DEFINING NEW FUEL MAPS FOR MOUNT RAINIER NATIONAL PARK FROM A FUSION OF FIELD, LIDAR, AND ENVIRONMENTAL DATA

Van R. Kane, University of Washington Karen Kopper, North Cascades National Park Catharine Copass, Olympic National Park

Mt. Rainier National Park

- Located west of Cascade mountain crest
- Extensive forests
 - Western hemlock, Douglas fir, Pacific silver fir, mountain hemlock, subalpine fir
- Historically high severity fire regime (primary), mixed severity (secondary)
- Climate change likely to lengthen fire season, increase fire size

Current Fuel Maps

Anderson (1982)

Scott & Burgan (2005)

Coarse-scale LANDFIRE maps not accurate at scale of park operations

Project Overview

Input Data (summary)

Field plots

- 151 Surface fuel plots organic, 1 to 100 hour, 1000 hour
- Assigned to Anderson (1982) fuel models
- 262 field plots species and canopy characteristics assigned to final fuel beds
- ♦ Bio-physical
 - 1971-2000 Precipitation, temperature normals (PRISM)
 - Water balance (Lutz et al. 2010)
 - Actual evapotranspiration, climatic water deficit
 - Topography elevation, slope position (Jenness 2006), slope, aspect, solar radiation index (Keating et al. 2007)
- LiDAR forest structure
 - Canopy heights, canopy cover

Airborne LiDAR Brief Basics

Return data colored by height

Modeling methods

Regressions: Linear & random forests Classification: Random forests

Random forests models

- Ensembles of classification and regression trees
- Bagging tests random subsets of training and validation data
- Works well with predictor interactions, non-linear relationships, non-normal data

Breiman et al. (1984), Breiman (2001)

What Didn't Work

		Regressions			
	Median				
	value	RF variance	Linear		
	tons/acre	explained	R ²		
Fuel models					
High/low model	s				
Organic	22.6	0.15	0.24		
1 to 100 hr	2.8	0.08	0.29		
1000 hr	10.8	0.19	0.23		

Regressions for surface fuel values

		Actual									Class	
	Model	1	2	4	5	6	7	8	9	10	error	Model description
ed	1	5	0	0	0	0	0	1	0	0	0.167	Short grass (1 foot)
	2	0	0	0	0	0	0	2	0	0	1.000	Timber (grass and understory)
	4	0	0	0	1	0	0	0	0	0	1.000	Chaparral (6 feet)
	5	1	0	0	13	1	0	4	0	0	0.316	Brush (2 feet)
ġ	6	0	0	0	3	0	0	0	0	0	1.000	Dormant brush, hardwood slash
F	7	0	0	0	0	0	0	1	0	0	1.000	Southern rough
	8	0	0	0	1	0	0	59	1	0	0.033	Closed timber litter
	9	0	0	0	0	0	0	19	1	0	0.950	Hardwood litter
	10	0	0	0	0	0	0	2	1	0	1.000	Timber (litter and understory)
Overall internal OOB error rate							00	B err	0.327			
Overall cross validation error rate								n err				

Classification by Anderson (1982) fuel classes

Similar to results of Jakubowski et al. (2013) and Peterson et al. (2013)

Defining Fuel Beds

- Fuels Characteristic Classification System (FCCS) (Ottmar et al. 2007)
- Rule-based classification based on local conditions
- This study Two part classification
 - Forest overstory structure class measured from LiDAR data
 - Surface fuel high/low classes modeled from bio-physical setting and forest overstory structure
- Identified 29 fuel beds
 - Assigned FCCS fire potentials using 262 field plots and vegetation map classes

Forest Overstory Classes

Distinguished by height, canopy layering, canopy cover

Modeling Surface Fuels

Surface Fuel	Median value (tons/acre)	High/Low Accuracy	Most important predictors
Organic	22.6	73.8%	Precipitation, January temperature, aspect, deficit, AET
Small diameter (1 to 100 hour)	2.8	61.6%	Canopy height profile ¹ , canopy cover, slope position (2000 m scale)
Large diameter (1000 hour)	10.8	74.8%	Canopy cover, slope position(100 m & 2000 m scales), dominant tree height ²

¹25th, 50th, 75th percentile LiDAR return heights

²75th & 95th percentile LiDAR return heights

Almost all relationships non-linear and interactive

Example Fuel Bed

Fuel bed 52

Overstory structure: Tall multistory

Surface fuels:

- Organic high
- Small diameter low
- Large diameter high
- ♦ Fire Potential (0 9, low to high)
 - Surface fire behavior-7
 - Crown fire potential 6
 - Available fuel potential 9

Fuel model 8 (Anderson 1982), TL5 (Scott & Burgan 2005)

FB52 Management Use

FB52 is prime spotted owl habitat
Expect high severity fire effects from wildfires – especially on east side
Consider fuel treatments (R_x fire, thinning) in

adjacent , higher elevation fuel types

Fuel Beds Mapped

Fuel Beds of Mount Rainler

11: woodland: lo ORG, lo LW 12: woodland: hi ORG. lo LW 13: woodland: hi LW 21: short partly closed forest: lo ORG, lo LW 22: short partly closed forest: hi ORG, lo LW 23: short partly closed forest: lo ORG, hi LW 24: short partly closed forest: hi ORG, hi LW 31: short/mid-height multistory: hi ORG, lo SW 32: short/mid-height multistory: hi all fuels 33: short/mid-height multistory: lo ORG, lo SW 34: short/mid-height multistory: lo LW 35: short/mid-height multistory: lo ORG, hi WF 41: mid-height partly closed forest: hi SW, lo LW 42: mid-height partly closed forest: lo ORG, hi LW 43: mid-height partly closed forest: hi ORG, hi LW ++; mid-height partly closed forest; all lo fuels 11 45; mid-height partly closed forest; hi ORG, lo LW 51: tail multistory: hi ORG, lo SW 52: tail multistory: hi ORG, hi SW 53: tall multistory: lo ORG, lo SW 54: tall multistory: lo LW 35: tail multistory: lo ORG, hi SW 61: tall topstory: lo SW, hi LW 62: tall topstory: hi WF 63: tall topstory: hi SW, lo LW 64: tall topstory: lo ORG 70: ciparian 80: shrabs 90: meadou

draft only - Kopper et al. (in prep.)

Conclusions

 Fusion of field, LiDAR, environmental data essential

- Experimented to learn what could be modeled
 - In this case, high/low surface fuel classes
- Random forest modeling rocks
 - Handled non-linear, interactive relationships

Backup: Modeling Surface Fuels

Backup: Return Extinguishment

% canopy closure above 4 m

*common closure ranges; Mt. Rainier data

Backup: What Does LiDAR Cost?

PSLC Cost Summary	Base Deliverables		
Area Extent	Price per Acre	Price per Square Mile	
Mobilizations (Full or Partial)	\$0	\$0	
50 to 100 sq. miles (32,000 to 64,000 acres)	\$1.42	\$909	
100 to150 sq. miles (64,000 to 96,000 acres)	\$1.11	\$710	
150 to 200 sq. miles (96,000 to 128,000 acres)	\$0.94	\$602	
200 to 250 sq. miles (128,000 to 160,000 acres)	\$0.84	\$538	
Greater than 250 sq. miles Greater than 160,000 acres)	\$0.78	\$499	

Example costs from Watershed Sciences fall 2012