Contents

MANAGEMENT SUMMARY

Executive Summary
Administrative Data

PART I: DEVELOPMENTAL HISTORY

Historical Background and Context
Chronology of Development and Use
Physical Description

PART II: TREATMENT AND USE

Ultimate Treatment and Use
Requirements for Treatment
Alternatives for Treatment

APPENDICES

A. Archival Documents, Photographs, Architectural Drawings
B. Bibliography
C. Conditions Assessment/Features Inventory
D. Materials Analysis
 Paint Analysis
 Mortar Analysis
Management Summary

Executive Summary

Administrative Data
Tuskegee Institute (now Tuskegee University) was the only institution during World War II that provided primary military flight training for African-American pilot cadets in the United States Army Air Corps. Tuskegee Institute constructed Moton Field in Tuskegee, Macon County, Alabama, from 1941 to 1945 and used it as the principal facility of their contract primary flying school. The airfield was named for the second president of Tuskegee Institute, Robert Russa Moton. Most Tuskegee Airmen received their first military flight training at Moton Field.

The Tuskegee Airmen were the first African-American soldiers to complete their pilot training successfully and enter the Army Air Corps. Military leaders were at first hesitant to use the Tuskegee Airmen in combat. Eventually the airmen saw considerable action in Europe and North Africa. Their accomplishments in the air proved conclusively that African Americans could fly and maintain sophisticated combat aircraft and ultimately paved the way for full integration of the United States military.

The Southeast Regional Office of the National Park Service (NPS) prepared the Moton Field/Tuskegee Airmen Special Resource Study in October 1998 to evaluate the potential of adding Moton Field to the National Park System and to define the significance of the site with regard, specifically, to its association with the Tuskegee Airmen during World War II and, in general, to its role in the history of military aviation. The airfield complex at Moton Field was designated as the Tuskegee Airmen National Historic Site in November 1998 and was subsequently programmatically listed in the National Register of Historic Places.
This Historic Structure Report (HSR) has been prepared as part of Phase II of the Moton Field Preservation/Restoration project. Phase II includes the production of a Cultural Landscape Report (CLR) and fifteen Historic Structure Reports for nine extant structures and six non-existing structures. The CLR addresses the Moton Field site as a whole and contains the complete historic context for the site; each HSR contains an abbreviated historic context that focuses on building history. Following is a list of the fifteen structures for which HSRs have been prepared.1

EXTANT STRUCTURES

Hangar Number One
Skyway Club
Control Tower
Bath and Locker House
Warehouse/Vehicle Storage Building
Dope Storage Shed
Oil Storage Shed
Fire Protection Shed
Entrance Gate

NON-EXISTING STRUCTURES

Hangar Number Two
Cadet Class and Waiting Room
Army Supply Building
Physical Plant Warehouse
Vehicle Maintenance Shed
Guard Booth

A *Moton Field Structure Nomenclature* table clarifying the name of each structure for purposes of the CLR and HSRs follows the Executive Summary.

To prepare the Historic Structure Reports and the Cultural Landscape Report, research was done at a number of repositories and on site. Research included on-site field inspections; interviews of persons associated with the site before, during, and after the construction of Moton Field; and review of primary and secondary sources related to the social and physical history of Moton Field, including NPS files compiled during the preparation of the Special Resource Study and selected transcripts from the ongoing NPS Tuskegee Airmen Oral History Project. A list of repositories visited and the primary materials that were reviewed at each is located in the bibliography of the Cultural Landscape Report.

Major research findings resulting from the research phase of the project included the location of a number of primary sources yielding information about the construction and operation of Moton Field. This primary information included original architectural drawings and site plans for the airfield and its expansions throughout the war years; historic photographs of the airfield complex and the flight training activities that took place there; written histories chronicling the airfield's construction and day-to-day operations; information on the building contractor and landscape architect involved in the complex's design and construction; and the history of the site before and after its war-era use for primary flight training.

1 The Phase II scope of work originally included a seventh non-existing structure, the Shed/Pump House, for which an HSR was to be prepared. After the research phase, however, no specific information had been found on the location or design of a shed/pump house on the Moton Field site. Because of this, the building was dropped from the list of non-existing structures.
The period of significance for the interpretation of Moton Field has been established as 1941 to 1945, the period during which Moton Field was constructed and the Tuskegee Airmen were trained by the contract primary flying school. 1945 will be the date of restoration for the field’s extant buildings and site features; the date of reconstruction for Hangar Number Two, the only non-existing building at the field that will be re-created; and the date of interpretation for the remaining non-existing buildings and site features. 1945 is the date by which all the buildings and site features at the airfield that were associated with the flying school had been constructed.

Built in the winter of 1942-1943, the Oil Storage Shed is an important auxiliary building at Moton Field. Based on historical research, a thorough investigation of the building and its relationship to the site as a whole, and the building’s significance to the site’s interpretation, the Ultimate Treatment and Use Recommendation for the Oil Storage Shed is Restoration of the building’s exterior and Preservation of the interior. System requirements for restoration of the exterior and preservation of the interior will include a monitored security system. The Oil Storage Shed contributes to the surviving historic fabric at Moton Field, and its restoration will be a significant component in the interpretation of the airfield to the public.
Administrative Data

Locational Data

Building Name: Oil Storage Shed
Building Location: Moton Field, Tuskegee Airmen National Historic Site, Chief Anderson Drive, Tuskegee, Macon County, Alabama.

Real Property Information

Acquisition Date: November 1998
Total Improvement/Modification Costs to Date: $810,855 (total construction cost to date for stabilization at Moton Field)

Size Information

Total Floor Area: 121 SF
First Floor Area: 121 SF
Basement Area: n/a
Roof Area: 178 SF
Perimeter Length: 44 feet
Number of Stories: One (1)
Number of Rooms: 1
Number of Bathrooms: 0
MANAGEMENT SUMMARY

Building Code Information

Applicable Codes:
Mechanical Code: 1997 Standard Mechanical Code

Seismic Hazard Exposure Group 8- No seismic requirements for architectural, mechanical and electrical systems. There are some minor structural requirements.

Analysis of the Oil Storage Building is based on possible usage as an unoccupied storage facility.
Building area is approximately 121 sf.

1997 Standard Building Code
Storage Occupancy - Group S1 - Moderate Hazard
Construction Type VI unprotected
Not fire sprinklered

Maximum allowable building height is 40'.
One story is allowed
Maximum allowable area is 6000 sf

The facility will be able to meet the area and height requirements.

NFPA 101
Storage Occupancy - Group S1 - Moderate Hazard

Proposed Treatment

Proposed Treatment for the Oil Storage Shed: Restoration of the exterior and Preservation of the interior

Related Studies

Cultural Resource Data

The Oil Storage Shed is a contributing resource in the Moton Field complex which was programatically listed in the National Register of Historic Places as a historic site unit of the National Park Service on November 6, 1998 with the approval by President Bill Clinton of Public Law 105-355 which established the Tuskegee Airmen National Historic Site.
MANAGEMENT SUMMARY

The period of significance for Moton Field has been established as 1941 – 1945, the period during which Moton Field was constructed and served as the principal facility of the primary flying school for the training of the Tuskegee Airmen.

Moton Field is nationally significant for its association with the historic contexts of African-American History and Military/Aviation History. In both African-American and Military/Aviation history, the airfield complex is significant for its role as the only primary flight training facility for African-American pilot cadets in the Army Air Corps during the World War II era. The accomplishments of the Tuskegee Airmen in military air combat in both European and North African theaters of operation helped pave the way for the full integration of the United States military and future civil rights advancements.

Recommendations for Documentation, Cataloging, and Storage of HSR Materials

A copy of research materials specifically documenting the Oil Storage Shed is located within the body or in Appendix A of this HSR. A copy of research materials documenting Moton Field as a whole may be found with the Cultural Landscape Report. Pre-stabilization photographs and other photographs taken during and after stabilization work of the Moton Field structures and site will remain with the project architectural firm until the completion of final construction drawings and specifications required for the preservation/restoration work.
Part I – Developmental History

Historical Background & Context

Chronology of Development & Use

Physical Description
Formally approved as Tuskegee Airmen National Historic Site on November 6, 1998, Moton Field is of national importance for its association with the training of the Tuskegee Airmen during World War II. Moton Field, constructed between June 1941 and March 1945, was the only primary military flight training facility for African-American pilot candidates in the United States Army Air Corps during the war. The field, named in honor of Robert Russa Moton, the second president of Tuskegee Institute (now known as Tuskegee University), symbolizes the entrance of African-American pilots into the Army Air Corps under a policy of segregation that was mandated by the military and institutionalized in the South. The buildings that remain at Moton Field have changed little over the years and the historic setting of the 1940s is still discernible.

Context

Opportunities for African-American participation in the United States military were always limited and controversial. Quotas, exclusion, and discrimination based on race reinforced the prevailing attitude in both the military and the general public that African Americans did not possess the intelligence or ability to be successful in the military. This perception carried into the 1940s when military officials still believed that African Americans could not become successful pilots in the Army Air Corps. The Air Corps decided to train a small number of African-American pilot candidates under segregated conditions and in January 1941, chose Tuskegee Institute as a civilian contractor to operate a primary flying school at a location in Tuskegee, Alabama, that would become known as Moton Field. This was the only primary military flight training facility for African-American pilot candidates in the U.S. Army Air Corps.
PART I – DEVELOPMENTAL HISTORY

Corps during World War II. The facility symbolizes the entrance of African-American pilots into the Air Corps, although on a segregated basis.

War-Era Construction at Moton Field

Building construction at Moton Field can be divided into three major phases of construction. These construction phases are modern descriptive terms and are not historic nomenclature. The justification for the three phases is based on actual dates of construction as well as the source of funding for each. The primary flying field was not officially known as Moton Field until its dedication in April 1943.

Phase One, beginning in June of 1941 and lasting through December of that same year, consisted of the initial establishment of the airfield (grading and clearing) as well as the construction of Hangar Number One and the Fire Protection Shed. Tuskegee Institute contributed $20,000, but the major funding source was a $130,000 loan from the Julius Rosenwald Fund.

Phase Two began in the summer of 1942 and lasted almost a year. Tuskegee Institute’s Board of Trustees initially authorized $15,000 for construction of the Cadet Class and Waiting Room and the Army Supply Building.² Hangar Number Two and the Control Tower, the Bath and Locker House, several small sheds for oil and dope storage, and an addition to Hangar Number One were completed with a $150,000 loan from the institute’s general funds.³

Phase Three began in early spring of 1944 and extended through the summer of the following year. It is believed that Tuskegee Institute funded this third phase of construction as well, but documentation has not been located to support or disprove this. During this phase the Vehicle Maintenance Shed and the Physical Plant Warehouse were constructed and the enlargement of the asphalt parking mat and paving of roadways in the building area were completed. The ground was graded south of Hangar Number One for a civilian recreation building, later known as the Skyway Club, that was not started until 1945.

Phase One Construction (June-December 1941)
Following the final contract negotiations with the Julius Rosenwald Fund, the United States Army, and Samuel Mizel (S.M.) Eich, the owner of the farm land on which the primary flying field would be built, construction of the airfield got underway in the early summer of 1941. “The History of the 66th AAF Flying Training Detachment, Moton Field, Tuskegee Institute, Alabama” states that the contract was signed on June 6, 1941 and construction of the airfield started about the same time.⁴ Archie A. Alexander, a prominent African-American contractor from Iowa, was recruited to supervise the initial phase of airfield construction.

² Julius Rosenwald Fund (JRF) Box 359, Folder 5. General Correspondence.
³ JRF Box 359, Folder 5. General Correspondence.
PART I - DEVELOPMENTAL HISTORY

By the end of 1941 the first phase of construction was complete. Hangar Number One was constructed for $44,134, which was included in the total cost of $148,506.98. The final construction costs were as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payment in full of contract</td>
<td>$112,900.00</td>
</tr>
<tr>
<td>Extra work by contractors</td>
<td>1,389.50</td>
</tr>
<tr>
<td>Purchase of land</td>
<td>33,500.00</td>
</tr>
<tr>
<td>Cutting trees</td>
<td>500.00</td>
</tr>
<tr>
<td>Allowances for crop damages</td>
<td>217.48</td>
</tr>
<tr>
<td>Total</td>
<td>$148,506.98</td>
</tr>
</tbody>
</table>

Phase Two Construction (June 1942-May 1943)

The Tuskegee training program expanded per orders of the Army, and the facilities originally constructed for a smaller number of cadets soon became inadequate. By the end of May 1942 plans were underway to construct one new supply building and one cadet waiting house. Hangar space formerly used for supply was converted to a link trainer room and empty office space was nonexistent at the field.6 The Tuskegee Institute Board of Trustees authorized special expenditures of $15,000 to finance these improvements, which were completed by late July 1942.

That fall, when it became necessary to expand the facilities at the field again because of another increased quota of students per class, financing once again was an issue. A request to the Julius Rosenwald Fund for an additional loan was rejected. In addition, they offered no leniency for loan repayment should Tuskegee be able to secure a loan from another source. Ultimately, $150,000 was secured through a loan from the general funds of Tuskegee Institute to complete the second phase of construction.

In addition to the expansion work completed by July 1942, the following construction was completed during Phase Two. Hangar Number Two was built with lean-to space for a Cadet Ready Room, five link trainers, and space for parachute maintenance, issue, storage, and drying. The Control Tower, a pump house containing chlorination units, the Dope Storage Shed, the Oil Storage Shed, and Bath and Locker House were also part of this phase.7 Women began to apprentice as mechanics, due to the manpower shortage during the War that necessitated separate facilities for men and women. Although initial construction had failed to anticipate women workers at the primary flying field, toilet and locker facilities were incorporated into the plans of the Bath and Locker House to remedy the need for women’s facilities.8

A School Facilities and Civilian Personnel Report dated October 27, 1942 details the status of the construction project with Hangar Number Two including the Control Tower at 7% complete.

6 JRF Box 359, Folder 5. General Correspondence.
7 "The History of the 66th AAF Flying Training Detachment, Moton Field, Tuskegee Institute, Alabama: Section II," p. 4.
complete; the Bath and Locker House at 25%; and the Oil Storage Shed at 90% complete. Progress to date on the main field was 20% complete. During construction it became difficult to obtain some building materials due to the shortage caused by the war. Even with a high priority rating obtained from the Air Force, locating materials often lengthened construction time. This was especially true with regard to the 100-foot span trusses and metal truss ties for Hangar Number Two. Ultimately, David A. Williston, the Landscape Architect at Tuskegee Institute who was responsible for the landscape design at the primary flying field, scoured the campus for suitable trees for cutting and milling the trusses. Construction on the hangar came to a virtual stopping point for two months until truss ties could be located.

During construction it became difficult to obtain some building materials due to the shortage caused by the war. Even with a high priority rating obtained from the Air Force, locating materials often lengthened construction time. This was especially true with regard to the 100-foot span trusses and metal truss ties for Hangar Number Two. Ultimately, David A. Williston, the Landscape Architect at Tuskegee Institute who was responsible for the landscape design at the primary flying field, scoured the campus for suitable trees for cutting and milling the trusses. Construction on the hangar came to a virtual stopping point for two months until truss ties could be located.10

On November 10, 1942, 35% progress was reported on the main field. Construction on the Oil Storage Shed was complete and Hangar Number Two had reached 35% completion while the Bath and Locker House was 60% complete.11 By November 25, the Hangar progressed to 60% completion and the Bath and Locker House to 75% complete.12

In December construction began on the Warehouse/Vehicle Storage Building and a Vehicle Maintenance Shed. The shed, which was located at the east extremity of the building complex, housed trucks and ambulances overnight as well as miscellaneous lumber used for maintenance. The warehouse was a concrete block building located east of where the Physical Plant Warehouse was soon completed.13 The December 10, 1942 report boosted the Hangar to 70% completion, the Bath and Locker House to 80%, and the Warehouse/Vehicle Storage Building was 20% complete. Although the main field had been in use over a year, it was only 45% completed as of this report.14

Despite being only 95% complete in March 1943, offices in Hangar Number Two were occupied in order to relieve office congestion in Hangar Number One. May 1943 marked the completion of the second building phase at the airfield. The Bath and Locker House, Warehouse/Vehicle Storage Building, improvements to the landing field and Hangar Number Two were finished. At this time the Intelligence Office was moved from Hangar Number One to Hangar Number Two, which allowed space for the Intelligence Library. As the Cadet Ready Room was also moved to the second hangar, it allowed trainees free access to the reading materials. The Intelligence Office was a military office that provided secure as well as general information about war activities. The office included an Intelligence Library with reading materials such as magazines, newspapers and intelligence summaries, and a War Room with additional reading materials, models of aircraft, ships, and tanks, and maps of various theaters of operations, all of which were kept updated as the war progressed.

9 "The History of the 66th AAF Flying Training Detachment, Moton Field, Tuskegee Institute, Alabama: Section II," Appendix III.
11 "The History of the 66th AAF Flying Training Detachment, Moton Field, Tuskegee Institute, Alabama: Section II," Appendix IV.
12 Ibid, Appendix V.
13 Washington, p. 312.
14 "The History of the 66th AAF Flying Training Detachment, Moton Field, Tuskegee Institute, Alabama: Section II," Appendix VI.
Aviation cadets were encouraged to spend a few minutes each day in the Library and War Room to keep themselves informed. The Parachute and Link Trainer Departments also moved into larger spaces in Hangar Number Two. This left more space in Hangar Number One for Engineering and Operations.

The airfield was named Moton Field in honor of Tuskegee Institute’s second president Robert Russa Moton. In preparation for the official dedication ceremony on April 4, 1943, a brick entrance gate was constructed along the main road to the west of the building complex. The south wall contained a niche that featured a bust of Robert Moton.

In July of 1943, Tuskegee Institute made its final payment on the loan to the Julius Rosenwald Fund. Tuskegee Institute president Dr. Frederick D. Patterson summed up this special partnership with the following words:

I think it is safe to say that were it not for the wisdom and generosity of the Rosenwald Fund, in its willingness to make an exception to its stated policy, this favorable accomplishment probably would not be a matter of record today. I am sure also that the action of the Rosenwald Fund encouraged our own trustees to take the larger portion of our free funds to make possible the expansion and promotion of this development. We now have a total investment of approximately $350,000, and aviation has been developed to the point where I am sure it will be a permanent feature of the work of Tuskegee Institute. When we consider the importance of aviation as a vocation today and what it will in all probability mean in the post-war world, we can see that a contribution of lasting importance has been made.

Phase Three Construction (Spring 1944-Summer 1945)

During the first half of 1944, Moton Field experienced yet another program expansion. In March a new Physical Plant Warehouse was completed, which provided additional office and storage space used by the primary flying school contractor, Tuskegee Institute, to better oversee activities at the airfield.

A year later construction finally got underway on the civilian recreation building, later known as the Skyway Club. This building was to serve as a recreational facility for employees who worked at Moton Field. Built as a cooperative project, Tuskegee Institute supplied the materials while the employees were expected to contribute most of the labor. “Solo,” a locally distributed newsletter at Moton Field, suggested that an appropriate motto for the new building project was, “[t]he harder we work, the sooner we get to play.”

16 Washington, p. 310.
17 JRF Box 359, Folder 5. General Correspondence.
19 Sola. 10 March 1945, p. 9.
The final installment of the History of the 2164th AAF Base Unit, Tuskegee Institute, Alabama covered September through November 1945. This period marked the final phase of primary flying training of African-American personnel at Moton Field. By the end of November all trainees had either graduated, been discharged, or transferred to Tuskegee Army Air Field.20

Post War (1946-1998)

The close of the Army Air Corps contract flying school in November 1945 brought a change in the activity at Moton Field. Charles Alfred “Chief” Anderson, who was a flight instructor at the field for the Army Air Corps, continued to offer private flying lessons from Moton Field. Even though primary flight training operations had ceased at the airfield, the Skyway Club continued to operate as a night club open to the general public during this time. According to Bill Childs, who worked as a mechanic at Moton Field, a private business, Tuskegee Aviation Corporation, formed soon after the end of primary flight training. This corporation used the Moton Field facilities to repair and maintain planes and convert military planes for civilian use. In addition, the corporation operated a G.I. flight school through the G.I. College Bill, and Tuskegee Institute offered a degree in Aircraft Mechanics using the corporation and Moton Field for training. The corporation operated for approximately two years after the war ended.21 According to Mr. Childs, the City of Tuskegee attempted to levy Tuskegee Aviation Corporation for a total of four million dollars in taxes, the amount for which the Moton Field property was insured. Rather than pay the taxes, the corporation decided to shut down. The government’s first attempt to tax Tuskegee Institute for the property failed because the school was tax exempt and refused to pay the taxes.22

After the corporation dissolved, Macon County used the hangars for storage of surplus food and as a distribution center for welfare recipients.23 During this time, several of the support buildings were turned into housing for employees of Tuskegee Institute. The bare minimum was spent on upkeep of these “cottages” as they were known, and residents did general repairs on the buildings themselves. Bill Childs remembers the Skyway Club serving as a dormitory for male students shortly after the war. The G.I. Bill increased student enrollment, and, while campus dorms were being renovated, the Skyway Club’s original open space was subdivided into smaller sleeping quarters. The building may have been in use as a dormitory until the early 1950s.24

All activity, with the exception of housing Tuskegee Institute employees in the cottages, ceased by the mid-1950s, and Tuskegee Institute put little money into the maintenance and upkeep of the buildings and grounds at Moton Field. According to Ed Pryce, landscape architect and superintendent of grounds and maintenance from 1955-1969, the only official upkeep at the field was occasional mowing and maintaining the water and sewer lines. No

21 Telephone Interview with Bill Childs by Debbie Curtis Toole, December 2001.
22 Ibid.
23 Ibid.
24 Ibid.
official use was given to the hangars or sheds during this time. With this lack of maintenance, the buildings and landscape deteriorated.

In the 1960s, the Tuskegee Institute School of Veterinary Medicine began to use the airfield for animal research. The area to the east of the field’s building complex contained numerous cattle pens. The school renovated Hangar Number Two into a large animal operating and research lab in the early 1970s, which involved subdividing the large hangar space into operating rooms while the original office and classroom areas were converted into laboratories. A fire destroyed the hangar in 1989, and the remaining walls were leveled to the ground. Based on a 1964 floor plan of the Skyway Club, this building may also have been used by the Veterinary School. In the mid-1970s, the school renovated the Warehouse/Vehicle Storage Building into a Swine Research Center.

In 1972, a tract consisting of 325 acres of the original Moton Field was deeded to the City of Tuskegee for development of a municipal airport. Bids for the contract were opened in April of 1972, and construction began a year later by the Dubose Construction Corporation in March of 1973. The Municipal Airport was constructed to the north of the building complex. The new paved runways occupy the southern portion of cleared land where the original grass runways were located.

Creation of Tuskegee Airmen National Historic Site

President Bill Clinton approved Public Law 105-355 on November 6, 1998, which established the Tuskegee Airmen National Historic Site at Moton Field in Tuskegee, Alabama. The site was created to commemorate and interpret the heroic actions of the Tuskegee Airmen during World War II and was established as a unit of the National Park System. With this approval, Moton Field was also programmatically listed in the National Register of Historic Places. Establishment of the site included the acquisition by the National Park Service from Tuskegee University of approximately forty-four acres known as Moton Field. This forty-four acre tract includes the nine extant historic structures as well as the former sites of the six non-existing structures. In addition, the tract includes an overlook area that might eventually be the site of a proposed interpretative center. NPS land does not include the grass runways, a portion of the historic taxiway, or a portion of the historic tarmac.

Because of its creation as a contract school, Moton Field facilities have not faced the adaptation or conversion typically experienced by other World War II pilot training facilities. Although deterioration has occurred to the historic fabric, the surviving buildings have not undergone significant alterations. When considered in the larger historic setting, the buildings and surviving landscape features express the field’s historic function as a flight training facility. Moton Field retains a high level of integrity for interpretation of the training and activities of the Tuskegee Airmen.

26 Public Law 105-335. 112 Stat. 3254-3258.
PART I - DEVELOPMENTAL HISTORY

For a complete historical overview and developmental history of Moton Field see the Cultural Landscape Report (CLR) for Moton Field, Tuskegee, Alabama.
PART I - DEVELOPMENTAL HISTORY

Chronology of Development & Use

The Oil Storage Shed is a small, generally square brick building that is located just west of the Bath and Locker House. It was built with the same setback from the road as the heater room of the Bath and Locker House. (See Figure 1.) Construction began on the building in the fall of 1942 and was completed by December 10, 1942. As the name implies, the shed was used to store oil used at the airfield.

A site plan of the field from January 1943 identifies an appropriately sized building in the proper location as the Oil Storage Shed. (See Figure 2.) Historic photographs from the World War II era visually document the Oil Storage Shed during this time period, though these pictures are not specifically of the shed. (See Figure 3.) An aerial photograph dated to circa Fall 1944 shows the Oil Storage Building as a completed structure.

After flying operations at the field ceased in November 1945, Tuskegee Institute did not officially use the Oil Storage Building and spent little money on maintaining the buildings at

27 "History of 66th AAF Flying Training Detachment, Moton Field, Tuskegee Institute, Alabama, Section II - 7 December 1941 to 31 December 1942 Inclusive." 234.821, in Moton Field Collection, AFHRA.
29 Circa 1944 Aerial Photograph, Historic Photograph Collection, Howard University. Circa 1945 Aerial Photograph, Historic Photograph Collection, NPS Curatorial Storage Facility, Tuskegee Institute NHS. Historic Photograph Collection, AFHRA, Maxwell AFB.
PART I – DEVELOPMENTAL HISTORY

Moton Field during the 1950s. The Oil Storage Shed, like other buildings at Moton Field, deteriorated over time because of lack of general maintenance. The Tuskegee Institute School of Veterinary Medicine began to use some of the buildings at Moton Field in the 1960s but the Oil Storage Shed was not among them.

A photograph taken in the late 1970s or early 1980s documents the view of the shed from the southwest. While the asphalt roll roofing appears intact, the fascia on the west elevation was partially missing. (See Figure 4.) By 1997, the wood frame portion of this building was in poor condition. (See Figure 5.) A majority of the novelty board siding was loose and deteriorating. The roof had a pronounced sag in the middle and the fascia board was in poor shape as well.

The building remained unused and continued to deteriorate until the National Park Service acquired Moton Field in 1998. Stabilization work began in 2001 and included reconstructing the wooden portion of the building with largely in-kind materials, replacing the asphalt roll roofing, installing a temporary wooden door frame, and removing the metal grill over the entrance.

31 Booker Conley's Files, Physical Plant, Tuskegee University.
32 Pre-stabilization photo, Pond & Company.
Figure 1: Looking east at the airfield circa late 1944 with the Oil Storage Shed in the foreground on the right. Historic Photograph Collection, Howard University.
Figure 2: January 1943 site plan that shows the Oil Storage Shed west of the Bath and Locker House. Physical Plant, Tuskegee University.
Figure 3: The Oil Storage Shed can be seen in the background of this May 1944 photo. AFHRA, Maxwell AFB.

Figure 4: Photograph taken by Booker Conley in the late 1970s-early 1980s showing damage to the fascia board on the east elevation. Booker Conley's Files, Physical Plant, Tuskegee University.
Figure 5: 1997 view from the west of the structure showing signs of roof deterioration. National Park Service, SERO, Atlanta, Georgia.

Figure 6: Oil Storage Shed from the northeast after reconstruction of the wooden top portion.
Figure 7: Oil Storage Shed prior to stabilization work. Pond & Company.

Figure 8: Unpainted interior of the Oil Storage Shed.
Figure 9: Historic photograph of exposed rafter tails on south elevation of the Oil Storage Shed. Historic Photograph Collection, Howard University.
PART I - DEVELOPMENTAL HISTORY

Physical Description

The Oil Storage Building is an 11-foot by 11-foot one-half inch brick building located to the southeast of Hangar Number One. It sits directly west of the Bath and Locker House with the same setback from the road as the Bath and Locker House heater room. Although the Oil Storage Shed is similar in appearance to the Dope Storage Shed at first glance, the two were constructed differently.

Following is a detailed description of the features and materials of the Oil Storage Shed that are based on field inspection and supported by original site plans and historic photographs. A *Conditions Assessment/Features Inventory* detailing the conditions of each of the following features is located in *Appendix C*. A detailed *Paint Analysis* and *Mortar Analysis* are located in *Appendix D*.

[See Figures 6 – 9 for current photographs of the Oil Storage Shed.]

Walls

The walls of the Oil Storage Shed are solid one-foot thick brick masonry. The brick is painted gray on the exterior and remains unpainted on the interior. It is laid in a common bond pattern of one header row and six stretcher rows. The top row of brick has been cut in a manner that creates the slope of the roof. The north front wall stands one foot, one and one-half inches higher than the south rear wall.
PART I – DEVELOPMENTAL HISTORY

The brick walls are capped with a wood frame section that increases the height of the building by one foot, three and one half inches. Novelty wood siding covers the frame and was painted white prior to restoration.\(^{33}\) Within this frame section are openings on the east, south, and west facades that are five feet, five and three-quarter inches in length. Each opening is divided into four equal sections by 2x4s that allow both light and air into the building.

Roof

The shed has a one foot, two inch roof overhang on all sides. Rafters run north-south and slope towards the south. Historically, the rafter tails were exposed on the south elevation.\(^{34}\) New asphalt roll roofing covers the decking.

The entire roof structure was replaced during recent stabilization work. This work incorrectly covered the rafter tails on the south elevation with fascia.

Door

A door is located in the center of the north facade. The current door has three horizontal panels beneath a six-pane sash. The sash no longer contains glass and is missing a muntin. The former open portion is covered from behind with pieces of plywood and particle board. Prior to stabilization work, the shed had a metal grill across the entrance in addition to the wooden door for added security.\(^{35}\) This grill consisted of three wide horizontal bars with six slender vertical bars. No historic photographs found to date show the north elevation so it has not been determined whether or not the current door is original to the shed.

Floor

The floor is a smooth finish concrete slab.

Mechanical/Electrical Systems

There are no mechanical or electrical systems in the Oil Storage Shed.

\(^{33}\) Ibid.

\(^{34}\) Historic Photograph Collection, Howard University, Booker Conley’s Files.

\(^{35}\) Pre-stabilization photo, NPS.
Part II - Treatment & Use

Ultimate Treatment & Use

Requirements for Treatment

Alternatives for Treatment
Two potential treatments based on the standard historic preservation treatments defined in *The Secretary of the Interior's Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings* have been considered for the Oil Storage Shed. These two treatments are (1) Preservation and (2) Restoration. The Ultimate Treatment and Use Recommendation for the Oil Storage Shed is Restoration of the exterior and Preservation of the interior. This recommendation is evaluated based on the Criteria for Determining Treatment. The evaluation is followed by a summary of the steps needed to realize the treatment and a summary recommendation based on the practical feasibility of the treatment, the treatment’s impact on historic materials, and its effect on the historic character of Moton Field as a whole.

The Period of Significance for interpreting the history of Moton Field is 1941-1945, the period during which the buildings and landscape at Moton Field were constructed and the Tuskegee Airmen were being trained in the primary flying school. 1945 is the Restoration Date identified for the restoration of extant buildings. 1945 is the date by which the entire complex at Moton Field associated with the training of the Tuskegee Airmen and the operation of the flying school had been constructed.

ULTIMATE TREATMENT AND USE RECOMMENDATION

The Ultimate Treatment and Use Recommendation for the Oil Storage Shed is Restoration of the exterior of the shed and Preservation of the interior based on existing materials and features, historic photographs, and original site plans.
The current condition of the Oil Storage Shed is very similar to its historic condition. With minimal effort, the shed can be accurately restored to its war-era appearance. The building will only be viewed from the exterior where interpretative signage can explain the building’s historic function. Visitors will not need to view the interior of the shed to be able to understand its wartime use.

Criteria for Determining Treatment

Following are the criteria that have been used in determining the recommendation for the ultimate treatment of the historic structures at Moton Field. An explanation of how the Oil Storage Shed meets each criterion for the treatment of restoration of the exterior and preservation of the interior is provided.

• Significance and Value to the Site’s Interpretation

The Oil Storage Shed is an original structure to the primary flying training facility at Moton Field and remains relatively unchanged since the World War II era. It is important to the interpretation of Moton Field as one of several auxiliary storage structures that help to illustrate the day-to-day operations of a military airfield.

• Existing Condition and Material Evidence

The Oil Storage Shed is in sound structural condition. Reconstruction of the wood frame portion and roof has recently weatherproofed the structure to prevent further deterioration. The front door is missing panes of glass and does not fit the frame properly. The brick walls and concrete floor of the building remain intact and provide physical documentation of the original building. The wood frame section and roof were reconstructed largely with in-kind materials during stabilization work in 2001.

• Archival Documentation

Historic documentation of the Oil Storage Shed exists in the form of historic photographs, written histories, and original site plans. Historic photographs document the building during the war era. Later photographs show the deterioration of the building from the 1970s to the present. Photographs are the most authentic form of documentation available for the shed. Historic site plans also document the building’s location and relationship to other buildings on the site from the time of construction through the war era. No documentation has been found to date that confirms what sort of oil containers were stored in the shed.

Restoration/Preservation of the Oil Storage Shed

Restoration of the exterior of the Oil Storage Shed will seek to return the building to its historic appearance in 1945. This will conserve the building’s existing historic fabric as well as allow visitors to view the building as it was constructed and used by the primary flying school. Preservation of the interior will seek to stabilize and repair existing materials to prevent further deterioration of the historic fabric.
PART II – TREATMENT & USE

With the combination of historic photographs, historic site plans, and the existing building, the restoration of the exterior of the Oil Storage Shed can be accomplished. Additional photographs or other documentation of the building, especially of the front facade, would be helpful in verifying that the current door is original to the building.

Restoration of the exterior of the shed will include restoring existing brick and repairing and replacing missing materials related to the door and door frame. Following are items that should be addressed in the restoration. These items are not in order of importance or how they should be accomplished. A detailed work plan should be devised to establish an appropriate order for accomplishing the restoration work.

- Restore original color scheme of unpainted red brick, wood frame section, and fascia board. (See Paint Recommendations in the Paint Analysis in Appendix D.)
- Restore exposed roof rafter tails on the south rear elevation.
- Permanently attach wood roof frame system to brick walls.
- Replace new asphalt roll roofing with roll roofing that matches original.
- Restore existing door; replace deteriorated elements as necessary; repair existing hardware; replace missing hardware; replace glass; if further documentation reveals that existing door differs from original door, replicate original door.
- Restore metal grill to its original location.
- Reconstruct wood door frame.

Preservation of the interior of the shed will simply involve the stabilization of existing materials which has already taken place when recent stabilization work was performed on all the buildings at Moton Field.

Additional Documentation Required for Restoration

Following are items that require additional information in order to achieve a complete and accurate restoration.

- Original door documentation
- Interior treatment of the wood frame portion
- Interior furnishings

Interpretation and Use of the Building

- Interpretative signage that includes historic photographs and site plans as well as text should explain the construction and how the building fit into the overall complex.
- Use interior space for modern storage with no public access or have interior space open to public view, but no access, with or without furnishings to interpret use.

Systems Requirements Based on Use

Security System
- A monitored security system should be installed to provide notification of an intruder during closed hours. The security system should consist of motion detectors to be
PART II – TREATMENT & USE

placed as inconspicuous as possible. Monitored doors and windows are not recommended due to the historic nature of the items and the disruptive installation necessary for these items. Provide the security system as an extension of the system installed in Hangar Number Two.

Summary Recommendation

Because the current condition is so similar to its historic condition, restoration of the Oil Storage Shed can be accomplished with relative ease. Restoration offers the best opportunity to conserve the building’s historic fabric and fully interpret the role of this auxiliary structure at Moton Field during the war era. Therefore, restoration of the exterior and preservation of the interior is the Recommended Ultimate Treatment.
Legal mandates and policy directives restrict treatment of the Oil Storage Shed. The NPS's Cultural Resources Management Guideline (DO-28) requires planning for the protection of cultural resources "whether or not they relate to the specific authorizing legislation or interpretive programs of the parks in which they lie."

Section 106 of the National Historic Preservation Act (NHPA) mandates that federal agencies, including the NPS, take into account the effects of their actions on properties listed or eligible for listing in the National Register and give the Advisory Council on Historic Preservation a reasonable opportunity to comment.

To help guide compliance with the statutes and regulations noted above, the Secretary of the Interior's Standards for the Treatment of Historic Properties have been issued along with guidelines for applying those standards.

Issues of human safety and fire protection are addressed in the Administrative Data and Ultimate Treatment and Use sections. Proper abatement of any hazardous materials will be addressed in the construction phase of the project.
One alternative for treatment has been considered and is presented here. It is Preservation of the exterior and interior of the shed in its current state. This alternative is evaluated based on the Criteria for Determining Treatment. This evaluation is followed by a summary of the steps needed to realize the treatment and a summary recommendation based on the practical feasibility of the alternative, the alternative treatment's impact on historic materials, and its effect on the historic character of Moton Field as a whole.

The Period of Significance for interpreting the history of Moton Field is 1941-1945, the period during which the buildings and landscape at Moton Field were constructed and the Tuskegee Airmen were being trained in the primary flying school. 1945 is the date identified during the period of significance by which the entire complex at Moton Field associated with the training of the Tuskegee Airmen and the operation of the flying school had been constructed.

ALTERNATIVE FOR TREATMENT: PRESERVATION

An alternative for treatment of the Oil Storage Shed is Preservation of the building in its current condition. Preservation would seek to maintain the existing character of the building, making only those repairs and alterations that are necessary to prevent further deterioration of the building itself and to eliminate any threats to life safety. In this treatment the interior of the building could be accessible to the public, viewed by the public through the doorway, or not accessible to the public at all. Historic photographs and illustrations would convey to visitors the building's original use.
Criteria for Determining Treatment

Following are the criteria used in determining the alternatives for treatment of the historic structures at Moton Field. An explanation of how the Oil Storage Shed meets each criterion for the treatment of preservation is provided.

• Significance and Value to the Site’s Interpretation

The Oil Storage Shed is an auxiliary building at Moton Field. Although it is not one of the most significant buildings at the field, its relatively unaltered appearance is a valuable asset to the interpretation of the site setting and day-to-day operations at the airfield. Preservation of the existing building would retain the shed and protect it from further deterioration.

• Existing Condition and Material Evidence

The existing building is in sound structural condition. Recent stabilization work has replaced the dilapidated roof. Additional preservation work would be needed to protect the remaining historic fabric from further deterioration.

• Archival Documentation

Documentation in the form of historic photographs and historic site plans should be used to determine original features and materials of the shed.

Preservation of the Oil Storage Shed

Preservation of the Oil Storage Shed would involve stabilizing and repairing existing material and features to make the building safe for visitors and to halt further deterioration. Interpretation of the shed as it now exists should be as accurate as possible. Stabilization/preservation work should be clearly differentiated from the existing historic fabric.

• Repair wooden door to protect from further deterioration.
• Repair door frame so that door operates properly within the current frame.
• Permanently attach roof system to brick walls.
• Paint all new wood members that currently contain only a primer coat.

Interpretation and Use Recommendations

• Interpretative signage that includes historic photographs and site plans as well as text could explain the construction and how the building fits into the overall complex.
• The interior could be publicly accessible or simply open to view.

Summary Recommendation

Preservation of the Oil Storage Shed would preserve the building’s remaining historic fabric. Recent stabilization of the building has halted deterioration of the historic fabric.
PART II – TREATMENT & USE

Preservation would not negatively impact the surviving historic fabric; rather, it would seek to protect the building from further decay. While preservation is a feasible alternative, restoration allows the best opportunity to fully interpret the building. Since restoration of the shed could be achieved with minimal effort, preservation is not the Recommended Ultimate Treatment.
Appendices
Appendix A

**Appendix A is located in a separate notebook that contains the supplemental archival documents, photographs, and architectural drawings for all Historic Structure Reports and the Cultural Landscape Report.

- Archival Documents
- Photographs
- Architectural Drawings
Appendix B

- Bibliography
Conley, Booker. Interview by Jon Buono, NPS; Anne Wilfer, Debbie Curtis Toole, and Courtney Foley of The Jaeger Company; and Mary Higginbotham, Paint Analysis Consultant, 26 September 2001. Moton Field, Tuskegee, Alabama.

Conley, Booker. Physical Plant Files, Tuskegee University, Tuskegee, Alabama.

Historic Photograph Collection, Moorland-Spingarn Research Center, Howard University, Washington, D.C.

Oil Storage Shed - Moton Field
HSR
34
APPENDICES

World War II-era Aerial Photograph of Moton Field, c.1945. Historic Photograph Collection, NPS Curatorial Storage Facility, Tuskegee Institute NHS, Tuskegee, Alabama.
Appendix C

- Conditions Assessment/
 Features Inventory

Oil Storage Shed - Moton Field
HSR
36
FEATURE INVENTORY: EXTERIOR ENVELOPE
Oil Storage Shed

Historic Rating Designations

U - Undetermined (The historic significance of the feature has not been determined)
H - Historic (The feature has historic significance)
T - Treat as Historic (The feature should be treated as if it has historic significance)
N - Not Historic (The feature does not have historic significance)

All Estimable Items

<table>
<thead>
<tr>
<th>Materials</th>
<th>Labor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4,535.00</td>
<td>$2,723.00</td>
<td>$7,258.00</td>
</tr>
</tbody>
</table>

EXTERIOR 4110 Exterior Wall Surface/ Cover Brick

Feature Description: Exterior brick surface.

Feature Notes:

Feature Condition: Good Total Inventory: 265 S.F.
Historic Rating: H Priority: Minor

Deficiency: Recently painted during stabilization.

Recommendation: Re-paint to match original color scheme.
Re-point brick as necessary.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Labor</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$350.00</td>
<td>$1,135.00</td>
<td></td>
<td>$1,485.00</td>
</tr>
</tbody>
</table>
Exterior Wall Surface: Description

Feature Description: Frieze band above door

Feature Notes:

Feature Condition: Fair
Total Inventory: 88 S.F.
Historic Rating: H
Priority: Minor

Deficiency: Verify number of openings provided during stabilization.

Recommendation:

Materials:	$303.00
Labor:	$95.00
Quantity:	
Total:	$398.00

Exterior Wall Trim: Description

Feature Description: 6" Fascia board at roof

Feature Notes: Fascia board was replaced and painted during stabilization.

Feature Condition: Good
Total Inventory: 52 L.F.
Historic Rating: H
Priority: Minor

Deficiency:

Recommendation: Remove fascia at rear to leave rafter ends exposed per original construction.

Materials:	$54.00
Labor:	$115.00
Quantity:	
Total:	$169.00
EXTERIOR 4117 Exterior Eave/ Soffit

Feature Description: Wood roof eave - approx. 12"

Feature Notes: Entire roof and eave system replaced during stabilization.

Feature Condition: Good
Total Inventory: 52 S.F.
Historic Rating: H
Priority: Minor

Recommendation:
Attach roof frame to wall by tying into top row of brick.
Paint to match original color scheme.

Materials: $102.00
Labor: $400.00
Quantity:
Total = $502.00

EXTERIOR 4151 Exterior Door Frame

Feature Description: Wood door frame

Feature Notes:

Feature Condition: Poor
Total Inventory: 1
Historic Rating: H
Priority: Serious

Deficiency: Minor deterioration at bottom, additional 2 by member attached at door latch.

Recommendation: Replicate door frame and restore to original configuration.

Materials:
Labor:
Quantity:
(Refer to 4152 - Exterior Door)
Total =
Feature Description: Door

Feature Notes:

Feature Condition: Poor
Total Inventory: 1

Historic Rating: N
Priority: Critical

Deficiency: Missing panels, does not fit frame properly, and wood panels delaminating

Recommendation: Restore door to original configuration. Replace with replicated door based on historic photographs.

Materials: $1,885.00
Labor: $48.00
Quantity:
Total = $1,933.00

Feature Description: Door

Feature Notes:

Feature Condition: Poor
Total Inventory: 1

Historic Rating: N
Priority: Serious

Deficiency: Rusting and missing strike.

Recommendation: Replicate and replace missing items as necessary.

Materials: $630.00
Labor:
Quantity:
Total = $630.00
Feature Description: Exterior door threshold

Feature Notes:

Feature Condition: NA **Total Inventory:** 1

Historic Rating: N **Priority:** Minor

Deficiency: No threshold evidence

Recommendation: None.

Materials: $0.00 **Labor:** $0.00 **Quantity:** Total = $0.00

Feature Description: Asphalt roof shingles

Feature Notes: Roof was replaced during stabilization.

Feature Condition: Good **Total Inventory:** 169 S.F.

Historic Rating: H **Priority:** Minor

Deficiency:

Recommendation: Replace modern shingles with shingles that replicate original.

Materials: $423.00 **Labor:** $493.00 **Quantity:** Total = $916.00
<table>
<thead>
<tr>
<th>EXTERIOR</th>
<th>4311</th>
<th>Roof Structure</th>
<th>Wood</th>
</tr>
</thead>
</table>

Feature Description: Shed roof

Feature Notes: Roof was replaced during stabilization.

Feature Condition: Fair
Total Inventory: 169 S.F.

Historic Rating: H
Priority: Minor

Deficiency:

Recommendation: Utilize as restored.

Materials: $788.00
Labor: $437.00
Quantity:

Total = $1,225.00
Appendix D

- Materials Analysis
 Paint Analysis
 Mortar Analysis
PAINT ANALYSIS
OF
OIL STORAGE SHED
FIRE PROTECTION SHED
DOPE STORAGE SHED
MOTON FIELD
TUSKEGEE, ALABAMA

PREPARED
FOR
THE JAEGER COMPANY

BY
MARYELLEN HIGGINBOTHAM
PRESERVATION/DESIGN CONSULTANT
September 2002
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SCOPE OF WORK</td>
<td>2</td>
</tr>
<tr>
<td>GENERAL SUMMARY</td>
<td>3</td>
</tr>
<tr>
<td>PAINT ANALYSIS</td>
<td>4</td>
</tr>
<tr>
<td>Exteriors</td>
<td>4</td>
</tr>
<tr>
<td>Chromo-chronologies</td>
<td>5</td>
</tr>
<tr>
<td>PAINT RECOMMENDATIONS</td>
<td>7</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>Frank Welsh Report</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

In the summer of 1941, Tuskegee Institute began the development of Moton Field in Tuskegee, Alabama. The extant historic buildings/structures at Moton Field are unique examples of facilities needed for basic flight training during the 1940s. The African-American pilots who trained here made a considerable contribution to the United States flight operations during World War II. After the war, the civilian uses of these buildings/structures included civilian aviation, recreation, and housing in addition to Tuskegee Institute programs. Most of the buildings were vacant and deteriorated by the 1980s.

According to research conducted by the National Park Service and The Jaeger Company, construction of the main buildings/structures at Moton Field began in spring of 1941, with Hangar Number One, and concluded in the summer/fall of 1945, with the Skyway Club. These buildings/structures were constructed in Three Phases and all within five years. The nine extant historic buildings/structures are Hangar Number One, Entrance Gate, Control Tower, Bath and Locker House, Warehouse/Vehicle Storage Building, Dope Storage Shed, Oil Storage Shed, Fire Protection Shed, and Skyway Club.
SCOPE OF WORK

Paint analysis of the paint histories of the nine extant historic buildings/structures at Moton Field has been conducted in two phases. The project began at the request of Amy Kissane, Senior Preservation Planner at The Jaeger Company and is a part of The Jaeger Company’s Moton Field Project for the National Park Service. The objective of the first phase of the paint analysis was a survey of the exterior/interior paint history for each of the nine buildings/structures to aid in the development of a restoration and interpretation plan for the site.

Phase One began with a site visit and a review of Moton Field maps, architectural drawings and photographs provided by The Jaeger Company. The site visits were coordinated with Debbie Toole, Architectural Historian for The Jaeger Company. Three days were spent on site at Moton Field. Multiple paint samples were taken from the main architectural elements on the exterior and interior rooms of the buildings or structures. An initial microscopic study of selected paint samples was conducted on site. During the study, more than 200 paint samples were examined under a lighted, 40X stereo microscope. Construction materials and finishes were also considered as tools in understanding the buildings' structures' paint histories. Pigment analysis and spectrophotometric color matching were not included in this survey.

The objective of Phase Two was to determine, where possible, the paint schemes for the nine extant historic buildings/structures during the designated period of significance “1945”. Nineteen paint samples from six buildings/structures were sent to Frank S. Welsh, an Architectural Coating Specialist, for specific color matching to Sherwin Williams Color Swatches. These samples were taken from buildings built just before and during World War II, a period when building materials were expensive and in short supply. Because it was felt that emphasis was on building and not repainting, Mr. Welsh was requested to color match to the original colors on each paint sample. Findings of Mr. Welsh and of the paint survey have been used to recommend, where possible, the color schemes for the nine extant historic buildings/structures at Moton Field.

This written presentation of the paint analysis of the extant buildings/structures at Moton Field includes a brief introduction, scope of work, general summary; paint histories material and color samples; and Mr. Welsh’s report. Chromo-chronologies, paint layer sequencing, of each building/structure are presented when possible.
GENERAL SUMMARY

The paint histories of the extant buildings/structures at Moton Field are incomplete puzzles of paint, color, and materials. Time and the elements have not been kind to the original materials remaining in these buildings. In many cases, original materials are missing or so altered as to be unreadable. Paint was often applied thinly and inconsistently within rooms making some paint histories difficult to determine. No paint schedules were located to confirm paint colors. However, colors and paint mediums do provide a general paint history in each building/structure.

Construction materials contributed greatly to the exterior and interior decorative schemes of the buildings/structures. Colors used during the war years reflect the scarcity and cost of paint materials. Although Moton Field was not officially a military facility, the original paint colors found on the site’s buildings/structures resemble the gray colors of military facilities of the era. Wooden buildings at Moton Field were painted varying shades of gray with gray to white trim. Building interiors were also painted grays but they became more colorful as the building uses changed over time.

Each building/structure will be discussed chronologically by period of construction and the rooms will be presented according to the POND Architectural Plans. When possible, original paint colors for main architectural elements on buildings and in rooms will be given.
PAINT ANALYSIS
OIL STORAGE SHED
FIRE PROTECTION SHED
DOPE STORAGE SHED

The Oil Storage Shed, the Fire Protection Shed, and the Dope Storage Shed were constructed between 1941 and 1943. They are of similar design and materials. Novelty board siding and fascia boards have been replaced and painted white.

EXTERIORS

Brick exteriors of the Fire Protection Shed and the Dope Storage Shed have never been painted. The brick exterior of the Oil Storage Shed has been recently painted. Novelty board siding and fascia boards have been replaced and painted white. Paint on the doors and door frames is so degraded that it was difficult to obtain clear paint histories. The sample of the Dope Storage Shed door and door frame that was sent to Frank Welsh showed only several layers of newer white paint. Door and frame samples that were examined during the initial survey showed at least three gray paint layers under two or more white layers. The initial door and door frame sample appears to be similar to the first exterior gray on the Bath & Locker House and to be Sherwin Williams #1001. (See Sample 1)
CHROMO-CHRONOLOGIES

Chromo-chronologies are presented for those exterior surfaces where there is sufficient substrate and/or paint evidence to determine a paint sequence for that surface.

The original paint layer in the chromo-chronology chart of the Sheds relates to the building construction dates of 1941 for the Fire Protection Shed, 1942 for the Oil Storage Shed, and 1943 for the Dope Storage Shed.
OIL STORAGE SHED
FIRE PROTECTION SHED
DOPE STORAGE SHED

<table>
<thead>
<tr>
<th>Paint Colors</th>
<th>Doors and Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>light gray</td>
</tr>
<tr>
<td>Paint 2</td>
<td>light gray</td>
</tr>
<tr>
<td>Paint 3</td>
<td>dark gray</td>
</tr>
<tr>
<td>Paint 4</td>
<td>white</td>
</tr>
<tr>
<td>Paint 5</td>
<td>white</td>
</tr>
</tbody>
</table>
PAINT RECOMMENDATIONS

OIL STORAGE SHED
FIRE PROTECTION SHED
DOPE STORAGE SHED

By 1945, the period of significance for Moton Field interpretation, the Oil Storage Shed, the Fire Protection Shed, and the Dope Storage Shed would have been approximately two to four years old. During those four years the mission at Moton Field was building and training: not repainting. Thus, due to the site expansion and the scarcity and cost of paint materials during those four years of WWII it is unlikely that these buildings would have been painted more than once.

Novelty board siding and fascia boards had already been replaced at the time of this survey.

Two of the Sheds were completed at about the same time as the Bath and Locker House and were probably painted in a similar manner.

Architectural evidence, paint evidence and the above considerations indicate that for the Oil Storage Shed, the Fire Protection Shed, and the Dope Storage Shed during the 1945 period of significance, the appropriate color for the exterior wood elements would be gray, Sherwin Williams #1001.

The colors would be applied in the following manner:

Exterior

| Novelty board siding | Sherwin Williams #1001 |
| Trim, doors, and door frames | Sherwin Williams #1001 |
PRELIMINARY LABORATORY DATA

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>DATE OF ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTON FIELD</td>
<td>7/22/02</td>
</tr>
<tr>
<td>TUSKEGEE, ALABAMA</td>
<td></td>
</tr>
<tr>
<td>SPACES</td>
<td></td>
</tr>
<tr>
<td>Exteriors</td>
<td></td>
</tr>
</tbody>
</table>

EQUIPMENT

- Bausch & Lomb stereomicroscope (10 - 105x)
- Nikon SKE polarized light microscope
- Schott halogen fiber-optic illuminator (3200K)

DESCRIPTION OF PRESENTATION OF LABORATORY DATA FROM THE ANALYSIS

- The following pages contain all of the requisite information found on each sample gathered during the preliminary laboratory analysis of the historically significant coatings.
- The information on these pages is the data upon which additional research and analyses can be based.
- Illustrations diagramming the locations from which the samples were taken are included in the Field Note - Sample Location sheets.

KEY TO THE ABBREVIATIONS USED IN THE LABORATORY DATA SHEETS

For Layer/Coat:
- **P** = prime or sealer coating
- **I** = intermediate or second prime
- **Gr** = ground or base coating for marbling or graining
- **F** = finish for final coating

For Type of Coating:
- **O** = oil
- **D** = distemper or calcimine
- **Wsh** = whitewash
- **Vrm** = varnish
- **Stn** = stain
- **Pb** = lead content

For Color Name:
- **W** = white
- **YW** = yellowish white
- **YG** = yellowish gray
- **GY** = grayish yellow
- **MRB** = moderate reddish brown
- **MOY** = moderate orange yellow
- **POY** = pale orange yellow
- **LT** = light
- **MED** = medium

For Age:
- **orig** = original
- **er** = early
- **md** = middle
- **lt** = late
- **c** = century

WELSH COLOR & CONSERVATION, INC. © 7/27/02 Page: 1 Project: Moton Field Tuskegee, Alabama
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Location/Description</th>
<th>Layers and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hangar One, Hangar side of metal door into Room 1A.</td>
<td>There is only one layer of old paint on this sample. It is a dark gray close to S550. Williams color 2117. Above the gray are only 3 layers of new (1st metal/late 20th) paints.</td>
</tr>
<tr>
<td>2</td>
<td>Hangar One, Sample taken at a patch—relatively new. Plaster from interior north wall—Room 1A.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hangar One, This plaster is very degraded. It does not appear to be very old. It is grayish white and has only one layer of field degraded green oil paint on its surface. The color of the green is close to S.W. Color 3197. Plaster from window north wall—Room 1B.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hangar One, Paint from South door frame—Room 3 (wood)</td>
<td>The paint evidence is extremely degraded on this sample and almost impossible to evaluate with any accuracy. The first finish appears to be white, close to S.W. Color 2004. The second layer is an aqua color. On another sample in the same envelope there is a second layer that is a Medium Blue-Green.</td>
</tr>
<tr>
<td>5</td>
<td>Hangar One, Paint from South door frame—Hangar side into Room 17 (wood)</td>
<td>The paint evidence on this sample is very degraded. There appears to be two layers of white oil paint—Color close to S.W. Color 2004 followed by a Medium Blue Green.</td>
</tr>
</tbody>
</table>

WELSH COLOR & CONSERVATION, INC. © 7/22/02 Page 2 Project: Motor Field Tuskegee, Alabama
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Location/Description</th>
<th>Layers and Comments</th>
<th>Sample Number</th>
<th>Location/Description</th>
<th>Layers and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Door Storage</td>
<td>No old paint evidence is on this sample.</td>
<td>10</td>
<td>Bath @ locker</td>
<td>There are 5 layers of paint on this sample.</td>
</tr>
<tr>
<td></td>
<td>Shed Paint</td>
<td>There are only several layers of red and white paint.</td>
<td></td>
<td></td>
<td>Building - Exterior</td>
</tr>
<tr>
<td></td>
<td>from exterior</td>
<td></td>
<td></td>
<td></td>
<td>Trim - White Gray</td>
</tr>
<tr>
<td></td>
<td>Door & frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Entrance Gate</td>
<td>Very little substrate.</td>
<td>11</td>
<td>Bath @ Locker</td>
<td>All dust on plaster</td>
</tr>
<tr>
<td></td>
<td>Concrete from niche</td>
<td>There are only 2 or 3 layers of red and white paint on this sample.</td>
<td></td>
<td></td>
<td>building, plaster</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>in the envelope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Men's locker Room</td>
</tr>
<tr>
<td></td>
<td>Tower</td>
<td>There are no paint on this sample.</td>
<td></td>
<td></td>
<td>One piece of plaster</td>
</tr>
<tr>
<td></td>
<td>Concrete interior</td>
<td></td>
<td></td>
<td></td>
<td>has a lighter gray</td>
</tr>
<tr>
<td></td>
<td>Wall</td>
<td></td>
<td></td>
<td></td>
<td>as the first finish.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Its color is close</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to SW # 2121</td>
</tr>
<tr>
<td>9</td>
<td>Bath @ locker</td>
<td>There are approximately 5 finish coats of light gray oil paint on this sample.</td>
<td>12</td>
<td>Bath @ locker</td>
<td>There are no old</td>
</tr>
<tr>
<td></td>
<td>Building - Paint</td>
<td>The first is a lead-base oil paint whose color is very close to SW # 1001.</td>
<td></td>
<td></td>
<td>득 it samples on this</td>
</tr>
<tr>
<td></td>
<td>from exterior</td>
<td></td>
<td></td>
<td></td>
<td>sample.</td>
</tr>
<tr>
<td></td>
<td>Door & frame</td>
<td></td>
<td></td>
<td></td>
<td>There are only several layers of white paint.</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Location/ Description</td>
<td>Layers and Comments</td>
<td>Sample Number</td>
<td>Location/ Description</td>
<td>Layers and Comments</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>13</td>
<td>Skyway Club, Exterior siding</td>
<td>5-6 finish coats of medium-to-light grey oil paint on this sample of siding. The first finish coat is close to S.W. color #1232.</td>
<td>18</td>
<td>Skyway Club, Rm 121 gypsum board wall</td>
<td>4 layers of paint on this sample. The first finish coat is close to S.W. #1358. The next 3 are light and medium grays.</td>
</tr>
<tr>
<td>14</td>
<td>Skyway Club, Exterior trim</td>
<td>5-6 layers of degraded white paint on this sample. The first finish coat is close to S.W. #1004.</td>
<td>19</td>
<td>Skyway Club, Fibreboard wall - Rm 124</td>
<td>The first finish paint on this sample is a buff close to S.W. #1625. There are 4 layers above it. A greyish white, light grey and 2 greens.</td>
</tr>
<tr>
<td>15</td>
<td>Skyway Club, Room 108 - North wall</td>
<td>Neuger gypsum board</td>
<td>16</td>
<td>Skyway Club, Dryboard Ram 108</td>
<td>No paint is on this sample.</td>
</tr>
<tr>
<td>17</td>
<td>Skyway Club, Room 108 - Ceiling</td>
<td>Fiber board - a greyish white surface with a lot of nicks.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
March 28, 2002

Ms. Debbie Toole
The Jaeger Company
119 Washington Street
Gainesville, GA 30501

Subject: Moton Field Mortar Evaluation, Revision
Moton Field Stabilization, Tuskegee Airmen National Historic Site
Tuskegee, Alabama
LAW Project No. 50157-1-4754-01-602

Dear Ms. Toole:

Law Engineering and Environmental Services, Inc. (LAW) has completed the mortar evaluation as authorized by your company on September 4, 2001. The purpose of this evaluation was to obtain samples of mortar from approximately nine buildings/structures, perform analysis of the mortar to determine its composition and to describe the aggregates. A visual condition survey of the buildings was not a part of the scope of work. This report is a revision of the report submitted on November 1, and the report submitted November 19, 2001. This report has been revised to reflect changes regarding the names of buildings and description of specimens.

Background Information

LAW understands there are a total of nine historical buildings/structures that were built as part of a World War II training facility (1941-1945) and are in the process of being restored. They include Hangar No. 1, Control Tower, Bath and Locker House, Warehouse/Vehicle Storage, Skyway Club, Dope Storage Shed, Oil Storage Shed, Fire Protection Shed and the Entrance Gate. We understand The Jaeger Company is assisting Pond & Company with renovation/restoration design of the facility.
Evaluation Procedures and Results

Site Work
LAW representatives, Mr. Mark Leeman and Ms. Marian Strukel, met with Jaeger Company’s Ms. Debbie Toole at the subject site on September 28, 2001. The buildings/structures were observed and samples were taken. Selective sampling of existing masonry mortar and wall plaster materials were taken above-grade and at heights able to be accessed from standing on the ground; no ladders or manlifts were used. Samples were taken from interior and exterior walls. Five buildings/structures were sampled (a total of 10 samples were taken). Two samples of raw sand were taken, one from the road east of the Dope Storage Shed and one from the vicinity of Hangar No. 2. Sand was sampled for comparison purposes. We wanted to compare the sand sampled, both chemically and with respect to gradation, to the sand observed in the mortar.

Mortar samples were not taken from each building at the site. The mortar was observed to be fairly consistent throughout the site. A determination was made in the field that if the mortar was hard and competent then a sample may not have been taken for a particular building if the mortar was consistent with other buildings at the site. This was the case for the mortar at the Entrance Gate, the Skyway Club and the Warehouse/Vehicle Storage buildings. The mortar was judged to be hard and competent; therefore was not sampled for proportions.
Samples were taken at the following locations:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Construction</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brick Mortar</td>
<td>Control Tower - exterior</td>
</tr>
<tr>
<td>2</td>
<td>Block Mortar</td>
<td>Control Tower - exterior</td>
</tr>
<tr>
<td>3</td>
<td>Brick Mortar</td>
<td>Dope Storage Shed - interior</td>
</tr>
<tr>
<td>4</td>
<td>Parge Coat</td>
<td>Hangar No.1 - interior</td>
</tr>
<tr>
<td>5</td>
<td>Brick Mortar</td>
<td>Hangar No. 1 - interior</td>
</tr>
<tr>
<td>6</td>
<td>Brick Mortar</td>
<td>Hangar No. 1 - exterior</td>
</tr>
<tr>
<td>7</td>
<td>Brick Mortar</td>
<td>Fire Protection Shed - interior</td>
</tr>
<tr>
<td>8</td>
<td>Brick Mortar</td>
<td>Fire Protection Shed - exterior</td>
</tr>
<tr>
<td>9</td>
<td>Plaster</td>
<td>Bath and Locker - interior</td>
</tr>
<tr>
<td>10</td>
<td>Gypsum Board and Paper</td>
<td>Bath and Locker - interior</td>
</tr>
</tbody>
</table>

Photographs of the buildings/structures and the samples taken at each location can be found attached to this report.

The masonry units of the structures observed were similar in appearance and were in satisfactory condition. We observed both clay brick masonry and concrete masonry. Deterioration in the form of cracks was not observed. Significant efflorescence staining was not observed on the masonry units. Areas of re-pointing were observed on the Control Tower. We understand this was a part of recent stabilization work.

The mortar observed was intact, competent and not easily scratched with a metal chisel. The mortar joints were well tooled and concave in shape. Several mortar joint surfaces had undergone weathering which resulted in sand particles being exposed on the surface. The mortar was well bonded to the masonry units. The mortar was strong and required significant effort to break out samples from the constructed masonry. In general, our selective sampling indicated the mortar was strong, but occasionally areas of softer mortar were observed. Since softer mortar was encountered infrequently, we did not consider it a representative condition and did not intentionally sample it.
A visual survey of the Skyway Club was performed, but samples were not taken. The mortar observed at this structure was similar to the others and competent. Ms. Toole informed LAW that the block used for the Skyway Club was made with local materials and called “Tuskegee Block”. The parge coat mortar taken from Hangar No. 1 was intact, but could be broken easily. The sand particles on the surface of the parge coat were exposed and poorly bonded (Photo 11).

Softer mortar was observed in isolated areas of Hangar No. 1. The mortar appeared to have a higher lime content at some places than the other mortars observed. This determination was made by observation of the mortar color and the hardness of the mortar. The mortar inside Hangar No. 1 ranged from soft (easily scratched with a metal chisel) around the structural clay tile to medium hard around the brick. A section of the exterior south face of this building was re-constructed the summer of 2001. The white colored mortar with a brown surface smear coat was observed (Photo 12). The brown smear coat was applied for aesthetic reasons to match the new mortar to the existing one.

Laboratory Evaluation
Evaluation of the mortars was conducted in accordance with ASTM C1324 “Standard Test Method for Examination and Analysis of Hardened Masonry Mortar”. Chemical evaluations and petrographic examinations were made of the mortars. No thermal analysis or x-ray diffraction was performed on the mortars.

Chemical evaluation results can be found in Table 1. The chemical results and petrographic evaluations indicated the mortars were similar in composition. The percentage of insoluble residue, soluble calcium oxide and soluble silica contents were similar in the samples analyzed.

Determination of the mortar composition was performed in accordance with the calculations of ASTM C1324, assuming a portland cement, lime, siliceous sand mixture. Chunks of lime were observed in several samples of the existing mortar, indicating this assumption is reasonable. However, if information becomes available to indicate the mortar was made using masonry cement, the proportion calculations can be adjusted. A package of masonry cement was observed at the project near the new brick construction. This indicates this mortar was made with masonry cement.
This is supported by the chemical evaluations; the proportions calculated are presented in Table 2. The use of non-masonry cement versus masonry cement are two means of achieving the same mortar after construction. The primary difference occurs with material selection and the amount of work performed by the on-site masons during construction. Chemical analysis indicated the mortars ranged from Type M to Type O using ASTM C270 Proportion Specifications. The mortars were generally Types S and N, but an occasional Type M and O were observed. In general, the mortars were hard and the classifications based on the chemical evaluations were in general agreement with our field observations.

The petrographic evaluations indicated the mortars were made with a natural sand. The sand particles were mostly quartz and other hard siliceous minerals. The particles ranged in size from \(\frac{1}{2} \) to \(1\frac{1}{2} \) millimeters (mm) and were subangular in shape. The sand particles were mostly clear to opaque, tan to smokey gray in color with less than approximately 10 percent of the particles dark in color. No significant component of calcareous aggregate was observed in the sand. The mineralogy of the sand indicated it was a local material. The mortars had an estimated air content of 10 to 20 percent. A lower air content of 5 to 10 percent was observed in the newer mortar located on the exterior wall of Hangar No. 1. The air voids observed in the samples were spherical in shape and evenly distributed in the mortar. The mortar color ranged from light gray to medium gray, except for the new mortar observed outside Hangar No. 1 which was white. This mortar was made with white portland cement. The mortars were hard to medium hard when scratched with a sharp metal instrument. Isolated particles of unhydrated lime were observed in the sample taken from the Fire Protection Shed (exterior, south face).

Freeze-thaw damage was not observed in the samples. Carbonation was observed in the samples taken from the Tower Building (mortar from block), Dope Storage Shed (interior), Hangar 1 (parge coat and interior) and the Fire Protection Shed (interior). The presence of carbonation was not unusual considering the age and exposure conditions of the structures.

The plaster sample analyzed from the Bath and Locker House was a gypsum-based material (Photos 20 and 21). This is typical plaster material. The gypsum board sample was analyzed similar to the mortars. There was an indication that gypsum was present, but it was not quantified.
The gypsum board was analyzed chemically and was determined to be a lime and sand mixture, with a binder to sand ratio of approximately 1 to 0.7.

Conclusions

The masonry units of the structures observed were similar in appearance and were in good condition. Deterioration in the form of cracks was not observed. Significant efflorescence staining was not observed on the masonry units.

The mortars observed were competent and did not crumble or break easily. The mortar was difficult to excavate at most locations. The mortar was intact in most locations and was not easily scratched with a metal chisel. The mortar observed was light gray to medium gray in color. The sand observed was a natural sand composed of quartz and other hard siliceous minerals. The mortar joints were well tooled and concave in shape. Freeze-thaw damage was not observed.

New mortar was observed on the exterior wall of Hangar No. 1. The mortar was white in color and had a brown smear coat applied to the surface. The brown coating provided a means of matching it to the existing mortar. LAW understands this area was re-constructed in the summer of 2001. The new masonry work appeared to be in good condition.

Petrographic evaluations and field observations indicated the mortars were similar in composition. Chemical analysis indicated the mortars ranged from a Type M to Type O based on ASTM C270 Proportion Specifications. The mortars were generally Types S and N, but an occasional Type M and O were observed. If re-pointing of the existing masonry is performed in the future, it is LAW's opinion that a reasonably strong mortar can be used without damaging the units. Softer mortars may result in increased watertightness in the mortar and better bond to the masonry units. A Type N mortar would be appropriate for most pointing purposes at the site.

The plaster sample analyzed from the Bath and Locker House was a gypsum-based material. This is typical plaster material. The gypsum board sample was analyzed similar to the mortars. There
was an indication that gypsum was present, but it was not quantified. The gypsum board was determined to be a lime and sand mixture, with a binder to sand ratio of approximately 1 to 0.7.

LAW appreciates the opportunity to have worked with you on this project. If you have any questions about this report, please do not hesitate to contact the undersigned.

Sincerely,

LAW ENGINEERING AND ENVIRONMENTAL SERVICES, INC.

Marian D. Strukel
Project Engineer

Mark E. Leeman, P.E. (Georgia)
Principal Engineer

Attachments: Photographs
Moton Field Layout
Table 1 – ASTM C1324 Chemical Evaluation Results
Table 2 – Calculated Mortar Proportions

File: g:/lab/mstrukel/moton
Photo 1. Control Tower Building
Photo 2. Control Tower Building – West Face
Photo 3. Control Tower Building – Interior North Face

Photo 4. Brick/Mortar sample taken from exterior of Control Tower Building
Photo 5. Mortar samples from Control Tower – exterior west face of building

Photo 6. Mortar/Brick samples taken from interior of Dope Storage Shed
Photo 7. Hangar No. 1 – East Face

Photo 8. Hangar No. 1 – West Face
Photo 9. Hangar No. 1 – South Face

Photo 10. Hangar No. 1, Interior – Parge coat mortar observed on structural clay tile and masonry surfaces.
Photo 11. Hangar No. 1, Interior – Parge coat mortar observed. Note sand particles on surface poorly bonded to mortar.

Photo 12. Hangar No. 1, Exterior South Face – Mortar samples taken from new construction. Note white mortar color (A) and brown smear coat (B) on tooled joint surface.
Photo 13. Hangar No. 1, Interior South Side—Mortar taken from brick

Photo 14. Fire Protection Shed—East Face
Photo 16. Fire Protection Shed – Mortar/brick samples from south face. Brick painted on side not shown.

Photo 17. Fire Protection Shed – Interior cracked mortar at door. Note mortar discoloration at surface (extending approximately ¼ inch from surface).
Photo 18. Bath and Locker House – East Face

Photo 19. Bath and Locker House – West Face
Photo 20. Bath and Locker House – Interior, Plaster (A) and gypsum board (B)

Photo 21. Bath and Locker House – Samples of Plaster (1) and gypsum board (2) with building paper (3)
Photo 22. Skyway Club – East Face
Table 1: ASTM C1324 Chemical Evaluation Results

<table>
<thead>
<tr>
<th>Chemical Analysis (%)</th>
<th>Dope Strg Int. Wall</th>
<th>Hangar 1 New Const</th>
<th>Hangar 1 S. Int.wall</th>
<th>locker Big Beaver Brd</th>
<th>locker Big Plaster</th>
<th>Fire Shed W.of Hang 1</th>
<th>Fire Shed S. Exterior</th>
<th>Tower Big Ext. W.Face</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble SiO2</td>
<td>3.36</td>
<td>4.28</td>
<td>4.99</td>
<td>0.26</td>
<td>0.84</td>
<td>3.87</td>
<td>2.85</td>
<td>3.83</td>
</tr>
<tr>
<td>Soluble CaO</td>
<td>18.32</td>
<td>22.15</td>
<td>15.6</td>
<td>26.15</td>
<td>15.82</td>
<td>14.36</td>
<td>13.62</td>
<td>15.24</td>
</tr>
<tr>
<td>Soluble MgO</td>
<td>1.02</td>
<td>0.66</td>
<td>0.74</td>
<td>1.65</td>
<td>2.92</td>
<td>0.45</td>
<td>0.8</td>
<td>2.49</td>
</tr>
<tr>
<td>Insoluble</td>
<td>62.25</td>
<td>63.73</td>
<td>65.95</td>
<td>46.61</td>
<td>64.75</td>
<td>67.01</td>
<td>68.72</td>
<td>65.2</td>
</tr>
<tr>
<td>Total Solids</td>
<td>84.95</td>
<td>90.82</td>
<td>87.28</td>
<td>74.67</td>
<td>84.33</td>
<td>85.69</td>
<td>85.99</td>
<td>86.76</td>
</tr>
<tr>
<td>LOI 110C (free water)</td>
<td>0.87</td>
<td>3.24</td>
<td>0.89</td>
<td>2.01</td>
<td>1.75</td>
<td>0.86</td>
<td>0.7</td>
<td>1.02</td>
</tr>
<tr>
<td>LOI 550C (combined water)</td>
<td>2.63</td>
<td>3.65</td>
<td>2.27</td>
<td>19.29</td>
<td>7.23</td>
<td>2.53</td>
<td>4.11</td>
<td>4.28</td>
</tr>
<tr>
<td>LOI 950C (carbonates)</td>
<td>10.23</td>
<td>4.79</td>
<td>8.6</td>
<td>2.01</td>
<td>3.82</td>
<td>7.95</td>
<td>8.54</td>
<td>6.57</td>
</tr>
<tr>
<td>Total</td>
<td>98.68</td>
<td>102.5</td>
<td>99.04</td>
<td>97.98</td>
<td>97.13</td>
<td>97.03</td>
<td>99.34</td>
<td>98.63</td>
</tr>
</tbody>
</table>

ASTM C1218M
Water Soluble Sulfate (SO4) 11.79
Table 2: Calculated Mortar Proportions

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Dope Strg Int. Wall</th>
<th>Hangar 1 New Const</th>
<th>S. Int. Wall</th>
<th>Beaver Brd</th>
<th>Locker Big Plaster</th>
<th>Fire Shed W. of Hang1</th>
<th>Fire Shed S. Exterior</th>
<th>Tower Big Ext. W. Face</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Lime</td>
<td>1.6</td>
<td>1.4</td>
<td>0.1</td>
<td>63.6</td>
<td>10.3</td>
<td>0.4</td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Sand</td>
<td>4.6</td>
<td>3.7</td>
<td>3.3</td>
<td>44.2</td>
<td>19.0</td>
<td>4.3</td>
<td>5.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Total cementitious</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Sand</td>
<td>1.8</td>
<td>1.5</td>
<td>3.1</td>
<td>0.7</td>
<td>1.7</td>
<td>3.0</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>ASTM C270 Type</td>
<td>O</td>
<td>S*</td>
<td>M</td>
<td></td>
<td></td>
<td>S</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

* Based on masonry cement