The Oaks
Tuskegee Institute National Historic Site
Alabama

Historic Structure Report

Prepared by:
Panamerican Consultants, Inc.
2390 Clinton Street
Buffalo, New York 14227

Wiss, Janney, Elstner Associates, Inc.
330 Pfingsten Road
Northbrook, Illinois 60062

WFT Architects, PA
770 North State Street
Jackson, Mississippi 39202

Prepared for:
National Park Service
Southeast Regional Office
100 Alabama Street SW
Atlanta, Georgia 30303
Cultural Resources, Partnerships and Science Division
Southeast Regional Office
National Park Service
100 Alabama Street, SW
Atlanta, Georgia 30303
(404) 507-5787

About the front cover: View of The Oaks looking south,
December 2016

This manuscript has been authored by Panamerican Consultants, Inc., with Wiss, Janney, Elstner Associates, Inc., and WFT Architects, PA, under Contract Number P16PC00097 with the National Park Service. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
The Oaks
Tuskegee Institute National Historic Site
Alabama

Historic Structure Report
Contents

List of Figures ... vii
Project Team .. xiii
Foreword ... xv

Management Summary

Historical Data ... 1
Treatment and Use .. 3
Administrative Data .. 4
Project Scope and Methodology .. 5

Developmental History

Historical Background and Context .. 9
Early History of the City of Tuskegee ... 9
Establishment of Tuskegee Normal and Industrial Institute (1891-1895) ... 10
Late Booker T. Washington Era and the Influence of Robert Taylor (1898-1915) .. 16
Robert Moton and Frederick D. Patterson Eras and the Influence of David Williston (1916-1952) 21
Luther Foster Era and the Influence of Edward Pryce (1953-1980) .. 24
Benjamin F. Payton and Current Eras (1981-Present) .. 27
Booker T. Washington (1856-1915) ... 28
Margaret Murray Washington (1861-1925) ... 32
The Oaks (LCS #091220) .. 33
History of The Oaks .. 37
Historical Recordations of The Oaks ... 44
Physical Changes to The Oaks .. 45
Archeology at The Oaks ... 50
Timeline for The Oaks ... 51

Physical Description and Condition Assessment

Site .. 55
Exterior ... 56
 Description ... 56
 Condition Assessment .. 73
Interior ... 84
 Description ... 84
 Condition Assessment .. 109
Mechanical and Electrical Systems .. 111
Structural Systems ... 114
 Description ... 114
 Condition Assessment .. 117

Significance and Integrity

National Register of Historic Places ... 119
 Significance Criteria ... 119
National Register Significance Evaluation of The Oaks ... 120
 Period of Significance .. 122
Character-Defining Features ... 123
Assessment of Integrity ... 124
Treatment and Use

Requirements for Treatment and Use ... 127
Laws, Regulations, and Functional Requirements ... 127
Alternatives for Treatment and Use ... 129
Ultimate Treatment and Use ... 129
Guidelines for Treatment ... 129
Recommendations ... 130
Exterior .. 131
Interior .. 132
Mechanical, Electrical, Plumbing, and Fire Protection Systems 134
Structural System .. 134
Current and Forthcoming Work .. 135
Recommendations for Further Research .. 135
Resiliency to Natural Hazards ... 136
Bibliography ... 139

Appendices

Appendix A: Measured Drawings
Appendix B: Restoration Drawings of Millwork
List of Figures

Management Summary

1. Map of Alabama showing location of Tuskegee National Historic Site .. 7
2. Park map of Tuskegee National Historic Site showing location of The Oaks .. 7

Developmental History

3. Booker T. Washington .. 12
4. An 1886 advertisement for Tuskegee Normal School featuring Alabama Hall 13
5. Students digging the foundation for the C.P. Huntington Memorial Building .. 18
6. Roof construction of building by Tuskegee students in 1902 ... 18
7. Review stand at Tuskegee Institute’s twenty-fifth anniversary celebration in 1906 20
8. Tuskegee Institute faculty with Andrew Carnegie during the twenty-fifth anniversary celebration 20
9. Dr. Robert Russa Moton (President, 1915–1935) .. 21
10. Dr. Frederick Douglass Patterson (President, 1935–1953) ... 23
11. Dr. Luther Foster (President, 1953–1981) ... 24
13. Booker T. Washington .. 28
14. Booker T. Washington and his sons ... 31
15. Front, north and west side, of The Oaks, 2010 ... 34
16. West side of The Oaks, 2010 ... 35
17. Robert Robinson Taylor ... 35
18. The Oaks, 1906. Note the planted trees and shrubs on the primarily bare lot indicative of a newly constructed building .. 40
20. Booker T. Washington, flanked on the left by his wife, Margaret Murray James Washington, and on the right by his daughter, Portia. His sons, Ernest Davidson (on the left) and Booker T., Jr. (on the right), stand behind him, date unknown .. 41
21. The den, Washington’s study, restored by the National Park Service, 2010 .. 41
22. Washington on his favorite horse, Dexter, toured the grounds of Tuskegee Institute every day, making note of things that should be done, date unknown .. 42
23. US President Theodore Roosevelt and Booker T. Washington review the Tuskegee Institute floats during the school’s twenty-fifth anniversary celebration, Stereograph card by Underwood and Underwood Publishers, New York, 1905 .. 42
24. Mourners line the street as Washington’s casket, center of the photo, is taken to the Tuskegee Cemetery for burial .. 43
26. The Oaks dining room before 1908 when the murals were added ... 46
27. The Oaks, oblique view, front (north) and west side, where vines cover and shade porch areas since the trees have not yet matured, 1925 .. 46

Physical Description and Condition Assessment

28. The Oaks, looking southeast .. 56
29. The Oaks, north elevation, looking southeast ... 56
30. The Oaks, north elevation, looking southwest .. 57
31. The Oaks, north elevation, looking south .. 57
32. North elevation of the dining room addition .. 57
33. The Oaks, west elevation, looking east .. 58
34. The Oaks, west elevation, looking northeast ... 58
35. The Oaks, south elevation, looking north ... 59
Evidence of previous mortar repointing in the field of the wall ... 74
Step cracking, open joints, and evidence of water infiltration at the porch walls .. 74
Step cracking and efflorescence at the porch walls .. 74
Cracking and open mortar joints above flat arch opening ... 75
Face spalling of brick ... 75
Accumulation of efflorescence at base courses of porch walls .. 75
Moisture staining at porch walls .. 75
Evidence of moisture infiltration at northwest corner of porch ... 76
Spalled concrete bond beam at porch wall .. 76
Spalled concrete bond beam at porch wall .. 76
Moisture staining and evidence of moisture infiltration at concrete bond beam .. 76
Spalling and cracking of concrete at northwest corner of porch ... 77
Deteriorated wood at base of columns ... 77
Debonded paint and plaster coating at columns .. 77
Cementitious patch repair at abandoned utility openings ... 80
Bowed and displaced sheet metal at field of roof .. 83
Damaged sheet-metal roof cladding near the gutter ... 83
Deformed and damaged roofing adjacent to overflowing gutter ... 82
The roof ridge with reverse-lapped shingles. Arrow shows desired direction of water flow away from the building. The seams between the panels (dashed line) would allow water to enter the seam ... 82
Gap between the copper flashing and the roof cladding ... 83
Gap at interface between the sheet-metal roof and wall cladding ... 83
Damaged sheet-metal roof cladding near the gutter ... 83
Bowed and displaced sheet metal at field of roof .. 83
Moisture staining at wood sheathing .. 83
Moisture staining at roof rafters .. 84
Damaged and dislodged downspout strap ... 84
Deteriorated sealant at reglued flashing joint ... 84
Corrosion staining at interface of flashing with roof cladding .. 84
The Oaks from the northwest ... 85
Overall view of the front hall .. 86
233 Overview of main roof structure ... 116
234 Typical wood kicker found in the attic of the south wing 117
235 Replaced structural kickers at south wing roof .. 117
Project Team

National Park Service – Southeast Regional Office

Celinda Hicks, Contracting Officer
Jessica Kelly, Historical Architect and Contracting Officer’s Representative
Paul Hatchett, Historical Architect and Contracting Officer’s Representative (former)

National Park Service – Tuskegee Institute National Historic Site

Raquel Krieger, Acting Superintendent
Barbara Tagger, Superintendent (former acting)
Sandra Taylor, Superintendent (former)
Robyn Harris, Museum Specialist
Shirley Baxter, Park Ranger
Anthony Bates, Acting Chief of Interpretation

Panamerican Consultants, Inc.

Kelly Nolte, Project Manager / Historian
Christine Longiaru, Architectural Historian
Mark Steinback, Editor

Wiss, Janney, Elstner Associates, Inc.

Deborah Slaton, Historian / Conservator
Mike Ford, Historical Architect
Tim Crowe, Historical Structural Engineer
Tim Penich, Historical Architect

WFT Architects, PA

Wayne F. Timmer, Historical Architect
Wes Harp, Historical Architect
Foreword

We are pleased to make available this Historic Structure Report, part of our ongoing effort to provide comprehensive documentation for the historic structures and cultural landscapes of National Park Service units in the Southeast Region. A number of individuals contributed to the successful completion of this work; but we would particularly like to thank the Project Team who authored the report. The authors would like to thank the staff at the Tuskegee Institute National Historic Site who assisted with the project, including Museum Specialist Robyn Harris, then Superintendent Sandra Taylor, and Acting Superintendent Barbara Tagger, the Park staff who assisted with the inspection of historic structures, and Historical Architect Jessica Kelly of the Southeast Regional Office for their assistance. We hope that this study will prove valuable to park management in ongoing efforts to preserve the historic structure and to everyone in understanding and interpreting this unique resource.

Julie Ernststein, Acting Chief
Cultural Resources, Partnerships and Science Division
Southeast Regional Office
2019
Management Summary

At the request of the National Park Service (NPS), Panamerican Consultants, Inc. and its subconsultants, Wiss, Janney, Elstner Associates, Inc. (WJE) and WFT Architects (WFTA), have developed this Historic Structure Report (HSR) for The Oaks, the home of Booker T. Washington, at 905 West Montgomery Road on the campus of Tuskegee University, Tuskegee Institute National Historic Site, Tuskegee, Alabama. The Oaks is also located in the Historic Campus District. Figure 1 is a map of the state of Alabama showing the location of the Tuskegee Institute National Historic Site. Figure 2 is a map of Tuskegee Institute National Historic Site, showing the location of The Oaks.

The Oaks was administratively listed on the National Register of Historic Places in 1966 as a contributing feature to the nationally significant Tuskegee Institute National Historic Landmark Historic District (NRIS ID #66000151). The administratively determined Management Category is “Must Be Preserved and Maintained” and the Ultimate Treatment is “Preservation,” as characterized in The Secretary of the Interior’s Standards for Treatment of Historic Properties.

The property is important within the site because it is an immediate link to Tuskegee Institute’s founder and first principal, and one of the most influential African Americans of the late nineteenth and early twentieth centuries. Booker T. Washington’s educational philosophy and his quest to provide economic independence for African Americans gained him a wide circle of influential friends and supporters, and helped propel Tuskegee Institute to the forefront of African American educational institutions. The Oaks is also significant for the role it played in the lives of the Washington family and in the administration of the Institute. The house was constructed in 1899-1900 as the home for Washington, his wife, Margaret Murray Washington, and his three children, Portia Marshall, Booker T., Jr., and Ernest Davidson. While The Oaks was, indeed, a home and a place of retreat for Washington, it also served as a place where visiting dignitaries, school administrators and staff, and friends were regularly entertained.

Further, it was a showcase for the collective talents of the Institute. The architect of The Oaks was Robert Robinson Taylor, then the head of architectural and mechanical instruction at Tuskegee Institute; it was built by students of the school using many materials made at the school – the most famous being the bricks; the grounds were designed by the Institute’s landscape architect, David A. Williston; and the house was maintained by students, even though it was the personal property of Washington. The house was a showcase of what could be accomplished by black professionals, such as those trained at Tuskegee, and an example of what a black professional’s house could be. Finally, The Oaks is significant because it was designed by Robert R. Taylor, a significant African American architect, and the grounds were designed by David A. Williston, one of the earliest black landscape architects in the United States. Taylor is also significant for developing the look and style of the architecture of Tuskegee, and Williston is significant for shaping the early look of the campus.

Historical Data

The Oaks is located at 905 West Montgomery Road on the campus of Tuskegee Institute (now Tuskegee University), within the Tuskegee Institute National Historic Site. The Tuskegee Institute National Historic Site was created by Public Law 93-486 on October 26, 1974. The site includes approximately 74 acres, 24 of which are owned by the federal government and managed by the National Park Service. The remaining 50 acres belong to Tuskegee University. A major portion of the campus was designated a National Historic Landmark (Tuskegee Institute) 1966. The main features of the National Historic Site are The Oaks, the family home of Booker T. Washington, and the George Washington Carver Museum, both of which are owned by the National Park Service.2

Tuskegee University in Alabama officially opened its doors to America's formerly enslaved people as the Tuskegee Normal School for Colored Teachers in 1881. In time, the school gained recognition for its superior training of African Americans in industrial trades that helped improve their economic conditions and way of life. By 1892, through legislation, the school was granted authority to act independently of the state of Alabama. Booker T. Washington served as principal of Tuskegee from July 4, 1881, until his death in November 1915. Under his leadership, the school achieved institutional independence and national prominence.

Washington, an exacting task master who worked ceaselessly for the cause of African American economic independence, sought only the best black teachers and administrators for the new school. Among those he brought to Tuskegee were Robert R. Taylor, architect, David A. Williston, landscape architect, and George Washington Carver.

Booker T. Washington was born into slavery on April 5, 1856, on a plantation near Hale’s Ford, Virginia.3 Washington’s mother, Jane, was one of six enslaved people (including her son, Booker) owned by tobacco farmer James Burroughs.4 In his autobiography Up from Slavery (1901), Washington identified his father as “a white man who lived on one of the nearby plantations.”5 Washington’s mother worked as a cook for the Burroughs family, leaving little time for her children.

After freedom, Washington went to West Virginia with his mother to join his stepfather. While working there as a salt miner, Washington heard about a school for blacks in Virginia and was determined he would attend. He eventually made his way to Hampton Normal and Agricultural Institute in Hampton, Virginia, where he quickly became a star pupil and caught the eye of the school’s founder, General Samuel Chapman Armstrong, who would become a mentor, supporter, and friend. After graduating from Hampton, he became a teacher there. Upon the recommendation of Armstrong, Washington was offered the opportunity to go to Tuskegee, Alabama, and become the principal for the Tuskegee Normal and Industrial Institute.

In 1881, Washington arrived at Tuskegee to find that there were no facilities and just enough money to pay teacher’s salaries. From this humble beginning, Washington built Tuskegee Institute into one of the most influential schools for African Americans in the county. The school’s curriculum was based on the ideal of dignified labor and the

3. The exact year of Washington’s birth has been a matter of debate, since he did not possess a formal birth certificate. Dates of his birth range from as early as 1854 to as late as 1859. His headstone at Tuskegee is inscribed with the year 1856, a date reportedly noted next to his name in a family Bible. This date defers to the birth date acknowledged by the National Park Service.

concept that through training and education the black citizen, both male and female, could achieve economic independence.

By the end of the nineteenth century, Booker T. Washington was famous in both black and white communities. His friends were some of the greatest nineteenth-century philanthropists and thinkers, and he counted US presidents among them. At the time of Washington’s death in 1915, the Institute had 1,537 students and an all-black faculty of 197 members teaching thirty-eight trades and professions. There were more than one hundred buildings on the campus.

The Oaks, the Washington family’s personal home, was designed and built in 1899-1900 after Washington had been at the school for almost 20 years and had been living in school-owned dwellings. The impetus for building the new home is not known nor is the reason for its Queen Anne design which was not in keeping with the more classical elements of the school. While the house was constructed off the campus, it was directly across the street from it.

The house was designed, built, and maintained by staff and students using, for the most part, materials created by students or taken from school grounds. The bricks are probably the most famous components of the house, coming from the Tuskegee Brickyard that was designed, built, and operated by staff and students and had been the brainchild of Washington. But the bricks were just one of the materials derived from the school; it is probable that the original tin shingles, wood, and decorative interior and exterior finishes were made at the school.6

Washington lived in the house until his death in 1915. His elaborate funeral was staged out of the house where his body had been prepared for burial. Washington left the house to his wife, Margaret, who lived there until 1925. Upon her death, the house was left to Mrs. Washington’s three stepchildren who sold it to Tuskegee Institute. The Institute used the home for several different school services, always leaving Washington’s study untouched.

In 1974 when the National Park Service acquired The Oaks, many changes had been made to the floor plan. The NPS reversed some of the changes, turning a select number of rooms into a house museum that highlighted the work and life of Washington and his family. The Oaks is currently open as an NPS house museum.

The Oaks was administratively listed on the National Register of Historic Places in 1966 as a contributing feature to the nationally significant Tuskegee Institute National Historic Landmark Historic District (NRIS ID #66000151).7

In 2012, the Alabama State Historic Preservation Office (SHPO), Deputy SHPO, Elizabeth Ann Brown, concurred with a Consensus Determination of Eligibility (DOE) prepared by the NPS Southeast Regional Office finding the following landscape elements contributing to the house: Driveways (1920), Concrete Gutters (1920), Concrete Walkways (1920), and Garage Foundation (1925).8

Treatment and Use

The Oaks is significant for its association with Tuskegee Institute’s most famous teacher—its founder and first principal, Booker T. Washington; the role it played in the life of Washington, visiting dignitaries, school administrators, staff, and

7. This statement on the administrative listing of The Oaks to the National Register of Historic Places was prepared by the NPS and added at their request.

students; the example it set by using Institute staff and students in its design, construction, and daily upkeep; and its association with Robert R. Taylor and David A. Williston. Further, it is significant for its association with the contributions of Margaret Murray Washington and the Washington family until her time of death in 1925, at which point The Oaks was sold to the Institute. The Institute initiated development of a landscape design under the leadership of David Williston by 1920 which was completed after the deaths of both Booker T. Washington and Margaret Murray Washington.

The Oaks is anticipated to remain in use as a house museum commemorating the life and work of Booker T. Washington and his family. The recommended overarching treatment for the structure is Preservation.

The building is generally in good condition, requiring maintenance-type repairs. Examples include repair of slipping window sashes in most units, lack of Ground Fault Interrupt Circuit (GFIC) receptacles in the kitchen, non-functioning air conditioning in one unit, no fire sprinklers, and lack of ADA/ABA (Americans with Disabilities Act / Architectural Barriers Act) accessibility.

Administrative Data

Locational Data

Building Name: The Oaks

Location: Tuskegee Institute National Historic Site, Tuskegee, Alabama

LCS Number: The Oaks is on the List of Classified Structures (LCS) as follows:

- The Oaks (LCS 091220) 1899, Driveways (LCS 092173) 1920; Concrete Gutters (LCS 092174) 1920; Concrete Walkways (LCS 072175) 1920; Garage foundation (LCS 092176) 1925. The Front Retaining Wall (LCS 092191) 1971; was determined to be a noncontributing element, however, it was stipulated that the wall should be managed as a cultural resource.

Related Studies

Cultural Resource Data

The Oaks was administratively listed on the National Register of Historic Places in 1966 as a contributing feature to the nationally-significant Tuskegee Institute National Historic Landmark Historic District (NRIS ID #66000151). The administratively determined Management Category is “Must Be Preserved and Maintained” and the Ultimate Treatment is “Preservation,” as characterized in The Secretary of the Interior’s Standards for Treatment of Historic Properties.”

In 1966, a 1-1/2-page National Historic Landmark nomination was completed on the Tuskegee Institute National Historic Site, which included The Oaks and Carver Museum as contributing resources.

In 1977, a *Historic Resources Study* (HRS) was prepared by John W. Jenkins, National Park Service Denver Service Center, but was never published. In this document, The Oaks was not discussed.

A Historic American Buildings Survey (HABS) was completed (HABS AL-877; old number ALA -44-TUSG) on the museum in 1978. Eleven sheets of measured drawings, but no text document, were prepared.
A Historic Structures Report was prepared for The Oaks by the Denver Service Center in 1980. The HSR includes historical, landscape, and architectural data, as well as itemized condition tables of exterior, engineering systems, and a recommended preservation program.

The Tuskegee Institute National Historic Site Parkwide Interpretive Plan was created in 2002 which focused heavily on the Carver Museum and The Oaks, since these are the two buildings administered by the NPS.

In 2012, a CDOE for landscape elements of The Oaks was made by the NPS Southeast Regional Office. It was determined that the driveways, concrete walkways, concrete gutters, and garage foundation were Contributing Resources to the house. The Alabama SHPO concurred.

Period of Significance: 1899-1929

Proposed Treatment: Preservation

Project Scope and Methodology

The goal of the HSR is to develop planning information for use in the repair, maintenance, and preservation of this historically significant structure. First developed by the National Park Service in the 1930s, HSRs are documents prepared for a building, structure, or group of buildings and structures of recognized significance. They are used to record and analyze a property’s initial construction and subsequent alterations through historical, physical, and pictorial evidence; document the performance and condition of the structure’s materials and overall physical stability; identify an appropriate course of treatment; and, following implementation of the recommended work, document alterations made through that treatment.

The HSR addresses key issues specific to The Oaks including the history and construction chronology of the building; the existing physical condition of the exterior envelope, structural systems, and primary interior spaces and features; and the historic significance and integrity of the building.

The following project methodology was used for this study.

Research and Document Review. Archival research was performed to gather information about the original construction and past modifications and repairs for use in assessing existing conditions and developing treatment recommendations for the building. Documents reviewed included maps, drawings, specifications, historic photographs, and other written and illustrative documentation about the history of construction and repairs to the structure. The research for this study built upon prior historical and archival research done by the National Park Service and others, as outlined in the bibliography provided with this report. Primary reference material for this study was obtained from the Tuskegee Institute National Historic Site Archives. Additional research material was obtained from the National Park Service Technical Information Center (TIC) in Denver, Colorado, and multiple online sites associated with the history of Tuskegee Institute / University, Booker T. Washington, and other pertinent cultural and social topics. The Tuskegee University Archives and their Archivist, Dana Chandler, were particularly helpful.

Condition Assessment and Documentation. Concurrent with the historical research, a condition survey of The Oaks was performed and observations were documented with digital photographs, field notes, and annotations on baseline drawings. For purposes of the field survey, drawings were prepared by the project team. The condition assessment addressed the exterior and primary interior spaces and features of the building as well as the building’s hazardous materials.

Development of History, Chronology of Construction, and Evaluation of Significance. Based on historical documentation and physical evidence gathered during the study, a context history and a chronology of design and construction were developed. An evaluation of the significance was also prepared, taking into
consideration guidelines provided by National Register Bulletin: How to Apply the National Register Criteria for Evaluation. This evaluation of history and significance provided the basis for the development of recommended treatment alternatives.

Guidelines for Preservation. Based on the evaluation of historical and architectural significance of the structure, guidelines were prepared to assist in the selection and implementation of preservation treatments.

Treatment Recommendations. The Secretary of the Interior’s Standards for the Treatment of Historic Properties guided the development of treatment recommendations for the significant exterior and interior features of the buildings, and for the features of the landscape included in this study. Following the overall treatment approach of Preservation for the house, the specific recommendations were developed to address the observed existing distress conditions as well as the park’s intended future use and long-term objectives.

Preparation of Historic Structure Report. Following the completion of research, site work, and analysis, a narrative report was prepared that summarized the results of the research and inspection and presented recommendations for treatment. The HSR was compiled following the organizational guidelines of NPS Preservation Brief 43: The Preparation and Use of Historic Structure Reports, with modifications to

FIGURE 1. Map of Alabama showing location of Tuskegee National Historic Site, not to scale, modified by the authors.

FIGURE 2. Park map of Tuskegee National Historic Site showing location of The Oaks. (Source: National Park Service)
Left blank intentionally
Developmental History

Historical Background and Context

Tuskegee University in Alabama officially opened its doors to America’s formerly enslaved people as the Tuskegee Normal School for Colored Teachers in 1881. In time, the university gained recognition for its superior training of African Americans in industrial trades that helped improve their economic conditions and way of life. By 1892, through legislation, the school was granted authority to act independently of the state of Alabama. Booker T. Washington served as principal of Tuskegee from July 4, 1881, until his death in November 1915. Under his leadership, the school achieved institutional independence and national prominence.

The Secretary of the Interior designated the Tuskegee National Historic Landmark in 1965. The US Congress created the Tuskegee Institute National Historic Site (Public Law 94-486) on October 26, 1974. The Tuskegee Institute National Historic Site stands today as a symbol of African American achievement and a reminder of Booker T. Washington’s legacy in African American education and culture.

Early History of the City of Tuskegee

The City of Tuskegee has played a major role in the history of Alabama and the United States. Located forty miles east of Montgomery, Tuskegee was settled and laid out in 1833. At the time of Tuskegee’s founding, the area was still inhabited by Native Americans of the Creek Nation. The town’s name is a derivation of a Creek leader named Taskigi, whose town occupied the triangle of land formed by the convergence of the Coosa and Tallapoosa rivers. The land on which Tuskegee now stands was first settled soon after the French and Indian War (1754–1763). A treaty ending the war declared that France would surrender the area to the English, who took control of the French fort at Tuskegee. The United States assumed possession of the area after the American Revolution when it became part of the Mississippi Territory. In 1817, the Alabama Territory was formed from the Mississippi Territory, and two years later, Alabama became the twenty-second state admitted to the Union. Tuskegee was sited along a historic Indian trail.

11. This historic context follows the five periods of Tuskegee Institute’s development history as organized in Clement & Wynn, The Jaeger Company, and Grashof Studio Design, Campus Heritage Tuskegee University, Tuskegee Alabama (Atlanta: Clement & Wynn, 2009).

that later became the highway between Fort Mitchell and Fort Montgomery.14

After the Creek Nation was forcibly removed from Alabama in 1836, European American pioneers settled in the area. With the founding of Macon County in 1832, Tuskegee became the county seat. In 1843, the City of Tuskegee was officially incorporated. By 1855, Tuskegee was one of five settlements in Macon County to experience a significant amount of trading business. Unlike the other towns, Tuskegee lacked a railroad, yet it benefited from its position as county seat and its central location. The city’s streets were laid out around the central square and courthouse.

At the beginning of the Civil War in 1861, the majority of enslaved African Americans lived within the agricultural region stretching from Virginia to Mississippi, commonly known as the “Black Belt” region. Tuskegee occupied the near geographic center of this population area.

With the establishment of Tuskegee Normal School in 1881, the town began to gain national fame through the success of the school, the efforts of educator Booker T. Washington (1856–1915), and the agricultural research of George Washington Carver (1861–1943). Few towns in the South have had as much impact on modern African American history as Tuskegee. As noted in Booker T. Washington’s An Autobiography: The Story of My Life and Work (1901), before his arrival in Tuskegee in June 1881, he found it “...almost impossible to find the town on any map and had difficulty in learning its exact location.”15

\begin{flushright}
14 Fort Mitchell was an important post in Russell County during the Creek War of 1813–1814.
\end{flushright}

\section*{Establishment of Tuskegee Normal and Industrial Institute (1891–1895)}

In the decade following the Civil War, there were few educational opportunities for African Americans in the South. Several missionary groups, such as the American Missionary Association, entered the region to convert those formerly enslaved and establish schools for them. On March 3, 1865, President Abraham Lincoln signed a bill establishing the Bureau of Refugees, Freedmen, and Abandoned Lands (also known as the Freedmen’s Bureau) to protect the rights of the recently emancipated 4,000,000 slaves in the South. Operated by the War Department, the Freedmen’s Bureau supervised all relief and educational activities relating to refugees and freedmen to help African Americans and whites in the South transition from a society based on slavery. From 1865 to 1872, the Bureau oversaw some 3,000 schools and opened over 1,000 schools for freed persons.16 A number of colleges and training schools for blacks, including Howard University and Hampton Institute, were also established before the Bureau’s termination in 1872. Although a short-lived agency, the Freedmen’s Bureau provided initial opportunities for African Americans through land ownership and education. Black educational institutions created by the Bureau served as the antecedents to future schools such as Tuskegee Institute.

Tuskegee Normal School for Colored Teachers, organized on July 4, 1881, was authorized by House Bill 165. Lewis Adams (1842–1905), a former slave and community leader, played a significant role in the founding of Tuskegee Institute.17 Lacking a formal education, Adams

\begin{flushright}
\end{flushright}
taught himself to read and write by reviewing some of the lessons the other children in his family received from a hired tutor. He mastered the trades of tinsmithing, shoemaking, and harness making in his father’s plantation service shops. Adams left his father’s plantation after the abolition of slavery in 1865, opening his own shop in downtown Tuskegee near the site of the current public square. His shop provided much-needed and desired services to the entire community. Adams encouraged several young men to apprentice with him to learn valued trades, while his wife, Sarah (“Sallie”), taught cooking and sewing to interested women from their family residence. The couple soon attracted more students than they could accommodate. Efforts to provide rudimentary education to African Americans were also made by the officers and members of the AME (African Methodist Episcopal) Zion Church (Butler Chapel AME Zion Church), where Adams was a deacon and superintendent of the Sunday School. The church’s program failed because its teachers lacked proper training. Adams aspired to establish a vocational school and a normal school for the training of teachers to relieve the critical needs of African Americans in the post-Civil War era.

In 1880, Colonel W.F. Foster and Arthur L. Brooks, who represented the citizens of Macon County in the Alabama House of Representatives, were seeking reelection in a campaign of strong candidates. Foster appealed to Lewis Adams for the support of the African American community, a common practice by white Alabama politicians in the late nineteenth century. Adams agreed to encourage African American voters to vote for them in return for the establishment of a normal school at Tuskegee. With the backing of the African American vote, the incumbents retained their seats. Fulfilling their promise to Adams, Brooks, a member of the Education Committee, introduced House Bill 165. Governor Rufus W. Cobb signed the bill on February 12, 1881, establishing the Tuskegee Normal School. Lewis was named one of the three original commissioners to supervise the operation of the school. He served on the board of commissioners until his death in 1905.

On February 12, 1881, State Act 292 of the General Assembly of Alabama legislature authorized an annual $2,000 appropriation for teachers’ salaries only, leaving the school without the necessary equipment for training its students. The school began without secured land, buildings, or teachers—only state legislation authorizing the school. Lewis Adams, Thomas Dryer, and M.B. Swanson formed the board of commissioners to organize the school. George Campbell, a former slave owner, replaced Dryer as a school commissioner. Adams and Campbell worked closely to secure twenty-six-year-old Booker Taliaferro Washington (1856–1915) of Hampton Normal and Agricultural Institute in Virginia as the school’s first principal (Figure 3). In his autobiography, Washington acknowledged Adams as the leading African American citizen in Tuskegee, “…to whom the honor should largely be given for securing the location of the Tuskegee Normal and Industrial Institute in the town.”

Booker T. Washington held the first class of thirty adults at Tuskegee on July 4, 1881, in a small building adjacent to the Butler Chapel AME Zion Church near the town center. His wife, Fannie Norton Smith Washington (1858–1884), joined the school’s faculty and broadened the curriculum for Tuskegee’s female students. Mrs. Washington also developed the school’s home economics program. Prior to the start of the first class, Washington had arranged the purchase of the 100-acre Bowen farm, an abandoned plantation one mile from the town center, for the Tuskegee Institute campus. He required the land for the expansion of the basic

18. The school was later known as Tuskegee Institute and is now Tuskegee University.
secondary school program he had been hired to direct: agricultural and industrial programs to help students support themselves and to serve as a practicum for advancement.21 Washington and his assistant principal, Olivia America Davidson (1854–1889), gathered donations to purchase land, organized entertainment, borrowed the down payment from a Hampton administrator, and traversed New England the following summer for further contributions.22 Davidson had met Washington while attending Hampton Institute. She was instrumental in the creation and success of Tuskegee Institute.

![Image of Booker T. Washington]

At ceremonies marking the close of the first year, blacks and whites marched together from the town center to set a cornerstone for the new building. The school named the first building Porter Hall, after a Brooklyn minister who had donated to the school. Lumber purchased on credit was on the grounds prior to the cornerstone ceremony. Local residents held bake sales to raise funds, donated farm animals, and volunteered their labor to the school, while Washington placed advertisements in various national publications. Three existing buildings on the property were rehabilitated to become classrooms and construction began on Porter Hall. Institute Board member Lewis Adams oversaw the construction crew for the new building.23 Porter Hall was completed during the school’s second session at a cost of $6,000.24

In November 1881, Washington held classes for the first time on the new campus. The campus extended north from Montgomery Road, along the main spine of Tuskegee Ridge. It included a series of three spur ridges and steep-sided drainage valleys, which influenced the early development of the campus. Due to the severe topography of the land, the best building sites were located on top of the relatively flat plateaus. Increasing enrollment required the construction of additional classrooms and dormitories on the new campus. The school continued holding classes at both the original and new campuses until 1883.

Porter Hall stood on the north edge of the plateau running parallel to Montgomery Road. The three-story frame building contained classrooms, administrative offices, the library, the school chapel, and dormitory rooms for female students. Washington rented barracks and houses from local landowners to house the male students. Some of these structures stood opposite Porter Hall along Montgomery Road. During this period, Washington sought donations from around Macon County and material support from local residents to finance the new construction projects.

\begin{itemize}
\item 22 Ibid.
\item 23 Ibid.
\end{itemize}
Washington modeled Tuskegee on Hampton Normal and Agricultural Institute in Virginia, where he had studied in the mid-1870s and taught from 1879 to 1881. He changed the originally state-funded school to a private school with some state funding, following the example he had learned while at Hampton which taught him private schools provided greater independence than public ones. Washington also implemented the following ideas and practices from Hampton at Tuskegee: merging academic studies with agricultural and industrial curricula; character building as a rationale for drudgery; brick manufacturing as a student industry; night school for the poorest so they could work by day; marching; inspections; co-education; Sunday night inspirational talks; fundraising from sympathetic Northerners; and the meshing of image and reality of architecture and building at all levels. In contrast to Hampton’s all-white staffing, Washington engaged an all-black faculty and staff to show that the children of slaves could find their place in the world.

By its third session, the School had ten officers and teachers with an estimated enrollment of 172 students from almost every county of Alabama and three other states. In 1883, the Alabama legislature amended the act incorporating the Tuskegee Normal School to specifically place the annual appropriation, increased to $3,000, under the control of the State Education Commission. As amended, the act left the school under the direction of Tuskegee’s Board of Trustees, resulting in the creation of a private institution. Washington and Davidson continued to collect donations, which allowed for the purchase of additional surrounding farmland. The campus soon grew to 580 acres during its early years.

Washington proceeded with the design of the campus, mindful of how the school’s image would be perceived by the outside world, specifically the African American community and potential patrons. He considered brick masonry buildings as symbols of durability and success. In the summer of 1883, Washington engaged in a brick-making experiment in which clay was extracted from one of the deep valleys running through the center of the original 100-acre campus. He secured a $200 loan for the construction of a brick kiln, which yielded some 70,000 bricks on its first successful firing. Washington demonstrated his ability to combine practical instruction with economic advancement and physical development with the success of the school’s brick-manufacturing operation. Brick making proved an economic asset for the school during its early years, providing building materials for future construction while offering students experience in the brick-making trade. Some of the original bricks were used in the foundation for Alabama Hall, the next building erected on campus (Figure 4).

![Figure 4](image_url)

26. Ibid.
27. Ibid.
29. Clement & Wynn et al., 5.
30. Ibid.
Washington sited Alabama Hall on the west side of Porter Hall. The plateau running parallel to the public Montgomery Road offered the most easily cultivated ground and the best building sites in the otherwise hilly campus. Washington clustered the first school buildings along the northern edge of the plateau, leaving the ground between these buildings and the public road available for farming. William Brown, a carpentry instructor at the school, has been identified as the possible architect of the massive four-story brick Alabama Hall. Completed in 1884 by students, the building served primarily as a female dormitory housing 100 occupants. New institutional buildings like Alabama Hall had been incorporated into the campus setting since the early development period. Attention to the overall campus setting centered on landscaping and the placement of shade trees, buffer plantings, flower beds, and foundation plantings next to buildings.

Completed in 1888, Armstrong Hall was the next largest institutional building on campus. It was named for General Samuel Chapman Armstrong, the principal of Hampton Institute, who had recommended Washington for the Tuskegee position. The two-and-one-half-story building is architecturally like Alabama Hall, suggesting that William Brown may have designed it. Four years later, Armstrong Hall was renamed Olivia Davidson Hall after Washington’s second wife.

Tuskegee’s institutional buildings were connected by a main campus road extending along the spine of the campus plateau and parallel to Montgomery Road. The campus road held an important ceremonial function in the early days of the school, serving as a stage to hold special events. Viewing stands were often constructed on the edge of the road for special dignitaries to observe student parades. The school feted US Presidents William McKinley and Theodore Roosevelt during their visits with student parades on the campus road.

In 1885, Washington’s older brother, John Henry Washington (1866–1932), became Tuskegee’s Director of Industries. He also served as the principal of the night school, which provided students the opportunity to work during the day and attend classes at night. Tuskegee’s industry-related buildings were clustered at the east end of the campus. Several buildings were constructed on the campus under John H. Washington’s leadership to support a variety of industries, such as a blacksmith building and a sawmill. Known as the Band Cottage, the 1889 blacksmith shop is the oldest extant building on the Tuskegee campus today. During this period, the school built a carpentry shop at the campus entrance to facilitate the exchange of goods between the school and local customers. During the 1880s, additional wood structures for other trades were erected in the industrial area.

Booker T. Washington also expanded agricultural education and outreach during the school’s early years. By 1899, a large brick model barn was constructed at the northwest edge of the original 100-acre site. Washington claimed the barn building itself represented improved husbandry practices. Washington reached out to local farmers, creating an annual Farmers’ Conference, the first of which was held in 1891. The conference became a forum where local farmers discussed their needs and exchanged information. Washington utilized the conference to further advance Tuskegee’s influence in the local community and to impact rural development in the region. In November of the same year, Washington announced plans to add architecture, surveying, and other higher branches to the technical side of the industrial arts programs. He hired two architectural drawing teachers in 1892, Robert R. Taylor for architectural drawing and principles of woodworking, and William Eugene Hutt from the St. Louis Manual Training School for mechanical drawing and principles of metal

31. Ibid., 6.
32. Ibid., 7.
33. Ibid., 8.
34. Weiss, 41.
work.35 Hutt had a short tenure at Tuskegee, leaving the school in 1896.

Robert R. Taylor was the first African American graduate in architecture from the Massachusetts Institute of Technology (MIT). While at MIT, Taylor spoke to Booker T. Washington on one or more occasions. After Taylor’s graduation from MIT, Washington recruited Taylor to serve as Tuskegee Institute’s campus architect, planner, and construction supervisor. From 1892 to 1899 he was an instructor in architectural drawing and architect to the institution. Taylor’s first building on campus, Science Hall (later named Thrasher Hall), was completed in 1893. His next building was the Chapel (1895–1898), which he considered his best design work. Washington and Taylor worked together to design a campus to meet the changing and growing needs of the school.

Another major development in the industrial arts program included the construction of Cassedy Hall in 1892. John H. Washington designed and supervised the construction of the building, which became the school’s center for industrial arts education. An open area around the industrial shops at the campus entrance provided space for customers to park their wagons. The next two institutional buildings, Phelps and Thrasher halls, were constructed on the plateau between Montgomery Road and the internal campus road. A third building, the Phelps Bible School, was constructed in 1892. Miss Olivia Phelps-Stokes donated the money for the Bible School and arranged for her nephew, Isaac Newton Stokes, to design the three-story frame building. To the east of the Bible School, opposite Porter and Armstrong halls, the school constructed Thrasher Hall to the designs of architect Robert Taylor. At Thrasher Hall, Taylor incorporated into the three-story brick science building some architectural details from existing campus buildings, while introducing a more sophisticated architectural vocabulary with the use of stacked porches and articulated columns. Taylor repeated these architectural elements in many of his subsequent building designs for the Tuskegee campus.

In 1893, Washington changed the name of the school to Tuskegee Normal and Industrial Institute to acknowledge the school’s new curriculum. By the mid-1890s, the Tuskegee campus had a basic organization with buildings grouped by their function and use. The school had twelve major institutional buildings on campus.36 Academic buildings and female dormitories were located in the middle of the campus around Porter, Alabama, and Thrasher halls, all of which fronted the main campus road. Male dormitories and industrial training buildings were clustered near the eastern edge of campus, near its entrance. The farm and related agricultural activities moved to the northwest, onto recently purchased land adjacent to the original 100-acre campus. Numerous small shops, sheds, and outbuildings of largely frame construction were scattered across the campus.

Tuskegee’s enrollment increased after September 18, 1895, when Booker T. Washington delivered one of his best-known speeches at the opening of the Cotton States and International Exposition in Atlanta. He was invited to speak at the exposition, which promoted southern commerce. Washington was a known educator and speaker when he gave his speech in Atlanta, but the 1895 address propelled him into national renown. In his “Atlanta Compromise Speech,” Washington challenged both races to adjust to post-Emancipation realities, which he summarized in one sentence as: “In all things that are purely social we can be as separate as the fingers, yet one as the hand in all things essential to mutual progress.”37 He advocated for vocational

36 Clement & Wynn et al., 9.

37 Booker T. Washington, \textit{Address of Booker T. Washington, Principal of the Tuskegee Normal and Industrial Institute, Tuskegee, Alabama, delivered at the opening of the Cotton States and International Exposition, at Atlanta, Ga., September 18, 1895, with a letter of congratulation from the president of the United States}, accessed June 5, 2017, online.
education for African Americans to ensure economic security in exchange for acceptance of social segregation. Washington presented the audience with one of his and Tuskegee’s essential tenets, the dignity of labor, by stating, “No race can prosper till it learns that there is as much dignity in tilling a field as in writing a poem.”

One of the most significant events at Tuskegee in the last years of the nineteenth century was the arrival of George Washington Carver (circa 1864–1943) in 1896. Carver had completed graduate work at Iowa State University, with intensive work on plant pathology at the Iowa Experiment Station, and was a highly accomplished botanist by the time Washington invited him to head the school’s Agriculture Department. Funds were short for the school when Carver arrived at Tuskegee, so he had to equip his own laboratory. Carver was instrumental in developing the department into a strong research center. Over the course of his forty-seven years at Tuskegee, Carver established himself as one of the most prominent scientists, inventors, and teachers of his time.

In 1897, Booker T. Washington purchased a lot across from campus on Montgomery Road for his personal home, known as “The Oaks.” The house’s construction fully conveyed Washington’s educational philosophy, having most of its materials locally manufactured and installed. He hired Robert Taylor as the architect and paid students to build his home. David Williston designed the landscape plan for the property. Completed in 1900, the brick Queen Anne house is stylistically different from the rest of the campus. The residence was the first in Macon County to have electricity and steam heating. Washington entertained many esteemed guests, patrons, and other visitors at The Oaks. He lived in the house until his death in 1915.

Late Booker T. Washington Era and the Influence of Robert Taylor (1898–1915)

In 1892, when architect Robert R. Taylor arrived at Tuskegee, the campus consisted of a dozen or more brick and frame structures, many of them cottages or cabins used for shops, classrooms, and faculty and student housing. The construction of Tuskegee Chapel ushered in the beginning of a new era in the development of the campus. Built from 1896 to 1898, the Chapel became the campus focal point. Under the influence of Taylor, the location and orientation of future buildings shifted from the campus road to the Chapel. Along with David Williston, a landscape architect, Taylor illustrated and implemented Washington’s vision for Tuskegee, even following Washington’s death in 1915. Formal planning of the campus was carried out in the early twentieth century. During this period, the layout of the Tuskegee campus was reorganized and its campus core and edges redefined.

Tuskegee Chapel was a large building with a capacity of 2,500 occupants. The Chapel site was selected because it offered good views of the building from the campus entrances and it would not obstruct views of other important buildings. According to Campus Heritage Tuskegee University, Robert Taylor’s presence at Tuskegee allowed Washington to maintain control over the planning and construction of buildings and preempted the decision-making power from influential donors. Evidence for this is that most of the buildings on campus were designed and constructed by Tuskegee faculty and students. One exception was the Armstrong Slater Memorial Agricultural Building, where the Slater officials sent architect John K. Woods to design the building. This marked the last time a non-Tuskegee architect designed a campus building

38. Ibid.
40. Clement & Wynn et al., 9.
41. Ibid., 9-10.
42. Ibid.
during Washington’s lifetime. The two-story building, which students built using Tuskegee brick, stood between Montgomery Road and the new Chapel.

Tuskegee restructured its academic units in 1899. The vocational trades program was reorganized with John H. Washington directing the Mechanical (or Boys’) Industries. Margaret Murray Washington led the Girls’ Industries, and George Washington Carver directed the School of Agriculture. Robert Taylor returned to Tuskegee in 1902, after a few years pursuing private practice, to replace John Washington. Twenty-six buildings were constructed on the campus between 1889 and 1910. Student labor supplied the principal work force in the construction of the Institute’s buildings. Teachers and staff performed architectural and engineering duties, provided craftsmanship, and supervised the students’ work. Teachers and students manufactured bricks on site. Kilns were located opposite the first curve on the west side of Bibb Street, and east of Old Montgomery Road. Timber cut from trees on the campus grounds was prepared for building use at the school’s sawmill in the rear of the dairy barn and at other locations. The lumber was ripped and cut in the campus carpentry shop for structural items and milled and made into windows, doors, frames, moldings, and other building components. Two 1902 photographs show Tuskegee students digging the foundation for what would become the C.P. Huntington Memorial Building (Figure 5 and Figure 6).

In 1900, total enrollment at Tuskegee was 1,231 students, consisting of 359 women and 872 men. The school had students from twenty-seven states and territories, from Africa, Puerto Rico, Cuba, Jamaica, and Barbados. Nine-tenths of the student body resided on the campus. The staff at that time included 103 persons including officers, clerks, and instructors. During the 1900 school year, students were trained in the following industries, in addition to religious and academic training: agriculture, dairying, horticulture, stock raising, blacksmithing, brick masonry, carpentry, carriage trimming, cooking, architecture, freehand drawing, mechanical drawing, sewing, plastering, plumbing, printing, sawmilling, founding, housekeeping, harness making, electrical engineering, laundering, machinery training, mattress-making, millinery, nurse training, painting, shoemaking, tailoring, tinning, and wheelwrighting.

Andrew Carnegie bestowed Tuskegee with a $20,000 grant to build a library, which was completed in the academic center of the campus in 1901. The building is distinguished as only the second Carnegie library built in the South and the first constructed for an African American institution in the country. In the same year, Washington encouraged the Southern Improvement Association to purchase 200 acres along the southwest boundary of the campus for what would become the Greenwood Subdivision. Tuskegee’s architecture department designed the houses, and Robert Taylor generated plans for the affordable housing. The subdivision was part of Washington’s continued interest in extending the school’s influence into the surrounding community. Tuskegee students provided numerous services for the new community.

45. Ibid., 7–8.

46. Ibid.
Washington continued to recruit leading African American professionals after the turn of the twentieth century. In 1902, he recruited David A. Williston (1872–1962) from the Lincoln Institute in Jefferson City, Missouri, to join the agricultural science faculty. Williston was one of the first professionally trained black landscape architects in the United States. In 1898, he became the first African American to graduate from Cornell University with a Bachelor of Science degree in agriculture. He taught horticulture and landscape gardening. Williston designed some of the major campuses of the nation’s historically black colleges, including Howard University in Washington, DC. He also worked closely with Robert Taylor to further design the Tuskegee campus. He taught intermittently at the school for twenty-seven years. In 1930, Williston opened his own firm in Washington, DC, which was the first African American-owned landscape architecture firm in the country. Williston’s legacy at Tuskegee remains evident today, though his contributions to landscape architecture and the African American cultural landscape have received limited acknowledgement within the existing scholarship.

In 1902, Washington relocated the main entrance from its original position near the east edge of the campus to the new center of campus, close to the new chapel and the new trades building. The original brick gateway was moved in the 1920s to the new location. In 1906, Taylor’s formal campus plan included the circulation network, entrances to the campus, and the grouping of buildings based on their function. Williston’s early landscape plan, elements of which appear in a 1911 campus survey, conformed to and supported the basic design features of Taylor’s plan. Landscape enhancements include allées of trees to reinforce the formal arrangement of the road network, the addition of open spaces resembling collegiate quadrangles, straight lines of trees along the edges of the formal open spaces, and less formal plantings in the center of campus.

When Porter Hall was razed in 1905, the Institute’s administrative functions were divided moved into separate buildings on the campus. For example, its offices were relocated to Robert Taylor’s Office Building, and its library was first shifted to Alabama.

48. Ibid.
49. Clement & Wynn et al., 13.
50. Ibid.
Developmental History

Hall, then to the principal’s 1890 frame house, and, finally, to Taylor's Carnegie Library. Other functions were also reassigned, including its chapel to the Pavilion and then to Taylor’s Chapel. The girls’ dormitory function first relocated to Alabama Hall and then to a host of later buildings—Taylor’s Huntington, Douglass, Tantum, and White halls among them.51 These buildings were constructed in an east-west alignment from Porter Hall along the northern edge of a narrow plateau.

Tuskegee Institute held a grand celebration for its twenty-fifth anniversary in 1906 (Figure 7 and Figure 8). Many dignitaries were in attendance for the celebration including some of the country’s leading educators, religious leaders, businessmen, philanthropists, and others. Guests of note included Charles W. Eliot, President of Harvard University; Andrew Carnegie, preeminent industrialist and philanthropist; Secretary of War William H. Taft; Reverend Lyman Abbot, a religious leader at the time; Principal H.B. Frissell of Hampton Institute; and more than 100 philanthropic guests. Secretary Taft gave one of the primary addresses during the celebrations. One notable speech was given by Robert Curtis Ogden, a businessman who promoted education in the South. He was one of the great financial supporters of Tuskegee. In his address, Ogden celebrated Tuskegee as an example,

...to exhibit, upon an unmatched scale of development, the possibilities of an institution entirely controlled in its diversified academic and industrial curriculum, productive industries, executive organization and business affairs by a faculty and corps of managers composed entirely of men and women of African descent.52

The speeches and presence of such distinguished guests and representatives from all of the leading institutions in the country demonstrated the importance of Tuskegee Institute at the national level. During the 1906 anniversary celebration, Washington spoke of the changing mission of the school that would influence future development of the campus. He imparted to the audience that Tuskegee Institute would rise to a higher stage of perfection. Tuskegee initiated a major building campaign in 1906, with four buildings totaling more than 100,000 square feet under simultaneous construction. A new dormitory for female students, Tantum Hall, was also constructed that same year to celebrate and demonstrate the skills of the Tuskegee students.

From its beginning, Washington considered Tuskegee’s mission to be the improvement of the economic conditions of African Americans. He believed that farming should be the largest industry on campus, given the majority of blacks were farmers. In 1909, his conviction was realized with the construction of Milbank Hall, a three-and-one-half-story brick edifice that became the new center of the school’s farm on the west side of campus. The building held classrooms, offices, and assembly rooms. After the construction of Milbank Hall, Washington, in one of his last letters, described the relocation of all of the school’s agriculture-related structures to the area around Milbank Hall.

In the second decade of the twentieth century, Washington constructed several buildings that were in line with his new vision for Tuskegee to increase its community outreach and service. Washington solicited financial support from local residents and developed a solid economy by selling goods and services to the public. In 1913, his vision was again recognized with the dedication of John Andrew Hospital. Built by Robert Taylor, after he studied other hospitals to design what became a state of the art facility, the new hospital provided students with not only health care but also the opportunity to train as nurses. Before the establishment of the hospital, health care at the Institute was provided at either a twenty-five-bed hospital built in 1901 or at various infirmaries on campus.

51. Wilson, 24.
FIGURE 7. Review stand at Tuskegee Institute’s twenty-fifth anniversary celebration in 1906. (Source: Francis Benjamin Johnson Collection, Library of Congress LC J694-99)

FIGURE 8. Tuskegee Institute faculty with Andrew Carnegie during the twenty-fifth anniversary celebration. (Source: Francis Benjamin Johnson Collection, Library of Congress LC J694-99)
Prior to Washington’s death in 1915, he had witnessed the construction of approximately eighty-five buildings and the addition of thousands of acres to the school’s property. Under Taylor’s guidance, the industrial arts building was relocated, larger dormitories and academic structures were built, new service and extension facilities were created, and a master plan for Tuskegee was developed.

Taylor is also credited with the design of the following buildings at Tuskegee: The Oaks (1899), the President’s House; Huntington Hall and the four Emery dormitories (1900); Dorothy Hall (1901), the women’s trades building; Carnegie Library (1901); the Administration (or Office) Building (1902–1903); Rockefeller Hall (1903), a men’s residence; Douglass Hall (1904); Collis P. Huntington Memorial Building (1904–1905), an academic center; Tantum Hall (1907); Milbank Agriculture Building (1909); Tompkins Hall (1910), a dining facility; White Hall (1910), a women’s dormitory; John A. Andrew Memorial Hospital (1913); the Laundry (1915), now the George Washington Carver Museum; James Hall (1921); Sage Hall (1927); Wilcox Trade Buildings (1928); Logan Hall (1931); Armstrong Science Building (1932); and Hollis Burke Frissell Library (1932). Taylor retired from Tuskegee in 1935, returning to his hometown of Wilmington, North Carolina.

At the time of Washington’s death in 1915, there were 1,500 students, a $2 million endowment, forty trades, one hundred fully equipped buildings, and about 200 faculty members. The campus encompassed approximately 2,500 acres. In addition, the school also owned 25,000 acres received from an 1896 federal grant. Approximately thirty-two buildings remain on campus today from the Booker T. Washington era. The efforts of Washington, assisted by Taylor and Williston, in establishing the overall basic plan of the campus would govern the campus development for another generation.

Robert Moton and Frederick D. Patterson Eras and the Influence of David Williston (1916–1952)

Robert Russa Moton (1867–1940) of Hampton Institute succeeded Booker T. Washington as the second president of Tuskegee Institute in 1915. Similar to Washington, Moton was a Virginia native who graduated from Hampton Normal and Agricultural Institute (1890) and remained at the school. (Moton served as commandant of the male student cadet corps at Hampton Institute.) At Tuskegee, he inherited Washington’s demanding responsibilities of fundraising, overseeing the faculty and students, and providing for the maintenance of the school’s campus (Figure 9).

Moton began to expand the Institute’s academic programs soon after his arrival. The school had a budget of $100,000, with the State of Alabama annual appropriation during his administration never exceeding $5,000, which required Moton to raise large amounts of money. Tuskegee had to maintain a hospital, bank, commissary, farm, dairy, truck garden, greenhouse, garage service, and

53. Clement & Wynn et al., 2.
54. Ibid.
power plant, all of which served the school and the adjacent community. Moton successfully increased the school’s endowment with a $10 million capital campaign.

During World War I, through the successful lobbying efforts of Moton, the federal government approved an Officers’ Training Camp for African Americans at Fort Des Moines, Iowa. Emmett Scott, one of Moton’s advisers, was appointed special assistant to the Secretary of War on racial matters. In 1918, President Woodrow Wilson, now understood to have supported segregation in the federal government, dispatched Moton and two others to France to investigate the conditions under which black soldiers served. Moton was responsible for scrutinizing accusations of cowardice and misbehavior. After World War I, as race relations continued to deteriorate, Moton reached out to US Presidents Wilson and Warren G. Harding to speak out against lynching.

On the first day of the fall session in September 1920, there were 1,820 students enrolled at the Institute, marking the highest enrollment to date, which was 551 more students than the previous year. The Institute admitted approximately 200 more students than anticipated as a result of the return of young men from World War I. The total enrollment for the regular courses in 1920 was 2,240, with 1,166 boys, 973 girls, and 101 disabled soldiers taking part in vocational work under the Federal Board for Vocational Education. Included in this number were 243 pupils in attendance at the Institute’s Summer School for Teachers, as well as persons enrolled at the hospital for special courses in midwifery, and post-graduate work for physicians in medicine and surgery. In total, the Institute provided instruction in definite courses of study to a total of 2,877 persons resident on the school grounds.

In his 1920 president’s report, Moton stated the general financial condition of the school was encouraging despite the economic downturn in business and the consequent financial stagnation. The Institute enjoyed the benefit of regular contributions from its friends and loyal donors. In addition, students at that time increased their own contributions toward their own education, in spite of a decline in cotton prices experienced by many of their parents. By 1920, the Institute created a Loyalty Fund for circulation among alumni and former students.

During the interwar years, Tuskegee confronted campus demonstrations by the Ku Klux Klan (KKK) and financial disruptions brought on by the Great Depression. In 1923, Moton received threats from the KKK after he insisted that black doctors staff the “Veterans Hospital for Negro Disabled Soldiers,” to be constructed on 464 acres of land donated by Tuskegee. Despite the difficulties of the period, Moton continued to improve the campus, and the hospital was completed in 1929. Other improvements included paving of campus roads in 1927, construction of a greenhouse in 1928, and major renovations to the Commissary and Douglass and James halls.

By April 1930, Robert Taylor, along with fellow architect and faculty member Louis Persley (1888–1932), completed a revised development plan for Tuskegee that proposed changes to the campus. Based on the 1911 topographic map, Taylor recommended relocating the school entrance to the west side of the Economics Building (formerly the Slater-Armstrong Memorial Building). Two new buildings—a library and a science hall—were proposed for the area between the Carnegie Library and the Home Economics Building. One of the most notable recommendations was for a new academic complex on the south side of

56. Clement & Wynn et al., 17.
57. Enrollment information obtained from Tuskegee Normal and Industrial Institute, Principal’s Annual Report Edition 1920-1921 (Vol. 15 No. 4). The Tuskegee Institute Bulletin (Tuskegee, Alabama: Tuskegee Normal and Industrial Institute, 1921), 5.
58. Ibid., 6.
59. Clement & Wynn et al., 18.
Montgomery Road, near the location of the original entrance.

Morton also reorganized academic programs during this period. He added a junior college program and a full four-year college program, offering degrees in Agriculture, Home Economics, Mechanical Industries, and Education. New courses at the college level were also added. In addition, Morton built a new campus complex in 1932, the Department Quadrangle across Montgomery Road from the main campus. Proposed by Taylor, the complex included Logan Hall, an auditorium, and a gymnasium at the head of a court. Chapman Armstrong Hall and the Hollis Burke Frissell Library were erected opposite each other between Logan Hall and the road.

In 1935, Morton retired and was succeeded by Dr. Frederick Douglass Patterson (1901–1998; Figure 10), his son-in-law. Patterson had originally arrived at Tuskegee in 1928 to teach veterinary medicine. He was later appointed director of the School of Agriculture. Patterson carried on Booker T. Washington’s dedication to vocational instruction and to making Tuskegee a model for African American progress. He also experimented with concrete block fabricated on site, eventually constructing several buildings on campus using the “Tuskegee Block.” Two home-economics practice houses, twenty houses for faculty, an addition to the Home Economics Building, and a new School of Veterinary Medicine were built with the block.

Patterson succeeded in obtaining an increase in the annual appropriation from the State Legislature, and by the end of his tenure, the school received $110,000 in state annual support. In the late 1930s, with support from the Alabama General Education Board, Patterson established the School of Commercial Dietetics and the School of Commercial Aviation. In 1940, he created the George Washington Carver Foundation, a non-profit organization that offered scientific research grants to African American students. In 1944, he brought the School of Veterinary Medicine to the Tuskegee campus and founded the United Negro College Fund to assist and advance minority higher education. The Engineering School was completed in 1948. Other construction projects included Moton Hall and a new gateway.

In 1941, the US Army Air Corps established a training program for black aviators at Tuskegee Institute. The training occurred at Moton Field, about 4 miles (6.4 km) from the campus center. Known as the Tuskegee Airmen, African Americans in World War II formed the 332nd Fighter Group and the 477th Bombardment Group of the United States Army Air Forces. In addition to pilots, the training program included navigators, bombardiers, mechanics, instructors, crew chiefs, nurses, cooks, and other support personnel for the pilots. All black pilots trained at Moton Field were educated at Tuskegee Institute. After primary training at Moton Field, they were moved to the nearby Tuskegee Army Air Field, about 10 miles (16 km) to the west, for specific

FIGURE 10. Dr. Frederick Douglass Patterson (President, 1935–1953). (Source: Tuskegee University)
training on operational aircraft. The Tuskegee Airmen were the first African American military aviators in the United States Armed Forces at a time when the American military was racially segregated. The Tuskegee Airmen overcame segregation and prejudice to become one of the most highly respected fighter groups of World War II.

After World War II in April 1948, David Williston designed a landscape plan for Tuskegee's campus. Beginning in the first decade of the twentieth century, Williston’s contributions to the beautification of the Tuskegee campus were significant. In keeping with Washington and Taylor’s campus plans, Williston’s 1948 plan organized related buildings into groups. The Academic and Administration Buildings were concentrated in the eastern half of the campus. The Women’s Dormitory group buildings were centered on either side of the big valley, and the Home Economics group buildings were located around Dorothy Hall near the center of campus. The Architectural, Engineering, and Trade School group buildings remained in the Wilcox Complex. Williston’s plan expanded the Emories with the addition of four more dormitories. The Dormitory for Men group included the Emories on the west side of campus and a cluster of dormitories, including Rockefeller Hall and Sage Hall, on the east side. The Agriculture group remained on the western edge of campus around Milbank Hall. The Medical group was centered on John Andrews Hospital, and a new College of Medicine and a College of Dentistry were proposed in the area between the hospital and the chapel. The Veterinary School remained unchanged.

In 1952, the George Washington Carver Foundation Laboratory for the Advancement of Knowledge through Agriculture and Science was established on Montgomery Road opposite the original campus gates. Earlier, Patterson had helped to nurture the George Washington Carver Research Foundation, which was financed with Carver’s personal endowment to the school, and the George Washington Carver Museum. Patterson retired as President of Tuskegee in 1953. Following his death in 1988, he was buried on the Tuskegee University campus.

Dr. Luther Hilton Foster (1913–1994) became the fourth president of Tuskegee Institute in 1953 (Figure 11). His twenty-eight-year tenure included significant periods in the nation’s history: the civil rights and antiwar movements. Foster concentrated on reforming Tuskegee’s administrative and academic structure. He created the College of Arts and Sciences and the Engineering School, while eliminating many of the vocational programs initiated during the Washington era.

FIGURE 11. Dr. Luther Foster (President, 1953–1981). (Source: Tuskegee University)

Clement & Wynn et al., 20.
Foster was known for his “quiet but firm” leadership during the turbulent years of the civil rights movement. The educational and economic empowerment models of Tuskegee helped to lay the groundwork for the movement. Specific civil rights movement events related to Tuskegee include:

- The death of Student Nonviolent Coordinating Committee (SNCC) member, military veteran, and Tuskegee political science student, Samuel “Sammy” Leamon Younge Jr., the first college student to die in the movement, killed in 1966 in Macon County for attempting to use a gas station whites-only restroom.

- The important *Gomillion v. Lightfoot* (1960) Supreme Court decision (Charles G. Comillion was a professor at Tuskegee Institute).

Foster was born on the campus of St. Paul’s College in Lawrenceville, Virginia, where his father was an administrator. He earned undergraduate degrees from Virginia State College (1932) and Hampton Institute (1934). He received a master’s degree in business administration from Harvard University (1936), and a master’s degree (1941) and a Ph.D. (1951) from the University of Chicago. After four years as Howard University’s budget officer, Foster joined the staff of Tuskegee as business manager in 1941.

During the mid-twentieth century, the Tuskegee campus experienced physical changes with the demolition of two brick buildings, Cassedy Hall and Olivia Davidson Hall, on the east end of campus in the mid-1950s. In 1957, a fire destroyed the Robert Taylor-designed chapel. Tuskegee engaged architect Paul Rudolph (1918–1997) to design a new chapel in 1958, though the building was not constructed until 1967–1968. Rudolph’s Modernist chapel was designed in conjunction with two former Tuskegee faculty members, architects John A. Welch and Louis Fry.

Under Foster, landscape was in the control of a Tuskegee graduate, Edward L. Pryce (1914–2007), who came to Tuskegee in 1934 to study under George Washington Carver. As a student, Pryce became interested in landscape architecture after meeting David Williston. He left Tuskegee after his graduation, returning in 1948 to become the director of the Department of Ornamental Horticulture. Pryce served as campus planner beginning in the 1950s, while completing a master’s degree in landscape architecture at the University of California at Berkeley. His thesis project was a master plan for the Tuskegee campus. Pryce acted as Superintendent of Building and Grounds from 1955 to 1969. In 1962, Pryce and Rudolph collaborated on a new master plan for the campus. Their plan continued in the Tuskegee tradition of grouping buildings based on their function. Pryce continued working for Tuskegee, producing plans for the school through the mid-1980s. He was instrumental in getting the school nominated as a National Historic Landmark in 1965 and as a National Historic Site in 1974.

The Institute grew from approximately 2,000 to more than 3,500 students during Foster’s leadership. He retired in 1981 and served as President Emeritus from 1981 to 1984.

In 1970, as superintendent of buildings and grounds at Tuskegee, Pryce voiced his concern to Foster about the need to renovate and refurbish certain buildings, particularly Booker T. Washington’s home, The Oaks, and the Carver Museum, due to an increase in the number of visitors to the school. The 1960s marked a period of growing African American pride and the

64. The US Supreme Court ruled that Tuskegee city officials had redrawn the city’s boundaries unconstitutionally to ensure the election of white candidates in the city’s political races. The decision proved critical for the later passage of the 1965 Voting Rights Act, which outlawed discriminatory voting practices.

65. Clement & Wynn et al., 23.
importance of blacks in preserving the history of black achievement in American history. Pryce and Foster came up with an innovative response to these institutional and societal needs—have Tuskegee Institute designated as a National Historic Site, recognizing the Institute’s outstanding contributions to black history. After consulting with the National Park Service, the administration began drawing up a proposal for national recognition of the Tuskegee campus.66

Pryce was initially tasked with obtaining federal recognition, with the advice and consent of Foster. His first submittal to the National Park Service was for the development of the Tuskegee National Shrine Visitor’s Center. Pryce stated:

. . . since the birthplaces of Washington and Carver do not give the visitor a feeling of the work which was accomplished by them, the only place would be Tuskegee Institute. It is here that the range of American education philosophies in general, and effect of these philosophies upon the education of Negroes in particular, is demonstrated. . . People have forgotten the place were [sic] the first brickyard and lumber mill were; they don’t know what the campus looked like after Booker T. Washington had been here for ten years; they will never know, perhaps, that four United States presidents have visited Tuskegee Institute. . . Our children are growing up without knowledge of the work and tradition and conflicts and success which had occurred here. . . In view of the many important historical developments which have occurred here, the Tuskegee community presents the National Park Service with the most unusual opportunity to fulfill its obligations and commitment to America in general, and to the Negro in particular, with respect to the restoration, preservation and maintenance of significant events, places, and resources.67

Between 1970 and 1972, Institute officials met with members of the Alabama delegation to Congress in Tuskegee and Washington, DC, to further develop

plans. In May 1972, Foster sought and received letters of endorsement from the Mayor of the City of Tuskegee, the Governor of Alabama, the Director of the Alabama Historical Commission, the Alabama State Director of Archives and History, and the director of the Tuskegee Veterans Administration Hospital in Tuskegee.68

On June 1, 1972, a bill that would “preserve facilities and materials of significance and enhance the usefulness of the Institute in the future” was placed on the Senate floor by Alabama Senator James B. Allen on behalf of Senator John Sparkman. In two weeks, a bill to “establish Tuskegee Institute as a National Park” was placed on the floor of the House of Representatives by Representatives Elizabeth Andrew and William Nicholas, and the bill was moved to the House Interior Committee for a cost estimate. The Subcommittee on Parks and Recreation of the Committee on Interior and Insular Affairs of the US Senate held a public meeting on September 27, 1972, at which public testimony was given about the proposed park. However, the hearing was held in the closing days of the 92nd Congress and the final report from the National Park Service was not available. The decision was postponed.69

At the beginning of the 93rd Congress, hearings were again held in the Senate and House, and Congressmen and National Park Service representatives began to regularly visit the school. Discussions were held regarding the naming of the site, and budgets were discussed and created. Finally, by October 1974, the House and Senate concurred, and on October 26, 1974, President Gerald Ford signed Public Law 93-485 for the establishment of the Tuskegee National Historic Site. On August 25, 1976, a Memorandum of Agreement was signed by Foster, as President of Tuskegee Institute, and the Southeast Regional Director of the National Park Service regarding

67. Ibid.
68. Ibid.
69. Ibid.
the preservation of the original campus at the Tuskegee Institute National Historic Site.\footnote{70}

Benjamin F. Payton and Current Eras (1981–Present)

Benjamin F. Payton (1932–2016) became the fifth president of Tuskegee in 1981 (Figure 12). He was a civil rights advocate who was instrumental in transforming the historically black Tuskegee Institute into the more broadly encompassing Tuskegee University that it is today. Under Payton’s nearly three decades of leadership, the university completed a successful $169 million capital campaign that is building capacity for tomorrow’s leaders by expanding housing, classrooms, and student activity facilities. Payton retired in 2010.

FIGURE 12. Dr. Benjamin F. Payton (President, 1981–2010). (Source: Tuskegee University)

During the late twentieth century, several construction projects occurred on campus. New buildings included the Carver Foundation Addition (1984), Physical Plant Building (1985), General Daniel “Chappie” James Center for Aerospace Science and Health Education (1987), W. Marable Field House (1987), Food Animal Production, Research and Service Center (1993), Caprine Research (1994), and Dorothy Hall / Kellogg Conference Center (1901 / 1994 restoration). The General Daniel “Chappie” James Center for Aerospace Science and Health Education, a large multi-purpose building, was named for a Tuskegee alumnus and America’s first black four-star general. Seven other buildings, built between 1856 and 1926, were renovated during this period to comply with fire and safety requirements and energy-efficiency standards. The Huntington Memorial Building (1893), renovated in 1984, was destroyed by fire in 1991.

In 1996, Payton served as a member of the Tuskegee Syphilis Study Legacy Committee, which actively pursued a government apology for its participation in the forty-year study on the degeneration of syphilitic African American men. The US Public Health Service had set up a base at the John A. Andrew Memorial Hospital on the University’s campus to study the long-term effects of untreated syphilis on African American men in 1932. The government had hidden its real purpose until 1972, which created mistrust among African Americans to the government and the medical profession. Payton’s committee sought to rectify part of that mistrust through a formal apology from President Bill Clinton, which occurred in 1997. President Clinton also announced a $200,000 grant to Tuskegee University to initiate the plans for a National Center for Bioethics in Research and Health Care. Two years later, the University introduced the nation’s first African American bioethics center.

The first five presidents of Tuskegee enjoyed long terms, a tradition that lasted until the second decade of the twenty-first century. Dr. Gilbert L. Rochon served as the sixth president of Tuskegee University from November 1, 2010, to October 19, 2013. He vowed to “Bring the World to Tuskegee and Tuskegee to the World.” During his short tenure, the University experienced an increase in enrollment, endowment, and research funding. The Tuskegee University Board of Trustees appointed Dr. Brian L. Johnson as the school’s seventh president on April 28, 2014.

\footnote{70} Ibid.
Dr. Johnson served as president of Tuskegee University from April 28, 2014, to June 30, 2017. Under Johnson’s leadership, the University adopted a five-year strategic plan and created a Master Campus Plan that focused on modernizing the campus and its facilities for the twenty-first century. The overall goals for the University included increasing student enrollment, updating technological infrastructure, and improving student engagement.

As of July 1, 2017, Dr. Charlotte Morris is serving as the Interim President of Tuskegee University. She will continue to focus on the strategic plan under her provisional leadership.

Booker T. Washington (1856–1915)

Booker Taliaferro Washington is considered one of the most influential African American educators and leaders of the late nineteenth and early twentieth centuries (Figure 13). He also had a significant influence on southern race relations from 1895 until his death in 1915. Washington was noted for his oratory and active speaking schedule. He became a notable political force, and many considered him as the heir to Frederick Douglass. Though he achieved wide recognition as a spokesman for African Americans, he was also criticized by some about the extent and use of his power and influence.72

Washington was born into slavery on April 5, 1856, on a plantation near Hale’s Ford, Virginia.73 His mother, Jane, was one of six enslaved people (including her son, Booker) owned by tobacco farmer James Burroughs. In his autobiography *Up from Slavery* (1901), Washington identified his father as “a white man who lived on one of the

73. The exact year of Washington’s birth has been a matter of debate, since he did not possess a formal birth certificate. Dates of his birth range from as early as 1854 to as late as 1859. His headstone at Tuskegee is inscribed with the year 1856, a date reportedly noted next to his name in a family Bible. This date defers to the birth date acknowledged by the National Park Service.

nearby plantations." Washington’s mother worked as a cook for the Burroughs family, leaving little time for her children. His closest family ties were with his older half-brother, John, and a younger half-sister, Amanda. After Booker’s birth, his mother married Washington Ferguson, also enslaved. In 1864, Ferguson fled the situation, relocating to the new state of West Virginia where he found employment in a salt works in the town of Malden.

Four months after the end of the Civil War (1861–1865) and Emancipation, in the summer of 1865, Jane and her children joined Ferguson in West Virginia. In 1870, as a young student, her son assumed the name “Booker Washington” for the first time. Washington followed his stepfather and worked in the salt furnaces and coal mines while he attended school. In his 1901 autobiography, Washington recounts learning about “a great school for colored people somewhere in Virginia” for the first time while overhearing a conversation between two men working in a coal mine. From that point forward, Washington’s ambition was to attend Hampton Normal and Agricultural Institute in Virginia. He continued to work in the mines a few months longer until an opportunity arose for a domestic position in the household of Gen. Lewis Ruffner, owner of the salt furnace and salt mine. Mrs. Viola Ruffner, the general’s wife and a native of Vermont, recognized Washington’s ambition. In his eighteen months with Mrs. Ruffner, Washington developed an appreciation for the values of hard work, cleanliness, and thrift.

In 1872, at the age of sixteen, Washington set off on an arduous 500-mile journey to attend

Hampton Normal and Agricultural Institute, bringing with him a small sum of money donated by family and friends. When Washington entered Hampton Institute, the school had been in existence for only four years under its principal, Gen. Samuel Chapman Armstrong (1839–1893). Through Armstrong’s efforts, Hampton Institute became the first black vocational school in the South in 1868. Armstrong became one of the most influential individuals in Washington’s life. At Hampton, Washington adopted Armstrong’s conviction for “learning by doing” and industrial education. Armstrong, in his 1872 annual report, noted the need for skillful agriculturists and mechanics rather than poets and orators.

Washington became an exemplary pupil under Armstrong’s tutelage. Though Armstrong’s philosophy of education for blacks was based on what he considered their deficiencies, his “system” was embraced and perpetuated by Washington, who graduated from Hampton Institute in 1875. During the next two years, Washington returned to his family in Malden to teach and to help his brothers, John and James (adopted), earn money for their tuition to Hampton Institute. He left Malden in 1878 to study for a year at the Wayland Seminary School in Washington, DC. The seminary’s deep religious atmosphere left a lifetime impression on Washington.

In 1879, Armstrong asked Washington to join the faculty of Hampton Institute and continue as a post-graduate student. Washington taught at the newly created night school for Hampton students who wanted to work during the day and study at night, a program he would later implement at Tuskegee Institute. While at Hampton Institute, Washington was placed in charge of overseeing the education, growth, and development of American Indian students. He resided in the same dormitory with almost seventy-five American Indian students. In May 1881, at the end of

78. Ibid.
79. Ibid.
80. Ibid., 45.
81. Ibid., 48.
Washington’s second year as a teacher at Hampton, Armstrong received a letter written on behalf of African American citizens of Tuskegee, Alabama, by George Campbell, a board member of the Tuskegee Normal and Industrial Institute. Campbell inquired about securing a white male candidate for principal of the school. Armstrong replied that he knew of no suitable white man for such a position. Instead, he recommended Booker T. Washington.

In 1881, in the “Black Belt” region of Alabama, the twenty-five-year-old Washington founded Tuskegee Normal School for Colored Teachers based on the Hampton Normal and Industrial Institute model. Tuskegee differed from Hampton in its organization and operation, which included only African American faculty and staff. Confronted with challenging circumstances from the beginning, Washington used his ability to win the trust of Southern whites and Northern philanthropists to turn Tuskegee into a model school of industrial education. He reassured whites that his educational program would not challenge white supremacy or offer economic competition with whites. Washington accepted racial subordination as a necessary evil in exchange for the success of Tuskegee’s mission, one that would allow graduates and students economic independence and freedom from sharecropping and debt.

Washington established a program of industrial and vocational education for African Americans, designed to demonstrate to his students the dignity of work. At Tuskegee, he informed students how “to live on the farm off the farm.” Washington sought to enhance the economic conditions of blacks and to improve their way of life. In the early years, Washington turned to Hampton Normal and Agricultural Institute for support, specifically in seeking graduates to join the Tuskegee faculty. He was known as a hands-on principal who attended to every detail, from overseeing faculty and students to working at the school publication. Early on, Washington also had to ensure that prospective teachers were trained not only in the methods of teaching, but also in the fundamentals of education. Washington monitored the quality of instruction, inspected campus grounds, and scrutinized his students, and traveled extensively to secure donations for the Institute.

Washington’s personal and professional lives were intertwined with Tuskegee Institute. Washington, his three wives, and three children, all lived at Tuskegee during his lifetime. He married his first wife, Fannie Norton Smith (1858–1884), in 1882. From Malden, Smith had known Washington for most of her life and was also a graduate of Hampton Normal and Agricultural Institute. The couple’s only child, Portia Washington (1883–1978), was born the following year. In 1884, Fannie died before having the opportunity to witness how the couple’s dedication and efforts on behalf of the school would contribute to the success of Tuskegee. Washington married his colleague, Olivia America Davidson (1854–1889), a teacher and principal at Tuskegee Normal School for Colored Teachers, the following year. Davidson was born in Virginia to a former slave and a freeborn mother. Her family moved to southern Ohio in 1857, later relocating to the northern part of the state where she attended the Enterprise Academy in Albany, a school owned and operated by African American educators. After teaching in Mississippi for two years and in the Memphis public school system for four years,

Davidson enrolled at Hampton Normal and Agricultural Institute in 1878.

Olivia Davidson arrived at Tuskegee in 1881, after the school had been in session for three months, and was employed as an assistant teacher. Following her marriage to Washington in 1885, she had two sons with him, Booker T., Jr. (1887–1945) and Ernest (1889–1938; Figure 14). Davidson’s role at Tuskegee was significant in the early years of the school. She worked as a curriculum specialist, assistant principal, fund-raiser, and builder. Washington credited the success of the school in its first twelve years to Olivia more than anyone else. In May of 1889, personal tragedy struck again for Washington, when Olivia died from injuries she incurred during a fire in the Washington home.

In 1893, Washington married his third wife, Margaret James Murray (1865–1925). She was a graduate of Fisk University who came to Tuskegee as a teacher in 1889. The following year, she became principal at Tuskegee Institute. During her marriage, she assumed the role of the president’s wife and conducted much of the day-to-day activities at the Institute while Washington traveled for six months of the year raising funds for the school and serving as a spokesperson for African Americans. Margaret Washington also raised Washington’s three children. Further, she is significant in African American history for helping establish the black women’s movement and participating in the formation of the National Federation of Afro-American Women in 1895.

Booker T. Washington entered the national spotlight with his 1895 address to the Cotton States and International Exposition in Atlanta. In his speech, Washington publicly accepted disfranchisement and social segregation provided whites would allow black economic progress, educational opportunity, and justice in the courts. The “Atlanta Compromise” speech marked his rise as the foremost spokesperson for African Americans of his time.

In 1899, Washington’s Tuskegee residence, “The Oaks,” was completed. The Queen Anne-style home was built by the school’s students and faculty with materials manufactured on campus. The Oaks became an operational center for Washington as well as a social center for the Institute. Washington received many distinguished guests at The Oaks, especially during Tuskegee’s twenty-fifth-anniversary celebration in 1906. In addition to being the center of entertainment obligations associated with the school, The Oaks served foremost as the Washington’s home. For example, the wedding reception for Washington’s daughter, Portia, was held there.

At the turn of the twentieth century, Washington’s accomplishments included the writing of many books that reflected his ideas on education and society. One of his best-known works is his autobiography, *Up from Slavery* (1901). During his career, he served as an advisor to two American presidents. In 1901, President Theodore Roosevelt (1858–1919) invited Washington to the White House to seek his advice on cabinet appointments,

the first such invitation for an African American. Later, President William Howard Taft (1859–1930) employed Washington as an advisor on racial matters. Industrialists in control of the financing of many black schools in the South also depended upon his advice regarding which schools should receive funds. In 1900, Washington founded the National Negro Business League, an idea utilized by W.E.B. Du Bois (1868–1963).89

Around the same time, some members of the African American intellectual community questioned Washington’s ideas and positions. Among them was W.E.B. DuBois, then a scholar at Atlanta University, who attacked Washington’s philosophy in his 1903 book, *The Souls of Black Folk*. After Woodrow Wilson (1856–1924) became president in 1913, Washington lost influence in the federal government, which Wilson helped segregate further. At the same time, a new era was emerging in the black community, in which the younger generation would no longer accept white supremacy. Under the leadership of Du Bois and others, this generation demanded political and civil rights, and formed the National Association of the Advancement of Colored People (NAACP) in 1909. However, the majority of working-class and middle-class African Americans still held Washington in great esteem as a community leader.90 Debates about Washington’s legacy continue.

On November 14, 1915, Washington died of overwork and arteriosclerosis while at Tuskegee, shortly after he had returned from New York City, where he had been hospitalized. At the time of Washington’s death, the Institute had 1,537 students and an all-black faculty of 197 members, teaching thirty-eight trades and professions. The campus was dotted with more than 100 buildings. Washington is buried on the campus of Tuskegee University near the University Chapel. After his death, Margaret Washington remained at The Oaks and continued to help run the Institute, as well as participate in speaking engagements on social change.

Margaret Murray Washington (1861–1925)91

Margaret Murray Washington was born March 9, 1861 in Macon, Mississippi, to an Irish father who had emigrated to Mississippi and an African American mother from Georgia. At the age of seven, Margaret’s father died, and she was sent to live with a Quaker family, the Sanders, who had moved to Mississippi after the Civil War to help teach the newly freed slaves. When she was fourteen, Margaret attended a Quaker school in Nashville. Quickly excelling in her schoolwork, she took the teacher’s exam and began teaching her peers.

Margaret enrolled at Fisk University in 1881, taking classes part-time while also teaching to pay for her schooling. She joined the school’s newspaper run by W.E.B. Dubois, the *Fisk Herald*, and became editor by 1886. She graduated from Fisk University in 1889. At a dinner celebrating her

91. This section on Margaret Murray Washington was prepared by the NPS and added at their request. Sources used include Caryn E. Neumann, *Margaret Murray Washington*, American National Biography webpage. Last updated April 2004; web accessed December 2018; Allison Espiritu, Margaret Murray Washington biography, BlackPast.org webpage, web accessed, November 2018; Margaret Murray Washington biography, Alabama Women’s Hall of Fame. web accessed, November 2018; and Commonwealth Heritage Group, *Tuskegee Institute National Historic Site Historic Resource Study*, Chapter 3, pp.80-81, October 2018.
graduation, Margaret met Booker T. Washington and asked directly for a teaching position at Tuskegee, to which he agreed.

She first taught English at Tuskegee, but was quickly promoted to lady principal, now known as the Dean of Women. Tuskegee Institute focused heavily on vocational training and like Washington, Margaret fully subscribed to the conservative mission of Tuskegee. She believed that blacks should better themselves through industrial education with the hope of one day becoming worthy of equality with whites. Margaret Washington was in charge of the women’s industrial programs expanding the existing curriculum to include, soap-making, basketry, laundering, millinery, sewing, table setting, cooking, and broom making. She was also concerned with building skills that would benefit the families of the community and added classes in nutrition, sanitation, and food preparation.

When she married Booker T. Washington in 1893 and moved into The Oaks, she assumed responsibility for operating the Institute in Washington’s absence including, the reception and entertainment of guests, the day-to-day activities of the Institute, and overseeing the care of his children from two previous marriages. In addition to her school obligations, Margaret also wrote and edited Washington’s speeches and occasionally traveled with him when he went on tours for various speaking engagements and soliciting donor funds.

Margaret was also concerned for the development of the women of the Tuskegee community, not just her students. During the first Tuskegee Farmers Conference in 1893 she facilitated “Mother’s Meetings,” due to the female farmers having to suppress their concerns during the conference meetings. These Mother’s Meetings soon became an example that was replicated in other communities. Margaret initiated the Tuskegee Woman’s Club in 1895, working towards temperance, prison reform, and suffrage, based on the success of the Mother’s Meetings.

Margaret’s leadership took to a national stage in 1895 when she became president of the National Federation of African American Women (NFAAW), an organization that represented fifty-four black women’s clubs. In 1896 the NFAAW merged with other women’s groups across the nation and formed the National Association of Colored Women’s Clubs (NACWC), for which Margaret was president of the Alabama Federation from 1912-1916. Prior to her election, Margaret Washington and Ida B. Wells publicly clashed over their political views. Margaret’s conservative approach to advancing African American people, through slow and incremental change, was in direct opposition of the views of Wells, who used protest and direct action to challenge instances of racism. These tensions came to a head in 1912 when Wells staged a revolt to overthrow Margaret’s conservative regime. Moving forward, the NACWC adopted a platform in favor of the political activities that Margaret opposed, but proceeded to elect her as president. The Alabama Federation of Colored Women’s Clubs worked on programs to support health and juvenile agencies, sponsor black history programs, and created the Mount Meigs Reformatory for Juvenile Negro Law-Breakers.

Margaret Murray Washington died June 4, 1925, in Tuskegee, Alabama, at which time The Oaks was left to Booker T. Washington’s three children.

The Oaks (LCS #091220)

The Oaks (1899), the house most associated with the life and work of Booker T. Washington, is located at 905 West Montgomery Road on the campus of Tuskegee University, within the Tuskegee Institute National Historic Landmark District (Figure 15). The two-and-a-half-story Queen Anne-style house with basement was constructed on two parcels of land then fronting Montgomery Road acquired by Washington from
H.C. Ferguson in 1889 and 1893.92 The Oaks, the first house in Macon County to have steam heating and electric lights, was a showcase for the work of students at Tuskegee Institute, a place for entertaining the many and varied visitors to the school, and a home and solace for Washington, his third wife, and his children.93

\textbf{FIGURE 15.} Front, north and west side, of The Oaks, 2010. (Source: Library of Congress, Online Control Number 2010640056, Carol M. Highsmith Archive, Washington, DC)

After The Oaks was acquired by the National Park Service in 1974, a Historic Structure Report for the building was completed in 1980 that described the house as follows:

The Oaks as built in 1899 was basically a square two-and-a-half story structure with a one-story rear ell, running south from the east side of the south elevation. The roof of the main section consisted of a large hip roof with large, metal-shingled gables on each face. The roof of the ell was a single gable running north to south. On the north, west, and south side of the main house was a veranda at the first-floor level. At the east end of it north side it formed the roof of the porte[-]cochere. Porches at the second-floor level were located at the northwest corner of the house and at the center of the south elevation [Figure 16].94

Although not formally documented, the architect of The Oaks is thought to be Robert Robinson Taylor, then the head of architectural and mechanical instruction at Tuskegee Institute. Although Taylor is not listed on the faculty roster for the school year 1899–1900, as he was away from Tuskegee from 1899 to 1902, The Oaks was already designed and under construction at that time. During the period of his absence from Tuskegee, Taylor was working as an architect in Cleveland, therefore would not have supervised the construction of Washington’s house.95 The house itself was built using bricks and lumber made at the Institute by student labor as work-study and on-the-job training projects for which they were paid.96

93 \textit{American Visionaries: Booker T. Washington}.

94 \textit{Historic Structure Report}, Architectural Data Section, 79.

95 Ibid., 10. While the \textit{Historic Structure Report} posits that the years Taylor was away from the school probably represent a sabbatical to work on The Oaks, Clarence Williams (\textit{From ‘Tech’ to Tuskegee, The Life of Robert Robinson Taylor, 1864–1942} (Boston: MIT Libraries online, nd), in his well-researched article on Taylor, Williams reported that Taylor was away from Tuskegee for two years between 1898 and 1902 because he was in Cleveland working on his own and with the architectural firm of Charles W. Hopkinson. Taylor’s unexplained absence caused a rift with Washington, but Washington quickly realized his need for Taylor and began wooing him back. Taylor returned in 1902 and resumed his generally good relationship with Washington. While this does not negate Taylor designing The Oaks, it seems to indicate that he did not oversee its construction.

96 Ibid, 8.
Taylor was born in Wilmington, North Carolina, in 1868. His father was Henry Taylor, an enslaved son of a white slave-holding father and a black mother, and his mother was Emily Still, who came from a free black family. Because of the circumstance of his birth, his father was given an unusual amount of freedom before the Civil War to go into business for himself. He became a prosperous contractor and ship builder. After Robert’s early formal schooling, his father brought him into the business, teaching him the rudiments of the building trade. Father and son, however, agreed that Robert should have a more technical schooling and that the Massachusetts Institute of Technology (MIT) in Boston, which stressed the practical applications of learned material, was the place for him.97

Taylor (Figure 17) was undaunted by the prospect of attending MIT and went to Boston in September 1888 to take the entry exam. He did not score well in several exam areas, but he did well enough to get into the school. He began studying at MIT, taking several classes to make up for his deficiencies, and soon Taylor was working at the same level as all his classmates. Robert R. Taylor appears to be the first African American to attend MIT; however, if he was aware of this singular event, he did not comment upon it.

While at MIT, Taylor’s grades and work were exemplary and consistently above average. In both 1890-1891 and 1891-1892, Taylor was awarded the Elisha Thatcher Loring Scholarship, eligible to all students based solely on need and performance.98

It was Taylor’s performance at MIT that brought him to the attention of Booker T. Washington, principal of Tuskegee Institute. Taylor met Washington several times while at MIT when Washington was on his numerous visits through the northern states meeting influential people, networking, raising money, and scouting potential locations for Tuskegee.

98. Ibid.
talent for the teaching and administrative staff at Tuskegee. Washington discussed with Taylor the possibility of further developing the new industrial program at Tuskegee and, probably much more tempting to Taylor, directing the construction program for new buildings at the school. When Taylor graduated in 1892, he had five job offers to begin industrial training programs at several schools, including Tuskegee. He did not immediately accept any of these offers; instead, it appears he may have worked at an architectural firm in Cleveland, Ohio, designing public and private buildings. Finally, in 1892, Taylor made his way to Tuskegee Institute.99

Taylor arrived at Tuskegee in late 1892, and except for the brief period from 1899 to 1902 when he returned to Cleveland, he spent his entire career at Tuskegee Institute.100 He developed the mechanical and architectural program, generally called the “industrial” or “industrial arts” program at the school, and shaped the look and feel of the campus that lasts to this day. Taylor wholeheartedly embraced Washington’s ideals of dignified labor, but was influential enough with Washington to help him understand that manual labor alone was not enough; Tuskegee also needed to produce graduates who could plan and manage the labor. Washington often presented Taylor as a model to others, pointing out his selflessness, leadership, and hard work.101

Taylor exhibited an incredible level of dedication and hard work to the school. While teaching classes, supervising students, running programs, and serving as Vice-Principal of Tuskegee Institute for a period of time, he managed to design and superintend the construction of more than twenty buildings on the campus. They include:

- Max Bennett Thrasher Hall (originally Science Hall), 1893 – extant
- The Chapel, 1898 – burned to the ground, 1957
- The Oaks, 1899 – extant
- Collis P. Huntington Hall, 1899 – extant
- Andrew Carnegie Hall (Carnegie Library), 1901 – extant
- Dorothy Hall (Girls Industrial Building, Guest House, now the Tuskegee University Kellogg Conference Center), 1901 – extant
- Old Administration Building (original Administration Building), 1902 – extant
- John D. Rockefeller Hall (Men’s Dormitory, Women’s Dormitory), 1903 – extant
- E. Julia Emery Hall I, II, III, IV (Job Corps Center dormitories), 1903-1909 – extant
- Frederick Douglass Hall, 1904 – extant
- Collis P. Huntington Memorial Building, 1905, burned 1991, demolished 1994
- James D. Tantum Hall, 1907 – extant
- Elizabeth Milbank Agricultural Building (Milbank Hall), 1909 – extant
- Alexander Moss White Hall, 1910, tower and clock installed 1913 – extant
- Charles Tompkins Hall (Student Union), 1910 – extant
- John A. Andrew Memorial Hospital, 1912 (post-Taylor additions 1940, 1944, 1971, 1970) – 1912 original hospital building demolished in 1969, other parts of hospital building remain
- George Washington Carver Museum (Laundry), 1915 – extant
- Russell Sage Hall, 1926 – extant

99. Ibid.
100. See Footnote 4 for a discussion of Taylor’s absence between 1899 and 1902.
101. Williams.
- Warren G. Logan Hall, 1931 – extant
- Samuel Chapman Armstrong Hall, 1932 – extant
- Hollis Burke Frissell Library (Central Library), 1935 – extant

Of the twenty-six extant buildings in the Tuskegee Institute National Historic Landmark District, Taylor designed thirteen. Five additional buildings designed by Taylor between 1921 and 1932 are still standing but are not part of the historic district.

Tuskegee’s campus, during its most formative years, was virtually planned by Robert R. Taylor. Given Washington’s determination to use the creation and construction of buildings as learning laboratories for students, Taylor’s buildings use the materials that Tuskegee could produce, bricks and lumber, which are generally in the Neoclassical style, and feature porticoes and columns. The reason for Taylor’s stylistic choices is not recorded and not commented upon by Washington or others. It is theorized that his southern heritage combined with his MIT education influenced his conceptual choices.

Regardless of Taylor’s influences, after four decades of his guidance, the campus still has a strong sense of place and coherence. The use of brick as a primary architectural feature, the relatively small scale of the buildings, and the use of landscape as effective space for the buildings produces a campus of unity, harmony, and history. The campus coherence is an asset that contemporary architects have continued to follow.

Taylor influenced and helped develop the second generation of African American architects. He made significant changes in Tuskegee’s curriculum, adding architecture and history to what was a vocational drafting and industrial arts program. The Institute itself was a major patron of architects in the Black Belt of the South. As Taylor’s responsibilities grew within the Institute, he began to work collaboratively with two local architects, Leo Persley and William Sidney Pittman. Pittman was a graduate of both Tuskegee and Drexel Institutes, and who would marry Washington’s daughter, Portia. Taylor worked on other projects outside Tuskegee, both alone and in collaboration with Persley.

After retiring to Wilmington, North Carolina, in the mid-1930s, Taylor kept in regular contact with educators at both MIT and Tuskegee. In 1942, he was treated at the Mayo Clinic in Rochester, Minnesota, for an undisclosed illness. He was soon released, but not long afterward, he died of a heart attack on December 13, 1942, while attending a service at the Campus Chapel—a building he considered his outstanding achievement. Upon his death, a colleague eulogized him:

Esteemed by his friends, respected by his associates, and trusted by those who sought his counsel, he represented the flower of achievement among his own people, and stands as a type of American which the nation, without regard to race or creed, can point to with pride and satisfaction.

History of The Oaks

The motivation for building The Oaks is not known, and hints as to its genesis can only be

104. Ibid., 91.
105. Ibid., 95.
106. Ibid., 92–93.
108. Ibid.
pieced together from letters. Before the Washington family moved into The Oaks, they were living in a small rental cottage owned by the Institute. According to William Henry Baldwin, Jr., a Tuskegee Board member and passionate backer of Washington and the Institute,

Mrs. Walter Baker gave to his [sic] children the sum of $3,000, and Mrs. Baker’s friends thought that it would be well for the children to have this money invested in a house. Mr. Washington therefore arranged to build a house for the use of his own family, to give up the house belonging to the Institute for a library, and, further, to provide that the construction of the house should be made by the students of the Institute.

There is another side to this also. Few know the enormous physical and mental work that Mr. and Mrs. Washington have been doing for many years. It is imperative that if we expect Booker Washington to live and do good work for many more years, he must have comfortable surroundings. The pressure of his work during the last few years has told [sic] much on his health and we are anxious for him to be comfortably cared for, so that his health may be preserved for many years.109

As Washington and the school became more well known, especially after his appearance at the Atlanta Exposition of 1895, it became fashionable to visit the celebrated principal and his school. A constant flow of visitors began arriving and many sought time and attention from Washington. The Washingtons entertained Institute faculty and staff, visiting black educators, businessmen, and farmers sponsored by the school. Politicians, journalists, and agents of the school were frequently closeted with Washington in his house. During Board of Trustees meetings, the family home was used as a base of entertainment, and when President William McKinley visited in 1898, the student corps was reviewed next to the presidential cottage. It is thought the visit by the US President was also a factor in the building of a house for Washington. References in Tuskegee publications emphasize the influence of the flood of visitors in the construction of a new house:

…Mr. Washington has recently moved into a brick house built just across the main road from the school ground. The building of this house was largely made possible by the kindness of friends of the school in the North. It enables the principal to entertain, more conveniently than he could do in his former residence, many of the guests whom the Institutes' reputation attracts to Tuskegee as interested visitors.

…the gift of two Brooklyn friends enabled him to erect on his own lot, just opposite the school-ground his present handsome brick residence, where he dispenses a generous hospitality to the school’s guests and to teachers of the Institute.111

It may be that Washington was also following his own advice. Beginning in 1892, the Extension Service, through Tuskegee Institute, began offering yearly conferences where African American farmers of Macon County and beyond could meet, learn the latest farming news and techniques, and have the spotlight shown on their work. Out of these meetings grew the “Thirteen Points,” a “gospel” for how the farmer should live during the year. These points included such things as not mortgaging crops and getting caught up in the relentless share-cropping system, not planting too much cotton, treating your wife well, continually educating yourself, and not being duped by land agents. Most tellingly, Point 2 stated, “It is wrong to keep your family in a one

room house; have at least two—three is best.” Point 9 stated, “Own a home as soon as possible. Begin buying one this year.”112 Perhaps Washington felt he needed to “show” and not just “tell” the black farmers of Macon County how to live their daily lives.

Whatever the impetus for the construction of Washington’s new home, work began without fanfare at an unknown date in 1899. The house style chosen, Queen Anne, is quite different from the Neoclassical styles of the campus. No information was found indicating the reasons this style was chosen for the house. Although his housing had apparently received little attention in the past, Washington was certainly aware that this new house would be scrutinized differently, given his achievement and notability. In 1908, he wrote an article about African American homes in \textit{New Century} magazine where he expressed, “. . . the best evidence of the progress which the race has made since emancipation is in the character and quality of the homes which they are building for themselves.”113 The Queen Anne style remained popular, especially in folk forms, into the twentieth century.114

The Oaks was constructed using student labor as on-the-job-training for various departments within the school. Since almost nothing is written about the actual construction of the house, many of the actual departments involved in its construction are not known. It is famously known, however, that the bricks were made at the Institute and laid by students of one of the school’s programs. After 1882, as the student population was becoming more stable, Washington began to think about creating “permanent” buildings—buildings made of brick. Toward this end, he requested money from a benefactor who gave him $200 for the construction of a brickyard. The brickyard would serve three purposes: provide brick for the construction of Tuskegee Institute buildings; provide a supply of brick for the townspeople to buy; and provide training to students in the art of making bricks, thereby teaching an important trade.115

Washington began the brick-making enterprise with high hopes, which were almost immediately brought down due to the attitudes of the students and the realities of making brick. The making of bricks required hard, dirty, physical labor, and standing in a mud pit with mud up to their knees was not “a pleasant task” for the students, who balked at the requirement.116 Additionally, designing and building a kiln posed problems; Washington lamented, “I always supposed that making bricks was very simple, but I found out by bitter experience it required special skill and knowledge, particularly in the burning of bricks.”117 Washington built three kilns that did not work, and that failure added to the students’ reluctance to participate in the enterprise. Washington’s experiments exhausted the allotment he had been given, and he had to pawn a gold watch in Montgomery, Alabama, to get enough money to buy materials for a fourth try. Fortunately, the fourth kiln worked, and students began making bricks by hand and later with a brick-molding machine that reduced labor. The struggle was hard-fought, but a new and successful program was begun at the school.118 The brick from the Tuskegee Institute brickyard would be used to construct a permanent campus and set the look and feel of the new buildings.

An article from the April 28, 1906, issue of \textit{The Tuskegee Student} listed the various departments and schools at the Institute and provided some

\begin{itemize}
\item 112 Max Bennett Thrasher, “Tuskegee Negro Conference,” \textit{The Chautauquan}, August 1900, 506-507 in Jenkins, 146.
\item 113 Booker T. Washington, “Negro Homes,” \textit{New Century Magazine}, May 1908, 71.
\item 114 Virginia McAlester and Lee McAlester, \textit{A Field Guide to American Houses} (New York: Alfred A. Knopf, 1984), 266.
\item 115 Jenkins, 31.
\item 116 Washington, \textit{Up from Slavery}, XXX, 111 quoted in in Jenkins, 32.
\item 117 Ibid.
\item 118 Jenkins, 33–34.
\end{itemize}

National Park Service 39
idea about the type of services students could have provided during the construction of the Washington home. By far the largest department at the school was the Industrial Department, which was composed of the Mechanical Industries Department, the Agricultural School, and Industries for Girls. These large departments and schools covered thirty-seven different trades. Within the Mechanical Industries Department, carpentry, foundry, plumbing, electrical lighting, steam fitting, plastering, tinsmithing, brick making, and saw milling were taught, all of which would be required in the house. In the School of Agriculture, landscape gardening and shrub/tree propagation and planting were taught and would be required for the home. Additionally, the separate Architectural and Mechanical Drawing School would be used for the creation of the plans and changes within the house. The students made furniture, and it is probable that rugs, draperies, and curtains were made by the Girls Industrial School. There was likely not a part of The Oaks students did not in some way help to create. After the Washingtons moved in, students kept the house in constant repair.

The three-acre lot on which the house sits underwent intensive changes. Grassy plots, shrubbery, trees, and a picket fence were added to the front yard. A carriage drive was added diagonally across the plot turning under the porte-cochere to protect arriving individuals. A front sidewalk, with two trees planted between the walk and the street, was also added (Figure 18). The rear of the lot was enclosed with a tall paling fence and featured flower beds. The remainder of the lot was kept for gardening and animal husbandry. Washington created a plan of rotation for his garden and spent many happy hours with his chickens and crops (Figure 19).

120. Ibid., 2–13.
and the Washingtons had a new, showcase home.121

Washington’s house, even during his lifetime, was known as “The Oaks.” People have long assumed that The Oaks was named for the two large oak trees growing between the sidewalk and the street, Old Montgomery Road, in front of the house. However, when Washington built the house, no oak trees were on the lot; in fact, there was not a single tree on the lot (Refer to Figure 4). It is not clear whether Washington named the house The Oaks, or it simply came to be called The Oaks while he occupied it. Research by the Panamerican Team and by archivists, staff, and volunteers of the Tuskegee University Archives could not find any information on how or why the house came to be known as The Oaks.

The Oaks fulfilled a dual role as both the ceremonial and entertainment center for the Institute and an intimate family place as the Washington home. As The Oaks was Washington’s official residence, it was the nerve center of the Institute community. While Washington spent much of his day at work behind an institute desk, he began and ended each day at home behind his desk in the den in total commitment to the school (Figure 21). The Oaks came to symbolize his absolute power (Figure 22). Washington’s biographer Louis Harlan noted:

...from his big house (in the plantation sense), ‘The Oaks,’ Washington ran his school without delegation of authority and with infinite attention to detail. ... Each morning he toured the campus on horseback (on his favorite, “Dexter”), and noted ... evidence of every student waste or neglect. It all went into his little red notebook, from which flowed a thousand memoranda reminding errant faculty members of their high duty.122

In 1906, Tuskegee Institute proudly celebrated its twenty-fifth anniversary with parades, music, oratory, and a remarkable gathering of supporters that included Harvard President Charles Eliot, Industrialist-philanthropist Andrew Carnegie, Secretary of War William H. Taft, and the US President Theodore Roosevelt (Figure 23). The reception for this gathering was at The Oaks.

121. Ibid., 11.

In 1907, The Oaks was the scene of the social event of the year at the Institute—the wedding of Portia Washington to William Sidney Pittman, an architect and teacher at the school. Portia and Pittman had met when he came to repair a fireplace mantle at the house. The wedding was a remarkable occasion, covered by *The New York Age*, one of the most influential black newspapers of its time. The Electrical Department of the school strung colored lights in the trees, throughout the shrubs, and across the grounds; the interior of the house was filled with colored lights, grasses, ferns, and white roses as decoration. A large white canopy was erected in the front room under which the couple was married. The whole scene was a glittering, glowing event reported by *The New York Age*.123

A front-page *New York Times* announcement of the death of Washington attributed it to “hardening of the arteries following a nervous breakdown” and in the same article to Bright’s Disease, chronic inflammation of the kidneys (*New York Times*, “Dr. B.T. Washington, Negro Leader, Dead,” November 15, 1915).

FIGURE 24. Mourners line the street as Washington’s casket, center of the photo, is taken to the Tuskegee Cemetery for burial. (Source: Library of Congress, Carol M. Highsmith Archive, Washington, DC)

At noon on Tuesday, November 16, 1915, his body was taken from The Oaks by a hearse driven by students. The hearse was escorted by the vice principal and secretary and a guard of forty-four officers of the student battalions to the Institute Chapel where it remained in state until the next day (Figure 24). Thousands of mourners passed by the casket. At twenty minutes past ten on Wednesday morning a procession of trustees, faculty, alumni, visitors, honorary and active pall bearers, and students began to move from The Oaks to the Chapel. This long line moved to muffled drums and ended in the packed chapel.127

Washington left The Oaks to his wife, Margaret Murray Washington, and upon her death the house was to be equally divided among his three children, Portia Pittman, Booker T., and Ernest D. Washington. Portia had left the home after her marriage, but Washington’s sons still lived in the house working for Tuskegee Institute. Mrs. Washington lived in the house until her death in 1925. For many years, she remained as the principal for the Girls Industrial School, and after her retirement she remained active in the various Tuskegee women’s clubs. At her death, she had been mistress of The Oaks for almost a quarter of a century.128

The Tuskegee Board of Trustees purchased the house from the heirs and auctioned off all of the furniture. This included the Tuskegee-made furniture, except for the furniture in Washington’s den, and a few of the bedrooms. For the next ten years, the house was used by the Tuskegee Institute Women’s Club, and eventually became a student services building. In its last iteration, the building was shared by foreign students and the alumni offices. The den, which Booker T. Washington used as his private office, was maintained throughout the years as a tribute in his honor.129

In 1959, the interior of The Oaks underwent significant changes when Institute administration offices were moved into the building. During this remodel, however, the den was still preserved in memory of Washington.130

Occupants and Dates of Occupation of The Oaks. The Oaks was designed and built in 1899 as a single-family house for Booker T. Washington. The house served this function until after the death of Mrs. Washington in 1925.

1900–1915: Booker T. Washington family: Booker T. Washington; Margaret Murray, his wife; Portia, his daughter; Booker T., Jr., and Ernest, his sons. Portia married William Sidney Pittman in 1907 and moved out of the house.

1915–1925: Margaret M. Washington, Booker T., Jr., and Ernest occupy the house after the death of Booker T. Washington. It is no longer used as a dwelling after 1925.

129. Ibid.

130. Ibid.
1929–1974: Tuskegee Institute purchases The Oaks from the heirs and over the course of forty-five years uses the property for various school activities and offices.

Historical Recordations of The Oaks

In 1966 a 1-1/2-page National Historic Landmark (NHL) nomination was completed on the Tuskegee Institute National Historic Site, which included The Oaks and Carver Museum as contributing properties.

In 1977 a *Historic Resource Study* was created by John W. Jenkins of the National Park Service Denver Service Center, but was never published. Although the HRS was created for the Tuskegee Institute National Historic Site, The Oaks, which is a part of the site, was never discussed.

In 1978 a Historic American Buildings Survey (HABS) was completed (HABS AL-877; old number ALA -44-TUSG). Eleven sheets of measured drawings were prepared without a text document under the direction of John Burns, HABS architect; Stanley Gettle, project supervisor and Professor of Architecture at Tuskegee Institute; Davide Ates, historical architect, NPS Denver Service Center; and student assistant architects Michelle Bebbs, Rudolph Brown, Ronald Carter, and Anita Sigmond, all of Tuskegee Institute, and Mackey Brooks of Texas A&M University (Figure 25). The HABS drawings are available online.

In 1980, a Historic Structure Report was prepared for The Oaks by the Denver Service Center. The HSR includes historical, landscape and architectural data, as well as itemized condition tables of exterior, engineering systems, and a recommended preservation program. Additionally, an appendix includes paint analysis, mortar analysis, x-ray analysis, hardware inventory, and radiator system drawings.

In 2002, a parkwide Interpretive Plan was created that focused heavily on The Oaks and the Carver Museum since these are the two buildings held by the National Park Service. The Interpretive Themes determined for the park and applicable to The Oaks are:

- Tuskegee played and continues to play a significant role in the ascent of African Americans into mainstream America.

As the first principal of Tuskegee from 1881–1915, Booker T. Washington showcased his talents and provided a national stage for himself and other individuals associated with this institution.

- The grounds, buildings, students, and faculty at Tuskegee have fostered the resiliency of the human spirit and helped people struggling for opportunities and independence; today’s leadership at Tuskegee continues this tradition.

In 2012, a Consensus Determination of Eligibility (DOE) was prepared by Bethany Serafine and Rudy Evenson both NPS Southeast Regional Office Historians, which determined the following landscape elements contributing to the house: Driveways (LCS 092173) 1920, Concrete Gutters (LCS 092174) 1920, Concrete Walkways (LCS 072175) 1920, Garage foundation (LCS 092176)

131. Ibid.

132. Jenkins.

Developmental History

1925. The Front Retaining Wall (LCS 092191) 1971 was determined to be a noncontributing element, however, it was stipulated that the wall should be managed as a cultural resource.

Physical Changes to The Oaks

For the first several years after The Oaks construction, no work was undertaken on the house except upkeep that was done by the students of the Institute. Alterations during the residency of Booker T. Washington (1899–1915) included:

- Unclear date – Carriage house, barn, summer house, and well cover shed constructed.
- 1900 – Vegetable gardens created.
- 1902 – An extension was made to the dining room using the same materials and construction techniques.
- Before 1905 – Radiant heating installed, damaging woodwork.
- 1905 – Landscape plan created by David A. Williston, including Rustic Style gazebo that was built according to his design.
- 1906 – Bathrooms painted.
- Before 1908 – A conservatory was added east of the dining room and removed later, perhaps in the 1950s.
- 1908 – A.W. Borman painted a series of frieze murals after lowering the picture moldings in the major front rooms (Figure 26). It is believed the murals were supposed to go into rooms on the second story since those picture moldings were also lowered. The murals were completed after a Washington family trip to Europe, and it is believed they were inspired by this trip. Wiring was set by Washington for the vines to cover the porches (Figure 27).
- Between 1910 and 1915 – The roof was removed on the one-story kitchen wing and a second story was added. The roof was reused for the addition. This change necessitated several other changes including: the south dormer of the main roof was removed to provide a way of connecting the ell roof with the main roof and, subsequently, a new doorway into the newly created attic by lowering its opening; the south window of the rear stair hall was removed and the opening filled and finished to match the adjacent walls; a new porch was built west of the den that Washington used as a home office; an enclosed room was built as an entry from the rear main second-floor hall and the new den.
- By 1915 – The summer house and gazebo were removed.

137. Ibid.
140. Historic Structure Report, 82.
141. Ibid., 13-14.
142. Ibid., 17.
143. Ibid., 81.
144. Ibid., 82.
145. Ibid., 15.
146. Ibid., 82.
147. Ibid., 50.
Developmental History

FIGURE 26. The Oaks dining room before 1908 when the murals were added. (Source: Library of Congress, Carol M. Highsmith Archive, Washington, DC)

FIGURE 27. The Oaks, oblique view, front (north) and west side; vines cover and shade porch areas because the trees have not yet matured, 1925. (Source: Courtesy of Tuskegee Archives, Tuskegee University)
Between 1915, the death of Washington, and 1925, the death of his wife, Margaret Murray Washington, the following alterations were made:

- 1925 – Two-car garage built.\(^{148}\)

After the death of Mrs. Washington, the Institute purchased The Oaks and used the home for several different purposes from 1929 until 1974 when the National Park Service acquired the property. The changes to the house occurred during two distinct periods: 1929, when the property was first acquired by the Institute, and 1957, when the property was converted into administrative offices.

Institute period changes in 1929 included:

- Radiant heating system installed.\(^{149}\)
- With few exceptions, the electrical system was changed and most of the lighting fixtures were changed to metal incandescent fixtures. Baseboard outlets were installed during this time. Historic fixtures were retained in the den, foyer, and veranda and porch ceilings.\(^{150}\) (Based on available archival documentation; it is not known whether the fixtures retained in 1929 were original.)
- Exterior trim paint of the house was changed from dark brown to white and porch ceilings were painted pastel green in conformity with other institute buildings.\(^{151}\)
- Fireplaces in the study, parlor, and dining room were completely rebuilt. Two of the original mantels were destroyed and the third moved to the trunk room on the third floor.\(^{152}\)
- Porches and verandas renovated. First floor porches and steps were replaced with concrete inlaid with red tile. Supporting piers were replaced with a brick masonry base wall except in the rear. The upper front porch had tar paper laid over its floor, probably to hide deterioration, and sheet metal placed on the inner parapet walls.\(^{153}\)

Institute period changes in 1957 included:

- A complete telephone system was installed through the flooring throughout the house.\(^{154}\)
- Bathroom and shower fittings were installed in the room above the foyer.\(^{155}\)
- Three bathroom doors were permanently blocked shut.\(^{156}\)
- Virtually all of the floors were heavily stripped and refinished, resulting in damage to historic fabric in the form of grooves and gouges.\(^{157}\)
- The guest room closet was converted into a reception area with the removal of its north and east walls, the removal of the doorway to the guest room, the refinishing as part of wall surface, and installation of reception desk.\(^{158}\)
- A partition was erected between the dining room and its addition.\(^{159}\)
- Shelves were added to closets necessitating the reswinging of the closet doors.\(^{160}\)
- An unpainted, aluminum shingle roof replaced the painted, historic pressed metal shingle roof

\(^{148}\) \textit{Historic Structure Report}.
\(^{149}\) Ibid., 82.
\(^{150}\) Ibid.
\(^{151}\) Ibid.
\(^{152}\) Ibid., 83.
and standing seam metal roof. Gutters and downspouts were also replaced.161

- Extremely thorough, exposed water fire suppression system was installed throughout the house.162

- The den was heavily restored. The window opening to the west porch was removed and replaced with a door and transom. The additional doorway facilitated an orderly flow of visitors through the room.163

- The lower rear porches were enclosed and converted to storage rooms.164

- The porch off the den was enclosed with casement windows instead of screening. This was likely done to protect people exiting the den during inclement weather.165

- Asphalt paving was installed at the porte-cochere.166

During the early 1970s, before the National Park Service acquired The Oaks, it was included in the Sears “Great American Homes” exterior paint advertising campaign. This incredibly successful advertising campaign, targeted at men, featured great, historic American homes belonging to such people as Teddy Roosevelt, Nathan Hale, “Buffalo Bill” Cody, and Booker T. Washington, all of which had been painted using Sears exterior paint. Sears went to the house sites and prepared them, made minor repairs, and painted them for the privilege of using a photograph of the house in advertising.167 The exact date that The Oaks was painted is not known. Each advertisement encouraged the viewer to use Sears exterior paints on “great American homes like yours.”

Changes occurring after 1974, when the National Park Service took over the house, included several rehabilitations, restorations, and repair projects. Based on discussions with the Park, limited archival documentation is available to indicate the scope of these projects.168

A Structural and Roof Inventory was performed by the Denver Service Center in 1977, which found the house structurally sound overall but identified four immediate problems that needed to be addressed:

- Leaking built-in gutter.
- Replacing damaged roof cornice.
- Repairing three areas of foundation wall where the mortar had turned into fine sand and was pouring out.
- Providing support to the south floor of the first-floor guest room by providing more support to the joists.

Problems that needed to be solved within the subsequent two years included:

- Making a permanent repair to the roof valley on the back side of the house.
- Ensuring the power ventilator was functional in the attic.
- Completing the remaining masonry repointing.

——

162. Ibid.

163. Ibid.

164. Ibid.

165. Ibid., 84.

166. Ibid., 50.

168. Correspondence by the authors with Robyn Green-Harris, Museum Specialist, Tuskegee Institute National Historic Site/Tuskegee Airmen National Historic Site, April 2018.
Correcting structural deficiencies around the main stairs at the second level and door header between study and the front hall.

Providing support from the basement wall to the west wall of rear hall.

Strengthening the floor under the wall that separated east bedroom and the trunk room on the third floor.\(^{169}\)

The Park was informed that it could continue to run tours through the house if the number of visitors could be controlled in:

- The top of the second-floor main stairs – the existing hall was safe to move visitors from room to room
- The entire third floor where total capacity should be limited to six people
- The first-floor guest room should have no occupation until the structural support is provided to the floor joists along the south wall.\(^{170}\)

The Centennial Celebration of Tuskegee University occurred in 1981 and, as part of that celebration, the National Park Service undertook a major architectural, mechanical, and electrical rehabilitation of The Oaks in 1980.\(^{171}\) The work performed under the construction supervision of the National Park Service included:

- Repointing walls
- Repointing and rebuilding chimneys
- Rebuilding damaged cornices
- Patching copper gutters and downspouts
- Rehabilitation of floors and walls
- Rehabilitation of fireplaces
- Rehabilitation of windows and doors
- Rehabilitation of lighting
- Completing the heating, ventilation, and air conditioning (HVAC) system\(^{172}\)

Supplemental steel beams and columns were installed as part of structural repairs performed in the 1990s to address sagging of the floor at the second-floor stair landing. Based on discussion with the Park, no archival documentation of these repairs is available.\(^{173}\)

A 2007 renovation of The Oaks by Hartrampf, Inc., Atlanta, Georgia, included the following:

- Demolition and replacement of HVAC
- Demolition and replacement of mechanical ducts
- Window sash and surround repair and replacement
- Interior plaster repair and replacement
- Electrical upgrade
- Third-floor fire suppression water sprinkler system\(^{174}\)

\(^{169}\) Denver Service Center, 1977, 4.

\(^{170}\) Ibid.

\(^{171}\) Mary E. Reiter, Memorandum to Regional Director, Southeast Region, NPS, Re: Tuskegee Institute National Historic Site, Macon County, Alabama, Preservation of The Oaks, Package No. 99, March 18, 1980.

\(^{172}\) Denver Service Center, 1977, 3.

\(^{173}\) Correspondence by the authors with Robyn Green-Harris, Museum Specialist, Tuskegee Institute National Historic Site/Tuskegee Airmen National Historic Site, April 2018.

Archeology at The Oaks

The last archeological investigations at The Oaks appear to have been conducted in 1979 by Richard D. Faust, chief, Southeast Archeological Center (SEAC) of the National Park Service. In 1977 and 1979, SEAC was engaged in looking at several parking projects related to Grey Columns, currently the Tuskegee University president’s house, and other activities related to The Oaks and the George Washington Carver Museum. Specifically, at The Oaks, SEAC carried out investigations related to the placement of the barn, gazebo, and well house, all south of The Oaks, as shown in existing historic photographs. Subsurface probing and shovel testing were utilized in an effort to delineate the features, but no subsurface evidence was found. Unfortunately, the construction of a driveway, gutters, and other alterations obliterated all surface evidence of the barn, gazebo, and well house.175

Although the archeological investigations to date have not uncovered any cultural resources of “National Register caliber,” the letter report’s author cautioned, “This should not, however, be interpreted as meaning that they do not exist, for almost certainly they do. For this reason, future development should be preceded by historical and archeological research.”176

176. Ibid., last page of text.
Timeline for The Oaks

1889 First lot on Montgomery Road purchased by Booker T. Washington
1893 Second lot on Montgomery Road purchased by Booker T. Washington
1899 Construction on The Oaks began using student labor and materials made at the school
1900 Washington and family moved into The Oaks
1902 Dining room expanded
Before 1905 Radiant heating installed damaging woodwork
By 1905 Summer house, barn, well cover shed constructed on lot
1905 David A. Williston landscape plan created, with inclusion of Rustic Style gazebo that was constructed to his plans
1906 Twenty-fifth anniversary of the founding of Tuskegee Institute; President Theodore Roosevelt and other dignitaries entertained at The Oaks; bathrooms painted
1907 Portia Washington married William Sidney Pittman at The Oaks, which had been extensively decorated with colored lights
Before 1908 Conservatory added east of dining room; removed at unknown date, but probably in the 1950s
1908 A.W. Borman painted frieze murals on first floor walls after lowering picture molding
1910-1915 Second story added to kitchen and roof section reused. Changes in south dormer, the south window of the rear stair, and a new porch west of the newly created den, Washington’s study, also occurred
By 1915 Summer house and gazebo removed
1915 Booker T. Washington died at The Oaks; the house became a focus of mourning for the entire Institute; the house was willed to Washington’s wife, Margaret Murray Washington
1925 Margaret M. Washington died, and The Oaks, furnishings, and fixtures were left equally to Booker T. Washington’s three children, Portia Washington Pittman, Booker T. Washington, Jr., and Ernest Davidson Washington; two-car garage built
1929 The Oaks was purchased by Tuskegee Institute from the Washington heirs for use by the Tuskegee women’s clubs, the alumni office, and foreign exchange students; the furnishings (many made by Tuskegee students) were auctioned off; Washington’s den was kept as found; changes include
 - New radiant heating system installed
Developmental History

- Electrical system changed and most lighting fixtures changed to metal incandescent fixtures; some historic fixtures retained in den, foyer, and veranda and porch ceilings
- Exterior paint trim changed to white to conform to Tuskegee paint scheme
- Fireplaces in study, parlor, and dining room rebuilt, and two of the three mantels were destroyed with the third placed in the half-story Trunk Room
- Porches and verandas on first floor renovated and replaced with concrete and tile floors and support piers replaced with a brick masonry base wall; upper level porch had tar paper laid over floor and sheet metal placed on inner parapet walls

1957
The Oaks was extensively renovated for Tuskegee Institute administrative offices; Washington’s den was extensively rehabilitated, but the furnishings and their locations remain the same. Changes included:

- Telephone system throughout installed through flooring
- Bathroom and shower fittings installed in room above the foyer
- All floors stripped and varnished
- Guest room closet converted into reception area
- A partition was created between the dining room and addition
- Shelves added to most closets necessitating the reswinging of the closets
- Unpainted aluminum single roof replaced historic, painted pressed metal shingle and standing seam metal roof; Gutters and downspouts replaced
- Exposed water fire suppression system installed. Den heavily restored with window and door replacements
- Lower rear porches enclosed and converted to storage rooms
- The second floor, west porch off the den was enclosed with casement windows
- Asphalt paving installed at porte-cochere

1966
NHL nomination form completed on Tuskegee Institute National Historic Site including The Oaks

1970-1974
The Oaks was one of the featured homes in the Sears Great American Homes exterior paint advertising campaign

1974
Tuskegee Institute National Historic Site authorized by Congress; NPS acquired The Oaks

1977/1979
Archeological subsurface testing conducted to delineate barn, gazebo, and well house features; all surface evidence obliterated by driveway, gutter, and other additions to the landscape
Structural and roof inventory performed by the Denver Service Center identified a number of issues that required resolution both immediately and in the short term. These included:

- Repairing a leaking built-in gutter
- Replacing damaged roof cornice
- Repairing three areas of foundation wall where the mortar had turned into fine sand and was pouring out
- Providing support to the south floor of the study by providing more support to the joists
- Making a permanent repair to the roof valley on the back side of the house
- Ensuring that power ventilator is functional in the attic
- Completing remaining masonry repointing
- Correcting structural deficiencies around the main stairs at the second level and door header between east bedroom and the trunk room
- Providing support from the basement wall to west wall of the Rear Hall
- Strengthening floor under the wall that separates east bedroom and the trunk room on the third floor

Major renovations were undertaken to The Oaks as part of the celebration of the Centennial of Tuskegee University. Renovations included:

- Repointing of walls
- Repointing and rebuilding chimneys
- Rebuilding in damaged cornices
- Patching copper gutters and downspouts
- Rehabilitation of floors and walls
- Rehabilitation of fireplaces, including restoration of mantels to their original 1929 appearance
- Rehabilitation of windows and doors
- Rehabilitation of lighting
- Completing overhaul of HVAC system

Renovation by Hartrampf, Inc. included:

- Demolition and replacement of HVAC
Demolition and replacement of mechanical ducts

Window sash and surround repair and replacement

Interior plaster repair and replacement

Electrical upgrade

Third-floor fire suppression water sprinkler system

2012 Determination of Eligibility on landscape elements of The Oaks: Contributing – Driveways (LCS 092173) 1920, Concrete Gutters (LCS 092174) 1920, Concrete Walkways (LCS 072175) 1920, Garage foundation (LCS 092176) 1925; Noncontributing – Front retaining wall (LCS 092191) 1971

The Oaks (1899), LCS 091220 (including Driveways [LCS 092173] 1920; Concrete Gutters [LCS 092174] 1920; Concrete Walkways [LCS 072175] 1920; Garage foundation [LCS 092176] 1925) is a contributing property to the Tuskegee Institute National Historic Site (1974) and has undergone HABS recordation (HABS AL-877). The Oaks is currently opened to the public as a house museum.
Physical Description and Condition Assessment

The Oaks is a partially restored house located on the campus of Tuskegee University in Tuskegee, Alabama. It is listed as part of the Tuskegee Institute National Historic Site, which was designated in October 1965. The NPS recognizes twenty-two buildings on the campus as historic.177

Site

Tuskegee University campus is situated on rolling hills that gradually slope toward the west. Buildings at the east end of the campus are located at the top of the hills while those to the west are in a valley. Campus buildings are oriented and designed to integrate with the terrain. Old Montgomery Road, a major thoroughfare that extends mostly east–west, divides the campus. Approximately 80 percent of the campus is located to the north of Old Montgomery Road. The two sections of the campus are each surrounded by a brick and wrought-iron fence with gated entrances at intersections.

The Oaks site is located along the south side of Old Montgomery Road. It is an “L”-shaped, mown-turf site that slopes steeply to the southwest. Adjacent and to the east of the site is an asphalt-paved surface lot. Across the lot is the Library Building, and to the west and downhill of the site is a gravel lot.

The house is situated at the north end of the site, set back approximately 60 feet from Old Montgomery Road. At the south end of the site and downhill from the house is an asphalt-paved surface lot. The lot is separated from the rest of the site by a brick retaining wall that runs east–west. The surface lot is accessed from a service road that extends from the asphalt-paved surface lot east of The Oaks site. There is also a small gravel lot on the site, approximately 50 feet southwest of the house.

The Oaks is situated at the crest of a hill. It is a mown-turf site surrounded by mature trees (Figure 28). At the north end of the site is a brick curb that separates the site from the dirt walk and tree-lined setback along Old Montgomery Road. A circular drive extends from Old Montgomery Road and provides access to the porte-cochère at the east side of the house. The portion of the drive that extends from the road to the porte-cochère is paved with concrete pavers. The remaining portion of the drive has beige-colored gravel. At the south end of the circular drive is a gravel access road, and the edges of the access road are defined by concrete valley gutters.

Concrete sidewalks provide access to the primary porch entrance at the west end of the north elevation and to the rear entrances at the east end of the south elevation. The network of sidewalks includes a 6-foot-wide sidewalk that extends from Old Montgomery Road to the main porch entrance. A secondary concrete sidewalk, measuring approximately 4 feet wide, wraps around the north, west, and south elevations. The secondary sidewalk extends from the circular drive at the east end of the north elevation to the main porch entrance where it intersects the larger sidewalk. The secondary sidewalk wraps around the west and south elevation, approximately 8 feet from of the building footprint. At the south entrance, the sidewalk is semicircular in plan and provides access between the entrance and the gravel access road.

Physical Description and Condition Assessment

Exterior

Measured drawings of The Oaks are provided in Appendix A.

Description

The Oaks is a Queen Anne-style, three-story brick masonry and wood-frame constructed house. The building, which has a basement, has a mostly “L”-shaped plan with many one- and two-story wings, projecting bays, and porch structures that result in multiple roof forms. The “L”-shaped portion of the building as well as all two-story wings and projecting bays have gable roofs. The one-story wings and west porch have hip roofs. The main porch at the north elevation has a gable roof. Some of the wings, projecting bays, and porches are historic additions to the original house.

As is typical of the Queen Anne style, the building has a dark color scheme, a variety of window types, steep pitched roofs, a large porch, and multiple chimney stacks. More specifically, this structure is characterized as a free classic, Queen Anne-style house. The subtype is derived based on the type of decorative detailing, which in this case the indicators are the classical style columns (Figure 29).

The north elevation consists of three bays: the main “L”-shaped portion of the building to the east, the projecting bay with a cross gable roof that is centered on the elevation, and the setback portion of the “L”-shaped portion of the building to the west. The projecting bay extends approximately six feet beyond the main portion of the building to the east and fifteen feet beyond the setback portion of the building to the west.

The first floor of the building has a segmental arch window opening with brick sill at the east bay. The window is located at the east side of the bay. A rectangular window opening with brick sill and lintel is located at the west half of the center bay. The main entrance is located at the west bay. It has a segmental arch opening and is slightly east of center on the bay.

Views of the first-floor windows and doors are partially obscured by a one-story wood-framed, wrap-around porch that extends well past the east end of the structure to form a porte-cochère (Figure 30). At the west end of the porch is a concrete entrance stair. The stairs provide access to the elevated porch and consists of six concrete steps that are flanked by brick cheek walls. Above the concrete stairs is a cross gable roof.

The second floor features segmental arch window openings at the east bay and center bay (Figure 31). At the center bay, two segmental arch openings are centered on the second-floor level of the elevation. Centered on the west bay are a segmental arch door and segmental arch window opening. The second floor includes a covered balcony with wood-framed partial-height walls and wood columns. The second floor is capped by a wood entablature that wraps around the entire building.
At the third-floor level of the center bay, at the end gable and above the wrapping entablature, are two rectangular window openings capped by a hood with cornice band. The end gable has a wood entablature and decorative wood brackets at the corners. There is a secondary horizontal cornice that separates the upper third of the end gable. Above the cornice is a semicircular louvered vent opening.

Another feature of the north elevation is a corbelled brick chimney that extends from the roof above the west half of the east bay.

Beyond the porte-cochère is the north elevation of the one-story dining room addition that was added in 1905. The addition extends approximately 13 feet off the main floor plan of the house (Figure 32). The elevation has a wood-framed wrap around cornice and segmental arch window openings with brick sill. At the base of the elevation is a corbelled band of brick. The window opening is slightly off-center on the wall.

The west elevation consists of the west-facing return wall of the projecting center bay at the north elevation, the end gable of the main “L”-shaped portion of the house, and the west elevation of the south wing (Figure 33 and Figure 34). The primary component of the elevation is the end gable bay of the house which is the center portion of the elevation. To the north and set back approximately 20 feet from the end gable bay is the return wall of the projecting bay. To the south and set back approximately 50 feet is the return wall of the south wing. The elevation features a one-story wrap-around porch that continues from the north elevation and a wood entablature that wraps around the second floor. The porch is covered at the end gable portion of the building by a wood-framed hip roof. The second-floor balcony is also included in the elevation. A wood-framed two-story porch with a shed roof is located at the southwest corner of the building where the south wing intersects the main portion of the building.
Window openings are typically rectangular at the first-floor level and segmental arch at the second-floor level. The window openings between the first- and second-floor levels are aligned. Window openings are located at the north end of the return wall on the first- and second-floor levels. At the third-floor level, above the wrapping entablature, is an elliptical window with wood trim.

The center end gable bay has two window openings per floor. The first- and second-floor windows are centered on each half of the bay. The third-floor windows are paired. Similar to the north elevation, there is a secondary horizontal cornice that separates the upper third of the end gable. Above the cornice is a semicircular louvered vent opening.

A two-story enclosed porch is located at the intersection between the south wing and the main portion of the building, a screen door opening is located at the west elevation adjacent to the porch. The remaining portion of the enclosed porch has screen window openings. Two wood-framed door openings are located at the first floor of the return wall elevation of the south wing. They are obscured from view by the screened porch. At the second-floor level is a segmental arch window opening that appears to have been a modified door opening. At the south end of the elevation is a concrete stair that descends from the porch.

Other features of the west elevation include corbelled brick chimneys at the west-facing slope of the gable roof at the projecting bay and cross gable, a smaller brick masonry chimney at the south end of the south wing, and a semicircular louvered dormer at the west-facing slope of the south wing roof.

The south elevation of The Oaks predominantly consists of the protruding two-story gable end of the south wing (Figure 35). Set back approximately 30 feet and west of the south wing is the south elevation of the main “L”-shaped portion of the house. The setback portion of the elevation features the end gable of the cross-gable roof. At the interior corner between the south wing and main portion of the house is a two-story porch. The one-story porch from the north and west elevations wraps around the west end of the elevation. It has a balustrade but is not covered. As with the other elevations, a wood entablature wraps around the building at the second-floor level. The south elevation of the one-story addition is located at the east end of the elevation and is set back approximately 40 feet (Figure 36).

At the south wing, there are four openings that are vertically aligned down the center of the elevation. The basement-level opening has a door with a wood-framed awning, the first and second floors have segmental arch window openings with brick sills, and the pediment has a pentagonal opening with louvered vent (refer to Figure 36).
The west half of the elevation has two segmental arch window openings at both the first- and second-floor levels. A third segmental arch opening is located within the screen porch at both floor levels. Centered at the end gable of the third-floor level are paired window openings and an arched louvered vent opening.

The enclosed two-story porch has a screen door opening at the first-floor level. The remaining openings on the porch have wood-framed screened openings.

The south elevation of the east addition has a wood-framed door centered on the elevation. Above the door is a wood-framed awning roof. A stair with landing and metal handrail provides access to the door. The stair has brick walls, concrete treads and risers, and a metal sleeve joint and round pipe handrail. Immediately west of the stair landing is a wall-mounted gas meter (Figure 37).

In addition to the window and door openings, the elevation also features two corbelled brick chimneys on the south-facing slope of the roof. Copper downspouts are located at the corners of the building as well as aligned with the chimney at the west portion of the building.

The east elevation is composed of the east side of the south wing, the end gable of the main “L”-shaped portion of the building, and the east elevation of the addition. Also visible on the elevation are the return walls of the north projecting bay and the porte-cochère (Figure 38). The east addition and porte-cochère extend 13 feet and 15 feet, respectively, from the face of the building. The south wing addition is almost flush with the main portion of the building (Figure 39). Like the other elevations, the structure has a wood entablature that wraps the building above the second-floor level.

The south wing has a basement level with brick masonry light wells that surround the window openings. There are two light wells, each of which surrounds two segmental arch window openings. Only the tops of the window openings extend above grade level. The first-floor level of the south
wing has five segmental arch window openings. Four of the openings are aligned with basement windows. The remaining window at the middle of the five openings is narrower than the other openings and slightly off center. At the second-floor level three segmental arch window openings are aligned with the second, third, and fifth window openings from the south at the first-floor level. Two of the openings, located in a portion of the building constructed circa 1915, appear larger than those at the first-floor level.

The east addition is located at the south end of the main end gable bay of the building and has a hip roof. The east elevation features a Diocletian window opening centered on the elevation and consists of three window units that share a segmental arch opening. A similar window opening is located to the north on the main portion of the building. At the second-floor level are four segmental arch window openings. The windows appear to be grouped into pairs based on the spacing of the openings, with the center two openings spaced farther apart. At the end gable, above the entablature, is a paired rectangular window opening. As with the other end gables, there is a secondary horizontal cornice that separates the upper third of the end gable. Above the cornice is a semicircular louvered vent opening.

The return wall elevation of the projecting center bay is set back approximately 15 feet and has a rectangular door opening with transom at the first-floor level, a segmental arch window opening at the second-floor level, and an elliptical window opening with wood trim at the third-floor level. The east elevation of the porte-cochère consists of brick piers with concrete caps that support wood posts.

Walls. The first- and second-story walls as well as the wrap-around porch walls are brick construction, while the two-story enclosed porch at the south elevation, second-floor balcony at the north elevation, and roof structure with end gables is wood-frame construction. The two-story porch is clad with vertical wood board and the end gables and balcony walls are clad with pressed sheet metal. The brick walls are laid in an American bond pattern (Figure 40). Tuskegee University students made and assembled the brick with a pink tinted mortar. There is a five-course, protruding brick water table that encircles the south wing, at approximately the bottom of the first floor. At the dining room addition there are only four courses in the water table, yet the elements appear to be the same height. This indicates that a larger brick was used for the addition, which only becomes noticeable when examining the joint where the south wing meets the dining room (Figure 41).
FIGURE 40. Typical brick exterior wall.

FIGURE 41. The corner where the dining room addition abuts the main structure.

The house has a simple, yet thick, molded wood entablature, painted brown. The entablature consists of an upper cornice and a lower frieze (Figure 43). The cornice has a fascia and molded trim and is approximately 8 inches tall. It projects approximately 12 inches from the building and includes a gutter integral to its construction. Copper downspouts extend from the underside of the cornice. The entablature wraps the building above the second-floor level. The frieze is approximately 12 inches tall and is divided into two horizontal bands by a molded trim piece. At end gables, the cornice projects only 6 inches, giving the illusion of a cornice return.

FIGURE 42. Pressed sheet-metal cladding at end gable.

FIGURE 43. View of typical entablature detailing and the decorative depression found at a few of the gable ends.

The end gables and walls at the second-floor balcony are clad with pressed sheet metal painted mauve (Figure 42). The stamped pattern on the sheet metal is approximately 8 inches wide and 9 inches tall and features a pointed shingle design that gives the appearance of a shield. The pattern is staggered 4 inches so that the point of a shingle is centered over the break in the pattern of the course below. They are original to the structure, except for the bottom row on the gable ends that were replaced during a rehabilitation in 1999. Physical evidence, which includes the presence of pressed sheet-metal cladding at wall surfaces in the attic, suggests that the sheet-metal cladding was applied before the roof structure was completed.
Physical Description and Condition Assessment

is a trim board that runs parallel and below the cornice. Approximately 5 feet from the gable peak is a secondary cornice. The trim board extends below the secondary cornice. The portion of the cornice above the secondary cornice does not have the additional trim. A semicircular arched wood-framed louvered attic vent is centered at the peak of the end gable, above the secondary cornice.

![FIGURE 44. Overview of end gable with pressed sheet-metal cladding.](image)

Foundation. The structure is a load-bearing mass masonry structure. According to the 1980 HABS report, the house sits on concrete spread footings. The footings support the load-bearing clay brick masonry walls. The load-bearing walls define eight separate rooms in the basement and crawl space. Two of the rooms are finished and have a concrete slab floor. The remaining six rooms have a dirt floor and a shorter floor-to-ceiling height. Access between the rooms is through small openings in the load-bearing walls. At one location, the rooms are divided by brick piers, each measuring 16 inches square and spaced 8 feet on center. Supplemental structure is in the room at the southwest corner of the building where non-original concrete footings support steel shoring posts.

![FIGURE 45. The structure of the main porch.](image)

Porches. There are three porches on The Oaks: the main wrap-around porch (refer to Figure 29), a wood-framed second-floor balcony (refer to Figure 33), and a two-story enclosed porch (refer to Figure 35). The main porch wraps around the north, west, and south elevations. It is elevated above grade by brick walls that support a non-original concrete floor slab (Figure 45). The original wood porch floors were replaced in 1925 with the existing concrete floor slab.

At the north and west elevations, the wrap-around porch walls have diamond-shaped decorative brick work, which act as vents to the crawlspace below (Figure 46). The detail is formed by nine spaces, approximately one header course in width, left empty. They are centered within each bay and found two courses below the concrete slab at the north elevation and eight courses below the slab at the west elevation. At the south elevation, there are large rectangular openings in the porch wall, each measuring approximately 6 feet tall by 5 feet wide. The openings are filled with a wood lattice (Figure 47). They are spaced 20 inches apart and share a continuous concrete bond beam across the top of the opening.

![FIGURE 46. Diamond-shaped brick detailing found on the north elevation.](image)
The porch has a reinforced-concrete deck slab that is approximately 6 inches thick and has cast beams, each measuring 10 inches wide by 9 inches deep and spaced 9 feet on center.

At the north and west elevations, the porch deck has a concrete perimeter and mortar set red clay tiles, each measuring 6 inches square. The tiles are set into the porch slab so they are generally flush with the perimeter concrete. The south portion of the porch has a concrete deck.

At the perimeter of the porch on the north and west elevations are wood-clad columns. The columns are spaced 10 feet on center and set on a 14-inch-square concrete pad. The columns are square in plan and tapered so that the base is 10-1/2 inches square and the top is 8 inches square. Decorative wood banding wraps around the top of the columns to give the appearance of a column capital. Many of the columns have a thin plaster coat applied to the face, and all columns have been painted dark brown. Downspouts are anchored to some of the columns.

At the south elevation and spanning between columns are wood balustrades consisting of a bottom and top rail and turned wood spindles (Figure 48). The balustrade is approximately 28 inches tall. Where columns are not present, the balustrade has wood piers spaced 8 feet on center.

The columns support a wood-encased beam measuring 8 inches wide and 11 inches deep. There are circular non-original vent openings on the underside of the encased beam. The beams support the roof structures at the north and west elevations. Portions of the west elevation and all of the south elevation are not covered by a roof and are open air. The roof eave includes an integral gutter and extends 10 inches beyond the face of the beam. The north portion of the porch has a gable roof and the west portion has a hip roof. Both roofs have textured pressed sheet-metal roofing.

The ceiling of the porch has 3-1/4-inch-wide bead board, painted dark brown, with wood molding along the perimeter (Figure 49). There are two ceiling-mounted dome light fixtures at the north portion of the porch (Figure 50). The location of an additional junction box was observed, but the light fixture had been removed.

The main entrance to the porch is from a stair at the northwest corner. A concrete sidewalk extends from the street and aligns with the stair. The access consists of a concrete stair with brick cheek walls capped by a concrete coping. Above the stair is a roof pediment. The pediment has wood cornice trim and pressed sheet-metal siding (Figure 51).

At the east end of the porch is the porte-cochère. The structure is defined by a continuation of the porch roof structure. The elevated porch terminates with four concrete stairs that descend to grade. Adjacent to the stairs is a non-original wheelchair lift (Figure 52). The porte-cochère
extends over the drive which has been surfaced with concrete pavers. East of the drive are two brick pier walls with concrete copings. At each pier wall are three wood columns that support the end of the overhanging roof structure.

The south portion of the porch is open air and has a perimeter balustrade.

![FIGURE 49. Porch columns, balustrade, encased beam, and bead board ceiling.](image)

![FIGURE 50. Typical porch ceiling light fixture.](image)

The second-floor balcony is located above the northwest corner of the wrap-around porch and is supported on the wood-framed structure of the lower porch (Figure 53 and Figure 54). The balcony has wood-framed walls, approximately 17 inches thick, which are clad with pressed sheet-metal cladding on the exterior and wood bead board at the interior face. The walls are 36 inches tall and conceal the lower portion of columns that align with the first-floor porch columns. The walls are capped with a sheet-metal coping. Tapered wood columns are located at the corner of the balcony and support an encased beam that in turn supports the roof structure. A downspout is attached to the column at the northwest corner of the balcony.

![FIGURE 51. North elevation entrance porch gable.](image)

![FIGURE 52. Wheelchair lift located at the staircase within the porte-cochère.](image)
The interior of the balcony has a polyvinyl chloride (PVC) membrane roof over which there is a 3/4-inch by 2-1/2-inch wood deck installed over wood sleepers. The balcony has a bead board ceiling with a perimeter molded trim. Wood trim panels are also located on the masonry walls, extending the line of the entablature that wraps around the building. At the center of the ceiling is a ceiling-mounted light fixture with a globe lamp (Figure 55). The balcony is accessed from a door at the north elevation. There are two window openings along the west elevation.

The wrap-around porch provides the foundation for the two-story enclosed porch at the south elevation (Figure 56). The porch has an “L”-shaped plan and a wood post-framed structure. The walls are clad with vertically-oriented tongue and groove boards painted dark brown (Figure 57). Horizontal trim pieces separate the siding from the window openings as well as delineate the floor level. At each floor level is a continuous band of wood-framed window openings with fine metal mesh screens and wood stops on the exterior of the frame. Screen door openings are located at the first floor level at both sides of the porch. The porch has a shed roof with pressed sheet-metal roofing.
FIGURE 57. The vertically oriented wood cladding at the two-story screen porch.

The first floor of the porch is one continuous space and is accessed from the interior at three different locations. The interior of the porch has a concrete floor and exposed wood framing.

The second floor of the porch is divided into three distinct spaces by wood-framed walls clad with shiplap siding: a west porch, a south porch, and an enclosed porch. The west and south porches have wood floors, exposed wood framing, and screen windows. The enclosed porch has carpet flooring, plaster walls with bead board wainscoting, and has been incorporated into the interior space of the building (Figure 58).

On the south elevation of the two-story porch, there is a concrete staircase that leads up to the south entrance, which begins just before the southern elevation of the south wing (refer to Figure 35).

Windows. The most common window found on elevations of the structure is a wood-frame, two-over-two double-hung window with monolithic glass (Figure 59). It has a brick segmental arch opening and a single header course brick sill. The windows measure approximately 39 inches wide and 85 inches tall. Slight variations exist in the window dimensions, whether or not the sill is flush, and whether there is a one-course brick arch or two (Figure 60). Almost every different window size and modification can be seen on the east elevation of the building (Figure 61). Note that the two windows at the south end of the second floor appear larger than the others. The location of these windows corresponds to a later, circa 1915, addition to the structure.

At both the wrap-around porch and on the north elevation of the dining room addition is a wood-frame, one-over-one double-hung with monolithic glass window (Figure 62). It has a two-course brick arch and a flush header course sill. Variations of this style exist, primarily in the overall dimensions, but they are approximately 32 inches wide by 84-1/2 inches tall. A modified version of this window was also found underneath the porch, consisting of paired windows and a center mullion (Figure 63). This paired unit measures 81 inches wide by 85-1/2 inches tall, with each window being 33-1/2 inches wide by 78 inches tall.

FIGURE 59. Typical masonry window.

FIGURE 60. Typical masonry window unit showing variation in overall window dimensions and sill extension.

FIGURE 61. The Oaks, east elevation, showing the minor modifications made to the typical masonry window unit.
On the east elevation there are two tripartite Diocletian windows that consist of three one-over-one wood-frame double-hung window units (Figure 64). One is located at the dining room addition and the other is located immediately north, at the first-floor level of the end gable bay of the building. They have two-course brick arches with header course flush sills, and have approximately 12 inches between each unit. The two side units measure 26-1/2 inches wide by 84 inches tall, while the center unit measures 38 inches wide by 85 inches tall.

The typical window unit at the third-floor end gable is a paired wood-frame double-hung window, with a center mullion (Figure 65). On the west and south elevations, they are found as two-over-two units, but on the east elevation it is four-over-four. It is centered within the opening and begins at the top of the continuous entablature.
The north elevation is an exception to this with its two-over-two window type, but treating them as single units with one shingle width of cladding placed in-between (Figure 66). Above the windows is a projecting horizontal wood hood painted to match the trim, which continues a few inches past the openings on each side. Additionally, the north end gable lacks a roof vent typical of the other end gables on the building.

The four basement windows are wood-frame, six-over-six double-hung units (Figure 68). They have a one-course brick arch and a single header course sill. The units measure 32 inches wide by 63 inches tall. Associated with the windows are brick light wells with brick copings covered with a cementitious parge coating.

The two-story porch at the south elevation of the building has non-original wood-framed screen openings. The openings vary in size and shape, with the units consistently making up the entire width of each elevation.

Doors. The most common door found on the structure is a wood-frame, multi-panel, single-leaf door (Figure 69). It is found on every elevation, typically at the porches and balcony. The doorways have a segmental arch opening with a single-light transom and a curved wood top panel above (Figure 70). The opening measures approximately 35 inches wide by 84-1/2 inches tall, with 14-1/2-inch jambs. Typically, the openings have a single soldier course of arched brick; however, some openings have a double course of soldier brick. The door frames and transom are set at the interior side of the door opening. The transom and door frame are separated by a 4-inch-wide rail. The door leaves are solid wood and consist of multiple recessed panels. Each of the door leaves is slightly different. Many of the doors feature glazing at the upper panel and either horizontally or vertically oriented recessed panels at the bottom half of the door. While the doors are similar, variations to the door type beyond the configuration of the door leaf and opening include slight differences in dimensions. Mortise locks and hinges remain. The threshold and sweep have been replaced.

The main entrance doorway is a painted brown wood-framed double door with sidelights and transom set within a brick relieving arch opening (Figure 71). Each leaf measures 24 inches wide by 83-1/2 inches tall, with single pane glazing and one wood horizontally-oriented recessed panel. The glazing occupies the upper three-fourths of the door. A projecting wood trim extends along the bottom of the glazing panel. The entire opening measures 90 inches wide by 110-1/2 inches tall.
The sidelights on each side of the door have a similar design to the door leaf, only thinner, with glazing at the upper portion, projecting trim below the glazing, and a recessed lower panel. A two-light transom spans the entire opening above the doors and sidelights. Above the transom is a curved top panel that extends to the arch. Separating the doors from the sidelight and transom are 5-inch-wide vertical and horizontal trim pieces. The trim has chamfered corners and decorative detailing along the center of the trim. At the base of the vertical trim is a decorative plinth block profiled with an ogee curve. Where the vertical and horizontal trim intersect is decorative block with a bullseye pattern. The door jamb is set back 14 inches so the door is flush with the interior face of the wall and the exterior trim is flush with the exterior masonry. The door has non-original hardware including escutcheon plate, knob, mortise lock, doorbell, and wood threshold.

The two doors that allow access to the two-story porch at the back of the house are single-leaf, hinged wood-frame screen doors with sidelights and transom (Figure 72). The doors measure 35 inches wide by 83-1/2 inches tall within the wood-frame screened porch. The door leaf consists of three sections: a large upper panel and two smaller panels, each separated by wood mullions. At the corners of the inside face of the upper panel is a decorative curvilinear trim. The screens consist of two layers: a fine metal mesh and half-inch square welded wire mesh. It is secured by an exterior wood stop. There are surface mounted handles, double-action hinges, and a barrel slide bolt lock mechanism. The sidelights have fine mesh screens and vertical wood siding below. The transom is separated from the door by a 4-inch-wide rail and has a fine mesh screen.

On the second floor of the south two-story porch are two doors on each side of the enclosed corner (Figure 73). The openings have wood-framed, single-leaf multi-panel doors. There is a single light transom window above that spans the width of the door, framed by a thick, yet simple, wood trim. The walls surrounding the doors are clad in horizontally-oriented shiplap siding, painted brown.

The basement entrance is a wood-framed, single-leaf, multi-panel door (Figure 74). It has a flat brick relieving arch with a 12-inch deep frame set back 3 inches from the masonry. The door measures 31 inches wide by 63-1/4 inches tall. The
knob and escutcheon plate appear to be original, but the deadbolt is not. The awning roof above the door has 4x4 wood framing. The edges of the framing members have been chamfered as a decorative feature. The roof is wood-framed and has tongue-and-groove bead board siding, measuring 3-1/2 inches wide, along the sides. The structure has a pressed sheet-metal roof and decorative wood brackets for support.

FIGURE 72. The west doorway for the double deck porch, looking toward the east.

FIGURE 73. Typical door found on the second floor of the double deck porch.

The entrance to the dining room addition, located on its east elevation, is a wood-framed single-leaf multi-panel door (Figure 75). It has a single glazed light on the upper-half of the door and two vertically-oriented recessed panels below. The jamb is 11 inches deep and is set back 2-1/4 inches in the masonry. Above is a curved top panel that extends to the bottom of a brick arch. The opening measures 33 inches tall by 82-1/2 inches wide and is topped with an awning roof that terminates at the entablature. The roof was constructed similar to the basement door awning accept that the side are not clad with bead board. In order to access this door, there is a concrete stair with pipe metal handrail, painted black. The concrete landing measures 56 inches wide by 36 inches deep.

FIGURE 74. Basement entrance at the south elevation of the south wing.

FIGURE 75. Dining room addition entrance on the south elevation.
Roofing. The roof of the main structure consists of non-original, unpainted aluminum, pressed sheet-metal panels laid on top of roofing felt, most likely 15-pound roofing felt. The pressed sheet-metal panels have a ridged pattern that gives them a brushed appearance (Figure 76). The panels have an exposed face of 12-1/2 inches and a 1/2-inch raised lip at the downslope end. Valleys are lined with aluminum sheet metal. Chimneys and roof terminations into brick have copper flashing turned into a reglet in brick mortar joints and sealed with sealant. This system is continued onto the porch roofs, the dining room addition, and the two door awnings. An ethylene propylene diene monomer (EPDM) roof was installed in 1999 at the second-floor balcony roof and was then covered with the existing sheet-metal roof. At the corner of the two-story south porch, there is a standing seam metal panel roof. Additionally, just to the south of that, on the west-facing slope of the south wing roof, there is a semicircular dormer roof vent (Figure 77).

The perimeter of the roof has a copper drip edge and gravel stop that wraps the fascia. The copper sheet metal extends over a cornice ledge, measuring approximately 6 inches wide, followed by the gutter. The gutter is integrated into the cornice and is lined with the copper sheet metal. The copper liner extends under the roof cladding. Based on physical evidence, the sheet metal extends approximately 3/4 inch onto the roof structure. The gutter measures approximately 6 inches wide and 4 inches deep but varies depending upon its location on the building. Copper downspouts extend from outlets in the integral gutter system (Figure 78).

There are seven chimneys on the building. Four of the chimneys have a similar appearance and appear original to the structure. The chimneys
measure approximately 24 inches by 44 inches and extend approximately 4 feet 6 inches above the highest ridgeline (Figure 79). The chimneys have ornate brickwork that includes horizontal corbelled brick bands that wrap around the top of the chimney and inset vertical course of brick that accentuate the vertical lines of the chimney. The chimneys are each capped with sheet metal. The original chimneys are all located on the main “L”-shaped portion of the house. A non-original brick chimney, which appears to have been rebuilt, is located at the south wing of the building. It measures 24 inches by 44 inches, is capped by sheet metal, and extends 6 inches above the cornice line, well below the height of the other chimneys (Figure 80).

Condition Assessment

The following notable conditions were observed in December 2016 at the building exterior:

Clay Brick Masonry

- Cracking and spalling of brick was observed at the parget-coated coping units at brick masonry window well walls (Figure 81). The top three courses of brick are corbelled and project beyond the face of the wall, forming a coping for the wall that is coated with a cementitious parget coating. The parget coating is cracked and a few of the brick units at the base course have spalled. Where spalled, the projecting half of the brick has spalled.

- Open, eroded, and deteriorated mortar joints were observed at the field of the wall and at chimneys (Figure 82 and Figure 83). Eroded mortar joints were typically recessed 1/2 inch beyond the face of the brick. The erosion was most pronounced near entrances and at corners of the building adjacent to the downspouts. Evidence of previous localized repointing was observed. At both the field of the wall and chimneys, the repointing mortar was typically red in color and was struck flush with the brick (Figure 84).

- Cracked and open mortar joints were observed at the brick masonry patio walls (Figure 85 and Figure 86). The distress consisted of cracked mortar joints at the first
bed joint below the concrete patio slab and cracked mortar joints extending from corners and decorative openings in the wall. The joint distress often had a stepped pattern and appeared wet. The area of distress was also accompanied by some displaced brick masonry, biological growth, and efflorescence.

FIGURE 82. Eroded mortar joints at the field of the wall.

FIGURE 83. Deteriorated mortar joints and evidence of previous repointing efforts visible at the chimney.

FIGURE 84. Evidence of previous mortar repointing in the field of the wall.

FIGURE 85. Step cracking, open joints, and evidence of water infiltration at the porch walls.

FIGURE 86. Step cracking and efflorescence at the porch walls.
Cracked and open mortar joints were observed above the door opening at the east end of the south elevation (Figure 87). The opening has a flat arch brick opening. Some mortar joints between the flat arch brick are cracked and many appear to have been recently repaired. The cracked joints extend in a stepped pattern approximately five courses above the opening.

Spalled brick was located at the field of the wall as well as at corners and along edges of building features (Figure 88). Spalling was most pronounced at the first-floor level at the east end of the south elevation. The spalling consisted of full-face spalling of the fired face of multiple brick units. Spalling was also observed at corners and edges of the building, specifically at door openings and chimneys.

Extensive accumulation of efflorescence was observed along the lower four courses of brick at the base of the north wall of the porch foundation (Figure 89). The efflorescence was visible from the crawl space and covered the face of the brick.

Efflorescence and moisture staining was observed at the northwest corner of the brick masonry porch wall (Figure 90 and Figure 91). The efflorescence consisted of white staining at the top of the brick wall, below the concrete porch slab, and was most pronounced at the side of the wall facing the crawl space.
Concrete

- Cracked and spalled concrete was observed at the edge of the concrete bond beam below the concrete porch slab (Figure 92). The cracking extended horizontally, approximately 3 inches above the bottom edge of the bond beam. At spalled areas, the reinforcing bar was exposed and observed to be corroded. The reinforcing bar was noted as having a cover of corrosion of approximately 1 inch (Figure 93 and Figure 94). Previous patch repairs had been performed at some concrete spalls but appear to have failed. Moisture staining was also visible and appeared to originate from the bed joint below the concrete porch slab (Figure 95).
Cracked and spalled concrete was observed at some corner locations at the northwest corner of the porch slab. The concrete slab had vertical cracks that extended through the concrete. There was biological growth associated with some of the spalled areas (Figure 96). In addition to larger spalls, there were finer cracks that exhibited efflorescence, staining, and other indications of moisture-related distress. The distress was located above areas where brick distress was observed.

Figure 96. Spalling and cracking of concrete at northwest corner of porch.

Wood

- Deteriorated wood was observed at the base and at the cladding of approximately half of the wood porch columns (Figure 97). The wood at the columns was friable. At some locations, previous repairs had been performed with wood dutchman.

Figure 97. Deteriorated wood at base of columns.

Debonded and deteriorated coatings were observed at most of the wood porch framing members (Figure 98). Many of the porch columns had been previously repaired and resurfaced with a thin plaster coating. It appears the intent of the coating was to smooth the surface of the columns prior to repainting. Most of the plaster coating has cracked and debonded, and the underlying wood has been exposed (Figure 99 and Figure 100).

Figure 98. Debonded paint and plaster coating at columns.

Figure 99. Cracking and flaking paint at columns.
Blistered and peeling paint was observed at wood porch columns. At many locations, the paint is blistered and debonded from the wood substrate (Figure 101). The underlying wood appeared to be deteriorated when probed. Throughout the porch, there is evidence of previous paint coatings that were not completely removed and remain in place (Figure 102).

Biological growth was observed at the underside of the bead board porch ceiling (Figure 103). The growth consisted of dark-colored spots on the wood. Biological growth was also observed at the floor boards on the second floor balcony deck (Figure 104).

One of the wood porch columns at the east end of the porch is displaced (Figure 105). The base of the column has been shifted approximately 1 inch to the northwest and is no longer centered on its concrete base.
Missing wood cladding boards were observed at the south porch enclose (Figure 106). The missing tongue-and-groove boards were located adjacent to a downspout. The remaining wood members exhibit some indications of moisture-related distress.

A cracked recessed wood panel was observed at one door leaf (Figure 107). The hairline crack extends vertically through the panel.

Peeling paint was observed at all window and door openings (Figure 108). At some locations, the peeling paint had been removed and the underlying wood is exposed to view.

A gap was observed between the wood-framed shed roof awning over the south entrance and the brick masonry wall (Figure 109). The gap was located at the top of the roof framing and increased toward the top, indicating that the roof structure was rotating outward. The gap was approximately 2 inches wide at the top.
Evidence of previous patch repairs was observed at the east end of the south elevation (Figure 110). The repairs included infill of missing brick masonry with tinted mortar. The patch appeared to infill an area where an electrical service box had been removed.

Metal

- Mild surface corrosion was observed at the handrail at the south entrance to the east wing (Figure 111). The paint at the handrail has peeled and the exposed metal handrail has surface corrosion.

- Peeling paint was observed at the sheet-metal roof flashing and copings and pressed metal siding (Figure 112 and Figure 113). At the sheet-metal copings, the paint peeled away and the sheet metal was exposed. At pressed metal cladding, the peeling paint was cracking and flaking. Where the paint had been removed, a previous layer of paint was exposed to view.
Windows and Doors

- Missing screen stops were observed at one first-floor screen door on the southwest porch. The anchorage for the screen was exposed to view.

- Broken and loose glass units were observed at a few window units (Figure 114). The distress was most pronounced at the three basement window units on the east elevation. At these locations, many of the wood muntins are deteriorated, and the glazing putty has been removed. Many of the glass units are loose, displaced, or cracked. Cracked glass was also observed at two first-floor windows.

Deteriorated wood was observed at the end of wood door and window framing members (Figure 115). The wood was soft when probed and had checks that extended from the end of the wood framing member. At one location, the bottom of a door framing member had deteriorated and was no longer present (Figure 116). The paint at the deteriorated wood framing was cracked.

Roofing

- Clogged, damaged, and backed-up downspouts were observed at many roof locations (Figure 117). Many of the downspouts are damaged or have evidence of being clogged. Some of the gutters also exhibited large amounts of debris (Figure 118). At one location, the gutter near the downspout was overfilled with water and flowing onto the adjacent cornice ledge (Figure 119). There were small branches in the gutter. The sheet-metal roof cladding adjacent to the gutter has deformed and separated from the gutter liner and flashing (Figure 120).
Reverse lapped shingles were observed at the gable roof over the north porch and the east wing (Figure 121). The shingles at the ridges are lapped in the opposite direction as the flow of water. Water at these locations has the potential to infiltrate the roof system at the reverse lap of the shingles.

Gaps were observed between the gutter liner and the sheet-metal roof cladding at the porch (Figure 122). Where observed, the gutter liner appeared to have been deformed and was outboard of the bent edge of the sheet-metal roof cladding. There was a 1/8-inch-wide gap along the flashing to the roof cladding interface.

Figure 121. Roof ridge with reverse-lapped shingles. Arrow shows desired direction of water flow away from building. The seams between the panels (dashed line) would allow water to enter the seam.
A large open joint was observed at the roof to wall interface (Figure 123). The gap between the roof materials was approximately 1 inch wide. The large opening is a potential source of water infiltration. Further investigation is required to determine the condition of underlying flashing, if present.

Deformed and damaged sheet-metal shingles were observed at a few areas of the roof, including near gutters and at the field of the main building roof (Figure 124 and Figure 125). Damaged shingles at the low end of the roof slope, adjacent to gutters and downspout outlets, were warped and curled and had become displaced from the supporting edge cleat. At the field of roof, the deterioration consisted of warping and buckling of sheet metal along the bottom edge of the shingles.

Moisture staining was observed at roof sheathing boards and joists at the southwest wing of the building (Figure 126). The moisture staining was concentrated at sheathing boards near wood rafters as well as...
at the bottom of rafters adjacent to the southwest chimney (Figure 127). The staining does not appear to be active.

- Loose and detached copper straps were observed at some of the downspouts (Figure 128). The failure consisted of the fastener head slipping through the anchor hole in the strap. The downspout pushed out approximately 2 inches from the building.

- Deteriorated sealant at roof flashing was observed (Figure 129). The flashing at the joint between the roof flashing and the brick masonry wall is deteriorated. It appears that sealant repairs were installed over previously existing failed sealant.

FIGURE 127. Moisture staining at roof rafters.

FIGURE 128. Damaged and dislodged downspout strap.

FIGURE 129. Deteriorated sealant at regletted flashing joint.

- Corrosion of sheet-metal flashing at roof dormers, chimneys, and access hatches was observed (Figure 130). The flashing had surface corrosion and staining that extended onto the adjacent metal roof cladding.

FIGURE 130. Corrosion staining at interface of flashing with roof cladding.

- Corrosion of sheet-metal flashing at roof dormers, chimneys, and access hatches was observed (Figure 130). The flashing had surface corrosion and staining that extended onto the adjacent metal roof cladding.

Interior

Description

From an architectural perspective, Robert R. Taylor’s design has a floor plan parti that is representative of residential structures of the late Queen Anne-style period. Internally, the house is organized around a central hall that connects the two stairs that provide access to three floors and a basement. Diagrammatically, all the primary rooms are arranged around this central north-south hall in a pinwheel fashion (Refer to Floor Plans in...
Appendix A). This design approach was well suited to Washington’s personal philosophy of dignity and functional efficiency. It effectively served the needs of his family for “comfortable surroundings” and equally accommodated social gatherings and formal meetings with dignitaries and donors.178

The main, first floor has family living spaces that include the entrance and front hall with primary stair, the parlor, a study, a dining room, a guest room and bath, and, in the south ell, the kitchen, breakfast room, and serving pantry adjacent to the secondary rear stair. Each room on the north, west, and south sides has windows onto the broad porches (i.e., verandas) which are another prominent architectural feature of the asymmetrical, free classic derivative of the Queen Anne style (Figure 131).

FIGURE 131. The Oaks from the northwest.

Between 1980 and 1981, most of the main floor was carefully repaired and restored to its condition during the period of significance, 1899 – 1929. These included interior elements added to the house from 1915 to 1925, during Margaret M. Washington’s occupancy. Inappropriate alterations made during the years of Institute ownership (1925 – 1974) were corrected.179 This project encompassed major architectural, mechanical, and electrical rehabilitation (Figure 132). Subsequently, a 1997 report by the Denver Service Center noted sagging and sloping floors in the rear hall and the guest room, and excessive deflection in the header of the double sliding door between the front hall and the parlor.180 These structural deficiencies and other exterior architectural elements were repaired in 1999 (Figure 133).181 Major mechanical, electrical, and fire suppression work was accomplished in 2007 along with related structural, floor, and plaster repairs and rehabilitation of windows on the first and third floors.

Because of these rehabilitation and restoration projects, the first and second floors are now in good condition and accurately represent Robert Taylor’s original design and the significant alterations made by Booker T. Washington, such as the 1905 dining room extension and the addition of a second story to the ell around 1910. Remarkably, The Oaks was constructed by students using bricks made on the campus, framing lumber from the sawmill, and interior architectural woodwork and finishes produced at the Institute.

Following sale of The Oaks to Tuskegee Institute in 1925, the Institute initiated the following changes in 1929: installation of radiant heating system; changes to electrical system including new metal incandescent lighting fixtures, historic fixtures were retained in the den, foyer, veranda, and porch, and baseboard outlets installed; fireplaces were rebuilt in the study, parlor, and dining room; two original mantels destroyed and the third was relocated to the trunk room on the third floor; and renovation of the porches. The Institute’s alterations are contributing to The Oaks, and highlight the structure’s continued use even after the prominent Washington family moved on.

First Floor

Walls and Ceilings. Exterior walls from the basement to the top of the second story are load-bearing brick masonry and finished with plaster on the interior. The exterior walls of the third floor and interior partitions on all three floors are wood-framed and finished with plaster over wood lath. Settlement and the structural deficiencies already noted led to cracks in the plaster. Although major and minor plaster repairs were included in the 1980, 1999, and 2007 rehabilitation and repair projects, there is plaster damage throughout the house. It is not pervasive and much of it is minor. However, the amount of minor damage is considerable (Figure 134). There are locations where the damage is serious because it compromises the integrity of the plaster and its appearance, in some places, the damage has adversely affected other historic materials (Figure 135).
Horizontal planes of plaster walls are interrupted by individual and groups of wooden windows of varying sizes with distinctly vertical proportions. Windows are almost always positioned in the center of a wall which reinforces the strict interior symmetry of the room, a design principle of the Queen Anne style and a character-defining feature of the house. Wall planes are divided vertically by a traditional picture rail that runs around the rooms approximately 12 inches below the ceiling (Figure 136). Above the picture rail, frieze murals were painted by E.W. Borman around 1908. Frieze murals are a unique decorative feature of the parlor, study, dining room, and dining room extension (Figure 137 and Figure 138). There is water damage to the mural in the dining room extension because of roof and flashing leaks (Figure 139).
Plaster walls are painted except where wood paneling or a wood wainscot (Figure 140) was used or ceramic tile was applied in bathrooms (Figure 141). The palette of paint colors follows the recommended paint scheme based on the Munsell System of Colors that was derived from the paint analysis contained in the 1980 Historic Structure Report. On the first floor, the wall color is a dark and rich red in the foyer, parlor, study, dining room and extension, front hall, and rear hall (Figure 142). Walls in the remaining first floor rooms are painted a neutral, light tan or, cream (Figure 143), except for the pantry and bath where the walls are off-white (refer to Figure 141).
designed the first floor of The Oaks with the highest ceiling because spaces on the main level were a reflection of Booker T. Washington’s prominence and status, and they were the most public spaces. The lower ceilings of the second and third floors are characteristic of more intimate and private family and guest bedrooms and baths. Ceilings consist of plaster applied over wood lath.

First-floor plaster ceilings have evidence of water damage, discoloration, and degradation, mostly because of roof and gutter leaks, but generally, they are in good condition except in the dining room extension where the ceiling has visible water stains and deteriorated plaster. The one inconsistency is the narrow-board wooden ceiling in the kitchen, which conceivably dates to the period between 1910 and 1915 when a second story was added to the ell above the kitchen and breakfast rooms. The space added above was Booker T. Washington’s private study, and it also has a narrow-board wooden ceiling.

First-floor plaster ceilings are painted light tan or cream (refer to Figure 143) except for the guest room closet, pantry, and bath where the ceilings are off-white.183 The wooden ceiling and crown molding in the kitchen are finished with dark brown paint and varnish.

Floors. Existing, original wood flooring is 1/4-inch-thick narrow parquet installed diagonally within a decorative 10-inch wide parquet border (Figure 144). Three shades of wood were used in the intricate border pattern, light, medium and dark, but the species of wood is not documented. However, from the grain and appearance, it is likely that the flooring is a hardwood species such as oak or maple. The kitchen, breakfast room, and pantry have 1-1/2-inch-wide strip flooring installed perpendicular to the east and west walls, and there is no border (Figure 145). In 1957, the floors were severely stripped and refinished. The process left the original parquet badly scored and gouged. During the 1980 preservation project, flooring in the guest room was removed and replaced with new parquet that matches the original pattern (Figure 146). Currently, a

FIGURE 142. Detail of first floor wall and mural.

FIGURE 143. Painted plaster walls and ceilings at breakfast room.
combination of patterned and solid wall-to-wall carpet covers the wood flooring in the parlor, the study, the dining room, the dining room extension, and the front and rear halls (Figure 147). Carpet also covers the stair landing in the front hall, and a runner covers treads and risers to the second floor. Four stair risers are fitted with painted metal grilles for the return air plenum beneath the stairs, so the carpet runner is not continuous over the entire stair run (Figure 148). Dark brown paint on the grilles has been worn away by foot traffic on the stair.

FIGURE 144. Decorative parquet border.

FIGURE 145. Detail at typical 1-1/2-inch strip flooring.

FIGURE 146. Detail at parquet flooring.

FIGURE 147. Wall-to-wall carpet at first floor.

FIGURE 148. Carpet and grilles at stair.
Woodwork and Trim. Elaborate interior wood trim, moldings, and woodwork are consistent throughout the first floor, except for the kitchen and pantry, where there is no picture rail. The kitchen also has the only wooden ceiling and crown molding on the first floor. Door and window casings in rooms in the ell are a simpler variation of the typical trim. The corner blocks at the door and window heads are square with a rosette (Figure 149). In contrast, corner blocks elsewhere on the first floor are rectangular with a rosette and extend above the casing at the head (Figure 150).

Cabinets and fixtures no longer exist in the kitchen, but a built-in China cabinet on the west wall of the pantry remains and was repaired during the 1980 preservation project (Figure 151). Door and window casings with rosette corner blocks, 10-inch two-piece baseboards (Figure 152), picture rails, and beaded board wainscot are typical. The wainscot is not present in the parlor, study, dining room, and dining room extension. All woodwork and trim are finished with dark brown, high gloss varnish, except for the picture rail which is painted gold (gild).\(^{184}\)

\(^{184}\) Denver Service Center, 1979, Sheet 36.
The interior louvered wood shutters are not original, but date to 1980. The original shutters were replaced with venetian blinds in 1957 when the house was used as an Institute administration building. The existing shutters are replications of the original interior louvered shutters that were removed during renovation projects prior to National Park Service stewardship of The Oaks. The design of and locations for the current shutters were included in the drawings by the Denver Service Center for the 1979 preservation project for The Oaks. Installation procedures required the removal of “plugs” in the window jambs where the hinges of the original shutters were attached and then mounting the new shutter hinges at those locations (Figure 153).

Doors and Hardware. Single exterior doors are wood with a single glass light above two raised panels. The pair of 7-foot-tall entry doors at the front hall has single glass lights above one raised panel, matching narrow sidelights, and a narrow transom divided in the center by a mullion. Thresholds are wood.

Interior stile-and-rail doors are wood with four raised panels. Door openings with transoms include doors into the study and dining room from the front hall, the guest bedroom door and closet.
door, the breakfast room door from the rear porch, and the pantry door. There are two pairs of sliding pocket doors in the parlor. One pair is centered in the south wall which opens to the front hall and the other pair in the east wall which opens to the study. A third pair of sliding pocket doors in the south wall of the study opens to the dining room.

Much of the hardware throughout the house appears to be original or at least from the period of significance (Figure 154, Figure 155, and Figure 156). However, there are a number of lockset and latches of different designs representing different periods of The Oaks’ history. A majority of original and older locks do not have keys. Some of the historic hardware was repaired with contemporary components or was abandoned in place and supplanted with modern hardware components (Figure 157). The original hardware appears to be brass or bronze; although, the finishes are worn, dull, and tarnished (Figure 158).
Stairs. Both interior stairs are constructed of wood and trimmed with wood. The open main stair has two straight runs that connect all three floors. It begins at a landing two steps up from the front hall. From there, the first run rises to the west, up to the second floor. The second run of stairs starts at the east end of the second-floor front hall and ascends to the third floor. An open handrail on the north side of the main stair starts with a square newel post at the landing. The rail is supported by two square-top, turned balusters at each tread and dies into the first one of a pair of square newel posts at the second floor. The rail turns 90 degrees and runs horizontally over two balusters between the pair of newel posts. After another 90-degree turn, the handrail runs parallel to the first flight of stairs to another newel post where it turns again and terminates at the south wall of the front hall under the next flight of stairs that go to the third floor. The stair to the third floor is virtually identical to the stair below it.

The space under the first-floor stair is enclosed by a wall embellished with a pattern of square, rectangular, and triangular wooden panels above the 2-foot-10-inch-high wainscot. Within each panel is beaded board paneling placed on the diagonal and rotated 90 degrees from the beaded board in the adjacent panels (Figure 159). The same beaded board paneling is oriented vertically in the wainscot and sits on top of a 10-inch-high baseboard. This wainscot detail is typical throughout the first floor. In 1957, during the period of Institute ownership, the space under the stair was changed from a guest room closet to a receptionist’s space by removing large portions of the north-facing and east-facing walls under the stair. Both walls were restored to their original condition during the 1980 preservation project.
basement to the second floor, although it was likely designed to go to the third floor, as a partial segment of the stair is concealed in an adjacent closet on the second floor (Figure 160). Stair walls are paneled with dark-stained, vertical beaded board. Treads and landings have a light-tone, wood-strip flooring, and a carpet runner is on the stair from the first floor to the second floor. No carpet is on the flight to the basement.

FIGURE 160. A rear wall of shelves terminates the stair inside a second-floor closet.

Fireplaces. According to the 1980 HSR, fireplaces in the parlor, study, and dining room were completely rebuilt in 1929 shortly after the Institute purchased The Oaks. The original mantels in the parlor and dining room were destroyed, but the mantel from the study was stored in the trunk room on the third floor. No reason was given to explain why the fireplaces on the first floor were not rebuilt, and there is no mention of work on the fireplaces in the bedrooms on the second floor. In 1979, under National Park Service stewardship, all three fireplaces on the first floor were restored to their original condition.

All the fireplaces were designed and constructed to burn coal, so the fireboxes are narrow and shallow, and cast-iron registers and covers are present. The hearths and firebox surrounds are tiled. The most elaborate mantels are in the parlor and in Margaret Washington’s bedroom on the second floor. Both have over-mantels that frame rectangular mirrors and mantel shelves supported by delicate turned spindles (Figure 161 and Figure 162). A distinctive feature of the parlor mantel is the carved face board beneath the mantel shelf which has an alternating flower motif. Both the parlor and dining room mantels were reconstructed, and the mantel in the study (Figure 163) was re-installed and refinished during the preservation project in 1979. The other six original mantels in the house are less pretentious with simple designs and modest details (Figure 164 and Figure 165).

FIGURE 161. Parlor fireplace.
Guest Bathroom. The first-floor guest bathroom serves the adjacent guest room and the entire first floor. It is accessible by a door on the west wall from the guest room and another door on the east wall from the rear hall. White plumbing fixtures include a claw-foot tub, tank-type toilet, and wall-hung sink. Fittings are chrome, and none of them are functional (Figure 166). A wainscot on all four walls consists of white subway tile with a narrow accent strip of gold tiles made with a raised Greek key pattern. The wainscot is capped with white bullnose tile trim (Figure 167). The ceramic tile floor has a regular pattern of octagonal grey and white mosaic tiles (Figure 168). A single wall sconce
is mounted on the west wall next to the door, and natural light comes from a double-hung window in the south wall above the tub (Figure 169).

FIGURE 166. Overall view of first-floor guest bathroom.

FIGURE 167. Detail of wall tile at bathroom.

FIGURE 168. Detail of floor tile at bathroom.

FIGURE 169. Bathtub in first-floor guest bathroom.

Second Floor

Walls and Ceilings. Exterior walls are load-bearing brick masonry and finished with plaster on the interior. Settlement, structural deficiencies, and roof and gutter leaks caused visible damage to plaster. Although major and minor plaster repairs were included in the 1979, 1999, and 2007 rehabilitation and repair projects, plaster damage remains on the second floor. Much of it is minor and less prevalent than it is on the first floor, but there are locations where the damage is serious, because it compromises the integrity of the plaster and adversely affects its appearance (Figure 170).
Horizontal planes of plaster walls are interrupted by individual windows of varying sizes. In contrast to the first floor, windows are not always positioned in the center of a wall, resulting in asymmetry. Wall planes are divided vertically by a traditional picture rail that runs around each room and intersects the window head trim. In the boys’ bedroom and the den, the picture rail runs uninterrupted above the windows (Figure 171).

Plaster walls are painted (Figure 172) except where wood paneling or a wood wainscot was used in Washington’s den (Figure 173), in the front and rear halls, or where ceramic tile was applied in bathrooms (Figure 174). The palette of paint colors follows the recommended paint scheme that was derived from the paint analysis contained in the 1980 HSR. System of Colors were selected. The dark red wall paint continues up the stair from the first floor and colors the second-floor front and rear halls (Figure 175). Walls in the bedrooms are painted in various shades of gold, tan, and blue (Figure 176; refer to Figure 172).

The 10-foot-8-inch-high ceilings are composed of plaster applied over wood lath. Second-floor plaster ceilings have evidence of water damage, discoloration, and degradation mostly because of roof and gutter leaks (Figure 177 and Figure 178), but generally, they are in good condition. One inconsistency is the narrow-board wooden ceiling in the den that dates to the period between 1910 and 1915, when the second story was added to the ell above the kitchen and breakfast rooms. This second-floor den was Booker T. Washington’s private study, and it has a painted, narrow-board wood ceiling and crown molding (Figure 179). The wooden ceiling in the den is painted off-white, and the crown molding is finished with dark brown varnish. Other second-floor ceilings are painted cream (Figure 180) except for the bathrooms which are off-white.188

Floors. Existing, original wood flooring is 1/4-inch thick narrow parquet installed diagonally within a decorative 10-inch-wide parquet border (Figure 181). A carpet runner covers wood flooring in front of the stair and runs to the south end of the rear hall. The same carpet runner covers the treads and risers of the rear stair. Bathroom floors are tile.

Woodwork and Trim. Second-floor interior wood trim, moldings, and woodwork are consistent with the first floor. Door and window casings correspond to the simpler variation of the typical trim in the rooms of the ell downstairs, where the corner blocks at the door and window heads are square with a rosette (Figure 182). Two-piece baseboards, picture rails, and beaded board wainscot are the same as on the first floor. The den, front hall, stair, rear hall, and rear stair have a wainscot. The bedrooms, baths, and closets do not. All woodwork, trim, window shutters, and mantels are finished with dark brown varnish.
Doors and Hardware. Interior stile and rail doors are wood with four raised panels. Door openings with transoms include the door into Booker T. Washington’s bathroom and the door for the closet in the boys’ bedroom. Single exterior doors that open onto second-floor porches are wood, stile and rail doors with a single glass light above two raised panels. They also have transoms.

For a description of hardware, refer to the first floor.

Stairs. For a complete description of both the main stair and rear stair refer to the first floor.

Fireplaces. All five original fireplaces were designed with fireboxes that are narrow and shallow to burn coal. Each fireplace has a black cast-iron register and a cover, and hearths and firebox surrounds are tiled. The most elaborate mantel is in Margaret Washington’s bedroom. It has an overmantel that frames a rectangular mirror and mantel shelves supported by delicate turned spindles (Figure 183). The other four original mantels on this floor are less elaborate with simple designs and modest details (Figure 184).

Portia’s Shower Room. Shared by Portia and Margaret Washington, this small bathroom possessed doors that opened into each of their adjoining bedrooms. Because it did not have a bathtub, the room was referred to as a shower room. A tile curb surrounds the shower area and the white tile wainscot on all four walls rises to approximately 6 feet 6 inches on the north wall at the shower area where the shower head and controls are. Two metal brackets for a U-shaped, shower curtain rod are attached to the tile, but the rod is missing (Figure 185). White plumbing
fixtures include a toilet with a flush valve and a pedestal sink. Fittings are chrome. None of the fixtures are functional. The floor is made of one-inch, octagonal, white mosaic tiles. A single, suspended light fixture is mounted in the center of the ceiling, and natural light comes from a window in the east wall (Figure 186). There is obvious plaster damage on the ceiling from a gutter or roof leak.

Boys’ Bathroom. Like the bathroom below on the first floor, this bathroom serves the adjacent boys’ bedroom, and is accessible from the rear hall by a door on the east wall. Another door on the opposite wall makes the room accessible from the bedroom. White plumbing fixtures include a claw foot tub, a two-piece, tank-type toilet, and a wall-hung sink (Figure 187). The toilet is awkwardly positioned behind the door in the southeast corner of the room with the water tank mounted high on the wall above it (refer to Figure 187). The angled wall behind the toilet was constructed over the tile wainscot. As a result, the continuity of the wainscot is disrupted. It is doubtful that this condition is original (Figure 188). Fittings are chrome, and none of the fixtures are functional (Figure 189).
A wainscot on all four walls consists of white subway tile with a narrow accent strip of light blue tiles just above the tile base (Figure 190). Below the wainscot cap there is a continuous course of decorative tile trimmed, top and bottom, with the same thin, blue accent strips (refer to Figure 188). The ceramic tile floor has a field of one-inch hexagonal, white mosaic tiles surrounded by a border of one-inch square, blue and white mosaic tiles (refer to Figure 189 and Figure 190). The floor is in poor condition because of several long cracks, missing tiles, stains, and discoloration. The wainscot is in fair condition. A single, suspended light fixture with a glass shade hangs from the center of the ceiling, and natural light comes from two windows in the south wall (refer to Figure 187). The last documented work in this bathroom was in 1979 when holes and cracks in the plaster were repaired and missing tiles were replaced. The walls are painted blue, and the frieze and ceiling are painted off-white.

Washington’s Bathroom. Booker T. Washington’s bathroom seems to reflect his fastidious nature, but it does not have a tub or a shower. It is in very good condition. A single door from his bedroom opens into the bathroom. The white wall-mounted sink and a tank-type toilet are on the south wall. A small, framed mirror and wooden shelf are attached to the wall above the sink. The large wooden box against the west wall is an electric bath (Figure 191). Around the turn of the century and into the 1940s, light therapy or phototherapy was a new treatment for various skin disorders and diabetes. Shortly after Thomas Edison developed the incandescent light bulb, *The New York Times* credited Harvey Kellogg, of corn flakes cereal fame, with the invention of the electric bath like the one in Washington’s bathroom.189

A wainscot on all four walls consists of white subway tile with a double strip of light blue and brown tiles above the tile base (Figure 192). Below the wainscot cap are two narrow accent strips of brown tile separated by a row of white subway tile (Figure 193). The ceramic tile floor is a checkerboard pattern of blue and white ceramic mosaic tiles (refer to Figure 192).

Walls are painted light blue, and the ceiling is painted off-white. A single, wall-mounted sconce with a glass shade is in the center of the west wall above the electric bath. Natural light enters the bathroom through a double-hung window in the east wall.

Walls are painted light blue, and the ceiling is painted off-white. A single, wall-mounted sconce with a glass shade is in the center of the west wall above the electric bath. Natural light enters the bathroom through a double-hung window in the east wall.

The Den. The den was Booker T. Washington’s private study. It is furnished, presumably as he had it, with his desk in the center of the room under a pendant light fixture suspended from the ceiling (Figure 194). A unique task light is suspended from the ceiling to the left (south) of his desk. Attached to the stationary stem of the light is a secondary metal arm and light shade that can be swiveled and rotated to any position needed (Figure 195). Ambient light is provided by four symmetrically spaced, surface-mounted globe lights on the ceiling. A wood-burning masonry fireplace is in the southwest corner of the room (Figure 196).

Above the brown wooden wainscot, plaster walls and frieze are a cream color, and the wooden ceiling is white. A window in the west wall that was replaced with a door in a 1957 renovation was restored during the 1979 restoration project. Other woodwork, trim, and parquet strip flooring were discussed earlier in the section.
Third Floor

Walls and Ceilings. Customarily, the third floor is considered a half story because it is mostly space under the steeply sloped roofs. The surface area of exterior walls on the third floor is limited to the end walls of the cross gables that intersect the main hip roof. All walls and partitions are framed with wood and finished with wood lath and plaster. Structural problems and roof and gutter leaks caused most of the visible damage to the plaster. Although major and minor plaster repairs were completed in the past, there remains plaster damage on the third floor. Much of the damage is minor and less prevalent than it is on the first floor. The bathroom has the most damage and is in the worst condition.

Floors. Existing original wood-strip flooring runs north-south in the hall and in the north bedroom (Figure 197). It runs east-west in the east and west bedrooms and the trunk room (Figure 198). The bathroom floor is deteriorated sheet vinyl that is in very poor condition (Figure 199).
Physical Description and Condition Assessment

Woodwork and Trim. Third-floor interior wood trim, moldings, and woodwork are consistent with the first and second floors. Door and window casings are the same as those on the floor below. Two-piece baseboards, picture rails, and beaded-board wainscot match what is on the second floor. The wainscot from the stair is carried through the hall and into all three bedrooms. All woodwork, trim, and window shutters are finished with dark brown varnish. Many of the window shutters are inoperable because of missing pieces of hardware, such as hinge pins.

The interior of the trunk room on the third floor is finished with beaded paneling on the walls and the underside of roof joists. The paneling is stained a lighter color than the typical dark varnish.

Doors and Hardware. Interior stile and rail doors are wood with four raised panels. All the bedroom door openings have transoms.

For a general description of hardware, refer to the first floor (Figure 200).

Lighting and Electrical. As part of the 2007 renovation project, new ceiling-mounted, period light fixtures and new electrical outlets in the wainscot were installed in each room and a new electrical panel was installed in the west bedroom (Figure 201, Figure 202, and Figure 203).
Fire Protection. The third floor and the attic have sprinklers. Smoke and fire detectors are located on ceilings throughout (Figure 204).

North Bedroom. Renovated in 2007 (Figure 205 and Figure 206).

Hall. Renovated in 2007 (Figure 207 and Figure 208).

East Bedroom. Renovated in 2007 (Figure 209).

West Bedroom. Renovated in 2007 (Figure 210 and refer to Figure 198).

Trunk Room. No renovation in 2007 (Figure 211).
South Bathroom. This third-floor bathroom may have been added after the death of Booker T. Washington, but may have attained significance to highlight the structure’s evolution from a family dwelling to offices and dormitories for the Institute’s use. No documentation was uncovered to substantiate the date of its construction. Because of its unusual location at the south end of the third-floor central hall, with the east wall falling in the center of the pair of windows at that end of the otherwise rectangular hall, it disrupts the symmetry and logic of the original design. Also, the finish materials in this bathroom are inferior to and unlike those in the other bathrooms. In contrast to the bathrooms on the other two floors, this one was not included in recent rehabilitation projects.

A single door opens from the hall into the bathroom, and another door in the west wall leads to the south attic. There are two white fixtures, a modern, wall-hung sink and a contemporary, tank-type toilet. Neither fixture is operational. There is an old towel bar on the east wall (Figure 212). The wainscot paneling on all four walls has an embossed subway tile pattern, and the wood cap trim is 1x3 with rounded top and bottom edges. The wainscot, cap trim, rubber wall base and door trim are painted white. Paint on the wainscot panels is peeling, and the door casings are scratched and nicked (Figure 213). The floor covering is sheet vinyl or linoleum, and it has become brittle and torn. The wooden sub-floor beneath it seems solid (refer to Figure 199). Above
the attic door in the west wall is a large, dark water stain which is indicative of plaster damage. The bathroom door needs repairs and refinishing, and the hardware is tarnished, corroded, and not functional (Figure 214). The window and shutters are also in poor condition and are inoperable.

![Figure 212](image1.png) **FIGURE 212.** Third-floor south bathroom.

![Figure 213](image2.png) **FIGURE 213.** Lavatory and painted wainscot in third-floor bathroom.

![Figure 214](image3.png) **FIGURE 214.** Door and hardware at bathroom.

Condition Assessment

The interior of the house is in relatively good condition overall. The following items represent concerns that warrant attention or localized distress that warrants corrective action. These notable interior conditions were observed in December 2016.

Walls and Ceilings

- Some linear and hairline cracks can be seen in plaster wall finishes. Most cracks occur at the corners of some doors and windows, particularly windows that have experienced distress because of moisture intrusion and air infiltration. Cracks are also visible on walls affected by sagging or deflecting floor joists. Except where these cracks are associated with delamination of the plaster, they are not considered significant.

- Water stains and plaster degradation are evident on interior walls and ceilings abutting exterior walls where roof flashing and deteriorated gutters allow water penetration (refer to Figure 177 and Figure 178).

- Wainscots and wood paneling are in good condition except for the effects of prolonged
wear-and-tear. The dark brown finish is scratched, chipped and worn and the varnish has lost its sheen.

- Wall and floor tile in the first-floor guest bathroom has cracks and some loss of original materials, possibly the result of past structural problems. On the second floor, the boys’ bathroom has similar tile problems, but B.T. Washington’s bathroom appears to be in remarkably good condition, and should only require routine maintenance.

- Plaster on the ceiling in Portia’s shower room and an area near the north wall in Margaret Washington’s bedroom have deteriorated substantially, most likely the result of roof and gutter problems.

- Wooden ceilings in the breakfast room and kitchen on the first floor and the den appear sound and in very good condition.

Floors

- Generally, the wood parquet and strip flooring is in very good condition where it is visible. The condition of flooring under the wall-to-wall carpet is unknown. Parquet flooring does not normally have a thick wear layer and cannot be refinished more than one or two times before it must be replaced. In heavy traffic areas like the first floor and second-floor halls, carpet will protect the wood flooring. However, the decorative pattern of the original wood flooring is hidden beneath the carpet.

- Carpet in traffic areas and runners on stairs is soiled and worn.

- Flooring in the bathrooms is small format ceramic mosaic tile, which is very durable. Sagging or deflection of the underlying floor structure can cause cracks in the setting bed and the tile. The tile can become loose and can separate from the setting bed, and eventually there is a loss of original materials. This has occurred in the first-floor guest bathroom and the boys’ bathroom on the second floor.

Woodwork and Trim

- As noted above, the plethora of woodwork and wood trim is in good condition except for the effects of prolonged wear-and-tear. The dark brown finish is scratched, chipped, and worn, and the varnish has lost its sheen. This is more of a concern about appearance than the durability of most wooden elements. Baseboards, handrails, chair rails, and stairs are particularly susceptible (Figure 215).

- Mantels should be considered important features of the house. They are in excellent condition.

![Common damage to woodwork and trim.](image)

Doors and Hardware

- Several existing interior doors were refinished during the rehabilitation project in 1979, but more recent repairs and refinishings was not documented. Exterior wood doors exposed to weather degrade faster than those protected by porches or deep overhangs. The exterior door in the dining room extension is difficult to open and it needs a protective coating of
paint on the outside. The glazing compound around the glass light is failing.

![FIGURE 216. Third-floor bathroom – severely deteriorated window and wood sill.](image)

Third-Floor Bathroom

- This third-floor bathroom may have been added after the death of Booker T. Washington, but may have attained significance to highlight the structure’s evolution from a family dwelling to offices and dormitories for the Institute’s use.

- This bathroom is in very poor condition. It is the one room on the third floor that has not been restored.

- It may not be original to the house or to the period of significance. Additional research is needed to determine when it was added to the third floor and if it is a defining feature.

Mechanical and Electrical Systems

The Oaks began the twentieth century with coal-burning fireplaces for heat on the first and second floors and stoves on the third floor. By 1905, a new radiant (radiators) heating system was added to augment the fireplaces. Twenty-four years later after Margaret Washington’s death, the Institute replaced the old system with a new radiant heating system, and three of the first-floor fireplaces were rebuilt. After the National Park Service acquired the house in 1974, an ambitious plan to rehabilitate and preserve it was undertaken, and a new heating and air-conditioning system using heat pumps was installed in the crawlspace under the house, in the attic of the ell, and in the attic above the third floor. The old cast-iron radiators and piping were removed, and floors were repaired along with other major work.

The current Unico, high velocity, heating and air-conditioning system was installed in 2007. This type of split system is suited to historic structures because it employs heat pumps and high-speed blowers to move conditioned air through small diameter ducts at a high velocity. Conditioned air can be distributed through ducts as small as 4 inches in diameter to small round nozzles rather
than large metal supply grilles. The small round nozzles require less removal of historic fabric to install, and they are easier to camouflage (Figure 218). The current system has an air-handling unit in the crawlspace under the house that serves the first floor and two more air-handling units in the attic above the third floor (Figure 219 and Figure 220). Three heat pumps connected to the air handlers are in the crawlspace under the south porch (Figure 221). Two variable refrigerant flow (VRF) ductless split system heat pumps were also added to the first-floor kitchen and breakfast room (Figure 222).

When the Washington family moved into The Oaks in 1900, the house most likely only had a rudimentary electrical system. At that time, it would have been illuminated by a combination of gas and incandescent lights, but there were no electrical outlets. In 1929, the Institute upgraded the electrical system and light fixtures and put some receptacles in the baseboards. Additional receptacles were added in 1957, and the first and second floors received new fluorescent light fixtures and telephone and intercom buzzer systems when the house was converted to administrative offices. Since then, under National Park Service ownership, the electrical system was updated in 1979 for the new heating and air-conditioning system. New wiring was run for ceiling fixtures throughout the house, and a few receptacles were added on the third floor. The latest electrical upgrades were done in 2007 and included three-phase service and new panels in the crawlspace (Figure 223) and in the west bedroom on the third floor (Figure 224). Additional power was necessary for the new mechanical systems. Additional receptacles, telephone and data outlets, and ceiling lights were added to the third floor. There is also an emergency generator on the west side of the house, but there is currently no information to verify when it was installed.

FIGURE 220. Air-handling unit in crawl space.

FIGURE 221. Condensing units at porch crawl space.

FIGURE 222. Wall-mounted VRF unit in the breakfast room.

FIGURE 223. Electrical panels in the crawl space.

FIGURE 224. Electrical sub-panel at west bedroom.
Physical Description and Condition Assessment

Mechanical Systems

- The current high velocity heat pump system by Unico and the VRF ductless split systems were installed in 2007 and appeared to be operating well at the time of site visit in December 2016.

Fire Alarm and Fire-Suppression Systems.

The Oaks has a fire-detection and alarm system tied to the fire-suppression (sprinkler) system. Hard-wired smoke and fire detectors are positioned in the attic, on ceilings on the third floor, and in crawl spaces under the house (Figure 225). The sprinkler standpipe originates under the house and rises vertically through the west bedroom on the third floor to the attic (Figure 226). An alarm pull-station and a strobe light are mounted on the wall next to the stair on the third floor (Figure 227). Crawl spaces are also sprinklered.

Fire Protection

- The fire alarm and fire-suppression (sprinkler) systems were upgraded in 2007 and should be inspected and tested periodically for proper operation and compliance with current life safety codes.

- A few inoperable smoke and fire sensors were observed in the crawl space.

Structural Systems

Description

The building has a load-bearing clay brick masonry structure with wood-framed floors and roof structure.

It has two-story load-bearing perimeter walls. The perimeter building walls are approximately 20 inches thick at the base and taper to 13 inches thick at the top of the wall. Also present at the
basement / crawl space is a network of interior load-bearing masonry walls arranged perpendicular to each other that define eight separate rooms. The interior load-bearing walls are approximately 16 inches thick. The walls have joist pockets that support the wood floor framing (Figure 228).

A second brick masonry wall wraps around the north, west, and south elevations of the building and supports the concrete floor slab for the main wrap-around porch. The masonry wall for the porch foundation is approximately 8 inches thick and has brick masonry piers, each measuring 12 inches square, which support concrete beams, measuring 10 inches wide and 9 inches deep, cast into the concrete floor slab (Figure 229).

The first-floor framing consists of 2x12 joists spaced 18 inches on center (Figure 230). The joists have wood bridging at the midspan and support a 1-inch-thick subfloor. Fiberglass batt insulation has been installed at the joist pockets. At the crawl space wall that separates the dining room from the rest of the building, there are two steel columns. The columns are 7-1/2 inches in diameter and rest on a steel plate measuring 14 inches square and 1 inch thick. The columns appear to support an encased beam that spans the first-floor opening to the dining room.

Non-original supplemental framing is at two of the crawl space rooms at the southwest corner of the building. The supplemental framing is located below a first-floor bathroom and the main stair. It consists of steel I-beams that span perpendicular to the joists (Figure 231). The beams are supported by steel jacks. Some of the joists are sistered with new wood members.
Physical Description and Condition Assessment

The perimeter load-bearing walls support the second- and third-floor framing. Both floors are constructed of 2x10 joists that support a wood subfloor and finish floor, each 1 inch thick. Supplemental steel beams and columns were installed as part of structural repairs performed in the 1990s to address sagging of the floor at the second-floor stair landing.

The roof is wood framed and includes both occupied finish space and unfinished attic space. The ceiling above the occupied space is constructed of 2x6 ceiling joists spaced 13 inches on center (Figure 232).

The building has multiple roof forms including a main east-west gable roof with cross gables that extend from the north- and south-facing slopes. The cross gables are associated with the north projecting bay, south wing, and a gable bay on the south elevation. A hip roof extension is located at the northwest corner of the building and covers the second-floor balcony.

The main roof has a 45-degree slope and is constructed of 2x6 rafters spaced 30 inches on center (Figure 233). The hips and valleys of the roof have doubled 2x6 rafters consisting of many smaller length rafters scabbed together to form one longer rafter. The makeshift rafters have staggered joints. The ridge beam of the roofs is a 1x8. The roof has 1x12 wood sheathing, although lower portions of the roof have narrower sheathing boards. At the center of the roof, where the main gable and cross gables intersect, there is box framing consisting of doubled 2x8s that connects the roof structures.

Along the edge of the roof are 2x6 wood kickers, spaced 42 inches on center. The kickers are set in pockets in the masonry wall and support the wood-framed projecting cornice and gutter system (Figure 234).

Mechanical ductwork is suspended from the rafter framing with metal straps. Fire-protection piping is suspended from metal pipe hangers. Electrical conduit is mounted to the roof structure with surface-mounted clasps.
The porches and one-story east wing addition each have separate wood-framed roof structures. The north elevation of the main porch has a gable roof, the west elevation of the porch has a hip roof, the two-story screened porch has shed roofs, and the east wing addition has a hip roof.

Condition Assessment

The following notable conditions were observed in December 2016 at the building exterior:

- Previous repairs were performed at the south end of the southeast wing roof (Figure 235). It appears that the repairs included installation of new cantilevered wood kickers to supplement the existing kickers.
Left blank intentionally
Significance and Integrity

National Register of Historic Places

The National Register of Historic Places is the official list of the nation’s historic places worthy of preservation. Authorized by the National Historic Preservation Act of 1966, the National Park Service’s National Register of Historic Places is part of a national program to coordinate and support public and private efforts to identify, evaluate, and protect America’s historic and archeological resources.191

Properties are nominated to the National Register of Historic Places through preparation of documentation related to the historical development, current conditions, and historic integrity of its resources. National Register nominations also include a significance evaluation that identifies the important historical associations of the property, and comments on its architectural, archeological, and social value as they relate to the criteria for listing in the National Register of Historic Places. A property’s significance is tied to a discrete period of time in which its important contributions were made and to relevant national, state, and local historic contexts.

Significance Criteria

In order for a property to be eligible for inclusion in the National Register of Historic Places, it must possess significance under one of four criteria. The Criteria for Evaluation for listing in the National Register of Historic Places state:

Criteria Considerations

Ordinarily cemeteries, birthplaces, graves of historical figures, properties owned by religious institutions or used for religious purposes, structures that have been moved from their original locations, reconstructed historic buildings, properties primarily commemorative in nature, and properties that have achieved significance within the past fifty years shall not be considered eligible for the National Register. However, such properties will qualify if they are integral parts of districts that do meet the criteria or if they fall within the following categories:

a. A religious property deriving primary significance from architectural or artistic distinction or historical importance; or

b. A building or structure removed from its original location but which is primarily significant for architectural value, or which is the surviving structure most importantly associated with a historic person or event; or

c. A birthplace or grave of a historical figure of outstanding importance if there is no appropriate site or building associated with his or her productive life; or

d. A cemetery that derives its primary importance from graves of persons of transcendent importance, from age, from distinctive design features, or from association with historic events; or

e. A reconstructed building when accurately executed in a suitable environment and presented in a dignified manner as part of a restoration master plan, and when no other building or structure with the same association has survived; or

f. A property primarily commemorative in intent if design, age, tradition, or symbolic value has invested it with its own exceptional significance; or

g. A property achieving significance within the past 50 years if it is of exceptional importance.

National Register Significance Evaluation of The Oaks

The historic campus district of Tuskegee Institute was designated a National Historic Landmark on June 23, 1965, and administratively listed in the National Register of Historic Places on October 15, 1966. It was established as a National Historic Site in 1974. The National Historic Site comprises 74 acres, including The Oaks, the home of Booker T. Washington; the George Washington Carver Museum; Grey Columns, an antebellum mansion; and the fifty-acre original campus, which includes thirteen buildings.

The Oaks was administratively listed on the National Register of Historic Places in 1966 as a contributing feature to the nationally-significant Tuskegee Institute National Historic Landmark Historic District (NRIS ID #66000151). This documentation notes significance of Tuskegee Institute as follows:

Tuskegee Institute is closely identified with Booker T. Washington and his work. The school prospered under his administration and became a symbol of his policies. At the time of Washington’s death in 1915, the student body consisted of 1,537 students and the all-Negro faculty was composed of 197 members who taught thirty-eight trades and professions.

The Oaks is among the points of special interest identified in the 1965 documentation.

A Consensus DOE was prepared in 2012, seeking concurrence on the landscape features associated with The Oaks (as well as the Carver Museum) for listing in the National Park Service List of Classified Structures. The DOE noted that Tuskegee Institute National Historic Site meets National Register Criteria A and B. The site is nationally significant for its association with the education of African Americans in the nineteenth and twentieth centuries, and with Booker T. Washington, Margaret Murray Washington, and George Washington Carver. The DOE specifically noted that Tuskegee Institute “played a significant role in the education of formerly enslaved people in the Reconstruction era and continued to be an important educational institution for African Americans through the twentieth century.” The Period of Significance additionally includes all development and alterations of architectural features undertaken by the Institute to integrate the building and site into a larger campus plan that was completed in 1929.

194. Serafine and Eventon.

195. Sheely.

196. Serafine and Eventon.
It also noted that The Oaks:

\[\ldots\] gave concrete expression to the principles of the school.\] The house was designed and built by students and faculty and included bricks produced on campus as well as furniture built by students. Students trained and earned money by cleaning and maintaining the house. The Oaks brought to life Washington’s aspirations and vision of middle class culture for African Americans.\(^{197}\)

Much of the campus, including The Oaks, was designed and built by faculty and students. The campus is also significant for its landscape design by David A. Williston, one of the first African American landscape architects in the United States. The historic spatial organization and landscape design of the campus are maintained today.\(^{198}\)

The DOE identified The Oaks and several associated landscape resources as contributing to the historic integrity of Tuskegee campus.\(^{199}\) The Oaks and associated resources are now listed in the National Park Service LCS, as follows:

- The Oaks, Structure No. HS-01, LCS ID 091220; National Register Status: Entered – Documented

 The Oaks is noted in the LCS as nationally significant under National Register Criteria A and B for its association with Booker T. Washington from 1900–1915; it is also locally significant under Criterion C for Architecture.

- Drives at The Oaks, Structure No. HS-06, LCS ID 092173; National Register Status: Determined Eligible – SHPO

 The drives at The Oaks are noted in the LCS as contributing to the historic setting of the building as part of the circa 1925 landscape plan for the site, designed by David A. Williston and carried out by Tuskegee Institute staff and students.

- Concrete gutters at The Oaks, Structure No. HS-07, LCS ID 092174; National Register Status: Determined Eligible – SHPO

 The concrete gutters at The Oaks are noted in the LCS as contributing to the historic setting of the building as designed by David A. Williston in the 1920s. The LCS entry notes that the “valley gutters” are a trademark of Williston’s work.

- Concrete walkways around The Oaks, Structure No. HS-08, LCS ID 092175; National Register Status: Determined Eligible – SHPO

 The concrete walkways around The Oaks are noted in the LCS as contributing to the historic setting of the building as designed by David A. Williston in the 1920s.

- Garage foundation – The Oaks, Structure No. HS-09, LCS ID 092176; National Register Status: Determined Eligible – SHPO

 The foundation of a garage associated with The Oaks is noted in the LCS as contributing to the cultural landscape/historic setting of The Oaks. The garage foundation is treated as a cultural resource and interpreted by the Park.

- Front retaining wall, The Oaks, Structure No. HS-10, LCS ID 092191; National Register Status: Ineligible – Managed as Resource

 The ornamental red brick wall along the sidewalk in front of The Oaks is noted in the LCS as not considered significant. However, the wall is not intrusive to the historic character of the site and is managed by the Park as a cultural resource.

\(^{197}\) Ibid.

\(^{198}\) Ibid.

\(^{199}\) In addition to The Oaks and its associated landscape resources, the George Washington Carver Museum (Structure No. HS-02, LCS ID 091221), Brick Steps at the Carver Museum (Structure No. HS-11, LCS ID 000198), and the George Washington Carver Bust (Structure No. HS-03, LCS ID 091222) are listed in the LCS.
Period of Significance

The suggested Period of Significance for The Oaks is 1899-1929, beginning with the construction of the building and ending with incorporation of the building and site into the larger campus of Tuskegee Institute, where it served as a gathering space and dormitory for the Institute. The Period of Significance is the length of time when a property was associated with important events, activities, or persons, or attained the characteristics which qualify it for listing in the National Register. The suggested Period of Significance encompasses Booker T. Washington’s life, the Washington family occupancy of The Oaks, the structure’s transfer to the Institute in 1925, and the alterations made to the building and grounds by the Institute as they incorporated The Oaks into the larger campus.

The Tuskegee Institute National Historic Landmark (NHL) Historic District (NRIS ID #66000151) was administratively listed on the National Register of Historic Places following establishment of the register in 1966. The historic district nomination form identified points of special interest to include The Oaks, the Booker T. Washington monument, statue of Charles Keck, the graves of Booker T. Washington and George Washington Carver, and the Carver Museum. The historic district’s Period of Significance was administratively determined to extend from 1875-1899.200

The Tuskegee Institute National Historic Site, a unit of the national park system that lies entirely within the larger Tuskegee Institute NHL Historic District, was established by Public Law 95-625 in 1974. The Oaks is a contributing feature of the national historic site. A National Register nomination form has never been completed for the Tuskegee Institute National Historic Site or The Oaks as an individually listed property. However, the Tuskegee Institute National Historic Site meets National Register Criterion A, B, and C for its association with a major event, the education of African Americans in the nineteenth and twentieth centuries; significant individuals in US history, specifically Booker T. Washington, Margaret Murray Washington, and George Washington Carver; and an architecturally significant property, due to its association with architect Robert Taylor and the Queen-Anne architectural style and features.

By suggesting 1899-1929 as the period of significance for The Oaks, the structure will reflect the interpretation intentions of the park managers, including the contributions of Booker T. Washington until his time of death in 1915, and Margaret Murray Washington and the Washington family until her time of death in 1925, at which point the Washington descendants sold The Oaks to the Institute. The Period of Significance additionally includes all development and alterations of architectural features undertaken by the Institute to integrate the building and site into a larger campus plan that was completed in 1929.

Following its construction in 1899, The Oaks was improved by the Washingtons through a series of additions and removals including, the addition of a carriage house, barn, summer house, and well cover shed (date of construction unknown); vegetable gardens (1900); dining room addition (1902); radiant heating added, subsequent damage to woodwork (prior to 1905); gazebo constructed, from the landscape plans of David Williston (1905); painting of bathrooms (1906); conservatory constructed, east of the dining room (prior to 1908); painted murals in the major front rooms (1908); second story added above kitchen wing, roof was re-used (1910-1915), addition of new second floor porch west of the den (1910-1915); removal of summer house and gazebo (1915); two-car garage added (1925). The Institute initiated development of a landscape design under the leadership of David Williston by 1920 which was completed after the deaths of both Booker T. Washington and Margaret Murray Washington.

Following sale of The Oaks to Tuskegee Institute by the Washington children in 1925, the Institute initiated the following changes in 1929: installation

200. National Register Nomination Form can be found at https://npgallery.nps.gov/NRHP/GetAsset/92274853-819a-42f2-8771-ba896c5b4a2f.
of radiant heating system; changes to electrical system including new metal incandescent lighting fixtures, historic fixtures were retained in the den, foyer, veranda, and porch, and baseboard outlets installed; exterior trim paint was changed for conformity with other institute buildings; fireplaces were rebuilt in the study, parlor, and dining room, two original mantels destroyed and the third was relocated to the trunk room on the third floor; and renovation of the porches including replacement of first-floor wood porches and steps with concrete and inlaid tile, replacement of supporting piers with brick masonry base wall, overlay of tar paper on the upper front porch, and sheet metal placed on the inner parapet walls. The Institute’s alterations are contributing to The Oaks, and highlight the structure’s continued use even after the prominent Washington family moved on, and it is the long term goal of park managers to interpret the house’s evolution.

The management and interpretation of the house will be guided by both the 1925 and 1929 time periods. Specifically, the exterior of the structure will interpret features present in 1929, meaning inclusion of the extant concrete porch. The structure’s interior will be managed as 1925, reflecting the Washington family presence, with the exception of the third floor to be managed as 1929 to highlight the structure’s evolution from a family dwelling to offices and dormitories for the Institute’s use.

Character-Defining Features

The historic nature of significant buildings and structures is defined by their character, which is embodied in their identifying physical features. Character-defining features can include the shape of a building; its materials, craftsmanship, interior spaces, and features; and the different components of its surroundings.201

The following list identifies existing character-defining features found on the exterior and interior of The Oaks:

Exterior

- General massing, configuration, and orientation
- Clay brick masonry wall
- Pressed tin siding
- Wood-framed, multi-light double-hung windows
- Segmental arch window openings with brick sills
- Multi-panel, wood-framed exterior doors with transom
- Wood-framed, wrap-around covered porch with brick pier foundation and wood balustrade
- Wood-framed covered balcony
- Multi-gable roof form with tin shingles
- Wood cornice with integral gutter
- Corbelled masonry chimneys

Interior

- Original overall floor plan, including the two-story ell and porches on the south side
- The main stair connecting all three floors
- Original interior woodwork, wainscot, trim and cabinetry
- Fireplaces and mantels
- Parquet flooring

• Tile and tile patterns in bathrooms
• Pocket doors and their decorative hardware at the parlor and the study
• Frieze murals in the parlor, study, dining room and dining room extension
• Bedroom doorway transoms
• Third floor stairwell landing arch
• Booker T. Washington’s study/den

Assessment of Integrity

Assessment of integrity is based on an evaluation of the existence and condition of the physical features that date to a property’s period of significance, taking into consideration the degree to which the individual qualities of integrity are present. The seven aspects of integrity as defined in the National Register Criteria for Evaluation are location, design, setting, materials, workmanship, feeling, and association. As noted in National Register Bulletin 15: How to Apply the National Register Criteria for Evaluation:

Location is the place where the historic property was constructed or the place where the historic event occurred. . . . Design is the combination of elements that create the form, plan, space, structure, and style of a property. . . . Setting is the physical environment of a historic property. . . . Materials are the physical elements that were combined or deposited during a particular period of time and in a particular pattern or configuration to form a historic property. . . . Workmanship is the physical evidence of the crafts of a particular culture or people during any given period in history or prehistory. . . . Feeling is a property’s expression of the aesthetic or historic sense of a particular period of time. . . . Association is the direct link between an important historic event or person and a historic property. 202

The property must retain the essential physical features that enable it to convey its historical significance. The essential physical features are those features that define both why a property is significant (National Register criteria) and when it was significant (period of significance). The National Register Bulletin: How to Apply the National Register Criteria for Evaluation defines integrity as “the ability of a property to convey its significance.” 203

The historic integrity of The Oaks has been assessed within the context of the contribution of the building to the Tuskegee Institute National Historic Site.

Integrity of Location. The Oaks retains a high degree of integrity of location in relationship to its site. The location of the building has remained unchanged since it was originally constructed.

Integrity of Design. The Oaks retains a high degree of integrity of design, with only minor alterations made to the building since its construction. Prior restoration work, primarily completed at the first and second floors, appears to have been closely based on archival documentation.

Integrity of Setting. The Oaks retains a high degree of integrity of setting. Although newer construction has occurred in the adjacent areas of the campus, the immediate environs of the house remain generally unaffected by these changes. Although the garage is no longer present (and is represented only by its foundations), other landscape features from the historic period remain, such as walks and drives. Later landscape features, such as the low brick wall in front of the house, are non-intrusive to the historic character of the property.

Integrity of Materials and Workmanship. The Oaks retains a moderate to high degree of integrity of materials and workmanship. The historic appearance of the building is intact and many historic materials remain on both the exterior and interior. Between 1980 and 1981, 203. Ibid.
most of the main floor was repaired and restored to its condition during the period of significance, 1899–1929. The restoration has resulted in the house retaining a moderate to high degree of integrity of materials and workmanship.

Integrity of Feeling. The Oaks retains a high degree of integrity of feeling. It retains and strongly conveys the historic character of the period in which Booker T. Washington and his family lived there.

Integrity of Association. The Oaks retains a high degree of integrity of association. It retains and strongly conveys its association with Booker T. Washington and his life and work at Tuskegee Institute, Margaret Washington and her contributions, and David Williston.
Significance and Integrity

Left blank intentionally
Treatment and Use

Requirements for Treatment and Use

The following discussion of treatment and use for The Oaks has been prepared based on historical research, condition assessment, and discussion with the National Park Service to understand intended current and future use of the building. The house is nationally significant and is a contributing structure to the Tuskegee Institute National Historic Site. It survives with sufficient integrity to convey its historic associations.

As such, treatment and use of the house should be considered within the context of the legal mandates and policy directives established by the National Park Service Cultural Resources Management Guideline (Director's Order 28) for the protection of cultural resources. The building is a very important resource within the Tuskegee Institute campus, and is directly associated with Booker T. Washington and his life and work. The exterior and interior of the building are intact and strongly convey their historic character. The building is expected to remain in use as a house museum.

Laws, Regulations, and Functional Requirements

Key laws, regulations, and functional requirements that apply to the recommended work include the following:

- National Park Service Cultural Resources Management Guideline (Director's Order 28), which requires planning for the protection of cultural resources on park property.
- Section 106 of the National Historic Preservation Act, which mandates that federal agencies, including the National Park Service, take into account the effects of their actions on properties listed or eligible for listing in the National Register of Historic Places and give the Advisory Council on Historic Preservation a reasonable opportunity to comment.

Treatment of the building and is also to be guided by the following:

- Secretary of Interior's Standards for the Treatment of Historic Properties
- National Park Service Management Policies, 2006
- Architectural Barriers Act Accessibility Standards (ABAAS)
- International Building Code (IBC), 2015
- International Existing Building Code (IEBC), 2015
- International Plumbing Code (IPC)
- National Electrical Safety Code (NESC)
- NPS Guiding Principles of Sustainable Design

The State of Alabama has adopted the 2009 IBC but has not adopted the IEBC for statewide applicability.204 The National Park Service is self-
regulating in terms of enacting and enforcing building code standards. Tuskegee Institute National Historic Site is therefore not legally subject to local or state building code requirements. When undertaking repairs to buildings and structures, the National Park Service endeavors to have the work comply with model building code standards. At this time, the 2015 IEBC is the model building code used by the National Park Service for design and construction.

With historic structures, attempts to achieve strict conformance with model building code standards that are intended for new buildings can lead to destruction of the historic fabric. Alternative compliance procedures, such as Chapter 12 of the IEBC relating to historic buildings, should be referenced in determining code compliance. For The Oaks, alternatives to full prescriptive legislative and code compliance should be considered where such compliance would compromise the integrity of the structure.

The 2015 IEBC includes the following statements in Section 408, Historic Buildings:

408.1 Historic buildings. The provisions of this code that require improvements relative to a building’s existing condition or, in the case of repairs, that require improvements relative to a building’s predamage condition, shall not be mandatory for historic buildings unless specifically required by this section.

408.2 Life safety hazards. The provisions of this code shall apply to historic buildings judged by the building official to constitute a distinct life safety hazard.

408.3 Flood hazard areas. Within flood hazard areas established in accordance with Section 1612.3 of the International Building Code, or Section R322 of the International Residential Code, as applicable, where the work proposed constitutes substantial improvement, the building shall be brought into compliance with Section 1612 of the International Building Code, or Section R322 of the International Residential Code, as applicable:

Exception: Historic buildings need not be brought into compliance that are:

1. Listed or preliminarily determined to be eligible for listing in the National Register of Historic Places;

2. Determined by the Secretary of the U.S. Department of Interior as contributing to the historical significance of a registered historic district or a district preliminarily determined to qualify as an historic district; or

3. Designated as historic under a state or local historic preservation program that is approved by the Department of Interior.205

The IEBC exceptions noted above pertain to Tuskegee Institute National Historic Site as a property listed in the National Register.

In addition, Executive Order 13514 issued in 2009 directs all federal agencies to implement sustainable design and construction practices. For The Oaks, the relevant guidelines in this executive order require:

. . . managing existing building systems to reduce the consumption of energy, water, and materials, and identifying alternatives to renovation that reduce existing assets’ deferred maintenance costs . . . [and] ensuring that rehabilitation of federally owned historic buildings utilizes best practices and technologies in retrofitting to promote long term viability of the buildings.206

Also, newly installed electrical systems and components, including any significant alterations to existing electrical systems, should comply with applicable provisions of the NFPA 70: National Electrical Code (NEC).

Alternatives for Treatment and Use

The National Park Service has developed definitions for the four major treatments that may be applied to historic structures: preservation, rehabilitation, restoration, and reconstruction. The four definitions are as follows:

Preservation is defined as the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. New exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a preservation project.

Rehabilitation is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values.

Restoration is defined as the act or process of accurately depicting the form, features, and character of a property as it appeared at a particular period of time by means of the removal of features from other periods in its history and reconstruction of missing features from the restoration period. The limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a restoration project.

Reconstruction is defined as the act or process of depicting, by means of new construction, the form, features, and detailing of a non-surviving site, landscape, building, structure, or object for the purpose of replicating its appearance at a specific period of time and in its historic location.\(^{207}\)

Of the four treatment approaches, **restoration**, which involves accurately depicting the form, features, and character of a property as it appeared at a particular period of time, is most appropriate for The Oaks. This treatment would allow for the limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make the property functional within the restoration program.

Preservation, which involves sustaining the building in its existing form, is to some extent in progress as a result of ongoing repair and cyclical maintenance implemented by the park, and is considered overly limiting for a contributing but not individually significant building within the historic district. Further, similar preservation efforts would be incorporated in the overarching rehabilitation treatment approach. **Rehabilitation**, which would make possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values, is not appropriate for The Oaks. The building retains extensive historic fabric and is appropriate for restoration rather than alterations to permit a change in use.

Ultimate Treatment and Use

Guidelines for Treatment

Guidelines and recommendations for treatment for The Oaks have been defined based on the preservation objectives and requirements for treatment and use outlined above. All treatment guidelines and recommendations were developed in accordance with the Secretary of Interior’s Standards for Restoration.

The Secretary of the Interior’s Standards for Restoration are as follows:

1. A property will be used as it was historically or be given a new use that interprets the property and its restoration period.

2. Materials and features from the restoration period will be retained and preserved. The removal of materials or
alteration of features, spaces and spatial relationships that characterize the period will not be undertaken.

3. Each property will be recognized as a physical record of its time, place and use. Work needed to stabilize, consolidate and conserve materials and features from the restoration period will be physically and visually compatible, identifiable upon close inspection and properly documented for future research.

4. Materials, features, spaces and finishes that characterize other historical periods will be documented prior to their alteration or removal.

5. Distinctive materials, features, finishes and construction techniques or examples of craftsmanship that characterize the restoration period will be preserved.

6. Deteriorated features from the restoration period will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture and, where possible, materials.

7. Replacement of missing features from the restoration period will be substantiated by documentary and physical evidence. A false sense of history will not be created by adding conjectural features, features from other properties, or by combining features that never existed together historically.

8. Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.

9. Archeological resources affected by a project will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken.

10. Designs that were never executed historically will not be constructed. 208

Guidelines for implementing the treatment recommendations provided herein are as follows:

- Undertake all work on the structure in compliance with the Secretary of the Interior’s Standards for Restoration.

- Undertake all work on the landscape in compliance with the Secretary of the Interior’s Standards for Rehabilitation.

- Retain the character of the historic structure and environs by protecting the building and significant site features.

- Ensure that proposed new elements or construction are compatible with the historic character of the structure and its site.

- Protect adjacent natural resources during construction activities.

- Document through detailed as-built drawings, photographs, and written narrative all changes and treatments to the building and its immediate site. Maintain records of treatments and preserve documentation according to professional archival standards. Maintain a copy of records in the NPS archives.

- Retain features and materials at both the exterior and interior of the buildings that survive from the period of significance to the greatest extent possible.

- Incorporate sustainable design principles in all future projects that respect the preservation principles listed above.

Recommendations

The following specific recommendations for treatment of The Oaks respond to the overarching treatment approach of *preservation*, to accurately

208. Ibid.
depict the form, features, and character of the property as it appeared at a particular period of time.

Exterior

- Rebuild masonry walls where the brick is displaced. Repoint masonry where mortar joints are open but no displacement is observed. Consideration should be given to installation of a sheet-metal flashing with drip edge at the mortar joint below the concrete porch slab. The drip edge flashing will divert water from the porch away from the foundation walls and reduce the moisture related distress.

- Remove spalled and deteriorated concrete at the porch floor slab and support beams. Remove concrete to a depth of 3/4 inch beyond reinforcing steel. Sandblast and air blast exposed concrete and reinforcing bar within the area of repair to remove corrosion and roughen the surface. Inspect reinforcing steel and repair or install supplemental steel as necessary. Coat reinforcing steel with a corrosion-inhibiting coating. Install formwork and repair with concrete to match the existing.

- Remove and salvage cracked and displaced brick masonry flat arch above door opening to permit inspection of the condition of the underlying structure. It may be necessary to perform repairs to the structure. Following repair, reinstall brick masonry at the lintel to match the original coursing and plane of the wall.

- Cracked and spalled cementitious parge coating at the window well walls should be removed and repairs should be performed to the underlying brick. As part of repairs, consideration should be given to installation of a through wall flashing below the brick coping.

- At sections of the wall where eroded mortar joints are observed, such as corners of the building and adjacent to downspouts, mortar joints should be raked out to a depth of 2-1/2 times the width of the joint or until sound mortar is encountered, and repointed. Temporarily remove and reinstall the downspout to perform repairs. New mortar should be applied in 1/4-inch lifts with a mortar mix appropriate to the original masonry, and matching the appearance of the original mortar.

- Remove and replace severely deteriorated spalled brick units in the field of the wall and at corners. At some locations, it may be possible to salvage the original brick, clean them to remove mortar, and reinstall them with the brick turned to expose the undamaged opposite face. However, trial repairs are needed to determine whether the unexposed face of the brick matches the originally exposed face, and also whether removal, cleaning to remove mortar, and reinstallation can be implemented without further damage to the brick. Replacement brick should match existing brick in color, texture, and size.

- All gutters and downspouts should be cleaned and routed to remove debris and blockages. Install metal drain strainers at the head of downspouts to restrict debris from entering the downspout. Routine seasonal maintenance is required to keep the gutter and downspout free of debris.

- Remove and reset the ridge shingles so that they are lapped away from the building and in the direction of water flow.

- Visible gaps and deformations in the roof assembly should be addressed by replacing deformed sheet-metal shingles or rebuilding select portions of the roof assembly to address gaps or gaps in the flashing.

- Investigate the cause of displacement at the top of the canopy roof structure. If necessary, install supplemental anchorage or bracing.

- Decay at wood columns, soffits, trim, and decorative elements should be removed and new wood dutchman installed. As part of the
Treatment and Use

repairs, previous plaster coating repairs should be removed and the condition of the wood assessed. The dutchman should match the existing wood in profile and primed and painted to match existing.

- Deteriorated and missing window and door components such as missing screen stops, cracked recessed door panels, and broken glass lights should be removed and replaced with new dutchman or replacement units to match original.

- Deteriorated wood door framing should be repaired or replaced. As part of repairs, the deteriorated portions of the frame should be removed and replaced with new wood dutchman and epoxy. The frames should be adjusted and joinery reinforced so that frames are square.

- Replace deteriorated or missing wood cladding with wood dutchman or new wood members to match the existing wood in profile and primed and painted to match existing.

- Reset displaced non-structural porch columns so that they are plumb and rest squarely on the setting block. Repair or replace wood as required.

- Repairs were recently performed at the roof framing of the south wing. Evidence suggests moisture infiltration at the roof and sagging of the wood kickers at the cornice and gutter. Continue to monitor the interior of the roof for moisture infiltration and displacement of the wood kickers.

- Remove deteriorated sealant at edge of roof flashing. Clean joint of residue and install new sealant.

- Where loose, remove and replace existing copper downspout straps with new copper straps and anchor straps into mortar joint or wood framing member.

- Monitor cracks that are wider than 1/32 of an inch at the porch floor over time. If cracks are found to be stable, repair using a cementitious crack fill material. Hairline cracks do not require repair.

- In areas of painted wood that experience heavy mildew or organic growth, the wood surface should be washed with a biocide and repainted using alkyd-based paints. For difficult areas where mildew recurs rapidly, consideration could be given to stripping the surface to bare wood and repainting using alkyd-based paints containing anti-microbial additives.

- At locations where loss of paint and mild surface corrosion are observed, the wood or metal surface should be scraped, corrosion removed, spot primed, and painted to match the original color scheme, using alkyd-based paints formulated for the substrate.

- The building should be inspected and treated regularly for termites and other insect pests that are endemic in the region.

- Insect nests should be removed from the exterior walls regularly.

Interior

- Hairline cracks in plaster walls and ceilings (generally less than 1/32 of an inch wide) are not cause for concern, but these minor cracks should be monitored and repaired if they widen over time because of interior environmental changes, moisture intrusion or structural problems.

- Linear cracks in plaster walls and ceilings that are wider than 1/16 of an inch should be patched with a compatible patching plaster mixture, sanded and painted. Patching plaster can be reinforced with fiberglass glass mesh when repairing cracks that tend to reappear. Patching should be done after the condition(s) causing the crack are first addressed.

- Larger cracks, particularly those associated with delamination of the finish plaster coat from the base coat or separation from the wood-lath substrate, are serious and repairs
should be a priority. Many of the larger cracks appear to have been caused by foundation movement or deflection of structural members. Structural repairs were included in previous repair, rehabilitation, and restoration projects, but treatment recommendations for the structural system listed above should be done before the larger cracks are addressed.

- Repair plaster cracks in accordance with the NPS Preservation Brief No. 21: Repairing Historic Flat Plaster Walls and Ceilings. Where delamination of the plaster occurred, remove the smallest amount of existing plaster necessary to achieve proper re-keying of new plaster to the existing wood lath or new metal lath attached to the wood lath. Apply new plaster to the delaminated area and repaint the entire wall or ceiling from corner to corner with an alkaline-resistant primer and compatible acrylic latex paint.

- A conservator should be involved to preserve damaged and delaminated plaster where there are applied decorative finishes, such as wall coverings or decorative painting. The frieze murals painted by E.W. Borman in the first-floor dining room, parlor, and study have been adversely affected by plaster cracks and plaster degradation from water leaks. Careful and sensitive plaster and mural repairs by an experienced conservator are recommended.

- Mildew or organic growth on sound but water-stained plaster walls and ceilings should be mitigated with a biocide before applying a stain-hiding, alkaline-resistant primer and finish coats of compatible acrylic latex paint.

- Woodwork, encompassing wainscots, paneling, baseboards, chair rails, picture rails, stairs and stair railings, cabinetry and window and door trim, is in good condition and does not need extensive repairs. Scheduled, periodic cleaning and preservation treatments for fine woodwork are advised.

- Where prolonged wear-and-tear has abraded the finish or damaged the woodwork, first gently clean the affected area and inspect it to ascertain the appropriate treatment. For example, where the varnish on stair risers and baseboards is scuffed and scratched, only light sanding and re-finishing are necessary. Gouges, cracks, and open joints can be filled with paintable wood filler, sanded and re-finished to match the adjacent wood surface.

- Four stair risers at the main stair are fitted with painted metal grilles for the return air plenum beneath the stairs. Dark brown paint on these metal grilles is chipped and has delaminated resulting in an unsightly condition. Consideration should be given to removing the grilles and replacing them with new wood risers to match the other stair risers. A less conspicuous ducted air return and grille could be placed in the bedroom closet on the first floor.

- Peeling, blistered, and loose paint on wood elements, such as window sills, should be removed to the next sound layer by hand scraping and hand sanding and then applying a new paint or varnish finish that matches the existing finish.

- At the south stair descending to the basement, wood cladding and wooden stair components were damaged by termites. Repair wall cladding and stair pieces using a dutchmen. Install a matching new component if the existing component is too deteriorated to be repaired.

- First-floor, wood flooring is 1/4-inch-thick narrow parquet installed diagonally within a decorative 10-inch wide parquet border. The kitchen, pantry, and breakfast room in the ell have 1-1/2-inch-wide strip flooring installed perpendicular to the east and west walls, and there is no border. Flooring in the ell is in good condition, but the parquet was aggressively stripped and refinished in 1957 leaving it badly marred. Wall-to-wall carpet and carpet runners on the stairs protect the parquet and the stair treads in rooms accessible to the public. Carpet in traffic areas and runners on stairs are soiled and worn and
Treatment and Use

should be cleaned. Future replacement of the carpet and runners should also be planned.

- Carefully sand and refinish the narrow, wood-strip flooring in the third-floor hall that is discolored by moisture. Because this floor is not open to the public, refinishing the hall floor may not be a high priority.

- Several interior wood doors are scratched and severely marred, particularly the stiles around the hardware and the edges at the latch bore. Repair the lock rail with a dutchman and replace the marred stile with a matching stile. Prepare the repaired door for refurbished hardware. Repair or replace door jambs on the hinge-side that are not solid and will not hold screws. Mortise the jamb to accept hinges.

- Existing doors that are out of alignment with the door frame and do not close properly or fit too tightly to open easily should be adjusted in place. Alternatively, remove the door and minimally shave the edges to conform to the opening before re-hanging the door to check for a proper fit. Refinish the door edges prior to permanently re-installing it.

- Non-original, interior doors that are beyond repair and cannot be made to fit the door opening should be replaced with a new door that matches the four-panel doors.

- Remove mismatched and inappropriate hardware. Identify and catalog original operable door hardware before removing it for cleaning, repair, and refinishing, if necessary. Stationary pulls and stops, such as the hardware on the pocket doors in the study and the parlor, can be cleaned in place. Re-install restored hardware in its previous location. Replace inappropriate hardware and components with period hardware that closely replicates the original hardware.

- Restore ceramic tile in the bathroom on the first floor, and Portia’s shower room and the boy’s bath on the second floor. Clean existing tile surfaces, remove loose grout from joints and check for loose and missing tiles. Loose tiles should be re-reinstalled with compatible bonding mortar. Missing tiles should be replaced with new units from specialty tile manufacturers that replicate the existing original tile. Carefully cut out stained and deteriorated grout joints and install new grout.

- Structural repairs in the crawl space below the first-floor bathroom and guest room likely stabilized the floor and alleviated the problem that caused the tile floor in the bathroom to crack and separate from the tile base along the south wall. Gaps resulting from movement and deflection of the floor joists must be patched before the ceramic tile is restored. Consider adding an expansion joint detail to the floor or at the perimeter of the room as recommended in the Handbook for Ceramic, Glass, and Stone Tile Installation by the Tile Council of North America (TCNA).

Mechanical, Electrical, Plumbing, and Fire Protection Systems

- The current high velocity heat pump system by Unico and the VRF ductless split systems were installed in 2007 and appear to be operating well at the time of the site visit in December 2016. Regularly scheduled and required maintenance should continue. Change filters as recommended by the manufacturers of both systems.

- When the HVAC systems must be replaced in the future, consider installing a high velocity heat pump system like the current Unico equipment. This type of system can be designed and integrated into a historic structure much less conspicuously than the current VRF ductless system which has a noticeable cabinet that is typically mounted high on a wall. The advantage of the VRF system is its energy efficiency, but that should not outweigh the intrusion of the equipment on the historic interior of The Oaks.

- HVAC systems should be designed to maintain stable interior temperature and humidity. New systems should not introduce excessive moisture (humidity) into the building or significantly remove normal
moisture, as these changes can adversely affect historic materials. When condensation occurs on windows, plaster, or on other historic materials, the HVAC systems should be checked to ensure that they are operating properly, and harmful condensation is eliminated. Conversely, if new cracks in plaster walls or ceilings appear and normally tight joints in woodwork open up, the interior environment is too dry, and the HVAC systems should be checked.

- Consider making the first-floor bathroom functional and compliant with the ABAAS. It will be more difficult to plumb the boys’ bathroom, Portia’s shower room, and / or Booker T. Washington’s bathroom on the second floor and make one or both functional because existing materials would have to be removed to extend domestic water and waste lines to the crawl space under the house and connect the lines to the Institute’s utility system.

- When the kitchen on the first floor of the ell is restored, consider plumbing the sink.

- Replace broken and inoperable smoke and fire sensors, especially in the attic above the third floor and in the crawl space where non-functioning sensors are easily overlooked. Consider expanding the alarm and fire-sprinkler system to protect the first, second, and third floors. This expansion should be sensitively designed to minimize the loss of existing historic materials and interior finishes.

Structural System

- At structural members with termite damage, treat the existing wood to eliminate termites. Install supplemental structural members to reinforce the existing structure.

- Where loose brick units at structural brick floor arches are observed, install mortar at the joints. Replace brick units that are damaged.

Current and Forthcoming Work

Work currently in progress or planned has not been identified by the Park to be completed at the house in the near future.

Recommendations for Further Research

1. Conduct finishes analysis of painted wood on the exterior of the house to identify historic original/historic color schemes.

2. Conduct further research to determine the character-defining features of the third-floor that were present during the period of significance.

3. Conduct more research into the role Margaret Murray Washington played in running the daily activities of the house and supervising the evolution of the interior and exterior design (original and ongoing) of house.

4. After restoring ceramic tile in the bathrooms, re-install existing plumbing fixtures and fittings. It is recommended that research be conducted to find period-appropriate fixtures, fittings, and bath accessories, such as towel bars, shower curtain rods, and medicine cabinets, as needed to completely restore the bathrooms. Consider making the first-floor bathroom functional and compliant with the ABAAS.

5. Although the central hall and all three bedrooms on the third floor have been restored, the bathroom remains in poor condition. It is recommended that a further investigation be conducted to verify its relevance to the period of significance before undertaking its restoration. If this bathroom is an incompatible addition, it should be removed.

6. It is recommended that when light fixtures, receptacles, and electrical devices and equipment are added and updated as the restoration continues, they should be installed in compliance with the NESC, the IBC, and the IEBC. Select new light fixtures that closely
replicate fixtures that appear in historic photographs. Where evidence is not available, select fixtures appropriate to the period of significance, which, for The Oaks, may be replicas of gas lights and early electric lamps.

7. It is recommended that historic documents pertinent to The Oaks, which are currently scattered across several departments and agencies within the park, and documents at the Tuskegee University Library Archives, John A. Kennedy Hall, and possibly other places within the university be collected in one place at the park, preferably the Park archives. If the park departments and agencies wish to keep the originals, copies should be made and placed in the Park archives indicating the original’s location. Copies also should be made of the documents and photographs pertinent to The Oaks held by Tuskegee University and placed in the park archives with notations as to their locations within the university.

8. It is recommended that The Oaks HSR, The Oaks Cultural Landscape Report,209 which was researched and written while the current HSR was being developed, and the pending Tuskegee Institute National Historic Site Updated National Register of Historic Places Nomination be reconciled with the appropriate material from the CLR and Updated Nomination applied to the HSR so the HSR will be complete.

Resiliency to Natural Hazards

Although the Tuskegee Institute National Historic Site is located in east central Alabama and is not sited in a coastal location, the site is still considered increasingly vulnerable to current and future threats associated with natural hazards.

Increasingly frequent strong storms and heavy rainfall have been noted for several years in the southeastern United States. Studies of effects of natural hazards on the State of Alabama have also predicted a rise in average temperatures, coupled with periods of more severe flooding and drought. As soils become drier and rainfalls heavier, the chance of flooding increases. Although not a risk to the Tuskegee Institute site, sea-level rise is occurring more rapidly in Alabama than in other coastal areas because the land is sinking. Tropical storms and hurricanes have become more intense over the past twenty years.210 Alabama experiences numerous tornados each year, and central Alabama is a particularly high risk area. Numerous tornados are typically recorded in the region each year, and several in recent years have resulted in loss of life and significant property damage.211

Although threats are more immediate to coastal historic sites, inland historic sites similarly require identification of the resources anticipated to be threatened—both buildings and landscapes—and planning for protection as well as mitigation in the face of increased storms resulting from natural hazards.

As loss of historic resource integrity may occur, suddenly or slowly, from conditions related to natural hazards, documentation is the first response to mitigate anticipated loss or diminishment, or to plan for the impacts associated with natural hazards. This Historic Structures Report, including the historical narrative, condition assessment, and recommendations, together with photographs and measured drawings, is an important part of the documentation process.

As part of future efforts to build on and update the documentation provided in this HSR, the National Park Service should consider such approaches as more detailed documentation resulting from new three-dimensional scanning technology, monitoring weather-related deterioration, updating emergency and disaster planning to

209. WLA Studio.

address resiliency to natural hazards, and strategic planning for mitigation of the effects of natural hazards on park resources. The latter may include special protection, documentation, and interpretation measures to address resources that are especially vulnerable to damage or loss due to natural hazards-related conditions.

In addition to threats to the historic resources, natural hazards will affect visitation patterns. A park-specific brief has been prepared on this issue; the research conducted does not support a strong historical relationship between visitation and temperature at this site, but does note that visitors may respond to other hazard-related weather patterns and events such as storms, as well as to non-hazard-related factors. The brief further notes that understanding this relationship, and taking advantage of continued study, will help park management “adapt to the effects of [natural hazards] and remain effective resource stewards while promoting visitor experience.”

Efforts conducted for Tuskegee Institute National Historic Site will benefit from coordination with other planning and documentation projects to address effects of resiliency to natural hazards under consideration or in the process of being implemented by the National Park Service in the Southeast Region. Future severe weather events, rising sea levels, and other impacts related to natural hazards should be anticipated and considered in planning for protection and maintenance of the site and its resources.

Left blank intentionally
Bibliography

Bibliography

Bibliography

Reiter, Mary E. Memorandum to Regional Director, Southeast Region, NPS, Re: Tuskegee Institute National Historic Site, Macon County, Alabama, Preservation of The Oaks, Package No. 99. NPP: March 18, 1980.

Appendix A: Measured Drawings
Appendix B: Restoration Drawings of Millwork
PILASTER/BRACKET

SECTION
SCALE: 1/4" = 1'

FACE BOARDS
SCALE: 1/4" = 1'

RECONSTRUCTION OF
FIREPLACE #102 - DETAILS

HEARTH
SCALE: 1/4" = 1'
Door Renovation Schedule

<table>
<thead>
<tr>
<th>Door</th>
<th>Type</th>
<th>Size</th>
<th>Remarks</th>
<th>Recess Jam</th>
<th>Frame</th>
<th>casing</th>
<th>Frame</th>
<th>casing</th>
<th>Frame</th>
<th>casing</th>
<th>Frame</th>
<th>Transom</th>
<th>Transom</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B</td>
<td>1/2</td>
<td>36" x 80"</td>
<td>No Work Required</td>
<td></td>
</tr>
<tr>
<td>A/C</td>
<td>1</td>
<td>36" x 72"</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- A: Basement
- B: First Floor
- C: Second Floor
- D: Third Floor

Section - Door Elements

- Head Block
- Casing
- Latch
- Frame
- Door
- Jamb
- Transom
- Transom Bar

Prepared by: [Signature]
Drawing No.: [Number]
Sheet: [Number]
Scale: [Scale]

Door Renovation Schedule
F.S. DETAIL 'I5'

F.S. DETAIL 'I4'

EASED BUMPER
3/4" LAVE HO D SCREW
USED OLD BUMPER AS A MODEL AND MATCHED EXACTLY.

F.S. DETAIL - DOOR BUMPER
TO BE RTRN, AS ABOVE.
ELEVATION - WINDOW # 1/2

NOTE: ALL DIMENSIONS & DETAILS OF THIS WINDOW WERE JOB VERIFIED

F.S. DETAIL

Jaw Terminated & Matched OLD

F.S. DETAIL # 9E3 (OLD)

Jaw Terminated & Matches OLD
WORK INCLUDED BUT NOT DONE

PRE-EXISTING WINDOW FRAMES & SASH REPAIRED

WINDOW N1 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N1 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH
WINDOW N2 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N2 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH
WINDOW N3 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N3 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH
WINDOW N4 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N4 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH
WINDOW N5 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N5 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH
WINDOW N6 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N6 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH
WINDOW N7 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N7 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH
WINDOW N8 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N8 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH
WINDOW N9 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N9 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH
WINDOW N10 1/2 - REPLACED MEETING (ILL. G) TOP SASH
WINDOW N10 1/2 - REPLACED MEETING (ILL. G) BOTTOM SASH

ALL CONDITIONS WERE JOB VERIFIED AS LISTED ABOVE