothermal features.

As hot water travels through this rock, it dissolves some silica in the rhyolite. This silica can precipitate in the cracks, increasing the system’s ability to withstand the great pressure needed to produce a geyser.

The silica coating the walls of Old Faithful’s geyser tube did not form a pressure-tight seal for the channel of upflow. Lots of water pours through the “silica-lined” walls after an eruption stops. Amorphous silica is a lot less strong than the rock it might coat. The pressure in the geyser tube is not contained by the strength of the wall, rather the water pressure in the tube is contained by the greater pressure of colder water outside of the tube.

At the surface, silica precipitates to form siliceous sinter, creating the scalloped edges of hot springs and the seemingly barren landscape of hydrothermal basins. The siliceous sinter deposits, with bulbous or cauliflower-like surfaces, are known as geyserite.
Hydrothermal Activity
No basin-wide changes in hydrothermal activity have been observed in the park in recent years. The average Old Faithful eruption interval is 90 minutes as of January 2017. Steamboat Geyser had a major eruption on September 3, 2014. Echinus Geyser, one of the largest acid-water geysers known, has periods of limited activity. Work continues on the park’s hydrothermal monitoring program, with progress made in documenting the status of the hydrothermal system by measuring the total amount of thermal water and the total heat output for selected geyser basins. Aircraft and helicopter thermal infrared images are used to document changes in the hydrothermal areas.

The widely dispersed locations of the park’s hydrothermal areas make it difficult to coordinate a systematic monitoring program to protect the features. The most visible changes in individual thermal features receive the most public attention but do not necessarily represent human influences or changes in the entire hydrothermal system. In order to distinguish human influences from natural changes, the natural variability of the hydrothermal system must be characterized by gathering reproducible data over many years. The park’s geothermal monitoring strategy therefore includes remote sensing, field studies of groundwater flow, measurement of individual hydrothermal feature temperatures and surface water flow, and collaboration with many researchers from outside the National Park Service. New research has harnessed current technology to expand data collection. One collaboration conducted in 2015 measured the seismic activity in the Upper Geyser basin and used the “harmonic tremors” preceding eruptions to create three dimensional images of geyser reservoirs and plumbing systems. This research will produce 459°F (237°C) just 1,087 feet below the surface. Norris shows evidence of having had hydrothermal activity prior to the last great ice age. The features change often, with frequent disturbances from seismic activity and water fluctuations. Norris is so hot and dynamic primarily because it sits at the intersection of three major faults, two of which intersect with a ring fracture zone from the Yellowstone caldera eruption of 640,000 years ago.

Is Yellowstone’s geothermal energy used to heat park buildings?
Yellowstone National Park’s hydrothermal resources cannot be tapped for geothermal energy because such use could destroy geysers and hot springs, as it has done in other parts of the world.

Why can’t I bring my dog on geyser basin trails?
Dogs have died diving into hot springs. They also disturb wildlife and are prohibited from all park trails. In the few places pets are permitted, they must be leashed at all times. Ask at a visitor center where you can walk a pet.

Is it really dangerous to walk off the boardwalks in geyser basins?
YES. Geyser basins are constantly changing. Boiling water surges just under the thin crust of most geyser basins, and many people have been severely burned when they have broken through the fragile surface. Some people have died.

Why can’t I smoke in the geyser basins?
Cigarette butts quickly accumulate where smoking is allowed, and they—like any litter—can clog vents, thus altering or destroying hydrothermal activity.
Hydrothermal Features in Yellowstone

Fumaroles or steam vents, are the hottest hydrothermal features in the park. The limited amount of water flashes into steam before reaching the surface. At places like Roaring Mountain (above), the result is a loud hissing of steam and gases.

Travertine terraces, found at Mammoth Hot Springs (above), are formed from limestone (calcium carbonate). Water rises through the limestone, carrying high amounts of dissolved carbonate minerals. At the surface, carbon dioxide is released and carbonate minerals like calcite are deposited, forming travertine, the chalky white rock of the terraces. Due to the rapid rate of deposition, these features constantly and quickly change.

Mudpots such as those near Mud Volcano (above) are acidic features with a limited water supply. Some microorganisms use hydrogen sulfide, which rises from deep within the earth, as an energy source. They help convert the gas to sulfuric acid, which breaks down rock into clay minerals. Various gases escape through the wet clay mud, causing it to bubble. Mudpot consistency and activity vary with the seasons and precipitation.

Cone geysers, such as Riverside in the Upper Geyser Basin (left), erupt in a narrow jet of water, usually from a cone. **Fountain geysers**, such as Great Fountain in the Lower Geyser Basin (right), shoot water in various directions, typically from a pool.

Hot springs such as this one at West Thumb (above) are the most common hydrothermal features in the park. Their plumbing has no constrictions. Superheated water cools as it reaches the surface, sinks, and is replaced by hotter water from below. This process, called convection, prevents water from reaching the temperature needed to set off an eruption.
Hydrothermal Feature: Geysers

Geysers are hot springs with constrictions in their plumbing, usually near the surface, that prevent water from circulating freely to the surface where heat would escape. The deepest circulating water can exceed the surface boiling point (199°F/93°C). Surrounding pressure also increases with depth, similar to the ocean. Increased pressure exerted by the enormous weight of the overlying water prevents the water from boiling. As the water rises, steam forms. Bubbling upward, steam expands as it nears the top of the water column. At a critical point, the confined bubbles actually lift the water above, causing the geyser to splash or overflow. This decreases pressure on the system, and violent boiling results. Tremendous amounts of steam force water out of the vent, and an eruption begins. Water is expelled faster than it can enter the geyser’s plumbing system, and the heat and pressure gradually decrease. The eruption stops when the water reservoir is depleted or when the system cools.

the first three-dimensional seismic images of the Old Faithful plumbing system.

National Park Service policy generally prohibits any interference with geothermal activity in Yellowstone. New road or other construction through hydrothermal areas is designed to mitigate impacts. In 1994, the National Park Service and State of Montana established a water rights compact and controlled groundwater area to protect geothermal resources in the park from groundwater or geothermal development that could occur in a designated area north and west of the park in Montana.

More Information

Carr, B.B., C. Jaworowski, and H.P. Heasler. 2010. It’s not drying up, just changing: Mapping change at Mammoth Hot Springs using aerial photographs and visual observations Yellowstone Science. 18(3).

Kieffer, S.W., J.A. Westphal, and R.A. Hutchinson. 1995. A journey toward the center of the Earth: Video adventures in the Old Faithful Conduit Yellowstone Science. 3(3).

Staff Reviewers

Jefferson Hungerford, Park Geologist

Bob Smith, Distinguished Research Professor and Emeritus Professor of Geophysics, University of Utah

118 Yellowstone Resources and Issues Handbook, 2018
Until the late 1990s, few details were known about the geology beneath Yellowstone Lake. In 1996, researchers saw anomalies on the floor of Bridge Bay as they took depth soundings. They deployed a submersible remotely operated vehicle (ROV) equipped with photographic equipment and sector-scan sonar. Large targets appeared on the sonar image, then suddenly very large, spire-like structures appeared in the photographic field of view. These structures looked similar to hydrothermal structures found in deep ocean areas, such as the Mid-Atlantic Ridge and the Juan de Fuca Ridge. The structures also provided habitat for aquatic species such as fresh-water sponges and algae.

Lake-bottom Surveys
From 1999 to 2007, scientists from the US Geological Survey and a private company, Eastern Oceanics, surveyed the bottom of Yellowstone Lake using high-resolution, multi-beam swath sonar imaging, seismic reflection profiling, and a ROV. The survey confirmed the northern half of the lake is inside the 640,000-year-old Yellowstone Caldera and mapped previously unknown features such as large hydrothermal explosion craters, siliceous spires, hundreds of hydrothermal vents and craters and fissures. The survey also mapped young previously unmapped faults, landslide deposits, and submerged older lake shorelines. These features are part of an undulating landscape shaped by rhyolitic lava flows that filled the caldera. The southern half of the lake lies outside the caldera and has been shaped by glacial and other processes. The floor of the Southeast Arm has many glacial features, similar to the glacial terrain seen on land in Jackson Hole, south of the park.

These new surveys give an accurate picture of the geologic processes shaping Yellowstone Lake and the geology below Yellowstone Lake reflects shaping by lava flows where the lake lies within the caldera and shaping by glacial and other processes in the southern half of the lake that lies outside the caldera.
Yellowstone Lake has existed since the end of the Pinedale glaciation. The lake drains north from its outlet at Fishing Bridge, into the vast Atlantic Ocean drainage via the Yellowstone River. The elevation of the lake’s north end does not drop substantially until LeHardy’s Rapids, which is considered the northern geologic boundary of the lake. The top map shows locations of hydrothermal vents in northern Yellowstone Lake; the map below shows the geologic features of the lake bottom. Both maps resulted from the five-year survey project.
determine geologic influences affecting the present-day aquatic biosphere. For example, hydrothermal explosions formed craters at Mary Bay and Turbid Lake. Spires may form similarly to black smoker chimneys, which are hydrothermal features associated with oceanic plate boundaries.

Spire analysis

With the cooperation of the National Park Service, scientists from the University of Wisconsin–Milwaukee collected pieces of spires and a complete small spire for study by several teams. They conducted a CAT scan of the spire, which showed structures seeming to be conduits, perhaps for hydrothermal circulation. When they cut open the spire, they confirmed the presence of conduits and also saw a layered structure.

Tests by the US Geological Survey show that the spire is about 11,000 years old, which indicates it was formed after the last glaciers retreated. In addition to silica, the spire contains diatom tests (shells) and silica produced by underwater hydrothermal processes. The spire’s interior shows evidence of thermophilic bacteria. Scientists say this suggests that silica precipitated on bacterial filaments, thus playing an important role in building the spire.

Both research projects expanded our understanding of the geological processes at work beneath Yellowstone Lake. Additional study of the spires and other underwater features will continue to contribute to our understanding of the relationship between these features and the aquatic ecosystem.

More Information

Staff Reviewers

Henry Heasler, Geologist
Cheryl Jaworowski, Geologist
Earthquakes

Yellowstone is one of the most seismically active areas in the United States. Approximately 700 to 3,000 earthquakes occur each year in the Yellowstone area; most are not felt. They result from the extensive network of faults associated with the volcano and surrounding tectonic features. Yellowstone earthquakes tend to occur in swarms—close together in time and space. This is related to transport of volcanic fluids along the many small fractures in the shallow rocks over the magma and has been noted in volcanos around the world.

Earthquakes occur along fractures in the crust where stress from crustal plate movement and volcanic activity build to a significant level. The rock along these faults becomes so strained that eventually it slips or breaks. Energy is then released as shock waves (seismic waves) that reverberate throughout the surrounding rock. Once a seismic wave reaches the surface of the Earth, it may be felt. Surface waves affect the ground, which can roll, crack open, or be vertically and/or laterally displaced. Structures are susceptible to earthquake damage because the ground motion is dominantly horizontal.

In Yellowstone, earthquakes help to maintain hydrothermal activity by keeping the “plumbing” system open. Without periodic disturbance of relatively small earthquakes, the small fractures and conduits that supply hot water to geysers and hot springs might be sealed by mineral deposition. Some earthquakes generate changes in Yellowstone’s hydrothermal systems. For example, the 1959 Hebgen Lake and 1983 Borah Peak earthquakes of magnitude 7.3 and 6.9, respectively, caused measurable changes in Old Faithful Geyser and other hydrothermal features.

Yellowstone commonly experiences “earthquake swarms”—a series of earthquakes over a short period of time in a localized area. The largest swarm occurred in 1985, with more than 3,000 earthquakes recorded during three months on the northwest side of the park. Hundreds of quakes were recorded during swarms in 2009 (near Lake Village) and 2010 (between Old Faithful area and West Yellowstone). Scientists interpret these swarms as due to shifting and changing pressures in the Earth’s crust that are caused by migration of hydrothermal fluids, a natural occurrence of volcanoes.

Earthquakes help us to map and to understand the sub-surface geology around and beneath Yellowstone. The energy from earthquakes travels

![Earthquakes (magnitude)](attachment:earthquakes-magnitude.png)

Approximately 3,300 earthquakes with magnitudes greater than 0.0 occurred in and directly outside of Yellowstone in 2017. Earthquake data provided courtesy of University of Utah Seismograph Stations Network.
through hard and molten rock at different rates. Scientists can “see” the subsurface and make images of the magma chamber and the caldera by “reading” the seismic waves emitted during earthquakes. An extensive geological monitoring system is in place to aid in that interpretation.

On June 16, at 06:48 PM Mountain Daylight Time, the largest earthquake of 2017 occurred. The magnitude 4.36 quake was located about nine miles north-northwest of West Yellowstone, MT. The earthquake was reported felt in the towns of Gardiner and West Yellowstone, MT. It was the largest quake since the M4.8 that occurred on March 30, 2014. This earthquake was part of an energetic swarm in the same area.

The Maple Creek Swarm began on June 12, 2017, and persisted until October. A cluster of over 2,475 earthquakes were recorded in the area six miles north of West Yellowstone, Montana and on the west side of the park. Earthquake sequences like these are common and account for roughly 50% of the total seismicity in the Yellowstone region.

In November, the University of Utah, in collaboration with the University of Texas El Paso and Yellowstone National Park, installed 290 nodal seismometers in around the Upper Geyser Basin in a continuation of a study that started in 2015. The temporary deployment, which lasted several days, was intended to record seismic signals from the various thermal features. The 2017 study focused on Geyser Hill, to identify the underground root of thermal features there and to see if they originate from a common reservoir or if they have distinct sources. Similar work in 2015 focused on the plumbing system of Old Faithful.

More Information

Real-time earthquake data: www.seis.utah.edu
University of Utah Yellowstone Research: www.uusatrg.utah.edu/
Yellowstone Volcano Observatory: volcanoes.usgs.gov/yvo

Reviewers
Bob Smith, Distinguished Research Professor and Emeritus Professor of Geophysics, University of Utah
Jamie Farrell, Postdoctoral Fellow, Department of Geology and Geophysics, University of Utah
Jefferson Hungerford, Park Geologist
GEOLOGY

Glaciers result when, for a period of years, more snow falls in an area than melts. Once the snow reaches a certain depth, it turns into ice and begins to move under the force of gravity or the pressure of its own weight. During this movement, rocks are picked up and carried in the ice, and these rocks grind Earth’s surface. Ice and water erode and transport earth materials as well as rocks and sediments. Glaciers also deposit materials. Large U-shaped valleys, ridges of debris (moraines), and out-of-place boulders (erratics) are evidence of a glacier’s passing.

Yellowstone and much of North America have experienced numerous periods of glaciation during the last 2.6 million years. Succeeding periods of glaciation have destroyed most surface evidence of previous glacial periods, but scientists have found evidence of them in sediment cores taken on land and in the ocean. In Yellowstone, a glacial deposit near Tower Fall dates back 1.3 million years. Evidence of such ancient glaciers is rare.

The Bull Lake glaciers covered the region about 151,000 to 160,000 years ago. Evidence exists that this glacial episode extended farther south and west of Yellowstone than the subsequent Pinedale Glaciation, but little surface evidence of it is found to the north and east. This indicates that the Pinedale Glaciation covered or eroded surface evidence of Bull Lake Glaciation in these areas.

The Yellowstone region’s last major glaciation, the Pinedale, is the most studied. Its beginning has been hard to pin down because field evidence is missing or inconclusive and dating techniques are inadequate.
Ages of Pinedale maximum vary around the Yellowstone Ice Cap from 21,000 years ago on the east to 20,000 years ago on the north and possibly as young as 15,000–16,000 years ago on the south. Most of the Yellowstone Plateau was ice free between 13,000 to 14,000 years ago.

During the Pinedale glaciation, glaciers advanced and retreated from the Beartooth Plateau, altering the present-day northern range and other grassy landscapes. During glacial retreat, water flowed differently over Hayden Valley and deposited various sediments. Glacial dams also backed up water over Lamar Valley; when the dams lifted, catastrophic floods helped to form the modern landscape around the North Entrance of the park.

During the Pinedale’s peak, nearly all of Yellowstone was covered by an ice cap up to 4,000 feet thick. Mount Washburn was completely covered by ice. This ice cap was not part of the continental ice sheet extending south from Canada. The ice cap occurred here, in part, because Yellowstone’s higher elevation volcanic plateau allowed snow to accumulate.

More Information

Staff Reviewers
Henry Heasler, Geologist
Cheryl Jaworowski, Geologist

Where to See Evidence of Glaciers

1. Mammoth Hot Springs: Thermal kames (steep-sided mounds of sand and gravel deposited by melting ice sheets) exist in this area. Mount Everts and Bunsen Peak were both overridden by ice. The top of Sepulcher peeked above the Pinedale ice.

2. Swan Lake Flat: These meadows and wetlands formed after the glaciers retreated. Electric Peak, to the northwest, was also carved by glaciers.

3. Norris Geyser Basin: Several high peaks in the Gallatin Mountains were above the Pinedale ice cap.

4. Madison Valley, west of Seven Mile Bridge: Glacial moraines, glacial outwash, and recent Madison River deposits can be seen.

5. Fountain Flats: The Porcupine Hills and Twin Buttes are thermal kames.

6. Upper Geyser Basin: Volcanic rocks and ice-water contact deposits are present here. Deposits underlying this and other area geyser basins store the water necessary for geysers to occur and allow the water to percolate up from depth.

7. Hayden Valley: The valley is covered with glacial till left from the most recent glacial retreat. It also has a variety of glacial and ice-water contact deposits. This glacial till contains many different grain sizes, including clay and a thin layer of lake sediments that do not allow water to percolate quickly into the ground. Thus, Hayden Valley is marshy.

8. Tower Fall area: North of Tower Fall, sediments between layers of basalts may show evidence of the oldest known glaciation in Yellowstone. Plus, huge boulders (known as erratics) from the last major glaciation rest atop the youngest basalt.

9. Lamar Valley: Huge boulders and ponds between the Lamar and Yellowstone rivers were left by melting glaciers, as were several moraines. Other ponds are within post glacial landslides.
Sedimentation and Erosion

Not all the rocks in Yellowstone are of “recent” volcanic origin. Precambrian igneous and metamorphic rock in the northeastern portion of the park and Beartooth Plateau are at least 2.7 billion years old. These rocks are very hard and erode slowly.

Sedimentary sandstones and shales, deposited by seas during the Paleozoic and Mesozoic eras (approximately 540 million to 66 million years ago) can be seen in the Gallatin Range and Mount Everts. Sedimentary rocks in Yellowstone tend to erode more easily than the Precambrian rocks.

Weathering breaks down earth materials from large sizes to small particles, and happens in place. The freeze/thaw action of ice is one type of weathering common in Yellowstone. Agents of erosion—wind, water, ice, and waves—move weathered materials from one place to another.

When erosion takes place, sedimentation—the deposition of material—also eventually occurs. Through time, sediments are buried by more sediments and the material hardens into rock. This rock is eventually exposed (through erosion, uplift, and/or faulting), and the cycle repeats itself. Sedimentation and erosion are “reshapers” and “refiners” of the landscape—and they also expose Yellowstone’s past life as seen in fossils like the petrified trees.

More Information

Staff Reviewers
Henry Heasler, Geologist
Cheryl Jaworowski, Geologist
Fossils
The fossil record of Yellowstone is one of the most diverse in the NPS. Fossil of plants, invertebrates, vertebrates, and trace fossils have been identified in Yellowstone National Park from more than 40 stratigraphic units (rock layers of known age and origin) spanning more than 540 million years from the Cambrian to the Cenozoic eras.

Paleontological resources, or fossils, are any remains of past life preserved in geologic context. Yellowstone holds the two main types of fossils: body fossils and trace fossils. Body fossils are the physical remains of an actual organism (shells, bones, teeth, plant leaves, etc.), while trace fossils (burrows, coprolites, footprints, trackways, etc.) preserve evidence of an organism’s activity or behavior. Best known in Yellowstone are the fossil forests of Specimen Ridge, where the remains of hundreds of 50-million-year-old trees stand exposed on a steep hillside, with trunks up to eight feet in diameter and some more than 20 feet tall.

Although the park’s paleontologic resources are extensive and scientifically valuable, it is estimated that only 3% of the park’s potentially fossil-bearing units have been assessed. Erosion is the key to discovery of nearly all paleontological specimens; however, once exposed, fossils are subjected to physical and chemical forces that can quickly become destructive to them.

Fossils are a non-renewable resource. Road construction, other infrastructure development, and illegal collecting can also impact fossil-bearing units. Due to the fragility of most fossils, it is necessary to inventory and document fossil localities to evaluate existing fossil material and obtain baseline information so that appropriate management decisions can be made about these areas.

The fossils of Yellowstone have long been studied and have already contributed to important scientific findings. Research in the park by Charles Walcott on trilobites in the late 1800s influenced his theory of the “Cambrian Explosion,” a term he used to describe the relatively sudden appearance of complex multi-cellular life possessing “hard parts” such as phosphatic or calcitic exoskeletons.

Sediment cores from the bottom of Yellowstone’s lakes contain fossils of pollen deposited during the Late Pleistocene. These pollen records show which plants were present at that time and allow researchers to infer climate conditions. The pollen in sediment layers illustrates the changes in vegetation and climate over time, providing a model of regional reforestation and climate history.

Paleontologists have also devoted much attention to the Eocene fossil plant material in the park, using it to inform regional studies of the paleoclimate and paleoecology of that period. Much could be gained in understanding current global climate change by studying Eocene times, an episode of rapid and intense warming when our planet was at its hottest.

Yellowstone's petrified trees occur within volcanic rocks approximately 50 million years old. They are the result of rapid burial and silification, not volcanic eruptions.
Paleobotany

Nearly 150 species of fossil plants (exclusive of fossil pollen specimens) from Yellowstone have been described, including ferns, horsetail rush, conifers, and deciduous plants such as sycamores, walnuts, oaks, chestnuts, maples, and hickories. Sequoia is abundant, and other species such as spruce and fir are also present.

Most petrified wood and other plant fossils come from Eocene deposits about 50 million years old, which occur in many northern parts of the park.

The first fossil plants from Yellowstone were collected by the early Hayden Survey parties. In his 1878 report, Holmes made the first reference to Yellowstone’s fossil “forests.”

Around 1900, F. H. Knowlton identified 147 species of fossil plants from Yellowstone, 81 of them new to science. He also proposed the theory that the petrified trees on the northwest end of Specimen Ridge were forests petrified in place.

Additional studies and observations informed a modification of Knowlton’s original hypothesis. Andesitic volcanic eruptions such as the 1980 eruption of Mount St. Helens showed that trees are uprooted by rapidly flowing volcanic debris flows. The volcanic debris flows not only transported the trees to lower elevations, the trees were also deposited upright. Thus, with increased scientific knowledge, our understanding of Yellowstone’s fossil forests has changed.

Cretaceous marine and nonmarine sediments are exposed on Mount Everts and other areas in Yellowstone. Similar to Cretaceous rocks throughout the Rocky Mountains, fossil leaves, ferns, clam-like fossils, shark teeth, and several species of vertebrates have been found. In 1994 fossil plants were discovered in Yellowstone during the East Entrance road construction project, which uncovered areas containing fossil sycamore leaves and petrified wood.

Fossil Invertebrates

Fossil invertebrates are abundant in Paleozoic rocks, especially the limestones associated with the Madison Group in the northern and south-central parts of the park. As far back as the first expedition in Yellowstone National Park, invertebrate fossils have been documented. Fossil invertebrates give insight to the paleo-environment and paleoclimate of an area.

Brachiopods were common during the Paleozoic era (between about 540 and 250 million years ago). They had hard shells and a valve that kept them anchored to the sea floor, and liked to live in calmer ocean locations. The presence of this fossil in Yellowstone means that the area was home to an inland sea roughly 500 million years ago.

Long before fish occupied the seas and dinosaurs roamed the land, planet Earth was home to numerous marine invertebrates including trilobites. Trilobites thrived during the Paleozoic era as well. Trilobites were once so abundant, they could be found in nearly every sea and ocean. Today, their fossil distribution helps us understand Earth’s history. With over 20,000 described specimens, trilobites are considered the single most diverse class of extinct organism and can be found in Paleozoic rocks all over the world.

At least 35 National Parks have documented trilobites, including Yellowstone National Park. Late 1800’s explorer William Henry Holmes recognized large trilobite deposits and gave “Trilobite Point” on
Mount Holmes its name. Trilobites reveal fascinating facts about our planet; because of their great diversity, trilobites can offer insights on paleo-environments, paleoclimate, biostratigraphy, and evolutionary biology associated with the Greater Yellowstone area.

Yellowstone samples include corals, bryozoans, brachiopods, trilobites, gastropods, and crinoids. Trace fossils, such as channeling and burrowing of worms, are found in some petrified tree bark.

Fossil Vertebrates

Fossil remains of vertebrates are rare, but perhaps only because of insufficient field research. A one-day survey led by paleontologist Jack Horner, of the Museum of the Rockies, Bozeman, Montana, resulted in the discovery of the skeleton of a Cretaceous vertebrate. Other vertebrate fossils found in Yellowstone include:

- Fish: crushing tooth plate; phosphatized fish bones; fish scales; fish teeth.
- Other mammals: Holocene mammals recovered from Lamar Cave; titanothere tooth and mandible found on Mt. Hornaday in 1999.

Titanotheres existed during the Eocene between 50 and 34 million years ago. These large, hoofed mammals may resemble a funny looking rhinoceros, but they are in a completely different family. Titanotheres were herbivores that liked to live in open areas and even close to nearly tropical forests. Paleontologists have discovered titanothere fossils all over North America, including Yellowstone National Park.

Plesiosaurs were large aquatic reptiles that existed from the late Triassic through the Cretaceous Period.

These aquatic marine reptiles once dominated the seas, and the largest plesiosaurs were among the biggest predators of all time. The skeleton of what may be a Cretaceous plesiosaur was discovered in Yellowstone National Park nearly two decades ago.

More Information

National Park Service Reviewer

Vincent Santucci, Senior Paleontologist, Geologic Resources Division
Life in Extreme Heat

The hydrothermal features of Yellowstone are magnificent evidence of Earth’s volcanic activity. Amazingly, they are also habitats in which microscopic organisms called thermophiles—“thermo” for heat, “phile” for lover—survive and thrive.

Grand Prismatic Spring at Midway Geyser Basin is an outstanding example of this dual characteristic. Visitors marvel at its size and brilliant colors. Along the boardwalk we cross a vast habitat for thermophiles. Nourished by energy and chemical building blocks available in the hot springs, microbes construct vividly colored communities. Living with these microscopic life forms are larger examples of life in extreme environments, such as mites, flies, spiders, and plants.

People for thousands of years likely have wondered about these extreme habitats. The color of Yellowstone’s superheated environments certainly caused geologist Walter Harvey Weed to pause and think, and even question scientists who preceded him. In 1889, he wrote:

There is good reason to believe that the existence of algae of other colors, particularly the pink, yellow and red forms so common in the Yellowstone waters, have been overlooked or mistaken for deposits of purely mineral matter.

However, he could not have imagined what a fantastic world exists in these waters of brimstone. Species, unseen to the human eye, thrive in waters as acidic as the liquid in your car battery and hot enough to blister your skin. Some create layers that look like molten wax on the surface of steaming alkaline pools. Still others, apparent to us through the odors they create, exist only in murky, sulfuric caldrons that stink worse than rotten eggs.

Today, many scientists study Yellowstone’s thermophiles. Some of these microbes are similar to the

Words to Know

Extremophile: A microorganism living in extreme conditions such as heat and acid, that cannot survive without these conditions.

Thermophile: Heat-loving extremophile.

Microorganism: Single- or multi-celled organism of microscopic or submicroscopic size. Also called a microbe.

Microbes in Yellowstone: In addition to the thermophilic microorganisms, millions of other microbes thrive in Yellowstone’s soils, streams, rivers, lakes, vegetation, and animals. Some of them are discussed in other chapters of this book.

Bacteria (Bacterium): Single-celled microorganisms without nuclei, varying in shape, metabolism, and ability to move.

Archaea (Archaeum): Single-celled microorganisms without nuclei and with membranes different from all other organisms. Once thought to be bacteria.

Viruses: Non-living parasitic microorganisms consisting of a piece of DNA or RNA coated by protein.

Eukarya (Eukaryote): Single- or multi-celled organisms whose cells contain a distinct membrane-bound nucleus.
Thermophiles in the Tree of Life

Yellowstone’s hot springs contain species from the circled groups on this Tree of Life. Jack Farmer conceived of this version of the tree of life, which first appeared in *GSA Today,* July 2000 (used with permission).

In the last few decades, microbial research has led to a revised tree of life, far different from the one taught before. The new tree combines animal, plant, and fungi in one branch. The other two branches consist solely of microorganisms, including an entire branch of microorganisms not known until the 1970s—Archaea.

Dr. Carl Woese first proposed this “tree” in the 1970s. He also proposed the new branch, Archaea, which includes many microorganisms formerly considered bacteria. The red line links the earliest organisms that evolved from a common ancestor. These are all hyperthermophiles, which thrive in water above 176°F (80°C), indicating life may have arisen in hot environments on the young Earth.

About Microbes

Other life forms—the Archaea—predated cyanobacteria and other photosynthesizers. Archaea can live in the hottest, most acidic conditions in Yellowstone; their relatives are considered among the very earliest life forms on Earth.

Yellowstone’s thermophiles and their environments provide a living laboratory for scientists, who continue to explore these extraordinary organisms. They know many mysteries of Yellowstone’s extreme environments remain to be revealed.

Regardless of scientific advances, visitors and explorers in Yellowstone can still relate to something else Weed wrote about Yellowstone, more than a century ago:

The vegetation of the acid waters is seldom a conspicuous feature of the springs. But in the alkaline waters that characterize the geyser basins, and in the carbonated, calcareous waters of the Mammoth Hot Springs, the case is otherwise, and the red and yellow tinges of the algae combine with the weird whiteness of the sinter and the varied blue and green of the hot water to form a scene that is, without doubt, one of the most beautiful as well as one of the strangest sights in the world.

THERMOPHILES

First life forms capable of photosynthesis—using sunlight to convert water and carbon dioxide to oxygen, sugars, and other by-products. These life forms, called cyanobacteria, began to create an atmosphere that would eventually support human life. Cyanobacteria are found in some of the colorful mats and streamers of Yellowstone’s hot springs.
More Information
American Society for Microbiology: www.microbeworld.org
Thermal Biology Institute of Montana State University: www.tbi.montana.edu

Reviewers
Dr. Eric Boyd, Montana State University Department of Microbiology and Immunology.
Annie Carlson, Research Permit Coordinator
Thermophilic Bacteria

The word “bacteria” is often associated with disease, but only a few kinds of bacteria cause problems for humans. The other thousands of bacteria, although all simple organisms, play a complex role in Earth’s ecosystems. In fact, cyanobacteria made our oxygen-rich atmosphere possible. They were the first photosynthesizers, converting light energy into oxygen more than 3 billion years ago. Without bacteria, we would not be here.

Most bacteria photosynthesize, providing oxygen which can then be used by other thermophiles. Some use chemical sources of energy, like hydrogen or sulfur, to convert carbon dioxide into biomass other thermophiles can use (chemosynthesize). All of the cyanobacteria and green nonsulfur bacteria photosynthesize. Some fulfill both roles. For example, *Thermus*—which are photosynthetic—also may be able to oxidize arsenic into a less toxic form.

Individual bacteria may be rod or sphere shaped, but they often join end to end to form long strands called filaments. These strands help bind thermophilic mats, forming a vast community or mini-ecosystem. Other groups of bacteria form layered structures resembling tiny towers, which can trap sand and other organic materials.

Thermophilic Bacteria in Yellowstone National Park

<table>
<thead>
<tr>
<th>Name</th>
<th>pH and Temperature</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanobacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calothrix</td>
<td>pH 6–9, 30–45°C (86–113°F)</td>
<td>Color: dark brown mats Metabolism: photosynthesis by day; fermentation by night</td>
<td>Mammoth Hot Springs, Upper, Midway, and Lower geyser basins</td>
</tr>
<tr>
<td>Phormidium</td>
<td>pH 6–8, 35–57°C (95–135°F)</td>
<td>Color: orange mats Metabolism: photosynthesis</td>
<td>Mammoth Hot Springs, Upper, Midway, and Lower geyser basins</td>
</tr>
<tr>
<td>Oscillatoria</td>
<td>pH 6–8, 36–45°C (96–113°F)</td>
<td>Color: orange mats Metabolism: photosynthesis; oscillating moves it closer to or away from light sources.</td>
<td>Mammoth Hot Springs, Chocolate Pots</td>
</tr>
<tr>
<td>Synechococcus</td>
<td>pH 7–9, 52–74°C (126–165°F)</td>
<td>Color: green mats Metabolism: photosynthesis by day; fermentation by night</td>
<td>Mammoth Hot Springs, Upper, Midway, and Lower geyser basins</td>
</tr>
<tr>
<td>Green Sulfur</td>
<td>pH 6–9, 32–52°C (90–126°F)</td>
<td>Color: dense, dark green mats Metabolism: anoxygenic photosynthesis—produces sulfate and sulfur, not oxygen.</td>
<td>Mammoth Hot Springs, Calcite Springs</td>
</tr>
<tr>
<td>Chlorobium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green non-sulfur Chloroflexus</td>
<td>pH 7–9, 35–85°C (95–185°F)</td>
<td>Color: green mats Metabolism: anoxygenic photosynthesis</td>
<td>Mammoth Hot Springs, Upper, Midway, and Lower geyser basins</td>
</tr>
<tr>
<td>Aquifex</td>
<td>pH 3–5.5, 55–72°C (131–162°F)</td>
<td>Color: yellow and white streamers Metabolism: uses hydrogen, hydrogen sulfide and carbon dioxide as energy sources; can use arsenic in place of hydrogen sulfide.</td>
<td>Norris Geyser Basin, Amphitheater Springs</td>
</tr>
<tr>
<td>Deinococcus-Thermus</td>
<td>pH 5–9, 40–79°C (104–174°F)</td>
<td>Color: bright red or orange streamers; contains carotenoid pigments that act as sunscreen.</td>
<td>Lower Geyser Basin</td>
</tr>
</tbody>
</table>

The travertine terraces in Mammoth Hot Springs host thermophilic cyanobacteria.
Archaea are the most extreme of all extremophiles, and some scientists think they have not changed much from their ancestors. Grand Prismatic Spring at Midway Geyser Basin contains archaea.

Thermophilic Archaea

Archaea are the most extreme of all extremophiles—some kinds live in the frigid environments of Antarctica, others live in the boiling acidic springs of Yellowstone. These single-celled organisms have no nucleus, but have a unique, tough outer cell wall. This tough wall contains molecules and enzymes that may keep acid out of the organism, allowing it to live in environments of pH 3 or less. (Vinegar, for example, has a pH of less than 3.) Archaea also have protective enzymes within their cells to keep them from becoming too acidic.

Some scientists think present-day archaea have not changed much from their ancestors. This may be due to the extreme environments in which they live, which would allow little chance for successful changes to occur. If this is so, modern archaea may not be much different from the original forms—and thus provide an important link with Earth’s earliest life forms.

Once thought to be Bacteria, organisms in the domain Archaea actually may be more closely related to Eukarya—which includes plants and animals.

Many kinds of archaea live in the hydrothermal waters of Yellowstone. For example, Grand Prismatic Spring at Midway Geyser Basin contains archaea. They are most well known in the superheated acidic features of Norris Geyser Basin and in the muddy roiling springs of the Mud Volcano area.

Whenever you see a hot, muddy, acidic spring, you are probably seeing the results of a thriving community of archaeal cells called *Sulfolobus*. This is the archaea most often isolated and most well known by scientists. In sulfuric hydrothermal areas, it oxidizes sulfur into sulfuric acid, which helps dissolve the rocks into mud. The *Sulfolobus* community in Congress Pool (Norris) is providing interesting new research directions for scientists: It is parasitized by viruses never before known on Earth.

Archaea can be found in the Mud Volcano area, among other places in Yellowstone National Park.

<table>
<thead>
<tr>
<th>Name</th>
<th>pH and Temperature</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Archaea</td>
<td>pH 0.9–9.8, upper temp.: 92°C (197.6°F)</td>
<td>Color: cream or yellow-colored Metabolism: chemosynthesis, using hydrogen, sulfur, carbon dioxide Form: unicellular, tough cell membrane</td>
<td>In many of Yellowstone’s hydrothermal features</td>
</tr>
<tr>
<td>Sulfolobus is the genus most often isolated</td>
<td>pH 0–4, 40–55°C (104–131°F)</td>
<td>Color: green Metabolism: chemosynthesis Phylum: red algae</td>
<td>Norris Geyser Basin, Lemonade Creek, Nymph Creek</td>
</tr>
</tbody>
</table>
Thermophilic Eukarya

Plants, animals, and mushrooms are the eukarya most of us know. Millions of unseen, microscopic members of this kingdom exist throughout our world, including in the extreme environments of Yellowstone.

Norris Geyser Basin is one of the best places to see thermophilic algae. Bright green *Cyanidioschyzon* grows on top of orange-red iron deposits around Whirligig and Echinus geysers and their runoff channels. Waving streamers of *Zygogonium* are especially easy to see in Porcelain Basin, where their dark colors contrast with the white surface.

From the boardwalk crossing Porcelain Basin, you can also see larger eukarya, such as ephydrid flies. They live among the thermophilic mats and streamers, and eat, among other things, algae. The species that lives in the waters of Geyser Hill, in the Upper Geyser Basin, lays its eggs in pink-orange mounds, sometimes on the firm surfaces of the mats. Part of the thermophilic food chain, ephydrid flies become prey for spiders, beetles, and birds.

Some microscopic eukarya consume other thermophiles. A predatory protozoan, called *Vorticella*, thrives in the warm, acidic waters of Obsidian Creek, which flows north toward Mammoth Hot Springs, where it consumes thermophilic bacteria.

Thermophilic eukarya include one form that is dangerous to humans: *Naegleria*, a type of amoeba, that can cause disease and death in humans if inhaled through the nose.

Although they aren’t visible like mushrooms, several thermophilic fungi thrive in Yellowstone.
Curvularia protuberata lives in the roots of hot springs panic grass. This association helps both survive higher temperatures than when alone. In addition, researchers have recently discovered a virus inside the fungus that is also essential to the grass’s ability to grow on hot ground.

Of all the thousands (if not millions) of thermophilic species thriving in Yellowstone’s extreme environments, the eukarya are the group that bridges the world of thermophilic microbes with the larger life forms—such as geese, elk, and bison—that thrive in ecological communities beyond the hot springs.

<table>
<thead>
<tr>
<th>Name</th>
<th>pH and Temperature</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red algae</td>
<td>pH 0–4, 40–55°C (104–131°F)</td>
<td>Color: bright green; Metabolism: photosynthetic; Form: coating on top of formations; mats</td>
<td>Norris Geyser Basin, Lemonade Creek, Nymph Creek</td>
</tr>
<tr>
<td>Green algae</td>
<td>pH 0–4, 32–55°C (90–131°F)</td>
<td>Color: appears black or dark purple in sunlight; Metabolism: photosynthetic; Form: filaments and mats</td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td>Warm Alkaline</td>
<td>Predator of Bacteria; can infect humans when ingested through nose</td>
<td>Huckleberry Hot Springs, Boiling River, Obsidian Creek</td>
</tr>
<tr>
<td>Naegleria (amoeba)</td>
<td></td>
<td>Consumer; single-celled ciliate (feathery appendages swirl water, bringing prey)</td>
<td></td>
</tr>
<tr>
<td>Vorticella (ciliate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euglenids Mutablis</td>
<td>pH 1–2, <43°C (109°F)</td>
<td>Single-celled; photosynthetic; moves by waving one or two strands called flagella</td>
<td></td>
</tr>
<tr>
<td>Fungi (Curvularia protuberata)</td>
<td>≤65°C (149°F) with panic grass <55°C (131°F) without</td>
<td>Grows in roots of hot springs panic grass (Dichanthelium lanuginosum), enabling both to survive high temperatures; the plant also produces sugars that the fungus feeds on</td>
<td></td>
</tr>
<tr>
<td>Ephydrid fly (Ephydra sp.)</td>
<td>>pH 2, <43°C (109°F)</td>
<td>Nonbiting insect that eats microscopic algae as larvae and adult; prey for spiders, beetles, dragonflies, killdeer</td>
<td>Norris, especially Porcelain Basin, Upper Geyser Basin, especially Geyser Hill, Mammoth Hot Springs</td>
</tr>
<tr>
<td>Ross’s bentgrass (Agrostis rossiae)</td>
<td>38°C (100°F)</td>
<td>One of Yellowstone’s three endemic plant species; may bloom in winter; dries out in summer’s hot air temperatures</td>
<td>Banks of Firehole River, Near Shoshone Lake</td>
</tr>
<tr>
<td>Warm springs spike rush, with some Tweedy’s rush</td>
<td>Warm Acidic</td>
<td>Forms thick floating mats, which also provide habitat for thermophilic algae and other thermophiles</td>
<td>Obsidian Creek</td>
</tr>
</tbody>
</table>

Note: Algae and Warm springs spike rush photos by Carolyn Duckworth. Fungi photo by Russell Rodriguez and Joan Henson. Ross’s bentgrass photo by NPS/Jennifer Whipple.
Thermophilic Viruses

Like bacteria, the word “virus” often conjures up images of sickness and death. However, relatively few of the many types of viruses cause problems for humans. None of the thermophilic viruses in Yellowstone should cause problems for human health—our bodies are too cold, for one thing.

Unlike microorganisms in the three domains, viruses are not considered to be alive. (Yet they are still called “life forms.”) They have no cell structure, only a protein “envelope” that encloses a piece of genetic material. They cannot reproduce on their own. Instead, a virus inserts itself into a host cell and uses that cell’s nutrients and metabolism to produce more viruses.

Scientists suspect many viruses exist in Yellowstone’s hydrothermal features because they would be a logical part of the thermophilic ecosystem. One kind was discovered in Congress Pool, at Norris Geyser Basin. It was infecting the archaean *Sulfolobus*. Another kind of virus has been identified in pools near Midway Geyser Basin.

Thermophilic Viruses found in Yellowstone National Park

<table>
<thead>
<tr>
<th>Name</th>
<th>pH and Temperature</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
</table>
| Viruses (not in a domain) | pH 0.9–5.8; optimum 2–3 55–80°C (131–176°F) optimum 70–75°C | • Protein coats a core of genetic material
 • Cannot reproduce by itself
 • Reproduces by using the host cell’s metabolism
 • Not considered living
 • Predators of other microbes | • In many of Yellowstone’s hydrothermal features |
| Unnamed | Acidic Boiling | • Shape very similar to viruses that infect bacteria and animals, which could mean this group of viruses existed early in the development of life on Earth | • Unnamed pool near Midway Geyser Basin |
| Unnamed | Acidic Boiling | • Parasitizes the archaean, *Sulfolobus* | • Norris, Congress Pool |
Thermophilic Communities

Thermophilic communities are as diverse as the communities that humans live in. Community formations, colors, and locations vary depending on the types of microbes, the pH, and the temperature of their environments. Here, we discuss the microbe communities most easily seen in Yellowstone.

Millions of individual microbes can connect into long strands called filaments. Some bacteria and algae form thin and delicate structures in fast moving water such as the runoff channels of hot springs and geysers. Other microbes form thick, sturdy structures in slower water or where chemical precipitates quickly coat their filaments.

A bacterium called *Thermocrinis* forms structures and is descended from ancient bacteria that metabolized hydrogen and oxygen. Its filaments entwine, forming mats. Flowing water carries other microbes, organic matter, and minerals that become caught in the streamers and add to the mat.

Photosynthetic activity of cyanobacteria such as *Lyptolyngbya* form columns or pedestals. Oxygen bubbles rise in the mat, forcing the microbes upward. The higher formations capture more organic matter and sediment than the lower mats, which help build the columns. Called stromatolites or microbialites, these structures are similar to ancient microbial communities preserved in formations around the world.

Mats can be as thin as tissue paper or as thick as lasagna. Multiple layers of microorganisms make up inch-thick mats. Dozens of types of microbes from all three domains can exist in these layers. Each layer is a community, and each layer interacts with the other layers, forming a complex community full of millions of microorganisms and their life processes.

Changes in Communities

Visible and invisible changes occur in thermophile communities as light, temperature, and chemical concentrations change—both short term (within one day) and long term (seasonally). As day brightens to noon, cyanobacteria sensitive to light may move away from the surface; microbes less sensitive to light may move to the top layers of the mat. When light levels cause shifts in organisms, the community is responding to a light gradient.

Temperature and chemical gradients most often affect thermophilic communities in runoff channels of geysers and in shallow outflows from hot springs. The runoff channels from Pinwheel and Whirligig geysers meet. The outer edges of both are too hot for visible thermophile communities to develop. But as Pinwheel’s water cools in the shallower channel edge, *Cyanidium* (an alga) can grow, forming a bright green community. Whirligig’s runoff is hotter, which prevents *Cyanidium* from growing.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Organism</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>199°F (93°C)</td>
<td>Archaea</td>
<td></td>
</tr>
<tr>
<td>163°F (73°C)</td>
<td>Cyanobacteria</td>
<td></td>
</tr>
<tr>
<td>144°F (62°C)</td>
<td>Fungi</td>
<td></td>
</tr>
<tr>
<td>140°F (60°C)</td>
<td>Algae</td>
<td></td>
</tr>
<tr>
<td>133°F (56°C)</td>
<td>Protozoa</td>
<td></td>
</tr>
<tr>
<td>122°F (50°C)</td>
<td>Mosses, crustaceans, and insects</td>
<td></td>
</tr>
<tr>
<td>80°F (27°C)</td>
<td>Trout</td>
<td></td>
</tr>
</tbody>
</table>

Thermophilic community inhabitants are controlled, in part, by water temperature and pH. The chart provides general guidelines for maximum for each type.
growing, but another type of thermophile thrives by oxidizing the abundant iron in the water, forming the orange community.

At the Chocolate Pots, which you can see from pullouts along the Gibbon River just north of Gibbon Meadows, iron-rich water flows from the vents. Cyanobacteria—such as Synechococcus, and Oscillatoria—thrive in this feature. The bacterial filaments form mats, in which orange-red iron oxide (rust) is captured. The iron may also be caught on the bacteria as the microbes move about within the mat. An olive green color indicates where the orange iron and green bacteria are enmeshed. Darker streaks indicate the presence of manganese. Scientists think that mixing of iron-rich waters with shallow

Thermophiles by Place and Color in Yellowstone National Park

<table>
<thead>
<tr>
<th>Location</th>
<th>Characteristics</th>
<th>Thermophiles by Temperature</th>
<th>Thermophiles by Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper, Middle, and Lower Geyser Basins and West Thumb Geyser Basin</td>
<td>pH 7–11 (alkaline)</td>
<td>>75°C (167°F), Bacteria and Archaea</td>
<td>Pink, yellow, orange, gray filaments—Thermocrinis bacteria</td>
</tr>
<tr>
<td></td>
<td>underlain by rhyolite rock</td>
<td>>75°C (167°F), Thermocrinis and other bacteria form streamers of pink, yellow, orange, or gray</td>
<td>Orange mats—cyanobacteria, especially on sunny summer days (carotenoids protect the organisms from the bright sun)</td>
</tr>
<tr>
<td></td>
<td>water rich in silica, which forms sinter and geyserite deposits</td>
<td><75°C (167°F), Synechococcus, Lyptolyngbya, and Calothrix (cyanobacteria) plus Roseiflexus (filamentous green bacterium) form mats that line cooler hot springs and runoff channels</td>
<td>Olive-green mats—cyanobacteria mixed with iron</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norris Geyser Basin and Mud Volcano Area</td>
<td>pH 0–5 (acidic)</td>
<td>>75°C (167°F), Sulfolobus, an archaean, and viruses that parasitize Sulfolobus</td>
<td>Pink–pinkish-orange mats and streamers—Thermus aquaticus and other Thermus sp.</td>
</tr>
<tr>
<td></td>
<td>underlain by rhyolite rock</td>
<td>>60°C (140°F), filamentous bacteria in yellowish streamers and mats</td>
<td>Green streamers and mats—Cyanidium</td>
</tr>
<tr>
<td></td>
<td></td>
<td><60°C (140°F), filamentous bacteria and archaea form red brown mats</td>
<td>Orange—iron and/or arsenic, perhaps oxidized by thermophiles</td>
</tr>
<tr>
<td></td>
<td></td>
<td><56°C (133°F), Zyogonion, other algae, and fungi form mats in runoff channels</td>
<td>Gray, muddy pools—Sulfolobus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammoth Hot Springs</td>
<td>pH 6–8 (neutral to slightly acidic)</td>
<td>66–75°C (151–167°F), Aquificales (bacteria) filaments near hot springs vents</td>
<td>Orange—Chloroflexus and cyanobacteria in summer</td>
</tr>
<tr>
<td></td>
<td>underlain by ancient limestone deposits</td>
<td><66°C (151°F), Chloroflexus (green nonsulfur bacteria) and cyanobacteria mats, and filamentous bacteria streamers</td>
<td>Green—Chloroflexus and cyanobacteria in winter; Chlorobium in cooler water</td>
</tr>
<tr>
<td></td>
<td>water rich in calcium carbonate and sulfur</td>
<td><58°C (136°F), Chromatium (bacteria) form dark mats (uncommon)</td>
<td>Cream—filamentous bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25–54°C (77–129°F), Chlorobium (bacteria) mats; Calothrix streamers; Synechococcus</td>
<td></td>
</tr>
</tbody>
</table>

Note: Photos by Carolyn Duckworth.
in heat beneath the Earth, these communities change through common and strange processes. Biologists continue to discover more about the individuals involved in thermophilic communities, and ecologists follow the threads of these intricate webs.

Thermophiles in Time and Space

To Mars—and Beyond?
The hydrothermal features of Yellowstone and their associated thermophilic communities are studied by scientists searching for evidence of life on other planets. The connection is extreme environments. If life began in the extreme conditions thought to have been widespread on ancient Earth, it may well have developed on other planets—and might still exist today.

The chemosynthetic microbes that thrive in some of Yellowstone’s hot springs do so by metabolizing inorganic chemicals, a source of energy that does not require sunlight. Such chemical energy sources provide the most likely habitable niches for life on Mars or on the moons of Jupiter—Ganymede, Europa, and Callisto—where uninhabitable surface conditions preclude photosynthesis. Chemical energy sources,

precipitation-derived waters create the unique conditions that give rise to the large iron and manganese oxide mounds at Chocolate Pots. These are not commonly encountered in the park.

Communities formed by thermophilic microbes sustain communities of larger organisms within Yellowstone’s hydrothermal areas. These communities in turn affect even larger communities of the park’s mammals. For example, bison and elk find food and warmth on the less extreme edges of thermophilic environments in winter. In turn, coyotes, wolves, and bears seek prey in these areas—especially in late winter and early spring when bison and elk are weaker than any other time of year.

Whether it’s the strike of a grizzly’s paw or a shift

What’s the Connection?

- Yellowstone’s hydrothermal features contain modern examples of Earth’s earliest life forms, both chemo- and photosynthetic, and thus provide a window into Earth’s ancient past.
- Yellowstone hydrothermal communities reveal the extremes life can endure, providing clues to environments that might harbor life on other worlds.
- Yellowstone environments show how mineralization preserves biosignatures of thermophilic communities, which could help scientists recognize similar signatures elsewhere.
- Based on life on Earth, the search for life on other planets seems more likely to encounter evidence of microorganisms than of more complex life.

Earth formed

- **Era of chemical evolution**
 - Earth’s crust stabilizing

- **Age of microorganisms**
 - Oxygen atmosphere forming

- **Age of mammals**
 - Age of dinosaurs

<table>
<thead>
<tr>
<th>Era of chemical evolution</th>
<th>Age of microorganisms</th>
<th>Age of mammals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth’s crust stabilizing</td>
<td>Oxygen atmosphere forming</td>
<td>Age of dinosaurs</td>
</tr>
</tbody>
</table>

Billions of years ago

- 4.5
- 4
- 3.5
- 3
- 2.5
- 2
- 1.5
- 1
- 0.5
- 0

Life in Extreme Heat 141
along with extensive groundwater systems (such as on Mars) or oceans beneath icy crusts (such as on Jupiter’s moons) could provide habitats for life.

Similar Signatures

Thermophile communities leave behind evidence of their shapes as biological “signatures.” For example, at Mammoth Hot Springs, rapidly depositing minerals entomb thermophile communities. Scientists compare these modern signatures to those of ancient deposits elsewhere, such as sinter deposits in Australia that are 350 million years old. These comparisons help scientists better understand the environment and evolution on early Earth, and give them an idea of what to look for on other planets.

Yellowstone National Park will continue to be an important site for studies at the physical and chemical limits of survival. These studies will give scientists a better understanding of the conditions that give rise to and support life, and how to recognize signatures of life in ancient rocks and on distant planets.
Vegetation

The vegetation communities of Yellowstone National Park include overlapping combinations of species typical of the Rocky Mountains as well as of the Great Plains to the east and the Intermountain region to the west. The exact vegetation community present in any area of the park reflects the consequences of the underlying geology, ongoing climate change, substrates and soils, and disturbances created by fire, floods, landslides, blowdowns, insect infestations, and the arrival of nonnative plants.

Today, the roughly 1,386 native taxa in the park represent the species able to either persist in the area or recolonize after glaciers, lava flows, and other major disturbances. Yellowstone is home to three endemic plant species, at least two of which depend on the unusual habitat created by the park’s thermal features. Most vegetation management in the park is focused on minimizing human-caused impacts on their native plant communities to the extent feasible.

Vegetation Communities

There are several vegetation communities in Yellowstone: higher- and lower-elevation forests and the understory vegetation associated with them, sagebrush-steppe, wetlands, and hydrothermal.

Quick Facts

Number in Yellowstone

Native plant taxa: more than 1,300:
- Hundreds of wildflowers.
- Trees: nine conifers (lodgepole pine, whitebark pine, Engelmann spruce, white spruce, subalpine fir, Douglas-fir, Rocky Mountain juniper, common juniper, limber pine) and some deciduous species, including quaking aspen and cottonwood.
- Shrubs: include common juniper, sagebrush (many species), Rocky Mountain maple.

- Three endemic species (found only in Yellowstone): Ross’s bentgrass, Yellowstone sand verbena, Yellowstone sulfur wild buckwheat.

Nonnative plant species: 225.

Characteristics

- Vegetation in Yellowstone is typical of the Rocky Mountains.
- Elements of the Great Plains and Great Basin floras mix with Rocky Mountain vegetation in the vicinity of Gardiner and Stephen’s Creek.
- Hydrothermal areas support unique plant communities and rare species.

Management Issues

- Controlling nonnative species, which threaten native species, especially near developed areas; some are spreading into the backcountry.
- Park partners are monitoring whitebark pine and forest insect pests.
- Biologists survey areas for sensitive or rare vegetation before disturbance such as constructing a new facility.
- Park managers are restoring areas of disturbance.
Vegetation Communities in Yellowstone National Park

- **Lodgepole pine forests**
 Dominate more than 80% of the total forested area.
 Can be seral (developing) or climax.
 Climax forests underlain by rhyolite.

- **Spruce-fir forests**
 Engelmann spruce/subalpine fir dominate older forests.
 Usually found on moist and/or fertile substrates.
 Climax forests underlain by andesitic soils.

- **Whitebark pine forests**
 Major overstory component above 8,400 feet.
 Major understory component of lodgepole-dominated forests from 7,000 to 8,400 feet.
 Seeds are ecologically important food for a variety of wildlife species.

- **Douglas-fir forests**
 Associated with the Lamar, Yellowstone, and Madison river drainages below 7,600 feet.
 Often less than 20 inches annual precipitation.
 More frequent historic fire interval (25–60 year) than other forest communities in the park.

- **Non-forest**
 Includes grasslands, sagebrush, alpine meadows, talus, and hydrothermal environments.
 Encompasses the moisture spectrum from dry sagebrush shrublands to wet alpine meadows.
 Provides the winter and summer forage base for ungulates.

Other communities not shown on map

- **Aspen**—found in small clones interspersed among the sagebrush/forest ecotone (transition zone) along the Yellowstone, Madison, and Snake river drainages.
- **Wetland**—Wetlands include wet meadows, forested wetlands, springs, and seeps comprised of woody vegetation, forbs, rushes, sedges, and grasses. Some are thermally influenced.
- **Riparian**—typically streamside vegetation includes cottonwoods, willows, and various deciduous shrubs.
More Information
Cronquist et al. (ongoing, currently 6 volumes) Intermountain Flora. New York Botanical Garden.

Staff Reviewers
Roy Renkin, Vegetation Management Specialist
Heidi Anderson Park Botanist and Wetland Ecologist
Forests

Forests cover roughly 80% of the park and lodgepole pine comprises nearly all of that canopy. Lodgepole pine, Engelmann spruce, subalpine fir, whitebark pine, and limber pine are found at higher elevations.

Douglas-fir forests occur at lower elevations, especially in the northern portion of the park. The thick bark of Douglas-fir trees allows them to tolerate low-intensity fire. Some of the trees in these forests are several hundred years old and show fire scars from a succession of low intensity ground fires. In contrast, lodgepole pine trees have very thin bark and can be killed by ground fires.

At higher elevations, older forest is dominated by Engelmann spruce and subalpine fir, especially in areas that grow on andesite, a volcanic rock, such as the Absaroka Mountains. These forests may have been dominated by lodgepole pine at one time, but have been replaced by Engelmann spruce and subalpine fir in the absence of fire and presence of non-rhyolitic soil (a non-volcanic soil). Engelmann spruce and subalpine fir can also be common in the understory where the canopy is entirely composed of lodgepole pine.

In rhyolitic soils (another volcanic substrate), which are poor in nutrients needed by fir and spruce, lodgepole pine remains dominant. At higher elevations such as the Absaroka Mountains and the Washburn Range, whitebark pine becomes a significant component of the forest. In the upper subalpine zone, whitebark pine, Engelmann spruce, and subalpine fir often grow in small areas separated by subalpine meadows. Wind and dessication cause distorted forms known as krumholtz where most of the “tree” is protected below snow.

Common Conifers

Higher-Elevation Species

- **Lodgepole Pine** (*Pinus contorta*)
 - Most common tree in park, 80% of canopy
 - Needles in groups of twos
 - Up to 75 feet tall

- **Engelmann Spruce** (*Picea engelmannii*)
 - Often along creeks, or wet areas
 - Sharp, square needles grow singly
 - Cones hang down and remain intact, with no bract between scales
 - Up to 100 feet tall

- **Subalpine Fir** (*Abies lasiocarpa*)
 - Only true fir in the park
 - Blunt, flat needles
 - Cones grow upright, disintegrate on tree
 - Up to 100 feet tall

- **Limber Pine** (*Pinus flexilis*)
 - Needles in groups of five
 - Young branches are flexible
 - Up to 75 feet tall
 - Often on calcium-rich soil

- **Whitebark Pine** (*Pinus albicaulis*)
 - Grows above 7,000 feet
 - Needles in groups of five
 - Up to 75 feet tall

Lower-Elevation Species

- **Douglas-Fir** (*Pseudotsuga menziesii*)
 - Resembles the fir and the hemlock, hence its generic name Pseudotsuga, which means “false hemlock”
 - Cones hang down and remain intact, with three-pronged bract between scales
 - Up to 100 feet tall

- **Rocky Mountain Juniper** (*Juniperus scopulorum*)
 - Needles scale-like
 - Cones small and fleshy
 - Up to 30 feet tall
Lodgepole Pine
The lodgepole pine (*Pinus contorta*) is by far the most common tree in Yellowstone. Early botanical explorers first encountered the species along the West Coast where it is often contorted into a twisted tree by the wind, and thus named it *Pinus contorta* var. *contorta*. The Rocky Mountain variety, which grows very straight, is *Pinus contorta* var. *latifolia*. Some American Indian tribes used this tree to make the frames of their tipis or lodges, hence the name “lodgepole” pine.

Description
Lodgepoles are the only pine in Yellowstone whose needles grow in groups of two. The bark is typically somewhat brown to yellowish, but a grayish-black fungus often grows on the shady parts of the bark, giving the tree a dark cast.

The species is shade intolerant; any branches left in the shade below the canopy will wither and fall off the tree. Lodgepoles growing by themselves will often have branches all the way to the base of the trunk because sunlight can reach the whole tree.

Reproduction
Like all conifers, lodgepole pines have both male and female cones. The male cones produce huge quantities of yellow pollen in June and July. This yellow pollen is often seen in pools of rainwater around the park or at the edges of lakes and ponds.

The lodgepole’s female cone takes two years to mature. In the first summer, the cones look like tiny, ruby-red miniature cones out near the end of the branches. The next year, after fertilization, the cone starts rapidly growing and soon becomes a conspicuous green. The female cones either open at maturity releasing the seeds, or remain closed—a condition called serotiny—until subjected to high heat such as a forest fire. These cones remain closed and hanging on the tree for years until the right conditions allow them to open. Within a short period of time after the tree flashes into flame, the cones open up and release seeds over the blackened area, effectively dispersing seeds after forest fires. Trees without serotinous cones (like Engelmann spruce, subalpine fir, and Douglas-fir) must rely on wind, animals, or other agents to carry seeds into recently burned areas.

Habitat
Lodgepole pines prefer a slightly acid soil, and will grow quickly in mineral soils disturbed by fire or by humans (such as a road cut). Their roots spread out sideways and do not extend deeply—an advantage in Yellowstone where the topsoil is only about 6 to 12 inches deep, but a disadvantage in high winds. Lodgepole pines are vulnerable in windstorms, especially individuals that are isolated or in the open.

Besides reseeding effectively after disturbance, lodgepole pines can grow in conditions ranging from very wet ground to very poor soil prevalent within the Yellowstone Caldera. This flexibility allows the species to occur in habitat that otherwise would not be forested.

Because lodgepole pines are dependent on sunny situations for seedling establishment and survival, the trees do not reproduce well until the canopy opens up significantly. In the Yellowstone region, this allows the lodgepole pine forest to be replaced by shade-loving seedlings of subalpine fir and Engelmann spruce where the soil is well-developed enough to support either of these species. In areas of nutrient poor soil, where Engelmann spruce and subalpine fir struggle, lodgepole pines will eventually be replaced by more lodgepole pine trees as the forest finally opens enough to allow young lodgepoles to become established.
Whitebark Pine

Whitebark pine (Pinus albicaulis) occurs at high elevations in subalpine communities in the northern Rocky Mountains and the Pacific Northwest. It often grows in areas with poor soils, high winds, and steep slopes that are inhospitable to other tree species. White bark pine is a key species in these upper ranges where it retains snow and reduces erosion, acts as a nurse plant for other subalpine species, and produces seeds that are an important food for birds, grizzly bears, and other wildlife. Whitebark pine produces wingless seeds and relies primarily on Clark’s nutcrackers (Nucifraga Columbiana) for seed dispersal.

Substantial mortality in whitebark populations has been documented throughout its range. Decreases are attributed to the introduced pathogen, white pine blister rust (Cronartium ribicola); native mountain pine beetle (Dendroctonus ponderosae); historic wildland fire suppression resulting in more frequent, larger, and hotter wildfires; and projected environmental factors associated with climate change. These agents, both individually and collectively, pose a significant threat to the persistence of healthy whitebark pine populations on the landscape.

A reported 14–16% of whitebark pine trees taller 1.4 meters tall are infected with blister rust in the Greater Yellowstone region. As of 2017, 1,502 of the more than 5,300 monitored trees had died, including 67% of those in the >10 cm in diameter size classes. (The mountain pine beetle prefers larger trees for laying their eggs; the larvae feed on the inner phloem of the bark.) In addition, the Greater Yellowstone Network has estimated that by the end of 2015, 26% of whitebark pine trees >1.4 meters tall had died.

Aerial surveys, which measure the spatial extent of mortality rather than the percentage of individual dead trees counted on the ground, have generally produced higher whitebark pine mortality estimates in the Greater Yellowstone Ecosystem. This could be because larger trees, which occupy more of the area in the forest canopy visible from the air, are more likely to be attacked by beetles. In 2013, an aerial survey method called the Landscape Assessment System was used to assess mountain pine beetle-caused mortality of whitebark pine across the region. Results of the one-time study indicate that nearly half (46%) of the GYE whitebark pine distribution showed severe mortality, 36% showed moderate mortality, 13% showed low mortality, and 5% showed trace levels of mortality.

Despite the high percent of large trees that have died, there are trees that are still producing cones and regeneration is occurring. The network estimated an average growth of 51 small trees per 500 meters squared by the end of 2015.

More Information

Staff Reviewer

Kristin Legg, Program Manager, Greater Yellowstone Network.

Erin Shanahan, Ecologist, Greater Yellowstone Network.
Understory Vegetation
Understory vegetation differs according to precipitation, the forest type, and the substrate. Lodgepole pine forest is often characterized by a very sparse understory of mostly elk sedge (*Carex geyeri*), or grouse whortleberry (*Vaccinium scoparium*). Pinegrass (*Calamagrostis rubescens*) occurs frequently under Douglas-fir forest but is also common under other forest types, especially where the soil is better developed or more moist. In some areas of the park such as Bechler and around the edges of the northern range, a more obviously developed shrub layer is composed of species such as Utah honeysuckle (*Lonicera utahensis*), snowberry (*Symphoricarpos* spp.), and buffaloberry (*Shepherdia canadensis*).

Forest Insect Pests
The conifer trees of Yellowstone face six major insect and fungal threats. The fungus is an nonnative species, but the insects are native to this ecosystem. They have been present and active in cycles, probably for centuries. A scientist studying lake cores from the park has found some of their insect remains in the cores, indicating their presence even millions of years ago. However, in the last 10 years, all five insects have been extremely active, which may be due to the effects of climate change.

The primary cause of tree mortality in the Yellowstone is native bark beetles. The beetles damage trees in similar ways: their larvae and adults consume the inner bark. If the tree is girdled, it dies. Their feeding activity can girdle a tree in one summer, turning the crown red by the following summer. The needles usually drop within the next year, leaving a standing dead tree. Isolated pockets of red-needled trees are scattered throughout the park. Forest structure, tree health, and climate are the major factors determining the extent of an outbreak; drought and warmer temperatures can make forests more vulnerable to infestation.

Pest Activity
The severity of insect-caused tree mortality has been considerable throughout the West for over a decade, and the insects have spread to previously unaffected plant communities. Several native bark beetle species in the Scolytidae family have altered extensive areas within Greater Yellowstone. Forest structure, tree health, and climate are the major factors in determining whether an outbreak expands; drought and warmer temperatures can make forests more vulnerable to infestation.

Recent evaluation has shown decreases in infection and infestation rates since 2001, suggesting that resistance may be slowly increasing. Although activity by both Douglas-fir beetle and Engelmann spruce beetle has declined to endemic (natural to Yellowstone) levels since 2000, other forest insects of ecological significance remain active. Mountain pine beetle activity was largely confined to the northwest.

<table>
<thead>
<tr>
<th>Forest Insect Pests</th>
<th>Number in Yellowstone</th>
<th>Six forest pests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mountain Pine Beetle (Dendroctonus ponderosae)</td>
<td>Larvae feed for two years.</td>
<td>Affects whitebark, lodgepole, and limber pine.</td>
</tr>
<tr>
<td></td>
<td>Look for reddish dust on the bark and at the base of the tree in early summer.</td>
<td>The tree defends itself by increasing resin (pitch) production, which can “pitch out” the insect from the tree and seal the entrance to others.</td>
</tr>
<tr>
<td></td>
<td>Look for globs of resin, often mixed with wood borings, on the bark.</td>
<td>Look for clumps of chewed needles on branch tips.</td>
</tr>
<tr>
<td></td>
<td>Adults emerge in mid-summer.</td>
<td>White Pine Blister Rust</td>
</tr>
<tr>
<td></td>
<td>Larvae also consume outer bark.</td>
<td>The disease impacts the tree’s ability to transport nutrients and produce cones, and may eventually kill the tree.</td>
</tr>
<tr>
<td>Douglas-Fir Beetle (Dendroctonus pseudotsugae)</td>
<td>Affects subalpine fir.</td>
<td>Look for cankers (lesions) on the bark.</td>
</tr>
<tr>
<td>Western Balsam Bark Beetle (Dryocoetes confusus)</td>
<td>Western Spruce Budworm (Choristoneura occidentalis)</td>
<td>Management Issues</td>
</tr>
<tr>
<td></td>
<td>Affects Douglas-fir, true firs, spruce.</td>
<td>Research supported by the National Park Service will investigate the interactions between insect infestations and wildfire.</td>
</tr>
<tr>
<td></td>
<td>Larvae defoliate trees and can destroy cones and seeds.</td>
<td></td>
</tr>
</tbody>
</table>
portion of the park, in high-elevation whitebark pine and lower elevation lodgepole pine, peaking in 2009 with annual decreases in mortality since then. Defoliation of Douglas-fir and Engelmann spruce by the western spruce budworm is present in the park throughout the lower Lamar and along the Yellowstone and Lamar River valleys, but spread considerably less in recent years. These trends appeared to continue in 2011, when the park was only partially surveyed.

Future of Insect Outbreaks in Yellowstone

Landscape-scale drought and the availability of suitable host trees have contributed to the initiation and persistence of insect outbreaks. Healthy trees can defend themselves from beetle attack by “pitching out” adult females as they try to bore into the tree. Extreme winter temperatures can kill off overwintering broods and wet summer weather impedes the insects from invading additional trees. Insect activity also decreases as the larger and more susceptible trees are killed off. Spruce beetles have declined because they have killed almost all of their preferred food source (spruce trees more than 10 inches in diameter).

Recent and ongoing studies supported by the National Park Service are investigating the interaction between insect infestations and wildfire. Researchers have focussed on how bark beetle epidemics may affect fire behavior in lodgepole-dominated forests and comparing the resulting fire hazard with that in Douglas-fir forests.

More Information

Staff Reviewer

Kristin Legg, Greater Yellowstone Network Program Manager.

150 Yellowstone Resources and Issues Handbook, 2018
Other vegetation communities in Yellowstone include sagebrush-steppe, wetlands, and hydrothermal communities. Sagebrush-steppe occurs in the northern range in Yellowstone.

Other Vegetation Communities

Sagebrush-steppe
This vegetation type occurs in the northern range; Hayden, Pelican, and Madison valleys; Swan Lake Flats, and along many of the rivers and creeks. Mountain big sagebrush (Artemisia tridentata var. vaseyana) dominates, along with several other kinds of sagebrush. Several grass species, such as Idaho fescue (Festuca idahoensis), also dominate sagebrush-steppe. Other species of the sagebrush steppe include mountain brome, needlegrasses, yampah, sticky geranium, and several species of upland sedges. The northern range can be spectacular with wildflowers in late June and early July.

In 2015, a long-term sagebrush steppe monitoring program was initiated to track the changes in plant cover and species composition over many years with an emphasis on invasive species. Data loggers will be used to assist staff with correlating any changes in the vegetation with climate change.

Wetlands
Yellowstone’s wetlands include lakes, rivers, ponds, streams, seeps, marshes, fens, wet meadows, forested wetlands, and hydrothermal pools. They occupy over 357 square miles (924 km²) of Yellowstone: 44% are lakes and ponds larger than 20 acres or having water deeper than 6.6 feet at low water; 4% are rivers and streams; 52% are shallow water systems that dry up most years. Approximately 38% of park’s plant species—including half of the rare plants—are associated with wetlands and 11% grow only in wetlands. Wetlands provide essential habitat for Yellowstone’s rare plants, thermal species, reptiles and amphibians, and for numerous insects, birds and fish.

Hydrothermal Communities
Yellowstone is the best place in the world to see hydrothermal phenomenon such as geysers and hot springs. Fascinating and unique plant communities have developed in the expanses of thermally heated ground. Many of the species that occur in the geyser basins are actually species that tolerate tremendously different conditions, and thus grow all over the western United States. Other species, though, are typical of the central Rockies, or are regional endemics.

Hydrothermal plant communities demonstrate in very short periods of time that change is fundamental in any natural system. In a few days, the ground can heat up, perhaps triggered by an earthquake, and kill plants, while an adjacent area may cool, allowing plants to invade a previously inhospitable place.

Staff Reviewer
Stefanie Wacker, Vegetation Ecologist

Where to See
Some wetlands located near roads:
- **Northeast Entrance Road**, beginning east of Yellowstone Picnic Area: listen for frogs in spring, look for sandhill cranes throughout the Lamar Valley.
- **Firehole Lake Drive**: listen for frogs and look for elephant’s head flowers where the road begins.
- **Dunraven Pass area**: look for abundant wildflowers in high elevation wetlands near the road.
- **Norris Geyser Basin, Back Basin**: near Puff ‘n’ Stuff Geyser, look for dragonflies.
- **All thermal areas**: look for ephydrid flies, thermophiles, and other life forms.
Wildflowers

Wildflowers such as lupine and arnica often grow under the forest canopy, but the most conspicuous wildflower displays occur in open meadows and sagebrush-steppe. The appearance of beauties, glacier lilies, and steer’s head announce spring in the park. Soon colors splash the slopes, especially on the northern range—yellow from arrowleaf balsamroot, white from phlox, reds and oranges from paintbrush, and blue from penstemon and lupine. Goldenrod and asters indicate the coming of fall.

Finding Flowers

Elevation, relative temperatures, soil types, and precipitation patterns all play a role in what you find blooming in various areas at different times of the year. In addition, far-reaching events such as fires can cause spectacular blooms of species that thrive on the conditions these events create.

Remember that many of Yellowstone’s wildflowers are also very important parts of animal diets. The bulbs of spring beauty and glacier lily, for example, are vital spring foods of the grizzly bear. Wild strawberries are collected by ground squirrels and chipmunks; the seeds of most wildflowers are used by birds and insects. Even the petals of many flowers are eaten by animals. Bees and other insects collect nectar and pollen.

Exotic Species

Exotic plants—escaped domestics and “weeds”—can be found in Yellowstone. Look for them in disturbed sites such as roadsides where they have little initial competition. Dalmation toadflax, yellow sweetclover, ox-eye daisy, and other exotics compete unnaturally with native plants. For this reason, and for the continued integrity of the Yellowstone ecosystem, these exotics are controlled.

The Yellowstone is a wild-flower garden. Wander where you will, you have the ever-new charm, the finishing touch, the ever-refreshing radiance of the wild flowers.
— Enos Mills, Your National Parks, 1917

More Information

Occasional wildflower sightings are posted on http://www.nps.gov/yell/learn/nature/wildflowers.htm and https://www.facebook.com/YellowstoneNPS

Staff Reviewer

Heidi Anderson Park Botanist and Wetland Ecologist

The appearance of wildflowers announce spring in the park. Enjoy the wildflowers, but don’t pick them.
Rare Plants

The Greater Yellowstone region has few endemic plant species, or species that occur only in Yellowstone and nowhere else in the world. Endemic species occur in unusual or specialized habitats such as hydrothermal areas. Within Yellowstone, only three endemic species occur: Ross’s bentgrass (*Agrostis rossiae*), Yellowstone sand verbena (*Abronia ammophila*), and Yellowstone sulfur wild buckwheat (*Eriogonum umbellatum var. cladophorum*).

Several other unusual species live in the Greater Yellowstone Area: warm springs spike rush, which grows in warm water; and Tweedy’s rush, sometimes the only vascular plant growing in acidic hydrothermal areas.

Ross’s Bentgrass

Yellowstone’s geothermally influenced plant communities contain species that must be able to tolerate a wide range of conditions. Although most of these species are widespread in range and occur at diverse elevations, not all of them are common. A unique grass of the geyser basins is Ross’s bentgrass (*Agrostis rossiae*). This species is highly restricted in range, growing in “vapor dominated” sites in the thermal areas, such as crack systems, the walls of thermal springs, or geothermally influenced depressions. Together, the widespread species and the local endemic form an interesting plant community in geothermal areas.

Distribution

Ross’s bentgrass grows only in the geyser basins in the Firehole River drainage and at Shoshone Geyser Basin. Even within the thermal areas of Yellowstone’s geyser basins, the right conditions to support Ross’s bentgrass are rare and highly scattered. Thermal habitats are distinguished primarily by their elevated soil temperatures, and heat stress is the primary factor controlling the distribution of plants within them. This species seems to require locations providing the right combination of moisture and warmth that create a natural greenhouse. As a result, this grass is one of the first plants to green up in warm pockets of geyserite—sometimes as early as January.

In the right conditions, Ross’s bentgrass can grow profusely, sometimes with several hundred plants in a very small area. Although Ross’s bentgrass is considered a poor disperser of seed, this trait may be adapted to thermal habitats that tend to be small and scattered. A seed bank in the thermal area may be more advantageous to a thermal species than dispersing seed into habitat where the plant is unlikely to survive. Most of the known sites of Ross’s bentgrass, less than 12 acres of occupied habitat in total, have been mapped using the Global Positioning System (GPS).

Life History

Because the seeds of Ross’s bentgrass germinate from December to January, the plants are a conspicuous green presence in the thermal areas by late winter. Flowers are produced in May and early June when the plants reach their maximum size of 1.5–7.8 inches (4–20 cm), after which they dry out and die as the soil temperature rises. Flowers may be present in February and March, but the plants typically do not produce viable seed that early. Full bloom occurs in late May and early June. As soon as temperatures rise in the early summer, the plants dry out due to the sun’s heat from above and the thermal heat from below. Ross’s bentgrass is already dead and hard to find by July.

Life in Thermal Areas

Although the temperature an inch beneath Ross’s
bentgrass can be 100°F, it does not appear to be especially heat tolerant. It survives only in thermal areas because their lethal summer temperatures impose a short growing season advantageous to annual plants with precocious flowering and prevents competition from slower growing perennials.

Any plant growing in thermal areas must be able to deal with constant change. A successful plant in the geyser basins must be able to shift location relatively easily as one major thermal change or several changes could eradicate the entire population. Apparently, Ross’s bentgrass deals with this problem efficiently. Its seed dispersal mechanism probably includes traveling on the muddy hooves of bison and elk who inhabit thermal areas during the winter. Nonnative species, such as cheat grass, pose the only known threat; as they spread in thermal areas, they eventually may out-compete Ross’s bentgrass.

Research
Recent genetic research indicates that another Agrostis found in thermal areas, which was previously considered the same species as the perennial A. scabra (ticklegrass), is actually an annual more closely related to A. rossiae as well as to A. scabra var. geminata in Lassen Volcanic National Park and A. pauszhetica from the Kamchatka Peninsula of Russia. The thermal Agrostis complex needs to be more closely investigated to determine the taxonomy and correct scientific name for this other annual bentgrass in Yellowstone’s thermal areas.

Sometimes both of the thermal Agrostis occur in the same area, but generally they do not grow directly adjacent to each other. While Ross’s bentgrass occurs only along the Firehole River drainage and Shoshone Geyser Basin, the other Agrostis is commonly encountered at thermal areas throughout the park. Both Agrostis are typically surrounded on cooler ground by non-thermal ticklegrass, which is common in the park interior and reproductively isolated from the thermal plants by its later flowering time. The primary threat to Ross’s bentgrass is fast-growing, invasive annual species such as cheat grass, bluegrass, and chickweeds. These species are restricting the presence of A. rossiae at several locations in the Upper Geyser Basin.

More Information
Yellowstone Sand Verbena

Yellowstone sand verbena (*Abronia ammophila*) occurs along the shore of Yellowstone Lake. Taxonomists debate the relationship of this population of sand verbena to other sand verbenas. It may be distinct at the subspecific level, and is certainly reproductively isolated from the closest sand verbena populations in the Bighorn Basin of Wyoming east of the park.

The presence of a sand verbena at 7,700 feet elevation in the northern Rockies is unexpected, as most members of this North American genus occur in the Southwest or along the Pacific Coast. One speculation by botanists is that the warmth provided by the geothermal activity in the area enabled a genus which had evolved in a warmer climate to gradually adapt to conditions in Yellowstone. Today, Yellowstone sand verbena tolerates the long, cold winters and uses the brief summer to bloom and reproduce.

Distribution

The entire occupied habitat of Yellowstone sand verbena plants is 1.48 acres. Herbarium specimens of Yellowstone sand verbena indicate that the species was previously more widely distributed along the lake shore. These early collections provide evidence that Yellowstone sand verbena has been extirpated at several sites (including near Fishing Bridge museum and the Lake Hotel) since 1900. In the last 30 years, an additional site has been extirpated, suggesting that as much as half of the population has been lost, probably due to trampling.

In 1998 about 8,326 plants were documented along the lake shore. The previous two years had been very wet, resulting in a high level of recruitment with many young plants, some of which would probably not survive drier conditions. In 2010, the population was estimated at 3,600 plants.

Life History

The Yellowstone sand verbena grows close to the sand surface and rarely rises more than three inches from the surface of the sand. Some individuals occur near warm ground, so the thermal activity in Yellowstone may be helping this species survive. The flowers are white and the foliage is sticky, and bloom from mid-June until a killing frost.

Although it was once thought that the species was an annual, it has a significant taproot that extends at least several feet deep into the sand in mature plants.

Sand verbasas as a group are known to be sensitive to disturbance, suggesting that increased activity on the lake shore may have contributed to the species’ decline as the result of wildlife and humans walking across the area. An increase in visitor use of the area could lead to trampling, erosion, and the introduction of nonnative plants.

Research has shown that the plants are capable of self-pollination as well as out-crossing using insect pollinators. Self pollination may sustain Yellowstone sand verbena in the absence of pollinators but it may lead to inbreeding depression. Many types of insects visit the flowers, but pollination occurs primarily from moths and bumblebees. Insect visitation is sporadic and adversely impacted by precipitation and turbulent winds. Genetic exchange among the sites is unlikely due to the significant distance between them and the low numbers at three of the sites. The location of nearly all of the plants on the lake’s north shore places the species at risk of extinction due to random events affecting the population.

More Information

Yellowstone Sulphur Flower

Approximately 250 species of wild buckwheat are found in the world, with most of the species occurring in arid regions of the western United States. The group has undergone rapid evolution, leading to numerous closely related taxa. The sulfur buckwheats (*Eriogonum umbellatum*), of which there are 41 recognized varieties in the West, exemplify this rapid speciation. Several varieties of sulfur buckwheat live in the park, but the variety endemic to the park, Yellowstone sulphur flower (*Eriogonum umbellatum var. cladophorum*), is only found in the Firehole River drainage.

Description

Yellowstone sulphur flower differs from the more common varieties with its bright yellow flowers and very hairy, somewhat gray looking leaves. The other bright yellow buckwheat in the area, Piper’s wild buckwheat (*Eriogonum flavum var. piperi*), blooms early in the summer, well before Yellowstone sulphur-flower wild buckwheat, and on close examination the flowers are hairy on the exterior.

The close relative of Yellowstone sulphur flower has creamy yellow flowers without hairs, greenish leaves, and blooms before Yellowstone sulfur flower. Even though these two taxa are considered members of the same species, there has been no sign of interbreeding or hybridization. Growing on mildly influenced geothermal ground, this plant community includes several species that are more commonly encountered at lower elevations or as components of the Great Basin flora. Superficially, these areas in the vicinity of the park’s geyser basins look relatively barren, but the plant species representing different areas of the West form a unique plant community that can be found nowhere else.

Distribution

Yellowstone sulfur flower is adapted to survive on barren, slightly geothermally influenced open areas. It apparently does not tolerate any shading, so it is a conspicuous component of relatively dry plant communities adjacent to the park’s thermal areas. The geographic range of this variety is highly restricted, having been found only from the Upper, Midway, and Lower geyser basins to the vicinity of Madison Junction. Adaptation to life in a geothermal setting means that this taxon has to be able to move with changes in the geothermal system. Yellowstone sulfur buckwheat is capable of recolonizing disturbed areas, as demonstrated by its presence near the Old Faithful Inn and Visitor Education Center, and other locations in the Upper Geyser Basin.

More Information

Staff Reviewers

Heidi Anderson, Park Botanist and Wetland Ecologist
Invasive Plants
Invasive nonnative plants can displace native plant species, including some endemic to the park’s geothermal habitats, change the nature of vegetation communities and affect fire frequency and the distribution, foraging activity, and abundance of wildlife. These changes can profoundly affect the entire ecosystem. For example, nonnatives that are unpalatable to wildlife may replace preferred native plants, leading to changes in grazing activity. In turn, this stresses plants not adapted to grazing.

Invasive plants have altered views of the park’s cultural landscapes and historic districts. Seeds may be spread by people and their vehicles, wild and domestic animals, and sand and gravel used for construction and maintenance work. The most vulnerable areas have been disturbed by human use: along the roads, trails, and rivers; though they are spreading from developed areas to the backcountry. Restoring native plants in an area that has become infested is extremely difficult.

In addition to about 1,386 native plant species, 225 nonnative species have been documented in the park through ongoing survey efforts. Not all of these nonnative species are still present in the park, but most of them are.

Managing Invasive Plants
Controlling all the invasive plants—some well-established—is unrealistic. Staff prioritize treatments based on the threat they pose to native plant communities and the likelihood for successful control.

Quick Facts

<table>
<thead>
<tr>
<th>Number in Yellowstone</th>
<th>225 species</th>
</tr>
</thead>
</table>

Canada Thistle (*Cirsium arvense*)
- Throughout the park and adjacent national forests.
- Airborne seeds enable it to spread widely throughout the park, invading wetlands. Forms dense monocultures, thus radically changing an area by forcing out native vegetation.

Dalmatian Toadflax (*Linaria dalmatica*)
- Northern portions of the park, especially around Mammoth.
- Highly invasive, replaces native plants.

Houndstongue (*Cynoglossum officinale*)
- Primarily found in Mammoth and East Entrance.
- May have been introduced by contaminated hay used by both the National Park Service and concessioners in their horse operations.
- Seeds easily attach to the coats of animals, and thus spread along animal corridors.
- Highly invasive.

Leafy Spurge (*Euphorbia esula*)
- Small patches in Bechler and along roadsides, so far being successfully controlled but spreading actively in Paradise Valley north of the park and outside Bechler on the Caribou-Targhee National Forest.
- Becomes a monoculture.
- Extremely hard to control because of deep underground stems (up to 30 feet) and dense vegetation.

Ox-eye Daisy (*Leucanthemum vulgare*)
- Mammoth and Madison areas.
- Can become dominant in meadows, is unpalatable to elk and other wildlife.
- Control efforts have substantially curtailed infestation; monitoring and evaluation continue.

Spotted Knapweed (**Centaurea maculosa**)
- Along roadsides and in the vicinity of Mammoth.
- Aggressive species that, once established, forms a monoculture.
- Aggressive control efforts underway to prevent a catastrophic change in park vegetation.

Management Issues
Resource managers target the most invasive species for control or removal.
Words to Know

Native species have occurred, now occur, or may occur in a given area as a result of natural processes. Native plants evolve within their own ecological niche in concert with other native plants.

Nonnative species (also known as exotic, foreign, non-indigenous, alien, or weeds) live outside their natural range and arrived there by human activity, either deliberate or accidental. Nonnative species typically have few biological controls to keep their populations in check.

Invasive species have the potential to thrive and spread aggressively outside their natural range, and can include native species. A naturally aggressive plant may be especially invasive when it is introduced into a new habitat. An invasive species that colonizes a new area often has an ecological advantage because the insects, diseases, and foraging animals that naturally keep its growth in check in its native range are not present in its new habitat. An invasive plant that sustains itself outside cultivation is considered naturalized and has not “become” native.

Some infestations can be eradicated if the species is treated when the outbreak is still small; other species, such as spotted knapweed (Centaurea maculosa), are so common that stopping them from spreading is the primary goal. This strategy has helped prevent high priority invasive species from moving into wilderness areas where control is more difficult.

Nonnative vegetation was found on 7,189 acres of the 7,914 acres inventoried in 2015. Sometimes exotic plants are found in pure populations with few native plants, but are most often mixed within native plant communities. Based on program priorities for species, the equivalent of 120 acres of pure non-native populations were treated during 2015. Physical removal is the preferred method of control when feasible, but pulling or cutting of some of the perennial species serves to stimulate new growth, and the use of herbicides becomes necessary to control aggressive species over large areas. Plants were physically pulled or clipped on 20 acres while the remaining 100 acres were treated with herbicides. Most of the 36 species targeted for treatment are listed by the states of Idaho, Montana, or Wyoming as “noxious weeds,” which means they are detrimental to agriculture, fish and wildlife, aquatic navigation, or public health.

Preventing the Spread of Invasive Plants
Prevention efforts include control of construction materials entering the park, equipment inspections at park entrances, allowing only certified weed-free hay to be transported through the park, restrictions on the use of hay in the backcountry, and planting native species where ground disturbance has occurred.

To improve nonnative plant management throughout the region, park staff work with land managers from other government agencies, the Greater Yellowstone Coordinating Committee’s Weed Subcommittee, and the National Park Service’s Rocky Mountain Exotic Plant Management Team. The park uses Integrated Pest Management—chemical, biological, sociological, and mechanical methods—to control some of the nonnative plants. The park also cooperates with adjacent state and county Weed Control Boards to share knowledge and technology related to nonnative plant detection and control.

More Information

Staff Reviewers
Roy Renkin, Vegetation Management Specialist

A total of 120 acres (green circles) of invasive plants were treated in 2015. Most treatment areas are along roadways and in developed areas, though trails and some backcountry areas were also treated.
Restoring Native Plants

In 1932, President Hoover added more than 7,000 acres of land to Yellowstone National Park to provide low-elevation winter wildlife habitat near Gardiner, Montana. The addition included 700 acres of irrigated agricultural fields.

Park managers stopped irrigating the fields and planted an nonnative perennial grass, crested wheatgrass (*Agropyron cristatum*), that they hoped would tolerate the arid conditions and provide wildlife forage. It thrived for many decades, but was never suitable forage. Eventually another, more aggressive, nonnative plant—an annual mustard, desert alyssum (*Alyssum desertorum*)—moved in. Alyssum germinates very early and uses up most of the soil moisture before other species even get started. It also exudes a chemical that inhibits soil bacteria needed by native plants.

Park managers are restoring native vegetation to this area, following recommendations of arid land restoration specialists. In 2008 and 2009, they fenced four pilot plots totaling 50 acres, where they are controlling nonnative plants with herbicides and growing cover crops to increase soil organic matter and moisture-holding capacity and restore soil microbial communities. After two to three years, they will seed the plots with native species.

Managers expect the fencing to remain for 10 to 15 years while the native plants become established. The fencing prevents elk and other ungulates from grazing on the young plants.

Restoration of this area will proceed in multi-year phases to allow native plants to become established under natural conditions, to provide time for managers to monitor and refine their methods, and to provide winter wildlife habitat.

Some of these restoration plots are adjacent to the Old Yellowstone Trail, an unpaved road that parallels the Yellowstone River west of Gardiner, Montana.
Fire has been a key factor in shaping the ecology of the Greater Yellowstone Ecosystem. Native plant species evolved adaptations so they survive and in some cases flourish after periodic fires. Fire influences ecosystem processes and patterns, such as nutrient cycling and plant community composition and structure. Fire regimes in the western United States changed with the arrival of European and American settlers, whose livestock removed grassy fuels that carried fires and whose roads fragmented the continuity of fire-carrying fuels. Most naturally occurring fires were suppressed to the extent possible. The National Park Service aims to restore fire’s role as a natural process in parks when and where this is feasible.

Lightning may ignite dozens of forest fires during a single summer, but most of them go out naturally after burning less than half an acre. Others torch isolated or small groups of trees, become smoldering ground fires, and eventually go out on their own. On rare occasions, wind-driven fires have burned through large areas of forest, as in 1988, when multiple fires crossed more than one million acres in Yellowstone and on surrounding federal lands despite massive efforts to extinguish them. Without frequent small and occasional large fires to create a mosaic of plant communities in different growth stages, biodiversity declines and leaf litter and deadfall accumulate much faster than they can return nutrients to the soil through decay.

Evidence of fires that burned before the park was established in 1872 can be found in soil profiles, charcoal found in lake sediments, landslides, and old-growth trees. Research shows large fires have been occurring in Yellowstone since forests became established following the last glacial retreat 14,000 years ago. Yellowstone’s fire season typically lasts...
from July to the end of September. The number and extent of fires that occur each year depend on what efforts are made to suppress the fires, as well as environmental conditions such as the number and timing of lightning storms and the amount and timing of precipitation.

Ignition

Afternoon thunderstorms that release little precipitation occur frequently in the northern Rockies. Yellowstone receives thousands of lightning strikes in a typical summer, but most do not result in fires. A snag may smolder for several days and then burn out because fuels are too moist to sustain combustion or too sparse to permit the fire to spread. The park’s forests have few shrubs; understory fuels are predominantly young trees. The moisture content of both live and dead vegetation tends to drop as summer progresses, temperatures increase, and relative humidity decreases. Fuels have often dried out enough to ignite the first wildfire of the year by early July.

A forested area that has burned recently enough to contain only young stands of trees usually doesn’t have enough combustible fuel to carry a fire. But as the years pass, trees that don’t survive the competition for light and other resources die and eventually fall over. On living trees, older branches die and fall off as they are shaded by new foliage growing above. As a stand grows older and taller, the canopy becomes more broken. This allows enough light to reach the forest floor for a shade-tolerant understory to be established. The accumulation of fuel on the forest floor and the continuity of fuels between the ground, understory, and canopy make older stands more vulnerable to fire. Some forests in Yellowstone may not have burned in at least 300 years and may be particularly prone to lightning ignition.

Quick Facts

Number in Yellowstone

- In 2017, less than one acre burned from 8 known wildfire starts. Six were considered the accidental result of human activity (campfire, cigarette) and those fires were suppressed; two went out naturally.
- Since 1988, the number of fires has ranged from 1 to 78 each year.
- The most active fire year since 1988 was 2016, with 70,285 acres in Yellowstone burned.
- In an average year approximately 27 fires are ignited in Yellowstone by lightning.
- About 75% of fires in Yellowstone never reach more than 0.1 hectares (0.25 acres) in size.
- About 92% of fires in Yellowstone never burn more than 40 hectares (100 acres).

Characteristics

- Yellowstone’s landscape has been shaped by naturally caused fire for 14,000 years.
- Factors affecting size and severity of a fire include: type of vegetation; fire location; time since the last stand-replacing fire; moisture in the dead and down logs; length of drought; temperature; humidity; and wind.
- In Yellowstone, on average, fires are detected at 3:03 in the afternoon—fires burn most vigorously during the heat of the day, causing tall smoke plumes to be seen by fire lookouts or sharp-eyed park visitors.

Management Issues

- The park is required to protect human life as well as the approximately 2% of Yellowstone’s 2.2 million acres that are considered developed (e.g., roads, buildings, and other infrastructure) from the threat of fire—while at the same time letting fire carry out its ecological role in the landscape as much as possible.
Fire Behavior

Nearly all of Yellowstone’s plant communities have burned at one time or another, but their varied characteristics cause fires to behave differently in them. To quickly assess a fire start and its potential to spread, park staff use different vegetation communities as indicators of fuel load, dominant vegetation, and time since the last fire or other disturbance.

The moisture content of dead and down woody debris and the year’s weather trends are the main factors determining the severity of a given fire season. While fires can occur no matter the fuel moisture, many times conditions are too wet for fires to burn. In fact, 88% of all fires burn less than 10 acres. However, when 1,000-hour fuel moistures fall below 13%, fires can grow quickly. If extreme drought continues, all forest types and ages are more likely to burn.

To determine how much water is in the fuel, Yellowstone fire monitoring staff weigh and oven dry fuel samples to determine the moisture content. In a normal fire season, 1,000-hour fuels within the park may average 14–18% fuel moisture. (Dead fuels are classified according to size, and how long they take to dry out when completely soaked; “1,000-hour fuel moisture” refers to the moisture in large fuels such as downed timber that would generally dry out within 42 days. Kiln-dried lumber is 12%.)

Active fire behavior is generally not observed until 1,000-hour fuel moisture contents are less than 18%, and only minimal areas are burned until moisture levels drop to 13%. At that point a fuel moisture threshold is crossed; lightning strikes in forested areas at 13% fuel moisture quickly result in observable smoke columns and, if fuel and vegetation conditions are right, the fire spreads. Below 12%, younger and more varied forest types burn readily, especially when influenced by high winds. During extreme drought years, 1,000-hour fuel moistures may drop as low as 5%.

Depending on the forest type, fuel moisture, weather, and topography, fires can grow in size by isolated or frequent torching and spotting (transport of burning material by wind and convection currents), or by spreading from tree crown to crown. Fires in Yellowstone’s subalpine forests seldom spread significantly through ground fuels only. Like weather, terrain can be either an ally or adversary in suppressing unwanted fire. A few natural barriers such as the ridge from Electric Peak south to Mt. Holmes; Yellowstone Lake; and the Absaroka Mountains along the eastern boundary of the park are likely to prevent the spread of a low-to-moderate intensity fire, but fire may cross these features by spotting, covering a distance of two to three miles.

Fire managers may be able to predict a fire’s behavior when they know where the fire is burning (vegetation, topography, etc.) and the fuel moisture content. However, predicting fire is much more difficult during extreme drought, such as was experienced in 1988 and in the early 2000s.

Ongoing research in Yellowstone is also showing that forests experiencing stand-replacing fires can affect fire behavior for up to 200 years. When a

Of the fires that occur in Yellowstone National Park, 75% are less than 0.2 acres and another 13% range from 0.3 to 9.9 acres. These smaller, less intense fires play a role in this ecosystem by helping to thin out smaller trees and brush and boost the decay process that provides nutrients to the soil.

Some fires burn with extreme fire behavior and rapid rates of spread. These large, fast moving fires send plumes of smoke thousands of feet into the air and receive much of the public’s attention. These large fires (>100 acres) occur less than 10% of the time in the park.
fire encounters a previously burned forest, its intensity and rate of spread decrease. In some cases, the fire moves entirely around the burned area. Thus, fire managers have another tool for predicting fire behavior: They can compare maps of previous fires with a current fire’s location to predict its intensity and spread.

Frequency of Fire

Fire return intervals since European American settlement have ranged from 20–25 years for shrub and grasslands on the northern range to 300 years or more for lodgepole pine forests on the central plateau and subalpine whitebark pine stands. Fire scars on old Douglas-fir trees in the Lamar River valley indicate an average frequency of one fire every 25–60 years.

Until 1900, written records on fires in Yellowstone were sketchy, with generally only large fires reported. From 1900 through 1930, approximately 374 fires burned 11,670 acres. Since 1931, when fire statistics began to be kept more methodically, 1,636 fires have been lightning-caused and 740 were considered human-caused, including those caused by power lines.

The largest fire in the park’s written history prior to 1988 occurred when about 18,000 acres burned at Heart Lake in 1931. In 1989, fire ecologists William Romme and Don Despain suggested that without the fire suppression efforts that began in the 1880s, large fires might have occurred during the dry summers of 1949, 1953, 1960, or 1961. They believe that fire behavior in 1988, in terms of heat release, flame height, and rate of spread, was probably similar to that of the large fires that burned in Yellowstone in the early- to mid-1700s.

In 1988, 50 fires burned a mosaic covering about 800,000 acres in Yellowstone as a result of extremely warm, dry, and windy weather combined with an extensive forest cover of highly flammable fuels. Some of the largest fires originated outside the park, and a total of about 1.4 million acres burned in the Greater Yellowstone Ecosystem.

Some of the areas that burned in 1988 have burned again during the drought conditions of subsequent years, although unique conditions are required for such areas to reburn. Rare, extremely high wind events (greater than 20 mph), more than 80% ground cover of cured elk sedge (*Carex* spp.), or a continuous fuel bed of 1000-hour logs during very dry conditions, seem required for fires to again carry through areas burned in 1988. Fire behavior of previously burned areas is generally of a very high intensity—probably because of the high fuel load due to dead and fallen trees. Understanding the conditions necessary for recently burned areas (less than 50 years old) to reburn and modeling for the type of fire behavior seen in these areas is a challenge for fire managers in Yellowstone.

Consequences of Fire

In the first years after a major fire, new vistas appear while the lush growth of new, young trees emerges from the burned ground. Today, decades after the 1988 fires, those young trees are renewed forests, once again filling in vistas. Some visitors still feel the Yellowstone they knew and loved is gone forever. But Yellowstone is not a museum—it is a functioning ecosystem in which fire plays a vital role.

Vegetation and Watersheds

The vegetation in the Greater Yellowstone Ecosystem has adapted to fire and in some cases is dependent on it. Some plant communities depend on the removal of the forest canopy to become established. They are the first to inhabit sites after a fire. Other plants growing on the forest floor are adapted to survive at a subsistence level for long periods of time until fires open the canopy. Fire creates a landscape more diverse in age, which reduces the probability of disease or fire spreading through large areas.

One of the two types of cones produced by lodgepole pines, which make up nearly 80% of the park’s forests, is serotinous. Serotinous cones will not
release their seeds until the resin sealing them melts, requiring a temperature of at least 113°F (45°C). This adaptation helps ensure the seeds do not disperse until fire creates conditions that favor the establishment of lodgepole pine seedlings: diminished litter on the forest floor and plenty of sunlight through an open canopy.

Fire can limit trees in the grasslands of Yellowstone, such as the Lamar and Hayden valleys. For example, Douglas-fir seeds require conditions that exist only in rare microhabitats in these grasslands. If a seed reaches such a microhabitat during a favorable year, a seedling may develop. Once the tree is growing, it begins to influence the immediate environment. More tree habitat is created and a small forest island eventually appears. Periodic fire kills the small trees before they have a chance to become islands, thus maintaining the grassland.

Mature Douglas-fir trees have thick bark that resists damage by surface fires. In the past in areas like the park’s northern range, frequent surface fire kept most young trees from becoming part of the overstory. The widely scattered, large, fire-scarred trees in some of the dense Douglas-fir stands in the northern range are probably remnants of these communities.

Although Engelmann spruce and subalpine fir are thin-barked, they grow in cool, moist habitats where conditions that enable fires to burn are infrequent. In 1988, 28% of the park’s whitebark pine burned, though it grows in open, cold, high-altitude habitats that accumulate fuel very slowly and have only a short season between snowmelt and snowfall during which fires can ignite and carry. Caches of whitebark pine seeds collected by red squirrels and Clark’s nutcrackers and the hardiness of whitebark pine seedlings on exposed sites give this tree an initial advantage in large burned areas over conifers dependent on wind to disperse seeds. However, this slow-growing and long-lived tree is typically more than 60 years old before reaching full cone production, and young trees may die before reproducing if the interval between fires is too short or if faster-growing conifers overtake them.

Tree seedlings sprout and grow at variable rates between the surviving trees and the fallen and standing snags. As root systems of standing dead trees decay and lose their grip on the soil, the trees fall—sometimes hundreds at once—in the presence of a strong wind. However, many trees remain upright for more than a decade after dying by fire or other cause.

Fires may stimulate regeneration of sagebrush, aspen, and willows, but their growth is also affected by other influences such as climate and wildlife browsing. Aspen have thin bark, but the clones are connected by a network of underground roots that can survive even very hot surface and crown fires. Although the above-ground stems may be killed, fire stimulates the sprouting of suckers from the roots, and fire leaves bare mineral soil suitable for the establishment of aspen seedlings.

Soils in Yellowstone that support little vegetation have been largely unaffected by fire. Soils that have dense, diverse vegetation before a fire are likely to
respond quickly after the fire with a variety of species and nearly complete cover. Though above-ground parts of grasses and forbs are consumed by flames, the below-ground root systems typically remain unharmed, and for a few years after fire these plants commonly increase in productivity because fire rapidly releases nutrients from wood and forest litter. The regrowth of plant communities begins as soon as moisture is available, which may be within days at some sites.

Plant growth was unusually lush in the first years after the 1988 fires because of the mineral nutrients in the ash and increased sunlight on the forest floor. Moss an inch or more thick became established in burned soils, and may have been a factor in moisture retention, promoting revegetation and slowing erosion.

The amount of soil loss and sediment deposits in streams after the 1988 fires varied greatly. Although extensive erosion and mud slides occurred along the Gibbon River after heavy rains in the summer of 1989, it is not known how much the fires contributed to this. Vegetation regrowth slowed this erosion by 1991. About a quarter of the Yellowstone Lake and Lewis Lake watersheds and half of the Heart Lake watershed burned to some extent, but no significant changes have been detected in stream bank erosion, substrate composition, channel morphology, nutrient enrichment, or plankton production, nor have any discernible fire-related effects been observed in the fish populations in the six rivers that have been monitored regularly since 1988.

Wildlife

Wildfires do not significantly affect the abundance of most wildlife species in Yellowstone. Relatively few animals died as a direct result of the large fires in 1988, and most of those deaths were caused by smoke inhalation. Of Yellowstone’s seven native ungulate species, only the moose has experienced a population decline that appears to have persisted since 1988. Although moose population estimates have been imprecise, it appears that with less willow and subalpine fir available for winter browse, and snow accumulating more deeply with many forest canopies gone, moose winter mortality increased. Mortality in all ungulate species was unusually high in the winter after the fires, but it is difficult to know how much of that was the result of burned forage rather than drought, large herd sizes, and the relatively severe winter. Elk, bison, and deer populations soon rebounded.

Of the 38 grizzly bears wearing radio transmitters when the fires began, 21 had home ranges burned by one or more of the fires. Thirteen of those bears moved into burned areas after the fire front had passed, three adult females without young stayed within active burns as the fire progressed, three bears remained outside the fire perimeters, one adult female was not located for another two years, and another adult female was never located again at all. In a study from 1989–92, bears were found grazing more frequently at burned than unburned sites, especially on clover and fireweed. Even though bear feeding activity in some whitebark pine areas decreased substantially, the fires had no discernible impact on the number of grizzly bears in the Greater Yellowstone Ecosystem.

Rodents probably had the highest fire-related mortality of any mammals. Although many could escape the fires in burrows, others died of suffocation as the fires came through. They also were more exposed to predators because they temporarily lost the cover of grasses and other plants. But, because of their capacity to have multiple litters with many young per year, rodents quickly repopulated burned areas.

Most birds were not directly harmed by the fires and some benefited. Raptors hunted rodents fleeing the fires, but young osprey that were still in their nests died. Post-fire habitat changes helped some birds. Cavity-nesting birds, such as Barrow’s gull-eye, flickers, and bluebirds had many dead trees for their nests. Robins and flickers found ants and worms more easily. Boreal owls, however, lost some of the mature forests they need.
Managing a Natural Process

The National Park Service allows lightning-ignited fires to burn in Yellowstone provided they are not a threat to human life and property. The park is required to protect human life as well as the approximately 2% of Yellowstone’s 2.2 million acres that are considered developed (e.g., roads, buildings, and other infrastructure) from the threat of fire while at the same time letting wildfire carry out its ecological role in the landscape as much as possible.

Yellowstone National Park operates under the 2009 Federal Wildland Fire Policy, which continues to evolve with experience and new knowledge. For example, current guidelines allow firefighters to manage a natural fire for multiple objectives. In the past, fires were required to be categorized as “suppression” or “fire-use for resource benefit.” Now, firefighters can suppress one flank of a fire to protect structures and people while allowing another flank to burn to achieve natural fire benefits.

The Antelope Fire of 2010 was an example of managing a fire for multiple objectives. It was suppressed on its west flank to protect people using the roads, and other values at risk. It was monitored, but not suppressed, as it moved south and east away from developed areas. A similar strategy was used in the 2009 Arnica Fire, which burned in 300-year-old lodgepole pine forests but threatened visitor travel, power lines, and Lake Village.

Working Across Boundaries

Wildfire is a great example of interagency cooperation and coordination. Federal agencies, state and local governments, and private contractors all play a role in managing fire in the park. For example, the National Park Service sometimes relies on Forest Service smoke jumpers to assist with the park’s remote fires. In return, the National Park Service sends its helicopter or engine to the Silver Gate or Cooke City areas, which are located on or adjacent to the Custer Gallatin and Shoshone national forests. Since 2009, the park’s wildland engine has been staffed by both National Park Service and Forest Service firefighters. Programmable radios ensure communication between National Park Service and Forest Service dispatch, which improves firefighter safety. The National Park Service is also working with its partners to develop Community Wildfire Protection Plans to help plan and prepare for a wildfire that may threaten homes.

History of Fire Management

Fire suppression in Yellowstone National Park began with the arrival of the US Army, which was placed in charge of protecting the park in 1886. The Army, which was in Yellowstone until 1918, successfully extinguished some fires in the belief that suppression would help save the forests. However, it is difficult to determine how much effect a small group of men could have had on overall fire frequency or the extent of fires in a large park without motorized vehicles or good roads. Fire suppression was most successful on the grasslands of the northern range, which were relatively accessible from the park headquarters in Mammoth Hot Springs.

More effective fire fighting techniques and airplanes became available after World War II, but even then, fire suppression did not result in a significant increase in fuel loads except perhaps on the northern range. Records indicate fire was almost completely excluded (suppressed) from the Douglas-fir, sagebrush steppe, and aspen communities on the northern range from 1886 until 1987.

By the 1940s, ecologists recognized fire was a natural and unavoidable change agent in many ecosystems, including relatively arid portions of the Rocky Mountains. In the 1950s and 1960s, other parks and forests began to experiment with controlled burns. In 1972, Yellowstone became one of several national parks to initiate programs that allowed some natural fires to burn. Two backcountry areas in the park totaling 340,000 acres, Mirror Plateau and Two Ocean Plateau, were designated as locations where natural fires could burn.
After three years, during which 10 fires burned a total of 831 acres in the two natural fire zones, the non-suppression area was expanded to include most of the park, except for developed areas and a buffer zone at the park boundary. Starting with Yellowstone National Park and Bridger-Teton National Forest in 1976, cooperative agreements were adopted among all Greater Yellowstone federal lands that by 1986 allowed natural fires to burn across shared public land boundaries.

From 1972 to 1987, 235 fires were allowed to burn 33,759 acres in Yellowstone. The summers of 1982–1987 were wetter than average, which may have contributed to the relatively low fire activity during that period. Yellowstone’s fire managers began revising the park’s fire management plan. The new plan permitted some lightning-caused fires to burn under natural conditions; provided for suppressing fires that threatened human life, property, special natural features and historic and cultural sites; and recommended prescribed burns when and where necessary and practical to reduce hazard fuels. It was in the final stages of approval in spring 1988.

However, Yellowstone’s “new” fire management plan was suspended in July 1988 as a consequence of the large fires that occurred that summer. After these fires, a national policy review team examined the national fire policy again and reaffirmed the importance of natural fire policies in national parks and wilderness areas. However, the report also offered recommendations, including the establishment of more specific criteria to determine under what circumstances fires are permitted to burn and more reduction of hazard fuels near developed areas. These recommendations were incorporated into Yellowstone’s 1992 fire management plan. Other revisions occurred to the park’s fire management plan in 2004 and 2014.

The 1988 Fires
The Yellowstone fires of 1988 have been described as being instrumental in the public’s understanding of the role of fire in ecosystems, history-making, and career-building. In June of 1988, park managers and

History of Fire Management in Yellowstone

The Issue
For the first 100 years of the park’s existence, managers believed fires had to be extinguished to preserve park resources. Subsequent scientific research revealed:

- fires have occurred in Yellowstone for as long as there has been vegetation to burn,
- fire plays a role in creating the vegetation patterns of the landscape,
- fire is a part of the ecosystem park managers want to preserve, and
- suppressing fires alters the natural landscape and diminishes diversity.

History
- 1940s: More effective fire fighting techniques become available after World War II. Around the same time, ecologists recognize fire is a natural and unavoidable change agent in many ecosystems.
- 1972: Yellowstone begins allowing some natural fires.
- Spring 1988: Approval of a new fire management policy for Yellowstone is suspended.
- 1988: 793,880 acres burn in Yellowstone, sparking an increase in the public understanding and acceptance of the role of fire in wildland areas.
- 1989: A national policy review team reaffirms the importance of natural fire policies in national parks and wilderness areas.
- 1992: Yellowstone issues a new fire management plan incorporating the 1989 review team’s recommendations.
- 2004: Yellowstone’s fire management plan is revised.
- 2009: Yellowstone begins operating under the 2009 Federal Wildland Fire Policy, which allows firefighters to manage fires for multiple objectives.
- 2014: Yellowstone’s fire management plan is revised.
fire behavior specialists allowed 18 lightning-caused fires to burn after evaluating them, according to the fire management plan. Eleven of these fires burned themselves out, behaving like many fires had in previous years. The spring of 1988 was wet until the month of June, when hardly any rain fell. Park managers and fire behavior specialists expected that July would be wet, as it had been historically.

Rains did not come in July as expected. By late July, after almost two months of little rain, the moisture content of grasses and small branches reached levels as low as 2 or 3%, and downed trees were as low as 7% (recall that when fuel moisture falls below 13%, fires can grow quickly). In addition, a series of unusually high winds fanned flames that, even in dry conditions, would not have moved with great speed.

Because of the extremely dry conditions, no new natural fires were allowed to burn after July 15 except those started adjacent to existing fires that were clearly going to burn into existing fires. Even

<table>
<thead>
<tr>
<th>Significant Events during the 1988 Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
<tr>
<td>June 14</td>
</tr>
<tr>
<td>June 23</td>
</tr>
<tr>
<td>June 25</td>
</tr>
<tr>
<td>June 30</td>
</tr>
<tr>
<td>July 5</td>
</tr>
<tr>
<td>July 11</td>
</tr>
<tr>
<td>July 14</td>
</tr>
<tr>
<td>July 21</td>
</tr>
<tr>
<td>July 22</td>
</tr>
<tr>
<td>July 25</td>
</tr>
<tr>
<td>August 20</td>
</tr>
<tr>
<td>September 3</td>
</tr>
<tr>
<td>September 7</td>
</tr>
<tr>
<td>September 10</td>
</tr>
<tr>
<td>September 11</td>
</tr>
</tbody>
</table>

More than $120 million was spent fighting the fires in the Greater Yellowstone Ecosystem. Rain and snow in September finally stopped the advance of the fires.

FREQUENTLY ASKED QUESTIONS:

How much of the park burned in 1988?
The 1988 fires affected approximately 800,000 acres (or ~36%) of the park. Five fires burned into the park that year from adjacent public lands, including the largest, the North Fork Fire. It started accidentally and burned more than 410,000 acres.

How were weather conditions different than in previous years?
Yellowstone usually experiences afternoon showers three or four days each week during the summer, but in 1988 no measurable rain fell for almost three months. The most severe drought in the park’s recorded history occurred that summer. Also, a large number of lightning strikes came with a series of dry storm fronts. This lightning started many of the fires and storm fronts stoked them with particularly high and sustained winds.

Could the fires have been put out?
It is possible the few fires that started in early June might have been extinguished. However, between 1972 and 1987, the average fire had gone out naturally after burning only one acre. So, while the early fires were monitored closely and some were contained from going out of the park, the history of fire behavior in Yellowstone, coupled with an abnormally wet spring, suggested these fires would go out as previous fires had. After July 15, all fires were fought aggressively from the moment they were detected. Despite the largest fire fighting effort at that time in the history of the nation, weather finally contained the fires when snow fell in September.

Did Yellowstone’s fire management policy change after the fires of 1988?
After the fires of 1988, a national policy review team examined the national fire policy again, and concluded that natural fire policies in national parks and wilderness areas were basically sound. It also recommended improvements that were incorporated into the National Park Service’s fire policy of June 1990 and into Yellowstone National Park’s fire management plan of 1992.
so, within a week the fire acreage in the park doubled to about 17,000 acres. After July 21, all fires—including those started naturally—were fully suppressed as staffing would allow. (Human-caused fires had been suppressed from the beginning.) On July 27, during a visit to Yellowstone, the Secretary of the Interior reaffirmed that all fires would be fought, regardless of their origin.

Fighting the Fires
An extensive interagency fire suppression effort was initiated in mid-July in the Greater Yellowstone Ecosystem in an attempt to control or contain this unprecedented series of wildfires. The extreme weather conditions and heavy, dry fuel accumulations presented even the most skilled professional firefighters with conditions rarely observed.

Accepted fire fighting techniques were often ineffective because fires spread long distances by spotting, a phenomenon in which wind carries embers across unburned forest to start spot fires ahead of the main fire. In the severe conditions of 1988, fires were spotting up to a mile and a half ahead—jumping roads, rivers, even the Grand Canyon of the Yellowstone River.

Fires often moved two miles per hour, with common daily advances of five to ten miles. The fast movement, coupled with spotting, made direct attacks on the fires impossibly dangerous, as fire crews could easily be overrun or trapped between a main fire and its outlying spot fires. Even during the night, fires could not be fought. Typically, wildfires “lie down” at night as humidity increases and temperature decreases. But in 1988, the humidity remained low at night, and fire fighting was complicated by the danger of falling trees.

Fire fighting efforts were directed at controlling the flanks of fires and protecting lives and property in their paths. The fire experts on site generally agreed that only rain or snow could stop the fires. They were right: one-quarter inch of snow on September 11 stopped the advance of the fires.

By the last week in September, 42 lightning-caused fires had occurred in or burned into the park, but only eight were still burning. More than $120 million had been spent in control efforts on fires in the Greater Yellowstone Ecosystem, and most major park developments—and a few surrounding communities—had been evacuated at least once as fires approached within a few miles. The fire suppression efforts involved many different federal and state agencies, including the armed forces. At the height of the fires, 10,000 people were involved simultaneously. This was the largest such cooperative effort undertaken to date in the United States.

1988 Fires in Yellowstone

<table>
<thead>
<tr>
<th>Numbers in Yellowstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 fires caused by humans.</td>
</tr>
<tr>
<td>42 fires caused by lightning.</td>
</tr>
<tr>
<td>36% (793,880 acres) of the park was affected.</td>
</tr>
<tr>
<td>Fires which began outside of the park burned 63% or approximately 500,000 acres of the total acreage.</td>
</tr>
<tr>
<td>About 300 large mammals perished as a direct result of the fires: 246 elk, 9 bison, 4 mule deer, 2 moose.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>$120 million spent fighting the fires.</td>
</tr>
<tr>
<td>Total of 10,000 people involved in these efforts.</td>
</tr>
<tr>
<td>The 1988 fires comprised the largest fire fighting effort in the United States at that time.</td>
</tr>
<tr>
<td>Effort saved human life and property, but had little impact on the fires themselves.</td>
</tr>
<tr>
<td>Rain and snow in September finally stopped the advance of the fires.</td>
</tr>
<tr>
<td>Fighting all fires, including natural fires that had been allowed to burn.</td>
</tr>
</tbody>
</table>
Confusion in the Media
The Yellowstone fires of 1988 received more national attention than any other event in the history of national parks up to that time. Unfortunately, many media reports were inaccurate or misleading and confused or alarmed the public. The reports tended to lump all fires in the Yellowstone area together as the “Yellowstone Park Fire”; they referred to these fires as part of the park’s natural fire program, which was not true; and they often oversimplified events and exaggerated how many acres had burned. In Yellowstone National Park itself, the fires affected—but did not devastate—793,880 acres or 36% of total park acreage.

A number of major fires started outside the park. These fires accounted for more than half of the total acres burned in the greater Yellowstone area, and included most of the fires that received intensive media attention. The North Fork Fire began in the Targhee National Forest and suppression attempts began immediately. The Storm Creek Fire started as a lightning strike in the Absaroka–Beartooth Wilderness of the Custer National Forest northeast of Yellowstone; it eventually threatened the Cooke City–Silver Gate area, where it received extended national media coverage.

Additional confusion resulted from the mistaken belief that managers in the Yellowstone area let park fires continue burning unchecked because of the natural fire plan—long after such fires were being fought. Confusion was probably heightened by misunderstandings about how fires are fought: if...

This map of fires from 1988 uses colors only to help you see fire boundaries. Colors do not indicate anything else.

<table>
<thead>
<tr>
<th>Burn Type</th>
<th>Acres</th>
<th>% of Park</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown fire (consuming the forest canopy, needles, and ground cover and debris)</td>
<td>323,291</td>
<td>15%</td>
</tr>
<tr>
<td>Mixed (mixture of burn types in areas where most of ground surface was burned)</td>
<td>281,098</td>
<td>13%</td>
</tr>
<tr>
<td>Meadows, sagebrush, grassland</td>
<td>51,301</td>
<td>2%</td>
</tr>
<tr>
<td>Undifferentiated (variety of burn types)</td>
<td>37,202</td>
<td>2%</td>
</tr>
<tr>
<td>Undelineated (surface burns not detectable by satellite because under unburned canopy)</td>
<td>100,988</td>
<td>4%</td>
</tr>
<tr>
<td>Total Burned Area</td>
<td>793,880</td>
<td>36%</td>
</tr>
<tr>
<td>Total Unburned Area</td>
<td>1,427,920</td>
<td>64%</td>
</tr>
</tbody>
</table>

Data from the Spatial Analysis Center, Yellowstone National Park, 1989. Table adapted from Yellowstone in the Afterglow: Lessons From the Fires, Mary Ann Franke, 2000.
The 1988 fires presented an unprecedented opportunity to study the landscape-scale ecological effects of an infrequent natural disturbance—a large, severe fire in this case—in an ecological system minimally affected by humans.

—Monica Turner, 9th Biennial Scientific Conference on the Greater Yellowstone Ecosystem, “The ‘88 Fires: Yellowstone and Beyond”

crews were observed not taking action on a fire, casual observers might think the fire was merely being monitored. In fact, in many instances, fire bosses recognized the hopelessness of stopping fires and concentrated their efforts on protecting developed areas.

The most unfortunate public and media misconception about the Yellowstone fire fighting effort may have been that human beings can always control fire. These fires could not be controlled; their raw, unbridled power cannot be over-emphasized. Firefighters were compelled to choose their fights very carefully, and they deserve great praise for working so successfully to save all but a few park buildings.

Post-fire Response and Ecological Consequences

By late September, as the fires were diminishing, plans were already underway in Yellowstone to develop comprehensive programs for all aspects of post-fire response. These included replacing, rehabilitating, or repairing damaged buildings, power lines, fire lines, trails, campsites, and other facilities. Education rangers developed programs to interpret the fires and their effects for visitors and for the general public. Other education specialists developed indoor and outdoor exhibits, publications, and trails to help visitors learn about these historic fires. The park also cooperated with other agencies and state and local governments in promoting the economic recovery of communities near the park that were affected by the fires.

Scientists wanted to monitor the ecological processes following these major fires. The National Park Service cooperated with other agencies and independent researchers and institutions in developing

Consequences of the 1988 Fires

What DID Change

These changes have been caused entirely or in part by the fires of 1988:

✓ The replacement of thousands of acres of forest with standing or fallen snags and millions of lodgepole pine seedlings.
✓ The establishment of aspen seedlings in areas of the park where aspen had not previously existed.
✓ A decline in the moose population because of the loss of old growth forest.
✓ Shifts in stream channels as a result of debris flows from burned slopes.
✓ An increase in the public understanding and acceptance of the role of fire in wildland areas.
✓ A program to reduce hazard fuels around developed areas.

What Did NOT Happen

Many predictions were made about the 1988 fires’ long-term consequences for visitation, wildlife, and vegetation. However, the following have not come to pass:

✗ A long-term drop in park visitation.
✗ Flooding downstream of the park because of increased runoff on bare slopes.
✗ A decline in fish populations because increased erosion silted up the water.
✗ An increase in fish populations in smaller streams where deforestation and loss of shade could result in warmer water and higher nutrient levels.
✗ More rapid invasion of nonnative plants into burned areas and corridors cleared as fire breaks.
✗ An increase in lynx following a boom in snowshoe hares as a result of changes in forest structure.
✗ An increase in the elk population because of improved forage.
✗ A decline in the grizzly bear population because of smaller whitebark pine seed crops.
✗ Another big fire season in Yellowstone because of all the fuel provided by so many dead and downed trees.
comprehensive research directions for this unparalleled scientific opportunity. Observations actually began while the fires were still burning.

Burning at a variety of intensities, the fires killed many lodgepole pines and other trees, but did not kill most other plants; they merely burned the tops, leaving roots to regenerate. Temperatures high enough to kill deep roots occurred in less than 0.1% of the park. Only under logs and in deep litter accumulations, where the fire was able to burn for several hours, did lethal heat penetrate more deeply into the soil. Where water was available, new plant growth began within a few days. In dry soils, the rhizomes, bulbs, seeds, and other reproductive tissues had to wait until soil moisture was replenished the following spring.

Though animal movements were sometimes affected dramatically by the passage of fires, relatively few animals died. However, portions of the northern range burned, which affected winter survival of grazing animals when coupled with summer drought conditions. In this and many other ways, fires dramatically altered the habitat and food production of Yellowstone for the short term.

The fires of 1988 created a landscape of burns, partial burns, and unburned areas—called a mosaic. A mosaic provides natural firebreaks and sustains a greater variety of plant and animal species. Vegetation capable of sustaining another major fire will be rare for decades, except in extraordinary situations.

More Information
International Association of Wildland Fire: www.iawfonline.org
National Interagency Fire Center: www.nifc.gov
National Park Service Fire and Aviation Management: www.nps.gov/fire

Staff Reviewers
Becky Smith, Fire Ecologist
Yellowstone’s abundant and diverse wildlife are as famous as its geysers. Habitat preferences and seasonal cycles of movement determine, in a general sense, where a particular animal may be at a particular time. Early morning and evening hours are when animals tend to be feeding and are more easily seen. But remember that the numbers and variety of animals you see are largely a matter of luck and coincidence.

Wild animals, especially females with young, are unpredictable and dangerous. Keep a safe distance from all wildlife. Each year a number of park visitors are injured by wildlife when approaching too closely. Approaching on foot within 100 yards (91 m) of bears or wolves, or within 25 yards (23 m) of other wildlife is prohibited. Please use roadside pullouts when viewing wildlife. Use binoculars or telephoto lenses for safe viewing and to avoid disturbing wildlife.

By being sensitive to its needs, you will see more of an animal’s natural behavior and activity. If you cause an animal to move, you are too close. It is illegal to willfully remain near or approach wildlife, including birds, within any distance that disturbs or displaces the animal.

FREQUENTLY ASKED QUESTION: Where can I see wildlife?

It helps to know the habits and migration patterns of the animals you want to see and the habitats in which they live. For example, bighorn sheep are adapted to live on steep terrain, so you might see them on cliffs in the Tower area. Osprey eat fish, so you would expect to see them along rivers. Bison graze on grasses and sedges, and mate in August, so you are likely to see them in big, noisy herds in the Hayden and Lamar valleys.

Hydrothermal basins provide important habitat for wildlife. For example, some bison live in the Old Faithful area year-round. In the winter, they take advantage of the warm ground and thin snow cover. Both black and grizzly bears visit these areas during the spring when winter-killed animals are available. Rangers at the visitor centers can tell you where wildlife have been seen recently.
Yellowstone is home to the largest concentration of mammals in the lower 48 states. Here, bison and elk graze on the northern range.

Mammals

Yellowstone is home to the largest concentration of mammals in the lower 48 states. In addition to having a diversity of small animals, Yellowstone is notable for its predator–prey complex of large mammals, including eight ungulate species (bighorn sheep, bison, elk, moose, mountain goats, mule deer, pronghorn, and white-tailed deer) and seven large predators (black bears, Canada lynx, coyotes, grizzly bears, mountain lions, wolverines, and wolves).

The National Park Service’s goal is to maintain the ecological processes that sustain these mammals and their habitats while monitoring the changes taking place in their populations. Seasonal or migratory movements take many species across the park boundary where they are subject to different management policies and uses of land by humans.

Understanding the links between climate change and these drivers will be critical to informing the ecology and management of Yellowstone’s wildlife in the years to come.

More Information

Quick Facts

Yellowstone is home to the largest concentration of mammals in the lower 48 states.

- 67 different mammals live here, including many small mammals.
- As of 2017, an estimated 718 grizzly bears live in the Greater Yellowstone Ecosystem.
- Black bears are common.
- Gray wolves were restored in 1995. As of January 2017, 97 live primarily in the park.
- Wolverine and lynx, which require large expanses of undisturbed habitat, live here.
- Seven native ungulate species—elk, mule deer, bison, moose, bighorn sheep, pronghorn, and white-tailed deer—live here.
- Nonnative mountain goats have colonized northern portions of the park.

Bears
Yellowstone is home to two species of bears: grizzly bears and black bears. Of the two species, black bears have a much larger range across the United States. The grizzly bear is typically larger than the black bear and has a large muscle mass above its shoulders; a concave, rather than straight or convex, facial profile; and its behavior is much more aggressive. The grizzly bear is a subspecies of brown bear that once roamed large swaths of the mountains and prairies of the American West. Today, the grizzly bear remains in a few isolated locations in the lower 48 states, including Yellowstone. In coastal Alaska and Eurasia, the grizzly bear is known as the brown bear. Visitors should be aware that all bears are potentially dangerous. Park regulations require that people stay at least 100 yards (91 m) from bears (unless safely in your car as a bear moves by). Bears need your concern, not your food; it is against the law to feed any park wildlife, including bears.

Grizzly Bears
The Greater Yellowstone Ecosystem and northwest Montana are the only areas south of Canada that still have large grizzly bear (Ursus arctos horribilis) populations. Grizzly bears were federally listed in the lower 48 states as a threatened species in 1975 due to unsustainable levels of human-caused mortality, habitat loss, and significant habitat alteration. Grizzly bears may range over hundreds of square miles, and the potential for conflicts with human activities, especially when human food is present, makes the presence of a viable grizzly population a continuing challenge for its human neighbors in the Greater Yellowstone Ecosystem.

Population
The estimated Greater Yellowstone Ecosystem grizzly bear population increased from 136 in 1975 to peak of 757 (estimated) in 2014. The 2017 population estimate is 718 bears. The bears have gradually expanded their occupied habitat by more than 50%. As monitored by the Interagency Grizzly Bear Study Team, the criteria used to determine whether the population within the Greater Yellowstone Ecosystem has recovered include estimated population size, distribution of females with cubs, and mortality rates. An

Grizzly Bears

| Number in Yellowstone | Approximately 150 with home ranges wholly or partially in the park.
As of 2017, 718 estimated in greater Yellowstone. |
| Where to See | Dawn and dusk in the Hayden and Lamar valleys, on the north slopes of Mt. Washburn, and from Fishing Bridge to the East Entrance. |
| Size and Behavior | Males weigh 200–700 pounds, females weigh 200–400 pounds; adults stand about 3½ feet at the shoulder.
May live 15–30 years.
Grizzly bears are generally 1½ to 2 times larger than black bears of the same sex and age class within the same geographic region, and they have longer, more curved claws.
Lifetime home range: male, 800–2,000 square miles, female, 300–550 square miles.
Agile; can run up to 40 mph.
Can climb trees but curved claws and weight make this difficult. Can also swim and run up and downhill.
Adapted to life in forest and meadows.
Food includes rodents, insects, elk calves, cutthroat trout, roots, pine nuts, grasses, and large mammals.
Mate in spring, but implantation of embryos is delayed until fall; gives birth in the winter; to 1–3 cubs.
Considered super hibernators. |
| Status | The US Fish and Wildlife Service announced their decision to remove grizzly bears from the federal threatened species list in June 2017.
Scientists and managers believe the grizzly population is doing well. Grizzlies are raising cubs in nearly all portions of the greater Yellowstone area and dispersing into new habitat. Currently, they occupy 20,522 square miles in the Greater Yellowstone Ecosystem. |
estimated 150 grizzly bears occupy ranges that lie partly or entirely within Yellowstone. The number of females producing cubs in the park has remained relatively stable since 1996, suggesting that the park may be at or near ecological carrying capacity for grizzly bears.

There were 55 known and probable grizzly bear mortalities in the greater Yellowstone ecosystem in 2017 (50 in the Designated Management Area), including 13 adult females, 23 adult males, and 19 dependent young.

In 2017 there were three human-grizzly bear conflicts in Yellowstone National Park; two incidents of property damage without food reward and one incident where a bear obtained human food. There were two known grizzly bear deaths inside the park: a 14 year-old adult female in Hayden Valley died of unknown causes, and a 4 year-old male was removed in a management action after raiding camp sites at Heart Lake over the last two years.

Description
The grizzly bear's color varies from blond to black, often with pale-tipped guard hairs. In the Greater Yellowstone Ecosystem, many grizzly bears have a light brown girth band. However, the coloration of black and grizzly bears is so variable that it is not a reliable means of distinguishing the two species.

Bears are generally solitary, although they may tolerate other bears when food is plentiful. Grizzlies have a social hierarchy in which adult male bears dominate the best habitats and food sources, generally followed by mature females with cubs, then by other single adult bears. Subadult bears, who are just learning to live on their own away from mother’s protection, are most likely to be living in poor-quality habitat or in areas nearer roads and developments. Thus, young adult bears are most vulnerable to danger from humans and other bears, and to being conditioned to human foods. Food-conditioned bears are removed from the wild population.

Diet
Bears are generalist omnivores that can only poorly digest parts of plants. They typically forage for plants when they have the highest nutrient availability and digestibility. Although grizzly bears make substantial use of forested areas, they make more use of large, non-forested meadows and valleys than black bears. The longer, less curved claws and larger shoulder muscle mass of the grizzly bear makes it better suited to dig plants from the soil, and rodents from their caches.

Grizzly bear food consumption is influenced by annual and seasonal variations in available foods. Over the course of a year, army cutworm moths, whitebark pine nuts, ungulates, and cutthroat trout are the highest-quality food items available. In total, grizzly bears in the Greater Yellowstone Ecosystem are known to consume at least 266 species of plant (67%), invertebrate (15%), mammal (11%), fish, and fungi. They will eat human food and garbage where they can get it. This is why managers emphasize that keeping human foods secure from bears increases the likelihood that humans and bears can peacefully coexist in greater Yellowstone.

Bears spend most of their time feeding, especially during “hyperphagia,” the period in autumn when they may gain more than three pounds per day until they enter their dens to hibernate. In years and locations when whitebark pine nuts are available, they are the most important bear food from September
through October. However, not all bears have access to whitebark pine nuts, and in the absence of this high-quality food, the bear’s omnivory lets them turn to different food sources. Fall foods also include pondweed root, sweet cicely root, grasses and sedges, bistort, yampa, strawberry, globe huckleberry, grouse whortleberry, buffaloberry, clover, horsetail, dandelion, ungulates (including carcasses), ants, false truffles, and army cutworm moths.

From late March to early May, when they come out of hibernation, until mid May, a grizzly bear’s diet primarily consists of elk, bison, and other ungulates. These ungulates are primarily winter-killed carrion (already dead and decaying animals), and elk calves killed by predation. Grizzly bears dig up caches made by pocket gophers. Other items consumed during spring include grasses and sedges, dandelion, clover, spring-beauty, horsetail, and ants. When there is an abundance of whitebark seeds left from the previous fall, grizzly bears will feed on seeds that red squirrels have stored in middens.

From June through August, grizzly bears consume thistle, biscuitroot, fireweed, and army cutworm moths in addition to grasses and sedges, dandelion, clover, spring-beauty, whitebark pine nuts, horsetail, and ants.

Grizzly bears are rarely able to catch elk calves after mid-July. Starting around mid-summer, grizzly bears begin feeding on strawberry, globe huckleberry, grouse whortleberry, and buffaloberry. By late summer, false truffles, bistort, and yampa are included in the diet as grasses and others become less prominent.
Bears’ annual denning behavior probably evolved in response to seasonal food shortages and cold weather. Bears hibernate during the winter months in most of the world. The length of denning depends on latitude, and varies from a few days or weeks in Mexico to six months or more in Alaska. Pregnant females tend to den earlier and longer than other bears. Grizzly bear females without cubs in Greater Yellowstone den on average for about five months.

Grizzly bears will occasionally re-use a den in greater Yellowstone, especially those located in natural cavities like rock shelters. Dens created by digging, as opposed to natural cavities, usually cannot be reused because runoff causes them to collapse in the spring. Greater Yellowstone dens are typically dug in sandy soils and located on the mid to upper one-third of mildly steep slopes (30–60°) at 6,562–10,000 feet (2,000–3,048 m) in elevation. Grizzly bears often excavate dens at the base of a large tree on densely vegetated, north-facing slopes. This is desirable in greater Yellowstone because prevailing southwest winds accumulate snow on the northerly slopes and insulate dens from sub-zero temperatures.

The excavation of a den is typically completed in 3–7 days, during which a bear may move up to one ton of material. The den includes an entrance, a short tunnel, and a chamber. To minimize heat loss, the den entrance and chamber is usually just large enough for the bear to squeeze through and settle; a smaller opening will be covered with snow more quickly than a large opening. After excavation is complete, the bear covers the chamber floor with bedding material such as spruce boughs or duff, depending on what is available at the den site. The bedding material has many air pockets that trap body heat.

The body temperature of a hibernating bear, remains within 12°F (22°C) of their normal body temperature. This enables bears to react more quickly to danger than hibernators who have to warm up first. Because of their well-insulated pelts and their lower surface area-to-mass ratio compared to smaller hibernators, bears lose body heat more slowly, which enables them to cut their metabolic rate by 50–60%. Respiration in bears, normally 6–10 breaths per minute, decreases to 1 breath every 45 seconds during hibernation, and their heart rate drops from 40–50 beats per minute during the summer to 8–19 beats per minute during hibernation.

Bears sometimes awaken and leave their dens during the winter, but they generally do not eat, drink, defecate, or urinate during hibernation. They live off of a layer of fat built up prior to hibernation. The urea produced from fat metabolism (which is fatal at high levels) is broken down, and the resulting nitrogen is used by the bear to build protein that allows it to maintain muscle mass and organ tissues. Bears may lose 15–30% of their body weight but increase lean body mass during hibernation.

Bears emerge from their dens when temperatures warm up and food is available in the form of winter-killed ungulates or early spring vegetation. Greater Yellowstone grizzly bears begin to emerge from their den in early February, and most bears have left their dens by early May. Males are likely to emerge before females. Most bears usually leave the vicinity of their dens within a week of emergence, while females with cubs typically remain within 1.86 miles (3 km) of their dens until late May.

Life Cycle

Grizzly bears reproduce slowly compared to other land mammals. Females rarely breed before age four, and typically become pregnant once every three years. Grizzly and black bears breed from May through July, and bears may mate with multiple partners during a single season. Because implantation of a fertilized egg in the uterus is delayed, the embryo does not begin to develop until late November or December, about one month after the mother has denned. This appears to allow her to conserve energy until she enters her den, where in late January or early February she gives birth to one or two cubs, sometimes three, rarely four. At birth the cubs are hairless and blind, are about eight inches (20 cm) long, and weigh from 8 to 12 ounces (224–336 g). The

By April 2013, this bear had emerged from hibernation and was searching for food to replenish lost body mass.
cubs do not hibernate. They sleep next to the sow, nurse, and grow rapidly. At ten weeks, grizzly bear cubs weigh about 10–20 pounds (4.5–9.0 kg). Male bears take no part in raising cubs, and may actually pose a threat to younger bears. Grizzly bear cubs usually spend 2½, and sometimes 3½ years with their mother before she or a prospective suitor chases them away so that she can mate again. Females frequently establish their home range in the vicinity of their mother, but male cubs disperse farther.

Grizzly Bears, Black Bears, and Wolves

Grizzly bears are more aggressive than black bears, and more likely to rely on their size and aggressiveness to protect themselves and their cubs from predators and other perceived threats. Their evolution diverged from a common ancestor more than 3.5 million years ago, but their habitats only began to overlap about 13,000 years ago. Grizzly bears, black bears, and gray wolves have historically coexisted throughout a large portion of North America. The behavior of bears and wolves during interactions with each other are dependent upon many variables such as age, sex, reproductive status, prey availability, hunger, aggressiveness, numbers of animals, and previous experience in interacting with the other species. Most interactions between the species involve food, and they usually avoid each other. Few instances of bears and wolves killing each other have been documented. Wolves sometimes kill bears, but usually only cubs.

Wolves prey on ungulates year-round. Bears feed on ungulates primarily as winter-killed carcasses, ungulate calves in spring, wolf-killed carcasses in spring through fall, and weakened or injured male ungulates during the fall rut. Bears may benefit from the presence of wolves by taking carcasses that wolves have killed, making carcasses more available to bears throughout the year. If a bear wants a wolf-killed animal, the wolves will try to defend it; wolves usually fail to chase the bear away, although female grizzlies with cubs are seldom successful in taking a wolf-kill.

Grizzly Bears and the Endangered Species Act

On July 28, 1975, under the authority of the Endangered Species Act, the US Fish and Wildlife Service listed the grizzly bear in the lower 48 states as “threatened,” in part, because the species was reduced to only about 2% of its former range south of Canada. Five or six small populations were thought to remain, totaling 800 to 1,000 bears. The southernmost—and most isolated—of those populations was in greater Yellowstone, where 136 grizzly bears were thought to live in the mid-1970s. The goal of an Endangered Species Act listing is to recover a species to self-sustaining, viable populations that no longer need protection. To achieve this goal, federal and state agencies:

- Stopped the grizzly hunting seasons in the Greater Yellowstone Ecosystem.

![A grizzly bear sow with three cubs defends a carcass from wolves on Alum Creek in Hayden Valley, 2010. Most interactions between the grizzly bears, black bears, and wolves involve food. The species usually avoid each other.](image)
• Created the Interagency Grizzly Bear Study Team to coordinate bear management among the federal agencies and state wildlife managers; the team monitors bear populations and studies grizzly bear food habits and behavior.
• Established the Interagency Grizzly Bear Committee to increase communication and cooperation among managers in all recovery areas, and to supervise public education programs, sanitation initiatives, and research studies.

The Grizzly Bear Recovery Plan was established in 1993 and revised in 2006. It has four demographic and sustainable mortality goals for grizzly bears in the Greater Yellowstone Ecosystem. This plan guides management when the grizzly is on the threatened species list. Bear managers use the Grizzly Conservation Strategy when the grizzly is off the threatened species list. The Conservation Strategy is the long-term guide for managing and monitoring the grizzly bear population and assuring sufficient habitat to maintain recovery. It emphasizes coordination and cooperative working relationships among management agencies, landowners, and the public to ensure public support, continue the application of best scientific principles, and maintain effective actions to benefit the coexistence of grizzlies and humans. It incorporates existing laws, regulations, policies, and goals. The strategy has built-in flexibility:
 • Grizzly–human conflict management and bear habitat management are high priorities in the recovery zone, which is known as the Primary Conservation Area. Bears are favored when grizzly habitat and other land uses are incompatible; grizzly bears are actively discouraged and controlled in developed areas.
• State wildlife agencies have primary responsibility to manage grizzly bears outside of national parks, including bears on national forests; national parks manage bears and habitat within their jurisdictions.
• The grizzly bear population will be sustained at or above 500 bears in the Greater Yellowstone Ecosystem.
• State and federal wildlife managers will continue to monitor the grizzly population and habitat conditions using the most feasible and accepted techniques.
• Managers will remove nuisance bears conservatively and within mortality limits outlined above, and with minimal removal of females; they will emphasize removing the human cause of conflict rather than removing a bear.
• Outside the Primary Conservation Area, states develop management plans, with input from affected groups and individuals, that define where grizzly bears are acceptable.

Legal Status of the Population
The grizzly bear population has grown robustly since 1983. The rate of growth has slowed somewhat in the

Management to Conserve Grizzly Bears

The Issue
The grizzly bear was listed as a Threatened species in 1975, which required recovering the species to a self-sustaining population.

History
• 1993: A recovery plan is implemented with three specific recovery goals that have to be met for six consecutive years.
• 2000: Draft Conservation Strategy for the Grizzly Bear in the Greater Yellowstone Ecosystem is completed.
• 2002: Conservation Strategy is approved after public comment period—16,794 comments were received. It will be implemented when the grizzly is removed from the Threatened species list.
• 2003: Recovery goals are met for the sixth year in a row.
• 2005: US Fish and Wildlife Service proposes removing the grizzly bear from Threatened species list.
• 2006: Grizzly Bear Recovery Plan is modified to update methods of estimating population size and sustainable mortality.
• 2007: Greater Yellowstone grizzly bear population is removed from the Threatened species list. Conservation Strategy is implemented.
• 2009: The population is returned to the Threatened species list.
• 2010: The US Fish and Wildlife Service appeals the decision to keep the grizzly bear on the Threatened species list.
• 2011: An appeals court rules the grizzly bear remains on the Threatened species list.
• 2013: Yellowstone Ecosystem subcommittee and Interagency Grizzly Bear Study Team recommend that grizzly bears be removed from Threatened status.
• 2017: The Fish and Wildlife Service announces the removal of Yellowstone grizzlies from the Threatened Species List.
last decade, likely due to increased population density. Grizzlies are raising cubs in all portions of the recovery zone. They have also dispersed into habitat well outside of the recovery zone. Bears range south into Wyoming’s Wind River Range, north of the park through the Gallatin Range, and east of the Absaroka Mountains onto the Plains.

For these reasons and because the grizzly bear population in the Greater Yellowstone Ecosystem was determined to be a distinct population segment that met all the population criteria for delisting, the Greater Yellowstone grizzly population was removed from the threatened species list in 2007 by the US Fish and Wildlife Service. Several groups advocating to re-list the bears as a threatened population filed lawsuits challenging the decision.

In September 2009, a federal district judge overturned the delisting ruling, placing grizzly bears back on the threatened species list claiming: (1) the Conservation Strategy that guides management after delisting was unenforceable and non-binding on state and federal agencies, and (2) that the US Fish and Wildlife Service did not adequately consider the impacts of the potential loss of whitebark pine nuts, a grizzly bear food source.

In January 2010, the Department of Justice and the US Fish and Wildlife Service filed an appeal in the Ninth Circuit Court in San Francisco. Contesting, among other points, that the judge did not consider information on whitebark pine provided in the US Fish and Wildlife Service legal briefing, and should have deferred to the opinion of federal experts to interpret biology.

In November 2011, the Ninth Circuit Court of Appeals ruled against the US Fish and Wildlife Service on the whitebark pine issue, resulting in the Greater Yellowstone Ecosystem grizzly bear population remaining on the threatened species list. The panel ruled in favor of the US Fish and Wildlife Service on the issue of the Conservation Strategy providing adequate regulations to conserve bears after delisting.

In June 2017, the US Fish and Wildlife Service announced their decision to remove grizzly bear from threatened species status. Though management of the grizzly bears in Yellowstone National Park changes little whether it is listed on the threatened species list or not, the areas bordering and surrounding the park will be managed by state agencies. Scientists will continue to monitor the long-term recovery goals for grizzly bears and strive to ensure the criteria are met.
Black Bears
The black bear (*Ursus americanus*) is the most common and widely distributed bear species in North America. However, the Greater Yellowstone Ecosystem is one of the few areas south of Canada where black bears coexist with the grizzly bears. From 1910 to the 1960s, park managers allowed visitors to feed black bears along park roads, although the National Park Service officially frowned on this activity. During this time, along with Old Faithful, black bears became the symbol of Yellowstone for many people, and are still what some people think of when Yellowstone bears are mentioned. Since 1960, park staff have sought to deter bears from becoming conditioned to human foods.

Population
Little is known about the black bear population in Yellowstone or whether it has been affected by the increase in grizzly bear numbers and distribution since the 1970s. Black bears are commonly observed in the park, especially on the northern range and in the Bechler area of the park. Black bears have few natural predators, although both cubs and adults are occasionally killed by their own kind or by the other large carnivores with which they compete for food—wolves, cougars, and grizzly bears. Vehicle collisions (average = 1 per year) and removals of nuisance bears (average = 1 every 5 years) are not common either. Most black bear mortality in the park is likely attributed to old age or other natural causes. Outside the park, some black bears are killed during state regulated hunting seasons. As their access to human foods has been reduced, human injuries from black bears in the park have decreased from an average of 45 per year during the 1930s–1960s to approximately one injury every five years since 1980. Black bears are occasionally radio-collared for management and scientific reasons, with the latter focusing on research on habitat selection and multi-carnivore interactions.

Description
In Yellowstone, about 50% of black bears are black in color; others are brown, blond, and cinnamon. Black bears eat almost anything, including grass, fruits, tree cambium, eggs, insects, fish, elk calves, and carrion. Their short, curved claws enable them to climb trees, but do not allow them to dig for roots or ants as well as a grizzly bear can.

The life cycle of a black bear is similar to grizzly bears. Like grizzly bears, black bears spend most of their time during fall and winter feeding during hyperphagia. In November they locate or excavate a den on north-facing slopes between 5,800–8,600

Black Bears

<table>
<thead>
<tr>
<th>Number in Yellowstone</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where to See</td>
<td>Tower and Mammoth areas, most often.</td>
</tr>
<tr>
<td>Size and Behavior</td>
<td>Males weigh 210–315 pounds, females weigh 135–200 pounds; adults stand about 3 feet at the shoulder.</td>
</tr>
<tr>
<td></td>
<td>May live 15–30 years.</td>
</tr>
<tr>
<td></td>
<td>Home range: male, 6–124 square miles, female, 2–45 square miles.</td>
</tr>
<tr>
<td></td>
<td>Can climb trees; adapted to life in forest and along forest edges.</td>
</tr>
<tr>
<td></td>
<td>Food includes rodents, insects, elk calves, cutthroat trout, pine nuts, grasses and other vegetation.</td>
</tr>
<tr>
<td></td>
<td>Mates in spring; gives birth the following winter to 1–3 cubs.</td>
</tr>
<tr>
<td></td>
<td>Considered true hibernators.</td>
</tr>
<tr>
<td></td>
<td>Have far eyesight and an exceptional sense of smell.</td>
</tr>
<tr>
<td>History</td>
<td>Were fed by visitors from vehicles and, like grizzlies, used to be fed at dumps within the park.</td>
</tr>
<tr>
<td></td>
<td>As a result, bears lost fear of humans and pursued human food, which resulted in visitor injuries, property damage, and the need to destroy “problem bears.”</td>
</tr>
</tbody>
</table>
feet (1,768–2,621 m) where they hibernate until late March.

Males and females without cubs are solitary, except during the mating season, May to early July. They may mate with a number of individuals, but occasionally a pair stays together for the entire period. Both genders usually begin breeding at age four. Like grizzly bears, black bears also experience delayed implantation. Total gestation time is 200 to 220 days, but only during the last half of this period does fetal development occur.

Birth occurs in mid-January to early February; the female becomes semiconscious during delivery. Usually two cubs are born. At birth, the cubs are blind, toothless, and almost hairless. After delivery the mother continues to sleep for another two months while the cubs nurse and sleep.

Bear Management

During its first century, Yellowstone National Park was known as the place to see and interact with bears. Hundreds of people gathered nightly to watch bears feed on garbage in the park’s dumps. Enthusiastic visitors fed bears along the roads and behaved recklessly to take photographs.

Beginning in 1931, park managers recorded an average of 48 bear-inflicted human injuries and more than 100 incidents of property damage each year in Yellowstone. In 1960, the park implemented a bear management program directed primarily at black bears and designed to reduce the number of bear-caused human injuries and property damages and to re-establish bears in a natural state. The plan included expanding visitor education about bear behavior and the proper way to store food and other bear attractants; installing bear-proof garbage cans; strictly prohibiting feeding of bears; and removing potentially dangerous bears, habituated bears, and bears that damaged property in search of food. The open-pit garbage dumps remained open.

After 10 years, the number of bear-caused human injuries decreased slightly to an average of 45 each year. In 1970, Yellowstone initiated a more intensive program that included eliminating open-pit garbage dumps inside the park with the intention of returning

<table>
<thead>
<tr>
<th>Bear Management</th>
<th>Changes in Management in 1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Interactions</td>
<td>1970: Yellowstone implements a new bear management program to restore bears to a diet of natural foods and to reduce property damage and human injuries.</td>
</tr>
<tr>
<td>• Late 1880s: Bears begin gathering at night to feed on garbage behind park hotels.</td>
<td>• Strictly enforcing regulations prohibiting the feeding of bears and requiring proper storage of human food and garbage.</td>
</tr>
<tr>
<td>• 1910: First incidents of bears seeking human food along park roads.</td>
<td>• All garbage cans in the park convert to a bear-proof design.</td>
</tr>
<tr>
<td>• 1916: First confirmed bear-caused human fatality.</td>
<td>• Garbage dumps close within and adjacent to the park.</td>
</tr>
<tr>
<td>Early Management</td>
<td>Recent Progress</td>
</tr>
<tr>
<td>• 1931: Park begins keeping detailed records of bear-inflicted human injuries, property damage, and bear control actions.</td>
<td>• Decrease in human injuries from 45 injuries per year in the 1960s to 1 injury per year in the 2000s.</td>
</tr>
<tr>
<td>• 1931–1969: average of 48 bear-inflicted human injuries and more than 100 incidents of property damage occur annually.</td>
<td>• Decrease in property damage claims from 219 per year in the 1960s to an average of 15 per year in the 2000s.</td>
</tr>
<tr>
<td></td>
<td>• Decrease in number of bears that must be killed or removed from the park from 33 black bears and 4 grizzlies per year in the 1960s to an average of 0.34 black bear and 0.2 grizzly bear per year in the 2000s.</td>
</tr>
<tr>
<td></td>
<td>• Decrease in bear relocations away from humans from more than 100 black bears and 50 grizzlies per year in the 1960s to an average of 0.4 black bear and 0.6 grizzly bear per year in the 2000s.</td>
</tr>
</tbody>
</table>
bears to a natural diet of plant and animal foods. Bear researchers and brothers John and Frank Craighead predicted bears would range more widely and come into more conflict with humans as the bears were weaned off of human food. This prediction was realized in the first years of the revised management program: an annual average of 38 grizzly bears and 23 black bears were moved to backcountry areas, and an annual average of 12 grizzly bears and 6 black bears were removed from the population. However, the number of bear-human conflicts decreased to an annual average of 10 each year after 1972. Bear removals also decreased.

In 1983, the park implemented a new grizzly bear management program that emphasized habitat protection in backcountry areas. The park established “bear management areas” that restricted recreational use where grizzly bears were known to concentrate. The goals were to minimize bear–human interactions that might lead to habituation of bears to people, to prevent human-caused displacement of bears from prime food sources, and to decrease the risk of bear-caused human injury in areas with high levels of bear activity. This program continues today.

Your Safety in Bear Country

On average, bears injure one person each year within Yellowstone National Park. In 2011 and 2015, in separate incidents, three people were killed by bears inside the park. Hiking in bear country takes appropriate preparation. Before you set out, ask about area closures, advisories, and seasonal food habits of local bears. Know what to do if you encounter a bear unexpectedly. Resources are available at visitor centers—where public bear spray demonstrations are offered in summer programs—and on the park website (http://www.nps.gov/yell/planyourvisit/bearsafety.htm).

Statistically, you’re most likely to have an encounter with bears at park roadsides. If you see a bear while driving, do not stop. Regardless of what other people may do, keep moving to the next paved pullout and park safely. If the bear is within 100 yards, watch and take pictures from inside your car. Always comply with instructions of park staff on scene.

As you venture beyond developed areas, stay clear of animal carcasses. Bears are very protective of carcasses as a food source. A single dead animal can attract and hold more than a dozen bears. Many may be bedded down nearby. Watch for gatherings of ravens, magpies, and coyotes. They can be good first indicators that a carcass is nearby. Leave the area immediately by the same route you used to get there.

Bears don’t like surprises. Be vigilant about alerting unseen bears to your presence. Some trail conditions make it hard for bears to see, hear, or smell approaching hikers. Make noise by calling out and clapping your hands loudly at regular intervals. Bells are not enough. If you see a bear that hasn’t noticed you, leave the area.

Know how to react. If you have a surprise

Stay clear of animal carcasses. Ravens can be a good indicator that an animal carcass is nearby.

Bear spray works. Know how to use it.

Watch for fresh tracks and scat.
encounter with a bear, do not run. Face the bear and slowly back away. If a bear charges you, stand your ground and use your bear spray. Do not drop your pack. It can help to protect your back from injury. If a bear makes contact with you, fall to the ground onto your stomach and play dead.

A sow protecting her cubs is one of the most dangerous situations you can face in nature. As cute and charismatic as cubs can be, no photograph of them is ever worth risking personal injury. Always assume mother is nearby and ready to protect her young. For the safety of others, please report all bear incidents and wildlife encounters to a park ranger immediately. Before you set out to enjoy park trails be sure to learn what to do if you unexpectedly encounter a bear.

- **Be alert** for bears and watch for fresh tracks or scat.
- **Make noise** in areas where you can’t see far around you.
- **Carry bear spray** that is readily accessible and know how to use it.
- **Hike in groups** of three or more people.
- **Do not run.** Bears have an instinct to chase.

More Information

Staff Reviewer

Kerry Gunther, Bear Management Biologist
Bison

Yellowstone is the only place in the United States where bison (*Bison bison*) have lived continuously since prehistoric times. Yellowstone bison are exceptional because they comprise the nation’s largest bison population on public land and are among the few bison herds that have not been hybridized through interbreeding with cattle. Unlike most other herds, this population has thousands of individuals that are allowed to roam relatively freely over the expansive landscape of Yellowstone National Park and some nearby areas of Montana. They also exhibit wild behavior like their ancient ancestors, congregating during the breeding season to compete for mates, as well as migration and exploration that result in the use of new habitat areas. These behaviors have enabled the successful restoration of a population that was on the brink of extinction just over a century ago.

However, some Yellowstone bison are infected with brucellosis, a livestock disease that can be transmitted to wild bison and elk as well as cattle through contact with infected fetal tissue. To prevent conflicts with ranching and other activities outside the park, the National Park Service works with other federal, state, and tribal agencies to manage and develop policies for bison access to winter range in Montana. Conservation of wild bison is one of the most heated and complex of Yellowstone’s resource issues. All of the interested parties bring their own wide-ranging values and objectives to the debate.

Quick Facts

Number in Yellowstone
4,816 counted in August 2017. This includes two primary breeding herds: northern (3,969) and central (847).

Where to See
- Year-round: Hayden and Lamar valleys.
- Summer: grasslands.
- Winter: hydrothermal areas and along the Madison River, Blacktail Deer Plateau, Tower, and the Gardiner Basin.

Size and Behavior
- Male (bull) weighs up to 2,000 pounds, female (cow) weighs up to 1,000 pounds.
- May live 12–15 years, a few live as long as 20 years.
- Feed primarily on grasses and sedges.
- Mate in late July through August; give birth to one calf in late April or May.
- Can be aggressive, are agile, and can run up to 30 miles per hour.

History
- Yellowstone is the only place in the lower 48 states to have a continuously free-ranging bison population since prehistoric times.
- In the 1800s, market hunting, sport hunting, and the US Army nearly caused the extinction of the bison.
- By 1902, poachers reduced the Yellowstone population to about two dozen animals.
- The US Army, who administered Yellowstone at the beginning of the 20th century, protected these bison from further poaching.
- Bison from private herds were used to establish a herd in northern Yellowstone.
- For decades, bison were intensively managed due to belief that they, along with elk and pronghorn, were over-grazing the park.
- By 1968, intensive manipulative management (including herd reductions) of bison ceased.
- Reductions began again in the 2000’s due to increasing numbers and litigation about migration into Montana.

The bison is the largest land mammal in North America. Each year, bison injure park visitors who approach too closely.
short horns that curve upward, with male’s averaging slightly longer than those of adult females.

All bison have a protruding shoulder hump. Large shoulder and neck muscles allow bison to swing their heads from side-to-side to clear snow from foraging patches, unlike other ungulates that scrape snow away with their front feet. Bison are agile, strong swimmers, and can run 35 miles per hour (55 kph). They can jump over objects about 5 feet (1.5 m) high and have excellent hearing, vision, and sense of smell.

Behavior

Bison are mostly active during the day and at dusk, but may be active through the night. They are social animals that often form herds, which appear to be directed by older females. Group sizes average about 20 bison during winter, but increase in summer to an average of about 200, with a maximum of about 1,000 during the breeding season (known as the rut) in July and August. Bison are sexually mature at age two. Although female bison may breed at these younger ages, older males (>7 years) participate in most of the breeding.

During the rut mature males display their dominance by bellowing, wallowing, and engaging in fights with other bulls. The winners earn the right to mate with receptive females. Once a bull has found a female who is close to estrus, he will stay by her side until she is ready to mate. Then he moves on to another female. Following courtship, mature males separate and spend the rest of the year alone or in small groups. Group sizes decrease through autumn and into winter, reaching their lowest level of the year during March and April.

Diet

Yellowstone bison feed primarily on grasses, sedges, and other grass-like plants (more than 90% of their diets) in open grassland and meadow communities throughout the year. They also eat forbs (weeds and herbaceous, broad-leafed plants) and browse (the leaves, stems, and twigs of woody plants) through the year, but those usually comprise less than 5% of the diet. They typically forage for 9 to 11 hours daily. Bison are ruminants with a multiple-chambered stomach that includes microorganisms such as bacteria and protozoa to enable them to effectively digest plant material. Bison alternate between eating and ruminating, which is regurgitating partially digested food and chewing it again, to allow microorganisms to further break down plant material into volatile fatty acids and other compounds. Their large digestive tract allows them to digest lower quality foods with greater efficiency than other ungulates such as cattle, deer, or elk.

Interaction with Other Wildlife

Wolves and grizzly bears are the only large predators of adult bison. Dead bison provide an important source of food for scavengers and other carnivores. Bison will rub against trees, rocks, or in dirt wallows in an attempt to get rid of insect pests. Birds such as the magpie perch on a bison to feed on insects in its coat. The cowbird will also follow close behind a bison, feeding on insects disturbed by its steps.

Migration

Like most other ungulates of the Greater Yellowstone Ecosystem, bison will move from their summer ranges to lower elevation as snow accumulates and dense snowpack develops. Most bison alter their diets somewhat during winter, feeding in lowland
meadows with concentrated sedges and grasses compared to a more diverse diet during the rest of the year. Bison appear to select foraging areas during winter based more on plant abundance than quality, and then consume the most nutritious plants available. High densities of bison can deplete forage in high quality patches, resulting in subsequent use of areas with plants of lower diet quality. Bison in central Yellowstone frequently use thermally influenced areas near geysers, hot springs, fumaroles, and rivers with less snow during winter. Forested areas are used occasionally for shade or shelter, escape from insects and other disturbances, or to travel between foraging areas or seasonal ranges.

Habitat

Yellowstone bison historically occupied approximately 7,720 square miles (20,000 km²) in the headwaters of the Yellowstone and Madison rivers. Today, this range is restricted to primarily Yellowstone National Park and some adjacent areas of Montana. The bison population lives and breeds in the central and northern regions of the park. The northern breeding herd congregates in the Lamar Valley and on adjacent plateaus for the breeding season. During the remainder of the year, these bison use grasslands, wet meadows, and sage-steppe habitats in the Yellowstone River drainage, which extends 62 miles (100 km) between Cooke City and the Paradise Valley north of Gardiner, Montana. The northern range is drier and warmer than the rest of the park, and generally has shallower snow than in the interior of the park.

The central breeding herd occupies the central plateau of the park, from the Pelican and Hayden valleys with a maximum elevation of 7,875 feet (2,400 m) in the east to the lower elevation and thermally influenced Madison headwaters area in the west. Winters are often severe, with deep snows and temperatures reaching -44°F (-42°C). This area contains a high proportion of moist meadows comprised of grasses, sedges, and willows, with upland grasses in drier areas. Bison from the central herd congregate in the Hayden Valley for breeding. Most of these bison move between the Madison, Firehole, Hayden, and Pelican valleys during the rest of the year. However, increasing numbers of bison are traveling to the northern portion of the park and mixing with the northern herd. Fewer and fewer return to the Hayden Valley for the subsequent breeding season and some females who switched breeding ranges have successfully bred and reared young on their new range.

History

Historically, Yellowstone bison spent summer in the Absaroka Range north of Yellowstone National Park; in the Lamar Valley–Mirror Plateau area of northeastern Yellowstone; in the Hayden Valley of central Yellowstone; and in the Madison–Pitchstone plateaus of southwestern Yellowstone. Bison in northern Yellowstone spent winter in the Lamar and Pelican valleys; bison in central Yellowstone spent winter in the Hayden Valley and Firehole River drainage; and bison in southwest Yellowstone spent winter on the Snake River plains. From 30 to 60 million bison may have roamed North America before the mid 1800s. Their historical range spread from the Pacific Ocean to the Appalachian Mountains, but their main habitat...
was the Great Plains where Plains Indian tribes developed a culture that depended on bison. Almost all parts of the bison provided something for the American Indian way of life—food, tools, shelter, or clothing; even the dung was burned for fuel. Hunting bison required skill and cooperation to herd and capture the animals. After tribes acquired horses in the 1600s, they could travel farther to find bison and hunt the animals more easily.

The Brink of Extinction—and Recovery

European American settlers moving west during the 1800s changed the way of life for Indians and bison. Market hunting, sport hunting, and a US Army campaign in the late 1800s nearly eliminated bison. Yellowstone was the only place in the contiguous 48 states where wild, free ranging bison persisted. The US Army, which administered Yellowstone at the turn of the 20th century, protected these few dozen bison from poaching as best they could. The protection and recovery of bison in Yellowstone is one of the great triumphs of American conservation.

Bison were almost extirpated before 1900, leaving a remnant, indigenous herd of approximately 23 bison in the Pelican Valley of central Yellowstone. In 1902, the Army administrators created another herd in northern Yellowstone from 18 pregnant female bison that were relocated from a ranch in northern Montana, three males from Texas, and a few calves from Pelican Valley. Protection and stewardship (husbandry), with supplemental feeding allowed these bison to propagate to more than 1,500 animals by 1954. The relocation of 71 animals from the northern herd to central Yellowstone (half to Hayden Valley and half to the Firehole area) to form the Mary Mountain herd in 1936 contributed to the increase in abundance.

Early Range Management

Frequent culling by park managers limited bison numbers through 1966, but abundance rapidly increased after a moratorium on culling in the park was instituted in 1969. Bison numbers quadrupled from about 500 in 1970 to 2,000 in 1980, and then approached 3,000 by 1987. At the same time, elk numbers in northern Yellowstone increased from about 4,000 in 1968 to 12,000 by the mid-1970s and 19,000 by 1988. As herbivore (plant eaters) numbers increase in an area, the amount of forage available to sustain each individual decreases, which can eventually lead to a decrease in nutrition and body condition and, in turn, lower pregnancy and survival rates. To avoid these effects, bison and elk began to change their movement patterns and expand their winter ranges to access more food resources as their numbers increased. Only a few bull bison left the park before 1975, but thereafter, larger groups with female bison began migrating across the northern and western boundaries into Montana during winter. Also, in the 1980s bison from the central herd began moving to

Three mounted rangers separate bison for slaughter at the Lamar Buffalo Ranch in December 1930.
northern Yellowstone during winter, where some of them stayed and remained year-round. This range expansion and dispersal from central to northern Yellowstone appeared to be induced by relatively high bison densities combined with deep snow pack during some winters that further limited food availability, especially in the central portion of the park.

Brucellosis

Brucellosis, caused by the bacterium *Brucella abortus*, can cause pregnant cattle, elk, and bison to abort their calves. The bacteria can be transmitted between individual bison and also among bison, elk, and cattle via contact with infected birth tissues. No cure exists for brucellosis in wild animals.

Cattle brought this nonnative disease to the region when pioneers settled the West. The disease was subsequently transmitted to local wildlife populations. Many bison and elk in the Greater Yellowstone Ecosystem have been exposed to the bacterium that causes brucellosis. Today, all cattle that use overlapping ranges with bison are vaccinated for brucellosis when they are calves.

Although extremely rare in the United States, humans can contract brucellosis by consuming unpasteurized, infected milk products or contacting infected birth tissues. It cannot be contracted by eating cooked meat from an infected animal. In humans, the disease is called undulant fever and is treated with antibiotics.

Presence in Yellowstone

Brucellosis was discovered in Yellowstone bison in 1917. They probably contracted the disease from domestic cattle raised in the park to provide milk and meat for visitors. Now about 50% of the park’s bison test positive for exposure to the *Brucella* organism.

However, testing positive for exposure (seropositive) does not mean the animal is infectious and capable of transmitting brucellosis. For example, people who received smallpox immunization during their childhood will test positive for smallpox antibodies even though they are not infected with the disease and cannot transmit it. Research indicates about 15% of seropositive female bison are infectious at the time of testing. Male bison do not transmit the disease to other bison. Transmission between males and females during reproduction is unlikely because of the female’s protective chemistry.

Bison have not been known to transmit brucellosis to cattle under natural conditions although transmission is biologically feasible and has occurred in captivity. All cattle infected by wildlife in the greater Yellowstone area were infected by elk. When livestock are infected, there is economic loss to producers from abortions and still births, slaughtering infected animals, increased disease testing requirements, and the potential for decreased marketability of their cattle. As a result, producers and regulators...
are concerned about transmission of the bacteria from wild bison or elk back to cattle. Current and historic management strategies attempt to prevent bison from commingling with cattle. Research indicates it is time to turn our efforts to comingling of elk and cattle.

Since 1985 more than 10,000 Yellowstone bison have been harvested by hunters in Montana or culled from the population primarily to protect Montana’s cattle industry and prevent the unlikely transmission of brucellosis from bison to cattle.

Bison Management

In the year 2000 the State of Montana and the federal government developed an Interagency Bison Management Plan that prescribed collaborative actions to reduce the risk of brucellosis transmission from Yellowstone bison to cattle, including the culling of some bison near the park boundary, while conserving a viable population of bison with some migration to essential, lower-elevation winter ranges on public lands in the state. No plan was developed for elk.

Summer counts of bison in central and northern Yellowstone have varied widely under this plan. Counts of the central herd increased from about 1,900 bison in 2000 to 3,500 in 2005, and then decreased to less than 900 in 2017 due primarily to large culls of more than 1,000 bison at the park boundary during 2006, 2008, and 2017. Conversely, counts of the northern herd increased from about 500 bison in 2000 to 4,000 in 2016. This rapid increase was enhanced by movements of bison from the central herd, and possibly, reduced competition as numbers of northern Yellowstone elk decreased from about 19,000 counted individuals in 1994 to less than 4,000 in 2013.

Yellowstone bison are migratory wildlife, not livestock. One mission of the National Park Service is to preserve native wildlife species and the processes that sustain them. A wild population can be defined as one that is free roaming within a defined conservation area that is large enough to sustain ecological processes such as migration and dispersal, sufficiently abundant to mitigate the loss of existing genetic variation, and subject to forces of natural selection such as competition for breeding opportunities and food, predation, and substantial environmental variability. Thousands of bison inhabit a heterogeneous, spacious landscape in and near Yellowstone National Park with a diverse association of native ungulates and predators that are subject to natural selection factors. They have high genetic diversity compared to many other populations of plains bison, and are one of a few bison populations with no evidence of potential cattle ancestry. Also, they migrate seasonally to areas where food supplies are more abundant, available, or nutritious at different times of the year. In other words, bison in Yellowstone National Park are not managed like domestic stock on a ranch and are generally allowed to move freely within the park—though some intervention occurs near the boundary and developed areas to reduce conflicts with humans and outlying jurisdictions.

The substantial recovery of free-ranging bison populations outside Yellowstone National Park is constrained by the availability of low-elevation winter habitat where forage is relatively accessible. Much of Yellowstone National Park is mountainous, with deep snow pack that limits access to forage and increases energy expenditures during winter. Also, large portions of the original range for bison are no longer available outside the park due to agriculture and development. Furthermore, there are political and social concerns about allowing bison outside these parks, including human safety and property damage, competition with livestock for grass, diseases such as brucellosis that can potentially be transmitted between bison and cattle, consumption of agricultural crops, and limited funding for management. Ultimately, it is up to society to decide how they want
Success & Controversy

The protection and recovery of bison in Yellowstone is one of the great triumphs of American conservation. In 1902, after years of market hunting and poaching, there were only two dozen bison left in Yellowstone. Over the next hundred years, park employees worked to bring this species back from the brink of extinction. We succeeded, and now face the challenge of helping to manage a rapidly growing population of migratory bison that frequently roam beyond our borders onto private land and land managed by other agencies.

Challenges

Yellowstone's bison population is growing; the park's borders are not.

Due to high rates of survival and reproduction, the bison population increases by 10 to 17% every year. Currently, predation by wolves and bears has little effect on the population. Unless bison are allowed to seasonally migrate into surrounding states like other wildlife, we will eventually reach a point where there are too many bison in too small a space. Allowing the bison population to grow indefinitely will cause larger migrations and greater conflict outside the park.

The State of Montana treats bison differently than other wildlife.

Bison are not allowed to move freely outside Yellowstone due to fears by livestock interests that they might transmit brucellosis to cattle or compete with cattle for grass, as well as concerns for human safety and property damage. These fears have resulted in Montana legislation that prohibits moving live bison to other conservation areas, leaving few options to control the population. For long-term conservation, Yellowstone bison need access to habitat outside the park. All other wildlife moves freely in and out of the park, including elk—another species that carries brucellosis.

Hunting inside the park is not an option.

Hunting is prohibited in Yellowstone, which is why the park offers some of the best wildlife viewing in the world. A frequently asked question is: “Can you open the park to bison hunting?” Yellowstone's enabling legislation explicitly forbids hunting in the park.

Eight agencies make decisions about Yellowstone bison.

In 1995, the State of Montana sued the National Park Service because bison were migrating out of the park onto state lands. A court-mediated settlement reached in 2000 created the Interagency Bison Management Plan, which set a population target of around 3,000 animals and established a cooperative effort to manage bison in and around Yellowstone.

Bison need to be managed.

Until there is more tolerance for bison outside Yellowstone, the population can only be controlled by hunting outside the park and capture near the park boundary. Captured bison are transferred to Native American tribes for slaughter and distribution of meat and hides to their members. We understand that many people are uncomfortable with the practice of capture and slaughter—we are too, but there are no other options at this time. We have proposed alternatives, like quarantine and expanded tolerance, but these actions have been opposed by the Montana Department of Livestock and the Animal and Plant Health Inspection Service.

Our Goals

Maintain a viable, wild, migratory population of our national mammal.

Yellowstone provides one of the few places where bison live much like their ancestors did: unfenced, and unprotected from harsh winters, drought, or predation. Yellowstone bison also provide a genetic link to those ancestors, and show no evidence of interbreeding with domestic cattle. They were declared our national mammal in 2016 because they’re a symbol of wild America, an important part of our heritage, and a key player in an ecosystem that’s much larger than a national park.

Send Yellowstone bison to other conservation areas.

It is against state and federal laws to move wild bison exposed to brucellosis anywhere except to meat processing and research facilities. We’ve proposed to implement a quarantine program for bison in collaboration with the Assiniboine and Sioux tribes on the Fort Peck Reservation. From quarantine, animals that repeatedly test negative for brucellosis could be sent alive to other public, private, or tribal lands. Quarantine would reduce the need for capture/slaughter operations, and it would promote an even more robust population of Yellowstone bison across the country. The State of Montana and the Animal and Plant Health Inspection Service have opposed this proposal.

Develop a new bison management plan.

While the existing plan has been effective at preventing brucellosis transmission and maintaining a viable population, we believe that we’ve outgrown it. New data about bison biology and disease prevalence are available, and public opinion is shifting toward more tolerance for bison in Montana. We need a new paradigm that recognizes bison as wildlife and gives them the ability to move more freely on suitable public lands outside the park.
their federal and state governments to manage bison, including how many bison should be tolerated on public lands, what should be done with “surplus” bison, and how much money should be spent on bison management and brucellosis suppression.

The management of bison near the boundary of Yellowstone National Park, which includes hazing, capture, culling, and vaccination, is unsettling to many people. Park staff are often asked why bison are managed differently from other wildlife and not allowed to move freely into Montana and disperse to new areas. Conversely, other people believe bison should be kept in the park and either managed like livestock or hunted to reduce numbers below the capacity of the winter habitat to support them. Many constituents are adamant that Yellowstone bison should be relocated elsewhere instead of being culled (e.g., shipped to slaughter) due to concerns about brucellosis transmission to cattle.

The debate about how to conserve and manage Yellowstone bison involves a variety of issues, including:

- abundance – how many are enough?
- distribution – where will bison be tolerated outside the park?
- brucellosis infection – what should be done and what can be done to suppress the disease and/or lessen transmission risk to cattle?
- genetic integrity – what should be done to preserve existing genetic diversity and population substructure?
- habitat – should humans intervene to control ungulate numbers and grazing effects?
- wildness – what intensity and types of management are appropriate in a national park whose mission is to preserve native species and the ecological processes that sustain them?

Incorporated in these over-arching issues is a broad spectrum of beliefs, concerns, and values held by a diverse range of stakeholders, including advocates, local community members, regulators and scientists, American Indian tribes, and the national and international public. Many of these constituents from across the spectrum of values support the conservation of wild Yellowstone bison, but with differing views regarding what constitutes responsible management actions to mitigate conflicts. The challenge for bison managers is how to consider this wide variety of viewpoints to reach a reasonable solution for the long term conservation of this iconic and ecologically important population. There is no quick and easy resolution, but the intense management of Yellowstone bison is necessary at times to gain tolerance for them in modern society in the short term and enhance the conservation of this valuable population and the habitats that sustain them over the long term.

Ecosystem-wide Interaction

Yellowstone bison are prolific and have high survival rates, with wolves currently killing few bison because elk are more vulnerable prey. As a result, bison numbers increase rapidly when environmental conditions are suitable, with abundance increasing to more than 4,000 individuals on several occasions and reaching a high of approximately 5,500 bison in 2016. At these numbers, a winter with deep snow pack can induce many hundreds of bison to migrate into Montana because lower-elevation habitat for bison is limited by mountains within Yellowstone National Park. As a result, bison will continue to move from the park into Montana during winter, with higher numbers migrating as bison abundance and winter severity increase.
Due to existing agriculture and development in the Yellowstone and Madison River valleys, however, there is not sufficient low-elevation, valley bottom habitat north and west of Yellowstone National Park where bison are currently tolerated that could sustain many hundreds or thousands of bison for extended lengths of time during winter. Thus, bison could rapidly fill available habitat, and if given the opportunity, attempt to migrate further during some winters, which will eventually bring them into areas (e.g., Paradise Valley) occupied by many hundreds of cattle. Without human intervention, some bison that spend winter north and west of Yellowstone National Park in Montana will not migrate back into the park during spring, but will attempt to expand their range into other areas with suitable habitat but currently no tolerance for bison. In addition, there are still tangible concerns about the transmission of brucellosis from bison to cattle, with regulatory and economic consequences of cattle contracting brucellosis. As a result, there is a need to manage bison to prevent comingling with cattle.

Furthermore, there are political and social concerns about allowing large numbers of these massive, wild animals into Montana, and options for relocating Yellowstone bison elsewhere are limited by real and perceived disease and social concerns. Therefore, bison will at times need to be intensively managed and culled from the population to prevent the limited tolerance for wild bison on the landscape in Montana from being rescinded.

Multiple Jurisdictions, Multiple Interests
The National Park Service cannot achieve bison conservation on its own. When bison cross the boundary of Yellowstone National Park into Montana they are no longer under the jurisdiction of the National Park Service and their management is the prerogative of the state and the Custer Gallatin National Forest on National Forest System lands. Bison are managed differently than other wildlife that migrate or disperse outside Yellowstone National Park.

The State of Montana allows some bison to migrate outside Yellowstone National Park and occupy suitable winter range near the park boundary—and tolerance on additional range may occur in the future. However, mass migrations of many hundreds of bison out of the park have, at times, upset state and local governments and many private landowners and cattle operators. As a result, if bison were allowed to increase in abundance and disperse unimpeded into cattle-occupied areas of Montana, it is likely those bison would be lethally removed by state employees or during regulated hunts. Also, the state agencies would likely retract tolerance for bison in Montana. Due to chronic brucellosis infection in Yellowstone bison, the agriculture department has superseding management authority. Thus, management practices such as hunting, hazing, capture, and culling are necessary at times to limit the abundance and distribution of bison and allow people (including federal and state managers) time to learn to live with, and manage, bison.

The demand for bison for quarantine or research is currently low and the current social capacity for public and treaty harvests near the boundary of Yellowstone National Park is probably less than 500–600 bison each winter. Thus, bison will at times need to be removed from the population by other means, such as shipments to slaughter facilities or terminal pastures, even though there is little political or social support for such actions. Wild ungulates are commonly harvested throughout most of the United States, and some big-horn sheep, deer, elk, and moose that spend summer in Yellowstone National Park, but migrate to lower elevations in surrounding states in autumn and winter, are harvested during regulated hunts.

Interagency Bison Management Plan
In 2000, the federal government and the State of Montana signed an agreement that established guidelines for cooperatively managing the risk of brucellosis transmission from bison to cattle—primarily by excluding bison from areas used by cattle.
This Interagency Bison Management Plan (IBMP) also emphasized preserving the bison population as a natural component of the ecosystem and allowing some bison to occupy winter ranges on public lands in Montana. Five agencies were originally responsible for implementing the plan—the National Park Service, Animal and Plant Health Inspection Service, U.S. Forest Service, Montana Department of Livestock, and Montana Fish, Wildlife & Parks. The Confederated Salish and Kootenai Tribes of the Flathead Nation, Nez Perce Tribe, and InterTribal Buffalo Council were added as members in 2009 due to their treaty hunting rights on some unoccupied federal lands in southwestern Montana and their commitment to restoring bison.

The IBMP members cooperatively support various management and monitoring activities for bison. The National Park Service has jurisdiction over all bison management actions inside the park, while the Montana Department of Livestock has lead responsibility outside the park. Property damage issues on private lands are the responsibility of Montana Fish, Wildlife & Parks, who may request assistance from the Department of Livestock. The IBMP uses risk management procedures to maintain spatial and temporal separation between bison and cattle around Yellowstone National Park. For bison to transmit brucellosis directly to cattle, infected bison must leave Yellowstone National Park where there are no cattle, enter areas where cattle graze, shed infectious tissues via abortions or live births, and have cattle contact these tissues before they are removed from the environment or the Brucella bacteria die. The plan was designed to progress through a series of management steps that gradually tolerated more bison on winter ranges outside Yellowstone National Park when cattle are not present as the risk of brucellosis transmission from bison to cattle was reduced.

Adaptive Management

The plan was adjusted in 2005 and 2006 to include bison hunting as a management action outside Yellowstone National Park and increase tolerance for bull bison in Montana because there appears to be little risk of them transmitting brucellosis to cattle during winter and spring. These adjustments allowed bison not tested for brucellosis exposure to migrate to winter ranges outside the park and provide hunting opportunities for state-licensed hunters, as well as tribes with rights reserved through treaties with the U.S. government to hunt on certain federal lands. Since 2005, these hunts have been implemented with variable harvest levels depending on how many bison move outside the park in response to snow depths in the higher mountains.

From 2006 to 2010, Montana Fish, Wildlife & Parks and the Animal and Plant Health Inspection Service initiated a quarantine feasibility study with

Quick Facts about the Interagency Bison Management Plan

- Final Environmental Impact Statement for the Interagency Bison Management Plan (IBMP) for the State of Montana and Yellowstone National Park was adopted in 2000.
- Adaptive management plan was developed in 2008.
- www.ibmp.info provides bison management documents to the public.

Interagency Partners

- National Park Service (NPS)
- Animal and Plant Health Inspection Service (APHIS)
- U.S. Forest Service (FS)
- Montana Department of Livestock (DOL)
- Montana Department of Fish, Wildlife and Parks (FWP)
- InterTribal Buffalo Council (ITBC)
- Confederated Salish Kootenai Tribes of the Flathead Nation
- Nez Perce Tribe

Objectives

- Maintain a wild, free-ranging bison population.
- Reduce risk of brucellosis transmission from bison to cattle.
- Maintain and preserve the ecological function that bison provide in the Yellowstone area, such as their role as grassland grazers and as a source of food for carnivores.
- Maintain genetic integrity of the bison population.
- Prevent dispersal beyond conservation area.
- Lower brucellosis prevalence because it is not a native organism.

Current Status

- Yellowstone bison have access to 75,000 acres of habitat in the Gardiner Basin of Montana.
- As of December 2015, wild bison are tolerated year-round outside the west and northern boundaries.
- Fewer cattle graze lands near park than in 2000.
- The State of Montana is managing a bison hunt on public lands outside the park.
- Five tribes are conducting subsistence bison hunts on unclaimed federal lands outside the park by authority of their respective treaties with the United States.
bison calves from Yellowstone National Park that initially tested negative for brucellosis exposure. Two study groups, or cohorts, were held at a research facility north of Yellowstone National Park to evaluate if they would remain free of brucellosis through at least their first pregnancy and calving. By 2010, the quarantine feasibility study was deemed successful and the surviving original bison and their offspring were considered brucellosis free. In February 2010, 87 bison from the first study group were transferred from the quarantine facility to the Green Ranch in Montana owned by Turner Enterprises for additional surveillance. In November 2014, the first cohort of quarantine graduates, plus 25% of their offspring, were transferred from the Green Ranch to tribal lands on the Fort Peck Reservation in northeastern Montana. Seventy-five percent of the offspring were retained by Turner Enterprises as negotiated in their agreement with the State of Montana. In March 2012, agents of the State of Montana transferred 61 bison from the second cohort at the quarantine facility to the Fort Peck Indian Reservation for five years of additional surveillance. In August 2013, the Fort Peck Assiniboine and Sioux Tribes transferred 34 of the Yellowstone bison under their surveillance to the Fort Belknap Reservation in Montana. In November 2014, the original quarantine bison plus 25 percent of the offspring (139 total) at the Green Ranch were transferred to the Fort Peck Reservation.

The IBMP members meet several times each year in public venues to review, evaluate, and modify operating procedures for accomplishing the objectives of the plan (see meeting minutes at the www.ibmp.info website). Since 2009, numerous adaptive adjustments to the management plan have been approved to improve management of Yellowstone bison, including increased tolerance for bison in some areas north and west of the boundary of the Park.

In 2016 the IBMP was adjusted to provide year-round tolerance for bison in some areas of Montana located north and west of Yellowstone national Park. Over time, this should enhance bison resoration in these historically occupied areas and increase treaty hunting opportunities while decreasing the frequency and extent of hazing and capture.

Bison are interwoven into the cultures of American Indian Tribes and under the IBMP, the primary options for culling bison are treaty harvests, the provision of bison meat and hides to tribes for consumption and cultural use, and the restoration of bison to tribal lands to improve their cultural, economic, nutritional, and social well-being. The National Park Service has been working to transfer some Yellowstone bison directly to tribes for processing; and is working with federal and state animal health officials to develop protocols and facilities for transferring brucellosis-free bison to tribal lands and/or establishing quarantine facilities on tribal lands in accordance with applicable state, federal, and tribal codes.

Plan Outcomes

The conservation of bison has been relatively successful under the IBMP, with overall abundance during summer ranging between approximately 2,400 and 5,500 (average ~4,100) during 2001 through 2017. Yellowstone bison are managed as wildlife in multiple, large herds that migrate and disperse across an extensive landscape and are subject to a full suite of native ungulates and predators, other natural selection factors, and substantial environmental variability. Yellowstone bison have a relatively high degree of genetic variation, which should be maintained for centuries with a fluctuating population size that averages about 3,500 bison. Also, adaptive management adjustments during 2005 to 2016 increased the tolerance for bison on habitat in Montana.

Likewise, mitigation of the risk of brucellosis transmission from bison to cattle has occurred under the IBMP. To date, no documented transmission of brucellosis from Yellowstone bison directly to cattle has occurred, due in part to successful efforts by the agencies to maintain separation between them. Conversely, dozens of transmissions from elk to cattle have occurred since 1998. Currently, the risk of brucellosis transmission from bison to cattle is low during winter and spring because few cattle are in the areas where bison are tolerated north and west of the park. By the time more cattle are released onto public and private lands north and west of the park during mid-June and July, the bison calving season has ended and bison are usually following the progressive green-up of new grasses back into the park interior as snow melts at higher elevations. Brucellosis transmission risk is limited due to the combined effects of management to maintain separation between cattle and bison, the synchrony of most bison parturition events into a short period and in areas separate from cattle summer ranges, the cleaning of birth sites by female bison and the relatively quick environmental degradation of *Brucella* in late spring weather, and
scavenger removal of potentially infectious birth tissues that makes it unlikely that viable Brucella abortus bacteria would remain for cattle to encounter.

More Information

Staff Reviewers
Rick Wallen, Senior Wildlife Biologist
P. J. White, Branch Chief of Wildlife and Aquatic Resources
Bighorn Sheep
Although widely distributed across the Rocky Mountains, bighorn sheep (*Ovis canadensis*) persist chiefly in small, fragmented populations that are vulnerable to sudden declines as a result of disease, habitat loss, and disruption of their migratory routes due to roads and other human activities. About 10 to 13 interbreeding bands of bighorn sheep occupy steep terrain in the upper Yellowstone River drainage, including habitat that extends more than 20 miles north of the park. These sheep provide visitor enjoyment as well as revenue to local economies through tourism, guiding, and sport hunting. Mount Everts receives the most concentrated use by bighorn sheep year-round.

Population
From the 1890s to the mid-1960s, the park’s bighorn sheep population fluctuated between 100 and 400. Given the vagaries of weather and disease, bighorn sheep populations of at least 300 are desirable to increase the probability of long-term persistence with minimal loss of genetic diversity. The count reached a high of 487 in 1981, but a keratoconjunctivitis (pinkeye) epidemic caused by Chlamydia reduced the population by 60% the following winter and the population has been slow to recover. Although the temporary vision impairment caused by the infection is rarely fatal for domestic sheep that are fenced and fed, it can result in death for a sheep that must find its forage in steep places. During the 2016 survey a total of 320 bighorn sheep were observed, including 170 in Montana and 150 in YNP. These results are very similar to the

Quick Facts
Number in Yellowstone
329 in the northern Yellowstone area in 2015 (163 counted inside the park).

Where to See
- Summer: slopes of Mount Washburn, along Dunraven Pass.
- Year-round: Gardner Canyon between Mammoth and the North Entrance.
- Also: On cliffs along the Yellowstone River opposite Calcite Springs; above Soda Butte; in backcountry of eastern Absarokas.

Behavior and Size
- Average life span: males, 9–12 years; females 10–14 years.
- Adult male (ram): 174–319 pounds, including horns that can weigh 40 pounds. The horns of an adult ram can make up 8–12% of his total body weight.
- Adult female (ewe): up to 130 pounds.
- Horn growth is greatest during the summer and early in life. Female horns grow very little after 4–5 years, likely due to reproductive costs.
- The horn size of bighorn sheep rams can influence dominance and rank, which affects social relationships within herds.
- Older ram horns may be “broomed” or broken at the tip, which can take off 1–2 years of growth.
- Mating season begins in November.
- Ram skulls have two layers of bone above the brain that function as a shock absorber, an adaptation for the collision of head-on fighting that is used to establish dominance between rams of equal horn size, especially during mating.
- One to two lambs born in May or June.

Habitat
- Feed primarily on grasses; forage on shrubby plants in fall and winter.
- Rocky Mountain bighorn sheep, found in greater Yellowstone, differ from other currently recognized subspecies in the United States: Desert bighorn sheep, which is currently listed as an endangered species, Dall sheep found in Alaska and northwestern Canada, and Stone’s sheep, which are a subspecies of Dall sheep.

Management
- Early reports of large numbers of bighorn sheep in Yellowstone have led to speculation they were more numerous before the park was established.
- A chlamydia (pinkeye) epidemic in 1981–1982 reduced the northern herd by 60%.

All bighorn sheep have horns. The rings on horns can be used to determine age, though it is easier to count the rings on a ram (above).
2015 count (329), but 24% lower than 2014 (421), and 27% lower than the recent high in 2013 (439). In Yellowstone National Park, overall numbers were down 8%.

The 2016 count of 320 bighorn sheep in the upper Yellowstone is the lowest since 2006. During 2005-2015 the population increased steadily. A decline occurred in 2015 related to an all-age pneumonia event. This year we have observed stable overall numbers and increased lamb recruitment, and no known pneumonia related mortalities. These factors suggest that the population is stabilizing from the disease event. In spite of the 2015 decline, overall bighorn sheep numbers in the Upper Yellowstone remain substantially above the long-term average.

Competition with Other Species

Bighorn sheep populations that winter at high elevations are often small, slow growing, and low in productivity. Competition with elk as a result of dietary and habitat overlaps may have hindered the recovery of this relatively isolated population after the pinkeye epidemic. Rams may be hunted north of the park, but the State of Montana has granted few permits in recent years because of the small population size.

Although wolves occasionally prey on bighorn sheep, the population has increased since wolf reintroduction began in 1995. Longer-term data are needed to show whether sheep abundance may be inversely related to elk abundance on the northern range. The Wyoming Game and Fish Department, Montana Fish, Wildlife and Parks, the Idaho Department of Fish and Game, Montana State University, the US Forest Service, and several non-governmental organizations are cooperating with the National Park Service to study how competition with nonnative mountain goats, which were introduced in the Absaroka Mountains in the 1950s, could affect bighorn sheep there.

More Information

Staff Reviewer

Travis Wyman, Biological Technician
Mountain Goats

Descendants of mountain goats (*Oreamnos americanus*) introduced in the Absaroka and Madison mountain ranges during the 1940s and 1950s established a population in Yellowstone National Park in the 1990s. They have reached a relatively high abundance in the northeastern and northwestern portions of the park. Investigations of paleontological, archeological, and historical records have not found evidence that the mountain goat is native to Greater Yellowstone.

Many people consider the goats a charismatic component of the ecosystem, including those who value the challenge of hunting them outside the park. But the colonization has raised concerns about the goats’ effects on alpine habitats. Competition with high densities of mountain goats could also negatively affect bighorn sheep, whose range overlaps that of mountain goats.

Habitat

Mountain goats live in alpine habitats. Studies of alpine vegetation in the northeast portion of the park during 2002 and 2003 suggest that ridge top vegetation cover is lower, and barren areas along alpine ridges are more prevalent in areas that have received relatively high goat use. Studies by Idaho State University and the National Park Service during 2008–2010 suggest goats are affecting the soil chemistry of sites they inhabit by increasing the availability of soil nitrogen through deposition of urine and feces. Soil rockiness may be increasing slightly over time at sites with high goat presence, but no large-scale effects have been detected so far with respect to vegetation (species, community structure).

Colonization of suitable habitats south of The Thunderer and along the eastern park boundary within the Absaroka Mountain Range appears to be occurring, with a larger number of groups with females and young observed on Saddle Mountain and on Castor and Pollux peaks during recent years. Mountain goats were not surveyed in 2016 due to poor flying conditions for survey aircraft.

Quick Facts

Nonnative species

Number in Yellowstone

208 in and adjacent to Yellowstone.

Where to See

- Infrequently seen; northeastern and northwestern portions of the park in alpine habitat.
- Winter: steep, south-facing slopes, windblown ridgetops; Spring: south- and west-facing cliffs; Summer: meadows, cliffs, ravines, and forests.

Behavior and Size

- Mature male (billy) weighs 300 or more pounds; female (nanny) weighs 150 pounds.
- Young (kids) born in late May–June.
- Females usually begin to breed at 2½ years.
- Live in precipitous terrain.
- Both sexes have horns; females curve less and are thinner and sometimes longer than males.

More Information

Staff Reviewer

Travis Wyman, Biological Technician
Elk

Yellowstone provides summer range for an estimated 10,000–20,000 elk (*Cervus canadensis*) from 6–7 herds, most of which winter at lower elevations outside the park. These herds provide visitor enjoyment as well as revenue to local economies through hunting outside the park. As Yellowstone’s most abundant ungulate, elk comprise approximately 90% of winter wolf kills and are an important food for bears, mountain lions, and at least 12 scavenger species, including bald eagles and coyotes. Competition with elk can influence the diet, habitat selection, and demography of bighorn sheep, bison, moose, mule deer, and pronghorn. Elk browsing and nitrogen deposition can affect vegetative production, soil fertility, and plant diversity. Thus, changes in elk abundance over space and time can alter plant and animal communities in Yellowstone.

Description

Elk are the most abundant large mammal found in Yellowstone. European American settlers used the word “elk” to describe the animal, which is the word used in Europe for moose (causing great confusion for European visitors). The Shawnee word “wapiti,” which means “white deer” or “white-rumped deer,” is another name for elk. The North American elk is considered the same species as the red deer of Europe.

Bull elk are one of the most photographed animals in Yellowstone, due to their huge antlers. Bull elk begin growing their first set of antlers when they are about one year old. Antler growth is triggered in spring by a combination of two factors: a depression of testosterone levels and lengthening daylight. The first result of this change is the casting or shedding of the previous year’s “rack.” Most bulls drop their antlers in March and April. New growth begins soon after.

Growing antlers are covered with a thick, fuzzy coating of skin commonly referred to as “velvet.” Blood flowing in the skin deposits calcium that makes the antler. Usually around early August, further hormonal changes signal the end of antler growth, and the bull begins scraping the velvet off, polishing and sharpening the antlers in the process.

The antler growing period is shortest for yearling bulls (about 90 days) and longest for healthy, mature bulls (about 140 days). Roughly 70% of the antler growth takes place in the last half of the period, when the antlers of a mature bull will grow two-thirds of an inch each day. The antlers of a typical, healthy bull are 55–60 inches long, just under six feet wide, and weigh about 30 pounds per pair.

Quick Facts

<table>
<thead>
<tr>
<th>Number in Yellowstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Summer: 10,000–20,000 elk in 6–7 different herds.</td>
</tr>
<tr>
<td>• Winter: <5,000.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Where to See</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Summer: Cascade Meadows, Madison Canyon, and Lamar Valley.</td>
</tr>
<tr>
<td>• Autumn, during “rut” or mating season: northern range, including Mammoth Hot Springs; Madison River.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size and Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Males (bulls) weigh ~700 pounds and are ~5 feet high at the shoulder; females (cows) weigh ~500 pounds and slightly shorter; calves are ~30 pounds at birth.</td>
</tr>
<tr>
<td>• Winter: migrate north to the northern range and around Gardiner, Montana; <100 year-round along the Firehole and Madison rivers; south to the Jackson Hole Elk Refuge in Jackson, Wyoming.</td>
</tr>
<tr>
<td>• Bulls have antlers, which begin growing in the spring and usually drop in March or April of the next year.</td>
</tr>
<tr>
<td>• Feed on grasses, sedges, other herbs and shrubs, bark of aspen trees, conifer needles, burned bark, aquatic plants.</td>
</tr>
</tbody>
</table>

| Mating season (rut) in September and October; single calves born in May to late June. |
Bulls retain their antlers through the winter. When antlered, bulls usually settle disputes by wrestling with their antlers. When antlerless, they use their front hooves (as cows do), which is more likely to result in injury to one of the combatants. Because bulls spend the winter with other bulls or with gender-mixed herds, retaining antlers means fewer injuries sustained overall. Also, bulls with large antlers that are retained longer are at the top of elk social structure, allowing them preferential access to feeding sites and mates.

Mating Season
The mating season (rut) generally occurs from early September to mid-October. Elk gather in mixed herds—many females and calves, with a few bulls nearby. Bulls bugle to announce their availability and fitness to females and to warn and challenge other bulls. When answered, bulls move toward one another and sometimes engage in battle for access to the cows. They crash their antlers together, push each other intensely, and wrestle for dominance. While loud and extremely strenuous, fights rarely cause serious injury. The weaker bull ultimately gives up and wanders off.

Calves are born in May and June. They are brown with white spots and have little scent, providing them with good camouflage from predators. They can walk within an hour of birth, but they spend much of their first week to ten days bedded down between nursing.

Population
The high elevation grasslands of the park provide summer habitat for 10,000–20,000 elk. However, less than 5,000 elk spend winter in the park. Climate is an important factor affecting the size and distribution of elk herds. Many ungulates migrate to increase their access to high-quality food. They prefer to feed on young plants, which are the most nutritious. In winter, colder temperatures and snowfall decrease the amount of forage that grows, and decrease the amount of forage that is accessible to wildlife. This forces elk to migrate to areas where forage is more available. The timing and routes of Northern Yellowstone elk migration closely follow the areas of seasonal vegetation growth and changes in snow depth. After winters with high snowpack, elk delay migration. In years with lower snowpack and earlier vegetation green-up, elk migrate earlier.
Ungulates that migrate typically give birth around periods of peak vegetation green-up to overlap with high-nutrition plant phases. Nutritious food allows mothers and calves to build up fat reserves. Changes in climate will undoubtedly impact newborn elk, but it is difficult to predict whether that impact will be positive or negative. Earlier spring could lead to a longer snow-free season where migration and access to food are not encumbered. However, a longer growing season, without increased access to high-quality forage, might have a negative impact. Warmer temperatures could increase the rate of green-up, causing the plants to complete their growth cycle faster, and shorten the period of time that food is available and accessible. Also, earlier spring could result in a mismatch in the timing of calving and the date of peak plant nutrition, resulting in high mortality of newborn calves.

Elk on the Northern Range

Yellowstone’s largest elk herd winters along and north of the park’s winter boundary. With more moderate temperatures and less snowfall than the park interior, this area can support large numbers of wintering elk. The herd winters in the area of the Lamar and Yellowstone river valleys from Soda Butte to Gardiner, Montana. Now, the majority of the northern herd migrates outside of the park into the Custer Gallatin National Forest and onto private land.

After decades of debate over whether this range was overgrazed by too many elk, public concern has shifted to the herd’s small size. The winter count, which was approximately 17,000 when wolf reintroduction began in 1995, fell below 10,000 in 2003. It fluctuated between 6,000 and 7,000 as the wolf population on the park’s northern range declined from 94 in 2007 to 50 by the end of 2015. The elk count dropped to 3,915 in early 2013, the lowest since culling ended in the park in the 1960s. However, the January 2017 aerial survey counted 5,349 elk on the Northern Range. This count was 9% higher than the 2016 survey results of 4,912 elk, and was 37% higher than the 2013 low. These minimum estimates suggest the herd decline has stabilized. Decreased numbers have been attributed to large carnivore recovery (wolves, cougars, bears), hunter harvest, and drought-related effects on pregnancy and survival. The State of Montana has reduced the permits issued for this herd so that hunting of females now has little impact on population size.

There are some indications that elk–wolf interactions are contributing to a release of willows and other woody vegetation from the effects of herbivory on the northern range. Wolves have altered elk behavior that influences group sizes, habitat selection, movements, distribution, and vigilance; while the proportion of browsed aspen, cottonwood, and willow leaders has decreased in some areas during recent years, and cottonwood and willow heights have increased significantly. Others argue that lower elk densities over the last two decades—resulting from the combined effects of predators (wolves, cougars, bears), human hunters, and weather—has necessarily altered the impact of elk browsing. Research is underway to determine the relative effects of climate, hydrology, carnivore predation/avoidance, and herbivory on these woody species.
Elk in the Interior

Only one herd lives both winter and summer inside the park. The Madison–Firehole elk herd (less than 100 animals) has been the focus of a research study since November 1991. Researchers are examining how environmental variability effects ungulate reproduction and survival. Prior to wolf restoration, the population was naturally regulated by severe winter conditions to a degree not found in other, human-hunted elk herds. The elk are also affected by high fluoride and silica levels in the water and plants they eat, which affect enamel formation and wear out teeth quickly—thus shortening their lives. The typical life span is 13 years; elk on the northern range regularly live to about 18 years. Information gained in this study will be useful in comparing non-hunted and hunted elk populations.

Elk in the Greater Yellowstone Ecosystem

The Greater Yellowstone Ecosystem is home to approximately 30,000–40,000 elk. For most of the last two decades, the Jackson herd, which currently numbers about 12,000, has been larger than the northern Yellowstone herd. Some ranges and migratory routes overlap, and some interchange occurs among the herds. Summer range in the southern part of Yellowstone National Park is used by part of the Jackson herd as well as by elk from the North Fork Shoshone and northern Yellowstone herds. Because the wildlife responsibilities of the National Park Service, the US Fish and Wildlife Service, the US Forest Service, and state wildlife agencies also coincide, elk management in Greater Yellowstone requires substantial coordination among government agencies with different priorities.

Disease in Greater Yellowstone

Brucellosis

Many elk and bison in the Greater Yellowstone Ecosystem have been exposed to the bacterium that causes brucellosis. Brucellosis is a contagious bacterial disease that originated in livestock and often causes infected cows to abort their first calves. It is transmitted primarily when susceptible animals directly contact infected birth material. No cure exists for brucellosis in wild animals. For more information about brucellosis, see "Bison."

The prevalence of brucellosis in Yellowstone elk is low; the rate of exposure to brucellosis in 100 adult female elk captured on the park’s northern range during the winters of 2000 to 2005 was 2%; it was 3% in 130 neonatal elk on the park’s northern range during the summers of 2003–2005; and it was 3% in 73 adult female elk captured in the park’s Madison–Firehole drainages during winters of 1996–1998. Elk are commonly observed within 100 yards of bison during late winter and spring when brucellosis-induced abortion or calving occurs in Yellowstone.

Because of their high densities, elk that are fed in winter have sustained high levels of brucellosis; winter feeding on the northern range stopped more than 50 years ago. Elk are fed during the winter at the National Elk Refuge in Jackson, Wyoming, in addition to 22 Wyoming-run feed grounds. The feed grounds were created in the 1900s to maintain Wyoming’s elk herds and limit depredation as migratory routes from summer range to lower elevation winter ranges became blocked by settlement in the Jackson area. Transmission of brucellosis from feed ground elk, where an average of 30% have tested positive for exposure to the bacteria, was the apparent source of infection in Wyoming cattle in 2004.

Chronic Wasting Disease

Elk, deer, and moose in and near Yellowstone National Park are at risk for infection by chronic wasting disease (CWD). This fatal infection,
transmitted by animal contact or through the environment, has spread to within 10 miles of the park. National Park Service staff and partners will continue surveillance and, if necessary, take action to minimize both transmission of the disease and the effects of intervention on the elk population and other park resources.

More Information

Staff Reviewer
Dan Stahler, Wildlife Biologist
Moose

Moose in Yellowstone are one of four subspecies of moose (*Alces alces shirasi*) in North America, and are found in forested areas and willow flats from southeastern British Columbia to northern Colorado. They are better adapted to survival in deep snow than other ungulates in Greater Yellowstone. Except during the rut, moose are usually found alone or in small family groups. This behavior, and their use of habitat where they are often well concealed, impedes accurate estimates of population size and distribution.

Description

Moose are the largest members of the deer family in Yellowstone. Both sexes have long legs that enable them to wade into rivers and through deep snow, to swim, and to run fast. Despite its size, a moose can slip through the woods without a sound. Moose, especially cows with calves, are unpredictable and have chased people in the park.

Both sexes are dark brown, often with tan legs and muzzle. Bulls can be distinguished from cows by their antlers. Adults of both sexes have “bells”—a pendulous dewlap of skin and hair that dangles from the throat and has no known function.

In summer, moose eat aquatic plants like water lilies, duckweed, and burweed. But the principle staples of the moose diet are the leaves and twigs of the willow, followed by other woody browse species such as gooseberry and buffaloberry. An adult moose consumes approximately 10–12 pounds of food per day in the winter and approximately 22–26 pounds of food per day in the summer.

Some moose that summer in the park migrate in winter to lower elevations west and south of Yellowstone where willow remains exposed above the snow. But many moose move to higher elevations (as high as 8,500 feet) to winter in mature stands of subalpine fir and Douglas-fir.

Moose are solitary creatures for most of the year, except during the mating season or rut. During the rut, both bulls and cows are vocal: the cows may be heard grunting in search of a mate, and bulls challenge one another with low croaks before clashing with their antlers. The weaker animal usually gives up before any serious damage is done; occasionally the opponent’s antlers inflict a mortal wound.

Bulls usually shed their antlers in the beginning of winter to help conserve energy and survive the winter.

Quick Facts

Number in Yellowstone
- Fewer than 200
- Population has declined in last 40 years due to loss of old growth forests surrounding the park, hunting outside the park, burning of habitat, and predators.

Where to See
- Marshy areas of meadows, lake shores, and along rivers.

Behavior and Size
- Adult male (bull) weighs close to 1,000 pounds; female (cow) weighs up to 900 pounds; 5½ to 7½ feet at the shoulder. Young weigh 25–35 pounds at birth.
- Usually alone or in small family groups.
- Mating season peaks in late September and early October; one or two calves born in late May or June.
- Lives up to 20 years.
the knobs change into antlers and grow until August. The antlers are flat and palmate (shaped like a hand). Yearlings grow six to eight inch spikes; prime adult bulls usually grow the largest antlers—as wide as five feet from tip to tip. When the antler reach their full size, the bull rubs and polishes his antlers on small trees in preparation for the rut.

Cows are pregnant through the winter; gestation is approximately eight months. When ready to give birth, the cow drives off any previous year’s offspring that may have wintered with her and seeks out a thicket in which to give birth.

Population
Moose appear to have been scarce in Yellowstone until the latter half of the 1800s and in Jackson Hole until early in the 1900s. Predator control programs, forest fire suppression, and restrictions on moose hunting, contributed to their subsequent range expansion and increased numbers.

Forest fire suppression was probably the most important factor in their population increase because moose in Greater Yellowstone depend on mature spruce/fir forests for winter survival, unlike other North American moose populations that prefer shrubland that has been disturbed by events like fires.

Although some Rocky Mountain moose populations have continued to grow and spread into new habitat, those in Yellowstone have declined. Estimated at roughly 1,000 in the 1970s, by 1996 (the most recent data) the Yellowstone moose population declined to less than 200, with the northern range population down by at least 75% since the 1980s.

The moose population declined steeply following the fires of 1988 that burned mature fir forests. Many old moose died during the winter of 1988–89, probably as a combined result of the loss of good moose forage and a harsh winter. Unlike moose habitat elsewhere, northern Yellowstone does not have woody browse species that will come in quickly after a fire and extend above the snowpack to provide winter food.

Recent studies south of the park also suggest that fires on the summer ranges of migratory moose is partially responsible for the population decline. The population of moose that uses burned areas is declining more rapidly than the portion of the population that forages in unburned areas.

Predation of moose calves by bear and wolf populations may be continuing to limit population growth, but the low pregnancy rates of Greater Yellowstone moose suggest limits set by food availability. Long-term studies suggest that North American moose populations tend to erupt, crash, and then stabilize for a time at a density that depends on current ecological conditions and hunting pressure.

The State of Montana has noted a state-wide decline in moose populations. Moose hunting in the districts immediately north of Yellowstone has been limited to antlered bulls since 1996. Only 2 permits were issued in those districts in 2014. In 2012, Montana Fish, Wildlife and Parks began a study to assess and monitor the population across the state. Since winter 2013–2014, a northern Yellowstone National Park moose study has been underway with the main objective to estimate population abundance and vital statistics of northern Yellowstone moose using non-invasive methods.

Today, moose are most likely seen in the park’s southwestern corner and in the Soda Butte Creek, Pelican Creek, Lewis River, and Gallatin River drainages.

More Information

Staff Reviewer
Dan Stahler, Wildlife Biologist
Deer
The Greater Yellowstone Ecosystem is home to both mule deer (*Odocoileus hemionus*) and white-tailed deer (*Odocoileus virginianus*). The mule deer, also called blacktail deer, is an exclusively western species commonly seen in open-brush country throughout the western states. Widely dispersed throughout Yellowstone National Park during the summer, mule deer migrate seasonally and most of the population winters outside of the park. Although the white-tailed deer is the most common deer species throughout North America, it has never been abundant in Yellowstone. This may be due to habitat and elevation constraints on the northern range or competition from other ungulates that are better suited to park habitat. The two species are differentiated by their antler shape and tail size and appearance.

Behavior
All species of deer use their hearing, smell, and sight to detect predators such as coyotes, cougars, or wolves. They probably smell or hear the approaching predator first; then may raise their heads high and stare hard, rotating ears forward to hear better. If a deer hears or sees movement, it flees.

Population
The State of Montana Department of Fish, Wildlife, and Parks surveys the northern range population outside the park. In 2016 an aerial survey detected 1,757 mule deer in the Gardiner Basin area. No surveys are conducted within the park. Since surveys began in 1986 we have observed an average of 66 mule deer (above) are common in Yellowstone, living throughout the park in almost all habitats; white-tailed deer are scarce and generally occur along streams and water in the northern range.
Mule deer (or 3% of the total count) in northern Yellowstone each year. While the relative distribution of mule deer across their winter range has remained similar over the last two decades, the population appears to cyclical increases and decreases. Mule deer populations may decline during severe winters, when deep snow and extremely cold temperatures make foraging difficult.

Although researchers estimate that northern Yellowstone has a summer mule deer population of 1,850 to 1,900, fewer than several hundred stay in the park all winter. Unlike elk and bison, many of which remain in the park throughout the year, mule deer are preyed upon by wolves, coyotes, cougars, and bears in the park mostly in the summer. Because of the mule deer’s seasonal distribution, the relative scarcity of white-tailed deer, and the abundance of elk, which are the main prey of wolves, wolf recovery in Yellowstone is believed to have had little effect on deer populations and recruitment.

Although the primary causes of deer mortality are winter kill and predation, mule deer and white-tailed deer outside the park are subject to state-regulated harvesting in the fall. Because of their scarcity, little is known about the white-tailed deer that inhabit the northern range, and the population within the park is not monitored.

More Information

Staff Reviewer
Travis Wyman, Biological Technician
Pronghorn
The North American pronghorn (*Antilocapra americana*) is the surviving member of a group of animals that evolved in North America during the past 20 million years. It is not a true antelope, which is found in Africa and southeast Asia. The use of the term “antelope” seems to have originated when the first written description of the animal was made during the 1804–1806 Lewis and Clark Expedition.

Description
The pronghorn has true horns, similar to bison and bighorn sheep. The horns are made of modified, fused hair that grows over permanent bony cores, but they differ from those of other horned animals in two major ways: the sheaths are shed and grown every year and they are pronged. (A number of other horned mammals occasionally shed their horns, but not annually.) Adult males typically have 10–16 inch horns that are curved at the tips. About 70% of the females also have horns, but they average 1–2 inches long and are not pronged. The males usually shed the horny sheaths in November or December and begin growing the next year’s set in February or March. The horns reach maximum development in August or September. Females shed and regrow their horns at various times.

Pronghorn are easy to distinguish from the park’s other ungulates. Their deer-like bodies are reddish-tan on the back and white underneath, with a large white rump patch. Their eyes are very large, which provides a large field of vision. Males also have a black cheek patch.

Behavior
Females that bred the previous fall commonly deliver a set of twins in May or June. The newborn fawns are a uniform grayish-brown and weigh 6–9 pounds. They can walk within 30 minutes of birth and are capable of outrunning a human in a couple of days. The young normally stay hidden in the vegetation while the mother grazes close by. After the fawns turn three weeks old they begin to follow the females as they forage. Several females and their youngsters join together in nursery herds along with yearling females.

Pronghorn form groups most likely for increased protection against predators. When one individual detects danger, it flares its white rump patch,

Quick Facts

<table>
<thead>
<tr>
<th>Number in Yellowstone</th>
<th>466 in February, 2016 (highest count since 1992-536)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where to See</td>
<td>Summer: Lamar Valley; some may be near the North Entrance at Gardiner, Montana.</td>
</tr>
<tr>
<td></td>
<td>Winter: between the North Entrance and Reese Creek.</td>
</tr>
<tr>
<td>Behavior and Size</td>
<td>Male (buck) weighs 100–125 pounds; female (doe) weighs 90–110 pounds; adult length is 45–55 inches and height is 35–40 inches at shoulder.</td>
</tr>
<tr>
<td></td>
<td>Average life span: 7–10 years.</td>
</tr>
<tr>
<td></td>
<td>Young (fawns) born in late May–June.</td>
</tr>
<tr>
<td></td>
<td>Live in grasslands.</td>
</tr>
<tr>
<td></td>
<td>Can run for sustained sprints of 45–50 mph.</td>
</tr>
<tr>
<td></td>
<td>Eat sagebrush and other shrubs, forbs, some grasses.</td>
</tr>
<tr>
<td></td>
<td>Both sexes have horns; males are pronged.</td>
</tr>
<tr>
<td>History</td>
<td>Prior to European American settlement of the West, pronghorn population estimated to be 35 million.</td>
</tr>
<tr>
<td></td>
<td>Early in the 1800s, pronghorn were abundant in river valleys radiating from Yellowstone; settlement and hunting reduced their range and numbers.</td>
</tr>
<tr>
<td></td>
<td>Park management also culled pronghorn during the first half of the 1900s due to overgrazing concerns.</td>
</tr>
</tbody>
</table>

Management Concerns
- Pronghorn are a species of special concern in the park.
- This small population could face extirpation from random catastrophic events such as a severe winter or disease outbreak.
signaling the others to flee. The pronghorn is adapted well for outrunning its enemies—its oversized wind-pipe and heart allow large amounts of oxygen and blood to be carried to and from its unusually large lungs. Pronghorn can sustain sprints of 45–50 mph. Such speed, together with keen vision, make the adults difficult prey for any natural predator. Fawns, however, can be caught by coyotes, bobcats, wolves, bears, and golden eagles.

The pronghorn breeding season begins mid-September and extends through early October. During the rut the older males “defend” groups of females (called a harem). They warn any intruding males with loud snorts and wheezing coughs. If this behavior does not scare off the opponent, a fight may erupt. The contenders slowly approach one another until their horns meet, then they twist and shove each other. Eventually, the weaker individual will retreat. Although the fights may be bloody, fatalities are rare.

The most important winter foods are shrubs like sagebrush and rabbitbrush; they eat succulent forbs during spring and summer. They can eat lichens and plants like locoweed, lupine, and poisonvetch that are toxic to some ungulates. Their large liver (proportionately, almost twice the size of a domestic sheep’s liver) may be able to remove plant toxins from the blood stream. Grasses appear to be the least-used food item, but may be eaten during early spring when the young and tender shoots are especially nutritious.

During winter, pronghorn form mixed-sex and-age herds. In spring, they split into smaller bands of females, bachelor groups of males between 1–5 years old, and solitary older males. The small nursery and bachelor herds may forage within home ranges of 1,000 to 3,000 acres while solitary males roam smaller territories (60 to 1,000 acres in size). Pronghorn, including three-fourths of the individuals in Yellowstone, migrate between different winter and summer ranges to more fully utilize forage within broad geographic areas.

Population

During the early part of the 1800s, pronghorns ranked second only to bison in numbers, with an estimated 35 million throughout the West. The herds were soon decimated by conversion of rangeland to cropland, professional hunters who sold the meat, and ranchers who believed that pronghorns were competing with livestock for forage. Today, due to transplant programs and careful management, pronghorns roam the sagebrush prairies in herds totaling nearly 500 thousand animals.

The pronghorn’s population fluctuations on the northern range show the effects of management interventions as well as natural shifts in forage availability, competition with elk, and predation. Efforts to keep pronghorn in the park with fences and winter feeding reduced their abundance and use of migratory routes by the 1920s, and about 1,200 pronghorn were removed from 1947 to 1967 to address perceived sagebrush degradation. Although hunting has not been allowed north of the park since the 1970s, complaints about crop depredation led to the removal of about 190 pronghorn on private land from 1985 to 2002. The reason for the sudden population decline in the early 1990s remains unclear, but fawn survival is low due to coyote predation, and development of private land north of the park has reduced available winter range. The pronghorn winter range in the park is former agricultural land infested with nonnative vegetation of low nutritional quality.

Recent evidence of migration and dispersal into Paradise Valley and mixing with pronghorn herds outside the park should improve the long-term viability of the Yellowstone population. Research continues to search for answers to the population decline. This small population is susceptible to extirpation from random catastrophic events such as a severe winter or disease outbreak.
More Information

Keating, K. 2002. History of pronghorn population monitoring, research, and management in Yellowstone National Park. Report to the National Park Service by USGS Northern Rocky Mountain Science Center, Bozeman, MT.

Staff Reviewer

Travis Wyman, Biological Technician
Wolves

Although wolf packs once roamed from the Arctic tundra to Mexico, loss of habitat and extermination programs led to their demise throughout most of the United States by early in the 1900s. In 1973, the US Fish and Wildlife Service listed the northern Rocky Mountain wolf (Canis lupus) as an endangered species and designated Greater Yellowstone as one of three recovery areas. From 1995 to 1997, 41 wild wolves from Canada and northwest Montana were released in Yellowstone National Park. As expected, wolves from the growing population dispersed to establish territories outside the park where they are less protected from human-caused mortalities. The park helps ensure the species’ long-term viability in Greater Yellowstone and has provided a place for research on how wolves may affect many aspects of the ecosystem.

Description

Wolves are highly social animals and live in packs. Worldwide, pack size will depend on the size and abundance of prey. In Yellowstone, average pack size is 10 individuals. The pack is a complex social family, with older members (often the alpha male and alpha female) and subordinates, each having individual personality traits and roles within the pack. Packs defend their territory from other, invading packs by howling and scent marking with urine.

Wolves consume a wide variety of prey, large and small. They efficiently hunt large prey that other predators cannot usually kill. In Yellowstone, 90% of their winter prey is elk; 10–15% of their summer prey is deer. They also kill bison.

Many other animals benefit from wolf kills. For example, when wolves kill an elk, ravens arrive almost immediately. Coyotes arrive soon after, waiting nearby until the wolves are sated. Bears will attempt to chase the wolves away, and are usually successful. Many other animals—from magpies to invertebrates—consume the remains.

Changes in Their Prey

From 1995 to 2000, in early winter, elk calves comprised 50% of wolf prey and bull elk comprised 25%. That ratio reversed from 2001 to 2007, indicating changes in prey vulnerability and availability. The discovery of this change emphasizes the importance of long-term monitoring to understand predator-prey dynamics. Changes in wolf predation patterns and impacts on prey species like elk are inextricably linked to other factors such as other

Quick Facts

Number
- An estimated 528 wolves resided in the Greater Yellowstone Ecosystem as of 2015.
- As of December 2017, there were at least 97 wolves in the park. Ten packs were noted.
- In general, wolf numbers have fluctuated between 83 and 108 wolves since 2009.

Where to See
- They inhabit most of the park, peak activity is at dawn and dusk.
- The northern range of Yellowstone is one of the best places in the world to watch wolves.

Size and Behavior
- 26–36 inches tall at the shoulder, 4–6 feet long from nose to tail tip; males weigh 100–130 pounds, females weigh 80–110 pounds.
- Home range within the park is 185–310 square miles (300–500 km²); varies with pack size, food availability, and season.
- Average lifespan in the park is 4–5 years. Average lifespan outside is 2–3 years. The oldest known wolf to live here was 12.5 years.
- Two main color variations exist in Yellowstone in approximately equal proportions: black and gray.
- Prey primarily on hoofed animals. In Yellowstone, 90% of winter diet is elk; summer prey consist of more deer and smaller mammals.
- Mate in February; give birth to average of five pups in April after a gestation period of 63 days; young emerge from den at 10–14 days; pack remains at the den for 3–10 weeks unless disturbed.
- Leading cause of death for wolves within the park is death by other wolves; leading cause of death for wolves outside the park is human-caused.
predators, management of ungulates outside the park, and weather (e.g. drought, winter severity). Weather patterns influence forage quality and availability, ultimately impacting elk nutritional condition. Consequently, changes in prey selection and kill rates through time result from complex interactions among these factors. Current NPS research focuses on the relative factors driving wolf predation over the last two decades.

Population

In the first years following wolf restoration, the population grew rapidly as the newly formed packs spread out to establish territories with sufficient prey. The wolves have expanded their population and range, and now are found throughout the Greater Yellowstone Ecosystem.

Disease periodically kills a number of pups and old adults. Outbreaks of canine distemper have occurred in 2005, 2008 and 2009. In 2005, distemper killed two-thirds of the pups within the park. Infectious canine hepatitis, canine parvovirus, and bordetella have also been confirmed among Yellowstone wolves, but their effect on mortality is unknown.

Sarcoptic mange, an infection caused by the mite (*Sarcoptes scabiei*), reached epidemic proportions among wolves on the northern range in 2009. The mite is primarily transmitted through direct contact and burrows into the wolf’s skin. This process can initiate an extreme allergic reaction and cause the wolf to scratch the infected areas, which often results in hair loss and secondary infections. By the end of 2011, the epidemic had mostly subsided; however, the infection is still currently present at lower prevalences throughout the park.

Wolf packs are highly territorial and communicate with neighboring packs by scent-marking and howling. Occasionally packs encounter each other and these interactions are typically aggressive. Larger packs often defeat smaller groups, unless the small group has more old adult or adult male members. Sixty-five percent of collared wolves are ultimately killed by rival packs.

Interesting Wolf Behavior

Wolves kill each other and other carnivores, such as coyotes and cougars, usually because of territory disputes or competition for carcasses. In 2000, however, the subordinate female wolves of the Druid pack exhibited behavior never seen before: they killed their pack’s alpha female, then they carried her pups to a central den and raised them with their own litters.

The park’s wolf population has declined substantially since 2007, when the count was 171. Most of the decrease has been in packs on the northern range, where it has been attributed primarily to the decline in the elk population and available territory. Canine distemper and sarcoptic mange have also been factors in the population decline.

Each year, park researchers capture a small proportion of wolves and fit them with radio tracking collars. These collars enable researchers to gather data on an individual, and also monitor the population as a whole to see how wolves are affecting other animals and plants within the park. Typically, at the end of each year, only 20% of the population is collared.

Wolves in the Northern Rocky Mountains have met the US Fish and Wildlife Service’s criteria for a recovered wolf population since 2002. As of December 2015, the US Fish & Wildlife Service estimated about 1,704 wolves and 95 breeding pairs in the Northern Rocky Mountain Distinct Population Segment.

The gray wolf was removed from the endangered species list in 2011 in Idaho and Montana. They were delisted in Wyoming in 2016 and that decision was held up on appeal in April 2017. Wolves are hunted in Idaho and Montana under state hunting regulations.

Wolf Restoration

The Issue
The wolf is a major predator that had been missing from the Greater Yellowstone Ecosystem for decades until its restoration in 1995.

History
- Late 1800s–early 1900s: predators, including wolves, are routinely killed in Yellowstone.
- 1926: The last wolf pack in Yellowstone is killed, although reports of single wolves continue.
- 1974: The gray wolf is listed as endangered; recovery is mandated under the Endangered Species Act.
- 1975: The long process to restore wolves in Yellowstone begins.
- 1991: Congress appropriates money for an EIS for wolf recovery.
- 1994: EIS completed for wolf reintroduction in Yellowstone and central Idaho. More than 160,000 public comments received—the largest number of public comments on any federal proposal at that time.
- 1997: 10 wolves from northwestern Montana relocated to Yellowstone National Park; US District Court judge orders the removal of the reintroduced wolves in Yellowstone, but stays his order, pending appeal. (Decision reversed in 2000.)
- 1995–2003: Wolves prey on livestock outside Yellowstone much less than expected: 256 sheep, 41 cattle
- 2005: Wolf management transfers from the federal government to the states of Idaho and Montana.
- 2008: Wolf populations in Montana, Idaho, and Wyoming removed from the endangered species list, then returned to the list.
- 2009: The US Fish and Wildlife Service again delisted wolf populations in Montana and Idaho, but not in Wyoming. A legal challenge resulted in the Northern Rocky Mountain wolf population being returned to the federal endangered species list.
- 2011: Wolf populations were again delisted in Montana and Idaho by action of Congress, and the US Fish and Wildlife Service proposed delisting wolves in Wyoming.
- 2012: Based on a Congressional directive, wolves were delisted in Wyoming.
- 2014: Wolves were relisted in Wyoming.
- 2017: Wolves were delisted in Wyoming and the Northern Rocky Mountain Distinct Population is no longer listed

Current Status
- As of April 26, 2017 gray wolves are delisted in Montana, Idaho, and Wyoming.
Wolf Restoration

History
In the 1800s, westward expansion brought settlers and their livestock into direct contact with native predator and prey species. Much of the wolves’ prey base was destroyed as agriculture flourished. With the prey base removed, wolves began to prey on domestic stock, which resulted in humans eliminating wolves from most of their historical range. Predator control, including poisoning, was practiced here in the late 1800s and early 1900s. Other predators such as bears, cougars, and coyotes were also killed to protect livestock and “more desirable” wildlife species, such as deer and elk.

The gray wolf was present in Yellowstone when the park was established in 1872. Today, it is difficult for many people to understand why early park managers would have participated in the extermination of wolves. After all, the Yellowstone National Park Act of 1872 stated that the Secretary of the Interior “shall provide against the wanton destruction of the fish and game found within said Park.” But this was an era before people, including many biologists, understood the concepts of ecosystem and the interconnectedness of species. At the time, the wolves’ habit of killing prey species was considered “wanton destruction” of the animals. Between 1914 and 1926, at least 136 wolves were killed in the park; by the 1940s, wolf packs were rarely reported. By the mid-1900s, wolves had been almost entirely eliminated from the 48 states.

An intensive survey in the 1970s found no evidence of a wolf population in Yellowstone, although an occasional wolf probably wandered into the area. A wolf-like canid was filmed in Hayden Valley in August 1992, and a wolf was shot just outside the park’s southern boundary in September 1992. However, no verifiable evidence of a breeding pair of wolves existed. During the 1980s, wolves began to reestablish breeding packs in northwestern Montana; 50–60 wolves inhabited Montana in 1994.

In the 1960s, National Park Service wildlife management policy changed to allow populations to manage themselves. Many suggested at the time that for such regulation to succeed, the wolf had to be a part of the picture.

Also in the 1960s and 1970s, national awareness of environmental issues and consequences led to the passage of many laws designed to correct the mistakes of the past and help prevent similar mistakes in the future. One such law was the Endangered Species Act, passed in 1973. The US Fish and Wildlife Service is required by this law to restore endangered species that have been eliminated, if possible. By 1978, all wolf subspecies were on the federal list of endangered species for the lower 48 states except Minnesota. (National Park Service policy also calls for restoration of native species where possible.)

Restoration Proposed
National Park Service policy calls for restoring native species when: (a) sufficient habitat exists to support a self-perpetuating population, (b) management can prevent serious threats to outside interests, (c) the restored subspecies most nearly resembles the extirpated subspecies, and (d) extirpation resulted from human activities.

The US Fish and Wildlife Service 1987 Northern Rocky Mountain Wolf Recovery Plan proposed reintroduction of an “experimental population” of wolves into Yellowstone. An experimental population, under section 10(j) of the Endangered Species Act, is considered nonessential and allows more management flexibility. Most scientists believed that wolves would not greatly reduce populations of mule deer, pronghorns, bighorn sheep, white-tailed deer, or bison; they might have minor effects on grizzly bears and cougars; and their presence might cause the decline of coyotes and increase of red foxes.

In 1991, Congress provided funds to the US Fish and Wildlife Service to prepare, in consultation with the National Park Service and the US Forest Service, an environmental impact statement (EIS)
on restoration of wolves. In June 1994, after several years and a near-record number of public comments, the Secretary of the Interior signed the Record of Decision for the final EIS for reintroduction of gray wolves to Yellowstone National Park and central Idaho.

Staff from Yellowstone, the US Fish and Wildlife Service, and participating states prepared for wolf restoration to the park and central Idaho. The US Fish and Wildlife Service prepared special regulations outlining how wolves would be managed as an experimental population.

Park staff completed site planning and archeological and sensitive plant surveys for the release sites. Each site was approximately one acre enclosed with 9-gauge chain-link fence in 10 x 10 foot panels. The fences had a two-foot overhang and a four-foot skirt at the bottom to discourage climbing over or digging under the enclosure. Each pen had a small holding area attached to allow a wolf to be separated from the group if necessary (i.e., for medical treatment). Plywood boxes provided shelter if the wolves wanted isolation from each other.

Relocation and Release

In late 1994 and early 1995, and again in 1996, US Fish and Wildlife Service and Canadian wildlife biologists captured wolves in Canada and relocated and released them in both Yellowstone and central Idaho. In mid-January 1995, 14 wolves were temporarily penned in Yellowstone; the first eight wolves on January 12 and the second six on January 19, 1995. Wolves from one social group were together in each acclimation pen. On January 23, 1996, 11 more wolves were brought to Yellowstone for the second year of wolf restoration. Four days later they were joined by another six wolves. The wolves ranged from 72 to 130 pounds in size and from approximately nine months to five years in age. They included wolves known to have fed on bison. Groups included breeding adults and younger wolves one to two years old.

Each wolf was radio-collared as it was captured in Canada. While temporarily penned, the wolves experienced minimal human contact. Approximately twice a week, they were fed elk, deer, moose, or bison that had died in and around the park. They were guarded by law enforcement rangers who minimized how much the wolves saw humans. The pen sites and surrounding areas were closed to visitation and marked to prevent unauthorized entry. Biologists checked on the welfare of wolves twice each week, using telemetry or visual observation while placing food in the pens. Although five years of reintroductions were predicted, no transplants occurred after 1996 because of the early success of the reintroductions.

Some people expressed concern about wolves becoming habituated to humans while in the acclimation pens. However, wolves typically avoid human contact. Confinement was also a negative experience for them and reinforced their dislike of human presence.

Results of the Restoration

Preliminary data from studies indicate that wolf recovery will likely lead to greater biodiversity throughout the Greater Yellowstone Ecosystem. Wolves have preyed primarily on elk and these carcasses have provided food to a wide variety of other animals, especially scavenging species. They are increasingly preying on bison, especially in late winter. Grizzly bears have usurped wolf kills almost at will, contrary to predictions and observations from other areas where the two species occur. Wolf kills, then, provide an important resource for bears in low food years. Aggression toward coyotes initially decreased the number of coyotes inside wolf territories, which may have benefited other smaller predators, rodents, and birds of prey.
So far, data suggests wolves are contributing to decreased numbers of elk calves surviving to adulthood and decreased survival of adult elk. Wolves may also be affecting where and how elk use the habitat. Some of these effects were predictable, but were based on research in relatively simple systems of one to two predator and prey species. Such is not the case in Yellowstone, where four other large predators (black bears, grizzly bears, coyotes, and cougars) prey on elk—and people hunt the elk outside the park. Thus, interactions of wolves with elk and other ungulates has created a new degree of complexity that makes it difficult to project long-term population trends.

The effect of wolf recovery on the dynamics of northern Yellowstone elk cannot be generalized to other elk populations in the Greater Yellowstone Ecosystem. The effects depend on a complex of factors including elk densities, abundance of other predators, presence of alternative ungulate prey, winter severity, and—outside the park—land ownership, human harvest, livestock depredations, and human-caused wolf deaths. A coalition of natural resource professionals and scientists representing federal and state agencies, conservation organizations and foundations, academia, and land owners are collaborating on a comparative research program involving three additional wolf-ungulate systems in the western portion of the Greater Yellowstone Ecosystem. Results to date indicate the effects of wolf predation on elk population dynamics range from substantial to quite modest.

Legal Status of a Recovered Population

The biological requirements for removing the wolf from the endangered species list have been achieved: at least 300 wolves and three consecutive years of at least 30 breeding pairs across three recovery areas. The US Fish and Wildlife Service approved wolf management plans in Idaho and Montana, and in 2008 it delisted wolves in these two states and in Yellowstone and Grand Teton national parks. Several environmental groups sued to stop the delisting, however. They successfully argued that the Wyoming wolf management plan was flawed and that genetic connectivity had not been established between the Greater Yellowstone Ecosystem and the other recovery areas. A court decision required the wolf to be listed again as an endangered species. In 2009, the US Fish and Wildlife Service again delisted wolf populations in Montana and Idaho, but not in Wyoming.
A legal challenge resulted in the Northern Rocky Mountain wolf population being returned to the federal endangered species list.

In 2011, wolf populations were again delisted in Montana and Idaho by an action of Congress. In 2012, a Congressional directive required the US Fish and Wildlife Service to reissue its 2009 delisting, which stated that “if Wyoming were to develop a Service-approved regulatory framework it would be delisted in a separate rule” (74 FR 15123, April 2, 2009, p. 15155).

On September 30, 2012, wolves in Wyoming were delisted and began to be managed by the state under an approved management plan. However, on September 23, 2014, wolves were relisted in Wyoming following litigation over that management plan. On April 25, 2017, wolves were delisted following an appeal of the previous litigation decision by the US District Court. On April 25, 2017, wolves were delisted yet again following an appeal of the previous litigation decision by the US District Court. Wolves are now hunted in Montana, Wyoming, and Idaho during regulated seasons.

The US Fish and Wildlife Service will continue to monitor the delisted wolf populations in Montana and Idaho for at least five years to ensure that they continue to sustain their recovery. The US Fish and Wildlife Service may consider relisting the species, and even emergency relisting, if the available data demonstrates such an action is needed, as it does with all recovered species.

Wolves are now managed by the appropriate state, tribal, or federal agencies; management in national parks and national wildlife refuges continue to be guided by existing authorizing and management legislation and regulations.

Your Safety in Wolf Country
Wolves are not normally a danger to humans, unless humans habituate them by providing them with food. No wolf has attacked a human in Yellowstone, but a few attacks have occurred in other places.

Like coyotes, wolves can quickly learn to associate campgrounds, picnic areas, and roads with food. This can lead to aggressive behavior toward humans.

What You Can Do
- Never feed a wolf or any other wildlife. Do not leave food or garbage outside unattended. Make sure the door is shut on a garbage can or dumpster after you deposit a bag of trash.
- Treat wolves with the same respect you give any other wild animal. If you see a wolf, do not approach it.
- Never leave small children unattended.
- If you have a dog, keep it leashed.
- If you are concerned about a wolf—it’s too close, not showing sufficient fear of humans, etc., do not run. Stop, stand tall, watch what the wolf is going to do. If it approaches, wave your arms, yell, flare your jacket, and if it continues, throw something at it or use bear pepper spray. Group up with other people, continue waving and yelling.
- Report the presence of wolves near developed areas or any wolf behaving strangely.

To date, eight wolves in Yellowstone National Park have become habituated to humans. Biologists successfully conducted aversive conditioning on some of them to discourage being close to humans, but two have had to be killed.

Outlook
The future of wolves in Greater Yellowstone will depend on how livestock depredation and hunting of wolves outside the park are handled. Wolf populations will also continue to be affected by the availability of elk, deer, and bison, which fluctuates in response to hunting quotas, winter severity, and disease. To what extent wolves may have contributed to the decline in the northern Yellowstone elk population since the mid-1990s or the possibly related resurgence of willow in some areas is an ongoing topic of debate.

More Information

Staff Reviewer

Erin Stahler, Biological Technician
Doug Smith, Senior Wildlife Biologist
Coyotes
Coyotes (*Canis latrans*) are intelligent and adaptable. They can be found throughout North and Central America, thriving in major urban areas as well as in remote wilderness. This adaptability helped coyotes resist widespread efforts early in the 1900s to exterminate them in the West, including Yellowstone National Park, where other mid-size and large carnivores such as cougars and wolves were eradicated. The coyote is a common predator in Greater Yellowstone, often seen traveling through open meadows and valleys.

Description
Often mistaken for a wolf, the coyote is about one-third the wolf’s size with a slighter build. Its coat colors range from tan to buff, sometimes gray, and with some orange on its tail and ears. Males are slightly larger than females.

During the 1900s, coyotes partially filled the niche left vacant after wolves were exterminated from the park. In Yellowstone, they lived in packs or family groups of up to seven animals. This social organization is characteristic of coyotes living in areas free from human hunting. With the reintroduction of wolves, Yellowstone coyotes have returned to a more typical social organization—pairs with pups.

Coyotes, also known as “song dogs,” communicate with each other by a variety of long-range vocalizations. You may hear groups or lone animals howling, especially during dawn and dusk periods. Coyotes also mark with their scent (urine and feces) to communicate their location, breeding status, and territorial boundaries.

Population
Until 1995, coyotes faced few predators in Yellowstone other than cougars, who will kill coyotes feeding on cougar kills. After wolves were restored, however, dozens of coyote pups and adults were killed by wolves—primarily when feeding on other animals killed by wolves. On the northern range, the coyote population decreased as much as 50% after wolves were restored as a result of competition with wolves for food, attacks by wolves, and loss of territory to them. More recent trends in the Lamar Valley, however, indicate that the coyote population has increased.

Comparisons of coyote population and behavioral data from before and after wolf restoration provide evidence of how the presence of wolves is changing ecological relationships on the northern range. A reduced coyote population could mean that smaller predators such as the native red fox, whose numbers were previously kept low by coyotes, will have less competition for small prey and their populations may increase.

Quick Facts
Number in Yellowstone
Abundant

Where to See
Meadows, fields, other grasslands, and foraging for small mammals along roadways.

Size and Behavior
- Weigh 25–35 pounds, 16–20 inches high at the shoulder.
- Average life span 6 years; up to 13 years in the park.
- Home range: 3–15 square miles.
- Primarily eat voles, mice, rabbits, other small animals, and carrion—and only the very young elk calves in the spring.
- 4–8 pups are born in April in dens; emerge in May.

History
- Like other predators, coyotes were often destroyed in the early part of the 1900s because they sometimes preyed on livestock.
- Coyotes continued to thrive because their adaptability enabled them to compensate for the destruction efforts.
- Elimination of wolves probably resulted in high coyote population densities; wolves’ absence opened a niche that coyotes could partially occupy in Yellowstone.
Coyotes and Humans
Coyotes also face threats from humans. They quickly learn habits like roadside feeding. This may lead to aggressive behavior toward humans and can increase the risk of the coyote being hit by a vehicle. Several instances of coyote aggression toward humans have occurred here, including a few attacks.

Park staff scare coyotes from visitor-use areas and becoming habituated to humans with cracker-shell rounds, bear pepper spray, or other negative stimuli. Animals that continue to pose a threat to themselves or to humans are killed. Coyotes and other park wildlife are wild and potentially dangerous and should never be fed or approached.

More Information

Staff Reviewer
Doug Smith, Senior Wildlife Biologist
Red Foxes
The red fox (*Vulpes vulpes*) has been documented in Yellowstone since the 1880s. In relation to other canids in the park, red foxes are the smallest. Red foxes occur in several color phases, but they are usually distinguished from coyotes by their reddish yellow coat that is somewhat darker on the back and shoulders, with black “socks” on their lower legs. “Cross” phases of the red fox (a dark cross on their shoulders) have been reported a few times in recent years near Canyon and Lamar Valley. Also, a lighter-colored red fox has been seen at higher elevations.

Three native subspecies exist at high elevations in the United States: the Sierra (*V. v. necator*), Cascade (*V. v. cascadensis*), and Rocky (*V. v. macroura*) mountains and are collectively called mountain foxes. (Yellowstone’s fox is *V. v. macroura*). Little is known about any of these subspecies. Most foxes in the lower 48 states, especially in the eastern and plains states, are a subspecies of fox from Europe introduced in the 1700s and 1800s for fox hunts and fur farms. The foxes that survived the hunt or escaped the fur farms proliferated and headed westward.

Population
Red foxes are more abundant than were previously thought in Yellowstone. The many miles of forest edge and extensive semi-open and canyon areas of the park seem to offer suitable habitat and food for foxes. They are widespread throughout the northern part of the park with somewhat patchy distribution elsewhere in the park. During the past century, especially within the past few decades, the number of fox sightings has significantly increased. This could be related to better documentation beginning in 1986. Wolves and coyotes are more closely related both genetically and physically than wolves and foxes. Wolves successfully competed with coyotes, causing a decline in the coyote population when they were reintroduced. This may have caused an increase in the number of fox sightings in core wolf areas such as the Lamar Valley.

A research project conducted between 1994–1998 determined at least two subpopulations of foxes live in the Greater Yellowstone Ecosystem. At about 7,000 feet in elevation, there seemed to be a dividing line with no geographical barriers separating these foxes. The genetic difference between these foxes was similar to mainland and island populations of foxes in Australia and their habitat use was different as well. In addition, their actual dimensions, such as ear length and hind foot length, were adapted to some degree for colder environments with deep snow and long winters. A yellowish or cream color most often occurs above 7,000 feet in areas such as Cooke City and the Beartooth Plateau and is being studied by researchers.

Quick Facts

Number in Yellowstone
Unknown, but not nearly as numerous as coyotes.

Where to See
- Hayden and Pelican valleys, Canyon Village area.
- Typical habitat: edges of sagebrush/grassland and within forests.

Size and Behavior
- Adult males weigh 11–12 pounds; females weigh average 10 pounds.
- Average 43 inches long.
- Average life span: 3–7 years; up to 11 years in Yellowstone.
- In northern range, home range averages 3.75 square miles, with males having slightly larger range than females.
- Several color phases; usually red fur with white-tipped tail, dark legs; slender, long snout.
- Barks; rarely howls or sings.
- Distinguish from coyote by size, color, and bushier tail.
- Solitary, in mated pairs, or with female from previous litter.
- Prey: voles, mice, rabbits, birds, amphibians, other small animals.
- Other food: carrion and some plants.
- Killed by coyotes, wolves, mountain lions.

During winter, red foxes may increase their activity around dawn and dusk, and even sometimes in broad daylight.
Behavior

Foxes are not often seen because they are nocturnal, usually forage alone, and travel along edges of meadows and forests. During winter, foxes may increase their activity around dawn and dusk, and even sometimes in broad daylight. In late April and May, when females are nursing kits at their dens, they are sometimes more visible during daylight hours, foraging busily to get enough food for their growing offspring.

Recent research shows that red fox are more nocturnal than coyotes, and strongly prefer forested habitats, while coyotes tend to use sagebrush and open meadow areas. In this way, potential competition between fox and coyotes is minimized. Foxes do not seem to actively avoid coyotes during an average day, they just stick with forested habitat, sleep when coyotes are most active, and then forage opportunistically. Foxes will visit carcasses (like wolf kills) for the occasional big meal, especially during winter, but this is more rare than the scavenging coyotes that park visitors can expect to see on many days, especially during winter.

Foxes can become habituated to humans usually due to being fed. In 1997, one fox was trapped and relocated three times from the Tower Fall parking area because visitors fed it human food. The fox was relocated between 10 and 60 miles away from Tower but it returned twice. Finally the fox came to Mammoth where it was fed again and as a result was killed by managers. While this story gives us interesting information about the homing instinct of fox, it also shows the importance of obeying rules to avoid inadvertently causing the death of one of Yellowstone’s animals.

More Information

Staff Reviewer
Doug Smith, Senior Wildlife Biologist
Cougars

The cougar (Puma concolor), also known as mountain lion, is one of the largest cats in North America and a top predator native to Greater Yellowstone. (The jaguar, which occurs in New Mexico and Arizona, is larger.) As part of predator removal campaigns in the early 1900s, cougars and wolves were killed throughout the lower 48 states, including national parks. Wolves (Canis lupus) were eradicated and, although cougars were probably eliminated from Yellowstone, the species survived in the West because of its cryptic nature and preference for rocky, rugged territory where the cats are difficult to track. Eventually the survivors re-established themselves in Yellowstone in the early 1980s, possibly making their way from wilderness areas in central Idaho.

Population

Prior to wolf reintroduction (1987–1993), Yellowstone National Park’s northern range was occupied year-round by an estimated 15 to 22 cougars, including adults, subadults, and kittens. There were 26–42 cougars estimated after wolf establishment (1998–2005). In 2014, a new study began which seeks to estimate population abundance in the same region using noninvasive genetic survey methods. Several field seasons will be required before a population estimate can be generated. However, preliminary evidence from 2014–17 indicates a healthy population still exists in numbers comparable to a decade ago.

While disease and starvation are occasional causes of cougar deaths, competition with other cougars or predators, and human hunting (during legal seasons outside protected areas) are the main causes of cougar mortality. Habitat fragmentation and loss are the main long-term threats to cougar populations across the western United States.

Behavior

Cougars live throughout the park in summer, but few people ever see them. The northern range of Yellowstone is prime habitat for cougars because snowfall is light and prey always available. Cougars follow their main prey as they move to higher elevations in summer and lower elevations in the winter.

Adult male cougars are territorial and may kill other adult males in their home range. Male territories may overlap with several females. In non-hunted populations, such as in Yellowstone, the resident adult males living in an area the longest are the

Quick Facts

Number in Yellowstone

Estimated 25–35 (across all age classes) on the northern range; others in park seasonally.

Where to See

Seldom seen

Behavior and Size

• Litters range from 2–3 kittens; 50% survive first year.
• Adult males weigh 145–170 pounds; females weigh 85–120 pounds; length, including tail, 6.5–7.5 feet.
• Average life span: males, 8–10 years; females, 12–14 years. Cougars living in areas where they are hunted have much shorter average life spans.
• Preferred terrain: rocky breaks and forested areas that provide cover for hunting prey and for escape from competitors such as wolves and bears.
• Prey primarily on elk and mule deer, plus smaller mammals, especially marmots.
• Bears and wolves frequently displace cougars from their kills.
• Male cougars may kill other male cougars within their territory.
• Adult cougars and kittens have been killed by wolves.

Interaction with Humans

Very few documented confrontations between cougars and humans have occurred in Yellowstone.

If a big cat is close by: Stay in a group; carry small children; make noise. Do not run, do not bend down to pick up sticks. Act dominant—stare in the cat’s eyes and show your teeth while making noise.
dominant males. These males sire most of the litters within a population; males not established in the same area have little opportunity for breeding.

Although cougars may breed and have kittens at any time of year, most populations have a peak breeding and birthing season. In Yellowstone, males and females breed primarily from February through May. Males and females without kittens search for one another by moving throughout their home ranges and communicating through visual and scent markers called scrapes. A female’s scrape conveys her reproductive status. A male’s scrape advertises his presence to females and warns other males that an area is occupied. After breeding, the males leave the female.

In Yellowstone, most kittens are born June through September. Female cougars den in a secure area with ample rock and/or vegetative cover. Kittens are about one pound at birth and gain about one pound per week for the first 8–10 weeks. During this time, they remain at the den while the mother makes short hunting trips and then returns to nurse her kittens. When the kittens are 8–10 weeks old, the female begins to hunt over a larger area. After making a kill, she moves the kittens to the kill. Before hunting again, she stashes the kittens. Kittens are rarely involved in killing until after their first year.

Most kittens leave their area of birth at 14 to 18 months of age. Approximately 99% of young males disperse 50 to 400 miles; about 70–80% of young females disperse 20 to 150 miles. The remaining proportion of males and females establish living areas near where they were born. Therefore, most resident adult males in Yellowstone are immigrants from other areas, thus maintaining genetic variability across a wide geographic area.

In Yellowstone, cougars prey upon elk (mostly calves) and deer. They stalk the animal then attack, aiming for the animal’s back and killing it with a bite to the base of the skull or the throat area.

A cougar eats until full, then caches the carcass for later meals. Cougars spend an average of 3–4 days consuming an elk or deer and 4–5 days hunting for the next meal. Cougars catch other animals—including red squirrels, porcupines, marmots, grouse, and moose—if the opportunity arises.

Cougars are solitary hunters who face competition for their kills from other large mammals. Even though a cached carcass is harder to detect, scavengers and competitors such as bears and wolves sometimes find it. In Yellowstone, black and grizzly bears will take over a cougar’s kill. Coyotes will try, but can be killed by the cougar instead. Wolves displace cougars from approximately 6% of their elk carcasses.

Although cougars and wolves once co-existed across much of their historical range, ecological research on each species has often had to be conducted in the absence of the other. By assessing

Cougar Kills

Between 1998 and 2005, researchers documented 473 known or probable cougar kills, which included:

- 345 elk
- 64 mule deer
- 12 bighorn sheep
- 10 pronghorn
- 7 marmots
- 5 porcupines
- 1 red fox
- 1 mountain goat
- 1 blue grouse
- 1 golden eagle
- 6 other cougars

Interspecific kills occurred, but few were fed upon.
pre- and post-wolf reintroduction data, biologists can learn about the ecological relationships between the two species. As social animals, wolves use different hunting techniques than the solitary cougar, but the two species prey on similar animals. While prey is abundant this competition is of little concern, but a decrease in prey abundance could lead to an increase in competition between these carnivores.

History
In the early 1900s, cougars were killed as part of predator control in the park and likely eradicated along with wolves in the 1930s. However, cougars naturally recolonized by the early 1980s.

From 1987 to 1996, the first cougar ecology study was conducted in Yellowstone National Park. The research documented population dynamics of cougars in the northern Yellowstone ecosystem inside and outside the park boundary, determined home ranges and habitat requirements, and assessed the role of cougars as a predator. Of the 88 cougars that were captured, 80 were radio-collared.

From 1998 to 2006, the second phase of that research was conducted. Researchers monitored 83 radio-collared cougars, including 50 kittens in 24 litters. Between 1998 and 2005, researchers documented 473 known or probable cougar kills. Elk comprised 74%: 52% calves, 36% cows, 9% bulls, 3% unknown sex or age. Cougars killed about one elk or deer every 9.4 days and spent almost 4 days at each kill. The study also documented that wolves interfered with or scavenged more than 22% of the cougar-killed ungulates. The monitoring associated with this project has been completed and all of the radio-collars have been removed, but years of data are still being analyzed. New research is underway to evaluate population abundance, predation patterns, and competition with other carnivores.

Very few cougar–human confrontations have occurred in Yellowstone. However, observations of cougars, particularly those close to areas of human use or residence, should be reported.

More Information

Staff Reviewer
Dan Stahler, Wildlife Biologist
Canada Lynx

Historical information suggests lynx (*Lynx canadensis*) were present, but uncommon, in Yellowstone National Park during 1880 to 1980. The presence and distribution of lynx in the park was documented during 2001 to 2004, when several individuals were detected in the vicinity of Yellowstone Lake and the Central Plateau. A lynx was photographed in 2007 along the Gibbon River, and another lynx was observed near Indian Creek Campground in the northwestern portion of Yellowstone during 2010. Tracks of an individual were verified near the Northeast Entrance in 2014. Reliable detections of lynx continue to occur in surrounding National Forest System lands. Evidence suggests lynx successfully reproduce in the GYE, though production is limited.

In 2000, the US Fish and Wildlife Service listed the lynx as “threatened” in the lower 48 states. Portions of the park and surrounding area is considered much of the critical habitat for the species in the Greater Yellowstone Ecosystem.

Habitat

Lynx habitat in the Greater Yellowstone Ecosystem is often naturally patchy due to natural fire frequency and generally limited to conifer forests above 7,700 feet where the distribution of its primary prey,

Quick Facts

Number in Yellowstone

Few; 112 known observations

Where to See

- Very rarely seen.
- Typical habitat: cold conifer forests.

Size and Behavior

- Adult: 16–35 pounds, 26–33 inches long.
- Gray brown fur with white, buff, brown on throat and ruff; tufted ears; short tail; hind legs longer than front.
- Distinguish from bobcat: black rings on tail are complete; tail tip solid black; longer ear tufts; larger track.
- Wide paws with fur in and around pads; allows lynx to run across snow.
- Track: 4–5 inches.
- Solitary, diurnal and nocturnal.
- Eats primarily snowshoe hares, especially in winter; also rodents, rabbits, birds, red squirrels, and other small mammals, particularly in summer.

DNA-based detections of lynx documented in the Greater Yellowstone Ecosystem, 1996 to 2008. Numerous locations of radio-collared lynx from Colorado that were obtained using satellite-based telemetry are unavailable. Data provided by Endeavor Wildlife Research, Wild Things Unlimited, the US Forest Service, and the National Park Service.
snowshoe hare, is often insufficient to support lynx residency and reproduction. The lower quality habitat means home ranges in this ecosystem are larger than those farther north, with lynx traveling long distances between foraging sites.

More Information

Staff Reviewer
Dan Stahler, Wildlife Biologist

Bobcats
Lynx rufus

Number in Yellowstone
Unknown, but generally widespread.

Where to See
- Rarely seen; most reports from rocky areas and near rivers.
- Typical habitat: rocky areas, conifer forests.

Size and Behavior
- Adult: 15–30 pounds; 31–34 inches long.
- Color ranges from red-brown fur with indistinct markings to light buff with dark spotting; short tail; ear tufts.
- Distinguish from lynx: has several black rings that do not fully circle the tail; no black tip on tail, shorter ear tufts, smaller track (2 inches).
- Solitary, active between sunset and sunrise.
- Eats rabbits, hares, voles, mice, red squirrels, wrens, sparrows, grouse; may take deer and adult pronghorn.
Bats
Bats are the only mammals capable of sustained, flapping flight, which has given rise to a great diversity of species throughout the world. The bat species that have been documented in Yellowstone National Park are all insectivores (insect-eaters). To support the energy demands for flight, insectivorous bats must eat a large number of insects. Nursing females may consume their own body weight in food each night during the summer. In temperate environments, bats mate in late summer or autumn, just before entering into hibernation for the winter. During spring and summer, bats tend to be highly localized near sources of food, water, and roosting structures. They roost in natural habitats, including thermally heated caves, as well as in bridges, buildings, and other human structures, which can lead to conflicts with human use and historical preservation plans.

Population
Bat monitoring efforts using acoustic surveys and mist-net captures have identified the following thirteen bat species in Yellowstone National Park:
- Little brown bat (*Myotis lucifugus*)
- Big brown bat (*Eptesicus fuscus*)
- Long-eared myotis (*Myotis evotis*)
- Long-legged myotis (*Myotis volans*)
- Townsend’s big-eared bat (*Corynorhinus townsendii*)
- Fringe-tailed bat (*Myotis thysanodes*)
- Hoary bat (*Lasiurus cinereus*)
- Silver-haired bat (*Lasionycteris noctivagans*)
- Spotted Bat (*Euderma maculatum*)
- Pallid Bat (*Antrozous pallidus*)
- California Myotis (*Myotis californicus*)
- Western-Small-footed Myotis (*Myotis ciliolabrum*)
- Yuma myotis (*Myotis yumanensis*)

Bat monitoring in Yellowstone seeks to establish baseline data on the distribution, activity, and habitat use by bat species—before we begin to see evidence of the arrival of the disease white-nose syndrome (WNS).

The fungal pathogen *Pseudogymnoascus destructans*, which causes WNS, has been responsible for declines as high as 99% in wintering bat populations, leading to regional extinctions of several species in northeastern North America. In 2016, two bats were confirmed to be infected in Washington State. Bats cannot recover quickly (if at all) from these substantial population declines because most species that are vulnerable to WNS rear only a single pup per female each year.

It is important to identify the location of maternity roosts and hibernacula, locations that are used for reproduction and over-winter survival, respectively. Female bats captured with mist-nets and fitted with radio-transmitters have helped to identify buildings that serve as maternity roosts (where females raise young) for little brown bats. Research suggests that access to building attics within Yellowstone National Park is critical for their reproductive success and the long-term conservation.

Quick Facts
Species in Yellowstone
13

Where to See
Dawn and dusk in areas with insects.

Behavior
- Develop and reproduce slowly, which is unusual given their small body size.
- Typically mate in the fall. In bats that hibernate, fertilization is delayed until the female emerges from hibernation. For most Greater Yellowstone bats, hibernation ends around mid-April and the females give birth in mid-June.
- Most give birth to one pup a year, although four species in the greater Yellowstone area have two or more pups at a time. These species typically begin flying in 2–6 weeks, are weaned around 5–10 weeks, and become mature in 1–2 years.
- Few predators specialize on bats. Predators are generally opportunistic and include owls, falcons, hawks, snakes, and raccoons.
- Of bats that survive their first year, 40–80% survive 7–8 years; many bats live 10–30 years.
Habitat
Roosts provide bats with protection from weather and predators, and the type of roosting structure available affects foraging and mating strategies, seasonal movements, morphology, physiology, and population distribution. Bats in Greater Yellowstone use both natural habitats and man-made structures including bridges and abandoned mines.

Research suggests that the thermal conditions in maternity roosts are important for the reproductive success of little brown bats. Young bats can maximize their growth rate, wean, and begin to fly and forage earlier because they are not using much energy to stay warm.

Bats are long-lived (10–30 years) and show fidelity to maternal roost sites where they have successfully raised young. For this reason, park managers try to exclude bats from the attics of park buildings. In 1904, the “type specimen” that describes the subspecies of little brown bat found in Yellowstone was collected from the Lake Hotel.

The presence of other bats in Yellowstone is probably restricted by the limited location of suitable roosts and/or the distribution of moths and beetles on which more specialized bats forage. It is likely that most western bat species migrate short distances from their summer roosts to their winter hibernating locations. However, bat activity has been documented during every month of the year, which suggests that multiple species may remain within Yellowstone over winter. Some species migrate long distances to areas where temperature and insect populations remain high enough for continued activity. These species usually do not hibernate. In Greater Yellowstone, the hoary bat likely migrates south for the winter.

Physical Adaptations
Bats with long, narrow wings (e.g., the hoary bat) are fast but less maneuverable fliers that typically forage in open areas. Bats with short, broad wings (e.g., Townsend’s big-eared bat) are slower but more agile and typically forage in forested areas or along the edge of vegetation. A few Yellowstone bats, such as long-eared myotis, pallid bat, and Townsend’s big-eared bat can glean insects off the surface of vegetation, and have wing shapes that enable them to hover and carry larger prey.

Bats use an echolocation system to navigate and find food in the dark. Many species produce pulses of high frequency ultrasonic sound and listen for the returning echoes. The echoes provide bats with a sonic picture of the environment which includes the movement of prey. High frequency calls are less likely to alert predators and are effective for locating prey, although some moths have developed organs on their abdomens capable of detecting such calls. Most bats also use lower frequency calls (often audible to humans) to communicate with each other. Also, contrary to the expression “blind as a bat,” bats typically have excellent vision that can be used for hunting.

Bats make efficient use of the energy obtained through foraging by regulating their body temperature (thermoregulation). To conserve energy, bats can lower their metabolic rate and body temperature (torpor), but they are then unable to carry out normal activities. Most bat species in Greater Yellowstone undergo torpor that may continue for months and is typically a seasonal response to a prolonged fall in temperature or reduction in food supply.

At rest, bats roost head down, which makes them less vulnerable to predators and facilitates flight. A bat can remain upside down for months because of cavities in its cranium that pool blood and other fluids away from the brain and an arrangement of ligaments and leg muscles that enables them to hang passively from their perch while sleeping.

More Information

Staff Reviewer
John Treanor, Wildlife Biologist
Elijah Lee, Yellowstone Bat Project
Beavers
The beaver (Castor canadensis) is a keystone species that affects habitat structure and dynamics through the damming and diverting of streams, and the felling of trees and other woody vegetation. The resulting ponds and flooding help create an environment favorable to willow and aspen, the beavers’ preferred winter foods and used in building their lodges. The territoriality of beavers probably deters two colonies from locating within 165 feet (50 m) of each other, and most streams in the park lack either suitable vegetation or a sufficiently low gradient to provide beavers with habitat, but information about the distribution and number of beaver colonies in the park over time adds to our understanding about the long-term effects of changes in vegetation and climate.

Habitat
Beavers live throughout Yellowstone National Park but are concentrated in the southeast (Yellowstone River delta area), southwest (Bechler area), and northwest portions (Madison and Gallatin rivers) of the park. These areas are likely important habitat because of their waterways, meadows, and the presence of preferred foods such as willow, aspen, and cottonwood.

However, beavers are not restricted to areas that have their preferred foods. Essentially no aspen exist in most areas where beavers’ sign is most abundant, such as the Bechler River and in other areas where beavers periodically live, such as Heart Lake, the lower Lamar River and Slough Creek area, Slide Lake, and the lower Gardner River. In these areas, beavers use willows for construction and for food. Where their preferred plants are few or absent, beavers may cut conifer trees and feed on submerged vegetation such as pond lilies.

Beavers are famous dam builders, and examples of their work can be seen from the roads in the park. Most dams are on small streams where the gradient is mild, and the current is relatively placid during much of the year. Colonies located on major rivers or in areas of frequent water level fluctuations, such as the Lamar River, den in holes in the riverbank. An old dam is visible at Beaver Lake between Norris and Mammoth.

When hunched over their food, beaver can resemble round rocks. Beavers are most active in the early

Quick Facts
Number in Yellowstone
100 colonies estimated in 2015

Where to See
• Willow Park (between Mammoth and Norris), Beaver Ponds (Mammoth area), Harlequin Lake (Madison area), and the Gallatin River along US 191.
• In the backcountry: upper Yellowstone River (Thorofare region), Bechler River, and Slough Creek. Occasionally seen in the Lamar, Gardner, and Madison rivers.
• Wait in areas near known beaver activity. You may see them swimming or clambering onto the bank to gnaw at trees and willows. Listen for the sound of the beaver slapping its tail on the water before it submerges to seek safety.

Behavior and Size
• Crepuscular: active in evening and morning
• If living on rivers, may build bank dens instead of lodges.
• One colony may support 2–14 beavers that are usually related. Six is considered average.
• 35–40 inches long, including tail.
• Weighs 30–60 pounds.
• Average life span: 5 years.
• Male and female beavers look alike—thick brown fur, paddle-shaped tail.
• Like wolves, beavers live in family groups, which are called colonies. Fewer than 5% of mammals live organized like this.

Other Information
• Beavers are native to Yellowstone.
• Yellowstone’s beavers escaped most of the trapping that occurred in the 1800s due to the region’s inaccessibility.
morning and late evening, which seem to allow them to use areas near human use. Beavers do not appear to avoid areas of moderate to high levels of human use. Several occupied lodges in Yellowstone are close to popular backcountry trails and campsites.

Population
The first survey of beavers in the park, conducted in 1921, reported 25 colonies, most of them cutting aspen trees. Although it was limited to parts of the northern range, comparing the locations of those beaver colonies with subsequent survey results demonstrates how beavers respond and contribute to changes in their habitat. A 1953 survey found eight colonies on the northern range, but none at the sites reported in 1921 and a lack of regrowth in cut aspen. Willow were also in decline during this period.

To help restore the population of beavers on Gallatin National Forest, 129 beavers were released into drainages north of the park from 1986 to 1999. Park-wide aerial surveys began in 1996 with a count of 49 colonies and increased to 127 by 2007; dropping to 118 in 2009 and 112 in 2011. While the long-term increase is partly attributable to the improving ability of aerial observers to locate colonies, the park’s population of beavers probably has grown in the last 15 years. Some of the increase likely came from beavers dispersing from the national forest, but they would not have survived without suitable habitat. The increase has occurred throughout the park and is likely related to the resurgence in willow since the late 1990s, at least on the northern range, and possibly in the park interior. Nearly all of the colonies documented in recent years were located in or near willow stands, none near aspen.

Willow, which is more common in the park than aspen, is a hardier shrub that quickly regenerates after being clipped by beavers. The reason for the prolonged decline and relatively sudden release of willow on the northern range, and whether aspen have begun a sustained surge in recruitment, are topics of intense debate. Possible factors include the relationship of these plant species to changes in the abundance of beavers and elk, fire suppression, the reintroduction of wolves, and climate change.

The preferred foods of beaver are willow, aspen, and cottonwood. Where their preferred plants are few or absent, beavers may cut conifer trees and feed on submerged vegetation such as pond lilies.

More Information

Staff Reviewer
Erin Stahler, Biological Technician
Doug Smith, Senior Wildlife Biologist
Pikas

The pika (*Ochotona princeps*) is considered an indicator species for detecting ecological effects of climate change. While abundant in the Greater Yellowstone Ecosystem, pika numbers are declining in some areas of lower elevations in response to increased warming, which reduces their suitable habitat. The US Fish and Wildlife Service review of the pika found no current need to list the species as threatened or endangered, however, pikas will likely disappear from some lower elevation or warmer sites.

Behavior

Pikas are territorial. They inhabit rocky alpine and sub-alpine zones feeding on the vegetation that fringes their preferred talus slopes. Because pikas do not hibernate, this relative of the rabbit must gather enough plant materials during the short growing season to survive the winter. Piles of drying vegetation, called haystacks, and a distinctive high-pitched call are the most recognizable indicators of active pika habitat. Prolific breeders, pikas usually have two litters of young each summer. The mortality rate is high for the youngsters and the first litter has a greater rate of survival. These small mammals are sensitive to temperatures above 77.9°F (25.5°C); therefore, they are most active during cooler parts of the day.

Research

The National Park Service Pikas in Peril project, started in 2010, assessed the vulnerability of the pika to climate change by studying pika populations within western national parks. The study located pikas in many small, isolated patches in Yellowstone. Under scenarios of projected climate change, the park is expected to become warmer and drier; high genetic diversity among the Yellowstone population may increase their resistance to heat stress caused by those changes. Still, suitability of habitat is predicted to decline 80% by 2026 and extirpation of the species inside the park is likely. More information can be found at the project website: www.nps.gov/orgs/1778/pikas-in-peril.htm.

Reviewer

Tom Rodhouse, Natural Resources Stewardship and Science Directorate.

Quick Facts

<table>
<thead>
<tr>
<th>Number in Yellowstone</th>
<th>Abundant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where to See</td>
<td>Tower and Mammoth areas, most often</td>
</tr>
<tr>
<td>Identification and behavior</td>
<td>7–8.4 in. long, 5.3–6.2 ounces (about the size of a guinea pig).</td>
</tr>
<tr>
<td></td>
<td>Active year-round; agilely darts around on rocks; travels through tunnels under snow.</td>
</tr>
<tr>
<td></td>
<td>Breed in spring; two litters per year.</td>
</tr>
<tr>
<td></td>
<td>Often heard but not seen; makes a distinct shrill whistle call or a short “mew.”</td>
</tr>
<tr>
<td>Habitat</td>
<td>Found on talus slopes and rock falls at nearly all elevations in the park.</td>
</tr>
<tr>
<td></td>
<td>Eat plant foods such as grasses, sedges, aspen, lichen, and conifer twigs.</td>
</tr>
<tr>
<td></td>
<td>Predators include coyotes, martens, and hawks.</td>
</tr>
<tr>
<td>Management Concerns</td>
<td>Pikas are vulnerable to loss of habitat related to climate change.</td>
</tr>
</tbody>
</table>
White-tailed Jackrabbits

Considered an agricultural or garden pest in many parts of the country, the white-tailed jackrabbit (*Lepus townsendii*) found a niche in Yellowstone. Most of the park is too forested or accumulates too much snow to provide suitable habitat, but in lower elevation areas of the northern range it can feed on sagebrush, rabbitbrush, and other shrubs during the winter. The jackrabbit is preyed upon by bobcats, coyotes, wolves, eagles, hawks, and owls in the park, but perhaps because of its limited distribution, it does not appear to provide a significant source of food for these species.

Description

Despite its common name, the jackrabbit is more closely related to other hares than to rabbits (*Sylvilagus* spp.) Like the much smaller snowshoe hare (*L. americanus*), which resides in Yellowstone’s coniferous forests, the jackrabbit has a grayish-brown summer coat that turns nearly white to provide winter camouflage in areas with persistent snow cover. The slightly smaller black-tailed jackrabbit (*L. californicus*), which is found in lower elevation areas, has not been documented in the park and is generally less common in Greater Yellowstone.

Population

Nearly all of the 501 jackrabbit observations recorded in 2008 and spottier records prior to that were made in sagebrush-grassland habitat at elevations below 6,500 feet (2,000 m) where the average annual precipitation is less than 16 inches (40 cm). Less than 1% of the park (about 18,700 acres) is located in these areas, which are found in the Gardiner Basin, along the Gardner River, and in Mammoth Hot Springs. Although some jackrabbit populations are known to fluctuate markedly over the short- or long-term, no evidence has been found that the abundance or distribution of jackrabbits in Yellowstone has changed substantially since the park was established in 1872. Jackrabbits are found as high as 14,600 feet (4,200 m) in Colorado, but a

Quick Facts

<table>
<thead>
<tr>
<th>Number in Yellowstone</th>
<th>Common in suitable low elevation habitats in the park.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where to See</td>
<td>Elevations below 6,500 feet from the Blacktail Plateau to Mammoth to the Gardiner Basin area.</td>
</tr>
<tr>
<td>Identification</td>
<td>Easily distinguished from true rabbits by their large ears, large feet, and generally large body size.</td>
</tr>
<tr>
<td></td>
<td>Use their ears to listen for danger and to radiate body heat. Large ears allow them to release excess body heat and tolerate high body temperatures.</td>
</tr>
<tr>
<td></td>
<td>Summer coat is grayish brown, with a lighter underside. In Yellowstone and other places where there is persistent and widespread snow cover, the coat changes to nearly white in winter. Ears are rimmed with black.</td>
</tr>
<tr>
<td>Habitat</td>
<td>Found in prairie-grassland and grass-shrub steppe habitat types in western high plains and mountains. They generally prefer grass-dominated habitats and have also been found to flourish above treeline in the alpine zone and avoid forested areas.</td>
</tr>
<tr>
<td>Behavior</td>
<td>Have 1–4 litters per year with 1 to 15 offspring.</td>
</tr>
<tr>
<td></td>
<td>Gestation is 36–43 days.</td>
</tr>
<tr>
<td></td>
<td>In most areas, the breeding season of white-tailed jackrabbits averages 148 days and may run late February to mid July. Breeding in the northern Yellowstone ecosystem is not well documented.</td>
</tr>
<tr>
<td></td>
<td>Feed on grasses, forbs, and shrubs at night and are less active during the day.</td>
</tr>
<tr>
<td></td>
<td>Can run from 35 to 50 mph (56 to 80 kph) and cover 6–10 ft (2–3 m) with each bound. Will also swim when being pursued by predators.</td>
</tr>
</tbody>
</table>
limiting factor in Yellowstone appears to be snow, which begins to accumulate earlier in the winter, attains greater depths, and lasts later into spring with increasing elevation.

More Information

Staff Reviewer
Kerry Gunther, Bear Management Biologist

Snowshoe Hares
Lepus americanus

Number in Yellowstone
Common in some places

Where to See
Norris Geyser Basin area

Identification
• 14.5–20 inches long, 3–4 pounds.
• Large hind feet enable easy travel on snow; white winter coat offers camouflage; gray summer coat.
• Transition in seasonal fur color takes about 70–90 days; seems to be triggered in part by day length.

Habitat
• Found particularly in coniferous forests with dense understory of shrubs, riparian areas with many willows, or low areas in spruce-fir cover.
• Rarely venture from forest cover except to feed in forest openings.
• Eat plants; uses lodgepole pine in winter.
• Preyed upon by lynx, bobcats, coyotes, foxes, weasels, some hawks, and great horned owls.

Behavior
• Breed from early March to late August.
• Young are born with hair, grow rapidly and are weaned within 30 days.
• Docile except during the breeding season when they chase each other, drum on the ground with the hind foot, leap into the air, and occasionally battle.
• Mostly nocturnal; their presence in winter is only advertised by their abundant tracks in snow.
Wolverines

A mid-size carnivore in the weasel family, the wolverine (*Gulo gulo*) is active throughout the year in cold, snowy environments to which it is well adapted. Its circumpolar distribution extends south to mountainous areas of the western United States, including the greater Yellowstone area where they use high-elevation islands of boreal (forest) and alpine (tundra) habitat. Wolverines have low reproductive rates, and their ability to disperse among these islands is critical to the population’s viability. Climate change models predict that by 2050, the spring snowpack needed for wolverine denning and hunting will be limited to portions of the southern Rocky Mountains, the Sierra Nevada range, and greater Yellowstone, of which only the latter currently has a population. Wolverines are so rarely seen and inhabit such remote terrain at low densities that assessing population trends is difficult and sudden declines could go unnoticed for years.

Population

Commercial trapping and predator control efforts substantially reduced wolverine distribution in the lower 48 states by the 1930s. Some population recovery has occurred, but the species has not been documented recently in major portions of its historic range. In the greater Yellowstone area, wolverines have been studied using live traps, telemetry, and aerial surveys. A group sponsored by the Wildlife Conservation Society has documented ranges that extend into Yellowstone National Park along the northwest and southwest boundary. A second group, which included researchers from the National Park Service, the US Forest Service, and the Northern Rockies Conservation Cooperative, which surveyed the eastern part of the park and adjoining national forest from 2006 to 2009, documented seven wolverines. The average annual range for the two monitored females was 172 mi² (447 km²); for three males, 350 mi² (908 km²). The other two males, both originally captured by the Wildlife Conservation Society, dispersed from west and south of the park: M557 established a home range north of the park in 2009; M556 became the first confirmed wolverine in Colorado in 90 years. But to create a breeding population there, he will need to find a female.

Conservation Status

Wolverine populations in the US Rockies are likely to be genetically interdependent. Even at full capacity, wolverine habitat in the Yellowstone area would support too few females to maintain viability without

Quick Facts

Number

2006–2009: seven documented in eastern Yellowstone and adjoining national forests (two females, five males).

Size and Behavior

- 38–47 inches long, 13–31 pounds.
- Opportunistic eaters. Eat burrowing rodents, birds, eggs, beavers, squirrels, marmots, mice, and vegetation (including whitebark pine nuts); chiefly a scavenger in winter, but has also been known to take large prey such as deer, elk, and moose.
- Active year-round, intermittently throughout the day.
- Breed April to October; one litter of 2–4 young each year. Females give birth in dens excavated in snow.
- Den in deep snow, under log jams, and uprooted trees in avalanche chutes.
- Mostly solitary except when breeding.

Management Concerns

- In August 2014, the US Fish and Wildlife Service withdrew a proposal to list wolverines living in the lower 48 states as a threatened species under the Endangered Species Act.
- Due to uncertainty of the effects of climate change on wolverines and their habitat in the foreseeable future, plans to list the species are on hold.
genetic exchange with peripheral populations. The rugged terrain that comprises a single wolverine home range often overlaps several land management jurisdictions. Collaborative conservation strategies developed across multiple states and jurisdictions are therefore necessary for the persistence of wolverines in the continental United States.

In August 2014, the United States Fish and Wildlife Service withdrew a proposed rule to list the wolverine as a threatened species under the Endangered Species Act in the contiguous United States. In spring of 2016, a US District court reinstated the proposal ruled that it shall be conferred on as necessary until a final proposed.

Climate change impacts on wolverine habitat, specifically the likelihood of declining habitat in high elevation snowpack for denning females, had been identified as a chief threat to this species. In Montana, which has the largest wolverine population of the lower 48 states, an annual quota of 5 wolverines were available for harvest by licensed trappers in recent years.

More Information

Staff Reviewer

Dan Stahler, wildlife Biologist
Other Small Mammals

Badger (*Taxidea taxus*)

Identification
- Short and stout; adapted to digging.
- Light body with dark stripe down back and darker feet. Broad head forms a wedge. Sides of face are white with black patches, white stripe from nose extends towards back.

Habitat
- Prefers open areas like grasslands.
- Adapted to eat ground squirrels, pocket gophers, and other small rodents; will also eat ground-nesting birds and their eggs. Average badger needs to eat about two ground squirrels or pocket gophers a day to maintain its weight.
- Digs burrows in pursuit of prey.
- Adults preyed on by mountain lions, bears, and wolves. Coyotes and eagles will prey on young.

Behavior
- Mostly solitary except in mating season (summer and early fall). Have delayed implantation; active gestation starts around February.
- Excavated dens are used for daytime resting sites, food storage, and giving birth. Typically have one entrance, marked by a mound of soil. May be inactive in their dens for up to a month in winter, but they are not true hibernators.
- Mostly active at night. May live up to 14 years.

Golden-mantled Ground Squirrel (*Spermophilus lateralis*)

Identification
- 9–12 inches long, 7.4–11 ounces.
- Adult head and shoulders are reddish-brown, their “mantle.”
- Often mistaken for a least chipmunk (described below); distinguished by larger size, more robust body, shorter tail, and stripes that do not extend onto the sides of the head.

Habitat
- Found throughout Yellowstone at all elevations in rocky areas, edges of mountain meadows, forest openings, tundra.
- 87% of diet consists of fungi and leaves of flowering plants; other foods include buds, seeds, nuts, roots, bird eggs, insects, and carrion.
- Predators include coyotes, weasels, badgers, hawks, grizzly bears.

Behavior
- Hibernate October to March or April.
- Breeding occurs shortly after both males and females emerge from hibernation; one litter of five young per year.
Red Squirrel (Tamiasciurus hudsonicus)

Identification
- 11–15 inches long, 6.7–7 ounces.
- Brownish-red on its upper half; dark stripe above white ventral side; light eye ring; bushy tail.
- Quick, energetic.
- Loud, long chirp to advertise presence; much more pronounced in the fall.

Habitat
- Spruce, fir, and pine forests; young squirrels found in marginal aspen habitat.
- Eat conifer seeds, terminal buds of conifer trees, fungi, some insects; sometimes steal young birds from nests.
- Preyed on by coyotes, grizzly bears, hawks.

Behavior
- Breed February through May, typically March and April; one litter of 3–5 young.
- One of the park’s most territorial animals; territorialism ensures winter food supply.
- In fall, cuts cones from trees and caches them in middens, which are used for years and can be 15 by 30 feet; grizzlies search out these middens in whitebark pine and limber pine habitat to obtain the nuts.

Uinta Ground Squirrel (Spermophilus armatus)

Identification
- 11–12 inches long, 7–10 ounces.
- Grayish back and rump with fine white spots on back; nose and shoulders are tan to cinnamon; tail is grayish underneath.

Habitat
- Found in disturbed or heavily grazed grasslands, sagebrush meadows, and mountain meadows up to 11,000 feet.
- Eat grasses, forbs, mushrooms, insects, and carrion (including road-killed members of its own species).
- Preyed on by long-tailed weasels, hawks, coyotes, badgers, grizzly bears.

Behavior
- Hibernate as early as mid-July through March.
- Breed in early spring; one litter of 6–8 young per year.
- Young, after they leave the burrow, are vulnerable to long-tailed weasels and hawks.
- During cool spring weather, Uinta ground squirrels active at all times of day, as the weather warms activity more limited to morning, late afternoon, and evening.
- During winter, Uinta ground squirrels are sometimes active near the Albright Visitor Center and hotel at Mammoth Hot Springs. Perhaps they are aroused from hibernation due to ground temperatures rising as hydrothermal activity increases in the vicinity. No one knows for sure.
Least Chipmunk (*Tamias minimus*)

Identification
- 7.5–8.5 inches long, 1.2 ounces.
- Smallest member of the squirrel family; one of three chipmunk species in the park.
- Often mistaken for golden-mantled ground squirrel; distinguished by smaller size, longer tail, and lateral stripes that extend onto the sides of the head.

Habitat
- Prefers sagebrush valleys, shrub communities, and forest openings.
- Eat primarily plant material, especially seeds and other fruits, but will also eat conifer seeds and some insects.
- Preyed on by various hawks, grizzly bears, and probably foxes and coyotes.

Behavior
- In Yellowstone, this species hibernates but also stores some food and probably arouses frequently during the winter.
- Breeding begins as snowmelt occurs, usually late March until mid-May; one litter of 5–6 young per year.
- Little is known about their vocalizations but they do have “chipping” (which may be an alarm) and “clucking” calls.
- Can be identified by quick darting movements and it seems to carry its tail vertically when moving.

Short-tailed Weasel (Ermine) (*Mustela erminea*)

Identification
- 8–13 inches long, 2.1–7 ounces.
- Typical weasel shape: very long body, short legs, pointed face, long tail.
- Males about 40% larger than females.
- Fur is light brown above and white below in summer; all white in winter except for tail, which is black-tipped all year.
- Compare to long-tailed weasel and marten.

Habitat
- Eat voles, shrews, deer mice, rabbits, rats, chipmunks, grasshoppers, and frogs.
- Found in willows and spruce forests.

Behavior
- Breed in early to mid-summer; 1 litter of 6–7 young per year.
- Can leap repeatedly three times their length.
- Will often move through and hunt in rodent burrows.
Long-tailed Weasel (Mustela frenata)

Identification
- Typical weasel shape: a very long body, short legs, pointed face, long tail.
- 13–18 inches long, 4.8–11 ounces.
- Fur is light brown above and buff to rusty orange below in summer; all white in winter, except for tail, which is black-tipped all year.
- Males 40% larger than females.
- Compare to marten and short-tailed weasel.

Habitat
- Found in forests, open grassy meadows and marshes, and near water.
- Eat voles, pocket gophers, mice, ground and tree squirrels, rabbits; to a lesser degree birds, eggs, snakes, frogs, and insects.

Behavior
- Breed in early July and August; one litter of 6–9 young per year.
- Solitary animals except during breeding and rearing of young.

Marten (Martes americana)

Identification
- 18–26 inches long, 1–3 pounds.
- Weasel family; short limbs and long bushy tail; fur varies from light to dark brown or black; irregular, buffy to bright orange throat patch.
- Smaller than a fisher; buffy or orange bib rather than white.
- Compare to long-tailed weasel and short-tailed weasel.

Habitat
- Found in conifer forests with understory of fallen logs and stumps; will use riparian areas, meadows, forest edges and rocky alpine areas.
- Eat primarily small mammals such as red-backed voles, red squirrels, snowshoe hares, flying squirrels, chipmunks, mice and shrews; also to a lesser extent birds and eggs, amphibians and reptiles, earthworms, insects, fruit, berries, and carrion.

Behavior
- Solitary except in breeding season (July and August); delayed implantation; 1–5 young born in mid-March to late April.
- Active throughout the year; hunts mostly on the ground.
- Rest or den in hollow trees or stumps, in ground burrows or rock piles, in excavations under tree roots.
Montane Vole (*Microtus montanus*)

Identification
- 5–7.6 inches long, 1.2–3.2 ounces.
- Brownish to grayish-brown, occasionally grizzled; ventral side is silvery gray; relatively short tail is bi-colored.

Habitat
- Found at all elevations in moist mountain meadows with abundant grass and grassy sagebrush communities; also common in riparian areas.
- Grass is their primary food.
- Probably the most important prey species in the park; eaten by coyotes, raptors, grizzly bears, other animals.

Behavior
- Active year-round maintaining tunnels in the winter; also dig shallow burrows.
- Typically breed from mid-February to November; up to four litters of 2–10 young per year.

Pocket Gopher (*Thomomys talpoides*)

Identification
- 6–10 inches long, 2.6–6.3 ounces.
- Very small eyes and ears; brown or tan smooth fur; short tail; long front claws for burrowing; large external pouches for carrying food.

Habitat
- Only range restriction seems to be topsoil depth, which limits burrowing.
- Preyed upon by owls, badgers, grizzly bears, coyotes, weasels, and other predators.
- Snakes, lizards, ground squirrels, deer mice, and other animals use their burrows.
- In the top 6–8 inches below the surface they forage for forbs, some grasses and underground stems, bulbs, and tubers.

Behavior
- Transport food in cheek pouches to underground cache. Grizzly bears sometimes dig up these caches, including an unsuspecting gopher.
- Do not hibernate, but instead burrow into the snow; often fill tunnels with soil forming worm-like cores that remain in the spring after snow melts.
- Breed in May and April; one litter of five young per year.
- Burrow systems are elaborate and often bi-level; can be 400–500 feet long.
- Very territorial; only one per burrow.
River Otter (*Lontra canadensis*)

Identification
- 40–54 inches long, 10–30 pounds.
- Sleek, cylindrical body; small head; tail nearly one third of the body and tapers to a point; feet webbed; claws short; fur is dark dense brown.
- Ears and nostrils close when underwater; whiskers aid in locating prey.

Habitat
- Most aquatic member of weasel family; generally found near water.
- Eat crayfish and fish; also frogs, turtles, sometimes young muskrats or beavers.

Behavior
- Active year-round. Mostly crepuscular but have been seen at all times of the day.
- Breed in late March through April; one litter of two young per year. Females and offspring remain together until next litter; may temporarily join other family groups.
- Can swim underwater up to 6 miles per hour and for 2–3 minutes at a time.
- Not agile or fast on land unless they find snow or ice, then can move rapidly by alternating hops and slides; can reach speeds of 15 miles per hour.
- May move long distances between waterbodies.

More Information

Yellow-bellied Marmot (*Marmota flaviventris*)

Identification
- 20–28 inches long; 3.5–11 pounds.
- One of the largest rodents in Yellowstone.
- Reddish-brown upper body; yellowish belly; small ears; prominent active tail.

Habitat
- Found from lowest valleys to alpine tundra, usually in open grassy communities and almost always near rocks.
- Feed on grasses and forbs in early summer; switch to seeds in late summer, occasionally will eat insects.
- Prey for coyotes, grizzlies, and golden eagles.

Behavior
- Hibernate up to 8 months, emerging from February to May depending on elevation; may estivate in June in response to dry conditions and lack of green vegetation and reappear in late summer.
- Breed within two weeks of emerging from hibernation; average five young per year.
- Active in morning, late afternoon, and evening.
- Colonies consist of one male, several females, plus young of the year.
- Vocalizations include a loud whistle (early settlers called them “whistle pigs”), a “scream” used for fear and excitement; a quiet tooth chatter that may be a threat.
- Males are territorial; dominance and aggressiveness demonstrated by waving tail slowly back and forth.
Birds

Records of bird sightings have been kept in Yellowstone since its establishment in 1872. These records document nearly 300 species of birds to date, including raptors, songbirds, shorebirds, and waterfowl. Approximately 150 species nest in the park. The variation in elevation and broad array of habitat types found within Yellowstone contribute to the relatively high diversity. Many of the birds are migratory species. There are currently no federally listed bird species in Yellowstone National Park.

The Yellowstone National Park bird program monitors a small portion of its breeding bird species to gather information on reproduction, abundance, and habitat use. Data is collected on multiple species from a wide variety of taxonomic groups, and has been maintained for 25 or more years for several species. Long-term monitoring efforts help inform park staff of potential shifts in ecosystem function, e.g., climate change effects, for Yellowstone’s bird community and may guide future conservation of the park’s birds and their habitats.

Climate Change

The timing of the availability of food sources for birds may change with rising temperatures and changing weather patterns. Birds are sensitive to shifts in seasonal weather patterns and show a relatively rapid response to these fluctuations. For example, climate change has been shown to influence migration patterns, population size and distribution, the timing of reproduction, and nesting success for birds. Through monitoring, birds can be used as environmental health indicators to help managers detect changes in ecosystem function and, if necessary, take appropriate management action.

The Yellowstone bird program monitors the spring arrival of species to the park, as well as the timing of nest initiation and fledging for several raptor species, which may be useful in observing the effects of climate change in Yellowstone.

Quick Facts

Number in Yellowstone
285 documented species; approximately 150 species nest in the park.

Species of Concern
- Trumpeter swan
- Golden eagle
- Common loon

Current Management
The Yellowstone National Park bird program monitors the park’s bird species, including species of concern. The program’s core activities are monitoring raptors (bald eagles, ospreys, peregrine falcons, golden eagles), wetland birds, and passerine/near passerine birds (songbirds and woodpeckers).

More Information
FREQUENTLY ASKED QUESTION:

Where are good birding locations?

That depends on what kind of birds you want to see, the time of day you are looking, and your location in the park. In general, riparian areas and wetlands, especially those with shrubby willows, aspen, and cottonwoods attract the greatest diversity and abundance of birds.

Hayden Valley is one of the best places to view water birds and birds of prey. Shorebirds feed in the mud flats at Alum Creek. Sandhill cranes often nest in the valley. Ducks, geese, and American white pelicans cruise the river. Bald eagles and osprey hunt for fish along the river; northern harriers fly low looking for rodents in the grasses. Great gray owls are sometimes seen searching the meadows for food (these birds are sensitive to human disturbance). Blacktail Pond and Floating Island Lake, between Mammoth and Tower Junction, and the Madison River west of Madison Junction are also good places to look for birds.

Many birds, such as American robins and common ravens, are found throughout the park. Other species live in specific habitats. For example, belted kingfishers are found near rivers and streams while Steller’s jays are found in moist coniferous forests.

Spring is a good time to look for birds. Migration brings many birds back to the park from their winter journeys south; other birds are passing through to more northern nesting areas. Songbirds are singing to establish and defend their territories; and many ducks are in their colorful breeding plumages, which makes identification easier.

Watch for birds on early morning walks from mid-May through early July. At all times, but especially during the nesting season, birds should be viewed from a distance. Getting too close can stress a bird (as it can any animal) and sometimes cause the bird to abandon its nest.

Most birds migrate to lower elevations and more southern latitudes beginning in August. At the same time, other birds pass through Yellowstone. Hawk-watching can be especially rewarding in Hayden Valley late August through early October. In early November, look for tundra swans on the water.

Birds that stay in Yellowstone year-round include the common raven, Canada goose, trumpeter swan, dusky grouse (formerly blue grouse), gray jay, red-breasted nuthatch, American dipper, and mountain chickadee. A few species, such as common goldeneyes, bohemian waxwings, and rough-legged hawks migrate here for the winter.

Please note: The use of audio bird calls is illegal in the park.
Raptors
The park supports 19 breeding raptor species. Additional species use the Yellowstone landscape during migrations and seasonal movements. The bird program monitors bald eagles, ospreys, and peregrine falcons. Bald eagles and peregrine falcons were previously listed as endangered and threatened species and the park has continued monitoring since their delisting. The osprey is monitored because of the decline of one of their primary food sources—the cutthroat trout in Yellowstone Lake. Other species that occur in the park such as golden eagles and Swainson’s hawks are of growing conservation concern throughout their ranges in the United States.

Yellowstone Raptor Initiative
The Yellowstone Raptor Initiative was a five-year (2011–2015) program designed to provide baseline information regarding breeding, abundance, and seasonal movements for species other than bald eagles, ospreys, and peregrine falcons.

The Yellowstone Raptor Initiative selected golden eagles (Aquila chrysaetos), red-tailed hawks (Buteo jamaicensis), Swainson’s hawks (Buteo swainsoni), American kestrels (Falco sparverius), prairie falcons (Falco mexicanus), and owls as focal species. In addition to surveys conducted by park biologists, the initiative relied on citizen science to acquire valuable data on raptors in the park.

Surveys located 28 pairs of golden eagles, and more likely breed within the park. Observed breeding success was low on average and should be the subject of research in the future.

Researchers were surprised at the high density of red-tailed hawks in the northern range compared to other regions of similar habitat. Red-tailed hawks also exhibited variable breeding success.

Swainson’s hawks proved a difficult species to survey in Yellowstone. Most studies have focused on their association with agricultural land, and the park represents a somewhat unorthodox habitat for Swainson’s hawks.

Surveys demonstrated that at least 17 species of raptor use Hayden Valley as a migration corridor, comparable to that observed at other migration sites in the Intermountain Flyway. The Initiative provided the first look at owl distribution and occurrence in the park. Continued surveys, especially in the park interior, will improve our knowledge and understanding of this under-studied group of raptors. Finally, while not monitored during this study, accipiters are of growing conservation concern, particularly northern goshawks, and should be considered in future raptor studies.

Owls
Owl surveys continued after the completion of the Raptor Initiative in 2015, enabled by volunteers. Surveys provide an index of sites that attract advertising males of several northern forest owl species. The lowest observations of owl species diversity and abundance were in 2017. Observers detected individuals of only three owl species: great horned owl (4), northern saw-whet owl (9), and northern pygmy-owl (2). Notably, biologists detected no boreal owls, a first since the owl surveys began in 2013.

A nesting pair of long-eared owls was observed in Indian Creek Campground when two young successfully fledged from their nest. While long-eared owls have long been assumed to breed within the park, this is the first recorded nest by this species.

During the summer of 2016, a breeding pair of great gray owls nested in the Canyon area. The male was unfortunately injured by a vehicle in October of 2016, rehabilitated and released, and then found deceased in January of 2017.
Bald Eagles

The bald eagle (Haliaeetus leucocephalus) was named the national symbol of the United States by Congress in 1782. Found near open water from Mexico to Alaska, bald eagles may range over great distances but typically return to nest in the vicinity where they fledged. In Greater Yellowstone they feed primarily on fish, but also on waterfowl and carrion. Numbers declined dramatically during most of the 1900s due to habitat loss, shooting, and pesticide contamination. In 1967, the US Fish and Wildlife Service listed the bald eagle as an endangered species in 43 states, including Idaho, Montana, and Wyoming. Habitat protection, restrictions on killing, and restrictions on pesticide use led to population growth and delisting of the species in 2007. Bald eagles nesting in northwestern Wyoming are part of the Rocky Mountain breeding population that extends into Idaho and Montana.

Population

Bald eagles, which may reuse the same nest year after year, occupy territories near the park’s major rivers and lakes. The number of eaglets that fledge each year depends partly on weather and can fluctuate widely. Juveniles may migrate west in the fall but adults often stay in the park year-round. Historically, about half of the park’s known bald eagle nests have been in the Yellowstone Lake area, where the productivity and success rates are generally much lower than in the rest of the park. However, in 2017, only five of fourteen active nests in the park were on Yellowstone Lake. Of those five, four were successful and fledged seven young in total. A recent study found little evidence to support the claim that cutthroat trout declines have resulted in lower nesting success for bald eagles on Yellowstone Lake.

Outlook

Research has shown that human presence can disturb eagle nesting and foraging, therefore nest areas in national parks may be closed to visitors. Yellowstone manages nest sites on a case by case basis.

Bald Eagle Quick Facts

Number in Yellowstone
- In 2017, park staff monitored 14 active bald eagle nests. 9 (64.3%) successfully fledged young.
- 14 young were produced. Productivity for active nests in 2017 (1 young per nesting female), was greater than the 34-year average (0.73).

Identification
- Large, dark bird; adult (four or five years old) has completely white head and tail.
- Females larger than males, as is true with most predatory birds.
- Immature bald eagles show varying amounts of white; they can be mistaken for golden eagles.

Habitat
- Bald eagles are usually near water where they feed on fish and waterfowl. They also nest in large trees close to water.

Behavior
- In severe winters, eagles may move to lower elevations such as Paradise Valley, north of the park, where food is more available. On these wintering areas, resident eagles may be joined by migrant bald eagles and golden eagles.
- Feed primarily on fish and waterfowl, except in winter when fish stay deeper in water and lakes and rivers may be frozen. Then they eat more waterfowl. Eagles will also eat carrion in winter if it is available.

- Form long-term pair bonds.
- Some adults stay in the park year-round, while others return to their nesting sites by late winter.
- Lays one to three eggs (usually two) from February to mid-April.
- Both adults incubate the eggs, which hatch in 34 to 36 days.
- At birth, young (eaglets) are immobile, downy, have their eyes open, and are completely dependent upon their parents for food.
- Can fly from the nest at 10–14 weeks old.
- Some young migrate in fall to western Oregon, California, and Washington.
Golden Eagles
Golden eagles (Aquila chrysaetos) are large, long-lived raptors that feed on grouse, small mammals (e.g., rabbits, marmots, and ground squirrels), and carrion. Across the western USA, and in Wyoming in particular, there are growing concerns about the status of golden eagle populations due to broadscale energy development (wind, gas) and increasing human activity. To better understand the current population status and the drivers of population trends across the ecosystem, park biologists began focused study of golden eagles in Yellowstone in 2011.

Surveys located 28 golden eagles territories inside the park, 20 within the northern range alone. The resulting density in northern Yellowstone (one territory per 49.7 km²) is relatively high. Likewise, territory occupancy rates from 2011 to 2017 have been consistently high (100%). In contrast, low productivity at these nests (0.37 young/occupied territory) is driven by both infrequent nesting attempts and high nest failure rates. With such low productivity, the Yellowstone golden eagle population may be dependent on outside immigration, although much about the status of the park’s golden eagle population remains unknown. In other studies, reproductive failure of eagles and other raptors has been correlated with weather (e.g., high failure in high precipitation years), often interacting with food availability.

Outlook
In response to broad concerns about golden eagle populations, Wyoming has initiated a golden eagle working group and the U.S. Fish and Wildlife Service has instituted a western U.S. study modeling eagle habitat suitability, human development risks, lead exposure, and large-scale movements. Better understanding of the ecology of YNP eagles requires study of their food habits, toxicology, survival, and movement both within and outside the park. In recent years, extensive data relating to these key topics have been collected in two study areas flanking the park to the north and east and complimentary research within the park is ongoing.

More Information

Golden eagles are named for the yellow feathers at the base of the neck.

Staff Reviewers
Doug Smith, Senior Wildlife Biologist
Lauren Walker, Wildlife Biologist
Osprey
Like many other birds of prey, osprey (Pandion haliaeetus) populations declined due to pesticide use in the mid-1900s. Populations rebounded during the latter part of the 1900s. The first study of osprey in Yellowstone National Park occurred in 1917 by M. P. Skinner, the park’s first naturalist. It was not until 1987 that the Yellowstone National Park bird program began monitoring breeding osprey annually, although an extensive survey on reproduction, diet, and habitat was conducted during the 1970s.

Since monitoring began, Yellowstone’s population of osprey has declined, particularly on and around Yellowstone Lake. Nest success has remained relatively stable, with about 50% of nests producing one to two young per year.

Ospreys are surveyed via fixed-wing aircraft and by ground-based surveys from May through August. During the survey flights, the majority of nests are monitored for occupancy and breeding activity. In addition, all suitable lakes and rivers are surveyed for potential new territories and nest sites.

Research
A recently completed study conducted by park biologists found a significant relationship between the declines in cutthroat trout and osprey reproduction at Yellowstone Lake. Recent increases in the number of young cutthroat trout caught by the Yellowstone fisheries program during the fall netting assessment are encouraging. An increase in cutthroat trout production may lead to an increase in nesting pairs of ospreys and improved nesting success at Yellowstone Lake.

More Information

Staff Reviewers
Doug Smith, Senior Wildlife Biologist
Lauren Walker, Wildlife Biologist

Quick Facts
Number in Yellowstone
- In 2017, 27 active nests were monitored, with 74% of them successful, higher than the 31-year average (52%).
- 34 young were produced. Productivity for active nests in 2017 (1.26 young per nesting female) was greater than the 31-year average (0.89).
- Neither of the 2 active osprey nests at Yellowstone Lake were successful in 2017.

Identification
- Slightly smaller than the bald eagle.
- Mostly white belly, white head with dark streak through eye.
- Narrow wings, dark patch at bend.
- Fledglings have light edges to each dark feather on their backs and upper wing surfaces, which gives them a speckled appearance.

Habitat
- Usually near lakes (such as Yellowstone Lake), river valleys (such as Hayden, Madison, Firehole, and Lamar valleys), and in river canyons (such as the Gardner Canyon and the Grand Canyon of the Yellowstone River).

Behavior
- Generally returns to Yellowstone in April and leaves in September.
- Builds nest of sticks in large trees or on pinnacles close to water.
- Lays 2–3 eggs in May to June.
- Eggs hatch in 4–5 weeks.
Peregrine Falcons

The peregrine falcon is among the fastest birds, flying at up to 55 mph and diving at more than 200 mph when striking avian prey in mid-air. Peregrine populations began to decline in the 1940s because of pesticide contamination. One of three North American subspecies, the peregrine in Greater Yellowstone (*Falco peregrinus anatum*) was considered extirpated by the 1970s. As part of a national reintroduction program, captive-bred peregrines were released in Yellowstone and Grand Teton national parks during the 1980s. They typically reside in Greater Yellowstone from March through October, when their favored prey—songbirds and waterfowl—are most abundant. During winter they migrate as far south as Mexico or Central America.

History

In 1962, Rachel Carson sounded an alarm about the irresponsible use of pesticides with her landmark book *Silent Spring*. Among the dangers she described were the adverse effects of chemicals—particularly DDT—on the reproductive capacity of some birds, especially predatory species such as the bald eagle and peregrine falcon. Her book raised public awareness of this issue, and was one of the catalysts leading to the United States banning some of the most damaging pesticides.

The peregrine falcon was among the birds most affected by the toxins. It was listed as Endangered in 1970. Yellowstone National Park was a site for peregrine reintroductions in the 1980s, which were discontinued when the peregrine population began increasing on its own following restrictions on organochlorine pesticides in Canada and the United States, habitat protection, and the reintroduction program. The falcon made a comeback in much of its former range, and was delisted in 1999.

In Yellowstone, the most nesting pairs recorded was 32 in 2007, and they produced 47 fledglings. Although nesting pairs may reuse the same eyrie for many years, their remote locations on cliff ledges makes it impractical to locate and monitor activity at all eyries in a single year.

Yellowstone National Park’s protected conditions and long-term monitoring of peregrines provide baseline information to compare against other populations in the United States. Continued monitoring is essential, not only for comparisons with other populations, but also because peregrine falcons and other raptors are reliable indicators of contaminants such as polybrominated diphenyl ether (PBDE), and of climate change. For example, to assess the levels

Quick Facts

Number in Yellowstone
- In 2017 park staff monitored 20 of the 36 known peregrine breeding territories. Thirteen territories were occupied.
- Six of the 12 active pairs fledged 11 young in 2017 (50% nest success). The 30-year average nest success is 71%.
- The 30-year average productivity is 1.54 young per breeding pair, while the 2017 average was 0.92 young per breeding territory (1.83 per successful pair).

Identification
- Slightly smaller than a crow.
- Black “helmet” and a black wedge below the eye.
- Uniformly gray under its wings. (The prairie falcon, which also summers in Yellowstone, has black “armpits.”)
- Long tail, pointed wings.

Habitat
- Near water, meadows, cliffs.
- Nests on large cliffs over rivers or valleys where prey is abundant.

Behavior
- Resident in the park March through October, when its prey—songbirds and waterfowl—are abundant.
- Lays 3–4 eggs in late April to mid-May.
- Young fledge in July or early August.
- Dives at high speeds (can exceed 200 mph/320 kph) to strike prey in mid-air.
of PBDE and other contaminants, scientists collect eggshell remains after peregrines have left their nests for the season.

Recovery in Yellowstone
While the organochlorines found in peregrine eggshell fragments and feather samples have declined significantly, several studies indicate that certain flame retardant chemicals developed in the 1970s for use in electronic equipment, textiles, paints, and many other products leach into the environment and have been found in birds of prey at levels that impair their reproductive biology. In 2010, 2011, 2013, and 2014 eggshell fragments, feathers, and prey remains were collected from nest sites in Yellowstone after fledging occurred. Comparative data on eggshell thickness, which is an indicator of environmental contaminants, is within the range considered normal for the Rocky Mountain Region.

The major cause of peregrine endangerment is no longer a threat and YNP’s peregrine population appears stable. Furthermore, although both productivity and nesting success have remained below the 31-year average for the last 5 years, both measures have increased slightly since 2015. The relatively low nesting success and productivity in the last decade warrants continued close monitoring of this species and may require further study to determine the cause(s).

More Information

Staff Reviewers
Doug Smith, Senior Wildlife Biologist
Lauren Walker, Wildlife Biologist
Wetland Birds
Approximately 30% of the bird species that breed in Yellowstone depend on wetlands. Scientists are concerned about these species because wetlands are expected to diminish as global and local temperatures increase. Yellowstone has years of data about the rate and success of nesting for some wetland species, but little information about changes in the timing of nesting activity—an indicator of climate change.

Colony Nesting Birds
Colonial nesting birds nest primarily on the Molly Islands in the southeast arm of Yellowstone Lake. These two small islands are cumulatively just 0.7–1.2 acres in size, depending on lake water levels, yet hundreds of birds have nested there in a single year.

Prior to the late 1970s, the Molly Islands were surveyed only intermittently. Some data goes back to 1890 when nesting American white pelicans (Pelecanus erythrorhynchos) and California gulls (Larus californicus) were first noted in the area. Caspian terns (Hydroprogne caspia) are suspected of nesting on the Molly Islands as early as 1917, although information on breeding status was not collected until 1933. Double-crested cormorant (Phalacrocorax auritus) nests were confirmed by 1928.

Currently, pelicans, California gulls, and double-crested cormorants nest with varying rates of success. Photographic interpretation from three overflights made June–August 2017, showed approximately 280 pelican nests that fledged an estimated 29 young; 16 nesting double-crested cormorants that fledged an estimated 12 young. No California gulls appeared to attempt nests. As in recent years, no Caspian terns were observed on the islands.

Habitat
Birds nesting on the Molly Islands are subject to extreme environmental conditions ranging from flooding, frosts that can occur at any time of year, and high winds. As a result, birds nesting there experience large year-to-year fluctuations in the number of nests initiated and fledglings produced. Populations of American white pelicans, California gulls, and double-crested cormorants have declined over the last 20 years. Caspian terns have not nested on the islands since 2005.

The reasons for the decline in colonial nesting birds are not well understood, but a previous study indicates that high levels of water in Yellowstone Lake are associated with low reproduction for nesting pelicans. Notably, quick spring melt-off events can cause a significant rise in the water level on Yellowstone Lake and flood the Molly Islands.

The decline in cutthroat trout, a known food source for the Molly Island colonial nesting birds, may also influence nesting success. Furthermore, bald eagles on Yellowstone Lake that formerly depended on cutthroat trout may have switched prey to target the flightless and vulnerable young of these colonial nesting species.

More Information

Staff Reviewers
Doug Smith, Senior Wildlife Biologist
Lauren Walker, Wildlife Biologist
Common Loons
The park’s common loon (Gavia immer) population is one of the most southerly breeding populations in North America. The majority of Wyoming’s population of breeding common loons occurs in Yellowstone. The common loon is listed as a Species of Special Concern in Wyoming because of its limited range, small population, sensitivity to human disturbance, and loss of breeding habitat outside of Yellowstone. Wyoming’s breeding loon population is isolated from populations to the north by more than 200 miles, limiting immigration from other populations. Since the mid-2000s, Wyoming’s population has declined by 38%. Yellowstone’s loon population has declined since surveys began in 1989, with a more dramatic decline in 2006. However, detailed data from a study initiated in 2013 indicate that the number of loons present in the park can vary widely from year to year. Continuing research will try to analyze any trends in productivity, nesting success, and number of breeding pairs to attempt to determine why some years are more productive than others.

Population
In 2017, biologists and park staff checked at least 27 known or historic loon territories. Seventeen of the territories were occupied by at least one loon. In total, the park housed 37 adult loons and 15 pairs. Only eight pairs attempted to nest, and two of those failed. The six successful pairs produced eight loonlets during 2017.

Quick Facts

Number in Yellowstone
- In 2017, 37 loons in total. 15 territorial pairs. Six successful nests produced 8 young.

Identification
- Breeding adults (March–October) have black and white checkering on back, a black bill, red eyes, and iridescent green head and neck. The neck has a black and white chinstrap and distinctive collar.
- Loon chicks hatch with a blackish-brown down and white belly and retain this plumage for two weeks. Body feathers emerge at 4½ weeks on the chick’s upper back. By six weeks, brown down only remains on the neck and flanks.
- Gray juvenile plumage is present at seven weeks.
- Juveniles and winter adults have dark upperparts and white underparts.

Habitat
- Summer on ponds or lakes: large lakes, such as Yellowstone, Lewis, and Heart Lakes; and smaller ones such as Grebe and Riddle Lakes.
- Winter on open water.
- May be found foraging or resting on larger, slow moving rivers.
- Nest sites are usually on islands, hummocks in wetlands, or floating bog mats.
- Pairs nesting on lakes smaller than 60 acres usually require more than one lake in their territory. Lakes smaller than 15 acres are rarely used.

Behavior
- Primarily eat fish (4–8 inches).
- Unable to walk on land.
- Migrate in loose groups or on own, not in organized flocks. Arrive at summer lakes and ponds at or soon after ice-off.
- Four common calls: wail—for long distance communication, yodel—used as a territorial signal by males only, tremolo—a staccato call, usually by an agitated adult, and hoot—a contact call, often between adults or adults and their young.
- Females generally lay two eggs, typically in June.
- Males and females share incubation duties equally. Chicks hatch after 27–30 days. Both adults also care for their young.
- Chicks are able to fend for themselves and attain flight at 11–12 weeks.
- In late summer, adults form social groups, especially on larger lakes, before leaving in October.

Management Concerns
- The breeding population in Wyoming is isolated; populations to the north are more than 200 miles away.
- Loons can be bioindicators of the aquatic integrity of lakes, responding to lead and mercury levels.
- All factors affecting loon reproduction in Yellowstone are unknown, but human disturbance of shoreline nests has a negative impact.
Distribution

In the western United States, common loons breed in Idaho, Montana, Washington, and Wyoming. The total western US breeding population is estimated at 90 territorial pairs. In 2017, Yellowstone National Park hosted 69% of the state’s total loon population and 66% of the breeding pairs. Furthermore, YNP loons produced 80% of the ecosystem’s fledged chicks, highlighting the park’s important role in regional loon population stability and persistence. Western populations of breeding common loons are known to overwinter from Washington south to California. Spring and fall migrants in Wyoming represent breeding populations from Saskatchewan that overwinter around Mexico’s Baja California peninsula.

Outlook

There are several threats to Wyoming’s loon populations. Direct human disturbance to shoreline nests and chicks lowers survival rates, as do the loss of breeding habitats and water level fluctuations (e.g., erratic spring flooding). Contaminants like lead (from sinkers) and mercury, in combination with hazards on wintering grounds (e.g., marine oil spills and fishing nets) challenge loon reproduction and survival even further.

Fish are the primary prey of loons. As part of a multi-park study on mercury concentration in fish, fish from various lakes where loons nest were screened for mercury. Fish were sampled from Beula, Grebe, Yellowstone, and Lewis Lakes. Fish from Beula, Grebe, and Yellowstone lakes exceeded the threshold at which fish-eating birds may be affected by mercury toxicity. Fish from Lewis did not exceed that threshold although they still contained mercury.

Loons are long-lived; they have relatively low chick production and a poor ability to colonize new breeding areas. Given the very small size and isolation of Wyoming’s breeding loon population, it is at a particularly high risk of local extinction.

More Information

Staff Reviewers

Doug Smith, Senior Wildlife Biologist
Lauren Walker, Wildlife Biologist
Trumpeter Swans
The trumpeter swan (Cygnus buccinator), named for its resonant call, is North America’s largest wild waterfowl, with a wingspan of up to eight feet. These swans require open water, feed mainly on aquatic plants, and nest in wetlands. Although they once nested from Alaska to northern Missouri, trumpeter swans were nearly extirpated in the lower 48 states by 1930 due to habitat loss and hunting. Small populations survived in isolated areas such as the Greater Yellowstone Ecosystem, where the population was thought to number only 69.

As a result of conservation measures, populations across the continental United States began increasing. Today there are approximately 46,000 trumpeter swans in North America. Swans in the Greater Yellowstone Ecosystem played a significant role in the population resurgence, but by the early 1960s, cygnet production in Yellowstone and subsequent recruitment of adults into the breeding population began declining.

Population
The park’s resident trumpeter swan population increased after counts began in 1931 and peaked at 72 in 1961. The number dropped after the Red Rock Lakes National Wildlife Refuge feeding program ended and winter ponds were drained in the early 1990s. Other factors contributing to the decline may include predation, climate change, and human disturbance. In 2017 park biologists observed 23 trumpeter swans in Yellowstone, including only two breeding pairs. Neither pair attempted to nest.

Quick Facts

<table>
<thead>
<tr>
<th>Number in Yellowstone</th>
<th>23 resident swans in 2017.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trumpeter swans are increasing in the Rocky Mountains, stable in the Greater Yellowstone Ecosystem, but declining in Yellowstone National Park.</td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>White feathers, black bill with a pink streak at the base of the upper mandible.</td>
</tr>
<tr>
<td></td>
<td>During migration, can be confused with the tundra swan. Trumpeters are larger, have narrower heads, have a pink mandible stripe, have no yellow spot in front of the eye.</td>
</tr>
<tr>
<td>Habitat</td>
<td>Slow-moving rivers or quiet lakes.</td>
</tr>
<tr>
<td></td>
<td>Nest is a large, floating mass of vegetation.</td>
</tr>
<tr>
<td>Behavior</td>
<td>Feed on submerged vegetation and aquatic invertebrates.</td>
</tr>
<tr>
<td></td>
<td>Low reproduction rates.</td>
</tr>
<tr>
<td></td>
<td>Can fail to hatch eggs if disturbed by humans.</td>
</tr>
<tr>
<td></td>
<td>Lay 4–6 eggs in June; young (cygnets) fledge in late September or early October.</td>
</tr>
<tr>
<td></td>
<td>Usually in pairs with young in summer; larger groups in winter.</td>
</tr>
<tr>
<td>Management Concerns</td>
<td>Limiting factors in Yellowstone appear to be flooding of nests, predation, possibly effects of drought caused by climate change, and less immigration into the park from outside locations.</td>
</tr>
<tr>
<td></td>
<td>Because swans are sensitive to human disturbance during nesting, nest areas are closed to public entry.</td>
</tr>
</tbody>
</table>

A pair of trumpeter swans successfully fledged four cygnets (young) on Grebe Lake in 2012.

Three young trumpeter swans were released in Hayden Valley on the Yellowstone River in 2017. Staff hope that these released swans will become bonded to their release location and return the following spring. In total, the park has released 23 cygnets. Although several individuals are frequently seen within the park boundaries during the breeding season, none of the released cygnets have nested within the park yet. Swans typically take at least four years to reach sexual maturity, so we are hopeful these young birds may breed in coming years. The release program is part of an ongoing effort to augment Yellowstone’s swan populations and increase the number of breeding pairs that nest inside the park.

Nearly all Rocky Mountain trumpeter swans—including several thousand that migrate from Canada—over-winter in ice-free waters in the Greater Yellowstone Ecosystem, but only a portion of them remain here to breed.

The best available scientific evidence suggests that
Yellowstone provides marginal conditions for nesting and acts as a sink for swans dispersing from more productive areas. This effect has been compounded in recent decades by reduced wetland areas (due to long-term drought or warmer temperatures) and community dynamics (e.g., changes in bald eagle diets due to the limited availability of cutthroat trout in Yellowstone Lake.). Trumpeter swan presence in the park may therefore be primarily limited to occasional residents and wintering migrants from outside the park. Concern about the Greater Yellowstone Ecosystem population has resulted in cooperative efforts between state and federal agencies to monitor swan distribution and productivity.

Federal agencies conduct two annual surveys: The February survey counts how many migrant swans winter in the region; the September survey estimates the resident swan population and annual number of young that fledge (leave the nest).

Outlook

Trumpeter swans are particularly sensitive to human disturbance. Because of this, park managers restrict human activity in known swan territories and nesting areas. Scientists are also conducting studies to better determine the habitat requirements for nesting swans.

More Information

Staff Reviewers

Doug Smith, Senior Wildlife Biologist
Lauren Walker, Wildlife Biologist
Songbirds and Woodpeckers

Songbirds and woodpeckers, or passerine and near passerine species, comprise the majority of bird species in Yellowstone National Park. They are monitored through counts in willow stands, recently burned forests, old growth forests, and the North American Breeding Bird Survey.

Songbirds and Willows

Willow stands are one of a few deciduous wetland habitats in the Greater Yellowstone Ecosystem. Bird diversity is considerably higher in wetland habitats than in grasslands, shrublands, and upland coniferous forests. Several Yellowstone bird species only breed in willow communities including Wilson’s warbler (*Cardellina pusilla*), willow flycatcher (*Empidonax traillii*), and gray catbird (*Dumetella carolinensis*).

From the early 1900s, growth of willows and other woody vegetation on Yellowstone’s northern range was stunted (suppressed) by elk browsing, reduced beaver populations, consumption by fire, and/or climate change. For reasons still being studied, some willow stands in the northern range have grown taller and spread (released) since 1997/98.

Monitoring of willow–songbird communities in Yellowstone began in 2005. Scientists compare the presence and abundance of breeding songbirds in across growth conditions. In 2017, park staff recorded 25 songbird species across the range of willow stands. Species richness was higher in previously tall and released willow stands than in suppressed willows. Released willow sites provide shrubby cover for ground nesting species such as gray catbird. Suppressed willows appear to function similar to grasslands and provide habitat for generalist species. Willow stands are slowly changing and we plan to reassess the vegetation characteristics and reclassify stands in the 2018 season.

Old Growth

While the importance of old growth forests to songbirds is poorly understood, mature forests provide nesting habitat and foraging opportunities, especially for cavity-nesting birds, that young stands do not. Climate warming may cause more frequent and severe fires in Yellowstone National Park, which could disproportionately impact old growth forest that, by definition, takes longer to regenerate post-burn.

Due to the potential loss of this habitat type as climate changes, park biologists conducted songbird surveys in three old growth forests in 2017 to document the bird communities that currently use old growth forests. All surveyed forests had not had a major disturbance (i.e., wildfire) in at least 100 years, although forest structure and tree species composition varied. Observers recorded 29 species and the most abundant species were yellow-rumped warbler (*Setophaga coronata*), dark-eyed junco (*Junco hyemalis*), pine siskin (*Spinus pinus*), and American robin (*Turdus migratorius*).

Surveys of Burned Forests

Birds are among the first returning vertebrates to a fire-affected area. Birds that nest in cavities of trees depend on forest fires to provide their habitat—and different species depend on different effects of forest fires. For example, black-backed (*Picoides arcticus*), American three-toed (*P. dorsalis*), and hairy (*P. villosus*) woodpeckers use trees that burned in low to moderately severe fires, two to four years after the fire. Northern flickers (*Colaptes auratus*) move into severely burned areas three years after a fire. Standing dead trees left behind after a fire attract bark and wood-boring beetles—primary prey for woodpeckers. Nest cavities created by woodpeckers are used later by chickadees, nuthatches, and bluebirds.
Because fire size, frequency, and intensity is expected to increase with climate change, scientists are studying how the different bird species use different types of post-burn forests and they are developing monitoring methods for the future.

Breeding Bird Surveys
Breeding bird surveys are a continent-wide monitoring effort coordinated by the US Geological Survey, the Canadian Wildlife Service’s Research Center, and Mexico’s National Commission for the Knowledge and Use of Biodiversity (CONABIO). Since the 1980s, Yellowstone National Park has participated in these long-term surveys conducted throughout North America. The surveys are road-based with the registered observer recording all birds seen and heard within a quarter mile radius with points occurring every half mile. The surveys are conducted in June, during the height of the songbird breeding season. Yellowstone has three routes: Mammoth area, Northeast Entrance area (Tower Junction to Round Prairie), and the interior (Dunraven Pass through Hayden Valley and Yellowstone Lake).

In 2017, surveyors detected nearly 3,200 individuals of 86 species. Although the Mammoth route had the highest species diversity, the greatest number of individuals (over 2,200) were observed on the interior route. Large flocks of Canada geese along the Yellowstone River accounted for 73% of all observations along the interior route. Canada goose numbers were relatively stable from 1987 to 2010, after which they increased substantially.

Fall Migration
Fall migration represents an important and vulnerable part of the annual cycle for many songbirds. As they make their long journey south to their wintering range, migrating songbirds must find appropriate places to rest and refuel. During this season, the songbird community within Yellowstone National Park changes, accommodating species and individuals who do not breed here, but are just passing through. In fall 2017, Bird Program staff initiated monitoring on Yellowstone’s northern range in both willow habitat and old growth forest in order to better document patterns in habitat use by migrating passerines. In willow habitat, the most migrants were detected in early September while migrants in old growth were most abundant in late September. On average, migrant diversity and abundance was greater along willow riparian corridors, consistent with patterns seen during the breeding season. These surveys highlight the year-round importance of habitat in Yellowstone in general, and willow and old growth habitats specifically, to the avian community.

More Information

Staff Reviewers
Doug Smith, Senior Wildlife Biologist
Lauren Walker, Wildlife Biologist

Three-toed woodpeckers nest in trees that burned in low to moderately severe fires, and hunt for the beetles in the bark.
Other Notable Birds

American Dippers
The dark gray American dipper (*Cinclus mexicanus*) bobs beside streams and rivers. Also called the water ouzel, the dipper dives into the water and swims in search of aquatic insects. Thick downy feathers made waterproof with oil from a preen gland enable this bird to thrive in cold waters.

Ravens
Several raven relatives live in Yellowstone, including the common raven (*Corvus corax*). Common ravens are smart birds, able to put together cause and effect. Ravens are attracted to wolf kills and may follow wolves while they hunt elk. Wolves also provide better access to carrion, as ravens are not able to rip open thick skin on their own. Ravens are willing to eat almost anything and are frequently seen near parking lots searching for food—some have even learned to unzip and unsnap packs. Do not feed them.

Recent surveys indicate 200–300 ravens are present in the northern range of Yellowstone. Based on a recent study by park staff and biologists at the University of Washington, 53% of the ravens on the northern range are in wolf habitat, away from human areas. Before wolf reintroduction, nearly 74% of ravens likely used human areas.

Sandhill Cranes
Sandhill cranes (*Grus canadensis*) nest in Yellowstone each summer. Their guttural calls announce their presence long before most people see them as their gray feathers blend in well with their grassland habitat. The tallest birds in Yellowstone, they stand about 4 feet (1.2 m) high. They have a wingspan of approximately 6.5 feet (2 m) and are often mistaken for standing humans or other animals at a distance.

More Information

Staff Reviewers
Doug Smith, Senior Wildlife Biologist
Lauren Walker, Wildlife Biologist
Fish and Aquatic Species

For millennia, humans harvested Yellowstone fish for food. From the park’s inception more than a century ago, fishing has been a major form of visitor recreation. It is this long-standing tradition and integration with the parks’ cultural significance that allows the practice of recreational fishing to continue in Yellowstone National Park today. In some cases, it also contributes to the National Park Service goal of preserving native species. The biological significance of fish to ecosystems makes them an ongoing subject of study and concern.

Quick Facts

<table>
<thead>
<tr>
<th>Number in Yellowstone</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 native species</td>
<td>When the park was established, many of its waters were fishless.</td>
</tr>
<tr>
<td>- Arctic grayling</td>
<td>Park waters were stocked with native and nonnative fish until the mid-1950s.</td>
</tr>
<tr>
<td>- cutthroat trout (Yellowstone and westslope)</td>
<td>Stocking changed the ecology of many Yellowstone waters as nonnative fish displaced or interbred with native species.</td>
</tr>
<tr>
<td>- mountain whitefish</td>
<td>By the 1960s, native trout populations were in poor condition and the angling experience had declined.</td>
</tr>
<tr>
<td>- longnose dace, speckled dace</td>
<td>By the late 1980s, native trout had recovered in some areas due to restrictions in fish harvest.</td>
</tr>
<tr>
<td>- redside shiner</td>
<td>In 2001, fishing regulations changed to require the release of all native fishes caught in park waters.</td>
</tr>
<tr>
<td>- Utah chub</td>
<td>Threats</td>
</tr>
<tr>
<td>- longnose sucker, mountain sucker, Utah sucker</td>
<td>- Lake trout were illegally introduced into Yellowstone Lake.</td>
</tr>
<tr>
<td>- mottled sculpin.</td>
<td>- Whirling disease and New Zealand mud snails are present in some waterways.</td>
</tr>
<tr>
<td>5 nonnative species</td>
<td>- Competition and hybridization occurs with nonnative rainbow trout in Slough Creek and Tower Creek.</td>
</tr>
<tr>
<td>- brook trout</td>
<td></td>
</tr>
<tr>
<td>- brown trout</td>
<td></td>
</tr>
<tr>
<td>- lake trout</td>
<td></td>
</tr>
<tr>
<td>- lake chub</td>
<td></td>
</tr>
<tr>
<td>- rainbow trout.</td>
<td></td>
</tr>
</tbody>
</table>

History

About 8,000-10,000 years ago twelve species (or subspecies) of native fish, including Arctic grayling, mountain whitefish, and cutthroat trout, dispersed to this region following glacier melt. These native fish species provided food for both wildlife and human inhabitants. The distribution of native fish species was originally constrained by natural waterfalls and watershed divides. These landscape features provided a natural variation of species distributed across the landscape and vast areas of fishless water. At the time Yellowstone National Park was established in 1872, approximately 40% of its waters were barren of...
fish—including Lewis Lake, Shoshone Lake, and the Firehole River above Firehole Falls.

Park inhabitants and visitors fished for sustenance and survival in this wild, remote place. While most hunting was curtailed by early park management, fishing was not only allowed but encouraged. Driven by the desire to establish recreational fishing in more park waters and new technology that enabled the long-distance transport of exotic fish; Early park managers stocked fish into fishless waters, produced fish in hatcheries, and introduced several nonnative species. The majority of the nonnative fish introductions were trout species (lake trout, brook trout, brown trout, and rainbow trout), but other species were also introduced.

Constrained by geography, the native fish within the stocked waters were forced to live together with the nonnatives, be displaced to downstream habitats, or die out. The ranges and densities of Yellowstone’s native trout and grayling were substantially altered. Nonnative species contributed to the decline in the park’s native fish population by competing for food and habitat, preying on native fish, and degrading the genetic integrity of native fish through hybridization. By the 1930s, managers realized the destructive impact caused by nonnative fish. As a result, the National Park Service (NPS) created a formal stocking policy to discontinue these efforts.

Even though stocking of nonnatives stopped, stocking of Yellowstone cutthroat trout from Yellowstone Lake continued both within and outside the species’ native range. Overall, from the early 1880s to the mid-1950s, more than 300 million fish were stocked throughout Yellowstone. Today, about 40 lakes have fish; the others were either not stocked or have reverted to their original fishless condition.

Influences of Some Nonnative Species

Aquatic nuisance species disrupt ecological processes because they are not indigenous to the ecosystem. Invasive organisms can cause species extinction, with the highest extinction rates occurring in freshwater environments. Aquatic nonnative species that are having a significant detrimental effect on the park’s aquatic ecology include lake trout in Yellowstone Lake; brook, brown, and rainbow trout in the park’s streams and rivers; and the parasite that causes whirling disease. Though there are other aquatic nonnative species in the park, their impacts do not appear to be as significant.

Conservation

Yellowstone’s approach to native fish conservation has greatly evolved over the past two decades, as continued losses of native fish and altered ecology were realized. Management now focuses on large-scale actions to preserve and restore native fish faced with nonnative threats. The success of these activities requires a broad approach; includes a wide range of partners and stakeholders; and utilizes independent scientific oversight, assessment, and periodic adjustments to ensure conservation goals are being met.

Despite changes in species composition and distribution, large-scale habitat degradation has not occurred in park waters. Water diversions, water pollution, and other such impacts on aquatic ecosystems have rarely occurred in Yellowstone. Consequently, fish and other aquatic inhabitants continue to provide important food for mammals like river otters and more than fifteen species of bird.

Fishing in Yellowstone

About 50,000 of the park’s four million visitors fish each year. Fishing has been a popular recreation activity for visitors here for more than 100 years, and many people come to Yellowstone just to fish. Though angling is an anomaly in a Yellowstone—where the primary purpose is to preserve natural environments and native species in ways that maintain natural conditions—fishing can help support preservation of native species.

Anglers Assist with Native Species Conservation

The activities necessary to preserve and restore native fish varies by species and drainages across the park. In order to promote the preservation of native fish in Yellowstone, the park has designated the Native Trout Conservation Area for special management.

Many people, like this angler on the Gardner River, come to Yellowstone to fish.
FREQUENTLY ASKED QUESTION:

Why is fishing lead-free in Yellowstone?

Birds, such as loons, waterfowl, cranes, and shorebirds, are vulnerable to lead poisoning. While we can do little about natural hazards, we can minimize the effects of lead on these species. Yellowstone National Park bans most lead tackle. (Terminal tackle must be lead-free; large downrigger weights used to fish for deep-dwelling lake trout are permissible because they are too large to be ingested.)

Within that area, fishing regulations are structured so that recreational anglers help selectively remove non-native species from the area without damaging the native fishery. In some areas, anglers harvest will help to save the native fish and the natural ecosystems they support.

Anglers contribute to the fisheries database by filling out a Volunteer Angler Report card that is issued with each fishing license. This information helps monitor the status of fisheries throughout the park. Angler groups have also lent support to management actions, such as closing the Fishing Bridge to fishing in the early 1970s. Yellowstone cutthroat trout support a $36 million annual sport fishery. The money generated from fishing licenses helps fund research on aquatic systems and restoration projects.

Decisions about how best to achieve native fish preservation and recovery goals must be based in sound scientific research and be consistent with the mission of the National Park Service. In past years, a team of fly-fishing volunteers assist the Yellowstone fisheries program with several other projects, including removal of nonnative species, evaluation of fish barrier efficacy and success, a study to determine injury and mortality rates when using barbed versus barbless hooks, surveys to determine species composition, and logistical support for large multi-agency projects. Their extensive help collecting data and biological samples allows park biologists to learn about many more areas than park staff would have time to access.

Fishing Regulations

Fishing regulations in Yellowstone National Park are structured to strongly support native fish conservation goals. Complete regulations are available at all ranger stations, visitor centers, and online. www.nps.gov/yell/planyourvisit/fishdates.htm

In summary:

- Fishing is only allowed from the Saturday before Memorial Day through the first weekend in November.
- A park permit is required, state fishing licenses are not valid.
- Tackle must be lead-free and barbless. No organic or scented bait is allowed. Felt-soled footwear is prohibited.
- All cutthroat trout, Arctic grayling, and mountain whitefish must be released.
- Lake trout must be killed if caught in Yellowstone Lake and its tributaries.
- Nonnative brook and rainbow trout must be killed in the Lamar River drainage and the Yellowstone river draining above Knowles Falls.

Certain waters are closed to protect rare or endangered species, nesting birds, critical habitat, or to provide undisturbed vistas.

More Information

100th Meridian Initiative: www.100thmeridian.org
National Exotic Marine and Estuarine Species Information System: invasions.si.edu/nemesis

Staff Reviewers

Todd Koel, Supervisory Fishery Biologist
Pat Bigelow, Fishery Biologist
Phil Doepke, Fishery Biologist
Brian Ertel, Fishery Biologist
Native Fish Species

Yellowstone’s native fish underpin natural food webs, have great local economic significance, and provide exceptional visitor experiences. Though policies of the National Park Service provide substantial protection from pollution and land-use practices that often degrade habitat, historic management efforts by the park service subjected native species to the effects of nonnative fish introductions, egg-taking operations, commercial fishing, and intensive sport-fishery harvest into the middle of the twentieth century.

To reverse declining native fish populations and loss of ecosystem integrity, the National Park Service now takes action to ensure their recovery. A Native Fish Conservation Plan/Environmental Assessment was completed in 2010. The National Park Service aims to reduce long-term extinction risk and restore the ecological role of native species, including fluvial Arctic grayling, westslope cutthroat trout, and Yellowstone cutthroat trout, while ensuring sustainable native fish angling and viewing opportunities for visitors. Scientific peer review continues to provide guidance for future efforts on Yellowstone fisheries. The National Park Service strives to use the best methods available for addressing threats, with a focus on direct, aggressive intervention, and welcomed assistance by visiting anglers.

Yellowstone Cutthroat Trout
(Oncorhynchus clarkii bouvieri)

Yellowstone cutthroat trout (YCT) are the most widespread native trout of the park and were the dominant fish species here prior to Euroamerican settlement. They are an important species in Yellowstone National Park, upon which many other species depend. They provide an important source of food for an estimated 16 species of birds, and mammals including bears, river otters, and mink.

Genetically pure YCT populations have declined throughout their natural range in the Intermountain West, succumbing to competition with and predation by nonnative fish species, a loss of genetic integrity through hybridization, habitat degradation, and angling harvest. Many of the remaining genetically pure YCT are found within the park. State and federal wildlife agencies classify YCT as a sensitive species. However, the US Fish and Wildlife Service does not warrant listing the YCT as a threatened species under the Endangered Species Act.

Description

- Red slash along jaw and fine spots common to all cutthroat varieties
- Body is mostly yellow-brown with darker olive or gray hues on the back, lighter yellow on the sides.
- Highly variable black spotting pattern.

Distribution

- Native to the Yellowstone River, Snake River, and Falls River drainages.
- Require cold, clean water in streams or lakes.

Behavior

- Spawn in rivers or streams in early May through mid-July.
- Most important foods are aquatic insects—mayflies, stoneflies, caddisflies, etc.—and other small aquatic animals, plus terrestrial insects that fall into the water.
- Also eat smaller fish, fish eggs, small rodents, frogs, algae and other plants, and plankton.

Population

The Yellowstone cutthroat trout population in the Yellowstone Lake ecosystem has declined.
substantially since the mid-1980s. Lake-wide sampling began in 1968 and in 2014 the average number of YCT caught at survey sites reached a high of 28.38 fish per 100 meters of net.

Monitoring at Clear Creek, a Yellowstone Lake tributary, began in 1945. The number of YCT spawning there peaked at more than 70,000 in 1978 and fell to 538 by 2007. The decline is attributed to predation by nonnative lake trout, low water during drought years, and the nonnative parasite that causes whirling disease.

Two-thirds of the park streams that were part of the species’ native habitat outside the Yellowstone Lake watershed still contain genetically pure YCT; other streams have YCT hybridized with introduced rainbow trout.

History

Yellowstone Lake and the Yellowstone River together contain the largest inland population of cutthroat trout in the world. While the Yellowstone cutthroat trout is historically a Pacific drainage species, it has (naturally) traveled across the Continental Divide into the Atlantic drainage. One possible such passage in the Yellowstone area is Two Ocean Pass, south of the park in the Teton Wilderness.

The variety of habitats resulted in the evolution of various life history types among Yellowstone cutthroat trout. Some populations live and spawn within a single stream or river (fluvial), some live in a stream and move into a tributary to spawn (fluvial-adfluvial), some live in a lake and spawn in a tributary (lacustrine-adfluvial), and still others live in a lake and spawn in an outlet stream (allacustrine). Life history diversity within an ecosystem helps protect a population from being lost in a single extreme natural event.

Habitat remains pristine within Yellowstone National Park, but nonnative fish species pose a serious threat to native fish. Brown, brook, and rainbow trout all compete with cutthroat trout for food and habitat. Rainbow trout also pose the additional threat of crossbreeding with cutthroat trout. Because of the lack of barriers in the lower reaches of most drainages, nonnative fish have been dispersing upstream and have replaced, or threaten to replace, cutthroat trout.

Restoration

The objectives of Yellowstone’s Native Fish Conservation Plan (2010) include recovery of YCT abundance in the lake to that documented in the late 1990s, maintaining access for spawning YCT in at least 45 of 59 Yellowstone Lake’s historical spawning tributaries, and maintaining or restoring genetically pure YCT in the current extent of streams occupied by pure or hybrid YCT.

Lamar River: Because no barriers to upstream fish migration exist in the mainstem Lamar River, descendants of rainbow trout stocked in the 1930s have spread to many locations across the watershed and hybridized with cutthroat trout. Genetic analysis indicates that cutthroat trout in the headwater reaches of the Lamar River remain genetically unaltered.

To protect the remaining Yellowstone cutthroat trout, the NPS has implemented a selective removal approach. A mandatory kill fishing regulation on all rainbow trout caught upstream of the Lamar River bridge was instituted in 2014. Selective removal by electrofishing has been conducted annually through the Lamar Valley since 2013.

In 2015, 136 fish were sampled downstream of the Lamar River bridge. Based on field identification, 48% were Yellowstone cutthroat trout, 19% were rainbow trout, and 31% were hybrids. The majority of these fish were tagged with radio transmitters or passive integrated transponder (PIT) tags as part of an ongoing research project to determine if Yellowstone cutthroat, rainbow, and hybrid trout are using the same areas to spawn and spawn timing.

Slough Creek: In Slough Creek, rainbow/cutthroat trout hybrids have been found with increasing frequency over the past decade. Unlike the Lamar River, Slough Creek is smaller, and a complete barrier to upstream fish movement has been constructed. With a barrier in place and rainbow trout no longer allowed passage into the system, existing rainbow and hybrid trout can be effectively managed with angling and electrofishing removal.
Soda Butte Creek: Brook trout became established in Soda Butte Creek outside of the park boundary and spread downstream into park waters in the early 2000’s. Initially, brook trout were isolated in headwater reaches by a chemical barrier created by mine contamination upstream of Cooke City, Montana. When the mine tailings were removed, brook trout passed downstream and began to negatively impact the cutthroat trout. To date, no brook trout have been found in Soda Butte Creek downstream of Ice Box Falls.

For nearly two decades, interagency electrofishing surveys were enough to keep brook trout populations low, but did not prevent range expansion. Over time, brook trout spread downstream and became a threat to the Lamar River. In addition, rainbow trout hybridization continued to be identified in cutthroat trout upstream of Ice Box Falls.

In 2013 Ice Box Falls was modified to be a complete barrier to upstream fish movement, thus entirely eliminating the threat of nonnative fish upstream. Nearly 450 brook trout were removed during the chemical treatment in 2015. Only two brook trout were collected from Soda Butte Creek during a second treatment in 2016. In 2017, two rounds of eDNA sampling, as well as electrofishing surveys, found no evidence of Brook Trout in the system. This is a good indication that a complete kill was achieved in the drainage.

Elk Creek Complex: There is a natural cascade barrier in Elk Creek just upstream from its confluence with the Yellowstone River. The cascade prevented fish from naturally populating the system, so the Elk, Lost, and Yancey creeks complex of streams (Elk Creek Complex) was fishless when first stocked with cutthroat trout in the early 1920s. In 1942, the streams were stocked with brook trout, resulting in the complete loss of cutthroat trout.

The Elk Creek Complex was treated with rotenone annually from 2012 to 2014 to remove brook trout. Once clear of brook trout, reintroduction of native Yellowstone cutthroat trout began. Antelope and Pebble creeks provided fish for stocking the Elk Creek Complex in October 2015. Additional stocking took place in 2016 and 2017. Natural reproduction was also documented in 2017 during electrofishing surveys.

Westslope Cutthroat Trout

(Westslope Cutthroat Trout, *Oncorhynchus clarkii lewisi*), historically the most abundant and widely distributed subspecies of cutthroat trout throughout the West, *Oncorhynchus clarkii lewisi* (WCT) occupies less than 5% of its former range in the upper Missouri River drainage. It evolved from a common ancestor of the Yellowstone subspecies, and shares their food and habitat requirements. By the 1930s, WCT were nearly eliminated from park streams because of the stocking of competing trout (nonnative brook and brown trout) and interbreeding with nonnative rainbow and Yellowstone cutthroat trout. In most of its remaining habitat (an estimated 64% of the approximately 641 stream miles it once occupied in the park), it exists only in hybridized form.

Description
- Red slash along jaw and fine spots, common to all cutthroat varieties, along top and tail.
- Greenish gray in color.
- Larger, irregular spots along lateral line and toward gills and head.
- Crimson streak above the belly.
- Sometimes mistaken for rainbow trout.

Distribution
- Genetically pure population only exists in Last Chance Creek and Oxbow/Geode Ck complex.
- Restored populations growing in the East Fork Specimen and Grayling creeks and Goose and High lakes.
- Hybridized populations found in many river drainages in the Madison Basin.

Restoration
Native species restoration depends on secure brood sources. A brood should be accessible, safe from contamination, self-sustaining, genetically diverse, abundant, of traceable origin, and pose no risk to existing wild populations.
Genetically pure WCT have only persisted in one tributary of the Madison River drainage (now called Last Chance Creek), and in the Oxbow/Geode Creek complex where they were introduced in the 1920s. In 2006, Yellowstone began efforts to restore WCT in East Fork Specimen Creek and High Lake by constructing a fish barrier, removing hybridized and nonnative fish, and stocking genetically pure WCT. Stocking was completed in High Lake in 2009, and in East Fork Specimen Creek in 2013. In 2016, several surveys conducted throughout East Fork Specimen Creek indicated a natural reproducing population of westslope cutthroat trout, with all fish appearing healthy. The long-term goal for this watershed is to integrate East Fork Specimen Creek into a larger westslope cutthroat trout restoration project that includes the North Fork to improve the resilience of this isolated population to natural threats.

Another restoration project is being conducted in Goose Lake and two other small, historically fishless lakes in the Firehole drainage. Nonnative fish removal was conducted in 2011 and staff stocked fry from 2013 to 2015. In 2016 an overnight population survey yielded 12 fish around 7 inches long. The long-term project goal is to one day use this pure westslope population as a brood source, providing offspring for restoration projects elsewhere within the upper Missouri River system.

The largest WCT restoration effort in Yellowstone is the Grayling Creek project (See: Arctic grayling), which will restore WCT to over 20 stream miles of native habitat. In 2017, restoration began on the upper portion of Gibbon River above Virginia Cascades to restore 18 stream miles (232 lake acres). Future projects for westslope cutthroat trout and fluvial grayling include native fish restoration in North Fork Specimen and Cougar creeks. Once these projects are completed, an additional 61 kilometers (38 miles) of stream will be restored to native fish.

Arctic Grayling (Thymallus arcticus montanus)

Fluvial (entirely stream-dwelling) Arctic grayling were indigenous to the park in the headwaters of the Madison and Gallatin rivers and to the Gibbon and Firehole rivers below their first falls. Fluvial grayling were eliminated from their entire native range within the park by the introduction of competing nonnative fishes such as brown trout and brook trout, and the fragmentation of migration pathways by the construction of the Hebgen Dam outside the park. Grayling within the upper Gallatin River drainage disappeared around 1900, while grayling in the upper Madison River drainage disappeared by 1935. The only known populations left in the park are adfluvial (primarily lake-dwelling) descendants of fish that were stocked in Cascade and Grebe lakes.

Description
- Large sail-like dorsal fin
- Large scales
- Dark spots on the front half of its body.
- Sometimes confused with mountain whitefish.

Behavior
- Spawning behavior of fluvial populations is unknown. Adfluvial populations migrate to streams in June. Spawn over many types of stream bed, from sand to course rubble.
- Similar to trout, they eat true flies, caddisflies, and small crustaceans. Younger, smaller fish feed on zooplankton.

Distribution
- Present in Cascade, Grebe, and Wolf lakes
- Found in the Gibbon river. Sometimes found in Madison and Firehole rivers.

Restoration
One of the goals of the park’s 2010 Native Fish Conservation Plan is to restore fluvial grayling to
approximately 20% of their historical distribution. The upper reaches of Grayling Creek are considered the best site for immediate fluvial grayling restoration. Near the park boundary, a small waterfall exists in the creek (which flowed directly into the Madison River prior to the construction of Hebgen Dam in 1914). It is not known if grayling were ever present upstream of the waterfall, but they were abundant downstream.

The Grayling Creek restoration project aims to establish Arctic grayling and westslope cutthroat trout to 95 kilometers (59 miles) of connected stream habitat in one of the most remote drainages in the species historic range within Yellowstone.

In summer of 2013 a barrier was completed at the waterfall to prevent upstream movement of nonnative fish. During August 2013, a crew of 27 biologists from Yellowstone National Park, Montana Fish, Wildlife and Parks, Gallatin National Forest, Turner Enterprises, and US Fish and Wildlife Service treated the stream segment with piscicide to remove all fish. A second treatment took place in 2014. Restocking of the Grayling Creek watershed with native fluvial Arctic grayling and westslope cutthroat trout began in 2015 and continued through 2017. The effort included moving approximately 950 juvenile and adult westslope cutthroat trout to lower reaches of Grayling Creek, above the project barrier. In addition, 54,200 westslope cutthroat trout eggs and 210,000 fluvial grayling eggs were placed in remote-site incubators throughout the upper watershed.

More Information

Staff Reviewers
Pat Bigelow, Fishery Biologist
Jeff Arnold, Fishery Biologist
Todd Koel, Supervisory Fishery Biologist

Mountain Whitefish (*Prosopium williamsoni*)

The mountain whitefish (*Prosopium williamsoni*) is a slender silver fish, sometimes confused with Arctic grayling. It lives in Yellowstone’s rivers and streams and requires deep pools and clear, clean water. This species is very sensitive to pollution. The mountain whitefish has persisted in its native waters, unlike the Arctic grayling. Mountain whitefish are commonly caught by anglers in most of the park’s large rivers. They are less common in smaller streams.

Description
- Yellow or olive green to dark gray. No spots
- Body nearly round on cross-section
- Small mouth with no teeth

Behavior
- Spawns in fall.
- Generally feeds along the bottom, eating aquatic insect larvae, and competes with trout for the same food.

Distribution
- Throughout the Snake and Lewis rivers
- Heart lake and its tributaries
- The Yellowstone River below Lower Falls, and the Lamar, Gardiner, Madison and Gibbon rivers.

Mottled Sculpin (*Cottus bairdi*)

The mottled sculpin lives in shallow, cold water throughout Yellowstone except in the Yellowstone River above Lower Falls and in Yellowstone Lake. This species eats small insects and some fish, and is consumed by trout.
Minnows

Yellowstone’s minnows are small fish living in a variety of habitats and eating a variety of foods. All four species occurring in Yellowstone are eaten by trout:

- **Utah chub** (*Gila atraria*): Largest of the minnows (12 inches); native to Snake River drainage; seems to prefer slow, warm waters with abundant aquatic vegetation.

- **Longnose dace** (*Rhinichthys cataractae*): Most often found behind rocks and in eddies of cold, clear waters of the Yellowstone and Snake river drainages, and can be found in Yellowstone Lake.

- **Redside shiner** (*Richardsonius balteatus*): Minnow of lakes; native to the Snake River drainage; has been introduced to Yellowstone Lake, where it might compete with native trout because its diet is similar to that of young trout.

- **Speckled dace** (*Rhinichthys osculus*): Lives in the Snake River drainage.

Suckers

Suckers are bottom-dwelling fish that use ridges on their jaws to scrape flora and fauna from rocks. They are eaten by birds, bears, otters, and large cutthroat trout. Sucker species can be distinguished by their habitat:

- **Mountain sucker** (*Catostomus platyrhynchus*): cold, fast, rocky streams and some lakes.

- **Longnose sucker** (*C. catostomus*): Yellowstone River drainage below the Grand Canyon; Yellowstone Lake and its surrounding waters (introduced). Equally at home in warm and cold waters, streams and lakes, clear and turbid waters.

- **Utah sucker** (*C. ardens*): Snake River drainage. Concurrent with the decline in cutthroat trout is a steady, long-term decline in the introduced longnose sucker population within Yellowstone Lake. The mechanism causing this decline is unclear. Longnose suckers occur, primarily, throughout the shallow-water, littoral zones of the lake, and spawn along the lake shore and in tributaries during the spring. Predation by lake trout during the summer is not significant but it is possible that consumption of suckers by lake trout is higher during winter when water temperatures are extremely cold, allowing lake trout to exploit shallow water habitats where the suckers reside.

More Information

Preparing for restoration

Liberalization of creel limits, mandatory kill regulations for anglers, and electrofishing by biologists are effective tools for the selective removal of nonnative species. However, in some instances these tools cannot completely eliminate the invaders. In those cases, barriers and chemical treatments are considered. Some natural barriers already exist; sometimes modifications to natural structures can complete barriers to upstream migration. In a few places, barriers must be completely fabricated. Once native trout are protected from invasion, selective removal continues or, if necessary, chemical treatment is used to eliminate nonnative species. Following reduction or removal of unwanted species, stocking boosts or restores cutthroat trout populations.

Piscicides are toxins which remove fish from habitats where nets, electrofishing, angling, traps, or other mechanical methods are impractical or ineffective. With the exception of sea lamprey control in the Great Lakes, all fish removal projects in the United States use piscicide containing the natural compounds rotenone or antimuine. Biologists in Yellowstone National Park have used rotenone in formulations approved by the Environmental Protection Agency in High Lake and East Fork Specimen Creek (2006-2009), Goose Lake (2011), Elk Creek (2012-2014), Grayling Creek (2013-2014), and Soda Butte Creek (2015-2016) to remove nonnative fish species.

Rotenone occurs in the roots, stems, and leaves of tropical plants in the pea family (Fabaceae). Ingestion has a relatively minor effect on land animals because the enzymes and acids of the digestive system break it down. Rotenone must be absorbed into the bloodstream, usually across the gill membrane, to be harmful. It kills by inhibiting the biochemical reaction some cells use turn nutrients into energy. Essentially, rotenone starves the cells, causing death.

To treat a section of stream, rotenone is dripped in at a rate determined by the volume, speed, and temperature of the water. Further downstream, potassium permanganate is added to the water to neutralize the rotenone. Rotenone is quickly broken down in the environment by sunlight and readily binds to sediments or organic matter in the water. The rapid degradation and dissipation mean that managers have a short window of time to successfully remove nonnative fish.

Unfortunately, piscicides impact all gill-breathing aquatic organisms, like non-target fish species (i.e., native fishes), larval amphibians, and macroinvertebrates. To reduce potential impacts on non-target organisms specialists use a minimum dosage of rotenone, for short periods of time. Biologists limit treatment areas and leave recovery intervals between treatments. All treatments in Yellowstone National Park have been, and will continue to be, conducted during late summer or fall to avoid impacts to amphibians in early developmental stages. Research conducted during these treatments provides strong evidence benthic macroinvertebrates and amphibians in Yellowstone have not been significantly impacted in the long-term.

Staff Reviewers
Jeff Arnold, Fishery Biologist
Pat Bigelow, Fishery Biologist
Brian Ertel, Fishery Biologist
Todd Koel, Supervisory Fishery Biologist
Nonnative Fish Species
Nonnative fish distribution and their influence on native fish are not static. While they have not been intentionally stocked since the 1930s, nonnative fish continue to advance into new habitats, hybridize with, or displace native fish that previously persisted in the face of extreme environmental change for thousands of years.

Hybridization of cutthroat trout resulting from rainbow trout range expansion continues to be the greatest threat to the park’s remaining native fish populations in waters outside the Yellowstone River headwaters, Yellowstone Lake, and the Snake River headwaters.

Not all of the movement by nonnative fish in Yellowstone has occurred naturally. Nonnative lake trout, intentionally introduced by managers in 1890 to Lewis and Shoshone lakes, and illegally introduced (possibly intentionally) to Yellowstone Lake in the mid-1980s, first appeared in angler catches in 1994. The lake trout population expanded and over the following decade caused a rapid decline in the Yellowstone cutthroat trout population in Yellowstone Lake.

Eastern Brook Trout (Salvelinus fontinalis)

Eastern brook trout was the first nonnative species introduced in Yellowstone. They were stocked in the (then fishless) Firehole River in 1889. Brook trout are native to the eastern and northeastern United States from Hudson Bay down to the Carolinas and through the Great Lakes.

Description
- Sides spotted with red, pink or yellow dots, haloed with blue.
- Light spots on dark skin.
- Back, dorsal, adipose, and tail fins have a marbled appearance.
- Lower fins have a vivid white stripe on the tip

Behavior
- Spawn in fall between September and December. Have a strong tendency to return to natal streams.
- Food selection similar to other trout, but tend to feed on a wider variety of foods.

Distribution
- Widely distributed in most river drainages due to historic stocking
- Not present in the Gallatin River, Yellowstone Lake, or the Yellowstone River above the Upper Falls.
Brown Trout (*Salmo trutta*)

The brown trout is the only nonnative fish species in Yellowstone that is not native to North America. This European species was introduced to Yellowstone in the later part of the 19th century, and was recorded as two different species—the Von Behr and the Loch Leven brown trout. These are now thought to be two varieties of the same species and most of the populations in Yellowstone are indistinguishable.

Description
- Dark in color, olive, brown, or yellow.
- Pale halos around black spots.
- Vibrant red or orange spots.

Behavior
- They spawn in fall, between September and January, migrating to small tributaries of large rivers, upstream in small rivers, or to lake inlets.
- Brown trout eat mostly insects, crustaceans, and mollusks, but have a reputation for eating much larger prey: other fish, crayfish, birds, mice, frogs, and snakes.

Distribution
- Widely distributed in Gallatin, Gibbon, Firehole, Madison, Lewis, Snake, Gardner, and Yellowstone rivers.
- Not present in Yellowstone Lake, or the Bechler or Falls rivers.

Rainbow Trout (*Oncorhynchus mykiss*)

Rainbow trout are native to North America in waters which drain to the Pacific Ocean from northern Mexico to Alaska. Of the nonnative fish in Yellowstone, the rainbow trout has the closest geographic origin. As the most adaptable members of the salmonid family, they have been successfully introduced throughout the world.

Description
- Silvery body, red lateral band, often white on the edge of lateral fins.
- Numerous black spots on head and back, none on belly.

Behavior
- Spring spawning between April and July. Select populations spawn in fall.
- Eats aquatic and terrestrial insect, crustaceans, mollusks, and earthworms.
- Eat more algae than other trout.

Distribution
- Widely distributed due to historic stocking efforts.
- Not present in Yellowstone Lake.
- Not present in the Yellowstone River above the upper Falls or the Snake River.

Cutthroat x Rainbow Trout Hybrids

In waters where rainbow trout have been introduced, either by intentional, historic stocking or by invasion from a downstream source, the result has been a serious degradation of the cutthroat trout population through interbreeding of the two species. Cutthroat/rainbow trout hybrids will have characteristics (coloration and spotting patterns) that are consistent with both species, making identification often difficult. In all cases, hybridized cutthroat trout that have any indication of a red/orange jaw slash are fully protected by catch-and-release regulation.
Lake Trout (Salvelinus namaycush)

Lake trout are native to Canada, Alaska, the Great Lakes, New England, and parts of Montana. Lake trout were intentionally stocked in Lewis and Shoshone lakes in 1890 by the U.S. Fish Commission (a predecessor of today’s US Fish & Wildlife Service). The species was first documented in Yellowstone Lake in 1994. Evidence from chemical patterns in lake trout ear bones sampled in the late 1990s indicate that they were introduced illegally from nearby Lewis Lake some time in the 1980s. Despite major efforts to remove them by gillnetting, the lake trout have had a significant ecological impact on the native Yellowstone cutthroat trout, an important food for other native animals. Lake trout differ from cutthroat trout as potential prey because they can grow larger, occupy deeper areas of the lake, and spawn in the lake instead of shallow tributaries.

Description
- Dark gray body with white spots. Numerous spots on head.
- Deeply forked tail
- Often white on the edge of fins.

Behavior
- Lake trout are voracious, efficient predators.
- Frequently live 20–25 years and grow very large. The Wyoming state record catch weighed 50 pounds (23 kg).
- Fall spawners (September/October). A 12lb female could produce up to 9,000 eggs annually.
- About 30% of a mature lake trout’s diet is cutthroat trout. They can eat up to 41 cutthroat trout per year and can consume cutthroat trout up to 55% their own size.

Distribution
- Heart, Lewis, Shoshone, and Yellowstone lakes

Population in Yellowstone Lake
Lake trout are a serious threat to the native Yellowstone cutthroat trout population and, as a result, the National Park Service has worked to suppress the population. Although lake trout need energy-rich prey to continue to grow, they can persist for years with minimal food resources. Nonnative lake trout could decimate the native cutthroat trout population and then persist at high numbers on other foods, giving cutthroat trout no chance to recover. Lake trout also consume foods that have historically fed cutthroat trout in Yellowstone Lake, thereby making cutthroat trout recovery impossible until the lake trout population is suppressed.

Taking action
In 1995, after confirming lake trout were successfully reproducing in Yellowstone Lake, the National Park Service (NPS) convened a panel of expert scientists to determine the likely extent of the problem, recommend actions, and identify research needs. The panel recommended that the park suppress lake trout in order to protect and restore native cutthroat trout. The panel also indicated that direct removal efforts such as gillnetting or trap netting would be most effective but would require a long-term, possibly perpetual, commitment.

Lake trout gillnetting begins as ice is leaving the lake in spring and continues into October. Gillnet operations remove lake trout from the population and also provide valuable data—numbers, age structure, maturity, and potential new spawning areas—leading to more effective control. Incidental catch of native cutthroat trout is reduced by fishing deeper waters not typically used by cutthroat trout.

Since 2009, the park has contracted a commercial fishing company to increase the catch of lake trout.
Initial removal efforts were expanded to increase gillnetting more than 10-fold. In response, the number of lake trout removed from the population doubled. The increased catch suggested the lake trout population was continuing to grow. In 2008 and 2011, scientific panels were convened to re-evaluate the program and goals. The panel concluded netting is still the most viable option for suppressing lake trout. Both reviews also indicated a considerable increase in suppression effort would be needed over many years to collapse the lake trout population.

Starting in 2009, the park contracted a commercial fishing company, to increase the take of lake trout through gillnetting. From 2011 to 2013, they also used large, live entrapment nets that allow removal of large lake trout from shallow water while returning cutthroat trout to the lake with little mortality.

Anglers also contribute to lake trout management. They are encouraged to fish for lake trout, and are required to kill all lake trout caught in Yellowstone Lake and its tributaries. Anglers tend to be most successful at catching lake trout 15–24 inches long, which are found in near-shore waters in June and early July. Of the total lake trout removed from Yellowstone Lake, anglers have removed approximately 5 percent.

Lake Trout Response to Increased Suppression Efforts

More than 2.48 million lake trout have been removed from Yellowstone Lake since 1994. In 2017, National Park Service and contracted crews captured more than 379,000 lake trout—the majority of which, where two year-old fish. Catches in the larger mesh sizes dropped in 2017 (26%) despite increased fishing.

The number of lake trout caught during distribution surveys remained relatively constant from 2010-2017, ranging from 347-575 fish annually, with a mean total length ranging from 309-330 millimeters (12-13 inches). Over the past seven years, we have seen a gradual decrease in the number of large adult (sexually mature) lake trout caught during the surveys. In general, the largest numbers of lake trout were caught in the West Thumb region and along the east shoreline/southern arms portion of Yellowstone Lake. The north shore had the least lake trout.

Increases in catch can reflect increased efficiency, increased abundance, or both. Improvements in gear,

Quick Facts

The Issue
Nonnative lake trout in Yellowstone Lake threaten the survival of native Yellowstone cutthroat trout and species that depend on it.

Background
- During the time the park stocked fish, lake trout were introduced to Lewis and Shoshone lakes (1890s).
- Lake trout were illegally introduced into Yellowstone Lake in the 1980s and 1990s.
- In 1994, an angler caught the first verified lake trout in Yellowstone Lake.

- One mature lake trout can eat approximately 41 cutthroat trout per year.
- The cutthroat trout population in Yellowstone Lake have likely fallen to 10% or less of historic highs.
- Many wildlife species, including the grizzly bear and bald eagle, depend on the cutthroat trout for a portion of their diet.
- Most predators can’t catch lake trout because the trout live in deep water, spawn in the lake, and are large.

Current Status
- Gillnetting has removed more than 2.48 million lake trout since 1994.
- Recreational anglers catch approximately 20,000 lake trout each year.

Outlook
With continued aggressive control efforts, fisheries managers expect to reduce lake trout numbers and lessen impacts to cutthroat trout. Recent monitoring indicates Yellowstone cutthroat trout in Yellowstone Lake are starting to rebound and the lake trout population is in decline.
knowledge, and experience can lead to more efficient removal, despite a decreasing population. Hence, independently monitoring the effectiveness and effects of suppression activities, as well as updating population models, is an important aspect of the program.

Population modeling has shown that the lake trout population continued to expand through 2012, but increased gillnetting over the last few years has begun to reduce lake trout numbers and biomass (total weight) in Yellowstone Lake; particularly in older age classes. Abundance models show no population growth for lake trout age 2 and older, and a decrease in fish older than 3 years. If this continues, the reproductive and expansion potential of the population will be reduced. Also, total annual mortality rates have been steadily increasing over the last several years and have exceeded 50% in two of the last three years, which should decrease the population size. In addition, the total biomass of lake trout removed annually has increased from 0.5 kilograms per hectare to over 4.0 kilograms per hectare. If this trend continues it predicts an eventual population crash.

Research guides methodology

In 2010, Yellowstone developed the Native Fish Conservation Plan. This adaptive management plan guides efforts to recover native fish and restore natural ecosystem functions based on scientific assessment.

In 2011 the National Park Service and the US Geological Survey launched a movement study to pinpoint lake trout spawning beds and identify general and seasonal movement patterns. Over 300 lake trout were equipped with telemetry tags and over 40 stationary receivers were deployed throughout the lake to monitor movements. The results help gillnet operations to target lake trout more efficiently. They also provide important details for alternative suppression methods that may target lake trout embryo in spawning areas.

Additionally, NPS and Montana State University conducted a mark/recapture study of lake trout in Yellowstone Lake in 2013. In order to estimate population size, 2,400 lake trout captured in trap nets were given 2 plastic tags (similar to clothing tags) and released back to the lake. Tagged fish later caught in suppression nets or via angling were documented and used to estimate the number of lake trout present in the lake: 367,650 fish greater than 210 millimeters (8.3 inches) long. The mark-recapture study also enabled an estimate of the probability of capture for four size classes. To date, more than 86% of tagged fish have been recaptured by netting or anglers. The study estimated that we removed 72% of lake trout 210-451 millimeters (8.3-17.8 inches) in length, 56% for fish 451-541 millimeters (17.8-21.3 inches) long, 48% for fish 541-610 millimeters (21.3-24.0 inches) long, and 45% for fish more than 610 millimeters (more than 24.0 inches) long. These results supported previous estimates and highlighted the difficulty in catching older, mature lake trout, which eat the most native cutthroat trout and have the highest reproductive success.

Future of Lake Trout Control

With current technology, lake trout probably cannot be eliminated from Yellowstone Lake. However, ongoing management of the problem can significantly reduce lake trout population growth and maintain the cutthroat trout population, which is a critical ecological link between Yellowstone Lake and its surrounding landscape.

The magnitude of the lake trout problem in Yellowstone Lake remains enormous. Reducing the
lake trout population to a level that will have only minor impacts to the cutthroat trout population is predicted to take until 2025, provided we maintain current high levels of suppression effort. Given the high reproductive potential of this lake trout population, we will regress immediately and likely dramatically if we reduce the amount of suppression effort applied without adequate alternative techniques.

Present research efforts by Yellowstone National Park biologists and collaborating scientists at the USGS Montana Cooperative Fishery Research Unit and Montana State University, focus on killing lake trout embryos on spawning sites. So far, only 50 acres of lake trout spawning areas have been identified by tracking tagged fish, visual observations during SCUBA diving, and remote observations with underwater cameras.

One elimination technique uses lake trout carcasses acquired from the gillnetting operation to kill lake trout embryos. Carcasses were shredded and placed on the rocky areas where lake trout naturally spawn. Natural decomposition of the shredded fish decreased the dissolved oxygen in the areas around the embryos, making the spawning site inhospitable. Research showed almost complete mortality of lake trout embryos at the treatment site within a couple of weeks. This technique shows great potential for increasing the effectiveness of the suppression program.

More Information

Staff Reviewer
Pat Bigelow, Fishery Biologist
Brian Ertel, Fishery Biologist
Phil Doepke, Fishery Biologist

Lake Chub (Couesius plumbeus)

Though native to the Missouri and Yellowstone river drainages in Montana and Wyoming, the lake chub is not native to Yellowstone National Park waters. It was most likely introduced by bait fishermen into Yellowstone Lake, McBride Lake, and Abundance Lake in the Slough Creek drainage.

Description
• Dull gray or blueish gray
• Rarely more than 6 inches long.

Behavior
• Inhabits cooler lakes and streams, prefers small creeks to large rivers.
• Spring spawner
• Compete with small trout for food, but likely provides fodder for trout over 16 inches.

Distribution
• Established but uncommon, in Yellowstone Lake. Removed from Lake Abundance in 1969.
• Well-established in the Slough Creek drainage.
Aquatic Invasive Species

An aquatic invasive species disrupts ecological processes because it is not indigenous to the ecosystem. Invasive organisms can cause species extinction, with the highest extinction rates occurring in freshwater environments. In addition to nonnative fish in Yellowstone, three aquatic invasive species are having a significant detrimental effect:

- *Myxobolus cerebralis*, a parasite that causes *whirling disease* in cutthroat trout and other species.
- *New Zealand mud snails* (*Potamopyrgus antipodarum*), which form dense colonies and compete with native species; and
- *Red-rimmed melania* (*Melanoides tuberculatus*), a small snail imported by the aquarium trade starting in the 1930s, was discovered in the warm swimming area at the confluence of the Boiling River with the Gardner River in 2009.

Preventing the arrival of additional aquatic invasive species is critical because eliminating them after they become established in a watershed is usually impossible and efforts to reduce their impact can be extremely expensive. Each summer a small team of park technicians inspect the crafts brought in by park visitors before they put their boats or angling gear in the water. They inspect visitor’s equipment and list of hiding places and

Quick Facts

The Issue
Aquatic invaders can irreversibly damage the park’s ecosystems.

Current Status
- In the US currently, more than 250 nonnative (from another continent) aquatic species and more than 450 nonnative (moved outside their natural range) aquatic species exist.
- At least 8 aquatic invasive species exist in Yellowstone’s waters: two mollusks, five fish, and one nonnative disease-causing microorganism (*whirling disease*). Three of these species are having a significant detrimental effect (lake trout, New Zealand mud snails, and *whirling disease*).
- Park staff continues to educate visitors about preventing the spread of aquatic invasive species.

What You Can Do
Read and follow the instructions provided in the fishing regulations, and remember to **inspect, clean, and dry** all gear.

- It is illegal to use any fish as bait in Yellowstone National Park.
- It is illegal to transport fish among any waters in the Yellowstone region.
- It is illegal to introduce any species to Yellowstone waters.
- Watercraft must be inspected and may be required to undergo decontamination.
decontaminate it, if necessary. Such decontamination is usually adequate to prevent the entry of most aquatic invasive species.

Arrival in Yellowstone

During the late 1880s when the Army administered Yellowstone, the US Fish Commission (a predecessor of today’s US Fish and Wildlife Service) stocked nonnative fish in some park waters. These stockings comprise the first known, deliberate introductions of nonnative fish to Yellowstone. Four trout species were widely introduced—brook, brown, lake, and rainbow. Rainbow trout hybridize with native cutthroat trout, thus diluting genetic diversity. All four compete with and prey upon native fish.

Other aquatic invasive species, such as the New Zealand mud snail and the parasite causing whirling disease, probably arrived via unaware boaters and anglers carrying the organisms from other locations around the country. We may never know exactly how those species were introduced to the park, but anglers can help prevent other species from arriving.

New Zealand Mud Snails

The New Zealand mud snail (*Potamopyrgus antipodarum*) is an invasive species that became established in the western United States since the 1980s. In suitable habitat, especially in geothermal streams with high primary production, it can form dense colonies on aquatic vegetation and rocks along streambeds, crowding out insect communities—a primary food for immature trout and other native species.

New Zealand mud snails consume a large amount of algae, which is a primary food for native aquatic invertebrates. Its overall impact on algae is likely to affect entire stream food webs. With its protective shell, the mud snail provides little if any nutrition as prey and may pass through a fish alive. Scarcely a quarter-inch long, mud snails may cling to boats, waders, and other fishing gear by which they are inadvertently transferred to another watershed. Because the species can reproduce asexually, a single mud snail is all that is required to establish a new colony.

Population

First detected in the park in 1994, New Zealand mud snails are now in all of the major watersheds. Although the mud snail is abundant in several streams, it remains absent or uncommon in other Greater Yellowstone streams, suggesting that its upstream population density and distribution is limited by colder temperatures, low productivity, and unstable substrates associated with spring runoff.

Impacts of Mud Snails

Once mud snail colonies become established in a stream, removing them without disrupting native invertebrate populations is not feasible with any known method. Mud snail research in Greater Yellowstone aims to determine the species’ impacts on other aquatic organisms and stream ecology. A study of the Gibbon and Madison rivers found that 25–50% of the macroinvertebrates were mud snails, and the areas they occupied had fewer native mayflies, stoneflies, and caddisflies—insects important in the diet of salmonids and several bird species.
Red-rimmed Melanaria
The red-rimmed melania (*Melanoides tuberculatus*), a small snail imported by the aquarium trade starting in the 1930s, was discovered in the warm swimming area at the confluence of the Boiling River with the Gardner River in 2009. The following year, a survey of 18 of the park’s most popular hot springs found melania only in the Boiling River soaking area and downstream approximately 1 km. The species has a narrow temperature tolerance (18–32°C) and is unlikely to survive downstream of the Boiling River during the winter, but it could become established in other thermal water in the park.

Whirling Disease
Whirling disease is caused by a microscopic parasite from Europe (*Myxobolus cerebralis*) that can infect some trout and salmon; it does not infect humans. It has been detected in 25 states. During the parasite’s life cycle, it takes on two different forms as spores and requires two hosts: a common aquatic worm (*Tubifex tubifex*) and a susceptible fish. Cutthroat trout are susceptible, especially during the first months of life. The parasite feeds on the fish’s cartilage, and the infection can cause skeletal deformities, a blackened tail, and whirling swimming behavior. Because the fish cannot feed normally and are more vulnerable to predation, whirling disease can be fatal. No practical treatment exists for fish infected with this disease or for the waters containing infected fish.

Presence in Yellowstone
Whirling disease was first detected in Yellowstone in 1998 in cutthroat trout from Yellowstone Lake. It has since been found in the Firehole River and throughout the Yellowstone Lake watershed. In the lake, the infection has spread to about 20% of the cutthroat trout. The parasite is most prevalent in the two known infected tributaries, Pelican Creek and the Yellowstone River downstream of the lake outlet. Infection has been most severe in Pelican Creek, which once supported nearly 30,000 upstream-migrating cutthroat trout. Significant declines in Pelican Creek’s spawning population have been attributed to the combination of whirling disease and predation by nonnative lake trout in Yellowstone Lake. The finding of adult fish in the lake with the parasite’s spores that survived their initial infection suggests some resilience of Yellowstone cutthroat trout to whirling disease.

Studying the Disease
Yellowstone National Park’s cutthroat trout spawning streams, which vary widely in thermal, hydrological, and geological characteristics, provide an exceptional opportunity to study whirling disease in native trout. Park staff have been working with Montana State University’s Department of Ecology to measure how the infection rate might vary in different stream conditions. Certain fish-eating birds have also been shown to disperse the parasite. Research has shown that the parasite can pass through the gastrointestinal tract of some birds, such as great blue herons, and remain alive.

Results of a 2012 survey suggest that whirling disease risk remains very high in Pelican Creek. Overall however, it does not appear that whirling disease has spread widely throughout spawning tributaries to Yellowstone Lake. In addition, prevalence of infection in juveniles and adults within the lake remains
low. Despite this, there are still many unknowns concerning the parasite, particularly in the unique environmental context of Yellowstone.

Park staff emphasize prevention by educating people participating in water-related activities—including anglers, boaters, or swimmers—to take steps to help prevent the spread of the disease. This includes thoroughly cleaning mud and aquatic vegetation from all equipment and inspecting footwear before moving to another drainage. Anglers should not transport fish between drainages and should clean fish in the body of water where they were caught.

Incoming Threats

The aquatic invasive species which pose the greatest risk to ecologic, recreational, and economic values in the Yellowstone area include zebra and quagga mussels, Asian clams, Asian carp species, Eurasian watermilfoil, hydrilla, flowering rush, and viral hemorrhagic septicemia. Fisheries biologists believe several of these species are moving toward Yellowstone. Their arrival might be avoided if anglers remember:

- Remove all plants, animals, mud, sand, and other debris from your boat, boots, and equipment.
- Do not dump water from other sources into Yellowstone waters.
- Drain your boat bilge area, live well, and other compartments away from all waters.
- Dry all equipment in the sun for 5 days or use high-pressure, hot (>140°F) water (available at car washes outside the park) to clean your boat, trailer, waders, boots, and equipment.

Dreissenid Mussels

Zebra mussels (*Dreissena polymorpha*) and closely related quagga mussels (*Dreissena bugensis*), collectively called dreissenids, are of particular concern given their ability to attach to watercraft, survive many days out of water, and cause irreparable harm.

Zebra mussels are native to Eastern Europe and western Asia. They were first discovered in North America in 1988 in Lake St. Clair, one of the water bodies connecting the Great Lakes. It is believed that this invasive species was introduced through ballast water discharges from international shipping.

Following their initial invasion, zebra mussels spread quickly across most of the eastern United States and Canada. Zebra mussels are inadvertently transported to new water bodies by boaters who trailer their boats between infected bodies of water.

Zebra mussels drastically alter the ecology of infested water bodies and may severely impact ecosystems. Once established, these efficient filter-feeders consume significant biomass of phytoplankton, depleting the foundation of the aquatic food web. Zebra mussels can attach to most hard surfaces, forming mats that may be up to 18 inches thick. Mussels can impact recreation activities and associated economies by covering docks, boats, and beaches; in addition to causing severe infrastructure and economic damage by blocking water supply pipes of power and water treatment plants, irrigation systems, and industrial facilities.

Zebra mussels’ native predators from Europe, certain types of birds and fish, are not present in North

On Yellowstone’s Doorstep

On November 8, 2016 the State of Montana Department of Fish, Wildlife, and Parks announced that laboratory studies had identified invasive mussel larvae in water samples from the Tiber and Canyon Ferry reservoirs. Governor Steve Bullock declared a natural emergency and opened 35 new AIS inspection stations across the state.

Extensive sampling was conducted during summer 2017 and though no adult or larval mussels were found—environmental DNA in the Tiber Reservoir tested positive for mussels again.

Testing has confirmed that nearby Glacier National Park remains free of quagga and zebra mussels. Inspection, decontamination, and quarantine procedures remain in effect for 2018.

Another aquatic invader of concern is curly leaf pondweed (*Potamogeton crispus*) which has been identified in local areas and waterways adjacent to the park.
America. Though some ecologically similar species do exist, they do not appear to have significant impact on reducing established mussel populations.

Annual testing of Yellowstone and Lewis lakes has been negative for Dreissenid mussels as of 2017.

Asian Carp
The **bighead carp** (*Hypophthalmichthys nobilis*), **black carp** (*Mylopharyngodon piceus*), and **silver carp** (*Hypophthalmichthys molitrix*) occur in at least 24 states. They out-compete native fish, reduce forage for other fish, and can transmit disease. Silver carp are also known for their ability to jump great distances out of the water when boats travel near them, causing injury to boaters.

Silver carp are native to Southeast Asia and east Russia and were intentionally introduced into the United States in 1973 in an attempt to improve water quality, increase fish production in culture ponds, as biological control and as food fish. The species now occurs in at least 18 states and is naturally reproducing. Both the silver and the bighead carp compete for food (zooplankton) with native fish.

Black carp are native to Asia and east Russia and were unintentionally introduced in the early 1970s as a stowaway with intentionally introduced grass carp. Black carp now occur in at least 5 states. Black carp may reduce populations of native mussels and snails through predation and negatively affect the aquatic ecosystem. None of these species are currently found in Wyoming, or Montana.

These invasive species may continue to be spread intentionally or through accidental introductions as fish or fish eggs and through water currents.

Asian Clam
Since the introduction of *Corbicula fluminea* to the United States in 1938, it has spread into many of the major waterways and is now found in 46 of the United States states. The species have not been completely distinguished, but most varieties are small light-colored bivalves, yellow-green to light brown in color.

The native ranges are in temperate to tropical southern Asia west to the eastern Mediterranean; Africa, except in the Sahara desert; and southeast Asian islands south into central and eastern Australia. The Asian clam is a filter feeder that removes particles from the water column. It can be found at the sediment surface or slightly buried. Its ability to reproduce rapidly, coupled with low tolerance of cold temperatures (2-30°C), can produce wild swings in population sizes from year to year in northern water bodies.

Eurasian watermilfoil
Eurasian watermilfoil (*Myriophyllum spicatum*) has spread to all of the United States except Hawaii and Wyoming. In 2007, it was found in Montana.

This nonnative aquatic plant lives in calm waters such as lakes, ponds, and calm areas of rivers and streams. It grows especially well in water that experiences sewage spills or abundant motorboat use, like Bridge Bay.

Eurasian water-milfoil colonizes via stem fragments carried on boating equipment, emphasizing why boats should be thoroughly cleaned, rinsed, and inspected before entering Yellowstone National Park.

Plankton
Three nonnative plankton species which can displace the native zooplankton that are important food for cutthroat trout may be on their way. These nonnative zooplankton have long spines, which make them difficult for young fish to eat.

More Information

Staff Reviewer
Roy Renkin, Supervisory Vegetation Management Specialist
Todd Koel, Supervisory Fishery Biologist
Sue Mills, Environmental Specialist

284 Yellowstone Resources and Issues Handbook, 2018
Amphibians
Amphibians are an important part of Yellowstone’s aquatic and terrestrial ecosystems. Many of Yellowstone’s reptiles, birds, mammals, and fish prey on larval and adult amphibians and amphibians, in turn, eat a variety of vertebrate and invertebrate species. Amphibians are also sensitive to disease, pollution, drought, variations in annual snowpack, and the arrival of nonnative species; these documented sensitivities make them valuable indicators to environmental change. Amphibians often congregate in large numbers for breeding or overwintering. As a result, they can be adversely affected by localized disturbance or the loss of individual breeding or overwintering sites. Amphibian populations that are affected by one or more of these stresses may exhibit changes in their distribution or abundance. These changes can, in turn, have cascading effects on other aspects of the ecosystem.

Declines in amphibian populations are occurring globally in areas where habitat destruction is pervasive, but also in protected areas. About one-third of all amphibian species are believed to be threatened with extinction. Yellowstone includes some of the most climatologically and topographically complex landscapes in the lower 48 states and therefore provides a valuable study area to examine how climate may influence amphibian distribution and trends. Information about the status and trends of amphibians here may shed light on declines documented in other high-elevation locations or other protected areas around the West.

Population
Annual surveys since the early 2000s have documented four amphibian species as widely distributed in Yellowstone: boreal chorus frogs, Columbia spotted frogs, western tiger salamanders, and western toads occur in wetlands and ponds throughout Yellowstone. In 2014, the plains spadefoot (Spea bombifrons) was confirmed in Yellowstone through genetic analyses. These toads are rarely seen because

Quick Facts

Number in Yellowstone
5 species: Western tiger salamander, boreal chorus frog, Western toad, Columbia spotted frog, and plains spadefoot toad.

Identification
Toads are not taxonomically different from frogs. The species called “toads” are associated with drier skin and more terrestrial habitats.

Status
• Columbia spotted and boreal chorus frogs are widely distributed with many breeding sites in the park.

Research
• 2000: Researchers begin inventorying amphibians.
• 2005: Long-term amphibian monitoring begins in Yellowstone.
• 2014: A breeding population of plains spadefoot (Spea bombifrons) was confirmed near Fountain Flat Drive.

Survival in winter
To survive the winter, some Yellowstone amphibians go into water that does not freeze (spotted frogs), others enter underground burrows (salamanders and toads), and others (boreal chorus frog) tolerate freezing and go into a heart-stopped dormancy for the winter in leaf litter or under woody debris.
they spend most daylight hours underground. Currently, a single breeding population is known to exist within Yellowstone. However, monitoring efforts are underway to locate additional breeding sites because plains spadefoots typically do not disperse far from their natal pond.

In Yellowstone, amphibians depend on limited suitable habitat with shallow, quiet waters needed for egg laying and larval development. Annual differences in snowpack and precipitation change the extent and location of wetland sites, resulting in considerable year-to-year variation in amphibian reproduction. Breeding data collected across the park and since 2006 show that annual variations in breeding are common. Multi-year monitoring data indicate that amphibian populations using small, shallow isolated wetlands are most susceptible to drought or changes in precipitation. In contrast, amphibian populations occupying deeper wetlands and ponds appear to be more stable through time.

Since the 1950s, air temperatures have increased across this region and changes in the flooding patterns or the complete drying of wetlands have been documented. Since 2006, annual visits to approximately 250 wetlands across Yellowstone have further documented annual variation in the availability of wetlands. This data suggests that in hot, dry years (e.g., 2007) upwards of 40% of the park’s wetlands dry up. In cool, wet years (e.g., 2011) most wetlands across the park are flooded and available to support amphibian breeding. Further warming is anticipated for this region and could contribute to the drying of wetlands and influence the distribution and abundance of amphibians and other wetland dependent species.

Disease agents, such as ranavirus and chytrid fungus (Batrachochytrium dendrobatidis), could also affect the survival and reproduction of amphibian populations in Yellowstone. Ranavirus has been found in tiger salamanders and Columbia spotted frogs collected from die-offs since 2008 and been involved with die-offs of all four widely distributed species in the region. Chytrid fungus does not necessarily cause a fatal infection and usually appears in Columbia spotted frogs and western toads following metamorphosis. The DNA of the chytrid fungus has been identified in skin swabs collected from both species in Yellowstone, though the impacts at the population level have not been determined. Since 2015, 44% of tissue samples (tail clips) collected from larval amphibians (frog and toad tadpoles) have tested positive for ranavirus. These findings highlight that several factors, including host susceptibility and environmental conditions, may determine whether an infection is lethal and results in a die-off or a decline in population abundance.

Studying Amphibians in Yellowstone

The Greater Yellowstone Network (GRYN) has led a collaborative monitoring of wetlands and amphibians in Yellowstone since 2006. Long-term monitoring of amphibian populations provides an opportunity to observe trends that may not be apparent at local scales or in areas with more direct human influences on habitat quality.

Amphibians are monitored at catchments (or watersheds), which average approximately 500 acres in size. On average, 30 catchments are revisited during annual monitoring visits (up to 24 in Yellowstone, and 7 in neighboring Grand Teton National Park). All wetlands within the selected catchment are visited each summer, when two independent observers search for amphibian breeding evidence (i.e., eggs, larvae, or recently metamorphosed individuals) and document important habitat characteristics and the presence or absence of surface water.

The objectives of GRYN’s annual monitoring are to estimate the proportion of monitored catchments and wetlands used for breeding by each native amphibian species annually, to consider whether the rate and direction of use may be changing through time, and to document the number of wetlands within catchments that are potentially suitable for amphibian breeding. This annual monitoring is then combined with local climate data to carefully examine the links between climate, wetlands, and amphibians. Taken together, amphibian and wetland monitoring data

Amphibian or Reptile?

Both amphibians and reptiles are ectothermic (“cold-blooded”), meaning they derive body heat from outside sources rather than generate it internally. Reptiles have scaly, dry skin. Some lay eggs; others bear live young. Amphibians have thin, moist glandular skin permeable to water and gases. The young must pass through a larval stage before changing into adults. Amphibious means “double life” and reflects the fact that salamanders, toads, and frogs live in water as larvae and on land for much of the rest of their lives.
from the last decade, coupled with local climate information, will help support predictions of amphibian occurrence under different climate scenarios.

More Information

Western Tiger Salamander (Ambystoma mavortium)

Identification
- The only salamander in Yellowstone.
- Adults range up to 9 inches, including the tail.
- Head is broad, with a wide mouth.
- Color ranges from light olive or brown to nearly black, often with yellow blotches or streaks on back and sides; belly is dull lemon yellow with irregular black spots.
- Larvae, which are aquatic, have a uniform color and large feathery gills behind the head; they can reach sizes comparable to adults but are considerably heavier.

Habitat
- Breeds in ponds and fishless lakes.
- Widespread in Yellowstone in a great variety of habitats, with sizable populations on the Northern Range.

Behavior
- Adult salamanders come out from hibernation in late April to June, depending on elevation, and migrate to breeding ponds where they lay their eggs.
- Mass migrations of salamanders crossing roads are sometimes encountered, particularly during or after rain.
- After migration, salamanders return to their moist homes under rocks and logs and in burrows.
- Feed on adult insects, insect nymphs and larvae, small aquatic invertebrates, frogs, tadpoles, and even small vertebrates.
- Preyed upon by a wide variety of animals, including mammals, fish, snakes, and birds such as sandhill cranes and great blue herons.
Boreal Chorus Frog (*Pseudacris maculata*)

Identification
- Adults reach 1 to 1.5 inches in length, and females are usually larger than males; newly metamorphosed juveniles are less than 1 inch long.
- Brown, olive, tan, or green (sometimes bicolored) with a prominent black stripe on each side from the nostril through the eye and down the sides to the groin; three dark stripes down the back, often incomplete or broken into blotches.

Habitat
- Common, but seldom seen due to its small size and secretive habits.
- Live in moist meadows and forests near wetlands.
- Lays eggs in loose irregular clusters attached to submerged vegetation in quiet water.

Behavior
- Breeds in shallow temporary pools or ponds during the late spring.
- Calls are very conspicuous, resemble the sound of a thumb running along the teeth of a comb.
- Males call and respond, producing a loud and continuous chorus at good breeding sites, from April to early July, depending on elevation and weather.
- Usually call in late afternoon and evening.
- Tadpoles eat aquatic plants; adults mostly eat insects.
- Eaten by fish, predacious aquatic insect larvae, other amphibians, garter snakes, mammals, and birds.

Western Toad (*Anaxyrus boreas*)

Identification
- Yellowstone’s only true toad species which is confirmed to breed in the park.
- Adults range up to about 4 inches, juveniles just metamorphosed from tadpoles are only 1 inch long.
- Stocky body and blunt nose.
- Brown, gray, or olive green with irregular black spots, lots of “warts,” and usually a white or cream colored stripe down the back.
- Tadpoles are usually black and often congregate in large groups.

Habitat
- Once common throughout the park, now appears to be much rarer than spotted frogs and chorus frogs; scientists fear this species has experienced a decline in the ecosystem.
- Adults can range far from wetlands because of their ability to soak up water from tiny puddles or moist areas.
- Lay eggs in shallow, sun-warmed water, such as ponds, lake edges, slow streams, and river backwaters.

Behavior
- Tadpoles eat aquatic plants; adults eat algae, insects, especially ants and beetles, worms and other small invertebrates.
- Sometimes active at night.
- Defends itself against predators by secreting an irritating fluid from numerous glands on its back and behind the eyes.
- Eaten by snakes, mammals, ravens, and large wading birds.
Columbia Spotted Frog (*Rana luteiventris*)

Identification
- Common in suitable wetland habitat.
- Maximum length is about 3 inches, newly metamorphosed juveniles less than one inch long.
- Upper surface of the adult is gray-brown to dark olive or even green, with irregular black spots; skin is bumpy; underside is cream-colored and may be splashed with brilliant orange on the thighs and arms on many but not all individuals.
- Tadpoles have long tails and may grow to 3 inches long.

Habitat
- Found all summer along or in rivers, streams, smaller lakes, marshes, ponds, and rain pools.
- Lay eggs in stagnant or quiet water, in globular masses surrounded by jelly.

Behavior
- Breeds in April to early June, depending on temperatures and elevation.
- Tadpoles metamorphose and grow into adults between July and September.
- Tadpoles eat aquatic plants, adults mostly eat insects but are highly opportunistic in their food habits (like many other adult amphibians).

Plains Spadefoot Toad (*Spea bombifrons*)

Identification
- A single breeding population has been identified in the Lower Geyser Basin east of Fairy Creek in Yellowstone National Park.
- Protruding eyes with vertical pupils, and a prominent bony boss (raised bump) between the eyes.
- Have a single, dark tubercle, or “spade,” on each of their hind feet.

Habitat
- Uses its spade to dig shallow summer burrows or deeper winter burrows. Newly metamorphosed animals may burrow in mud near their natal pond or hide in cracks in the hard earth.
- Typically occur in warmer climates in the western United States, and it has been speculated that spadefoots may be found in geothermally influenced habitat in Yellowstone that facilitates overwinter survival.

Behavior
- Breeds in ephemeral pools following significant rainfall.
- Tadpoles develop from eggs in 2 to 6 days.
- Produces cannibalistic and noncannibalistic tadpole body types.
- Tadpoles develop for 3 to 6 weeks before metamorphosis.
Reptiles

Yellowstone provides a valuable study area; information about the status and trends of reptiles here may shed light on declines documented in other high-elevation protected areas of the western United States. Many reptiles congregate to breed or overwinter, and they can be adversely affected by disturbance or loss of key sites.

Bullsnake (Pituophis catenifer sayi)

Identification
- A subspecies of the gopher snake, is Yellowstone’s largest reptile, ranging from 50 to 72 inches long.
- Yellowish with a series of black, brown, or reddish-brown blotches down the back; the darkest, most contrasting colors are near the head and tail; blotches are shaped as rings around the tail.
- Head resembles a turtle’s in shape, with a protruding scale at the tip of the snout and a dark band extending from the top of the head through the eye to the lower jaw.

Habitat
- In Yellowstone, found at lower elevations; drier, warmer climates; and open areas such as near Mammoth.

Behavior
- Lives in burrows and eats small mammals—behavior that gave the gopher snake its name.
- Often mistaken for a rattlesnake because of its appearance and its defensive behavior: when disturbed, it will coil up, hiss loudly, and vibrate its tail against the ground, producing a rattling sound.

Quick Facts

Number in Yellowstone
They are less studied than amphibians in Yellowstone. There are 6 confirmed species:
- bullsnake
- prairie rattlesnake
- rubber boa
- sagebrush lizard
- common garter snake
- terrestrial garter snake.

Status
- None of the park’s reptiles are federally listed as threatened or endangered.
- Researchers began inventorying reptiles and amphibians in 2000.
Prairie Rattlesnake (Crotalus viridis)

Identification
- Can be more than 48 inches in length.
- Greenish gray to olive green, greenish brown, light brown, or yellowish with dark brown splotches down its back that are bordered in white.

Habitat and Behavior
- Only dangerously venomous snake in the park.
- Lives in the lower Yellowstone River areas of the park, including Reese Creek, Stephens Creek, and Rattlesnake Butte, where the habitat is drier and warmer than elsewhere in the park.
- Usually defensive rather than aggressive.
- Only two snake bites are known during the history of the park.

Rubber Boa (Charina bottae)

Identification
- Infrequently encountered in Yellowstone, perhaps due to its nocturnal and burrowing habits.
- One of two species of snakes in the United States related to tropical boa constrictors and pythons.
- Maximum length of 28 inches.
- Back is brown or greenish-brown, belly is lemon yellow; scales are small and smooth, making it almost velvety to the touch.

Habitat and Behavior
- Eats small prey including mammals, amphibians, lizards, other snakes, and even small birds.
- May spend great deal of time partially buried under leaves and soil, and in rodent burrows.
- Usually found in rocky areas near streams or rivers, with shrubs or trees nearby.
- Recent sightings have occurred in the Bechler region and Gibbon Meadows.

Similar species:
The racer (*Coluber constrictor*) can be found from southern British Columbia, east to Maine, and south across the U.S. to southern Florida and southern California. Racers, as their name implies, are fast and sleek snakes, unlike the slow-moving rubber boa. Racers also have larger eyes than rubber boas and round pupils. Any sightings of this species should be reported to resource managers.
Sagebrush Lizard (Sceloporus graciosus)

Identification
- Only lizard in Yellowstone.
- Maximum size of five inches from snout to tip of the tail; males have longer tails and may grow slightly larger than females.
- Gray or light brown with darker brown stripes on the back set inside lighter stripes on the sides, running the length of the body; stripes not always prominent and may appear as a pattern of checks down the back; underside usually cream or white.
- Males have bright blue patches on the belly and on each side, with blue mottling on the throat.

Habitat
- Usually found below 6,000 feet but in Yellowstone lives up to 8,300 feet.
- Populations living in thermally influenced areas are possibly isolated from others.
- Most common along the lower portions of the Yellowstone River near Gardiner, Montana, and upstream to the mouth of Bear Creek; also occurs in Norris, Shoshone, and Heart Lake geyser basins, and other hydrothermal areas.

Behavior
- Come out of hibernation about mid-May and active through mid-September.
- Diurnal, generally observed during warm, sunny weather in dry rocky habitats.
- During the breeding season males do push-ups on elevated perches to display their bright blue side patches to warn off other males.
- Feed on various insects and arthropods.
- Eaten by bullsnakes, terrestrial gartersnakes, prairie rattlesnakes, and some birds.
- May shed tail when threatened or grabbed.

Common Gartersnake (Thamnophis sirtalis)

Identification
- Medium sized snake up to 34 inches long.
- Nearly black background color with three bright stripes running the length of the body; underside is pale yellow or bluish gray.
- Most distinguishing characteristics of this species in our region are the irregular red spots along the sides.

Habitat
- Thought to be common in the past, now in decline for no apparent reason.
- Closely associated with permanent surface water.
- In Yellowstone area, observed only in the Falls River drainage in the Bechler region and three miles south of the south entrance along the Snake River.

Behavior
- Generally active during the day.
- In the Yellowstone area it eats mostly toads, chorus frogs, fish remains, and earthworms; can eat relatively poisonous species. Reliance on amphibian prey may contribute to reports of declines of this species in the greater Yellowstone area.
- Predators include fish, birds, and carnivorous mammals.
Terrestrial Gartersnake (*Thamnophis elegans*)

JEFF ARNOLD

Identification
- Most common reptile in the park.
- 6 to 30 inches long.
- Brown, brownish green, or gray with three light stripes—one running the length of the back and a stripe on each side.

Habitat
- Usually found near water in all areas of the park.
- Eats small mammals, fish, frogs, tadpoles, salamanders, earthworms, slugs, snails, and leeches.

Behavior
- May discharge musk from glands at the base of the tail when threatened.
- Gives birth to as many as 20 live young in late summer or fall.

More Information

Staff Reviewer
Andrew Ray, Ecologist, Greater Yellowstone Network
Charles R. Peterson, Professor, Department of Biological Sciences, Idaho State University
Jeff Arnold, Ecologist
National Park Service Mission
The National Park Service preserves unimpaired the natural and cultural resources and values of the National Park System for the enjoyment, education, and inspiration of this and future generations. The National Park Service cooperates with partners to extend the benefits of natural and cultural resource conservation and outdoor recreation throughout this country and the world.