This Historic Structure Report is available in two formats – a printed version for study at the park, the National Capital Region headquarters offices, and other repositories, and in electronic format (PDF) on the enclosed CD or available on request. The CD contains additional information not presented in the printed document.

Please contact the Cultural Resources Division of Monocacy National Park for more information.
Thomas House – Thomas Farm (Araby)
Historic Structure Report

2010

Monocacy National Battlefield
Frederick, Maryland

by

Joy Beasley
Thomas A. Vitanza

layout by

Tom Gwaltney

Approved by: __
Susan W. Trail Date
Superintendent, Monocacy National Battlefield

Recommended by: __
Joy Beasley Date
Cultural Resources Manager, Monocacy National Battlefield
CONTENTS

List of Figures .. v
List of Tables ... vii
Project Team ... ix

Introduction
 Study Summary ... 1
 Project Data ... 3
 Cultural Resource Data 4

Part 1 – Developmental History
 Chronology of Development, Use, and Ownership 9
 Physical Description, Condition Assessment and Character-Defining Features 43
 A10 FOUNDATIONS 53
 B10 SUPERSTRUCTURE 62
 B20 EXTERIOR ENCLOSURE 88
 B30 ROOFING ... 121
 C10 INTERIOR CONSTRUCTION 130
 C20 STAIRS .. 140
 C30 INTERIOR FINISHES 146
 D SERVICES .. 170
 E FURNISHINGS 179
 G20 SITE IMPROVEMENTS 180
 G90 OTHER SITE WORK 184

Part 2 – Treatment and Work Recommendations
 Treatment and Use 189
 Alternatives for Treatment 192
 Ultimate Treatment 198
 Recommended Work to Implement the Ultimate Treatment 198

Bibliography ... 209

Appendices
 Appendix A - Thomas House Annotated Plans and Elevations 217
 Appendix B - HABS Drawings – Site Plan 225
 Appendix C - HABS Drawings 229
 Appendix D - Foundation / Framing Plans 249
 Appendix E - HSR in PDF format, Images, and Supplemental Materials on CD
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Comparison of character defining features with other historic structures in region</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Floor plan evolution - phases I and II</td>
<td>10</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Map by Charles Varlé showing W.P. Marshall’s property.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Circa 1812-1847 layout of the house</td>
<td>12</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Proposed circa 1850s configuration</td>
<td>12</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Advertisement, 1856</td>
<td>13</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Signature of Hiram M. Keefer, 1860</td>
<td>14</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Speculative plan for how the first floor of the house may have been organized circa 1860</td>
<td>15</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Fragment of ca. 1850 cotton rag wallpaper found behind existing floorboards</td>
<td>16</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Current stair configuration (ST101)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Greek Revival-style mantels dating to the mid-19th century</td>
<td>16</td>
</tr>
<tr>
<td>Figure 12</td>
<td>30 April 1888 photographs showing Italianate porch</td>
<td>17</td>
</tr>
<tr>
<td>Figure 13</td>
<td>1893 photograph of the north and west elevations of the Thomas House</td>
<td>17</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Ca. 1949 images prior to any renovations by the Hilgenbergs.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Ca. 1950-52 images after the first phase of repairs by the Hilgenbergs</td>
<td>20</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Hilgenberg renovations (1)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Hilgenberg renovations (2)</td>
<td>23</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Before and after images of Thomas House interior</td>
<td>21</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Before and after images of Thomas House interior</td>
<td>22</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Hilgenberg renovations (2)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Hilgenberg renovations (3)</td>
<td>23</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Hilgenberg renovations (3)</td>
<td>23</td>
</tr>
<tr>
<td>Figure 23</td>
<td>Charles Edward Hilgenberg and Anne Johnson Hilgenberg ca. 1952</td>
<td>24</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Architect (Smith or Veale) with C. Edward Hilgenberg, ca. 1952</td>
<td>24</td>
</tr>
<tr>
<td>Figure 25</td>
<td>Plans by Smith and Veale Architects, Baltimore, Maryland, August 1952</td>
<td>25</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Hilgenberg Phase II exterior repairs underway (post August 1952)</td>
<td>26</td>
</tr>
<tr>
<td>Figure 27</td>
<td>Hilgenberg Phase II renovations</td>
<td>27</td>
</tr>
<tr>
<td>Figure 28</td>
<td>North entry (D101) completed</td>
<td>28</td>
</tr>
<tr>
<td>Figure 29</td>
<td>Clapp family photographs with regard to enclosed SE porch north bay</td>
<td>28</td>
</tr>
<tr>
<td>Figure 30</td>
<td>Present-day first floor and second floor plans of Thomas House</td>
<td>29</td>
</tr>
<tr>
<td>Figure 31</td>
<td>HPTC projects (SE porch repairs)</td>
<td>32</td>
</tr>
<tr>
<td>Figure 32</td>
<td>HPTC projects (roof and gutter replacement)</td>
<td>33</td>
</tr>
<tr>
<td>Figure 33</td>
<td>HPTC fabric investigation (1)</td>
<td>35</td>
</tr>
<tr>
<td>Figure 34</td>
<td>HPTC fabric investigation (2)</td>
<td>35</td>
</tr>
<tr>
<td>Figure 35</td>
<td>HPTC fabric investigation (3)</td>
<td>35</td>
</tr>
<tr>
<td>Figure 36</td>
<td>HPTC fabric investigation (4)</td>
<td>35</td>
</tr>
<tr>
<td>Figure 37</td>
<td>HPTC fabric investigation (5)</td>
<td>36</td>
</tr>
<tr>
<td>Figure 38</td>
<td>HPTC fabric investigation (6)</td>
<td>36</td>
</tr>
<tr>
<td>Figure 39</td>
<td>HPTC fabric investigation (7)</td>
<td>36</td>
</tr>
<tr>
<td>Figure 40</td>
<td>HPTC fabric investigation (8)</td>
<td>37</td>
</tr>
<tr>
<td>Figure 41</td>
<td>HPTC fabric investigation (9)</td>
<td>38</td>
</tr>
<tr>
<td>Figure 42</td>
<td>HPTC projects (windows and doors)</td>
<td>39</td>
</tr>
<tr>
<td>Figure 43</td>
<td>Schematic of Thomas Farm historic building complex</td>
<td>50</td>
</tr>
<tr>
<td>Figure 44</td>
<td>Historic building complex including agricultural outbuildings and entry land</td>
<td>51</td>
</tr>
<tr>
<td>Figure 45</td>
<td>Cellar structure</td>
<td>55</td>
</tr>
<tr>
<td>Figure 46</td>
<td>The brick divider wall in cellar separating R001 and R002</td>
<td>56</td>
</tr>
<tr>
<td>Figure 47</td>
<td>Drawing of east gable end of main block</td>
<td>60</td>
</tr>
<tr>
<td>Figure 48</td>
<td>Modern garage (East Addition)</td>
<td>60</td>
</tr>
<tr>
<td>Figure 49</td>
<td>Drawing of west gable end of main block</td>
<td>61</td>
</tr>
<tr>
<td>Figure 50</td>
<td>Enclosed porch (West Addition)</td>
<td>61</td>
</tr>
<tr>
<td>Figure 51</td>
<td>Thomas House first floor plan</td>
<td>67</td>
</tr>
<tr>
<td>Figure 52</td>
<td>Thomas House second floor plan</td>
<td>71</td>
</tr>
<tr>
<td>Figure 53</td>
<td>Thomas House third floor (attic) plan</td>
<td>73</td>
</tr>
<tr>
<td>Figure 54</td>
<td>Southeast, two-story porch</td>
<td>75</td>
</tr>
<tr>
<td>Figure 55</td>
<td>North/South load-bearing masonry walls</td>
<td>77</td>
</tr>
<tr>
<td>Figure 56</td>
<td>East/west axis, load-bearing beam (R101)</td>
<td>77</td>
</tr>
<tr>
<td>Figure 57</td>
<td>Slate, gable-end roof</td>
<td>79</td>
</tr>
<tr>
<td>Figure 58</td>
<td>Roofscape including masonry chimneys</td>
<td>79</td>
</tr>
<tr>
<td>Figure 59</td>
<td>Cross-gable dormers</td>
<td>79</td>
</tr>
</tbody>
</table>
List of Figures, continued

Figure 60. Double-pipe rail snow guards .. 79
Figure 61. Historic graffiti on rafter of main block 80
Figure 62. Roof framing axonometric drawing of main block 81
Figure 63. Detail of attic and common rafter system of south wing 83
Figure 64. Drawing of common rafter structure 85
Figure 65. South elevation drawing showing modern garage addition (east addition) .. 86
Figure 66. South elevation drawing showing enclosed porch (west addition). .. 87
Figure 67. Elevations of the Thomas House showing main block and south wing .. 91
Figure 68. North elevation of Thomas House ... 93
Figure 69. Openings: north elevation .. 93
Figure 70. Openings: west elevation ... 93
Figure 71. Projections: SE, two-story porch .. 95
Figure 72. Projections: brick cornice .. 95
Figure 73. Trim ... 97
Figure 74. Materials ... 97
Figure 75. Craft Details. ... 99
Figure 76. North elevation of main block and west elevation 101
Figure 77. Modern garage (east addition) ... 102
Figure 78. Brick and mortar ... 103
Figure 79. SE, two-story porch ... 105
Figure 80. Views of the east elevation parapet 106
Figure 81. Chimneys .. 108
Figure 82. Extant Italianate porch components 109
Figure 83. Windows ... 111
Figure 84. Window examples .. 111
Figure 85. Jib doors .. 113
Figure 86. Doors .. 119
Figure 87. Screen / storm doors .. 120
Figure 88. Slate roof in process of being replaced on north side of main block (2007). .. 122
Figure 89. New roof installed ... 123
Figure 90. TPO roof installed in 2006 on southeast corner of main block .. 124
Figure 91. Shingle-roofed garage (east addition). 125
Figure 92. Shingle-roofed enclosed porch (west addition) 126
Figure 93. Flashing and trim replaced or repaired as part of the 2007-08 roof replacement project 127
Figure 94. Gutter and downspout replacement on main block of house . 128
Figure 95. Gutter and downspout repairs on south wing 129
Figure 96. Modern additions .. 129
Figure 97. Twin columns and paneled support beam covering in R101 131
Figure 98. CL201 (R201) and CL203 (R203) appear to be integrated into historic structure of the main block 132
Figure 99. A variety of door knobs, window door hardware are character-defining features. 133
Figure 100. Partition walls ... 135
Figure 101. Interior doors .. 137
Figure 102. Craft features ... 139
Figure 103. Staircases (1) ... 141
Figure 104. Staircases (2) ... 142
Figure 105. Staircase condition (1) ... 143
Figure 106. Staircase condition (2) ... 145
Figure 107. Mantles .. 147
Figure 108. R104 fireback ... 148
Figure 109. Wallpapers ... 159
Figure 110. Portion of lightning protection system 178
Figure 111. Exterior brickwork, walkways .. 181
Figure 112. Elements of the maintained landscape 182
List of Tables

Table 1: Outline of main UNIFORMAT II sections used in the description and assessment of Thomas House.43
Table 2: Detailed feature condition and deficiency ratings by UNIFORMAT II outline.46
Table 3: Requirements for Preservation Only ("no-action") alternative. .193
Table 4: Requirements for Preservation + Interior Rehabilitation alternative. .194
Table 5: Requirements for Interior and Exterior Rehabilitation alternative. .196
Table 6: Recommended treatments and work for the Interior and Exterior Rehabilitation recommended action . . 199
Historic Structure Report Project Team

Project Management

Thomas A. Vitanza
Project Architect
Senior Historical Architect,
Historic Preservation Training Center (HPTC)

Joy Beasley
Project Manager
Cultural Resources Program Manager,
Monocacy National Battlefield

Tom Gwaltney
Design and Layout
Monocacy National Battlefield

Documentation

Historic American Building Survey (HABS)

Catherine LaVoie
Thomas House Project Leader
HABS Chief

Mark Schara
Drawing Team Project Supervisor
HABS Architect

James W. Rosenthal
Primary Large-Format Photography

Jet Lowe
Supplementary Large-Format Photography

Virginia B. Price
Architectural Description
HABS Architectural Historian

Mark P. Slater
HABS Graphics
NPS Architect

Material Analysis

Catherine Dewey
Interior Paint Sample Analysis
Architectural Conservator,
National Capital Region, NPS

Barbara Yocum
Wallpaper Assessment, Selected Historic Fastener Analysis and Identification, and Architectural History
Architectural Conservator,
Historic Architecture Program, Northeast Region, NPS

Lawrence Jessen
Historic Glass Consultant

Heidi Campbell-Shoaf
Italian Marble Mantle and Fireback Identification
Curator, The Historical Society of Frederick County, MD

Fabric Investigation

HPTC Exhibits Specialists - Historic Wood Construction Consultation

Bill Hose
Chris McGuigan

Roddy Rohrer
Brandon Gordon

HPTC Exhibits Specialists - Fabric Removal and Documentation

Mark Andros
Sarah Polzin

Mark Segro
Brown Trushlow

Architectural History / Analysis

Paula S. Reed, Ph.D.
Architectural Historian
Paula S. Reed and Associated, Inc.,
Hagerstown, MD

Kathryn A. Auerbach
Architectural Historian
Adjunct Professor, Historic Preservation Program
Bucks County Community College, Newtown, PA

Carl G. Hilgenberg
Hilgenberg Family History and Photographs
Throughout this report, building components are designated with a letter prefix and number. For example, the dining room on the first floor is designated R102 and the mantel in second floor bedroom 1 is designated M201. Some designators have a letter suffix (A, B, etc.) to identify a specific building component and its parts; for example, CB102A refers to element A of built-in cupboard CB102. Designations correspond with floorplans found on pages 217 - 224. The follow prefixes are used:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB:</td>
<td>Cupboard</td>
</tr>
<tr>
<td>CH:</td>
<td>Chimney</td>
</tr>
<tr>
<td>CL:</td>
<td>Closet</td>
</tr>
<tr>
<td>D:</td>
<td>Door</td>
</tr>
<tr>
<td>DT:</td>
<td>Door Transom</td>
</tr>
<tr>
<td>M:</td>
<td>Mantel</td>
</tr>
<tr>
<td>P:</td>
<td>Porch</td>
</tr>
<tr>
<td>R:</td>
<td>Room</td>
</tr>
<tr>
<td>SL:</td>
<td>Sidelight</td>
</tr>
<tr>
<td>ST:</td>
<td>Staircase</td>
</tr>
<tr>
<td>W:</td>
<td>Window</td>
</tr>
</tbody>
</table>
Study Summary

Introduction
This project, “Prepare Historic Structures Report (HSR) for Thomas House” was conducted under the auspices of an approved Project Agreement between the Historic Preservation Training Center (HPTC) and Monocacy National Battlefield (MONO), with funding allocated to the National Capital Region (NCR) through the cultural resources program (CRPP). HPTC, MONO, and NCR are units of the National Park Service (NPS), U.S. Department of the Interior. NPS policies and guidelines were adhered to in the production and distribution of this report.

The historic structure report is the primary guide to treatment and use of a historic structure. It is prepared to minimize loss of character-defining features and materials and provides a basis upon which to address anticipated management objectives. The Thomas House HSR presents a snapshot of the current understanding of this previously undocumented historic building. It was created to further Monocacy National Battlefield’s efforts to preserve this significant structure and has several goals: to describe the historical evolution and architectural fabric of the building; to identify its character-defining features; to document the condition and integrity of the extant fabric; and to provide treatment recommendations within the context of the proposed use of the building.

The Thomas House is an extraordinary example of a vernacular farm house which expanded from its original federal period core dwelling through several stages into an elegant “brick mansion house” with all the accoutrements of the day. After several decades of decline the house was “put into excellent condition” during the middle of the 20th century and modernized for comfortable contemporary living. As stated in a 1953 Frederick Post article, “… it is proof of the potentials for a good way of life that lie in the historic homes here.”

The findings of these various investigations and analyses provide a more fully integrated narrative of the developmental history of the extant building, including changes made over the years by the various owners prior to the NPS. It also serves to educate users of the building about the integrity of the historic fabric so it may be preserved for future generations.

Research Conducted to Produce HSR
The following activities were conducted to gain a more thorough understanding of the Thomas House:

- Primary and secondary historic research into the sequence of ownership and evolution of construction;
- Fabric investigation, including removal of selected modern accretions, to reveal critical structural and evolutionary components of the building;
- Material analysis including selected interior finishes (paint and wallpaper), historic fastener survey and analysis (nails), historic glass analysis, identification of Federal-period and later period indoor decorative features to help chart the chronology of the house;
- Comparative architectural study of local Federal-period buildings to compare architectural details to explore lineage and to assist in establishing parameters of time period and context for the still extant Federal-period detailing;
- Architectural documentation by the Historic American Building Survey (HABS) to Level 1 Standards in architectural measured drawings, large format photographs, and written text.
- Determination of period of significance.

Major Research Findings

Extant Condition
From the exterior and on the surface, the Thomas House was initially thought to be “in remarkably good condition” to the casual observer. While it was known that interior building systems would need to be upgraded and made to meet building codes for modern administrative usage, it was only after the fabric investigation and condition assessment phase of the project had begun the true nature of the structural components of the house were uncovered and the remaining hazardous materials were discovered. These combined conditions put the Thomas House in the “poor” category from the standpoint of NPS facility management programs and standards. However, there are many eighteenth- and nineteenth-century architectural and building features that are in “fair” and
even “good” condition despite the categorization of the overall condition of the building as “poor.”

Extent of Historic Integrity
The main block and south wing retain a high degree of integrity in the original construction materials to the identified period of significance as described by the character-defining features. Important features include the exterior shell and structural systems, roof and roof system including dormers and chimneys, windows and window glass, doors and door hardware, interior finish components such as floor boards, wall and ceiling plaster and original architectural millwork, and selected decorative elements such as fireplace mantles, built-in cabinets and features of the interior stairs.

Recommendations for Treatment and Use
The Preferred Alternative identified in Monocacy National Battlefield’s General Management Plan calls for the Thomas House is to be adaptively used for administrative offices. In order to implement the Preferred Alternative, several treatment options were considered for Thomas House, including Preservation Only, Preservation + Interior Rehabilitation, and Interior and Exterior Rehabilitation.

After historic and archeological research and architectural and material investigations, the Interior and Exterior Rehabilitation alternative was determined to strike the best balance between the beneficial use of the Thomas House as administrative offices for NPS staff and the resultant potential impacts on both the building and the farmstead. Thus, the Ultimate Treatment and Use makes the following recommendations:

• Rehabilitate the interior of Thomas House to serve as administrative offices for Monocacy National Battlefield staff;

• Rehabilitate the exterior of the building to remove non-character-defining features from the elevations of the structure which are not required to fulfill its purpose as administrative offices (e.g., the mid-twentieth-century porch and garage additions);

• Rehabilitate the north porch to return the north elevation of the house to its ca. 1860-ca. 1910 appearance.

• Retain interior elements identified as character-defining.

The Thomas House is an important and significant element of the Monocacy National Battlefield historic landscape with a period of significance extending from ca. 1780 through ca. 1910. This encompasses the earliest period of construction of the building and extends through the period of the Thomas family occupation. Implementation of the Ultimate Treatment and Use will return the building to a usable condition while retaining its most important character-defining interior and exterior elements. It will also reestablish the historic exterior appearance of the house during the ownership of C. K. Thomas and his heirs (1860-ca. 1910).
Project Data

Name and Location Data

Preferred Structure Name:	Thomas Farm : House
Other Historic Names Used:	Mansion House Farm; Araby
Park:	Monocacy National Battlefield
Structure County:	Frederick
Structure State:	Maryland
NPS Region:	National Capital
Administrative Unit:	Monocacy National Battlefield
NPS Property Number:	3130-0035 Thomas Farm House
List of Classified Structures ID No.:	045130
Park Asset Number:	55401 (Primary)
Square Feet	7,566

Related National Park Service Studies

The following reports are listed in chronological order starting with the most recent in order to identify the number of recent studies that have been completed providing enhanced information about the house, landscape and site.

- Cultural Resources Study, Monocacy Battlefield, prepared by Paula Stoner Reed, Ph.D., with Edith B. Wallace; Paula S. Reed and Associates, Inc., Hagerstown, MD; Updated July 2004.
- FMSS: Asset Number: 55401. The API (Asset Priority Index) for the Thomas House is 100 and the FCI (Facility Condition Index) is 0.244; from Location/ Asset Summary Sheet search dated 05/20/2009.
See also the List of Classified Structures (LCS) Single Entry Report and the National Register of Historic Places nomination, both included in the appendices to this report.

- Monocacy National Battlefield was listed on the National Register on October 15, 1966 through passage of the National Historic Preservation Act.

- “Monocacy National Battlefield” National register nomination with supporting documentation was accepted by the Keeper on February 4, 1973.

- A second supporting National register for Monocacy National Battlefield has been approved by the Keeper on June 16, 2003.

The National Register Form is on file at the park and regional offices.

Cultural Resources Bibliography (CRBIB)
The following reports are listed by the National Capital Region in the CRBIB database as being associated with the Thomas House. This list is current as of September 2008. There are many other non-NPS reports, etc., associated with the Thomas House; some of those are listed in the HSR Bibliography and others are listed in the National Register, the National Park Service Denver Service Center Technical Information Center data base and other park resource lists. Several of those are previously mentioned in this section as Related Studies.

Period(s) of Significance
The Cultural Landscape Inventory (2009) suggests the period of significance for the landscape as 1724 – 1915.

Based on the results of this HSR and other research and investigation at the Thomas House, the house meets standards for significance under Criterion A “Events” and Criterion C “Architecture/Design.” Using the approximate date of construction of the house by James Marshall and the end of the Thomas occupation of the house, the period of significance for the Thomas House is defined as ca. 1780 to ca. 1910. The Thomas House is significant at a local and state-wide level; it is recommended that the National Register Nomination be updated to include the National Register criteria and period of significance determination of the current investigations.

Recommended Treatment
The Preferred Alternative identified in Monocacy National Battlefield’s General Management Plan calls for the Thomas House to be adaptively used for administrative offices. Consideration of the results of the archeological, architectural, and historical investigations in the context of the Preferred Alternative led to the formulation of the Ul-
timate Treatment for the Thomas House: Interior and Exterior Rehabilitation. Implementation of the Ultimate Treatment will allow the building to be safely occupied and used by NPS staff, but will retain interior and exterior character-defining features and return the building to its appearance during the Thomas family occupation. The Ultimate Treatment was determined to strike the best balance between accommodating the beneficial use of the Thomas House as administrative offices while minimizing impacts to historic fabric.

Recommendations for Future Research

Archeological
Conduct archeological excavations within the interior footprint of the Thomas House to further document the chronology of the house. Locations that have been identified as likely to contain architectural evidence include:

• Along the west interior wall of R100 near the intersection of the brick masonry wall which separates R102 from R103; outcomes may reveal previous foundation walls and floor levels, possibly evidence of previous structural remnants;

• Along the south face of the exposed east-west foundation wall located in the middle of R101 and near the previous cellar entry feature, outcomes may reveal previous floor levels and other structural remnants;

• Along the south face of the exposed east-west foundation wall located in the middle of R101 and near the previous cellar entry feature; outcomes may reveal previous floor levels and other structural remnants.

Historical
Further analysis of historical probate documents may provide additional information about the size, shape or contents of the house during one of the many real estate transactions that occurred between the members of the previous group of historical owners.

Architectural
Further fabric investigations will no doubt reveal more information about the construction sequence of the Thomas House. Areas of particular interest are the attic space behind the knee walls of attic room R301 and above the R203 and R205 where evidence suggests altered floor levels and architectural changes concerning the configuration of previous stair structures. This area is largely undocumented in the HABS drawings because of its physical inaccessibility; supplemental drawings should be developed to describe the structure used to support the floor and roof frame here.

Supplemental HABS drawings should be considered to document the floor frame system within the building. This would also allow the development of another longitudinal section to be cut through the building focusing on the interior west elevations.

The area in R206 between the extant stair and the adjoining room presents questions as to how the stair structure is supported above the first floor. Further investigation of the wall, ceiling and stair structure may reveal information concerning the sequence and methodology used in this area of the house.

Recommendations for Documentation, Cataloguing & Storage of Materials Generated by HSR Project

All project materials will be turned over from HPTC to Monocacy National Battlefield. Electronic files and media are transferred by flash drive storage unit; paper field notes are compiled into acid-free boxes for further review by the park curatorial staff.

A collection of fabric remnants has been compiled through the preservation maintenance projects completed by HPTC in the past 5 years. These are stored in the Thomas House in plastic storage boxes and are largely unsecured. Some effort should be made to secure the collection or artifacts for future study as they represent the earliest period of construction of the building.
PART 1

DEVELOPMENTAL HISTORY

CHRONOLOGY OF DEVELOPMENT

USE

AND OWNERSHIP
Throughout this report, building components are designated with a letter prefix and number. For example, the dining room on the first floor is designated R102 and the mantel in second floor bedroom 1 is designated M201. Some designators have a letter suffix (A, B, etc.) to identify a specific building component and its parts; for example, CB102A refers to element A of built-in cupboard CB102. Designations correspond with floorplans found on pages 217 - 224. The follow prefixes are used:

<table>
<thead>
<tr>
<th>CB</th>
<th>CH</th>
<th>CL</th>
<th>D</th>
<th>DT</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cupboard</td>
<td>Chimney</td>
<td>Closet</td>
<td>Door</td>
<td>Door Transom</td>
<td>Mantel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Porch</td>
</tr>
<tr>
<td>R</td>
<td>Room</td>
</tr>
<tr>
<td>SL</td>
<td>Sidelight</td>
</tr>
<tr>
<td>ST</td>
<td>Staircase</td>
</tr>
<tr>
<td>W</td>
<td>Window</td>
</tr>
</tbody>
</table>
Chronology of Development, Use, and Ownership

The historical background of the Thomas Farm has been extensively documented in other publications (Reed 2004; Beasley et al. 2010), and a more extensive occupational history of the farm is included as an appendix to this report on the enclosed CD. Therefore, this section does not undertake to repeat previous research, but instead consists of a summary based on previous work as well as new information that has come to light as result of the Historic Structure Report. Footnoting will not be provided for information in this section that is derived from previous research efforts.

The history of the Thomas House is quite complex; it has been extensively altered over the course of its history, which stretches back well into the eighteenth century. For this report, the historical background of the Thomas House has been organized within the context of owners and/or occupants. In some instances, specific changes or alterations cannot be attributed to an individual, but instead must be ascribed to a general time period during which there may have been multiple owners or occupants. An attempt is made, however, to interpret the history of the building through time using the best available research and documentation.

Please refer to Thomas House drawings on pages 217-224 for specific door, room, stair, window and other callouts.

Marshall, ca. 1780-1812
The building known as the Thomas House is believed to have been constructed during the last quarter of the eighteenth century. It is attributed to James Marshall, a Scottish merchant who immigrated to Prince George's County, Maryland from Glasgow, Scotland in 1747. In 1758, Marshall purchased a land tract known as Wett Work; the boundaries of this tract encompass the brick structure known today as the Thomas House.

James Marshall worked as an agent or “factor” for the Glasgow merchant firm John Glassford & Company. He appears to have resided in Prince George's County until around 1770, after which he generally identifies himself as a resident of Frederick County. In addition to Wett Work, Marshall owned an adjacent property called Arcadia that he had purchased in 1765. It is not known precisely where Marshall resided when he first relocated to Frederick County; a 1764 advertisement for Arcadia notes that it contained “several Houses,” so it is possible that Marshall initially occupied one of these existing structures while the house was constructed on Wett Work. It is not known precisely when Marshall started building the house at Wett Work; he traveled to Great Britain twice in 1765 and also returned to Glasgow for seven months in 1771, so it is possible that new construction was initiated during one of these absences or upon his return in 1772.

Unfortunately, there is but one known historic reference identifying the original date of construction of the Thomas House. Thomas Scharf's History of Western Maryland, originally published in 1882, notes that it was constructed “at least” as early as 1780; there is little surviving historic fabric, however, to support construction much earlier than this date. On the other hand, a variety of historic elements do survive that support construction during the last quarter of the eighteenth century, including delicate low-relief mantel and staircase details (M201, 202, 203, and 204; ST203), hand-planed wide plank flooring (R302), several areas with plaster on brick and riven (hand-split) lath, a number of six-panel doors (D101, 102, 110, 201, 207, 209, and 210), several nine-light windows (W108, 109, 110, 210, 211, 212, 218), and the principal rafter system visible in the unfinished portion of the attic.

Many of the nine-light windows contain cylinder glass; the visual appearance of this glass suggests it was manufactured by the New Bremen Glassmanufactory, which was in operation prior to 1794 and continued to flourish into the first decade of the nineteenth century. In addition, nails removed from the dormer windows, roof sheathing, and riven lath in the attic are a combination of hand wrought and early machine cut varieties, which were widely available from about 1795 to 1815. Lastly, there are remarkable similarities between many of the surviving elements of the Thomas House and those of the ca. 1794 Roger B. Taney House Frederick, MD built.

1747
- J. Marshall immigrates from Scotland
1758
- Marshall purchases Wett Work tract
ca. 1780
- Marshall constructs house on Wett Work known today as Thomas House
ca. 1794
- Roger B. Taney House Frederick, MD built
A) Dormers

B) Hyphenated Fluting

C) Mantels

D) Stair detailing

Figure 1. A) Dormer at Thomas House (left) compared with ca.-1798 Jones-Sappington House in Liberty Town, MD. B) Hyphenated fluting detail of mantel at Thomas House (left) and exterior cornice of ca.-1794 Taney House (right). C) Mantel in R208 at Thomas House (top) compared with ca.-1794 Taney House mantel (bottom). D) Attic stair of Thomas House (left) compared with ca.-1798 Sappington House (right).

Figure 2. Top, speculative first floor plan of pre-1795 configuration for Marshall's house at Wett Work with a main block and an out kitchen. Bottom, floor plan circa 1795 with infill between main block and kitchen and an ell porch.

cia. 1794
Roger B. Taney House
Frederick, MD built

ca. 1798
Sappington House
Libertytown, MD
B. Taney House (Frederick, Maryland) and the ca. 1798 Jones-Sappington House (Libertytown, Maryland). These include the dormer windows (W301-303), the remnant of the boxed attic stair (ST203), and the hand-carved reed and flute detailing present on several surviving mantels (M201, 202, 203, and 204) (Figure 1).

There are also indications that the general configuration of the Thomas House was different during the Marshall occupation (Figure 2); an early foundation wall and bulkhead cellar entrance under Room R101A indicates that Rooms R101B and 203 did not exist initially. It is also apparent that the south half of Rooms R100 and R205 were later additions; a nine-light cylinder glass window (W218) and the transom (DT204) above Door D204 indicate that the west wall of these rooms was once an exterior wall. Moreover, removal of plaster along selected areas of this wall has revealed penciled joints, further evidence that it was once an exterior wall.1

It is not clear if Rooms R104 and R208 existed at this time; they may have originally been part of a separate detached structure – perhaps an out kitchen – that was later incorporated into the main block of the house. There is ample evidence that these rooms were enlarged at some point; the south portion of the attic (R304) features a remnant of an exterior wall, which exhibits early hand-planed beaded board siding believed to date from 1800-1840. This indicates that at some point prior to 1840 the south wall of the structure was extended an additional eight feet, encapsulating this remnant wall and creating the current dimensions of Rooms R104 and R208. This is further supported by the presence of two nailing blocks on the exterior of the east wall of R208, south of W212. These nailers were used to secure an integrated chair rail that extended from the interior window sill to the second nailer block. The second nailer block is approximately eight feet north of the south gable end of the south wing, indicating the room was enlarged to the south by approximately eight feet.

Another feature which indicates the extension of this wing is the anomaly in the floor frame at both the second and third floor levels. This anomaly consists of floor framing that suggests the presence of an interior chimney approximately eight feet from the current southernmost exterior wall and corresponding with the exterior wall remnant previously discussed.

It is possible that the alterations to R104 and R208 took place during the Marshall occupation of the house, but it may also have been undertaken by a subsequent owner after the Marshall family sold the plantation in 1812.

Regardless of when it was constructed, the house was certainly complete by 1799; James Marshall’s will written in that year notes that his son William P. Marshall was living in his “house at the ferry,” which refers to the house on Wett Work. William continued to occupy the house for several years after his father’s death in 1803; Charles Varlé’s 1808 map of Frederick County depicts “W P Marshall” in the approximate location of the current structure and he is mentioned in several other primary historic references during the first decade of the nineteenth century (Figure 3).

McPherson (1812-1844)

In March 1812, William Marshall began advertising the farm for sale in the Frederick Town Herald:

The subscriber will expose to public sale, the farm whereon he now lives, part of a tract

Figure 3. Map by Charles Varlé showing W.P. Marshall’s property on the west side of the Georgetown Road.

1 Painted pencil detailing on mortar joints was a typical exterior treatment for early nineteenth-century brick buildings.
Figure 4. Circa 1812-1847 layout of the house with extension of entrance hall (R100) and addition of R101B by enclosing a portion of the ell porch. Top, photograph (location at arrow) shows the west wall of front hall where perpendicular wall was removed to create the extended hallway.

Figure 5. Proposed circa 1850s configuration. Note the removal of south exterior wall in R101A to create the double parlor R101. Box beam added with columns as support. Top, photograph shows structural beam replacing R101A south (exterior) wall.

1812

1829

1831

McPherson dies; estate left to son, John Jr.

Araby estate created by resurvey of property
of land called “Wet Work,” containing four hundred and ten acres, lying about three or four miles from Frederick-Town. The main road leading from Frederick to Georgetown runs through it, dividing it completely for two farms, leaving on one side about 250 acres with a handsome brick building, as neatly finished as any in the country…

In August of that year, an entrepreneur named John McPherson purchased the 415-acre farm from William Marshall, including the parcel with the “handsome brick building.” This was one of several land parcels that McPherson purchased in the area during the first two decades of the nineteenth century, apparently with the goal of undertaking major industrial development. When McPherson died in 1829, he left his son John, Jr. his extensive landholdings, and in 1831, John McPherson, Jr. had several parcels resurveyed into a 1,111 ½-acre tract that he called Araby. The house and its surrounding farm were generally referred to as “Araby” from this point on.

The McPhersons undertook substantial renovations to the house during their over 30-year tenure on the property. At some point before 1847, a two-story addition was constructed that lengthened the center passage (R100) and added two rooms (the northernmost portions of R101B and 203). As evidenced by a foundation remnant that was revealed under the existing flooring of Room R101B, construction of this addition extended the south wall of the house by approximately 11 feet. In addition, it is apparent that the eight-foot extension of Rooms R104 and R208 (discussed above) was complete by this time; a description of the house included in an 1847 insurance policy refers to a “Backbuilding attached” with measurements that approximate the current dimensions of the building. As previously noted, it is possible that this was done during the Marshall occupation, but it could also have been undertaken during the McPherson occupation (Figure 4).

The insurance document describes other exterior features of the building present in 1847, including a “Portico” on the front (north) elevation measuring 16 feet in length; it was three steps high and supported by “4 square columns, covered with cedar shingles.” A “Poarch and baloney...”, supported in Each story by 5 squar[e] columns, covered with cedar shingles” was present by this time as well; this refers to the rear ell porch. On the interior, the insurance description reveals that many of the walls and some of the ceilings were papered, with doors and windows featuring “pannel Jambs” that were “cased with architrave and hand molding.” It also indicates that the main stair passage had been reconfigured by this time; it describes a “continued stair from the passage to the second story” and “a centre peace in the passage supported by 2 round reeded colums.” This “continued stair” clearly replaced an earlier staircase – the remnant of which is described as “old fashion ramp stairs running form the second story to the garrott” (ST203) – but differs substantially from the existing staircase (ST101). The rooms on the second floor featured “chear board,” possibly referring to wainscoting or a similar treatment. (A full transcription of the insurance document is included on the enclosed CD.)

In spite of his extensive business ventures and inherited property, John McPherson, Jr. was deeply in debt by 1844, forcing him to initiate sale of Araby. In February 1844, John and Fanny McPherson conveyed their personal and real property to trustee William R. Ross: this transaction ultimately led to the subdivision of Araby into several smaller parcels.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1844</td>
<td>Araby subdivided; Worthington Johnson acquires property</td>
</tr>
<tr>
<td>1847</td>
<td>Isaac Baugher buys property</td>
</tr>
<tr>
<td>1848</td>
<td>Baugher dies</td>
</tr>
<tr>
<td>1852</td>
<td>Baugher heirs sell to Griffin Taylor</td>
</tr>
<tr>
<td>1855</td>
<td>Taylor dies</td>
</tr>
<tr>
<td>1856</td>
<td>John Wheatley and T. Alfred Ball buy farm</td>
</tr>
</tbody>
</table>

Figure 6. Advertisement, 1856.
The 277-acre Mansion House Farm parcel included the manor house and was sold to Worthington R. Johnson on April 23, 1844, who in turn sold it to Isaac Baugher on August 4, 1847. Baugher purchased the insurance policy that includes the description noted above. By 1848, Isaac Baugher had died, and in 1852 his heirs sold the property to Griffin Taylor, a wealthy farmer who had already acquired substantial landholdings in the area. Taylor died in 1855; an 1856 advertisement for sale of the farm emphasizes “improvements…of the best order, consisting of a large TWO-STOREY BRICK MANSION HOUSE, with Back Building, suitable for a large family” (emphasis in original) (Figure 5 and Figure 6).

In April 1856, the house was purchased by John F. Wheatley and T. Alfred Ball, who embarked on a failed distillery venture that forced them to sell the farm in 1860 to a retired merchant named Christian Keefer Thomas. A native of Frederick County, Thomas sold his interest in a Baltimore dry goods firm and bought the farm and house that now bear his name, in part to avoid the impending hostilities between North and South. Unfortunately, he had been there only a short time before the Civil War broke out.

Thomas (1860 – ca. 1910)

Substantial renovations of the house are believed to have taken place between 1847 and 1860. During this time period, major changes were made to windows; interior finishes such as mantels and the main stair passage; and the exterior masonry. Some of these alterations can be definitively dated to 1860 and are thus attributed to the period of C. K. Thomas’s ownership, but others can only be generally ascribed to the mid-nineteenth century. As the property changed hands five times from 1844 to 1860, in many cases it is difficult to determine precisely during which period of ownership certain changes were made. Many of the alterations made to the building between 1847 and 1860 can be seen in historic images of the house or are extant today.

A major component of the 1860 renovations involved carpentry work. Most if not all of this appears to have been the work of a local carpenter named Hiram M. Keef er. Hiram M. Keef er was the son of a master carpenter and is described variously in census records as a carpenter or sashmaker; he and his father operated a lumber yard in Frederick during the mid- and late nineteenth century. In many cases, Keef er signed and dated his work – 1860 or 1861 – providing a record of the changes that were made to the building by his hand.

One of the major tasks commissioned by C. K. Thomas and executed by Hiram M. Keef er was a change in the window fenestration; nearly all of the windows in the main block of the house were configured with 6-over-6 sashes, and several of the first floor windows (W101-104) were outfitted with “jib” doors that allowed them to be opened to their full height. A window rehabilitation project undertaken in 2009 revealed that most of the sash weight pocket covers for the jib doors are signed “Hiram M. Keef er 1860” (Figure 7). A rafter in the unfinished portion of the attic (R304) also bears the initials “H. M. K. 1860,” perhaps suggesting Keef er did some work in the attic as well.

Changes to the windows were accompanied by construction of a full-length Italianate porch, which can be seen in a number of nineteenth-century photographs and a ca. 1882 rendering of the farm (Figure 9). It extended across the full front elevation of the house and featured clustered columns with flaring ornamental brackets. A balustrade enlivened the porch roof and formed a deck; the central second story window – W203 – was configured with a jib door that permitted access to the second story deck. On the south elevation, one additional jib door (W112) was constructed as well. Curiously, the adjacent window – W113 – features a panel on the interior that gives the appearance of a jib door, but the exterior is bricked over so that
Chronology of Development, Use, and Ownership

Figure 8. Speculative plan for how the first floor of the house may have been organized circa 1860. Note changes to center hall and reconfiguration of staircase (ST101).

Figure 9. 1882 rendering of the Thomas House showing the Italianate porch and cross-gable dormer windows. Earliest known illustration of *Araby*.

- **1861**
 - Jib doors by Hiram M. Keefer
 - Window changes by Hiram M. Keefer
 - Addition of Italianate porch
 - Changes made to main entryway
 - Brick veneer added to exterior
the door doesn’t function. This gives the north and south elevations of Room R101 a balanced appearance from the interior, but only one of the doors is actually functional.

Changes were also made at this time to the main entry door (D101) and surround. The 1847 insurance document records that the front door had sidelights, but a transom is not mentioned. The profiles of the current transom (DT101) and sidelights (SL101A and B) match those of the 6-light windows, indicating that they were manufactured and installed at the same time. One interesting aspect of the sidelights and transom, however, is that the glazing is on the interior; clearly, this was done intentionally to create a more formal and eye-catching entry to the house.

It is also believed that C. K. Thomas oversaw the installation of a one-wythe-thick brick veneer over the entire exterior of the house; this was initially thought to have been done after 1864 to hide damage sustained during the Battle of Monocacy, but given the changes to the windows and doors that were undertaken at this time, it is clear that this alteration was part of the larger 1860 renovation campaign.

Substantive interior changes were made during the mid-nineteenth century as well, perhaps during C. K. Thomas’s ownership. The most notable changes occurred in the stair passage and the southeast corner of the house, (ST101, Rooms R203 and R205). In Room R203, a fragment of cotton rag wallpaper featuring a stylized block pattern was found adhering to the south plastered wall beneath the existing floorboards (Figure 10). The fragment extends behind the adjacent west brick partition wall, indicating that the partition is of later construction. The wallpaper is dated ca. 1850 and is of a style favored for use in hallways and other passages. The door threshold (at D210) dividing Rooms R203 and R205 bears Hiram M. Keefer’s signature and the date “1861”; this suggests that the partition wall was constructed around this time, and may also indicate that the changes to the floor level that encapsulated the fragment of ca. 1850 wallpaper were undertaken at that time. It is also assumed that the current configuration of the main staircase (ST101) was completed around this time, presumably by Hiram Keefer as well (Figure 11). The style of the newel post, and the presence of

<table>
<thead>
<tr>
<th>1861</th>
<th>1864</th>
<th>1868</th>
<th>1882</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battle of Monocacy 9 July 1864</td>
<td>Alice Thomas wedding at house</td>
<td>Earliest known illustration of Araby</td>
<td></td>
</tr>
</tbody>
</table>
sawn lath and fully machine-cut nails in the closet beneath the stair, supports a construction date of 1860 or later.

Other interior changes dating to the mid-nineteenth century include the installation of columned mantels in the Greek Revival style in select rooms, particularly on the first floor (M101A, 101B, 102, and 103). With the installation of these mantels, some of the older Federal-style mantels and cabinets described above may have been moved upstairs to less publicly-accessible rooms (R201, 202, 204, 208) (Figure 12). In addition, the south portion of Room R201 may have been enclosed at this time to create closets for Rooms R201 and R203 (CL201 and 203).

The Battle of Monocacy was fought on July 9, 1864. Some of the most intensive fighting occurred on the Thomas Farm, and the house and surrounding landscape sustained significant damage. As many as eight artillery shells are reported to have struck the building, and at least one may have exploded inside the dining room (possibly Room R103) while the Thomas family and several others hid in the cellar. A Union soldier who passed by nearly a month after the battle noted that he had “rarely
seen a house more scarred by battle.” Whatever the damages, the farm had sufficiently recovered by 1868 to serve as the setting for Alice Thomas’s wedding.

Apart from post-war repairs, there seem to have been very few changes or alterations to the house after the 1860s (Figure 13); the Thomas family continued to occupy the farm at least until C. K.’s death in 1889. It is not known if any of the remaining members of the Thomas family stayed in the house after C. K.’s death; a photograph taken by Charles A. Davis on June 16, 1893 indicates the building had fallen into disrepair (Figure 14).

Sponsellar (1910–1911); Baker (1911–1949)

After C. K.’s death, the Araby farm was subject to equity court proceedings, which resulted in the property being sold to Samuel S. Thomas and Alice (Thomas) Anderson in 1894. Apparently, Alice eventually acquired Samuel’s interest, as she was the sole proprietor when she died around 1910. Her trustee Charles M. Staley sold the 257-acre Araby property to Eugene Sponsellar on September 10, 1910, who in turn sold it to William G. Baker in 1911. William G. Baker died in 1932, and the farm passed to his son William, Jr., who died in 1949 (Figure 15). The farm was sold to C. Edward Hilgenberg in June of that year.

Hilgenberg (1949-1954)

During the period of Sponsellar and Baker’s ownership, the farmland was leased to tenants, but the house appears to have been largely unoccupied. After he purchased it in 1949, C. Edward Hilgenberg made substantial changes to the building; the Hilgenbergs are largely responsible for the present exterior appearance of the house and for many of the interior changes as well. The renovations and alterations to the house seem to have been undertaken in two phases; the first phase (undertaken by C. Edward and his wife Lee) focused largely on interior improvements but also included minor repairs and cosmetic changes to the exterior. The second phase (ca. 1952-1953) coincides with C. Edward Hilgenberg’s marriage to Anne Johnson, and consisted of substantial changes to the exterior of the house and the continuation of mostly cosmetic changes to the interior. A number of photographs and other evidence exists that document these two phases of construction, which are considered in detail below.

Phase I (ca. 1949-1951)

The Hilgenbergs began the first phase of renovations in 1949; exterior photographs taken shortly after the farm was acquired indicate worn paint and damaged or missing elements such as snowboards and some shutters (Figure 16; compare to Figure 17 on page 20). Photographs suggest that the house
Chronology of Development, Use, and Ownership

Fred Cross photo of north and west elevations

William G. Baker, Sr. dies; William, Jr. inherits

William Baker, Jr. dies; C. Edward Hilgenberg buys farm

1931

1932

1949

1949

Ca. 1949 images prior to any renovations by the Hilgenbergs.

North and west elevations.

South and east elevations; note the worn porch deck and wood frame floor structure. Shutters are missing from east elevation door and jib door window.

West elevation; note missing snow board, worn paint, and rightmost first and second floor windows have had sashes replaced and are now 6-over-9 and 9-over-6 pane sashes respectively.

“The purchase of Araby went through in the late summer of 1949 and Eddie went right to work on a major restoration of the famous landmark.” – Carl G. Hilgenberg, (from notes, 2007).
Figure 17. Ca. 1950-52 images after the first phase of repairs by the Hilgenbergs.

North and west elevations; repairs included painting, minor carpentry and masonry work.

South and east elevations; new screen doors are seen at all exterior doors, a new cast iron boot has been added to the bottom of the downspout (at far right), and the south wall is freshly painted. Car is a ca. 1945 Cadillac.

West elevation; new cast iron boot on downspout, new roof vent in south facing slope of main gable (circled, indicating conversion of R204 to a new interior bathroom), repaired snowboards, and repainted exterior brick. Masonry problems below southernmost first-floor window are still apparent.

1949

1949 - 1951

C. Edward Hilgenberg buys farm, starts renovations
had been abandoned for some time and that a large amount of debris was removed.

Between 1949 and 1951, the exterior received mainly cosmetic improvements such as new paint, new gutters and downspouts, and repair or replacement of deteriorated wood elements such as shutters, snowboards, and screen doors (Figure 17). The existing electrical service was also upgraded and plumbing was introduced. Interior changes undertaken during this phase were more substantial and included the installation of bathrooms, modifications to the interior circulation of the house, and cosmetic changes such as new wallpaper and paint.

Rooms R100 and R101 received mostly cosmetic changes at this time; new lighting fixtures were installed, along with new paint and wallpaper. A chair rail was also added to both Rooms R100 and R101, continuing up ST101 to the second floor (Figure 18).

A chair rail and cornice were also added to Room R102, which apparently served as a formal dining room (Figure 19). The substantive changes that C. Edward and Lee Hilgenberg made to Rooms R102 and R103 are suggested by the threshold between the two rooms, which is signed “Hilgenberg.” The Hilgenbergs converted Room R103, which probably historically served as a dining room, into a kitchen. In addition to the installation of cupboards, appliances, a sink, and counters, the size of the firebox at CH04 was decreased and chair rail was added throughout the room (Figure 20). The door opening between Rooms R102 and R103 may have been enlarged to some degree; the 1847 insurance document describes “folding doors” in this location so it’s possible that this door opening was always oversized, but photographs indicate that it was further altered at this time, perhaps including construction of the built-in cupboards that currently adorn the south wall of Room R102.

Room R104, historically the kitchen, was extensively remodeled during this phase to create the appearance of a library or study. Vertical tongue-in-groove knotty pine paneling was installed, and matching

Figure 18. Top, main staircase (ST101) ca. 1949 prior to remodeling and middle, ca. 1950 after repairs. Bottom, a view north in R101 after repairs. A chair rail has been added to both the hall and the double parlor.
Figure 19. Left, R102 view north, during renovations; note the simple baseboard and ceiling mounted light fixture at top of frame. At right, the “after” image with the addition of a chair rail and a cornice between the windows and extending around the room.

Figure 20. Left, R103 view south, during renovations; the built-in cupboard (CB103) to the right of the fireplace is an early hand-crafted feature. Right, the mantel has been retained and the fireplace masonry has been reworked at the firebox opening to include a soldier course of brickwork. A chair rail has been added throughout the room and the baseboard has been retained.

1950

Phase I renovations continue
Figure 21. Left, R104 during Phase I repairs; wood mantel shelf is seen above bricked-in fireplace. Right, fireplace has been rebuilt with “colonial revival” style bullnose molding surround at opening. Vertical knotty pine tongue and groove paneling has been installed. “A most inviting and restful living room.” – Frederick Post, 1 May 1953.

Figure 22. Left, R204 during repairs and right a view of NW corner of bathroom after repairs. Second floor bathroom tub installed ca. 1951. New door opening (D203) can be seen to the right of the bathtub.
built-in bookshelves were constructed for the east wall. The size of the fireplace at CH05 was decreased and a new over mantel was added; an ornate fireback may also have been installed at this time (Figure 21). The north portion of Room R104 (under the rear stairs) was enclosed to create a full bathroom, and a new wood floor was installed throughout the room, over top of the existing floor.

On the second floor, the Hilgenbergs added features to make the upstairs space more comfortable and livable. They likely added the closets in Rooms R202 and R208 (CL202A, 202B, and CL208), and also converted Room R204 into a full bathroom with a tiled tub enclosure (Figure 22). As is apparent from photographs of the renovations, the placement of the tub required the earlier central door opening to be covered up and a new door opening – D203 – to be punched through the brick wall.

Phase II (ca. 1952–1953)
C. Edward Hilgenberg’s marriage to Lee ended around 1951, and about a year later he married an antiques dealer from Washington, D. C. named Anne Johnson (Figure 23). Interior projects continued during this time, but photographs indicate that some rooms that were redone during the first phase were redecorated with new paint and wallpaper, perhaps

“Now owned by C. Edward Hilgenberg, Araby has been put into excellent condition, expanded by the addition of a wing garage and balancing brick arched porch, and beautifully and tastefully furnished. It is the permanent home of Mr. Hilgenberg who uses the acreage to raise cattle.

A broad center hall bisects the first floor and the stairway is graceful and easy as it sweeps to the second floor.

Drawing rooms and dining room are formal and the principal living area is in the one-time kitchen wing at the back. This rectangular space Mr. Hilgenberg has done over into a most inviting and restful living room, walls are wood paneled ... the whole effect is for livability.

Separating this area from the dining room is a small, very modern kitchen. Up a steep staircase over the living room is a well-appointed office Mr. Hilgenberg has fitted for his own use.

Araby is one of the larger, more impressive houses included in the House and Garden Pilgrimage May 5. Like others on this year’s list, it is proof of the potentials for a good way of life that lie in the historic homes here.”

— Betty Sullivan, May 1, 1953, Frederick Post

<table>
<thead>
<tr>
<th>1951</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles and Lee Hilgenberg divorced;</td>
</tr>
<tr>
<td>Charles lives alone for a year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1952</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Hilgenberg marries Anne Johnson, noted Washington, D.C.</td>
</tr>
<tr>
<td>antiques dealer</td>
</tr>
</tbody>
</table>
Phase II renovations begin,
Smith & Veale architects
Figure 26. Top left, Phase II exterior repairs underway (post August 1952); many of the dismantled porch columns, brackets and supporting bases were retained and have been salvaged, although the porch frame was not retained. Top right, work is underway at the main entrance (D101); the second story window (W203) can be seen as a jib door prior to its conversion to a window. Also seen under the jib door is the original jack arch over D101 as are the pockets in the brick that supported the roof frame joists from the Italianate porch. Bottom, Phase II repairs near completion with installation of the semi-circular frontispiece.
Figure 27. Top, plans by Smith and Veale Architects, Baltimore, Maryland, August 1952. Top left, west elevation of sun porch with proposed circular window and north porch elevation; top right, east elevation of proposed 2-bay garage. An existing window was removed and replaced by a French-type double door (D104) to allow passage from R102 to the sun porch. The oculus window shown on the sun porch drawing was never realized and was replaced by a series of rectangular openings on the west elevation. Center left and right show sun porch and garage under construction, and bottom left and right are present-day images.

May 1 Frederick Post article reports that Araby is to be part of Maryland House and Garden Pilgrimage.
reflecting Anne Johnson’s taste and preferences. Surviving sketches also indicate that a Webster boiler and two-pipe circulating hot water baseboard heating system were installed at this time.

The most dramatic changes during this second phase took place on the exterior of the house with the removal of the 1860 Italianate porch; this was followed shortly by construction of the garage addition on the east elevation and the porch on the west. Architectural drawings commissioned by the Baltimore firm Smith & Veale (Figure 24 and Figure 25) indicate that the Hilgenbergs originally envisioned a two-story porch with square columns; the west porch was to be enlivened with an eight-foot-diameter circular window. These details were never realized; instead the front entrance was adorned with the present-day frontispiece (Figure 26) while the sun porch was constructed with full-height arched and rectangular openings. Construction of the porch necessitated the conversion of an existing window into French doors (D104) to allow access to the porch from Room R102 (Figure 27).

Clapp (1954–2001)
By 1954, Anne Johnson Hilgenberg had grown tired of the isolation of Araby. In August of that year, the Hilgenbergs sold the farm to Mr. and Mrs. Robert E. Clapp. The Clapps did not make too many ma-

<table>
<thead>
<tr>
<th>1953</th>
<th>1954</th>
<th>post 1958</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. and Mrs. Robert E. Clapp purchase the farm</td>
<td>Formal garden, swimming pool, and tennis court added</td>
<td>North bay of southeast porch is enclosed by Clapps</td>
</tr>
</tbody>
</table>
Figure 30. Present-day first floor (top) and second floor (bottom) plans of Thomas House showing enclosed north bay of two-story porch (indicated by arrows).

2001

NPS acquires the Thomas Farm; Clapps retain life estate
major changes to the house; instead, they focused on the grounds, which were eventually transformed by the installation of a formal designed garden, a swimming pool, and tennis court. One major alteration that was completed by the Clapps was the addition of a utility room (R106) and second-story bathroom (R207); this was accomplished by enclosing the north bay of the ell porch. Clapp family photographs indicate that this was done sometime after February, 1958 (Figure 29). The Clapps are also most likely responsible for opening D205 between Rooms R204 and R206; this required removal of a paneled cupboard that can be seen in ca. 1950 photographs of the room. Establishment of this door opening permitted access to Rooms R206 and R208 from the second floor (Figure 30).

National Park Service (2001–Present)

The National Park Service acquired the Thomas Farm from the Clapps in 2001. From 2001 to 2008, the farm was subject to a life tenancy, the terms of which permitted only limited access to the interior of the house. The house was unoccupied beginning in 2002, which greatly accelerated the deterioration of some of the building’s historic fabric. A number of exterior preservation maintenance projects were completed during this time, including stabilization and repair of the rear ell porch (2005); installation of new gutters and downspouts (2005); in-kind replacement of the slate roof and rehabilitation of the dormer windows (2006-2007); treatment for termite and carpenter ant infestations (2007 and 2009); and repair and rehabilitation of the windows and doors (2008-2010).

The life estate was resolved in January, 2008. This permitted the destructive fabric investigation for the Historic Structure Report to be undertaken and also facilitated access to the building for HABS recordation. Design planning for the installation of new electrical, plumbing, HVAC, security, telephone, and LAN systems was completed late in 2009. In addition, the NPS undertook some preliminary work on the interior of the house; a number of modern features were demolished, including bathroom and kitchen fixtures and non-historic closets. Termite-damaged flooring was removed in Room R104 and foundation stabilization and repair work was undertaken in the cellar and in Room R104. During the course of the fabric investigation, a significant amount of asbestos pipe insulation was discovered; this was remediated in 2010.

Monocacy National Battlefield’s General Management Plan calls for the Thomas House to be adaptively reused as the park’s administrative headquarters. Completion of this Historic Structure Report is only one of several studies and planning documents that the NPS has undertaken in support of this use.

Timeline

2001

- NPS acquires the Thomas Farm; Clapps retain life estate

2002

- House becomes unoccupied

2004

- Rear ell porch stabilized

2005 - 2006

- Gutters and downspouts replaced; rear porch rehabilitated
Several repair projects were completed by the NPS Historic Preservation Training Center (HPTC), with permission from the Clapps, prior to the end of the life estate. These projects are documented in the HPTC-produced *Historic Structure Treatment Records (HSTR)* outlined on the following pages. (Photographs from HSTR maintained by HPTC project leader. On file at Monocacy National Battlefield, Frederick, Maryland.)
Repair Thomas House Exterior
Monocacy National Battlefield
PMIS 115450, FY06
(HSTR distributed 21 February 2008)

Rehabilitation of the southeast porch included repair or replacement of the structural elements of the porch. The first-story columns and breast beam which support the second story of the porch were badly deteriorated. Four-inch diameter Schedule 40 aluminum pipe columns were installed within the square boxed columns. The corner column facing was replaced and the others were repaired. The lower ceiling, breast beam assembly, and second floor decking were deemed unsalvageable and completely replaced in-kind. Columns on the second story were also repaired. The posts, first-story porch ceiling, second-story porch floor and railings were repainted after being abated for lead paint. A few railing pickets were replaced in-kind.

It was during this project that the garage door openings were filled in with temporary walls and doors to serve as an HPTC field office and for storage.

Figure 31. Top row (left to right): southeast corner post with extant deterioration, July 2005; south two-story porch with extant deterioration, July 2005; view of installed aluminum columns on the first floor porch along with structural flooring repairs, December 2005. Bottom row (left to right): Aluminum post before being wrapped with the column sides and a view of the pressure-treated box beam, December 2005; New half-lap repair on the second-floor post, February 2006; Aluminum columns closed in with the original porch post design – only the corner post required total replacement of 1x10” northeastern white pine boards, April 2006.
Thomas House Slate Roof and Gutter Replacement
Monocacy National Battlefield
PMIS 114756, FY07
(HSTR distributed 11 August 2008)

Project Duration: October 2006 – May 2007.

This project consisted of several components:

- Replacement of the slate roof and low-slope elastomeric roof with contingent roof repairs;
- Installation of replacement roof flashing;
- Restoration of the dormers and dormer sashes;
- Replacement of the gutters and downspouts;
- Masonry repairs to the chimneys; and
- Installation of a lightning suppression system.

![Figure 32](image-url)
Top row (left to right): New step counter flashing installed at chimneys; installation of new slate over water shield layer at east slope of south wing roof; repaired dormer architrave with new flashing installed. Bottom row (left to right): Mortaring of top course of brick above cornice with new gutter hangers installed; attic dormer prepared for application of water shield similar to roof; attic dormer with water shield in place and ready for installation of new side wall slates.
Thomas House Fabric Investigation Highlights

Monocacy National Battlefield

Project Duration: June 2007 to May 2009.

The following tasks were undertaken by HPTC as part of the overall fabric investigation completed for the Historic Structure Report project. An Assessment of Effect (“XXX”) was approved prior to removal of any historic fabric. Separate project agreements or project statements were not prepared for these tasks. Tasks included:

1. Removal of insulation from the attic roof frame for HABS documentation purposes; removal of the built-in cedar closet which had been constructed against the west gable elevation in R302 between attic windows W304 and W305. (See Figure 33.)

2. Partial deconstruction of the ca. 1952 interior finishes in R104 began after they were determined not to be character-defining features. Removal of these features allowed access to the deteriorated floor system in R104 as well as assessment of the deteriorated stone and brick foundation system along the west elevation. Dismantling and documentation tasks included the following (See Figure 34 –Figure 35.):
 - Deconstruction of R105 (the 1/2 bath built in under the historic back stair (ST102);
 - Removal of vertical tongue and groove knotty pine interior paneling at the north and south walls;
 - Removal of the mantelpiece at M104;
 - Removal of the shelving in the southwest corner of the room between the chimney breast and the west wall;
 - Removal of the bookcase along the east wall of the room; and
 - Removal of three layers of interior floor boards.

3. Removal of floorboards along the west wall above the utility trench revealed corrugated asbestos pipe wrap remnants; most had been previously removed through a park contract, but fragments had fallen into the soil of the trench or were left clinging to pipes under the floor in the unexcavated portion of the room. A selected hazardous material sampling and analysis in R104 and lead swipe tests throughout the house (August / September 2008), resulted in the report Limited Asbestos Testing and Lead-In-Dust Screening, Thomas House, Monocacy National Battlefield, prepared by Boggs Environmental Consultants, Inc., Frederick, MD (BEC Project #MD08068) for the National Park Service, dated September 4, 2008 and the cessation of any planned archeological work in this area. (See Figure 36.)

4. Selective interior demolition of non-character-defining features as part of the rehabilitation of building interior and building services project (2009), including bathroom interiors and fixtures, kitchen cabinets and appliances, non-character-defining closets, and baseboard radiators. (See Figure 37 - Figure 39.) Selective interior demolition photographs by project leader Mark Segro.

5. Detailed fabric investigation of construction techniques and materials to help establish the chronology of phases of construction of the house. (See Figure 40 - Figure 41.)
Figure 33. (Left to right): R302 west interior elevation showing south side of built-in cedar closet, W305 and attic insulation between rafters, 15 June 2007; R302 west interior elevation showing northeast side of built-in cedar closet, W304 and attic insulation, 15 July 2007; Attic insulation at south gable end of attic, R304; R304 view north toward CH04 showing condition of attic insulation, 15 June 2007.

Figure 34. (Left to right): R104 – partially dismantled wall enclosure of R106, blue plaster reveals section of stair enclosure; R104 – R106 wall enclosure removed with remaining plaster and lath enclosure for ST102; R104 south elevation with over mantel removed to reveal shelf line as seen in ca. 1949 images; R104 mantelpiece (M104) stored in garage with built-in bookcase (not visible in photo).

Figure 35. (Left to right): R104 ca. 1949 bookcase along east wall prior to removal; R104 east interior wall with bookcase removed revealing two distinct layers of flooring; R104 floor joists revealed at location of former R106 at ST102; R104 view north toward ST102 with floorboards removed and deteriorated joists revealed.

Figure 36. (Left to right): R104 view to west interior wall, soil samples extracted between insulated pipes and west wall foundation (pipes shown are insulated with a non-asbestos material); R104 view to southwest with open trench along the west interior wall where soil samples were extracted; view of crawl area along west foundation wall looking south toward R104 crawl area; and R104 second layer of floor exposed along open trench at west interior wall.
Figure 37. (Left to right): R103 kitchen prior to removal of cabinets and appliances; R103 floorboard and joist deterioration discovered upon removal of cabinets; R204 bathroom prior to removal of fixtures and vanity; R204 old interior doorway revealed upon removal of tub and enclosure (under soap dish).

Figure 38. (Left to right): R207 Clapp bathroom prior to removal of fixtures and vanity; R207 after interior finishes removed – this area part of two-story porch enclosed ca. 1960; R104 area under ST102 (former R105) after removal of bath tub; Tub and radiator from R104 ready for recycling.

Figure 39. (Left to right): R100 at D101 with baseboard radiator removed revealing historic baseboard and radiator backer board painted aluminum gray to reflect heat away from the wall; R102 detail of beaded baseboards with radiator removed – historic baseboard matches at M101B; R202 east interior elevation with closet CL202B removed revealing remnant of plaster ceiling which had been protected by the closet – paint and wallpaper remnants pre-date Clapp era, ca. 1954; R208 west interior elevation with closet CL208 removed – closet was apparently constructed after room had been drywalled (no plaster).
Figure 40. Top left, R301: newel post of (arrow) of attic stair is concealed in post-1847 wall between R300 and R301; to the right of the newel post is a reused porch post element from the pre-1847 rear porch. The post exhibits a chamfer which runs down into a fillet at the base of a lamb’s tongue. This is likely a hand-tooled detail although the post itself may be manufactured or hand planed. Top right, in the attic space over R301, the tops of four chamfered porch posts are seen (at arrows, 1 unpainted on far left and 3 painted). These posts were installed post-1847 to create the two finished attic spaces (R300 and R301) out of one previously finished attic room (per 1847 insurance document). The posts are likely reused elements from the former rear porch described in the 1847 insurance papers; reused architectural elements are found throughout the Thomas House.

Bottom left and right show the unfinished attic space adjacent to R301 and the use of a porch railing as a horizontal nailer for vertical frame of the south knee wall (left) and another porch railing piece integrated into the finished attic area (right). These details are ca. 1847 as the attic spaces are noted as finished by this time.
Figure 41. Top left, view of hand-wrought nails used to fasten sheathing to the rafters.

Top right, two views of closet CL200 where (left) a black-painted hand railing has been used as a vertical nailer to support plaster lath for the expansion of the closet; this was likely done in conjunction with the repositioning of the main stair and was a post-1847 event, possibly ca. 1860. Note the beaded edge of the handrail and the mortised underside (arrow) for placement of stair spindles. At right, a white-painted porch railing shoe (arrow) is being used as a vertical nailer for the plaster lath. Note the unpainted square areas on the shoe which indicate the exact positions and size of the porch railing spindles.

Bottom, east wall of R208 south of W212 shows two nailing blocks (indicated by arrows above) where there was an integral chair rail that extended from the interior window sill to the second nailer block. The second nailer block is approximately eight feet north of the south gable end of the south wing, another indication that the size of R208 changed over time.
Chronology of Development, Use, and Ownership

Thomas House, Repair North / West / South / East Elevation Windows and Doors
Monocacy National Battlefield
PMIS 132421 Components B & C, FY09
(HSTR not yet distributed)

Project Duration: Fall 2008 – Spring 2010.

This project addresses needed repairs to windows, doors, and architectural trim on the north / west / south / east elevations of the Thomas House. The project focuses on the following preservation and maintenance tasks:

- Treatment of windows while maintaining their integrity and historic fabric;
- Extending of the serviceable life of the windows and lower the cost of maintenance; and
- Returning of all doors, windows, and jib doors to operational condition.

This project also includes (as tasks within the objectives) removing all lead paint from architectural features, replacement of weather-stripping, and repair of hardware. These tasks are detailed in the Final Project Agreement dated October 2008.

Figure 42. Top row (left to right): North elevation with scaffold and weather drape for containment of paint chips; window sash undergoing preservation protocol; glazed window sashes allowing window putty compound to dry prior to finish paint being applied. Bottom row (left to right): Jib door with jamb removed showing double panel construction with hollow core – door prepared for primer paint application; installation of new bronze weather stripping at window openings; installation of replacement window sill at north elevation. Photographs by project leader Mark Segro, 2008-2009.
PART 2
THE STRUCTURE
PHYSICAL DESCRIPTION
CONDITION
AND CHARACTER DEFINING FEATURES
Throughout this report, building components are designated with a letter prefix and number. For example, the dining room on the first floor is designated \textbf{R102} and the mantel in second floor bedroom 1 is designated \textbf{M201}. Some designators have a letter suffix (A, B, etc.) to identify a specific building component and its parts; for example, \textbf{CB102A} refers to element \textbf{A} of built-in cupboard \textbf{CB102}. Designations correspond with floorplans found on pages 217 - 224. The follow prefixes are used:

| \(\text{CB:}\) & Cupboard & \(\text{P:}\) & Porch \\
| \(\text{CH:}\) & Chimney & \(\text{R:}\) & Room \\
| \(\text{CL:}\) & Closet & \(\text{SL:}\) & Sidelight \\
| \(\text{D:}\) & Door & \(\text{ST:}\) & Staircase \\
| \(\text{DT:}\) & Door Transom & \(\text{W:}\) & Window \\
| \(\text{M:}\) & Mantel |
Structure: Physical Description, Condition Assessment, and Character-Defining Features

Introduction
This section of the report provides a description of the structural attributes of the house, their respective condition (as of March 2009), and the structure’s character defining features.

Site Visits
Frequent site visits to the Thomas House were made from 2006 – 2009 due to its proximity less than a mile from HPTC headquarters at Monocacy National Battlefield. Several aspects of the HSR have been ongoing for a longer time period including architectural documentation and fabric investigation. A large collection of field photos and fabric investigation photos has been compiled and included on the enclosed CD. Through these site visits, detailed physical descriptions of features, condition assessments, and a compilation of character-defining features have been made.

Physical Description
The Building Feature Master List is an overall outline-format checklist used for creating a physical description of the Thomas House and its features. It describes features using a hierarchical structure based on industry standards adopted by the government - the UNIFORMAT II (ASTM E1557 Standard) used by many facility management industry leaders (Table 1).

Condition Assessment
The standardized condition assessment definitions used are based on those outlined by the National Park Service Park Facility Management Division’s Asset Management Process (AMP), Facility Management Software System (FMSS, 2004) and Facility Condition Assessment Survey (FCAS, 2007) and adapted for use by HPTC. For the purposes of this report, these definitions were rigidly adhered to as a way to qualitatively assess the current condition of the Thomas House.

Qualitative Condition Ratings

“Good”
- Routine maintenance should be sufficient to maintain the current condition; and / or
- A cyclic maintenance or repair / rehabilitation project is not specifically required to maintain the current condition or correct deficiencies.

“Fair”
- The feature generally provides an adequate level of service to operations, but
- The feature requires more than routine maintenance attention, and
- Cyclic maintenance or repair / rehabilitation work may be required in the future.

“Poor”
- Feature requires immediate attention;
- Routine maintenance is needed at a much higher level of effort to meet significant safety and legal requirements;
- Cyclic maintenance should be scheduled for the current year; and / or
- A special repair / rehabilitation project should be requested consistent with park requirements, priorities, and long term management objectives.

Table 1: Outline of main UNIFORMAT II sections used in the description and assessment of Thomas House.
Maintenance Deficiency Priority Ratings
(Ten Year Rating Period)

“Critical” – Emergency / Immediate
- This rating defines an advanced state of deterioration which has resulted in the failure of a feature or will result in the failure of a feature if not corrected within 1 year; or
- There is accelerated deterioration of adjacent or related materials or systems as a result of the feature’s deficiencies if not corrected within 1 year; or
- There is an immediate threat to the health and / or safety of the user; or
- There is a failure to meet a legislated requirement.

“Serious” – Immediate / Short Term
- This rating defines a deteriorated condition that if not corrected within 1 to 5 years will result in the failure of the feature; or
- A threat to the health and / or safety of the user may occur within 1 to 5 years if the ongoing deterioration is not corrected; or
- There is ongoing deterioration of adjacent or related materials and / or features as a result of the feature’s deficiency.

“Minor” – Short Term / Long Term
- This rating indicates standard preventative maintenance practices and preservation methods have not been followed; or
- There is reduced life expectancy of affected adjacent or related materials and / or systems within 5 to 10 years and beyond; or
- There is a condition with a long term impact within 5 to 10 years and beyond.

“Not Rated”
- The feature was not rated as it was not extant at the time of the report or is non-contributing, removed and not planned to be replaced.

Summary of Structure Condition

Overview
Overall the Thomas House meets the definition of “fair” condition and has an overall Maintenance Deficiency Rating categorized as “serious”. Several components recently upgraded are in “good” condition.

A condition rating of “fair” rating indicates that cyclic maintenance, repair or rehabilitation work may be required in the immediate future (1 to 3 years). The building generally provides an adequate, or workable, level of service to operations, but requires more than routine maintenance attention to obtain “good” condition status as certain building features may have been extended beyond an appropriate service life.

The “serious” maintenance deficiency rating indicates a building in declining health but also workable condition. This rating defines a deteriorated condition that if not corrected within 1 to 3 years will result in the failure of the feature, or certain components of the feature; or represents a threat to the health and/or safety of the user may occur within 1 to 5 years if the ongoing deterioration is not corrected; or there is ongoing deterioration of adjacent or related materials and/or features as a result of the feature’s deficiency. See detailed feature conditions and deficiencies in Table 2.

Fire Protection Services
Fire is often cited as the most destructive force in the life of a building and historic buildings (especially those that are unoccupied) often do not have the protection, detection or suppression systems needed to help them survive. The most critical deficiencies for any building are the ones related to those systems; and they will be included in the “top ten list” of prioritized maintenance deficiencies.

A condition rating of “poor” is assigned because of the lack of adequate fire extinguishers within the building. As there is no other means of fire detection or suppression, use of hand-held fire extinguishers is of utmost importance. Neither functioning extinguishers nor detectors were observed within the building.

Other Features
Other features rated “poor” include those most important in the long-term survival of a building, those related to defending against water infiltration, damage and deterioration of building fabric (exterior wall surfaces, exterior windows and doors, roof drainage system, building site drainage); these features are rated in the worst condition. These building features have begun to break down, have already failed, or have exceeded their service life.

Another critical concern is the documented contamination of the building interior by lead paint materials. Ongoing interior fabric analysis and the
beginning of selective fabric removal as part of the rehabilitation process has potentially spread lead dust throughout the building interior. Recommendations for an interior building clean-up are found in the Recommended Treatment section of this report.

Upkeep
While owner occupied it seems the house was kept in good condition, except for battle damage incurred in 1864 which seems to have promptly repaired. Several time periods where the house remained unoccupied (1894 – 1910) (1914 – 1949) or was used by tenant farmers or for storage purposes has seen the house in less than good condition; there have been several up and down cycles of repair and deterioration.

Since ca. 1949 the house has been continuously owner occupied, substantially upgraded and cared for in relatively good condition. Regular maintenance slowed and treatments were deferred prior to the establishment of a life estate agreement with the last private owners in 2001. Under the terms of this agreement the NPS became responsible for the exterior and interior repairs over $250 and began to plan for needed exterior maintenance projects.

NPS Projects
Several repair projects had been completed by HPTC for the park, with special permission from the last private owners, prior to the end of the life estate. These were:

- Structural repairs to southeast porch (2005-6);
- Replacement of slate roof and low slope elastomeric roof, restoration of dormers and dormer sash, installation of replacement roof flashing and installation of a lightning protection system (2005-06).

Projects undertaken by HPTC for the park since the end of the life estate include:

- Selected hazardous material sampling and analysis in Room R104 and lead swipe tests throughout the house (August/ September 2008);
- Paint removal and preservation of exterior windows, doors and architectural trim at north and west elevations (2008 - 2009); east and south elevations (2009 - 2010);
- Selective interior demolition as part of rehabilitation of building interior and building services project (2009);
- Selective foundation repair work prior to beginning house system rehabilitation (2009 - 2010).

Work carried out by Monocacy National Battlefield includes:

- Treatment for the removal of termites;
- Repairs to heating system plumbing (01/07);
- Overall hazardous material survey (09/08).

The National Park Service assumed full maintenance responsibility for the Thomas House in January 2008. Because of the limited previous access, baseline maintenance data had not been established until this time.

Selective removal of interior fabric as a result of the Historic Structure Report project has not been included in the rating results of the condition assessment. Exterior preservation and interior rehabilitation efforts are planned over the next few years which will remediate the fabric investigation intrusions and return the house to overall good condition.

Character Defining Features

Each historic building is unique, with its own identity and its own distinctive character. Character refers to all those visual aspects and physical features that comprise the appearance of every historic building. Character-defining elements include the overall shape of the building, its materials, craftsmanship, decorative details, interior spaces and features, as well as the various aspects of its site and environment. Identifying and preserving a building’s character defining features is essential.

Character-defining features (CDFs) are defined in Director’s Order 28 Cultural Resources Management Guidelines as follows:

A prominent or distinctive aspect, quality, or characteristics of a historic property that contributes significantly to its physical character. Structures, objects, vegetation, spatial relationships, view, furnishings, decorative details, and materials may be such features.

In order to ascertain the important aspects of a building for future reference and analysis character defining features must be recorded. These are prominent or distinctive aspects, qualities, and characteristics of a historic property that contribute significantly to its physical character as represented at the time of intervention or treatment.

The process used in this assessment for determining the CDFs was adapted from the US National Park Service Preservation Brief No. 17 – Architec-
A SUBSTRUCTURE

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10</td>
<td>Foundations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1010</td>
<td>Standard Foundations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1010-1</td>
<td>Stone Foundations</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>A1010-2</td>
<td>Interior Brick Bearing Wall</td>
<td>Poor</td>
<td>Serious</td>
</tr>
<tr>
<td>A1010-3</td>
<td>Shallow Fieldstone Foundations</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>A1030</td>
<td>Slab on Grade or Fill Foundations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1030-1</td>
<td>Southeast Porch</td>
<td>Good</td>
<td>Serious</td>
</tr>
<tr>
<td>A1030-2</td>
<td>Garage (East Addition)</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>A1030-3</td>
<td>Enclosed Porch (West Addition)</td>
<td>Good</td>
<td>Serious</td>
</tr>
</tbody>
</table>

B SHELL

<table>
<thead>
<tr>
<th>Code</th>
<th>SUPERSTRUCTURE</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10</td>
<td>Floor Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1010</td>
<td>First Floor Frame</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>B1010-1</td>
<td>Second Floor Frame</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>B1010-2</td>
<td>Third Floor / Attic Frame</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B1010-3</td>
<td>Southeast Porch Frame Structure</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B101002-1</td>
<td>Structural Interior Walls (E/W)</td>
<td>Poor</td>
<td>Serious</td>
</tr>
<tr>
<td>B101002-2</td>
<td>Structural Interior Walls (N/S)</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B1020</td>
<td>Roof Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1020-1</td>
<td>Principal Rafter System (Main Block)</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B1020-2</td>
<td>Common Rafter System (South Wing)</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B1020-3</td>
<td>Southeast Porch Roof Structure</td>
<td>– Included with B1020-2 –</td>
<td></td>
</tr>
<tr>
<td>B1020-4</td>
<td>Garage Roof Structure (East)</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B1020-5</td>
<td>Enclosed Porch Roof Structure (West)</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B20</td>
<td>Exterior Enclosure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2010</td>
<td>Exterior Walls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2010-1</td>
<td>Main Block and South Wing</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>B2010-2</td>
<td>Garage (East Addition)</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B2010-3</td>
<td>Enclosed Porch (West Addition)</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>B2010-4</td>
<td>Southeast Two-Story Porch</td>
<td>Poor</td>
<td>Serious</td>
</tr>
<tr>
<td>B201004</td>
<td>Parapets</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B201009</td>
<td>Chimneys Integral with Masonry</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B201009-NPC</td>
<td>Non-Extant North Porch Components</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>B2020</td>
<td>Exterior Windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2020-1</td>
<td>Enclosed Porch (West) Windows</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B2020-ESW</td>
<td>Exterior Storm Windows</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>B2020-LS</td>
<td>Exterior Louvered Shutters</td>
<td>Poor</td>
<td>Serious</td>
</tr>
<tr>
<td>B2030</td>
<td>Exterior Doors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2030-ESD</td>
<td>Exterior Storm Doors</td>
<td>Fair</td>
<td>Serious</td>
</tr>
</tbody>
</table>

B30 ROOF CLOSURE

<table>
<thead>
<tr>
<th>Code</th>
<th>Roof Coverings</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3010</td>
<td>Main Block, South Wing, & SE Porch</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>B3010-2</td>
<td>Southeast Corner [R203] Roof</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B3010-3</td>
<td>Garage (East Addition)</td>
<td>Fair</td>
<td>Minor</td>
</tr>
<tr>
<td>B3010-4</td>
<td>Enclosed Porch (West Addition)</td>
<td>Fair</td>
<td>Minor</td>
</tr>
<tr>
<td>B301004</td>
<td>Flashing and Trim</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B301005-1</td>
<td>Roof Drainage, Main Block & S. Wing</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>B301005-2</td>
<td>Roof Drainage, Garage & Enc. Porch</td>
<td>Poor</td>
<td>Serious</td>
</tr>
</tbody>
</table>

Table 2: Detailed feature condition and deficiency ratings by UNIFORMAT II outline.
Physical Description, Condition Assessment and Character-Defining Features

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C INTERIORS</td>
<td>C10 INTERIOR CONSTRUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1010</td>
<td>Partitions</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>C1020</td>
<td>Interior Doors</td>
<td>Fair</td>
<td>Minor</td>
</tr>
<tr>
<td>C1030</td>
<td>Fittings</td>
<td>Fair</td>
<td>Minor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20 STAIRS</td>
<td>C2010 Stair Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2010-1</td>
<td>Main Hall Stair</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>C2010-2</td>
<td>Rear Hall Stair</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>C2010-3</td>
<td>Garage Cellar Stair</td>
<td>Poor</td>
<td>Serious</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2020 Stair Finishes</td>
<td></td>
<td>Poor</td>
<td>Serious</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C30 INTERIOR FINISHES</td>
<td>C3010 Wall and Finishes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3010-1</td>
<td>Plaster</td>
<td>Good</td>
<td>Minor</td>
</tr>
<tr>
<td>C3010-2</td>
<td>Wallpaper</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>C3010-3</td>
<td>Paint</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>C3010-4</td>
<td>Ceramic Tile</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>C3010-5</td>
<td>Sheet Goods</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3020 Floor and Finishes</td>
<td></td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>C3020-1</td>
<td>Wood Floorboards</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>C3020-2</td>
<td>Vinyl Tile</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>C3020-3</td>
<td>Sheet Goods</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3030 Ceilings and Finishes</td>
<td></td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>C3030-1</td>
<td>Plaster</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>C3030-2</td>
<td>Paint</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>C3030-3</td>
<td>Ceiling Paper</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>D SERVICES</td>
<td>D20 Plumbing</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>D30 HVAC</td>
<td></td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>D40 Fire Protection Services</td>
<td></td>
<td>Poor</td>
<td>Critical</td>
</tr>
<tr>
<td>D50 Electrical</td>
<td></td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>D503008</td>
<td>Security System</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
<tr>
<td>D509002</td>
<td>Emergency Lighting and Power</td>
<td>Not Rated</td>
<td>Not Rated</td>
</tr>
<tr>
<td>D509004</td>
<td>Lightning Protection</td>
<td>Good</td>
<td>Minor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>E FURNISHINGS</td>
<td>E2020 Fixed Furnishings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E202002</td>
<td>Interior Window Treatments</td>
<td>Poor</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>G BUILDING SITE WORK</td>
<td>G20 Site Improvements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2030</td>
<td>Pedestrian Paving</td>
<td>Fair</td>
<td>Serious</td>
</tr>
<tr>
<td>G2050</td>
<td>Maintained Landscapes</td>
<td>Good</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Condition</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>G90 Other Site Work</td>
<td>G9087 Overall Building Site Drainage</td>
<td>Fair</td>
<td>Serious</td>
</tr>
</tbody>
</table>
tural Character: Identifying the Visual Aspects of Historic Buildings as an Aid to Preserving Their Character, by Lee H. Nelson and are in accordance with The Secretary of the Interior’s Standards for the Treatment of Historic Properties (PB17) and NPS Management Policies and Guidelines, specifically DO 28, Cultural Resource Management Guidelines.

The brief divides the assessment of CDFs into three steps:

1. **Identify the Overall Visual Aspects**

2. **Identify the Visual Character at Close Range**

3. **Identify the Visual character of Interior Spaces, Features and Finishes.**

The purpose of PB17 is to help the owner or the architect identify those features or elements that give the building its visual character and that should be taken into account in order to preserve them to the maximum extent possible. PB17 recommends:

- There are different ways of understanding old buildings. They can be seen as examples of specific building types, which are usually related to a building’s function, such as schools, courthouses or churches.

- There are many other facets of an historic building besides its functional type, its materials or construction or style that contribute to its historic qualities or significance. Some of these qualities are feelings conveyed by the sense of time and place or in buildings associated with events or people. A complete understanding of any property may require documentary research about its style, construction, function, its furnishings or contents; knowledge about the original builder, owners, and later occupants; and knowledge about the evolutionary history of the building. Even though buildings may be of historic, rather than architectural significance, it is their tangible elements that embody its significance for association with specific events or persons and it is those tangible elements both on the exterior and interior that should be preserved.

- Therefore, the approach taken in PB17 is limited to identifying those visual and tangible aspects of the historic building. While this may aid in the planning process for carrying out any ongoing or new use or restoration of the building, this approach is not a substitute for developing an understanding about the significance of an historic building and the district in which it is located. If the various materials, features and spaces that give a building its visual character are not recognized and preserved, then essential aspects of its character may be damaged in the process of change.

- A building’s character can be irreversibly damaged or changed in many ways; examples include inappropriate repointing of the brickwork, alterations to masonry openings, removal of a distinctive porch, changes to the roof covering, replacement of the window sash, adding or removing wings or ells of a building, changes to the major room arrangements, painting previously unpainted woodwork, and changes to the setting around the building, etc.

A summary of the Thomas House character defining features is listed on the opposite page.

In summary, the Secretary of the Interior’s Standards for the Treatment of Historic Properties embody two important goals: 1) the preservation of historic materials and, 2) the preservation of a building’s distinguishing character. By succeeding at these two goals, it is likely that a building’s historic integrity will be preserved.

Detailed physical descriptions, condition assessments, and character-defining feature lists for the Thomas House are presented on the following pages in UNIFORMAT II outline form.
CHARACTER DEFINING FEATURES OF THOMAS HOUSE

SETTING
- Configuration of historic outbuildings (stone tenant house, pump house, brick outbuilding, frame implement shed, bank barn, brick silo, and corncrib
- Fences delineating domestic and agricultural use areas

EXTERIOR

Shape and Mass
- Shape and mass of the main block and rear wing
- Five-bay by one-bay north elevation porch (Italianate)

Openings
- Window and door openings and their placement in the main block and rear wing
- Hierarchy of openings at first floor and of primary entrance doors with sidelights and/or transom windows

Projections
- Two-story, east-facing porch
- Brick cornice with corbelled molded bricks

Roof Construction
- Slate gable-end roofs
- Roofscape of main block and extension, including all masonry chimneys and brick parapet wall
- Cross-gable dormers (W301-303)
- Double pipe-rail snow guards

Trim and Secondary Features
- Half-round, bull-nosed, recessed casings at window and door openings (jambs and headers)
- Gable-end trim boards
- Hinged, louvered shutters

Materials
- Tightly jointed red brick masonry
- Gray-black color of natural slate roof covering and pattern
- White-painted trim and dark green-painted shutters
- Recessed mortar joints and brick bonding patterns
- Painted exterior brick
- Horizontal siding and cornice at gable end of two-story porch (painted)

Craft Details
- Handmade bricks
- Tightly-jointed jack arches at masonry openings
- Penciled joints
- Handmade doors windows and shutters
- Handmade architectural millwork (door and window surrounds, dormers)
- Two-story rear porch
- Corbelled cornices
- Architectural components of the Italianate porch

INTERIOR

Exposed Structure
- Dropped beam
- Principal rafter system
- Graffiti on rafters
- Exposed beams and joists (structural system) in cellar

Individual Spaces
- Hierarchical organization of interior (public vs. private)
- Layout of rooms in relation to circulation
- Architectural integrity of the plan

Related Spaces and Sequence of Spaces
- Connections between rooms and hallways

Interior Features
- Hand-crafted and tooled, in-suite millwork
- Hand-crafted and tooled, built-in cupboards
- Hand-crafted and tooled, fireplace mantels
- Corinthian-order columns in east double parlor
- Historic door hardware

Surface Materials and Finishes
- Plaster wall and ceiling finishes
- 19th-century wallpaper fragments
- Hand-planed floorboards, random-length, random-width pattern of floorboards, natural floor finish
- Italian marble mantels
- Faux finishes and historic finishes on architectural features

Craft Details
- Hand-crafted built-in cabinets
- Paneled door and window jambs
- Federal-period styling
- Fireplace surrounds and mantels
- Historic window glass
Setting

Character-Defining Features

- Configuration of historic outbuildings (stone tenant house, pump house, brick outbuilding, frame shed, bank barn, brick silo, and corncrib).
- Fences delineating domestic and agricultural use areas.

Description

The site is found located along Araby Church Road in Frederick County, Maryland within the boundary of the Monocacy National Battlefield, a National Historic Landmark. The local geographic area has several farms that have been preserved within the park boundary. The Thomas House sits on a tract of land now known as the Thomas Farm, or Araby.

The house sits on a slight rise of land and is reached via a formal one-half-mile, tree-lined lane. The house faces northeasterly to Araby Church Road (the historic Georgetown Road) and anchors the domestic complex at the heart of the 231-acre farm. Outbuildings include a stone tenant house, a pump house, a brick outbuilding, a wood implement shed, a large bank barn with a brick silo, and a corncrib (Figure 43 and Figure 44). The house is enhanced by a large domestic yard incorporating the designed landscapes of formal and naturalistic gardens that integrate the domestic outbuildings of the pump (and well) house, brick outbuilding, stone tenant house and wood implement shed. Several ranges of fences separate the domestic yard from the farm complex and surrounding fields used for grazing cows.

The feeling imparted by the organized rural landscape is one of serene productivity.

1. HABS MD-1251-A.

![Figure 43. Schematic of Thomas Farm historic building complex showing domestic and agricultural outbuildings in relation to the main house.](image-url)
Figure 44. Left, long, tree-lined driveway connects Araby Church Road (at bottom of photograph) with the historic building complex at top. Above, historic building complex includes agricultural outbuildings (bank barn and brick silo [under protective roof in picture], and corn crib) and domestic structures (stone tenant house, frame shed, brick outbuilding, pump house and the main house). Fencelines surround the domestic structures and line the entry lane.
Format

Details of the features of the Thomas House are recorded on the following pages using the UNIFORMAT II outline. Each major section starts with an outline of the elements which are extant in the structure and relevant to the discussion of features. Each element is formatted within its section heading as seen below, with an At-a-Glance Condition of Feature, and Character Defining Feature (CDF) boxes (where applicable). Detailed physical descriptions and condition assessments are provided for each feature as well as explanation of CDFs as appropriate. Drawings and images are integrated, where appropriate, to illustrate the text.

At-a-Glance Condition of Feature

Character-Defining Features (CDFs) Highlighted

- Slate gable-end roofs
- Roofscape of main block and extension, including all chimneys and brick parapet wall
- Cross-gable dormers (W301-303)
- Double pipe-rail snow guards

Physical Description Details and CDFs

B10 Superstructure

<table>
<thead>
<tr>
<th>Condition</th>
<th>Good</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character-Defining Features</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B10 SUPERSTRUCTURE

B1010 Floor Construction

- B1010-1 First Floor Frame System
- B1010-2 Second Floor Frame System
- B1010-3 Third Attic Floor Frame System
- B1010-4 Southeast Porch Roof Structure
- B1010-5 Southeast Porch Frame Structure
- B1010-6 Interior Walls

B1020 Roof Construction

- B1020-1 Principal Rafter System
- B1020-2 Common Rafter System
- B1020-3 Southeast Porch Roof Structure
- B1020-4 Garage Roof Structure (East)
- B1020-5 Enclosed Porch Roof Structure (West)

Detail of Condition Assessment

Physical Description

The Thomas House consists of two merged roof frame systems. The main block relies on a heavy timber system, known as a principal rafter system [B1020-1], with structural purlins and lighter weight common rafters to support the roof deck. The rear wing relies on a common rafter system [B1020-2] with a half-lapped joint at the ridge to support the roof sheathing boards. Major structural elements are marked with roman style numbers to assist in assembly and indicate a scribe rule methodology was used to fabricate the roof.

Roof Features

The highly visible gable roofs of the main block and the wing are character-defining features as is the blackish-gray highly reflective slate used as a roof covering. The very low slope roof area at the southeast corner of the main block, not visible as viewed from the service yard, is not character-defining. The brick parapet wall and towering southeast chimney (CH10a) at the east elevation contribute significantly to the east elevation.

Roof features include the symmetrical gable end chimneys of the main block and southeast elevation (CH4a, CH4b, and CH4c) which extend well above the ridge line and are capped with sheet metal caps (caps not CDF). Other traditionally constructed chimneys (CH2a and CH2b) held within the field of the roof are visually less prominent, although they help create a roofscape more complex than is usual for a house, and should be considered character-defining features.

Condition

Structural roof repairs were completed as part of the 2006-07 HPTC/MONO project to replace the slate roof at the Thomas House. This project is thoroughly documented in the Thomas House Slate Roof and Gutter Replacement Project Historic Structure Treatment Record (HSTR). Part of the scope of work included “repair all deteriorated roof sheathing and rafters,” work included the main block, west wing and southeast porch roof structures. Most of the sheathing repair (less than 10 percent) was at the lower end of the roof where the sheathing ends sit on the rafter plate.
Physical Description, Condition Assessment and Character-Defining Features

A10 Foundations

Description
The main house and wing are supported by a shallow fieldstone foundation system that changes to brick slightly above the exterior ground level; the first floor joists are elevated slightly above grade in most areas. One quadrant of the house, the northeast corner, is supported by a full depth stone cellar. The east and west one-story wings are supported by modern foundations and are not linked to the main house. Likewise the two-story southeast porch has an independent foundation as does the enclosed north bay of the porch.

Access to the foundations is limited. An English style raised cellar with stone walls exists under R100 and R101 and is entered through a cellar entry in the east one-story garage. The remainder of the foundations is not readily accessible except through a hand excavated utility trench (about 2/12 feet in depth) which parallels the inside face of the west elevation terminating near W108. Other sections of the foundation, such as the base of the two interior load bearing walls are not accessible, but have been viewable by way of removed floor boards adjacent to the masonry walls.

A1010 Standard Foundations
The exterior walls and the two north-south interior walls flanking the central hall (R100/200) make up the primary load bearing structure of the main house and wing; they are all supported on the primary foundation system. There are a series of other masonry walls that lie under the floor frame system and have served as foundations for now removed walls. Several of these are visible due to the recent fabric investigation process; some have not yet been made accessible.

Those that have been exposed, such as the east wall of R102 and R103, are found to be constructed in a similar fashion of stone at ground level switching to brick above grade with a wood ledger board in between. The function of the wood ledger board is to distribute the load of the floor joists uniformly over the sometimes uneven stone foundation wall and to carry the floor joists at a uniform level across the width of the room. It also appears that in some locations the ledger board is supporting the interior wythe of the brick wall.

Character-Defining Features
- Stone and brick interior wall surfaces
- Shallow stone and brick foundation walls
A10 Foundations

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Serious</td>
</tr>
</tbody>
</table>

A1010-1 Stone Foundations

Description
In the excavated rectangular cellar the randomly cours ed and roughly squared structural fieldstone walls are approximately 16 inches thick at mid-wall and extend approximately 7 feet below the cellar window headers in depth (approximately 6 feet below exterior grade level). The walls extend approximately 12 to 16 inches above grade to allow for the wood frame cellar windows (now covered by brick on the exterior except the south elevation) to be just above grade; the wall construction also changes from stone to brick above the windows. The rectangle that comprises the cellar is constructed with interlocking corner masonry and exhibits traditional load bearing masonry characteristics (Figure 45).

The original cellar entry is located at the east corner of the south wall; changes in the masonry indicate it was extended southward at some point to extend the non-extant entry stairs. A new exterior entry was developed at the southern end of the eastern wall and now opens into the garage (R107). After removing the stone masonry in this area, bricks were used to construct the side walls of the bulkhead entrance.

Several other areas of the foundation wall have been disturbed or removed to allow for access to other parts of the under-floor areas. At the southwest corner of the center cellar room (R002) a large opening has been made in the west cellar wall to allow access under the west side of the house. Approximately 3 ½ feet wide it opens the upper half of the wall to the hand excavated utility trench. Along the south elevation W004 was used to gain access to the floor area at the southeast corner of the house. It is this opening (W004) which retains many features of the original framed opening.

The interior surfaces of the cellar walls exhibit multiple layers of whitewash and/or paint. Currently the extant fuel oil tanks and furnace fill the southeast corner of the cellar and obscure the wall construction in that area.

Loosely compacted gravel has been placed over the otherwise unfinished cellar floor. This has allowed for moisture to escape from the cellar without significantly impacting the stone walls or mortar joints.

Condition
Stone walls appear in generally good condition with minor maintenance deficiencies on the interior; walls are mostly sound with little water penetration from the exterior, mortar joints are in generally fair condition.

Several areas of the wall have been disturbed or removed to allow for access to other parts of the under-floor areas; these areas have been repaired by HPTC according to the structural recommendations made by the rehabilitation project architects. Stonework has been relaid to provide for structural support to the above frame structure and to dress the edges where the stonework has been dislocated.
Stonework is not visible on the exterior and excavations have not been made as part of this report to discover the exterior condition of the walls. It is also not known if any type of waterproofing was applied to the exterior wall surfaces (pargetting) or if there is a subsurface drainage system.

The cellar floor has been left uncovered; no concrete or pavement has been placed. Localized deposits of gravel may be the remnants of garden supplies stored in the cellar or may have been selectively placed to provide solid walking surfaces. Not having an impervious floor has allowed for moisture to escape from the cellar without impacting the stone walls or mortar joints (rising damp problems are at a minimum).

Figure 45. Top left, stone interior walls support exposed first floor framing system with an earth or gravel floor. Top right, a hand-hewn window frame (W004) which has been used to gain access to floor area below southeast corner of the house. Bottom, cellar plan with present-day entry steps on left and brick divider wall seen at right center. Cellar is within footprint of overall house plan.
A1010-2 Interior Brick Bearing Wall (Between R001 and R002)

Description
This wall is laid in 1:5 common bond pattern. It is two wythes thick and spans between the north and south stone foundation walls of the cellar; the joint between the two walls appears to be a cold joint suggesting the wall is not integral to the stone wall construction. This wall is a significant load bearing feature and supports the heavy timber team which carries the floor joist for both the northeast half of the double parlor (R101) and the main hall (R100). The foundation condition of this wall has not been determined. The wall has been whitewashed on both sides (Figure 46).

Condition
This interior load bearing brick wall (common bond) has been affected by rising damp moisture problems. Brick is delaminated and spalled at the lower 1/3 of the wall above grade and mortar loss is significant. The condition of the masonry is poor with serious deficiencies; the foundation condition of this wall is undetermined.

Figure 46. The brick divider wall in cellar separates R001 and R002. (Facing southwest.)
A1010-3 Shallow Fieldstone Foundations

Description
Shallow Fieldstone Foundations: Other than R001 and R002 with full cellar walls the remainder of the house sits on a series of mortared and unmortared (or disturbed) shallow fieldstone walls laid on an undisturbed earth substrate (possibly in a shallow builders trench). These shallow walls, constructed in a roughly squared and coursed pattern, form the base for the load bearing brick walls that rise above grade to support the structure of the two-and-a-half-story house. While no formal excavation of the stone foundation has occurred to determine the depth, bearing conditions or exterior surface, observations from the interior under-floor areas indicate a shallow foundation of no more than 8 to 12 inches below exterior grade.

Several areas of this foundation wall are visible from the first floor where floor boards have been removed, from the utility trench, or, as in R104 where all floorboards are removed the foundation is completely visible. From the interior it is clear that sections of the stone foundation wall do not bear on solid soil and do not appear to have a spread footing of any type. The width of the wall is the amount of bearing it possesses.

Room R104 Foundation Walls: The interior face of the interior masonry walls have been exposed in R104 [02/26/09] as floorboards have been completely removed. The brick walls bear directly on the stone except for the southern most 8 feet which has little stone and may be entirely of brick construction (to be verified). The stone foundation base is wide enough to leave a shelf to support the joists and the brick walls. As in other parts of the house there are sections of mortared and unmortared masonry laid in a traditional pattern known as coursed fieldstone and rough or common rubble. A key feature of the foundation in this room occurs at the west wall, near W109, with a noticeable change in construction from stone base to all brick, or a much less visible stone wall. This feature suggests a later expansion of the walls to the south from this point.

Condition
The condition of the shallow fieldstone walls is difficult to determine as they are accessible only from the crawl areas and the utility trench along the inside face of the west wall. Several areas are visible from the first floor where floor boards have been removed, and in R104 where all floorboards are removed the foundation is completely visible.

Overall these stone foundation walls appear in fair to poor condition at the interior. Deficiencies in the mortar joints and structural stability of the walls are the overall maintenance concerns. From the interior it is clear that sections of the stone foundation wall do not bear on solid soil. Trench excavations and rodent activity, as well as previous repair campaigns, have undermined certain areas. Areas where wood ledgers have been used to support the load bearing brick walls have deteriorated over time and are in poor condition. Only a comprehensive foundation survey will establish the overall condition of these shallow foundation walls.
Where visible on the exterior, the above ground section of foundation walls appear generally in poor to fair condition. The stonework is approximately 18 inches thick in most areas and suffers from loss of mortar and misalignment in several areas. Where directly supporting brick this leads to a slight buckling out of the brick especially at the west elevation.

Chimney Foundations: all chimneys are built integral with a supporting masonry wall as part of an exterior wall system. All chimneys have what appear to be shallow fieldstone foundations in fair to good condition; access was limited in most areas. Undermining of the chimney foundations by rodent activity, erosion of the surrounding base material or construction must be avoided.

Room R104 Foundation Walls: Overall the stone masonry is in poor condition; in several areas it appears unmortared and highly disturbed. Brickwork at grade level seems to be in extremely poor condition with significant “powdering off” of the brick due to high moisture content. Overall the above grade brickwork seems to be in fair condition with minor structural cracking visible. Subsidence of the stone foundation and unsupported brick wall areas are the primary maintenance deficiencies.

Supplemental Supports: Other elements of the “foundation system” include various posts, piers, stone pilings (cairns) and cement block or bricks used to create mid-span supports under the joists. These seem to bear directly on grade and have not been comprehensively mapped or analyzed.
A1030 Slab on Grade or Fill Foundations

A1030-1 Southeast Porch

Description
The two-story southeast porch structure [P102/202] is supported by a low brick foundation approximately 8 to 12 inches (3 to 5 courses) above the extant asphalt pavement of the service yard and brick patio area.

The foundation for the southeast two-story porch was reconstructed either late in the Hilgenberg occupancy (1949 – 1954) or during the Clapp occupancy (1954 - 2008) possibly in association with the enclosure of the north bay of the porch. The foundation is visible in the ca. 1949 - 52 historic photos as a wood framed porch structure and deck supported on either brick or stone piers. The extant first story of the porch has been converted to brick pavers laid in herringbone or basket weave pattern perhaps more akin to the formal gardens of Mrs. Josephine Clapp and her landscaper T. Stuart Haller. Work to transform the grounds proceeded in the mid 1950s. Photos indicate the gardens were in by winter of 1958, possible the porch deck was seen as an extension of that effort. Most likely the brick pavers are supported by a concrete slab-on-grade structure concealed within the perimeter brick wall.

Condition
The two-story southeast porch structure [P102/202] is supported by a low brick foundation; the perimeter walls and deck are in fair to good condition. The below-grade condition of this foundation system is undetermined.
A10 Foundations

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Minor</td>
</tr>
</tbody>
</table>

A1030-2 Garage (East Addition)

Description
The east addition (garage) [R107] is built adjacent to the ¾ story below grade stone and brick house foundation and cellar walls (Figure 47 and Figure 48). The floor appears to sit on either a concrete slab or compacted earth paved with asphalt.

Condition
The below grade masonry foundation is not accessible for assessment; based on the condition of the above-grade walls, visual observation indicates there are no significant maintenance deficiencies, the foundations are likely in good condition.

Figure 47. Drawing of east gable end of main block showing garage addition
Figure 48. Modern garage (East Addition)
Description
The west addition (enclosed porch) [P103] sits built on an elevated brick masonry base, supported by a fieldstone ground course (Figure 49 and Figure 50). The brick base is raised to a height that matches the interior floor levels of the main house (approximately 2 feet above grade). Its mortared flagstone floor sits on compacted fill contained within the elevated base walls.

The foundation for the east and west additions (A1030-2,-3) are undetermined masonry construction but most likely similar to those of the house, perhaps constructed of concrete block (as are the garage walls) with an exterior brick veneer. The August 1952 drawings by Smith & Veale indicate with dashed lines the foundation walls of the two independent wings should match those of the adjoining house walls. It is unlikely that occurred as both wings are basically slab-on-grade type construction without cellars. It is also clear the foundation walls for the house were not analyzed at this time as the dashed lines on the front elevation drawing for the wings indicate foundation walls built to the full depth of the cellar and noted “Carry footing down to a level of present house footing”; while the side elevations for each wing show a more reasonable depth of a few feet, perhaps to the perceived frost line. Likely it was left to the local builders to determine what would be sufficient for the foundation as the architects did not document the extant building foundation.

Condition
The below grade masonry foundation is not accessible for assessment; based on the condition of the above-grade walls, visual observation indicates there are no significant maintenance deficiencies, the foundations are likely in good condition. Possible shifting has occurred leading to cracking in the exterior masonry walls of the porch, see B2010-3 Enclosed Porch [P103] West Addition for additional notes; serious deficiency rating based on this condition.
B10 Superstructure

B10 SUPERSTRUCTURE

B1010 Floor Construction
- B1010-1 First Floor Frame
- B1010-2 Second Floor Frame
- B1010-3 Third / Attic Floor Frame
- B1010-4 Southeast Porch Frame Structure
- B101002-1 Structural Interior Walls (East/West)
- B101002-2 Structural Interior Walls (North/South)

B1020 Roof Construction
- B1020 – 1 Principal Rafter System
- B1020 – 2 Common Rafter System
- B1020 – 3 Southeast Porch Roof Structure
- B1020 – 4 Garage Roof Structure (East)
- B1020 – 5 Enclosed Porch Roof Structure (West)

Character-Defining Features
- Exposed first floor timber frame system in cellar
- Hand-hewn-timbers incorporated into all floor frame systems
- Timber framing methodology at second floor main block with summer beam and perpendicular joists with roman numeral marriage marks linking structural elements
- Traditional transitional heavy timber / balloon frame structural systems

B1010 Floor Construction

Description
The interior support system at the Thomas House consists of a series of independent floor frame systems. These joists directly support the floorboards throughout the house; there is no use of sub-floor structures. The support system differs from room-to-room and floor-to-floor. The floor frame system has been recorded in the architectural drawings submitted as part of the building systems rehabilitation package.4

Many joists rest directly on the load-bearing masonry wall in a mortise-like pocket, many others rest on a ledger board or brick ledge with seemingly no structural connection to the load-bearing masonry wall. Typically there is no lateral support for the joists other than at the ends; bridging, blocking or mortise pockets are not used in a regular way (in some locations mortared brick have been placed between joists to keep them upright). Floor boards have typically offered the lateral stability usually provided by these other construction methods.

HABS5 documentation and on-site observation indicate some deflection of floors where load bearing walls have been removed; such as in the double parlor (R101 A/B) where a structural beam (presumed to be wood) was inserted after the load bearing masonry wall was removed. Hollow wood columns supported the beam from ca. 1860-61 until at least 1954 (it is unclear when the columns were removed).6

4 Thomas House (Araby) House – Systems Upgrade, Drawing Set No. 894/80033, 84 sheets dated December 31, 2009 (100 % Design Development Submission), Beyer Blinder Belle Architects & Planners (BBB package), Washington, D.C.
6 Photographic evidence indicates the columns were in-situ during the Hilgenberg (1949 – 1954) occupancy; most likely they were removed sometime during the early Clapp era (1954-1964) and stored in an outbuilding on the property where they were retrieved in 2008.
These fluted columns are constructed using glued together segments (staves) bound together with a thin wood veneer; this methodology places them in the industrial age of manufactured architectural elements, usually thought of as post Civil War or ca. 1865, rather than in the hand-crafted era before 1840 (although the columns could date as early as ca. 1850). An earlier construction methodology of locking mitred staves and hand planed flutes would place them at an earlier time period.\(^7\)

Floors tend to deflect where the unsupported joist length is in excess of 14 feet; this condition exists in R102. Although some mid-span joist support was attempted historically it is not currently functional due to its instability. Many joists have been structurally compromised with the addition of electrical and plumbing conduit and lines as they have been bored through with holes often in excess of an inch and often with a several holes in a row through the mid-span cross-sectional area of the beam; structural analysis will have to determine if supplemental support is required because of decreased load-bearing capacity of the joists.

Condition

Complete assessment of the frame system has not been possible but selected areas of floor boards were removed in order to determine the type of frame system used and its relative condition. Each individual joist end has not been inspected, but general observation has been conducted throughout the house especially at bearing points.

\(^7\) Fabric investigation and field interview with Brandon Gordon, HPTC Exhibits Specialist (Cabinetmaker), October 18, 2008 by HPTC Senior Historical Architect.
B100: Center hall joists span typically from side to side (E/W) so that floorboards can run the length of the hall (N/S), they are sized at 2-1/2 inches in width by 8-1/2 inches deep and are spaced, on average, 18 inches on-center; the front hall also contains the framing for the original stair location as indicated by the cross-header along the east interior wall and newel post anchorage.

Joists in the rear (south) half of the hall (outside the footprint of the original building enclosure) are partially finished logs, some with bark remnants still attached, these joists are typically wider and deeper then joists in the front hall averaging 6 to 8 inches in diameter and hewn flat to carry floorboards with a 6 to 8 inch carrying surface, these log joists are typically 30 inches on-center and supported directly by the masonry foundation walls on either side of the hall rather then in joist pockets, an 8-inch by 1-1/2 inch ledger board sits directly on the brick foundation walls supporting the joists, in order to level the floor some joist are shimmed with smaller wood wedges.

NOTE: The use of partially finished log joists does not necessarily indicate retrogression in the framing sequence; that these joists date from an earlier time period then the sawn joists throughout the house. The use of log joists may indicate the location of post battle repairs or later 19th century repairs when the use of sawn lumber was seen as something of an additional expense.

Joists across the north pile rooms R101A and R102 span from the north wall to a south load bearing point.

R101A joists are supported mid-span by the roughly 11 by 11 inch summer beam running east/west in the cellar. These joists are 2-1/2 inches wide by 8-1/2 inches deep and spaced approximately 18 inches on-center with an occasional wider placement. The joists in the north range are 10 feet in length while those to the south are 6 feet in length, shorter than many on the first floor. At the center they are supported directly by the summer beam (it is not known if the joists overlap or are butt jointed). At the north exterior wall the joists run into brick joist pockets and are supported partially by a brick shelf. Due to the expansion of the east double parlor, the joists that run from the summer beam in a southerly direction come to rest on top of the former stone exterior foundation

8 “While obviously crude in appearance, hence looking “ancient”, the use of minimally processed lumber often occurred in the middle decades of the first half of the 19th century. This was a product of the breakdown of traditional trades and craftsmanship, as well as embracing of the infinite resource psychology that grew throughout that century.” Architectural Evaluation of the Thomas House by Kathryn Ann Auerbach, 28 February 2009; see Appendices for full report.

This interpretation was also presented by HPTC Exhibits Specialist (Cabinetmaker) Brandon Gordon in a field interview with HPTC Senior Historical Architect.
Physical Description, Condition Assessment and Character-Defining Features

R101B main joists span from the former exterior wall foundation in the middle of the room (same connection as R101A joists) to the intermediate brick foundation wall (a later, but not final, exterior wall). This first range of joists are 2 ½ by 7 ½ - 8 inches in section and approximately 12 feet-6 inches in length and placed about 20 inches on-center. Secondary joists (extensions of the full length joists) span from this location to the extant exterior wall (a distance of about 4 feet). Both sets of joists are supported by a brick foundation wall and the ends laterally supported by the brick in-fill. Representing the second expansion of the room, here they rest in joist pockets at the extant exterior wall.

R103 joists do not follow the pattern of running in a north/south direction; they span from the west exterior wall to the interior wall that separates R103 from the rear hall R100 (this segment of the masonry wall was once similarly a load bearing exterior wall). These joists range in width from 2-1/2 to 3 inches and are tapered longitudinally with an 8 inch dimension at the wall and to 9 inches at the center line. These joists are spaced unusually far on-center at about 24 inches on average. This represents a different (possibly later) period of construction then the adjacent assembly style. The joists are let into the west exterior wall (where several are extremely deteriorated) and rest on a wooden ledger plate atop the stepped out brick and stone foundation; at the interior (east) wall they rest on a ledger plate supported by the foundation but are butted against the load bearing wall rather then let into it. Likewise bricks are used to brace the joist ends and the load-bearing masonry wall rises in a separate wythe beyond the joist ends.

Room R104 Floor Frame System: Floorboards were removed in late February 2009; samples have been retained of the three floorboard layers until disposition has been determined. Floor joists became ex-
posed and were assessed and documented; they were determined to be in poor condition and have been removed. Samples have been saved for future dendrochronological examination. Joists were a combination of reciprocally sawn timber, and partially hand-hewn and sawn logs. Severe moisture deterioration and previous insect infestation had significantly reduced the load bearing capacity of the joists.

Joists were laid in the east/west direction and did not follow any particular pattern of on-center spacing except that for log joists it averages 24-inches and for the sawn joists (more closely associated with the west end chimney [CH05]) the joists are spaced closer together, averaging 12-inches on-center. Joists are supported on the load-bearing masonry foundation walls on either side; the structural system seems to have been reworked several times so that the last configuration had joists merely sitting on the brick ledger shelf and/or wood ledger plate with fill dirt in between the joists, especially at the south half of the room (probably associated with the excavation of the utility trench in the late 1940s).

The floor system in Room R104 is of particular interest due to its multiple layers of flooring and the sequence of sawn and log joists. Structurally it functions much the same way as other floor systems but historically it may have held answers to the evolution of the space, i.e.; containing ghost lines of previous wall locations, door frames and numerous dutchman anomalies. Therefore it was documented by the HABS and the field notes included with the MD-1251-A drawing set.

Condition

A series of single span floor joists supported by masonry walls make up the first floor frame system west of the central hall. The hall and front room to the east are partially supported on a large heavy timber beam (R101).

There is evidence of deterioration in the frame system in the northeast corner of the house [R100/ R101]. Surface degradation of the timber beam and the joists is visible from the cellar; joist ends set in masonry walls are also questionable. Joists themselves appear in good condition.

The condition of ledger boards used to support the joists along the west elevation is also poor in some areas, especially under R103 (most recently used as a kitchen) along the west wall under the sink area (near W106). These joists should be evaluated once the cabinets are removed due to possible plumbing leaks from the kitchen; ledger board damage has also been observed.

Other areas of the first floor frame exhibit a variety of non-conforming structural connections including: laterally unsupported joist ends, unstable mid-span supports, the use of a wood ledger plate in contact with both the underlying masonry wall and the wood joists, crushing of the ledger plate and displacement of floor joists, joists without adequate horizontal support, and deterioration of the joist ends at the ledger plate.

Room R104 Floor Frame System: Floor system removed March 2009 due to deteriorated condition. Refer to Fabric Investigation for documentation.
Figure 51. Thomas House first floor plan.
B10 Superstructure

B1010-2 Second Floor Frame

Description
Unlike the first floor with its disparate frame systems, the second floor frame system is unified across the north pile (front rooms) of the main house. Rooms R200, R201 and R202 are linked by a massive 12-inch wide by 8-inch deep summer beam\(^9\) which appears to span uninterrupted some 40 feet from the east wall to the west wall; a heavy timber support structure. A series of 3-inch by 8-inch sawn joists run perpendicular to the north and south and are mortised and pegged into the beam and supported by the exterior masonry wall on the north end.

Other floor framing on the second floor is similar to that of the first in it is defined room-by-room, as follows.

Heavy Timber Support Structure at North Block of House (R200, 201 and 202):

- Hand-hewn summer beam\(^{10}\) with vertically sawn oak (and chestnut\(^{11}\)) joists, joist are pinned at a mortise and tenon connection with the beam, scribed marks indicate typical square rule layout;\(^{12}\)

- The summer beam is placed just south of the chimney stacks on both the east and west gable walls, it is likely supported at each end by the masonry chimney and at third points by the first-story masonry walls that form the east and west walls of the center hallway (R100);

- Floor joists for the three rooms span from the summer beam to the north exterior load bearing wall, joists are let into the masonry wall (soldier course and two courses of common bond) and supported at the ledger shelf built into the wall;

- Joists forming the south half of the rooms are handled differently, as follows:

 » R200 – south of the summer beam the joists are ledgered onto the back side of the beam, there are no mortise pockets to support them as originally this space was occupied by the descending run of the front stair [continuation of ST203], these joist are picked up on the south side by the perpendicular load-bearing masonry wall that separates R200 and R205, a built-up timber beam spans across the opening created when the brick wall was later removed to connect the front and rear hallways;

 » R201 – joists south of the summer beam run into the adjoining room (R203) in an unfinished manner, joists project beyond the wall line where they are supported on a smaller wood beam most likely supported by the dropped beam in the double parlor at

\(^9\) Often times, this type of construction was known as an English frame to distinguish it from the much more pervasive and simpler framing referred to as the Virginia house which developed in the 17th century. Lounsbury, *An Illustrated Glossary of Early Southern Architecture and Landscape*, pgs. 362-3.

\(^{10}\) Species to be verified: Hose & Rohrer say oak; Gordon says pine/poplar.

\(^{11}\) HPTC Exhibits Specialist (Restoration) Bill Hose and Roddy Rohrer, on-site interview with HPTC Senior Historical Architect, 03/04/08.

\(^{12}\) B. Gordon field interview, 10/18/08.
first floor room R101A/B, likewise joists from R203 have been inserted so they cross into R201;

» R202 – Joists south of the summer beam have a short run of about 6 ½-feet to the south load bearing masonry wall; they are mortised at the beam and set onto a brick ledge shelf at the wall, infill brickwork consisting of a soldier course and two courses of common bond are used to stabilize (laterally support) the ends of the joists at the brick wall.

R203: joists in this room span from the point described above at R201 (the dropped beam) to the south exterior load-bearing masonry wall, typically these sawn joists are 2 ½-inches by 8 ½-inches with an on-center spacing ranging from 16-inches to 24-inches, at the north end these joists cross the support beam and enter into the floor frame of R201, here they are interspliced to fall between the joist locations of that room, the joists in R203 are singular in that cross-braced bridging has been inserted at their approximate mid-span location, the bridging acts as lateral support for the joist since they are unbraced at their north ends. At the south end these joist are let into the masonry wall and supported on a shallow ledger shelf of the brick masonry.

South Wing Range (Rooms R204, R206 and R208):

- Floor joists in this range of rooms follow the pattern of the first-story single pile row of rooms that makes up the south wing in that they span from parallel load-bearing north/south axis masonry walls and run from east to west, the west wall is an exterior wall and the east wall is exterior at the closure for R206 and R208 but has been incorporated into the south stair hall at its adjacency with R204;

- R204 - joists are sawn pine and measure 2-1/2 inches by 8-1/2 inches, they are typically about 15 feet in length and have an on-center spacing ranging from 18 to 23 inches; a hearth frame has been incorporated centrally on the west wall to accommodate CH04 which rises through on the inside face of the masonry wall;

- R206 – oak joists (BG) span from the east masonry wall to a header beam created to allow for the placement of the rear stair (ST202) carriage, a range of 4 joists are used to support this floor area at the second story stair hall landing, these joist are much the same as other 2nd floor joists. The header beam is supported on the north by the masonry wall and CH04 and on the south presumably by a doubled-up floor joist;14

- R208 – floor joists are oak with the exception of the outside west end hearth framing (these are walnut [BG]) at interior CH05, they are let into both exterior masonry walls and appear not to have a ledger (joist are lathed on the underside adjacent to the exterior wall), a series of 12 joists measure 2-3/4 inches by 8-1/4 to 8-1/2 inches deep at the north end of the room to a more robust 9-inches deep at the western end of the room, a framing anomaly occurs centrally along the west wall and interrupts three of the joists with what ap-

13 B. Gordon (BG) interview.
14 The exact nature of the support for the floor frame around the staircase (ST102/202) can only be verified by removal of floorboards in R206 and R208 and the selected ceiling areas in R104.
pears to be the cut-out for a non-extant chimney, also referenced at description of the attic frame for R304.

General notes:

- Second floor machined tongue and groove floor-boards are typically pine and sawn with a vertical reciprocating saw, they are random-width and random-length boards;

- Floorboards have been refinished – saw marks removed in most areas but not hand planed as in central attic (R302);

- Joists bear random holes and notches used to accommodate the fishing-through of electrical and plumbing systems in the building; this may decrease the load carrying capacity of those joists. Likewise other joists bear the “push-holes” on the top surface used to push floor boards into position prior to their being nailed into place; other fabrication tool marks also exist.

Condition
Rooms R200, R201 and R202 are linked by a massive beam which appears to span uninterrupted some 40 feet from the east wall to the west wall. A series of joists which run perpendicular to the north and south are mortised into the beam and supported by the masonry on the opposite end. This assembly appears to be in good condition. Other floor framing on the second floor is similar to that of the first. While no visible deterioration was noted, joists intersecting the west elevation, especially towards the south end should be suspected of water-induced deterioration. Laterally unsupported joists and joists without adequate horizontal support remain problematic.
Figure S2. Thomas House second floor plan.
B10 Superstructure

B1010-3 Third / Attic Floor Frame

Description

The configuration of the third floor frame is integral with the roof frame system. It is composed of two separate systems merged at the intersection of the main block gable and the rear wing gable roofs.

Attic framing has not been exposed in rooms R300, 301 or 302 (which form the north main block); the exact nature of this floor frame remains undiscovered. It is possible a summer beam system similar to the second floor has been used, or perhaps the principal rafter system contains some elements at the floor level to create a truss type system; this has yet to be discovered.

The direction of the in-situ floorboards does indicate the floor frame runs perpendicular or across the gable at the main block. Joists most likely span from the north masonry wall to an interior load bearing masonry wall defining the south wall of the house with internal support points; original hand-planed floor boards run parallel with the north elevation in R302 and have been overlaid with 20th century wood strip floorboards in R300 and R301 (modern flooring runs perpendicular to underlying floorboards – or in same direction as the supposed joists).

It is unclear exactly how the south end of the main block floor joists spanning across R301 and forming the ceiling and roof structure of R203 are supported; there appears to be inadequate support at the second story level. A heavy timber beam is most likely used to support these joists, the beam itself being supported on the east by the masonry wall and to the west by the end of the brick walls used to enclose the extant stair [ST203]; further investigation would be required to determine the exact nature of the concealed framework.

The double layer of wood strip flooring in the area of R300 and 301 may prevent deflection from being noticed. In areas R302 and R303 a single layer of flooring covers the joists. Floorboards in R302 are hand-planed.15

The remainder of the third floor frame appears somewhat more predictable with joists presumably spanning from east to west to support the north/south floorboards. Structurally another question arises as to what type of structure supports the joists at the wall that separates R300 and R302? There is not a masonry wall at the second story suggesting the use of heavy timbers (potentially the bottom chord of the principal rafter frame) to support the floor frame; the second-story frame wall directly under (between R200 and R202) appears too lightweight to support the third floor load.

While the entire third floor had floor boards installed as part of the construction, enough have been temporarily removed from the rear wing to determine the basics of the floor frame.

The third floor frame of the south wing encompassing areas R303 and R304 appears to be framed with joists running across the wing (east to west), much as the first and second story. Joists that can be seen measure 2-¾ inches by 8-½ inches and are regularly spaced at about 24 inches on-center.

15 HPTC Exhibits Specialist (Restoration) Bill Hose and Roddy Rohrer, on-site interview with HPTC Senior Historical Architect, 03/04/08.
• The southernmost six joists measure 3 inches by 9 inches with an on-center spacing approximating 18 inches;

• Joists in Room R304 have been partially uncovered. The exact connection between the joist, the top of the masonry wall and the roof rafter has not been observed and some deterioration may be possible in these areas;16

• Floor framing material appears to be white oak with reciprocal saw marks;

• A framing anomaly similar to that found in R208 at second floor frame occurs centrally along the west wall and interrupts two joist bays within the floor framework with what appears to be the header beam (or trimmer) and supplementary framing for a non-extant hearth and chimney stack.17

\textbf{Condition}

Consists of a series of single span wood joists similar to first floor construction. Noticeable deflection was not observed and it is assumed to be in good condition.

The double layer of wood strip flooring in the area of R300 and R301 may prevent deflection from being noticed. In areas R302 and R303 a single layer of flooring covers the joists and appears to be solid. Joists in Room R304 have been partially uncovered and appear to be in good condition. Roof repairs included in the slate roof replacement project included a number of in-situ repairs to rafters and joists that were discovered in areas where roof sheathing was removed due to its poor condition and later replaced.

16 Minimal repairs of the joist and rafter ends were affected by HPTC Carpentry Team during the reroofing project; see Thomas House Slate Roof and Gutter Replacement, PMIS 147056, FY07, Historic Structure Treatment Report, August 11, 2008.

17 Frame anomaly documented in HABS Supplemental Photographs and BBB framing plans (Sheets 55-57, 894/80033).

Figure 53. Thomas House third floor (attic) plan.
B1010-4 Southeast Porch Frame Structure

Description
The second floor frame of this porch (P102/201) is a simple rectangular frame. The joists are held within a typical porch bay frame and span from north to south between heavier breast beams that ring the perimeter and smaller beams (girders/girts) that run east to west and support the joists. Sections of this porch frame were repaired as part of an NPS project in 2004.18 Dimensions and other framing details were not recorded. Lower level of porch discussed at feature 1030-1, roof frame at feature B1020-3 (Figure 54).

Condition
The east elevation two-story porch had structural repairs made in between October 2006 and March 2007. This work is documented in the 2008 Historic Structure Treatment Record Repair Thomas House Exterior.19 Preservation maintenance work included replacement of deteriorated first-story support posts, repairs to the second-story structure (breast beam), replacement of the second-story wood floor, first-story ceiling boards and repairs to the other architectural millwork including the railing. The second-story floor and roof frame of the porch is not accessible for assessment. Structurally the porch appears to be in good condition.

Its slate roof (part of the east slope of the main wing roof) was recently replaced as part of the overall roof replacement project and is in good condition.20 21

18 Repair Thomas House Exterior, PMIS 115450, FY06, April 2006, Selected Photograph No. 1 shows frame exposed from underside.
19 Repair Thomas House Exterior Historic Structure Treatment Record, Historic Preservation Training Center, Frederick, MD, April 19, 2006; [Hutchinson, Truslow and Polzin] distributed February 21, 2008.
20 Thomas House Slate Roof and Gutter Replacement, FY07, PMIS 114756, Historic Structure Treatment Record.
21 Winter storm damage (2009/2010) may have caused a few slates to drop out of the roof fields.
Figure 54. Top, drawing of east elevation of Thomas House showing southeast porch and, bottom left, photograph after porch repaired (2007). Bottom right, second floor porch decking structure and railing (facing southeast).
B10 Superstructure

<table>
<thead>
<tr>
<th>B101002-1 North/South Axis</th>
<th>Condition: Good</th>
<th>Deficiencies: Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>B101002-2 East/West Axis</td>
<td>Condition: Poor</td>
<td>Deficiencies: Serious</td>
</tr>
</tbody>
</table>

B101002 Structural Interior Walls

B101002-1 North / South Axis

B101002-2 East / West Axis

Description

All masonry walls whether exterior or interior are load bearing at the Thomas House. Due to the geometry of the structure and the locations of the exterior openings the walls that are aligned along the north/south axis at the interior appear to be primary masonry load bearing walls as they support a large percentage of the floor frame systems, the roof frame of the building and the central stair carriage (Figure 55). Those aligned along the east/west axis appear to be structurally secondary as they support a smaller percentage of interior frame systems, are used primarily as room dividing features, have been significantly altered over time, with several having been removed.

R101A-B: The central load bearing brick wall (evidenced by an extant foundation) has been removed and replaced with a boxed in wood beam (presumably). This beam has been supported in the past by twin fluted columns with Corinthian capitals, these columns have been removed (but were retained) and their ghost marks are clearly evident22 (Figure 56).

R102/103 and R202/204: The three wythe thick brick masonry wall between R102/103 (at current location of D105 and Cabinets CB102A & B) has a large central section which has been removed. It is unclear if any structural provision were made to support the brickwork above the opening. This wall supports the joists for the west half of R202 above. At the second story the wall has been manipulated but is essentially intact; it varies in thickness from two to four wythes. One door opening in the central portion has been bricked-in while another in the extreme southwest corner (D203) has been opened. It is unclear if this masonry wall supports any of the third floor frame or roof frame.

R103/104 and R204/206: This former exterior wall may be four wythes thick at the first story (near the chimney) and three wythes thick at the second story including a one wythe thick veneer. Where cabinets have been built-in the wall may slim to two wythes thick. This wall has a chimney centrally located [CH04] with door openings at its east end near the intersection with the north/south masonry wall. Once the end gable wall of the building it is now entirely enclosed in the structure and does not have a brick gable in the attic.

NOTE: Other interior walls not specifically mentioned are classified as partitions and discussed elsewhere; they are not load-bearing walls.

Condition

The two massive north/south axis two-story load bearing masonry walls that define the center hall (R100) make up a major structural component of the house - with the exception of the location where the wall is frame rather than masonry between Rooms R200 and

22 See keynote recommendations, Sheet # A1.02 (18/84), Note 1; columns to be repaired and reinstalled by others, BBB architectural plans, 100 percent complete architectural drawings, 894/8033, 12/31/09.
R202. These two walls remain relatively intact with only minor structural changes.

Several of the east/west axis walls were once exterior walls and so are thicker than necessary for interior walls (three and four wythes vs. the standard two wythe interior wall construction). However, these walls have been manipulated in post-construction years to allow for center or end passage doors and built-in cupboards. Both of these functions have removed critical mass from the walls thus possibly weakening their structural capacity. The extant walls appear in good condition with no structural cracks visible. However, walls which have been compromised create the poor condition rating and serious maintenance deficiency rating for this feature.

A possibly compromised wall is located between **R102/103** as a large central section has been removed and unlikely properly reinforced. The opposite wall, at the location of the dropped beam in **R101**, was replaced by the dropped beam when the masonry was removed. Supporting twin columns were also installed but were removed in the 1950s; these columns have been recovered and will be replaced as part of the interior rehabilitation.

R101 historic wood columns: these fluted Corinthian style columns are described in detail elsewhere in this report. They have not been structural evaluated as to their load-bearing capacity.
Thomas House Historic Structure Report

B10 Superstructure

Character-Defining Features

- Slate gable-end roofs
- Roofscape of main block and extension, including all masonry chimneys and brick parapet wall
- Cross-gable dormers (W301-303)
- Double pipe-rail snow guards
- Exposed structure and timber framing methodology in attic of principal rafter system and common rafter system
- Hand-hewn timbers incorporated into the two primary roof frame systems including inscribed marriage marks linking members
- Historic graffiti painted on rafters

B1020 Roof Construction

Description

The Thomas House consists of two merged roof frame systems. The main block relies on a heavy timber system, known as a principal rafter system [B1020-1], with structural purlins and lighter weight common rafters to support the roof deck. The rear wing relies on a common rafter system [B1020-2] with a half-lapped joint at the ridge to support the roof sheathing boards. Major structural elements are marked with roman style numbers to assist in assembly and indicate a scribe rule methodology was used to fabricate the roof.

Roof Features

The highly visible gable roofs of the main block and the wing are character-defining features as is the blackish-gray highly reflective slate used as a roof covering (Figure 57). The very low slope roof area at the southeast corner of the main block, not visible as viewed from the service yard, is not character-defining. The brick parapet wall and towering southeast chimney (CH02) at the east elevation contribute significantly to the east elevation.

Roof features include the symmetrical gable end chimneys of the main block and south elevation (CH01, 03, and 05) which extend well above the ridge line and are capped with sheet metal caps (caps are not CDFs). Other traditionally constructed chimneys (CH02 and 04) held within the field of the roof are visually less prominent, although they help create a roofscape more complex than is usual for a house, and should be considered character-defining features (Figure 58).

As previously mentioned, the three cross gable dormers (W301-303) of the principal (north) elevation are visually prominent and highly important CDFs (Figure 59). While clad in dark slate similar to the roof covering (with the side walls being covered with hexagonally-shaped slate shingles), it is the white-painted architectural millwork and Gothic-inspired window sash that are the most prominent features. The deeply recessed gable pediments of the dormers are a focal point of the elevation. Shadow lines draw attention to the pediment areas although the architectural details are not discernible from the ground.

The horizontal double rail snow guard (Figure 60) which runs parallel to the main cornice and front edge of the north slope of the roof also accentuates the prominence of the dormers and the architectural importance of the brick cornice.

Condition

Structural roof repairs were completed as part of the 2006-07 HPTC/MONO project to replace the slate roof at the Thomas House. This project is thoroughly documented in the Thomas House Slate Roof and Gutter Replacement Project Historic Structure Treatment Record (HSTR). Part of the scope of work included “repair all deteriorated roof sheathing and rafters”; work included the main block, south wing and southeast porch roof structures. Most of the sheathing repair (less than 10 percent) was at the lower end of the roof where the rafter ends sit on the rafter plate. Based on photographic evidence provided with the HSTR a few rafters were repaired. The rafter plate (also tie-beam for principal rafters) is not accessible from the in-

Thomas House Slate Roof and Gutter Replacement, FY07, PMIS 114756, Historic Structure Treatment Record, Historic Preservation Training Center, Brown Truslow, August 11, 2008.
terior and therefore its condition remains unknown although there are no indications of structural roof frame deficiencies. Overall the roof frame is considered to be in good condition.

Figure 57. Slate, gable-end roofs

Figure 58. Roofscape including masonry chimneys

Figure 59. Cross-gable dormers

Figure 60. Double-pipe rail snow guards

24 Photo documentation reveals some details of the rafter plate installation.
B10 Superstructure

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Minor</td>
</tr>
</tbody>
</table>

B1020-1 Principal Rafter System (Main Block)

Description

Due to its enclosure with plaster ceilings and knee walls (after 1847) the structural roof frame at the eastern two-thirds of the main block is mostly not accessible ([R300/301](#)), although observation panels were created to allow viewing into the area behind the knee walls. The west bay of the system is visible in the unfinished **R302**.

The principal rafter system consists of heavy timber rafters that support a series of purlins. The common rafters and roof sheathing boards (and slate roof shingle surface) are then supported by the purlins. It is common for the principal rafters to be connected and supported at the base with a tie beam or rafter plate. Due to the construction of the house this beam seems to be partially encased in masonry and is not visible from the attic (except the top side as it passes through **R302** (where it is noted as a 6½ inch wide beam).

The principal rafters are fabricated from dimensionally sawn oak lumber, the purlins from what appears to be poplar (based on color and hardness), rafters are oak; this type of framing is typically mid-19th century English style construction system. Characteristics of this frame include:

- Slipped mortise and tenon bridle joint at the roof peak of the principal and common rafters (all pegged) suggests 1800 or earlier English style scribe rule frame (earlier method prior to square rule method) of framing;
- Principal rafters match the purlins, most likely poplar, reciprocal saw marks;
- Scribe rule system accounts for haunched corners at purlins;
- Roof sheathing in this area has reciprocal saw marks;
- Last principal rafter south of **CH04** is sawn from pine;
- Dormer construction is poor – bridle joint at rafter peaks with common half-lap without pins.

As noted, the north facing slope of the roof has three dormers symmetrically placed along the elevation. The placement of the dormers does not align with the placement of the principal rafters. The dormers are lightly framed with out any vertical structural members making up the wall frame. Walls are constructed by the use of inch-thick tongue and groove clapboards supported at the exterior by the window frame and at the interior by the principal rafter system. The roof structure is comprised of the roof sheathing supported by a lightweight roof frame.

NOTE: Cornelia Fouche (tenant occupied residence ca. 1910-14) inscribed graffiti on west face of principal rafter at dormer window opening **W303** (Figure 61).

25 Dimensions of principal rafter system and roof frame are documented by HABS and BBB drawings.

26 B. Gordon interview; aspects of the description are based on the 10/17/08 field interview and notes made by HPTC Senior Historical Architect.
Sections of roof sheathing are revealed as the frame progresses to the rear and changes over to a typical common rafter system as it passes the mid-roof chimney [CH04]. The roof sheathing of the cross gable is supported by the south facing members of the principal rafter system and two structural valley planks that have been installed over the rafters. Lighter weight rafters are used to carry the roof deck over the principal rafters until the valley closure is formed.

Condition
Consists of heavy timber principal rafters, structural purlins and lighter-weight common rafters to support the roof deck (Figure 62). A rafter plate supports the principal rafters and common rafters and also serves as a tie beam for the principal rafter system. A traditional rafter to plate fixed connection was observed at the north and south elevations by the HPTC Carpentry Team during the aforementioned roof project (2006-07).27 Deterioration at the outer extremities of the rafter plate and rafters and some surface damage from insects was noted by HPTC during the field assessment. All exposed interior structural members appear to be in remarkably intact and good condition.

27 Interview with HPTC Carpentry Team Leader, Brown Truslow, by HPTC Senior Historical Architect (March 2009).

Figure 62. Roof framing axonometric drawing, main block
B1020-2 Common Rafter System (South Wing)

Description
The common rafter system commences at the vertical alignment of the west elevation walls, between W208/209 on the second floor west elevation (no bearing wall indicated) and proceeds westerly to the brick gable wall. The western two-thirds of the roof frame is made up of the common rafters:

- Lapped common rafters are cut from oak, slipped mortise and tenon joint used at bridle joint at ridge with pegged rafters;
- Common rafters average 3 inches by 4 inches in size and have a 1-1/2 by 3 inch collar tie in the upper third of the pair;
- Rafters are ascribed with full strike roman numerals used to pair the rafters, they are not arranged in numerical order;
- A quarter strike roman number is used in the last 3 pairs of rafters at the south end of the roof frame;
- Several rafters have been inscribed with the names of various tenants of the Thomas House and also Hiram M. Keefer (HMK) known to have worked on the house in 1860-61.

Condition
The south wing of the house is roofed by a common rafter system; details include a half-lapped joint at the ridge to support the roof sheathing boards and a rafter plate at the top of the wall (Figure 63). All exposed structural members, while smaller dimensionally, appear to be in good condition. Minor surface deterioration of some rafters and sheathing boards was noted in the west attic in 2008.
Figure 63. Detail of attic and common rafter system of south wing, top left. Above right, common rafter system facing south; bottom, facing north, shows historic graffiti on rafters.
<table>
<thead>
<tr>
<th>B10</th>
<th>Superstructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1020-3 Southeast Porch Roof Structure</td>
<td></td>
</tr>
</tbody>
</table>

Description

As noted elsewhere, this area of the structure is not currently accessible. It is thought that roof rafters of the porch are extended from, or similar to, the east facing common rafters in this area (Figure 64).

Condition

As previously noted, this area of the structure is not currently accessible; it is most likely an extension of the common rafter system. Visual observation indicates structural integrity; the roof frame seems to be functioning and in good condition.
Figure 64. Top, drawing of common rafter structure of the Thomas House south wing showing southeast porch roofing at far left. Bottom left, photograph after porch repaired (2007). Bottom right, south gable-end view of porch roof structure which is most likely an extension of the common rafter system used in the south wing of the house, although there has been no access to this area to date.
B10 Superstructure

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Minor</td>
</tr>
</tbody>
</table>

B1020-4 Garage Roof Structure (East Addition)

Description

This area of the structure (attic) is not currently accessible to inspection (although a small opening in the garage ceiling allows visual observation). The roof frame appears to be made up of nominally dimensioned common rafters (2x8 or 2x10) and diagonally laid plank type roof sheathing (Figure 65). There are not any notes on the architectural drawings to indicate roof frame members or style of frame.

Condition

As observed from the exterior and interior the roof frame system appears to be in good condition, with no significant maintenance deficiencies.

![Figure 65. South elevation drawing showing modern garage addition (east addition). Observation indicates roof construction in a common rafter system.](image-url)
B1020-5 Enclosed Porch Roof Structure (West Addition)

Description
This area of the structure is not currently accessible for visual observation. There are no observation points into the roof frame or attic. Considering it was built at the same time as the east addition it most likely consists of a similar common rafter and/or roof truss system and plank type deck roof sheathing (Figure 66). Likewise, there are not any notes on the architectural drawings to indicate roof frame members or style of frame.

Condition
The roof frame system appears to be in good condition, with no significant maintenance deficiencies.

Figure 66. South elevation drawing showing enclosed porch (west addition). While no observation points available, its construction contemporary with garage addition suggests roof construction is a common rafter system.
B20 Exterior Enclosure

Character-Defining Features

Shape and Mass
- Shape and mass of the main block and rear wing
- Five-bay by one-bay north elevation porch (Italianate)

Openings
- Window and door openings and their placement in the main block and rear wing
- Hierarchy of openings at first floor and of primary entrance doors with sidelights and/or transom windows

Projections
- Two-story, east-facing porch
- Brick cornice with corbelled molded bricks

Trim and Secondary Features
- Half-round, bull-nosed, recessed casings at window and door openings (jambs and headers)
- Gable-end trim boards
- Hinged, louvered shutters

B20 EXTERIOR ENCLOSURE

B2010 Exterior Walls

<table>
<thead>
<tr>
<th>B2010-1</th>
<th>Main Block and South Wing</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2010-2</td>
<td>Garage (East Addition)</td>
</tr>
<tr>
<td>B2010-3</td>
<td>Enclosed Porch (West Addition)</td>
</tr>
<tr>
<td>B2010-4</td>
<td>Southeast Two-Story Porch</td>
</tr>
<tr>
<td>B201004</td>
<td>Parapets</td>
</tr>
<tr>
<td>B201009</td>
<td>Chimneys Integral with Masonry</td>
</tr>
<tr>
<td>B201009-NPC</td>
<td>Non-Extant N. Porch Components</td>
</tr>
</tbody>
</table>

B2020 Exterior Windows

<table>
<thead>
<tr>
<th>B2020-1</th>
<th>Enclosed Porch (West) Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2020-ESW</td>
<td>Exterior Storm Windows</td>
</tr>
<tr>
<td>B2020-LS</td>
<td>Exterior Louvered Shutters</td>
</tr>
</tbody>
</table>

B2030 Exterior Doors

<table>
<thead>
<tr>
<th>B2030-ESD</th>
<th>Exterior Storm Doors</th>
</tr>
</thead>
</table>

Description

The Thomas House is a brick masonry load bearing structure built upon low-lying field stone and brick foundations. The house has evolved over time and has been subjected to several architectural campaigns that have incorporated former exterior walls into the plan of the house; there are several internal walls that also constitute part of the structure of the house. While it is not uncommon for masonry buildings to have interior masonry load bearing walls this happens more than is usual in the Thomas House (compare to the nearby ca. 1872 Gambrill House for instance).

Brick foundation walls are used to create single pile cells at the first story that allow wood joists to span from masonry wall to masonry wall with little internal support. A few of the longer spans are supported by mid-span piers, piles and posts that are a secondary support system. The internal wood frame floor and roof structures of the house are discussed elsewhere in this section.

Brick walls start out originally as two-wythes thick but with the addition of repairs and a veneer are mostly three-wythes thick at the base of the exterior walls. Only two of these wythes actually carry the load of the masonry; the outer wythe is essentially unsupported in many areas or hung from the original two-wythe wall thru the use of integrated header courses. The two-wythe brick wall is not always in direct bearing with the stone foundation and is supported by a wood ledger board in some areas, most notably the west elevation. Exterior load bearing masonry walls have been previously addressed.

The masonry wall construction is typically two-wythe above grade. The original bond pattern is unknown on the exterior and has been obscured by the extant veneer wythe. Sections of the wall

28 Interior load bearing brick masonry walls run parallel to the main hallway and rise the full three-story height of the building. Perpendicular walls used to create individual rooms are mostly wood frame with plaster over lath; see HABS MD-1051, Gambrill House.
that have been uncovered and containing penciled mortar joints (first story east elevation at interior [R100] and east elevation exterior porch [P102]) – suggesting an earlier part of the building – are laid in common bond with sixth course headers. It should be noted that glazed headers are reused in this wall, and others, as stretchers.

On the north, or principal, façade the exterior bricks are laid in the Flemish bond pattern with alternating headers and stretchers in each course. Openings in the masonry (doors and windows) are spanned by flat arches (jack arches) with soldier bricks. No keystones or wedge shaped brick is used at the center point of the arch but rather the mortar joints are slightly increased in width to form the arched effect. The arches are received at the walls by a slight indentation in the bond of the wall. Cold joints and misaligned brick courses at the west and east corner returns indicate the north elevation was likely added as a veneer in a campaign separate from that of the west and east façades; it is not clear if the south elevation of the main block at R101/ R203 was originally constructed as a three wythe thick wall or has had a veneer added.

Other exterior walls of the house are laid in common bond, usually 1:6 but also in a few areas 1:5 or 1:7 (stretcher course to header course ratio). These patterns are documented in the field drawings prepared by Bucks County Community College students during HABS field trials conducted at the Thomas House during the summer of 2005; 29 diagnostic brick detail drawings exist of the primary elevations.

The west elevation is laid generally in 1:5 and 1:6 common bond although there are areas where the bond pattern breaks down, or is interrupted, by localized repair campaigns. This is especially true around and between windows where water damage and possibly movement have caused minor blow-outs in the wall that has been subsequently repaired and where brick has been replaced.

At the southern end of the west elevation there are signs of generations of brick repair which indicates structural problems in this area. In contrast to the red-orange hand made surface of most of the house, examples of 20th century brick with smooth machine produced brick have been used to repair the wall, especially at the southwest corner of this elevation. In this area an incompatible mortar was also used; its grayish color in stark contrast to the earlier beige color of the sand based mortar. Use of the modern brick and mortar is an indicator for the Thomas House, wherever it is found marks the location of previous repair and replacement wall sections.

In direct alignment with the north edge of the masonry opening of W109 and W211 the corbelled brick cornice has a break and changes from the three course molded brick cornice (also used on the north elevation) at the central body of the wall to a simpler three course stepped cornice at the southern 8 feet of the west wall.30

29 Architectural Evaluation of the Thomas House by Kathryn Ann Auerbach, 28 February 2009; see Appendices for full report and Brick Detail drawings updated in February 2009

30 See HABS MD-1251-A, Sheet No. 7.
East elevation brickwork includes cold joints which indicate the interlocking of the north and east façades. Previous window openings are also bricked in on the main east gable end but these are obscured by the exterior wall of the garage. A noticeable vertical joint occurs on the exposed portion of the east gable end; it marks the point at which a newer addition meets the previously extant wall. Common bond is used on either side of the joint but they do line align horizontally.

The clipped gable south elevation of the building is also laid in common bond and is fairly uniform across the width of the elevation. The chimney at this elevation has been rebuilt above the roof line.

Overall Visual Aspects

Shape and Mass

Overall visual aspects of the Thomas House include the main block and rear wing, see Figure 67. The main block is a gable roofed two-story five-bay structure constructed of exposed brick. The squarish mass of the main block is oriented along a north/south axis and punctuated by three symmetrically-placed cross gable dormers on the north elevation (principal façade) and a secondary parapet wall on the east façade. Two subservient one-story wings (not of the historic period) with gabled roofs are not considered character-defining.

The main block of the house extends in a southerly direction along the west elevation (secondary principal façade) to encompass a two-story rectangular massed extension with a gable roof perpendicular to the main block roof. Roofs are terminated at the top of the wall with an overhang at the east elevation. Here a two-story porch is held within the footprint of the extended perpendicular gable roof of the wing and extends along the east elevation facing the service yard.

A one story five-bay by one-bay porch extended across the north elevation during the time the house is most closely associated with the Battle of Monocacy and Col. C. K. Thomas (1860 – 1890). This porch was Italianate in character and added a defining feature to the north elevation related to the use of jib doors and full height masonry openings on the first floor and also the central bay of the second floor (now bricked in but formerly a jib door with sash). The porch is non-extant but many associated character-defining features are in-situ and others were retained as artifacts and are stored at the Thomas House. The north porch is a distinct feature in the evolutionary history of the house and should be considered character-defining.

The shape and mass convey the design intent of the previous owners to create a unified and somewhat formal structure at the principal and secondary principal elevations, allowing the service elevations to accommodate the informal functions and reflect the complexity of the evolution of the building over time. Additions or deletions to the main block and wing, with the exception of the two extant one-story wings, would distract from the overall character of the building.

Openings

The wall openings play an important part in defining the character of the building. The five-bay rhythm of the two-story north front elevation creates a formal architectural expression not achieved elsewhere.
Figure 67. Top to bottom, north, east, south, and west elevations of the Thomas House showing main block and south wing as well as two modern (east and west) additions. Character defining features include the placement of window and door openings in the main block and south wing as well as the hierarchy of openings at the first floor and the primary entrance door with sidelights and transom window.
with the building (Figure 68). The full-height first-story openings (W101-104) have prominence over the window-sized second-story openings (W201-205). Attention is focused on the central door opening on the first story (D101) with its expanded opening size to accommodate the sidelights and transom windows that are paired with the single width door. The three cross gable dormers (W310-303) break the 5-bay pattern as they are symmetrically placed across the roof (Figure 69).

The secondary principal (west) façade is less formal in its use of windows; the expansion of the house through several campaigns has created an asymmetrical yet organized geometry (Figure 70). Windows are paired vertically, with the exception of the northerly-most windows at the main block where the first-story windows (W105 and D104) have been subsumed by the porch addition (but are visually suggested by the rectangular openings in the west elevation of the wing itself), and generally are located to provide functional ventilation and day-lighting to the interior space.

The horizontal spacing of the windows (W106-109 and W206-211) suggest the development along the south axis of the building of a room-by-room building campaign. Random interspersion of openings would have disrupted the smooth flow of openings from north to south along the west elevation.

While secondary in importance, the non-CDF, one-story wings at the east and west were designed in an attempt to be sympathetic and subservient to the main block through the placement of regularly spaced openings; rectangular to the east and arched to the west.

The south and east elevations of the house are essentially an expression of “form follows function” and circulation, as there is no obvious attempt to create an architectural hierarchy for openings within these façades. That is, openings occur where they are needed by the function of the interior space. These two elevations are subservient to the formality of the north and west façades and as such are more-or-less service façades. The sole exclusion to this is the southeast quadrant of the main block, which anchors the corner of the building; here paired openings were laid out. It is also interesting to compare the east and west gable ends of the main block where attic windows are not symmetrically placed and the window alignment does not match.

The east elevation of the main block has regularly paired attic (W307, W308) and second story (W212, 213, 216, and 217) openings (two-pile symmetry); the first-story window openings were subsequently filled in as a result of the development and interior redecoration of the double east parlors. These windows were then obscured by the construction of the garage wing with its blank east elevation.31

The south elevation of the main block (SE corner) exhibits paired first (W112, 113) and second-story (W214, 215) windows; those on the first story are full height to match the north elevation (although W113 was subsequently reduced to a double-hung window). The windows on the second story are regular double-hung window openings.

31 These two first-story windows on the east façade of the main block are visible in the 1888 C. K. Thomas photo of the house.
Figure 68. North elevation. The front five-bay, two-story elevation creates a formal architectural expression.

Figure 69. Openings: left, first-story, central, north elevation door with sidelights and transom; center, jib door; right, three cross-gable dormer windows.

Figure 70. Openings: west elevation shows an architectural expression that is less formal than the north.
Architectural prominence is given to the door openings with the use of sidelights and/or transom windows at the north and south elevations. Visual prominence is given to the first-story openings of the north elevation by the lengthening of the windows into full height double sash windows with jib door extension (W101-104). This was also the case for the central opening on the second-story (W203) prior to its being reduced to a double-hung window by modern-day architectural changes.

The in-filled north bay of the two-story porch and its windows (W111, W213) and doors (D112, D208) are not considered character-defining features.

Projections

The Thomas House exhibits two character-defining projections: the first is the two-story east-facing porch (Figure 71), and the second is the brick cornice (Figure 72). The two-story porch, enclosed under the wing of the rear gable roof, does not technically meet the definition of a projection (as it is enclosed within the footprint of the building) but is character-defining nonetheless. The three-bay porch defined an informal exterior circulation space for the house. Although the northern bay of the porch was enclosed some 55 years ago, the enclosure itself is not considered character-defining as it detracts from the original design intent of the porch structure – to serve as a protected entry into the rear hall of the house.

The brick cornice on the house varies somewhat as it circles the building. The north elevation is the most prominent with its corbelled, five-course, molded brick assembly including concave and convex brick profiles. The cornice continues on the southern block of the western elevation in a more rectangular simplified form.

Trim and Secondary Features

Architectural trim is kept to a minimum at the Thomas House, reflecting the austere dictates of the Federal-period architecture it strives to emulate. Wall openings for windows and doors restrict the trim to the elements of the jamb and headers (known as brick moldings, these are the recessed half-round bull nosed casings) (Figure 73). Other prominent architectural trim discussed elsewhere are the pedimented gables of the three north-facing dormers (W301-303).

Where architectural trim has been applied, its purpose is to hide scars from previous building campaigns such as at the north elevation. Rather then being considered an architectural feature, the white-painted horizontal band board function is more closely attuned to that of a Band-aid; to cover the wounds left from the removal of the 19th-century full-front porch.

Architectural trim considered secondary features of the elevations include the gable end roof-edge trim boards and the hinged louvered shutters (currently removed from the building) (Figure 73). The segmental-arched door surround for D101 (with the inserted screen door frame and fluted pilasters) is surmounted by a colonial revival-period inspired bald eagle carrying an olive branch; this is a noticeable feature but is not character-defining.
Physical Description, Condition Assessment and Character-Defining Features

Figure 71. Projections: view facing northwest showing southeast, two-story porch.

Figure 72. Projections: five course brick cornice exhibits concave and convex profiles on the north elevation of the house.
Materials
From a distance the overall character of the building is established by the fields of tightly jointed red brick used to construct the entire load-bearing structure. With the gable ends rising to three stories the brick masonry walls form the enclosing structure (Figure 74).

Secondary to the walls, the grey-black color of the natural slate roof (and dormer side walls) gives a residentially-scaled textured appearance to the highly visible roof surfaces.

The white painted trim features including sash, doors, window sills and jib doors and the dark green of the shutters contrast with the red hue of the main block. These painted materials help establish the formal nature of the principal elevations (see previous photographs).

Brick pattern bonding and character of brick: favoring a reddish-orange hue, the Thomas House brick work has been painted over the years with brick red paint thereby blending the mortar joints with the brick faces to create a uniformly smooth appearance. Since approximately the mid to late 1950s the paint has been allowed to weather and now much of the brick faces and mortar joints are in plain view. Loss of paint reveals an amalgam of various types and sizes of brick in the outer wythe of brickwork including glazed (aka burnt or flared) and partially glazed headers and stretchers and bricks of various dimensions not matching the common sizes of the house.

Mortar joints are unpainted and a variety of mortar colors and joint types are exposed to full view; the predominant type of joint, either by design or nature, is recessed. Brick bonding patterns have a hierarchy at the house with an alternating Flemish bond on the principal façade and common (or American) bond with 5th or 6th course headers used for all other main block wall construction. Evidence of the construction history of the house is evident in the various anomalies in the brickwork, cold joints between various periods of construction seen as breaks in the pattern of the bond work. These areas are character-defining features.

Particularly discordant is the use of rusticated mortar joints for the construction of the ca. 1949 common bond (without header courses) east garage wing, as this technique calls attention to the mortar joints rather then the brickwork. The west porch wing brickwork is more refined but visually at odds with the more natural looking brick of the north and west elevations which it adjoins. Both of these additions were made when the house was fully painted so the juxtaposition of various type brick was not (if at all) as apparent as it is today.

Along the east wall of the south wing there are remnants of the painted brickwork with penciled joints, one of the earlier exterior treatments of the house – see Craft Details. Later exterior finishes include white painted plaster or stucco on the east elevation (second floor) of the recessed porch and brick red colored paint over the entire structure as early as the 1940s.

32 Bricks with the appearance of partially burnt sections along the soldier or stretcher face may in fact be glazed headers turned sidewise when reused from a different location in the outer wythe of brick (the veneer).

33 This brick is a modern veneer applied over a concrete block structural wall.
Figure 73. Trim: left to right, half-round, bull-nosed, recessed casings at window and door openings (jambs and headers; gable-end trim boards; and hinged, louvered shutters.

Figure 74. Materials: top left, tightly jointed, red brick, Flemish bond, masonry; top right, gray-black color of natural slate roof covering. Middle, white-painted trim and dark green painted shutters. Bottom left, brick bonding patterns (example common bond); bottom right, horizontal siding and cornice at gable end of two-story, southeast porch.
Horizontal wood siding is used to close in the gable end of recessed southeast porch (Figure 74). It is currently painted a brick red color. The two-story porch retains a simple wood ovolo-style cornice at the roofline.

Horizontal aluminum siding used to cover the walls of the enclosed north bay of the southeast porch is out of scale with the rest of the house materials and is not character-defining. Wider than usual for the length of the span (but typical for its period) the siding rises without a break from the first to the second story ignoring the horizontal lines of the two-story porch and the human scaled porch railing and handrail enclosure.

Craft Details
High quality craft details that are an important part of the character-defining features of the Thomas House exterior (Figure 75) and are noticed only at close range include:

- The handmade nature of the brick used to construct and repair the house’s walls is easily distinguished from later machine manufactured (cut and extruded) brick [non-CDF] used to make more recent repairs by the surface texture and/or uniformity of size, shape, and color;

- The tightly jointed jack arches used to span the masonry door and window openings;

- The hand-shaped brick and corbelled construction of the [ogee cyma recta] cornices of the north and west elevations (also see Projections);

- The hand-drawn and painted penciling (white lines) used to define the mortar joints of the brickwork on the painted exterior walls of the early sections of the east elevation (and interior wall surfaces of the east-facing wall surfaces of the main hall);

- The exterior architectural millwork of the doors, windows and shutters and their associated architectural surrounds represents the high point of the hand-crafted millwork, including the previously discussed Federal-period dormer detailing;

- The architectural details of the two-story porch including the tapered box columns and hand-planed hand and shoe rails and balusters (of two distinct styles) and slotted bead board ceiling;

NOTE: while identified as character-defining features the penciled brick joints are also an architectural artifact from an earlier time period and are mostly obscured by later periods of work, some of which may have occurred during the Thomas family occupancy. Other areas were revealed by later owners who removed exterior plaster to expose the brick in a nod to the “colonial revival” tendencies of the time. As such these discrete areas of penciled brick joints should be preserved in-situ but the exterior of the building need not be restored to the penciled joint appearance; in many instances this would create an anachronistic visual conflict and contradict NPS cultural resource philosophies and guidelines.
Figure 75. Craft Details: top to bottom, handmade brick; tightly jointed jack arches; ogee-cyma-recta corbeled cornices; hand-drawn and painted penciling of mortar joints; handmade windows, shutters, and doors; and two-story SE porch.
B20 Exterior Enclosure

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Serious</td>
</tr>
</tbody>
</table>

B2010-1 Main Block and South Wing

Description

Detailed description provided in B2010.

Condition

The brick masonry walls are generally in fair condition. There are not any unstable wall sections except possibly along the southern end of the west elevation (this will be described in greater detail later in this section). Other minor to serious maintenance deficiencies with the exterior brick wall surfaces are directly related to the condition of the mortar joints and selected brick areas. Approximately 70 percent of the exterior walls require some type of work on the mortar joints; approximately 3 to 5 percent of the brickwork is in poor condition.

Brickwork around masonry openings [windows, doors] has also suffered. Most all openings are spanned by the use of a flat jack arch. In many instances this jack arch has failed. While it is not usually the primary structural support carrying the masonry over the opening (this is found in the wood frame lintel internal to the masonry), it significantly supports the outer wythe of masonry (plus the veneer). In many instances the jack arch has failed with bricks dropping out of alignment or being forced out of the wall by internal pressures or stress. Diagonal stress cracks may be seen in the adjacent brickwork at several of the masonry openings directly related to the failed jack arches.\(^{34}\)

\(^{34}\) Exterior masonry repairs are programmed for FY2011.
Figure 76. North elevation of main block, top, and west elevation, bottom, showing gable end of main block and façade of south wing. Modern screen porch addition (ca. 1952) is seen in foreground at left.
B20 Exterior Enclosure

B2010-2 Garage (East Addition)

Description
The north and east walls of the east garage addition [R107] are constructed of concrete block with an exterior brick veneer laid in common bond (no headers) ca. 1952.35 The brick comes close to matching the brick of the adjoining house but the walls are not interlocked; where the garage walls meet the brickwork of the house with a cold joint and minimal tie-in. The fully struck and rusticated (or poorly repointed) mortar joints are visually noticeable.

The south facing wall of the garage has two wide openings with common bond brickwork carried across the openings on a steel lintel. This supports a built up wood beam on the interior that supports the roof structure (Figure 77).

Condition
Overall the brickwork of the ca. 1952 garage is in good condition with no significant maintenance deficiencies.

Figure 77. Modern garage (east addition). Left, east and north elevations with no extant gutter; above left, south and east elevations; note that brickwork is different from that of the house and butts into east wall of main block. Also note that downspout (inset) discharges at base of building into driveway and away from the house. Above right, brickwork evidences rough coursing with no header courses used and grey Portland cement rather than natural lime-based mortar giving a more “rustic” appearance.

Condition: Good
Deficiencies: Minor

35 Architectural drawings of these two one-story additions by Smith & Veale Architects of Baltimore are dated August 1952.
B2010-3 Enclosed Porch (West Addition)*

Description
The brickwork of the enclosed west porch is also ca. 1952 and has similar characteristics to the garage (B2010-3). It appears to be traditional brick construction (no use of concrete blocks). The brickwork consists of two aspects; the base of the porch (from the floor line to the foundation) which is laid in common bond and is very similar to that of the garage, and from the floor upwards where the brickwork consists mainly of the structural piers laid in an interlocking cross-bond pattern and the gable end laid in common bond without the use of headers. Features of the brickwork include the very large jack arch at the west elevation (spanning both window openings on steel lintels) and the semi-circular arched surrounds to the windows at the north and south elevations. Keystone features at the center of the flat arch project slightly toward the exterior.

The floor is flagstone (or slate pavers) laid over a compacted fill and mortared into place. The ceiling is patterned after P102 with a beaded board ceiling. It is laid tongue and groove style with no spaces or “skips” between the boards. The east wall of the porch is the exterior west wall of the main block which has been painted white.

Condition
Two sections of the structure are the base (foundation) and the wall structure. The base is constructed of brick similar to garage and appears to be in good condition. The wall structure consists of brick piers and brick spandrel areas between semi-circular window arches at the north and south elevations and rectangular openings at the west elevation. The brick piers and spandrel areas appear in good condition; the window arches exhibit structural cracking at the tops of some arches (it appears to be through-wall cracking) and at the interior face of the keystone brickwork and are considered in fair condition. Possible shifting of the foundation has resulted in these cracks (Figure 78).

![Figure 78](image-url)

Figure 78. Clockwise from left, brick-to-brick cold joint of west addition where it butts against west wall of main block, cracked brick keystones at south elevation (top middle) and cracked keystones on north elevation (right); differences in mortar used for foundations (below bottom of window frames) and walls (staining from vegetation and rusting nails). At right, a view of the south and west elevations.
B20 Exterior Enclosure

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Serious</td>
</tr>
</tbody>
</table>

B2010-4 Southeast Two-Story Porch

Description
A three-bay, two-pile porch\(^{36}\) sits under the overhanging east-facing gable roof of the south wing of the house. It is supported by a series of squared wood columns (with aluminum pipe column inserts) and pilasters; two across the east front (originally 3 posts with a pilaster at the south wall of the house) and two deep plus a pilaster at the west end of the porch. The second story and attic structure are wood frame and supported by a series of beams, girders and joists. The northern most bay has been enclosed with two-story wood frame constructed infill addition faced with an aluminum siding exterior applied over diagonal tongue and groove sheathing boards. Traditionally, the attic end of the south facing gable is covered with wood clapboards or weatherboards on the exterior. (Photographs prior to 1958 show an intact porch spanning the east elevation of the south wing of the house.)

The first story porch brick floor is described in foundation section [A10]. The first story ceiling is a traditional beaded board laid to allow spaces between boards for ventilation. Second story porch floor is traditional wood strip floor boards that run from the exterior wall of the house to the western edge of the porch. The second story ceiling is plastered as is the inside face of the weatherboard clad south gable end. Railings define the eastern and southern edges of the porch; the adjoining eastern wall of the house is plastered (Figure 79).

Condition
Aluminum siding has been used to enclose the north bay (adjacent to house) of the porch. The aluminum siding is in fair to poor condition with numerous dents and several penetrations. The penetrations have allowed the wall structure to become infested with bees as was experienced during the summers of 2007 and 2008. Water has penetrated the wall structure and may be causing deterioration of the porch frame structure or mold within the wall cavity. The siding is not consistent with the appearance of the structure and is showing signs of pulling away from the wood substructure. The color has faded and it presents a dull appearance.

\(^{36}\) This porch was repaired (including structure and finishes) by HPTC in 2004. The project is described in the Historic Structure Treatment Record, *Repair Thomas House Exterior*, April 2006.
Figure 79. Top left, ca. 1950 image of two-story porch shows north bay not yet enclosed, while top right illustrates the present-day configuration. Above, second story of porch facing infill addition. Historic 9-over-9 light window is seen at left and the ceiling and wall are plastered. Right, the first-floor ceiling is a typical beaded board with spacing for ventilation.
B20 Exterior Enclosure

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Minor</td>
</tr>
</tbody>
</table>

B201004 Parapets

Description
The southern most section of the east house masonry wall forms a parapet extending above the low-slope roof of the southeast pile of the main house block (over R203). It is a horizontal and vertical extension of the wall constructed to provide closure to the extended R203 and R101. The parapet wall is capped with a sheet metal sheathing that extends down over the top-most course of brick; on the interior face elastomeric roof flashing covers the entire brick surface (Figure 80).

Condition
Brick parapet wall is an extension of the east gable wall. It appears to be in good condition. The top of the parapet has been recently re-flashed; see B30 Roof Closure.

Figure 80. Views of the east elevation parapet; drawing of parapet and integral chimney, opposite.
B20 Exterior Enclosure

B201009 Chimneys Integral with Masonry Walls

Description

Five chimneys are used at the Thomas House. One each at the gable ends of the main house block [CH01 and CH03], one at the mid-point of the east wall of the extension of R101/203 [CH02], one at the mid-point of the south wall of the original southwest ell to the main block at R103/204 [CH04], and one at the center-line of the south elevation of the south wing extension at R104/208 [CH05].

All of these chimneys are constructed integrally with the exterior wall from which they extend at both the first and second stories of the house, they are structural components within those wall and add to their mass. They are supported on foundations (see A1010) which are integral with the main house foundation walls.

These chimneys are also internal to the house; they are pushed into the interior space of the house rather than being external to the exterior gable wall – another traditional building technique in the mid-Atlantic area although more prevalent further south (southern Maryland and Virginia).

CH01 and CH03 are built as part of the gable end walls as integral chimneys up through the attic space of the main block and extend above the main ridge line of the gable roof. CH02 is built integrally with the first and second story then towers 12 feet above the parapet wall and flat roof of the southeast extension of the house and is the tallest of all the chimneys. CH04 rises independently through the attic and above the roof line as there is no masonry attic end wall at its location although it is integral with the first and second story masonry end wall. CH05 is integral with the exterior gable wall at the south end of the south wing and rises above the ridge line of this extension approximately the same height as CH01 and CH03. All chimneys are capped with vented and screened sheet metal chimney caps.

Chimneys are constructed of two wythes of brick at the exterior wall (continues wall across chimney opening) but the inner structure of the chimneys is only one wythe thick. CH04 is believed to be one-wythe construction as it passes through the attic and above the ridge line.

Chimneys have not been inspected as part of this report to determine their functionality. CH01 was most recently used as the exhaust for the oil-fired furnace which has been removed (Figure 81).

Condition

Brick chimneys have been rebuilt above the roof line over a period of years, all appear to be in good condition (some as part of HPTC Projects). Interior mass of chimneys are mostly finished with plaster and also seem to be in good condition; structural cracks are not visible.
B201009-NPC Non-Extant North Porch Components

Description
Built post 1847 (ca. 1860) as the second porch (replacing a federal style porch described in 1847), it was removed ca. 1952. The porch survived almost 100 years intact on the north elevation of the house. Extant pieces including columns, bases and brackets, approximately 150 years in age, remain as artifacts. Fabric investigation reveals they are industrial millwork – no hand tool marks – and solid material with some glued-up sections; no earlier than 1850s, probably 1860 -1868 (Italianate style). Possibly influenced by the Italianate styled Frederick County Courthouse (1863) and Winchester Hall (Frederick Female Seminary) ca. 1857.

Materials seems to be pine – old growth turned on an industrial lathe (tool marks present on solid columns) (BG). Construction methodology was typical 19th century with a series of beams and girders that supported joists. The positions of the joists are indicated by pockets within the brick masonry at the floor, ceiling and roof frame levels. Ghost marks from the columns, and ceiling and floor lines remain on the brickwork of the north elevation.

Photos taken during the dismantling of the porch ca. 1952 give further evidence of the structure.

Condition
The extant ca. 1860 Italianate Style wooden components consisting of columns, column bases and brackets do not make up all the required elements of the porch enclosure or superstructure but constitute a significant portion thereof. These components are in good condition but may require some degree of preservation maintenance and repair. They have not been inventoried or individually assessed.

Figure 82. Extant Italianate porch components including columns (foreground), bases (background), and brackets (rear left). Inset, ca. 1950 view of porch prior to removal; note second-floor balcony has been removed.
B20 Exterior Windows (Includes Jib Doors) and Openings

Description
At least two (possibly three) generations of window sash are represented on the exterior walls of the Thomas House, not including modern 20th century replicas of earlier sash. The older, lighter framed 9-over-9 double hung windows are remainders from the earliest building phases. A remodeling of the front rooms and the north and west principal elevations saw the replacement of many earlier period windows with ca. 1860 heavier framed and mullioned 6-over-6 sashes, jib doors and frames. Window details are further described in the accompanying architectural description.

Windows tend to be set into their wood frames which are locked into the masonry rough opening through the use of wood nailer blocks. The components of the window frame are well articulated in the architectural description; major structural features include the use in inner and outer sills set into the brickwork. Exterior trim is lacking at the window openings with the exterior edges of the frame set to the inside face of the exterior brick wall and trimmed with simple bullnose brick molding.

Nine-over-nine Windows: Now relegated to the secondary elevations these double hung sash windows are perhaps the oldest extant in the structure (along with attic sash) (Figure 83 and Figure 84). Constructed with bridle jointed mortise and tenon frames with pinned connections (ca. 1850-70), the mullions are also through-tenoned and pegged; as is typical in window construction the muntin bars are “stubbed”, their tenons do not go through the sash. Several of the windows have had either the upper or lower sash replaced. These windows were not originally outfitted with counterbalanced sash weights; some have been retrofitted.

Six-light Casement Windows: used in the attic these sashes are mounted on jamb hinges and swing into the attic. They are very similar to the 9-over-9 sash in style and construction (Figure 84).

Dormer Windows: Reconstructed as part of the recent slate roof replacement project these double sashes are the most articulated in the building and patterned after the historic windows which were removed and retained (Figure 84). The six-light bottom sashes are surmounted by the upper sash with six full lights and Gothic inspired upper range of three rows of increasingly smaller dimensioned radially cut glass lights. The delicately constructed and extremely weathered originals have been replaced with sashes built to better withstand the elements. Internal sash muntin bars do not pierce the sash frame as per the original construction detail. The sash is constructed such that the lower hinged frames open into the attic while upper sash are fixed.

6-over-6 Windows: These ca. 1860 double-hung sash windows are more advanced technologically then the 9-over-9 windows (Figure 84). The sash frames are constructed of heavier stock with through-

37 Poor 20th century replacement windows are being replaced by HPTC with an upgraded replica window sash based on the 19th century in-situ window sashes. See HPTC project Repair Thomas House North and West Exterior Windows and Doors, PMIS 13241, Component B, FY08-09.

38 HPTC project Thomas House Slate Roof and Gutter Replacement, PMIS 114756, FY07. The Historic Structure Treatment Report for the project is dated August 11, 2008.
Physical Description, Condition Assessment and Character-Defining Features

B20 Exterior Enclosure

Figure 83. Nine-over-nine windows (circled in white) are extant only on the west elevation (top) and the southeast, two-story porch (bottom). Sash replacements can be seen in rightmost first and second floor windows of the west elevation with 6-over-9 and 9-over-6 windows respectively (outlined in black).

Figure 84. Left to right, 9-over-9 double hung sash window (west elevation), 6-light casement window in attic (example from east gable end of main block), reconstructed dormer window (north elevation), and 6-over-6, ca. 1860 double hung sash window (north elevation).
tenoned and pegged sash frames; vertical mullion bars are also through tenoned at the top, bottom and meeting rails of the frames, the muntin bars are contained within the frame. Sash weight pockets have been incorporated into the side rails of the window frames and upper sash frames. Jib doors (side-hinged centrally opening paired doors) are used under the bottom sash to extend the opening to the floor.

Jib doors have robust double panel construction and are detailed in the Italianate style. The jibs had somewhat protected exposure to the weather (at least from 1860 – 1950) under the now removed north porch roof; since then they have been repaired as part of the on-going exterior preservation project and are directly exposed to the weather.

The two 6-over-6 double-hung windows on the north elevation of the garage are original to period of construction (ca. 1952) and patterned after the main block windows; brick window sills were incorporated into the design instead of wood exterior sills.

Windows, doors and the accompanying frames of the north and west elevations have been undergoing full preservation protocol during the fall and winter of 2008-09. Other exterior architectural trim included in this project includes the semi-circular, over-door surround at D101 and the horizontal band board across the north elevation. A full description of the scope of this preservation effort may be found in the Project Agreement between HPTC and Monocacy National Battlefield, the Weekly Field Reports and the Historic Structure Treatment Record which will be produced after work is completed to document the project’s undertakings.

Condition

Windows of the north and west elevations (including jib doors of the north elevation) have been preserved (Winter 2009) as part of the exterior preservation of the house. These two elevations have the most severe weather exposure so the features were more deteriorated then the east and south elevations. Windows on the east and south elevations will also require total preservation repair and/or replacement treatment options. These remaining elevations will be addressed in FY2010.

Prior to this preservation treatment windows were in a variety of conditions, mostly fair to poor with typical unmaintained window issues: exterior paint and putty failure, deterioration of the sash frame, interior sill or lower portions of the jambs, exterior brick sills, minor degradation of glass.

39 Interview with HPTC Project Leader, Exhibit Specialist Mark Segro by HPTC Senior Historical Architect, May 2009.
40 HPTC Project Agreement, Repair Thomas House North and West Elevation Windows and Doors, PMIS 13241, Component B, FY08-09. Other aspects of this project include: repairing attic windows of the west elevation.
41 This work has been completed as of April 2010, Historic Structure Treatment Record is pending.
Figure 85. Five jib doors are extant, four on the first floor of the north elevation (top) - a remnant of the now removed Italianate porch - and one on the south elevation of the main block (bottom).
Typical jib doors maintenance deficiencies included hardware failure, lack of weather-stripping, loss of exterior paint, deterioration of the lower extremities and the poor quality of previous repair campaigns.

The six-light, side-hinged attic window units have not been maintained and are in poor condition. They exhibit deteriorated wood and all of the above deficiencies related to windows. Typical maintenance deficiencies include: degradation of wood frame due to weather and UV exposure, loss of paint and window putty, loss of glass, hardware fatigue and failure, lack of weather-stripping and deterioration of window frame. Interior and exterior window sills are in poor to fair condition.42

Two 6-over-6 north facing wood frame double hung windows on the garage appear in fair condition. Minor deficiencies include paint and putty failure.

The west porch [P103] features built in screen frames in the arched and rectangular openings rather than typical windows. These lightly framed units are in fair to poor condition. Typical maintenance deficiencies include: exterior and interior paint failure, water and rodent damage, and general overall wear and tear. Various screen units are torn and in poor condition.

42 HPTC Project Agreement, Repair Thomas House North and West Elevation Windows and Doors, PMIS 13241, Component B, FY08-09. Other aspects of this project include: repairing attic windows of the west elevation
Physical Description, Condition Assessment and Character-Defining Features

B2020-1 Exterior Porch Enclosure (West Addition) Windows

Description
The arched and rectangular openings in the brick framed structure are outfitted with light-weight wood screen frames and in the eastern bay of the south elevation a screen door. This addition was not fitted with regular windows and doors but always served as a screened-in porch with the extant screen frames.

Condition
The condition of the wood frames and window screens is fair. The wood is deteriorated in many areas and repainting (or replacement) is required. Many screens are rotted or torn and require replacement.

Top, exterior of porch west and south elevations; bottom, Interior view of screens, facing north.
B20 Exterior Enclosure

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Serious</td>
</tr>
</tbody>
</table>

B2020-ESW Exterior Storm Windows

Description

Extant aluminum triple track system windows have been removed as part of the ongoing NPS rehabilitation project. Historically (until the mid-20th century) wood frame interior screens were used to ventilate the house in the warmer months (these are stacked in the cellar at the time of this report (05/08/09)). Exterior wood frame storm windows may have been installed in colder months but physical evidence has not been discovered to verify their use. Exterior storm (screen) doors are light-weight wood frame units and do not appear to have been outfitted for glass panels in colder months.

Condition

Extant triple-track aluminum exterior storm windows had been installed on the west elevation and other selected locations. These have been removed and discarded as part of the ongoing exterior preservation of windows and doors project.

The serious deficiency rating is derived from the exposure of the newly-repaired historic sashes (in good condition) to the elements.
B2020-LS Exterior Louvered Shutters (Fixed, Wood Frame)

Description
Wood framed shutters hung at the exteriors of all window (and jib door) openings as early as 1880. Added in the 20th century, false shutters were also used at several exterior door locations. Shutter construction is typical 19th century mortise and tenon construction with pegged corners. Shutters were outfitted with operable louvers. In-situ shutter hardware indicates interior and exterior closure hardware. Due to their construction methodology with exposed end grain and open mortise and tenon joints between the rails and stiles, and extreme exposure to the weather, shutters typically do not have a long service life. Many shutters have been replaced with modern and inferior quality units. Hinged shutters are considered character-defining features; nailed shutters are considered modern imposters and are not character-defining.

Condition
Shutters have been removed and retained for future re-installation. Shutters have not been individually assessed to determine their condition; therefore a decision has yet to be made to preserve or replace these louvered features. They are mostly in poor condition; several having failed while in-situ.43

It is likely the current shutters date from the mid-to-late 19th century [possibly 1860-68]. Several have been replaced with 20th century models – these have mostly failed [and should be replaced with more traditionally constructed units if reinstalled]. Vinyl shutters which had been applied to the building at the rear door have been removed and discarded.

43 Shutter repair and rehabilitation is programmed for FY2012.
B20 Exterior Enclosure

B2030 Exterior Doors

Description

The two primary first-story doors [D101 and D110] and their paneled surrounds are historic federal period style doors. They are constructed with pegged mortise and tenon frames with integral panel trim and free-floating infill raised panels. Exterior doors likely date from mid-19th century [or earlier] architectural periods. Two additional doors [D112 and D208] have been added in the 20th century (Figure 86).

Garage [R107] - This was an open bay car-port type structure and was designed and built without exterior garage doors. The current temporary wood frame structure with doors was constructed by the National Park Service to enclose the garage for a workshop.

Cellar Stair Bulkhead Door [D001]: A modern wood framed cover for the cellar stairs, this door is hinged at the top edge by two gate style hinges and supported by the concrete bulkhead frame level with the garage floor. The frameless stair cover is assembled from ship-lapped nominal 2x8 construction grade material with 2 battens on the underside; boards are nailed to the battens.

Condition

Exterior doors likely date from mid-19th century [or earlier] architectural periods. Wear and tear have caused many of the deficiencies including hardware and frame fatigue, sagging of the door within the frame [failure of through-tenon construction and poor 20th-century repairs], exterior paint failure, lack of weather-stripping, and general looseness of the door unit and the surrounding frame unit. These exterior features are in fair to poor condition.

The primary house door [D101] at the north elevation (there are no doors at the west) has been preserved (Winter 2009) as part of the exterior preservation of the house. These two elevations have the most severe weather exposure and were chosen to receive treatment in advance of other elevations.

D110, the primary door at the south end of the house also dates from the early 19th century (possibly earlier). During the winter of 2009-10 it was removed from the site for major repairs and preservation as was the door frame. Other exterior doors (at the east elevation) will be addressed in FY2010 as part of another HPTC project.

Doors at the garage are in fair condition. The extant wood frame south wall with doors is a temporary infill wall to be removed at a later date. Maintenance deficiencies include exterior paint work, caulking and small areas of deterioration.

44 Reference Smith & Veale architectural drawings, August 1952.
45 HPTC Project Agreement, Repair Thomas House North and West Elevation Windows and Doors, PMIS 13241, Component B, FY08-09. Other aspects of this project include: removal and replacement of interior door D104 with a new door of sympathetic design characteristics.
Figure 86. The two primary, first-story, 19th-century doors (D101 and D110) may be seen on the north elevation (top) and south elevation (bottom). Two 20th-century doors are also noted on the south elevation.
B20 Exterior Enclosure

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Serious</td>
</tr>
</tbody>
</table>

B2030-ESD Exterior Storm (Screen) Doors

Description

Exterior storm (screen) doors are extant at D101A, D112A, D115 and D208A; previously, one was extant at D110. All are light-weight wood frame doors outfitted with screens – they do not appear to have been built to carry winter glass panels. These doors were likely added ca. 1949 – 1956 by either the Hilgenberg or the Clapp families.

Condition

D101A has been repaired by HPTC during the recent exterior window and door preservation project (2008-10) and is in good condition (Figure 87). D112A and D208 are in fair condition with typical exterior paint and hardware deficiencies. The status of D110 is unclear; it does not appear a storm door has been fabricated for this location.

![North elevation screen door (D101A) shown prior to repair typifies poor condition of exterior storm doors on the house.](image)

Figure 87. North elevation screen door (D101A) shown prior to repair typifies poor condition of exterior storm doors on the house.
B30 Roofing

B3010 Roof Covering

- B3010 - 1 Main Block, South Wing, and SE Porch
- B3010 - 2 Southeast Corner [R203] Roof
- B3010 - 3 Garage Roof (East Addition)
- B3010 - 4 Enclosed Porch Roof (West Addition)
- B301004 Flashing & Trim
- B301005 Roof Drainage System
- B301005-1 Roof Drainage, Main Block & S. Wing
- B301005-2 Roof Drainage, Garage & Enc. Porch

Item description includes B301004 Flashing & Trim [items associated with the roof and the Roof Drainage System] and B301005 Roof Drainage System [includes gutters, downspouts and all associated fittings].

Roof covering types used on Thomas House from top include Pennsylvania blue/black slate on main block and south wing, TPO (elastomeric) over R203 on SE corner of main block, and blue/black fiberglass architectural shingles on enclosed porch and garage additions.
B30 Roofing

B3010-1 Main Block, South Wing, and Southeast Porch

Description
The slate roof of the main block of the house (including the southeast porch) and the south wing were replaced ca. October 2006 – May 2007. This project, executed by HPTC for MONO, included installation of a new Pennsylvania blue/black slate roof to match the previous roof, replace flashing and trim (including all through roof penetrations), repair the roof sheathing (10 percent) and roof rafters [B1020 Roof Construction], restoration of the three north façade dormers and sash, installation of a new roof drainage system including new snow-retention devices to replicate the extant conditions and repairs to the 5 masonry chimneys. This project is thoroughly documented in the FY07 Thomas House Slate Roof and Gutter Replacement Project Historic Structure Treatment Record (HSTR) (Figure 88 and Figure 89).

Condition
The slate roof of the main block of the house (including the southeast porch) and the south wing were replaced ca. October 2006 – May 2007. The above stated items are in good condition with only minimal maintenance deficiencies. Some slates have dropped out of the roof field since completion. Some have been replaced; others (approximately 6 to 8 slates) have yet to be replaced as of May 2009.

Figure 88. Above, slate roof in process of being replaced on north side of main block (2007).

46 Thomas House Slate Roof and Gutter Replacement, FY07, PMIS 114756, Historic Structure Treatment Record.

47 Winter storm damage in February 2010 further damaged the slate roof and several more slates have dropped from the roof. Ice damming at the former bathroom vent caused some interior water damage to second floor ceiling in R207.
Figure 89. New roof installed on main block (top), and south wing (bottom).
B30 Roofing

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Minor</td>
</tr>
</tbody>
</table>

B3010-2 Southeast Corner [R203] Roof

Description
The HSTR indicates the flat roof area in the southeast corner (over R203) was replaced by a contractor in 2006. The roof surface in this area consists of a thermoplastic polyolefin (TPO) type of elastomeric roof covering. This project included replacement of the parapet wall coping and roof-to-wall flashing (Figure 90).

Condition
The flat roof area in the southeast corner (over R203), the parapet wall coping, and roof-to-wall flashing remain in good condition with no observed maintenance deficiencies.

Figure 90. TPO roof installed in 2006 on southeast corner of main block (over R203).
B3010-3 Garage Roof (East Addition)

Description
This gable roofed structure is covered with blue/black fiberglass architectural shingles which replicate the slate color of the main house roof (Figure 91). Gutters and downspouts are painted galvanized metal and supported by gutter hangers from the edge of the roof.

Condition
The fiberglass architectural shingle type roof over the one-story addition at the Garage was not addressed at the time of the main roof replacement nor were the gutters and downspouts. The roof covering was assessed from an aerial lift in August 2007 and appears to be in good condition; all shingles are intact and no interior leaks are visible. The gutter and downspout system on the garage is in fair to poor condition with minor damage to gutters, gutter hangers and downspouts. Site drainage is fair to poor at this location – see Part G of the condition assessment.
B30 Roofing

B3010-4 Enclosed Porch (West Addition)

Description
This gable roofed structure is covered with dark blue/black fiberglass architectural shingles which replicate the slate color of the main house roof. Gutters and downspouts are painted galvanized metal and supported by gutter hangers from the edge of the roof.

Condition
The fiberglass architectural shingle type roof over the Enclosed Porch was not addressed at the time of the main roof replacement nor were the gutters and downspouts. The roof covering was assessed from an aerial lift in August 2007 and appears to be in good condition; all shingles are intact and no interior leaks associated with the roof shingles are visible. The gutter and downspout system on this wing is in fair condition with minor damage to gutters, gutter hangers and downspouts. Site drainage is to poor at this location – see Part G of the condition assessment.

Figure 92. Shingle-roofed enclosed porch (west addition).
B301004 Flashing and Trim

Description

The Thomas house roof is comprised of many types of traditional flashing and trim – all carried out in traditional sheet metal techniques – but not necessarily original to the house. Side wall step flashing is used between the roof slopes and the chimneys and also between the east and west additions and the adjacent walls of the main house block. Other types of flashing include side wall and copings at the parapet wall (not original), the sheet metal chimney caps (also not original) and ridge and valley flashing at the main roof (ca. 1949). These all add to the durability of the roof system as a whole.

Traditional flashings and roof trim were replaced as part of the 2007-08 roof replacement project with lead coated copper and other in-kind materials. Extant step flashings and parapet wall flashing are described in HSTR (Figure 93).

Condition

The sheet metal roof flashings were replaced and wood trim repaired and repainted ca. 2007-07 as components of the slate roof replacement project; these features remain in good condition. Single-wythe double-flue masonry chimneys (5) were also repaired above the roof line as part of the roof project. Pre-fabricated sheet metal chimney caps (screened) were inspected and determined to be in good condition at that time.\(^{48}\) All sheet metal flashing needs to be inspected on an annual basis to verify that it remains in good condition.

\(^{48}\) Interview with HPTC Carpentry Team Project Leader by Senior Historical Architect, March 2009.
B30 Roofing

B301005 Roof Drainage System (Gutters and Downspouts)

Description
The extant system is composed of gutters and downspouts that drain to daylight at the base of the building. A roof drainage system has been extant since at least 1888. Gutters are half-round style and hung from the roof using gutter brackets. The gutter itself is either copper, lead-coated copper or galvanized painted metal at various locations on the house. Downspouts are round and attached to the house masonry with round clasp downspout anchors; typically they match the material and finish of the gutters.

B301005-1 Main Block & South Wing
Condition: Good
Deficiencies: Minor

B301005-2 Garage & Enclosed Porch
Condition: Poor
Deficiencies: Serious

B301005-1 Main Block & South Wing
B301005-2 Garage (East Addition) & Enclosed Porch (West Addition)

Description
Replaced ca. 2007-09 as component of slate roof replacement project with lead coated copper. Extant roof drainage system components are described in HSTR (Figure 94 and Figure 95).

Condition
Replaced ca. 2007-07 as component of slate roof replacement project and remains in good condition on the main block and south wing. Systems at the east and west one-story wings are considered in poor condition with serious deficiencies. Downspouts discharge roof runoff at the base of the building, there does not appear to be a whole building drainage system in place (Figure 96).

Figure 94. Gutter and downspout replacement on main block of house.
Figure 95. Gutter and Downspout repairs on south wing. Top, broken cross-gable-end downspout; middle, downspout replaced, and bottom, overall view.

Figure 96. Modern additions. Left, downspouts on enclosed porch (west addition) in poor condition as are garage (east addition) downspouts, right. Neither provides proper runoff for water discharge.
C10 Interior Construction

Character-Defining Features

Individual Spaces
- Hierarchical organization of interior (public vs. private)
- Layout of rooms in relation to circulation
- Architectural integrity of the plan

Related Spaces and Sequence of Spaces
- Connections between rooms and hallways

Interior Features
- In-suite millwork
- Built-in cupboards
- Fireplace mantels
- Corinthian-order columns in east double parlor
- Historic door hardware

C10 INTERIOR CONSTRUCTION

C1010 Partitions
C1020 Interior Doors
C1030 Fittings

C10 Interior Construction

Interior Visual Character

Individual Spaces
Passing through the front entry of the Thomas House, the importance placed on the central hall and main stair is apparent. Public circulation spaces are important throughout the house and help to clearly define the hierarchical structure of the interior spaces (public vs. private).

The central hall and staircase, on the first (R100, ST101), second (R200, ST205), and third (R300, ST203) floors are the primary spatial elements of the house interior and the largest enclosed volumes (other than the unfinished attic) on the public side of the house. Together with the rear stair (ST102) and second floor side hall (R206), these public areas are important individual spaces.

Some private rooms serve the public side of the house but are not immediately apparent. Major public spaces are found at the front of the forced formal arrangement of the main block with a surprisingly large double parlor to the east (R101) and dining room to the west (R102). R101 is bisected by a dropped structural beam with applied decorative motif; it was once supported by a pair of fluted Corinthian-order columns (still extant). Twin fireplace mantels with Greek Revival decoration further emphasize the simple elegance of the space.

Rooms (including interior partitions and finishes) which should not be considered character-defining are R105 (removed 01/2009), R106 and R207; these are modern rooms dating from the late 1950s.

Related Spaces and Sequence of Spaces
Rooms are arranged around the central stair hall (R100) in the main block of the house on the first and second floors. While most rooms now have connecting doors, originally the plan was conceived as a series of private rooms with an entrance from public hallway to private room. Architectural trim at door surrounds further emphasizes this through elaboration of millwork on the public side or replication of millwork on both sides of the door (in most cases). The exception to the hall side entry as the primary entry is the northwest room on the first floor (R102: dining room/west parlor), which may have had a larger double-width opening leading to the middle room (R103: kitchen/dining room) than to the hall. Some theories suggest an original double parlor may have existed in this location. Currently a large paneled opening has been in-filled by a series or northward facing cupboards. While the cupboards are not CDFs, the paneled jambs and lintel may be significant and are CDFs.

In more recent times a series of interior modifications has resulted in a plan of inter-connectedness. Most all rooms, including bathrooms,
are connected by more than one door to adjoining spaces. The interconnectedness reveals the evolution of the use of the space but is not character-defining.

Prior to the enclosure of the north bay of the southeast porch, there was direct access from the central hall to both the front and rear doors. Currently small utilitarian spaces (R106/R207) (non CDF) form an ante-chamber to the south terminus of the main hall on both the first and second stories.

Interior Features
Interior features are the three-dimensional building elements or architectural details that are an integral part of the building.

Most interior millwork at the Thomas House is related to the evolution of the house and is therefore character-defining. Rooms are laid-out with in-suite millwork, meaning millwork is intended to match or be compatible within each room. To some extent this is carried out between rooms where matching millwork is found in several rooms. Built-in closets or cupboards, fireplace mantels and over mantels, door and window surrounds, interior doors and windows (including transoms), baseboards and some chair rails are representative of the various periods of construction and contribute to the character of the interior. Exceptions to this rule would be modern changes that are documented outside the period of significance as listed later in this section.

Twin fluted Corinthian-order columns in the east double parlor (R101) (Figure 97), along with the paneled beam covering, have been significant features of this primary interior space. Re-installation of the still extant columns and capitals would return the balance between the interior features and the footprint of the room that is now missing.

Staircases with their incumbent newel posts, handrails, balusters and stringer brackets also play an important role in the definition of the character of the interior spaces. Primary circulation is directed by the sweep of the handrail up the wide main staircase (ST101) to the second floor landing while the service stair in the rear wing (ST102) is more functional in its progress to the second floor. Changes in the staircase millwork also help to map out the changes within the walls of the house.

The Thomas House was constructed without many interior closets (in the modern sense of the word) but has been retrofitted through the years. Historic closets include CL201 at R201 and CL203 which serves R203; both appear somewhat integrated into the construction history of the second floor main block (Figure 98).
Historic door hardware such as knobs, locksets (rimlocks and mortise locks), strap hinges, butterfly hinges are also character-defining features. Historic window hardware and other miscellaneous exposed building hardware should also be considered character-defining (Figure 99).

It is known that renovations made to the house ca. 1947-53 introduced new but historically influenced elements into the house (or perhaps even antique elements from other historic buildings elsewhere). Rooms on the first floor affected by these renovations were likely to have interior room cornices and chair rails installed (R101, R102 and R103). Similar changes occurred at the second story and included all the primary rooms with the possible exception of the rear hall (R206). These features are not considered character-defining. Extant closets in west facing second floor rooms (CL202A, CL202B, CL208) are also not to be considered character-defining features.
Figure 99. A variety of door knobs, window hardware (Blake sash pulley), and door hardware (strap hinge) are character-defining features.
C10 Interior Construction

<table>
<thead>
<tr>
<th>C1010</th>
<th>Partitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Interior partitions are described as non-load bearing walls used to separate interior spaces and make up about ½ the walls in the house; the other walls being load-bearing masonry (Figure 100). The interior partition walls in the Thomas House are wood frame and finished with plaster over wood lath; the lath being nailed directly to the framing walls. These walls are not conventional 2x4 frame walls as are found in typical platform frame or balloon frame construction. Interior partitions at the Thomas House are fitted between load bearing brick masonry walls and are usually later modifications to the floor plan.</td>
<td></td>
</tr>
</tbody>
</table>

At **R208**, the partition that divides it from the stair hall **[R206]** was added sometime after the room was finished. This can be seen as the infill partition overlaps the window and door surround and the floor boards are continuous from the hall into the main room. The partition itself is unusually thin and may be fabricated from 1x2 studs lathed and plastered on either side creating a wall whose total thickness is about 4 inches.

Other frame partitions include:

- **R201/203** east/west wall with closets **CL201** and **CL203**
- **R200/202** north/south wall with closets **CL202A** and **B**;
- **R300/301** north/south wall;
- **R300/302** north south wall.

Condition

The framework for the interior partition walls appear to be in good condition as visual deficiencies are minor. Hairline cracking (anything less than ¼ inch) is to be expected in historic plaster works from expansion and contraction of the materials.
Physical Description, Condition Assessment and Character-Defining Features

C10 Interior Construction

Figure 100. Top, partition wall between R201 / R203 with closet CL201 in foreground; wall separating R300 / R301 in attic.
C10 Interior Construction

C1020 Interior Doors

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Minor</td>
</tr>
</tbody>
</table>

Description

The historic interior doors are all made in the federal period style of six-panels, three panels on either side of a central stile. Panels above and below the locking stile (the bottom and middle range) make up approximately ¾ the height of the door with the top panel row (above the top hinge stile) making up the remaining ¼ height (Figure 101). While the shape and configuration of the panels remains constant through the house (with the exception of attic, cellar and later closet/renovation doors) there are at least 6 different styles of interior panel molding used (see HABS MD-1251-A, sheets 10 and 17–19). Structurally these doors are traditional thru-tenon construction with integral panel moldings and raised panels.

There are also a series of doors that are post-historic; they date mainly from the mid-20th century alterations to the building interior. These doors also carry the six-panel configuration but are usually dimensionally smaller than the historic doors and the hardware is more modern.

A double french-style door with three glass panes above a paneled wood base was installed in the southwest corner of R102 to service the screened porch [P103] upon its completion (ca. 1952). This double door opens outward onto the porch.49

Most doors bear the ghost marks of previous hinge and hardware sets as they have been relocated within the house. Some have had their sizes changed - either enlarged through the use of in-kind patches or repairs (also known as a dutchman) or reduced through sawing of the rails or stiles. Several historic doors exhibit rodent holes at the bottom corners, some with tin can repairs intact.

Painted door finishes have suffered from the 2008-09 freeze/thaw cycle; this has mainly impacted the top layer of paint leaving the underlayments intact with their paint history (and possible evidence of faux painting) still protected.

Door hardware: Many doors retain all hardware including: hinges, knobs and knob plates (roses), keyhole escutcheon plates, and locking hardware consisting of mortise locks or surface mounted rim locks.

Condition

Interior wood doors are in good structural condition. Most door finishes have suffered from the freeze/thaw cycle of the 2008-09 winter; this has mainly impacted the top layer of paint leaving the underlayments intact with their paint history (and possible evidence of faux painting) still protected.

Door hardware is mainly intact although a high percentage of doors have had hardware changed or updated.

49 This door has been removed and temporarily replaced with a modern six-panel door.
Figure 101. Interior doors, top row, left to right, door to rear hall (D210) and closet door (D211) in R203; side hall door (D207) with hand-wrought, strap hinges. Bottom left, D103 separates the dining room (R102) from the entry hall (R100); middle, D102 divides the front parlor (R101A) from the entry hall. Bottom right, a variety of interior door hardware including knobs, locksets and hinges.
C10 Interior Construction

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Minor</td>
</tr>
</tbody>
</table>

C1030 Fittings

Description

The Thomas House has several character-defining interior architectural features ranging from the simple hearth-side built-in cupboard to more elaborate units recessed into the wall of a room or inset into the passage between two rooms (Figure 102). All of these features are fabricated from wood and most had painted finishes; hardware (hinges, locks and latches) was kept simple.

R102 - A large double cupboard/china closet was built into the enlarged door opening between R102 and R103. This unit was designed to service R102 so its doors open into that room. The 14 door unit is patterned after the six-panel door at its center. A series of wood shelves is hidden behind the wood solid panel doors. Paneled jambs and lintel (header) are concealed behind the cabinet construction and may indicate the 1847-1860 width of the opening.

R103 - A built-in cupboard is located in the southwest corner of the room and is recessed into the wall surface of the chimney surround. Its tall double wood paneled doors are simpler than most all other doors; each door consists of three undecorated wood panels.

Kitchen (R103), bathroom (R105) and Laundry Room (R106) surface mounted cabinets (ca. 1952-1974) have been removed as part of the 2009 rehabilitation project. Bookcases located in R104 have also been removed.

R204 – A built-in cupboard in the southwest corner of the room similar to that located in R103 except the panel doors are split into upper and lower doors. The lower door is made up of a single panel door while the upper doors consist of triple molded panels patterned after the federal period interior doors.

R208 – the south wall of this room has built-in cupboards on either side of the central fireplace. The unit to the west of the fireplace [CB208W] is a single door unit similar in design to a half federal design doorway with three vertically stacked panels. The unit to the east of the chimney is more elaborate consisting of an upper and lower chamber. Each chamber is made of double doors with paneled surfaces; the lower chamber doors are single paneled and the upper chamber doors, arched at the top, are triple paneled units.

Also featured in the house from the mid-20th century alterations are a series of interior closets located on the second. The closets are built into the rooms and sometimes elevated above the interior floor level on the west side but level with the floor on the east side.

Condition

Architectural fittings are defined as cabinets and casework. The Thomas House has several interior architectural features ranging from the simple hearth-side built-in cupboard to more elaborate units recessed into the wall of a room or inset into the wall between two rooms. All of these features are fabricated from wood and most had painted finishes; hardware (hinges, locks and latches) was kept simple. These historic features are in fair to good condition with serious to minor maintenance deficiencies (mainly wear and tear).
Also featured in the house are a series of interior closets located on the second floor and a bookcase on the first floor; these features were added during the mid-20th century. These features remain in good condition with no serious maintenance deficiencies; several have been removed as part of the rehabilitation project.

Figure 102. Top left, 14-door double cupboard (CB102) in dining room (R102); top right, built-in cupboard (CB103) in southwest corner of kitchen (R103); bottom left, second floor bathroom (R204) cupboard (CB204); and bottom right, cupboards in the south wall of bedroom 5 (R208) (CB208E and CB208W).
C20 Stairs

C20 STAIRS

C2010 Stair Construction
 C2010-1 Main Hall Stair
 C2010-2 Rear Hall Stair
 C2010-3 Garage Cellar Stair

C2020 Stair Finishes

C2010 Stairs

Description
There are 3 major staircases in the Thomas House and a minor stair from the garage into the cellar. The staircases will be described here and the newels, balustrade and railings are captured in the architectural description.

Condition
The 3 interior stairs are in good condition although the riser to tread ratio is not in keeping with today’s standards. All have railings with spindles and newel posts to anchor the railings.
C2010-1 Main Hall Stair (ST101 / 201A & B / 203)

Description
The primary stair in the house, this open staircase rises along the eastern wall of the main hall (R100) to central landing where the stair turns, in two separate sets of risers, both to the north and the south. The continuation of the main stair (ST101) is to the north with ST201A continuing up to the main hall (R205) at the second level. The risers that turn to the south (ST201B) continue up to the bathroom (R207) and door out to the porch (P201). This stair continues up to the attic by another separate set of risers contained within ST203. This U-shaped stair also rises along the east wall, has a landing and turns north along the west wall of the central hall. This is the only stair that goes to the attic level.

Condition
Wood frame stairs in good condition; some wear and tear to treads. Newel posts and railings are in good condition.
C20 Stairs

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Serious</td>
</tr>
</tbody>
</table>

C2010-2 Rear Hall Stairs [ST102/202]

Description
The secondary or “back” stair is located in the perpendicular section of the hall (now R104 on the first story) and rises along the south wall of R103. This stair is contained within an enclosure with a door (D108) at the base. It is a U-shaped stair with a landing at the west wall of the house and rises along the south wall of the side hall (R206) until it reaches the second story as ST202 (Figure 104).

Condition
Wood frame stairs in good condition; some wear and tear to treads. Newel posts and railings are in fair condition; deficiencies are in the loose hand rail segments.

Figure 104. ST202 viewed from top of stair in side hall (R206), top; connects to ST102, bottom; worn treads visible.
C2010-3 Garage Cellar Stair [ST103]

Description
The cellar stair is reached through a bulkhead door in the garage (D001) and proceeds directly under the east wall of the house into the east room of the cellar (R001). It is a simple framed open riser stair (Figure 105).

Condition
Wood frame stair with open risers in poor condition; structural deterioration in stringers and treads and minimal head room as it passes under the east wall of the house.

Figure 105. ST103, top right, in poor condition with access through bulkhead door (D001) in garage, bottom.
C20 Stairs

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Serious</td>
</tr>
</tbody>
</table>

C2020 Stair Finishes (All)

Description

Interior stairs are either painted or varnished, usually some combination of the two. Carpet runners were used to cover the risers and treads but were removed at the end of the recently completed life estate. Typical treatment includes painted risers, stringer boards, stair brackets and balusters; stair treads, newel posts, and handrails are usually stained, varnished or sealed (Figure 106).

Condition

Interior stairs have both painted and waxed (or varnish/polyurethane) finishes. Risers, treads and railings are unpainted and finished as above. The decorative stringer rails are painted. Finishes are generally in fair condition due to wear and tear and the impact of the recent move-out. Stair treads (currently without the carpets that have protected them until recently) have borne the brunt of the recent activity as they have been unprotected resulting in a minor/serious maintenance deficiency rating. Treads are slick underfoot due to the hardness of the finish and lack of runner carpets and unevenly worn due to years of foot traffic. Railings have also been slightly damaged by recent activity and are dirty. Painted finishes are worn but appear to be in fair condition.

The cellar stair is unfinished and in poor condition.
Figure 106. Top to bottom, ST101, ST201A, ST202, ST203, finishes show wear.
The interior finishes analysis was not a comprehensive interior paint study but rather focused on selected architectural and character-defining features. A comparative analysis was designed to try to determine if certain selected features had similar or dissimilar paint histories and to use that information to try to place the features within the overall history of the house.
Surface Materials and Finishes
Plaster on brick (or wood lath) wall and ceiling surfaces are character-defining features and should be preserved wherever possible. Most wall surfaces are thought to be plaster and lath; later layers of plaster installed in the mid-20th century continue the tradition of smooth walls and ceilings and should be included as CDFs.

Not CDF: Modern wall coverings such as wallpaper, ceramic tile and vinyl.

Floors remaining in-situ are largely random-width and random-length tongue and groove wood plank floors. All the floors in the house have a high gloss finish as a result of having been heavily varnished and waxed or sealed; while the wood plank floors are character-defining features, this high-gloss finish is not.

Most all the first and second room floors (and the west end of the attic) have been removed at least once in the past and therefore do not have integrity of place; further removal and reinstallation of the floorboards will not diminish their character-defining aspect. It should be noted that floorboards in the attic, especially in the unfinished attic area (R302), exhibit hand-planed tool marks and should be left in-situ as it is possible they have not been previously disturbed.

Not CDF: Modern floor materials, such as the vinyl tile floor in R204.

Walls and ceilings are smoothly plastered and have in recent years supported patterned wallpapers as well as paint. Historic documents and fabric evidence suggest the house has supported both wall and ceiling papers throughout its history.52 Various period schemes are beginning to emerge through the selective paint and paper analysis process. A total understanding of the interior finishes is not currently understood, and therefore cannot be determined character-defining, until a more thorough interior finish analysis has been completed.

Although a limited historic wallpaper survey and analysis was completed none of the extant papers that are exposed (except the fragment in the SW corner of R203) fit into this category. NOTE: a new historic paper fragment has been discovered on the interior surface of the north sidelight panel (SL101B) at D101 – it should remain in-situ for further analysis.

Heavily veined Italian style marble (tentatively identified as portoro from the La Spezia region near Liguria, Italy) has been discovered on the mantels (M101A, M101B) in the double parlor. Currently obscured beneath layers of paint, the stone is now partially visible due to blistering paint finishes (Figure 107). The stone used to construct these mantels should be recognized as part of an important decorative scheme in the double parlor (R101) (ca. 1860-68). It influenced the decorative finishes (such as black painted baseboards and mantels) used throughout the house but the full decorative scheme has not yet become fully understood.

Other interior finishes to be noted as character-defining but not yet fully documented include the painted faux finishes found beneath layers of later paint on interior woodwork; especially the graining on

52 Reference Yocum report (on enclosed CD).
Figure 108. R104 fireback at CH05/M104.
many interior doors and door surrounds (and possibly baseboards). If these features were to be revealed they would add significantly to the interior character.

A complete interior finish (paint and paper) study and analysis is required to determine all possible locations of historic and/or faux finishes. An assumption should be made that historic and/or faux finishes are present and millwork should be treated as such.

Historic paint finishes concealed beneath layers of later applied paint have not been thoroughly investigated. While their significance has not been determined they should be protected in-situ as character-defining features.

Interior Craft Details
Interior craft details include those items which demonstrate surface qualities of the materials such as color, texture, or evidence of craftsmanship or age.

The Thomas House exhibits hand-crafted techniques at built-in cabinets (R103, R204 and R208) with hand-planed door fronts; these are noteworthy character-defining features and should be retained undisturbed. Other features include paneled door and window jambs in specific locations, federal period style architectural doors, window sash and their surrounds, and fireplace surrounds and mantels.

The use of cylinder glass in several window panes also demonstrates the quality of craft technique and age. These historic glass lights (seen in the photos as slightly green in color) may have been produced locally (further adding to their significance) are character-defining features.

The fireback in R104 (CH05/M104) was likely installed in the house during the Hilgenberg renovations ca. 1953 and is not considered character defining. However, additional information provided by Ms. Heidi Campbell Shoaf, executive director of the Frederick County Historical Society and authority on cast iron firebacks notes, “it may be a type of Colonial Revival fireback made in the 1890s-1920s ... it could be English or it could easily be American” (Figure 108).

Exposed Structure
The dropped beam in R101 (although the result of an architectural change and not originally a decorative scheme) is an important character-defining feature. Re-installation of the repaired twin Corinthian columns will return structural stability as well as visual definition to the room.

Exposed structure in the attic is a highly articulated principal rafter system. It exhibits both construction and assembly methodology and is a primary character-defining feature of the structure. Graffiti left on the exposed rafters identifies both owners and tenants through the years, is evocative of its time and is considered to be character-defining.

Exposed beams and joists in the cellar are reflective of period of construction and are character-defining for the cellar and the structural system.
Room Schedule of Character-Defining Features (CDFs)

Cellar and First Floor

R001 and R002
Stone and brick interior walls, exposed first floor timber frame system, earth or gravel floor, exterior wall window frames and sashes, interior door frames (not extant); R001 only: remnants of previous cellar exterior bulkhead door.

Not CDF: Remnants of building systems.

R100
Floorboards, beaded baseboard, interior doors and door surrounds, front door sidelight and transom assembly, stair and associated architectural trim (newel, stringers, handrail, balusters, risers and treads), plain wall and ceiling surfaces (see previous section for illustrations – Surface Materials and Finishes).

Not CDF: Chair rail, cornice.

R101
Floorboards, banded (rectangular detail) baseboard, paired matching stone (marble) Greek Revival style mantels (M101A, M101B), window surrounds, windows and jib doors, dropped ceiling support beam and enclosure, twin supporting Corinthian columns, plain wall and ceiling surfaces (no trim other than baseboard), interior doors;

Not CDF: Chair rail, cornice.

R102
Floorboards, beaded baseboard, mantel, interior window and door surrounds, windows and interior doors, plain wall and ceiling surfaces (no trim other than baseboard);

Not CDF: Chair rail, cornice.

R103
Floorboards, beaded baseboard, mantel, built-in cupboard, window and door surrounds, plain plaster wall surfaces (no trim other than baseboard);

Not CDF: Chair rail, cornice, non-plaster ceiling surface.

R104
Floorboards (reinstall/salvage), baseboard, masonry fireplace, interior stair (ST102) (newel, handrail, balusters) and wall enclosure, rear door with transom and surround (D110), exterior window sash, interior door surrounds (D107, D111), plain plaster wall surfaces (no trim other than baseboard);

Not CDF: Interior window trim, non-plaster ceiling surface.

R106
Interior door surrounds at D111 and D113;

Not CDF: Interior finishes.

Radiator backer board not included; wherever mentioned, it is not a CDF.
Physical Description, Condition Assessment and Character-Defining Features

C30 Interior Finishes

R001: North stone cellar wall; W004 (R001) hand-hewn frame; R002: SW corner of original foundation.

R100: North entrance (D101 at center) with transom and sidelights; D106 hardware; D113 hardware.

R101: Facing northeast, note Greek Revival mantels (M101A/B); M101B; Corinthian columns and beam.

R102: Facing northwest, two jib doors on north elevation; mantel (M101B) and surround.

R103: Facing southwest, note built-in cupboard (CB103) between fireplace and window; D106 in east wall.

R104: Facing southwest; floor removed for fabric investigation.

R106: northwest corner, D111 and D113.
Second Floor

R200
Floorboards, beaded baseboard, door surrounds, interior doors, staircase, plain wall and ceiling surfaces (no trim);

Not CDF: Built-in book shelf at W203.

R201
Floorboards, beaded baseboard, mantel, window surrounds, door surrounds (D202, D203), closet and architectural trim, plain wall and ceiling surfaces (no trim).

Not CDF: Chair rail, cornice.

R202
Floorboards, beaded baseboard, mantel, door and window surrounds, interior doors, plain wall and ceiling surfaces (no trim);

Not CDF: Chair rail, cornice and remaining built-in closet.

R203
Floorboards, beaded baseboard, mantel, door and window surrounds, interior doors, closet and architectural trim, plain wall surfaces (no trim);

Not CDF: Chair rail, cornice, non-plaster ceiling surface (to be verified).

R204
Beaded baseboard, mantel, built-in cupboard, interior window and surround (W218), interior door and transom surround (D204), plain wall and ceiling surfaces (no trim);

Not CDF: Extant floor boards and covering, chair rail, cornice.

R205
Floorboards, beaded baseboard, chair rail, stair and railing (ST101, 201A&B), interior doors and surrounds, plain wall and ceiling surfaces;

R206
Rear stair (ST202) including baseboards, handrail, newels, balusters, risers and treads.

R207
Shape of room, slope of ceiling, interior door frames and doors.

Not CDF: All interior finishes, fixtures, and building system remnants.

R208
Floorboards, beaded baseboard, mantel, door and window surrounds, built-in cabinets, plain wall and ceiling surfaces, non-extant historic chair rail (matches interior window apron), partition wall between R206 and R208;

Not CDF: Extant vinyl tile floor covering and wood board subfloor.

54 The closet in R201 (CL201) and in R203 (CL203) is possibly a 19th century closet associated with the Thomas renovations. These closets are sympathetic to the room interior and are considered character-defining features of the space(s).
Physical Description, Condition Assessment and Character-Defining Features

R200: Facing north, W203 (former exterior door); ST203 to attic.

R201: Facing southeast; summer beam exposed spans length of main block.

R202: Facing northeast, note window and door surrounds; mantel detail; southwest corner of room.

R203: Northwest corner of room; detail of fireplace and mantel.

R204: Facing east, former exterior D204 and W218; mantel and built-in cupboard; door hardware.

R205: ST201A and landing; R206: ST202 rear stair; R207: former exterior door with transom; R208: South wall with CDF built-ins.
Thomas House Historic Structure Report

C30 Interior Finishes

Third Floor / Attic

R300
Front stair (ST203) including baseboards, handrail, newels, balusters, decorative stringers (riser brackets), risers and treads, dormer and window (W302), plain wall and ceiling surfaces;

Not CDF: Wood strip floor.

R301
Interior door trim and door (D301), dormers and windows (W301), gable end windows (W307, W308), partition between R301 and R300, plain walls and ceilings, and definition of exposed masonry chimney (CH01) and principal rafter structure;

Not CDF: Wood strip floor.

R302
Hand-planed floorboards, dormer and window (W303), partition between R302 and R300 including batten door (D302), exposed principal rafter structure and rafter graffiti, gable end windows (W304, W305) and masonry chimney (CH03).

R303/304
Floorboards, exposed roof frame system, remnant of south gable end partition on east side of ridge line, exposed masonry chimney stacks (CH04, CH05), and the south facing gable end window (W306).

Condition
The Historic Preservation Training Center divided the survey and analysis of the interior into two components. Selective paint analysis was conducted by the National capital Region’s in-house Architectural Conservator. Interior paper survey and analysis (wall, ceiling and border) tasks were prepared by an Architectural Conservator from the NPS Northeast Regions’ Historic Architecture Program. Both studies are included in the Appendices to the Historic Structure Report and are drawn upon throughout the report.
C30 Interior Finishes

R300: ST203 to attic R300.

R301: Facing east, two six-light windows (W307 / 308) border chimney (CH01); facing west, partition wall with door D301; R301 during fabric investigation with lath exposed, dormer window (W301) at left of image.

R302: Facing east toward R300, note exposed principal rafter system; facing west; historic graffiti on rafter.

R303 (main block) / R304 (south wing): Facing south, CH04 in foreground defines boundary between R303 and R304, note exposed common rafter system; from R304 facing north toward R303; south gable end with window (W306)
C30 Interior Finishes

C3010 Wall Finishes

Description
Interior finishes generally consist of paint or wallpaper over plaster or drywall, ceramic tile and small quantities of vinyl backsplash.

C3010-1 Plaster (Wall)

Description
The primary interior wall material is plaster except where it has been replaced by drywall to repair failed or removed plaster. Plaster is done on wood lath over the substrate except where it has been applied directly to the brick masonry at the exterior walls or wire lath where later repairs have occurred. Drywall is attached directly to the wood frame of the interior partitions or ceilings where it has been used for repairs or replacements. Interior finishes generally consist of paint or wallpaper over plaster or drywall, ceramic tile and small quantities of vinyl backsplash.

Several areas of plaster have been selectively removed for fabric investigation purposes. It is clear that in several locations throughout the house multiple layers of finish plaster have been used to “smooth out” the walls. Most plaster applications consist of a traditional three-coat application. Animal hair is evident in many of the scratch coat layers that have been exposed.

Condition
Most plaster is firmly adhered to the substrate and is in good condition. There are areas of localized damage and cracking. Plaster coated walls have suffered over the years either from water infiltration through the brick masonry wall, water leaking in due to a gutter failure, or interior plumbing problems that released water into the walls; they exhibit a fair amount of water staining, efflorescence, and previous repairs. Plaster also exhibits stress cracking from either historical impacts (war damage) movement of the building, or normal expansion and contraction. Spider web cracks (less than 1/8 inch) are visible throughout the house and are not considered significant in terms of the condition of the plaster. Several areas of plaster have been selectively removed for fabric investigation purposes. Plaster analysis has not been conducted as of this date.

All interior plaster is considered a character-defining feature.
C30 Interior Finishes

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

C3010-2 Wallpaper

Description

Fourteen (14) wallpaper samples were analyzed as part of the Yocum report. All but one of them are characterized as mid to late 20th century papers, most of them from the 1950s – 1970s. The one 19th century paper\(^ {55} \) is well known, having been discovered some time ago. It is located in R203, below the floor yet above the ceiling of the room below (R101B), and is dated as ca. 1850s (Figure 109). It represents the changing nature of the interior of the houses function. This paper is also located in the main stair hall and was installed prior to the construction of the extant masonry wall.

The Yocum report is included on the enclosed CD.

Condition

Interior wallpaper is in a failed condition due to the recent freeze/thaw cycle occurring over the winter of 2008-09. Papers are peeling from walls (and have been partially removed) throughout the house. Most interior papers have been documented as part of this HSR and are included in the findings of the Yocum report.

55 Yocum, pgs. 36-7 and 40-1.
Figure 109. From top left, 20th-century wallpapers from R100 (entry), R101 (parlor), R102 (dining room), R200 (hall), R201 (bedroom), R206 (side hall). Below, wallpaper is a ca. 1850s wallpaper below the floor of R203.
C30 Interior Finishes

| Condition: | Poor |
| Deficiencies: | Not Rated |

C3010-3 Paint (Wall)

Description
A selective interior paint study has been conducted as part of this HSR with the objective of establishing paint color and sequence (chromochronology) relationships between selected pieces of interior woodwork. Analysis has not yet been completed for this study but it appears there is no conclusive evidence as to the relationship of certain features, as had been the described as the purpose of the research.

The Dewey report is included on the enclosed CD.

Interior walls and architectural features have been painted with a variety of 20th century paints.

Condition
Interior finish paint is in a failed condition, especially where gloss or enamel paints had been applied, due to the recent freeze/thaw cycle occurring over the winter of 2008-09. Interior paint finishes on the walls have not been systematically documented. Selective sampling and analysis of paint finishes has been focused on architectural and character-defining features throughout the house.
C3010-4 Ceramic Tile (Wall)

Description
Ceramic tile covers the wall in R204 immediately surrounding the tub enclosure. It was installed as part of the ca. 1949-52 house update project conducted by the Hilgenberg family. Wall tile in R207 was installed as a wainscot by the Clapp family.

Condition
While in fair to good condition the ceramic tile will be removed with the tub enclosure and bathroom fixtures as part of the interior rehabilitation.

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

Notes

- Ceramic tile is durable and resistant to moisture and stains.
- The tile is not slip-resistant, which may pose a safety hazard.
- Regular maintenance is required to prevent grout from becoming discolored or damaged.

References

- [Hilgenberg family records, 1949-52]
- [Clapp family records, 1950-52]

Further Actions

- **Plan**: Remove the ceramic tile as part of the interior rehabilitation project.
- **Recommendations**: Consider replacing the tile with a more modern and slip-resistant material for safety.

Additional Information

- **Tile Type**: Porcelain
- **Color**: Various shades of beige and brown
- **Thickness**: 0.5 inches
- **Grout Type**: Polyurethane

Implications

- The removal of the ceramic tile will reduce the historical footprint of the house.
- The new materials will likely enhance the modern aesthetic of the bathroom.

Cost Estimation

- **Labor**: $500
- **Materials**: $1000
- **Total**: $1500

C30 Interior Finishes

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

C30010-5 Sheet Goods (Wall)

Description
The backsplash in the kitchen (R103) wall area immediately adjacent to the counter, stove and sink (west and north elevations) had a vinyl patterned material applied directly to the paint-over-wallpaper-over-plaster wall surface. Multiple layers of paper and other 20th century sheet goods were used to surface the wall in this area; it is all over plaster. The wallpaper discovered under the vinyl is a 20th century paper documented in the Yocum report.56

Condition
All wall coverings are being removed as part of the interior rehabilitation project and are not rated for maintenance deficiencies.

56 Yocum, pg. 25.
C3020 Floor Finishes

C3020-1 Wood Floorboards

Description
Floors throughout the house are random-length, random-width tongue and groove boards fastened directly to the structural framing with cut nails. Interior floors appear to be made of pine (species was not tested) boards (GB) and fabricated by various industrialized sawmill techniques including vertical and circular saws. Several rooms retain the full length floorboards although most are short of full length and installed with staggered joints. Patching and replacement boards are prevalent throughout the house due to numerous campaigns of installation of building services which required the removal and reinstallation of the floors. As a result of this activity, most of the floorboards no longer carry their original nails but are fastened with square cut nails.

The wood floors are traditionally finished to allow the natural wood grain to be visible. Although testing was not completed it is thought many of the floors carry a varnish, wax or polyurethane sealer as the finish coat exhibits a somewhat high gloss appearance. In areas where the floor was subjected to water damage the appearance of white stains indicates the use of varnish usually with a liquid wax finish coat.

Floorboards revealed after the removal of mid-20th century closets reveal a darker and rougher texture. Having been encased by closets (CL202B and CL208) these floorboards have not been sanded and refinished; they are thicker and the finish appears to be an aged linseed oil based varnish.

The R104 floor structure has been extensively discussed earlier in this section (B1010-1); likewise the floorboards are of particular interest. Three layers of flooring were removed in the course of dismantling the floor system in R104: pre-manufactured tongue and groove hardwood 3/4 x 3 inch strip flooring with false pegs manufactured by the Bruce Floor Company (USA) as the topmost layer; an intermediate floor level consisting of a varnished tongue and groove double beaded material reminiscent of a porch ceiling or interior wainscot boards (5-1/2 inch X 7/8 inch including the tongue with 1/4 inch beads); and the random-width random-length subfloor layer made up of three distinct floorboard patterns (documented by HABS).

Condition
Random-length and random-width tongue and groove boards are nailed directly to the structural framing. Many of the floorboards are 3/4 to 1 inch thick pine (both yellow and red) mixed with poplar. Floor boards are in generally fair to good condition; some minor splitting has occurred but most boards are wholly intact and reusable.

Floor finishes were also generally in fair to good condition at the outset of this project. Due to impacts of fabric investigation and other preservation work, floor finishes have been degraded and will need to be refinished.
C30 Interior Finishes

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

C3020-2 Vinyl Tile (Floor)

Description
The floor in R204 was completely changed with the installation of a bathroom ca. 1949-52. Over the tongue and groove replacement floorboards a black vinyl tile floor was applied with mastic. These materials were laboratory tested\(^{57}\) for possible asbestos content but were confirmed to have no asbestos content and subsequently largely removed during interior demolition components of the rehabilitation project.

Condition
Vinyl tile applied with mastic to underlying sub floor (boards). The vinyl tile (and possibly the floorboards due to mastic adhesion) is in poor condition and will be removed as part of the proposed rehabilitation project. Vinyl tile was also used in R207 and was in good condition until recently. These materials are now in poor condition and will be removed as part of the house rehabilitation. They are not rated for maintenance deficiencies.

\(^{57}\) Limited Asbestos Testing & Lead-In-Dust Screening, Thomas House, BEC Project # MD08068, Boggs Environmental Consultants, LLC, Frederick, MD September 4, 2009.
C3020-3 Sheet Goods (Floor)

Description
The floor in R106/207 (until ca. 1950 a wood frame porch) were changed with the interior alterations. The original porch floors were replaced with modern floor frames and finish goods. The R106 sub-floor is diagonally laid board and has been covered with brick patterned vinyl sheet goods. The floor in R207 was done with vinyl tile over the plywood subfloor.

Condition
These materials are in poor condition and will be removed as part of the proposed rehabilitation project. They are not rated for maintenance deficiencies.
C30 Interior Finishes

C30030 Ceilings and Finishes

C30030-1 Plaster (Ceilings)

Description

The interior ceiling material is primarily plaster with drywall used to replace failed or removed plaster. Plaster is generally done on wood lath over the structural wood frame; wire lath where post mid-20th century repairs have occurred. Most plaster applications consist of a traditional three-coat application. Animal hair is evident in many of the scratch coat layers that have been exposed.

A few rooms have had their ceiling plaster and lath completely removed and replaced with drywall (R103). Other rooms have had sections of the plaster removed leaving the lath in-situ (R104) with the drywall material installed over the wood lath. Still other locations, where interior closets were added or other alterations were made (R202, R208, and R204 above the tub enclosure), left the plaster in-situ above the closet§ and removed the remainder of the ceiling to replace it with plaster board or drywall.

Condition

Most plaster is firmly adhered to the substrate and is in good condition. There are areas of localized damage and cracking. The plaster ceilings have suffered over the years either from water infiltration through the brick masonry wall, water leaking in due to a gutter failure, or interior plumbing problems that released water into the ceiling cavities; they exhibit a fair amount of water staining, efflorescence, and previous repairs. Plaster also exhibits stress cracking from either historical impacts (possible war damage), movement of the building, or normal expansion and contraction (1/8 inch or greater). Spider web cracks (less than 1/8 inch) are visible throughout the house and are not considered significant in terms of the condition of the plaster.

§ This created pockets of late 19th C. and early 20th C. materials that have only been recently uncovered. These should be documented as part of the proposed rehabilitation.
C30 Interior Finishes

C3030-2 Paint (Ceilings)

Description
Most ceilings had been painted with flat gloss ceiling paint in the 20th century. Certain rooms had ceiling paper that had been painted over and later failed (see C3030-3). The selective interior finishes study did not include sampling from ceiling areas.

Condition
Interior finish paint is in a failed condition, especially where gloss or enamel paints had been applied, due to the recent freeze/thaw cycle occurring over the winter of 2008-09. Interior paint finishes on the ceilings have not been systematically documented. Selective sampling and analysis of paint finishes has been focused on architectural and character-defining features throughout the house. Those that have been studied as part of this HSR are included in the findings of the Dewey report will be presented elsewhere.
C3030-3 Ceiling Paper

Description
Evidence has been found of ceiling papers in a few rooms although they have been painted (R102 and R201).\(^{59}\) Most papers have recently failed due to freeze/thaw cycles and have peeled away from the plaster substrate.

Condition
Interior ceiling paper is in a failed condition due to the recent freeze/thaw cycle occurring over the winter of 2008-09. Papers are peeling from ceilings (and have been partially removed) throughout the house. Most interior papers have been documented as part of this HSR and are included in the findings of the Yocum report.

Condition: Poor
Deficiencies: Not Rated

\(^{59}\) Yocum, pgs. 45-6.
D Services

Description
Extant Thomas House building services have evolved over the 20th century. As a late 18th or early 19th century house, building services were non-extant. Some services may have been provided by the mid-19th century, especially after the Civil War era repairs were completed. Gas may have been introduced for heating and/or lighting in the mid-19th century and it is unclear if the Thomas House had indoor privies or an outhouse.

Starting in 1949, with the upgrading of the house by C. E. Hilgenberg, modern services were threaded throughout the house. This was a massive disruption to the interior fabric as floors, walls and ceilings were removed throughout the house to allow for electrical wires, plumbing pipes, bathrooms, heating systems and cellulose insulation to be installed.

Prior to this date it seems likely that rudimentary electrical had been installed (some evidence in historic photographs). It is unclear if plumbing had been installed prior to this date. Heating was most likely achieved through the use of free-standing stoves and/or fireplaces scattered throughout the house. Cooling was passive and employed the use of the windows, doors and their shutters.

Services were upgraded periodically, most recently by the previous owner in the 1980s and 1990s. The National Park Service has done some maintenance on these systems to keep the house serviceable in recent years but plans to replace all building service systems in the near future.

The following descriptions document extant services ca. 2009.

Condition
Services are generally in fair to poor condition but will not be individually assessed. They will all be replaced as a result of the planned whole house rehabilitation project – Rehabilitate Historic Thomas House Interior Systems for Adaptive Reuse (PMIS 101308). The design component of this project was completed on December 31, 2009 with initial interior demolition tasks completed by HPTC. The remainder of the exterior preservation and interior rehabilitation projects are currently scheduled to occur over the next few years; 2009 – 2011.
D20 Plumbing

D20 Plumbing

Description
The extant plumbing system consists of a domestic water supply system and a waste water and sanitary sewer system.

The domestic water supply system is drawn from a well and supplied to the house through a 1 inch line from the Pump/Well House to the southeast of the main house. Water is provided through a series of interior pipes (copper and PVC) to faucets provide in the kitchen (R103) and the bathrooms (R105 – now removed) and the laundry (R106) on the first floor and bathrooms R204 and R207 on the second floor. Laundry facilities and a wet bar are located in R106 constructed after 1954. The existing hydro-pneumatic tank and hot water heaters are located in the cellar.

The waste water and sewer lines are cast iron and lead to a traditional rural septic system consisting of a 1000 gallon underground septic tank, distribution box and 2 eight foot diameter leaching wells with 15 by 15 foot surrounding gravel drainage in the fields across the drive and west of the house.

Condition
Not rated.
D30 HVAC

Description
Extant system consists of circulating hot water to a series of baseboard or free standing radiators. System powered by oil; four 250 gallon tanks in cellar, existing boiler with tankless water heater, fuel oil supply and vent piping system located in NW corner of garage at cellar window W005. Use of the heating system was terminated in 2007. Central air-conditioning had not been installed by 2008; window units were used when necessary.

Condition
Not rated.
D40 Fire Protection Services

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Critical</td>
</tr>
</tbody>
</table>

D40 Fire Protection Services

D4030 Fire Protection Specialties – Fire Extinguishers

Description
Not extant.

Condition
Critical need for fire protection.
D50 Electrical

Description
Extant system includes a 200 amp service panel located in garage, (sub panels not discovered); power provided to house via overhead utility lines from power pole at SE corner of service line with two service entries to the building. Branch circuits are routed through utility trenches along west foundation wall and upwards through the building using a series of vertical access points. Electrical wiring is dangerously obsolete with several generations of unprotected wiring visible. In certain areas wiring was protected by wire conduit but this is a small percentage of the total wiring in the house. Minimal electrical service was provided to most rooms; several rooms had ceiling mounted light fixtures and wall receptacles are limited to a few per room. Switches are located wherever possible rather than at the convenience of the user or in any direct relationship to the room.

As of May 2009 some electrical service including lighting and wall receptacles are still in operation.

Condition
Not rated.
D50 Electrical

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

D503008 Security Systems

Description

Installed by previous owner, no longer functions. Perimeter security on doors and selected windows, motion detectors in several locations.

Condition

Not rated.
D509002 Emergency Lighting & Power

Description
Non-extant.

Condition
Not rated.
D50 Electrical

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Minor</td>
</tr>
</tbody>
</table>

D509004 Lightning Protection System

Description
The Lightning Protection System was recently installed as part of the slate roof replacement project ca. 2007. It is a simple system consisting of low profile aerial terminals located on chimneys. The terminals are connected with a braided copper conductor (down lead cable) (Figure 110).

Condition
The Lightning Protection System was recently installed as part of the slate roof replacement project. See HSTR60 for further information. It is in good condition and has limited warranty protection.

Figure 110. Portion of lightning protection system seen on south wing chimney with braided copper conductor at roof line.

60 Thomas House Slate Roof and Gutter Replacement, FY07, PMIS 114756, Historic Structure Treatment Record.
E2020 Fixed Furnishings

E202002 Interior Shutters and Window Treatments

Description
Decorative wood interior louvered shutters were used on the south wall of R203 at W214 and W215; they were likely installed by the Clapp family ca. 1956 – 2006.

Most other windows in the house had interior roller type shades with draperies or curtains.

Description
Not rated as all interior shutters and window treatments have been removed as part of the rehabilitation process.
G20 Site Improvements

G20 SITE IMPROVEMENTS
G2030 Pedestrian Paving
G2050 Maintained Landscapes

G20 Site Improvements

G2030 Pedestrian Paving

Description and Condition

The north entrance porch [P101] is a low pedestal with iron handrails to the east and west of the main door [D101] and has brick steps with semicircular (bullnose) extensions leading down to the north lawn. It is constructed of brick laid in basket weave, flat bond pattern and the foundation system has not been discovered or assessed. The pedestal and steps are in fair to poor condition; bricks have been removed and are separated along the edge and supporting coursework, also the bullnose return has broken off on the west side of the stair. The wrought iron handrails are in fair condition; their connection with the brick masonry is poor.

A series of brick paths lead away from the house to other features of the property. These walks are in fair condition with typical maintenance deficiencies for exterior dry-laid brick; they are somewhat uneven and bricks are beginning to deteriorate within the walkway, otherwise they are firm and stable. The mortared sections which include the stairs are in fair to good condition, unless otherwise mentioned, with minor maintenance deficiencies (Figure 111).

- From the north porch a basket weave, flat bond pattern brick walk turns east and leads to the asphalt drive just in front of the garage.

- Extending from the south facing door of the enclosed west porch a semi circular 4 riser brick stair leads to a common bond brick walk that follows the west elevation and then continues to the Brick Outbuilding where it connects with the formal layout of the garden. The walkway has been laid with a prominent crown.

- South of the south wing, R104 and the southeast two-story porch is a large rectangular brick patio laid in common bond with low brick walls (4 to 6 courses above grade). It connects to the asphalt driveway and service yard at the southeast quadrant of the house and also to a walkway that leads south to the brick outbuilding, a focal point of the mid-20th century garden layout.

- Other exterior brick stair features include the two step stair with wing walls at the exterior of D110 and the two-riser brick steps at P102 both of which are in good condition.

Asphalt paving used for the elliptically shaped driveway [see HABS-1251, Sheets 1-3] abuts the house in several locations, notably the service yard at the southeast corner of the house and the east wall of the garage. Drainage across this pavement seems to slope away from the building (positive drainage) except where downspouts from the garage roof discharge and collect at the base of the wall (negative drainage). Condition of the asphalt is generally fair to poor with
Physical Description, Condition Assessment and Character-Defining Features

G20 Site Improvements

significant cracking and tree root heaves; the drainage across the asphalt is addressed in item G9087.

Figure 111. Top left, low brick pedestal at D101 on the north elevation with brick walk running east to asphalt driveway; top right, rectangular patio with low brick wall and walkway leading south. Bottom, brick outbuilding (foreground left) connected to main house and formal gardens by brick walkway (foreground).
G20 Site Improvements

<table>
<thead>
<tr>
<th>Condition:</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiencies:</td>
<td>Not Rated</td>
</tr>
</tbody>
</table>

G2050 Maintained Landscape

Description

Lawn and garden areas that surround the Thomas House have not been included in this HSR. The landscape around the house is currently being inventoried and a Cultural Landscape Report is planned for the future (Figure 112).

Condition

Certain landscape elements such as the north elevation foundation boxwood plantings are overgrown and potentially damaging to the building.

Figure 112. Elements of the maintained landscape include the front lawn (north elevation, above) and formal gardens at rear of house (south of house, opposite).
Physical Description, Condition Assessment and Character-Defining Features

G20 Site Improvements
G90 Other Site Work

<table>
<thead>
<tr>
<th>G90</th>
<th>OTHER SITE WORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>G9087</td>
<td>Overall Building Site Drainage</td>
</tr>
</tbody>
</table>

G90 Other Site Work

G9087 Overall Building Site Drainage

| Condition: | Fair |
| Deficiencies: | Serious |

Description

The Thomas House is located on a slight knoll of land with natural positive site drainage. Overall, the building site drainage allows for surface water and roof drainage system discharge to naturally flow away from the building. This is important as there does not appear to be a foundation drainage system in use at this time (historically there may have been a small system installed or repaired by the Hil- genberg project ca. 1949–54 as evidence of an underground system are seen in photos from that era). The impact of the construction of the east and west additions along with numerous brick walkways and asphalt driveway paving has created localized areas adjacent to the house where the natural flow of water across the landscape has been restricted. This is especially true at the east and west additions and where the asphalt driveway is immediately adjacent to the brick walled main house structure.

Condition

This lack of positive drainage at the base of the building is a serious maintenance deficiency. Certain paved areas adjacent to the house walls create fair to poor drainage conditions with localize areas of water retention. The north elevation, with the oversized boxwood plant root structures, is another area where water retention may be adversely effecting the foundation walls.

The wall area at the southeast corner of the inside ell of the house has the roof gutter discharging directly onto the asphalt near the porch P106 and the brick patio area. This area exhibits signs of rising damp in the exterior brickwork and continuation of this practice will lead to accelerated deterioration of the structural brick walls and shallow foundation system along with brick and mortar deterioration.

Water drainage across the adjacent asphalt driveway seems to be away from the house but this condition should be monitored.
PART 2

TREATMENT AND WORK RECOMMENDATIONS

TREATMENT AND USE

ALTERNATIVES FOR TREATMENT

RECOMMENDED ACTION
Throughout this report, building components are designated with a letter prefix and number. For example, the dining room on the first floor is designated R102 and the mantel in second floor bedroom 1 is designated M201. Some designators have a letter suffix (A, B, etc.) to identify a specific building component and its parts; for example, CB102A refers to element A of built-in cupboard CB102. Designations correspond with floorplans found on pages 217 - 224. The follow prefixes are used:

<table>
<thead>
<tr>
<th>CB:</th>
<th>Cupboard</th>
<th>P:</th>
<th>Porch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH:</td>
<td>Chimney</td>
<td>R:</td>
<td>Room</td>
</tr>
<tr>
<td>CL:</td>
<td>Closet</td>
<td>SL:</td>
<td>Sidelight</td>
</tr>
<tr>
<td>D:</td>
<td>Door</td>
<td>ST:</td>
<td>Staircase</td>
</tr>
<tr>
<td>DT:</td>
<td>Door Transom</td>
<td>W:</td>
<td>Window</td>
</tr>
<tr>
<td>M:</td>
<td>Mantel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Treatment and Work Recommendations

Treatment and Use
Development of Alternatives
In the General Management Plan / Environmental Impact Statement (GMP) for Monocacy National Battlefield (2010), the National Park Service considered four alternatives for development of the Thomas Farm. Although the alternatives deal with broad site issues, all four identified a specific treatment and use for the Thomas House:

- **Alternative 1** – The “no-action” alternative proposes to continue current management, which would include stabilization and preservation of the Thomas House as a scene-setter for the battlefield, but would not allow for interior access or use of the house.

- **Alternative 2** – This action alternative focuses fairly narrowly on the story of the Battle of Monocacy. Under this alternative, the Thomas House would be leased out and occupied under the National Park Service’s historic leasing program.

- **Alternative 3** – This action alternative would expand the story of the Battle of Monocacy, focusing not only on troop movements but also on the impact of the war on the surrounding countryside. Under this alternative, the interior of the Thomas House would be adaptively reused for administrative offices.

- **Alternative 4** – This action alternative is the Preferred Alternative and would expand the story of the Battle of Monocacy to focus attention on the park as an important crossroads from prehistory to the present. Under this alternative, the interior of the Thomas House would be adaptively reused for administrative offices.

The Preferred Alternative

Alternative 4 was determined to be the Preferred Alternative and proposes that the interior of the Thomas House be adaptively reused for administrative offices. It also calls for the historic stone tenant house at the Thomas Farm to be renovated for visitor access to accommodate exhibits focusing on the cultural history of the battlefield landscape and the concept of Monocacy as a crossroads through time.

Apart from these directives, the GMP Preferred Alternative does not specify any particular interior or exterior treatment for the Thomas House. This is largely due to the fact that at the time that the GMP was drafted, there was insufficient knowledge and understanding of the significance of the Thomas Farm and its associated elements to determine an appropriate treatment for these resources.

In the interim, a substantial amount of research has been undertaken to assist in the planning for the implementation of the Preferred Alternative. The Thomas House HSR was one of several such research documents; other studies and documents have been completed or initiated as well:

Archeology
A multi-year archeological identification and evaluation study of the Thomas Farm began in 2003; this project identified archeological resources at the Thomas Farm and evaluated their integrity, significance, and eligibility for listing on the National Register. The final report detailing the results of this study was published in 2010; this study found that the area within the historic building cluster generally lacked archeological integrity, largely as a result of modern ground disturbance associated with the installation of a designed garden and the introduction of modern utilities in the 1950s and 1960s. In sum, the results of this study indicate that the archeological deposits within the historic building cluster are (excepting a small portion of the west yard area) ineligible for listing on the National Register, and as a result, renovation of the Thomas House and the surrounding landscape under the Preferred Alternative of the GMP is not likely to have an adverse impact on archeological resources.

National Register Eligibility
As the battlefield’s National Register documentation was completed prior to NPS acquisition of the Thomas Farm, the nomination was updated in 2004 to include information on the Thomas Farm. The battlefield as a whole is listed on the National Register under Criterion A for its architecture, industry, social history, agriculture, military history and commemoration; and is also listed under Criteria C (distinctive characteristics) and D (information potential). The period of the significance for the battlefield is listed as 1724 to 1934 (1964 for commemorative monuments).

The Thomas House is identified as a contributing resource to the battlefield’s National Register district; however, the twentieth-century additions to the building (specifically, the garage and porch) are noted as non-contributing. “the 20th-century accretions on Best and Thomas farms do not add historic associations relevant to agriculture nor do they add significant architectural qualities to those...
particular farms, and as a result are viewed as not contributing.”

Cultural Landscapes
As the battlefield’s Cultural Landscape Inventory (CLI) was also completed prior to acquisition of the Thomas Farm, a separate CLI of the Thomas Farm was completed in 2009. The CLI identifies the period of significance for the Thomas Farm component landscape as 1724 to 1915. These dates represent the original patenting and settlement of the property, and extend through the important events of the Civil War era. The period ends with the construction of the Vermont Monument in 1915. The CLI finds that the Thomas Farm cultural landscape is significant under Criteria A, C, and D, and further notes that it “retains a high degree of integrity for its period of significance…and is in good condition.”

A cultural landscape report (CLR) for the Thomas Farm began in 2010 and is expected to be completed in 2011. A CLR documents the characteristics, features, materials, and qualities that make a landscape eligible for listing on the National Register. Its purpose is to analyze the landscape’s development and evolution, modifications, materials, construction techniques, and use in all periods, including those deemed not significant. Based on this analysis, it evaluates the significance of individual landscape features in the context of the landscape as a whole and makes recommendations for treatment consistent with the landscape’s significance, condition, and planned use. When the Thomas Farm CLR is complete, it will serve as the primary guide to the treatment and use of the Thomas Farm landscape, including the main house.

Systems Design
In 2009, in support of the Preferred Alternative articulated in the GMP, Construction Documents were completed for the replacement of the interior systems at the Thomas House. Implementation of the Preferred Alternative will require substantial upgrades to, or wholesale replacement of, all the building’s principal systems, including plumbing, electrical, HVAC, fire/security, and LAN. Because an approved treatment document was not in place at the time the systems design project began (2008), these Construction Documents reflect a design plan that is minimally invasive and retains as much historic fabric as possible. For example, in most instances, the introduction of modern elements is designed to be reversible: new wiring will be surface mounted and utilize existing receptacles where possible to minimize the need for new wall penetrations. Infrastructure in support of the HVAC system and fire suppression system will be hidden in the attic or within existing chases or closets. In the places where this is not feasible, such as R101, a false ceiling will be installed or new closets constructed to screen modern elements. In addition, alterations to modern accretions, such as the garage and sun porch, are minimal in order to facilitate the removal of these features should that be the approved exterior treatment. The exception is the north bay of the ell porch, which was enclosed by the Clapps in the late 1950s to create R106 and R207; the systems design calls for R106 to continue to function as the primary point of entry, and for D111 to be widened to meet accessibility requirements. R207 will be renovated and continue to function as a restroom servicing the second floor.

These design elements accommodate the use of the building as articulated in the Preferred Alternative of the GMP, while minimizing impacts on historic fabric. The design also allows these modern alterations and upgrades to be reversible and easily removed should the long-term management and use of the structure change in the future.

Determination of Period of Significance – Thomas House
As previously mentioned, the 2004 National Register Nomination updates provided current information about the history and significance of the Thomas Farm. While the period of significance for Monocacy National Battlefield is fixed at 1724 to 1934 (1964 for commemorative monuments), the Thomas Farm’s period of significance is not specifically defined in the National Register nomination. The CLI for Thomas Farm defines its period of significance as 1724 to 1915, and notes that “the Thomas Farm cultural landscape and its events have made a significant contribution to the broad patterns of history, as mentioned in National Register Criterion A. The landscape also contains individual resources that embody the distinctive characteristics of a type, period or method of construction, or Criterion C. Given the archeological research that has already been completed and the future research planned, the farm has yielded, or is likely to yield, information important in prehistory or history, as outlined by Criterion D” (NPS 2009:15).

The field investigation and research that has been completed to produce the Historic Structure Report finds that the Thomas House meets the criteria for significance under Criteria A and C. The following is an assessment of the criteria for significance based upon current research.

Criterion A: Events
The Thomas House is associated with events that have made a significant contribution to the broad patterns of history due to its association with:
Treatment and Work Recommendations

- The settlement and development of Frederick County in the late eighteenth and early nineteenth centuries,
- The Civil War; and,
- Post-Civil War recovery.

Criterion C: Architecture / Design
The Thomas House embodies distinctive characteristics of a type, period, and method of construction:
- It embodies distinctive characteristics of several architectural styles and periods, including elements of Federal, Greek Revival, and Victorian derivation; and,
- It is typical of mid-Maryland brick construction and bears striking similarities with several other noteworthy buildings in the region.

Period of Significance
Based on the results of the HSR and other research and investigation at the Thomas House, the period of significance for the Thomas House is defined as ca. 1780 to ca. 1910. This date range encompasses the approximate date of construction of the house by James Marshall, and terminates ca. 1910, the approximate year of Alice Thomas Anderson’s death and the end of the Thomas occupation. Although the house and associated farm changed hands many times during the period of significance, research indicates that it was always owner-occupied, and suggests that most, if not all, of the owner occupants had some impact on the building that we see today. The Thomas House possesses both local and regional significance, due to its association with the late eighteenth- and early nineteenth-century development of Frederick County and due to its architectural similarities with a number of other noteworthy Frederick County historic houses.

The end of the Thomas family tenure ushers in a nearly 40-year period of tenant-farming, during which the house appears to have been largely unoccupied and thus fell into disrepair. This deterioration necessitated the major changes and alterations that both the Hilgenbergs and Clapps made to the house in the mid-twentieth century. The National Park Service assumed full responsibility for the Thomas House in January, 2008; thus ending a period (albeit much shorter) during which the building was largely unoccupied and which resulted in a substantial amount of deterioration. Implementation of the Preferred Alternative will necessitate substantial changes and alterations to the interior of the house.

Conclusion
The results of the extensive research and investigation efforts conducted at Thomas Farm and in the Thomas House have not uncovered any issues or concerns that contradict the viability of the Preferred Alternative of the Monocacy National Battlefield GMP. Therefore, a consideration of appropriate treatment options follows.

Summary of Treatment Options
The Secretary of the Interior has defined four categories of treatment for historic structures: preservation, restoration, rehabilitation, and reconstruction, which are defined as follows:

Preservation: “the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property. Preservation focuses on the maintenance and repair of existing historic materials and retention of a property’s form as it has evolved over time.”

Restoration: “the act or process of accurately depicting the form, features, and character of features from other periods in its history and reconstruction of missing features from the restoration period. Restoration is undertaken to depict a property at a particular period of time in its history.”

Rehabilitation: “the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural or architectural values. Rehabilitation acknowledges the need to alter or add to a historic property to meet continuing or changing uses while retaining the property’s historic character.”

Reconstruction: “the act or process of depicting, by means of new construction, the form, features and detailing of a non-surviving site, landscape, building, structure or object for the purpose of replicating its appearance at a specific period of time and in its historic location.”

As the Thomas House is an intact structure, reconstruction will not be discussed further. The consideration of the remaining treatment options – preservation, restoration, and rehabilitation – therefore rests on the significance of the resource, its physical condition, and its intended use as defined by the park GMP and its Preferred Alternative.

Based on these parameters, the following assessment of treatment options was made:
Preservation provides an option as a baseline for the development of other options. It is effectively the “no-action” alternative from the GMP.

Restoration of the house to period of significance would be in keeping with its level of significance; however, the proposed use of the structure as administrative offices will impose a level of adaptation beyond that of a restoration treatment.

Rehabilitation is the desired treatment for both the interior and exterior of the structure in keeping with the Preferred Alternative of the GMP.

Alternatives for Treatment
When evaluating alternative uses and treatments for an historic structure, emphasis is placed on the preservation of the extant historic material and the resolution of conflicts; especially those that may arise as a result of the mandate to preserve and the necessity for use.

As previously noted, the Preferred Alternative identified for the Thomas House in the Monocacy National Battlefield General Management Plan (GMP) calls for the interior of the Thomas House to be adaptively used for administrative offices. Under this alternative, visitors would not be permitted regular access to the house, but would gain some understanding of it and the events that occurred there through exhibits that will be housed in the nearby stone tenant house. Visitors would also be permitted to walk around the exterior of the house and its surrounding landscape, and may occasionally be permitted interior access during special events or tours.

The following treatment options under the Preferred Alternative were considered:

A) Preservation Only
 (No Use, Scene Setting Only [Preservation Maintenance], “No Action” Plan) (Table 3)

 A baseline for the development of other alternatives, the “no-action” plan is a continuation of the existing management direction.

 In the absence of an approved treatment document, this methodology has been used by the National Park Service since the acquisition of the Thomas Farm (2001-2010), resulting in a series of exterior preservation maintenance activities as documented in this report. This option does not provide for rehabilitation of the interior of the building nor removal of non-sympathetic or non-character-defining features. It provides rudimentary building services for maintenance purposes only and retains the building in its current condition as a scene-setter for the battlefield cultural landscape.

B) Preservation + Interior Rehabilitation
 (Administrative Use) (Table 4)

 Accommodates the goals of park staff and uses the house as offices with minimal impact on the structure.

 This methodology consists of the continued preservation maintenance of the exterior of the structure. It does not address preservation/rehabilitation of the primary north and west elevations or removal of non-sympathetic or non-character-defining features that are outside the period of significance.

 Upgrades to the interior prepare the spaces for the park staff’s use as offices. Recent removal of interior fabric is directly related to building service upgrades and falls under the interior rehabilitation treatment.

C) Interior and Exterior Rehabilitation
 (Administrative Use, Removal of Non-Character-Defining Features from Principal Façades) (Table 5)

 Accommodates the goals of park staff use as offices with minimal impact on the interior of the structure. Rehabilitates the exterior appearance of the primary elevations (north and west) to their documented appearance during the period of significance by removing non-sympathetic or non-character-defining features from the shape and mass of the building and by repairing the historic building envelope.

 This treatment consists of the exterior rehabilitation of the principal (north and west) exterior façades of the Thomas House through the removal of mid-twentieth century additions. It also returns to building to its appearance during the ownership of C. K. Thomas and his heirs (1860-ca. 1910); this encompasses the occurrence of the Battle of Monocacy (July 1864) and also incorporates repairs and changes made to the house both prior to (ca. 1860), and as a result of damages resulting from, the battle (1864-68). Documentation of the exterior appearance of the building to the period of significance is reflected in sev-
Alternative A - Preservation Only

<table>
<thead>
<tr>
<th>Category</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10 Foundations</td>
<td>• Stabilize structurally deficient foundations at interior brick bearing wall.</td>
</tr>
</tbody>
</table>
| **B10 Superstructure** | • Install temporary structural supports at interior of building to support second floor frame at deficient first floor bearing walls.
 • Selectively repoint most deteriorated sections of exterior masonry, annual maintenance to keep in good condition. |
| **B20 Exterior Closure** | • No changes to exterior mass or shape of building.
 • Continue preservation maintenance of extant features.
 • Remove deteriorated exterior closure system at north bay of southeast exterior porch and reopen porch bay.
 • Install protective exterior storm windows and doors.
 • Install non-wood substitute louvered shutters.
 • Install louvers in selected window openings to allow for passive ventilation of building. |
| **B30 Roofing** | • Repair storm damage to slate roof covering.
 • Abandon second floor bathroom roof vent.
 • Repair roof drainage system at east and west additions. |
| **C10 Interior Construction** | • No work on interior partitions, doors or fittings.
 • Block interior doors in open position to allow for passive ventilation. |
| **C20 Stairs** | • Repair cellar stair from garage. |
| **C30 Interior Finishes** | • No work at interior finishes.
 • Install plywood over areas of floor frame where wood floor has been removed.
 • Retain historic flooring in storage. |
| **D20 Plumbing** | • Remove extant system.
 • No interior plumbing provided. |
| **D30 HVAC** | • Remove extant system.
 • Install louvers in selected window openings to allow for passive ventilation of building. |
| **D40 Fire Protection** | • Place all-season fire extinguishers throughout structure.
 • Park Law Enforcement rangers to monitor structure. |
| **D50 Electrical** | • Remove extant system.
 • Install rudimentary surface-mounted maintenance system (lights, receptacles) throughout building. |
| **D50 Security** | • No security system provided.
 • Upgrade exterior locking hardware at doors and provide window locking hardware at all extant windows. |
| **E20 Furnishings** | • Install window shades at first floor windows to block viewing of interior. |
| **G20 Site Improvements** | • Remove encroaching vegetation from house.
 • Prune back overhanging or leaning trees. |
| **G90 Building Site Drainage** | • Install downspout extenders to carry roof runoff at least 10 feet away from all exterior perimeter walls.
 • Monitor cellar for water intrusion. |

Table 3: Requirements for Preservation Only (“no-action”) alternative.
Alternative B - Preservation + Interior Rehabilitation

| A10 Foundations | • Same as Preservation Only as well as:
| | • Stabilize structurally deficient exterior stone foundation walls.
| | • Carry out foundation repairs as per 100% Construction Documents and HPTC Project Agreement. |

| B10 Superstructure | • Make permanent repairs to historic floor frame system throughout house to support floor load capacity as per 100% Construction Documents (Silman Engineers recommendations).
| | • Repair and reinstall 2 historic structural columns in R101 in historic location (add footings for columns).
| | • Investigate and repair structural beam at wall between R102 and R103 that also carries second floor frame.
| | • Selectively repoint all exterior elevations at main house.
| | • Selectively repair and repoint exterior masonry at garage (east) and sun porch (west) additions. |

| B20 Exterior Closure | • No changes to exterior mass or shape of building.
| | • Continue preservation maintenance of extant features.
| | • Replace deteriorated exterior closure system at north bay of southeast exterior porch with substitute materials and maintain footprint.
| | • Install protective exterior storm windows and doors.
| | • Repair framed screen infill panels and door at west porch addition.
| | • Install non-wood substitute louvered shutters.
| | • Provide universally accessible entry to first floor of building for park staff. |

| B30 Roofing | • Repair storm damage to slate roof covering.
| | • Replace second floor bathroom roof vent.
| | • Repair roof drainage system at east and west additions. |

| C10 Interior Construction | • Implement recommended treatments for main house from HSR for interior partitions, doors and fittings.
| | • Repair all interior plaster work with traditional plaster repair techniques.
| | • Survey all interior doors to determine preservation protocol treatment including finish study and hardware inventory, prepare repair schedule for interior doors and hardware.
| | • Survey and prepare preservation maintenance schedule for all interior fittings including cupboards, mantels, etc.
| | • Repair interior floor and ceiling at west porch addition. |

| C20 Stairs | • Implement recommended treatments from HSR for all interior stairs and finishes |

Table 4: Requirements for Preservation + Interior Rehabilitation alternative.
Alternative B - Preservation + Interior Rehabilitation

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
</table>
| **C30 Interior Finishes** | • Implement recommended treatments from HSR for all interior finishes including floors, walls, ceilings and architectural trim.
• Implement construction package for selected interior finishes as per 100% Construction Documents.
• Survey and prepare interior finish schedule for all remaining rooms to be occupied as offices by park staff. |
| **D20 Plumbing** | • Implement domestic water supply based on 100% Construction Documents.
• Install renovated bathrooms and kitchen areas as per 100% Construction Documents. |
| **D30 HVAC** | • Implement heating and cooling system based on 100% Construction Documents. |
| **D40 Fire Protection** | • Implement fire protection system based on 100% Construction Documents. |
| **D50 Electrical** | • Implement new electrical service, supply and distribution based on 100% Construction Documents. |
| **D50 Security** | • Implement new security system based on 100% Construction Documents. |
| **E20 Furnishings** | • Not applicable. |
| **G20 Site Improvements** | • Same as Preservation Only along with:
• Repair brick walkways and patio areas adjacent to house.
• Repair extant north porch and stairs brick masonry.
• Repair/replace wrought iron handrails at north porch entry.
• Implement universal accessibility entry route as per 100% Construction Documents.
• Repair exterior stairs at west porch addition.
• Repair parking areas as per treatment alternative identified in forthcoming Cultural Landscape Report. |
| **G90 Building Site Drainage** | • Selective regrading of adjacent site to establish positive site drainage.
• Establish underground drain lines for roof water runoff and discharge points or cistern.
• Remove foundation plantings and compact areas where plants have been removed.
• Remove pavement in direct contact with exterior foundation walls and redirect water away from the building.
• Redesign or repair brick patio at south end of west wing to allow positive drainage away from building. |
Alternative C - Interior and Exterior Rehabilitation

A10 Foundations
- Same as Preservation + Interior Rehabilitation plus:
 - Inspect and repair adjacent foundations upon removal of east and west additions.

B10 Superstructure
- Same as Preservation + Interior Rehabilitation with exception of items related to east and west additions, plus:
 - Deconstruct the east and west additions (garage and sun porch) salvage masonry materials for possible reuse.
 - Remove extant masonry front porch (P101) and adjacent steps.
 - Re-erect north porch using original components, replace non-extant components with “in-kind” new materials.
 - Prepare architectural drawings to document re-erection of north porch components.

B20 Exterior Closure
Above listed actions will result in the following changes to the exterior envelope of the building:
- **D104** should be reconfigured to a window that matches **W105**.
- **D001** (cellar bulkhead) to be replaced per 100% Construction Documents.
- **W203** to be reconfigured to match other jib door windows (historic jib doors for this unit are extant).
- Masonry repairs will be required where addition roofs intersect main block house walls with stepped flashing.
- Remove wood frontispiece from **D101** door surround, this includes extensions to side light and transom trim; detailing will be similar to other window and door openings – trim is held recessed within masonry opening.
- Masonry repairs may be required upon removal of wood frontispiece.
- Windows **W101-104** may require new thresholds and some additional weather stripping at intersection of north porch floor.
- All other items from Preservation + Interior Rehabilitation with exception of items related to east and west additions.

B30 Roofing
- Repair storm damage to slate roof covering.
- Replace second floor bathroom vent assembly and repair roof at this location.

C10 Interior Construction
- Same as Preservation + Interior Rehabilitation with exception of items related to east and west additions, plus:
 - Repairs to wall areas adjacent to affected openings as listed in **B20 Exterior Closure**.

Table 5: Requirements for Interior and Exterior Rehabilitation alternative.
Alternative C - Interior and Exterior Rehabilitation

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20 Stairs</td>
<td>• Same as Preservation + Interior Rehabilitation plus:</td>
</tr>
<tr>
<td></td>
<td>• Implement basement stair treatment as per 100% Construction Documents.</td>
</tr>
<tr>
<td>C30 Interior Finishes</td>
<td>• Implement recommended treatments from HSR for all interior finishes including floors, walls, ceilings and architectural trim.</td>
</tr>
<tr>
<td></td>
<td>• Implement construction package for selected interior finishes as per 100% Construction Documents.</td>
</tr>
<tr>
<td></td>
<td>• Survey and prepare interior finish schedule for all remaining rooms to be occupied as offices by park staff.</td>
</tr>
<tr>
<td>D20 Plumbing</td>
<td>• Remove extant system and fixtures.</td>
</tr>
<tr>
<td></td>
<td>• Implement domestic water supply based on 100% Construction Documents.</td>
</tr>
<tr>
<td></td>
<td>• Install renovated bathrooms and kitchen areas as per 100% Construction Documents.</td>
</tr>
<tr>
<td>D30 HVAC</td>
<td>• Remove extant system components (most already removed).</td>
</tr>
<tr>
<td></td>
<td>• Implement heating and cooling system based on 100% Construction Documents.</td>
</tr>
<tr>
<td>D40 Fire Protection</td>
<td>• Implement fire protection system based on 100% Construction Documents.</td>
</tr>
<tr>
<td>D50 Electrical</td>
<td>• Implement new electrical service, supply and distribution based on 100% Construction Documents.</td>
</tr>
<tr>
<td>D50 Security</td>
<td>• Implement new security system based on 100% Construction Documents.</td>
</tr>
<tr>
<td>E20 Furnishings</td>
<td>• Not applicable.</td>
</tr>
<tr>
<td>G20 Site Improvements</td>
<td>• Same as Preservation Only plus:</td>
</tr>
<tr>
<td></td>
<td>• Implement universal accessibility entry route as per 100% Construction Documents.</td>
</tr>
<tr>
<td></td>
<td>• Repair brick walkways and patio areas adjacent to south side of house.</td>
</tr>
<tr>
<td></td>
<td>• Repair parking areas as per 100% Construction Documents.</td>
</tr>
<tr>
<td>G90 Building Site Drainage</td>
<td>• Selective regrading of adjacent site to establish positive site drainage.</td>
</tr>
<tr>
<td></td>
<td>• Establish underground drain lines for roof water runoff and discharge points or cistern.</td>
</tr>
<tr>
<td></td>
<td>• Remove foundation plantings and compact areas where plants have been removed.</td>
</tr>
<tr>
<td></td>
<td>• Remove pavement in direct contact with exterior foundation walls and redirect water away from the building.</td>
</tr>
<tr>
<td></td>
<td>• Redesign, repair or remove brick patio at south end of west wing to allow positive drainage away from building.</td>
</tr>
</tbody>
</table>
eral historic photographs taken in 1888 and 1893, and particularly in the earliest known image of the building - the 1882 illustration from Scharf’s *History of Western Maryland*.

This treatment accommodates park use of the building interior and would be the same as those presented in the previous treatment level – *Preservation + Interior Rehabilitation*. However, under this alternative, building systems would be organized differently, as the extant garage (east addition) would not be available for utility space. Certain existing exterior door and window openings would need to be changed as a result of the removal of the east and west additions (garage and sun porch) and the rehabilitation of the north two-story porch.

Ultimate Treatment

Striking a proper balance between the beneficial use of the Thomas House as administrative offices for NPS staff and the resultant impact on the historic structure and the farmstead was the goal of the alternatives set forth and the ultimate treatment selection presented below. Considering the building’s significance, and the results of archeological and historic research, fabric investigation, and management goals, the following recommendations are presented:

- Rehabilitate the interior of Thomas House to serve as administrative offices for Monocacy National Battlefield staff;
- Rehabilitate the exterior of the building to remove non-character-defining features from the elevations of the structure which are not required to fulfill its purpose as administrative offices;
- Reconstruct the north porch to return the north elevation of the house to its ca. 1860-1910 appearance.
- Retain interior elements identified as character-defining.

Based on current research and investigations, the **Ultimate Treatment** for the Thomas House is *Alternative C - Interior and Exterior Rehabilitation* of Thomas House, as defined above. The following section will focus on the various tasks required to implement the **Ultimate Treatment**.

Recommended Work to Implement the Ultimate Treatment

Based upon the **Ultimate Treatment, Interior and Exterior Rehabilitation**, all work necessary to repair, maintain and preserve the character-defining features of the Thomas House should be undertaken. This should be accomplished with the least degree of intervention needed to elevate its Facility Condition Index Ranking to “good.” All recommended treatments are based on the preservation of exterior character-defining features and rehabilitation of the interior with preservation (or rehabilitation) of character-defining features.

Project planning documents, PMIS 101308, *Rehabilitate Historic Thomas House Interior Systems for Adaptive Reuse* have been already been developed under NPS contract number C300060016. **Final Construction Documents** were submitted on December 31, 2009. These consisted of Project Specifications, an Architectural Drawing Set (894/80033, 84 sheets), and Cut Sheet/ Product Data Manuals. As previously discussed, care was taken during the creation of the **Final Construction Documents** to minimize impacts on historic fabric and to allow flexibility with regard to the final treatment of the building. As a result, selection of the **Ultimate Treatment** is feasible with regard to the tasks identified in the **Final Construction Documents**.

Several other projects have already been developed to address interior and exterior deficiencies at the Thomas House, these include PMIS 188776, 144033, 154504, 135026, 130433, and 156418. These projects should be edited as needed to reflect the **Ultimate Treatment**. Additional projects will need to be developed to implement some aspects of the **Ultimate Treatment**, including the removal of the enclosed porch (west) and garage (east) wings as well as reconstruction of the north porch.

Hazardous Materials & Historic Buildings

In order to provide a safe and clean environment for those entering the building during the preservation phase, a limited hazardous material analysis has been conducted. This analysis included interior soil analysis along the west wall in **R104**, various architectural finish materials within the house, and lead-in-dust swipe tests in various interior locations.¹ In a separate test conducted by the HPTC Carpentry Team as part of the fabric investigation phase of the project, the floor tiles in **R204** were tested with negative results. Remediation of hazardous materials at Thomas House was undertaken in 2010 (PMIS 154503).

Recommended Treatments and Work

The following Recommended Treatments and Work have been developed based on the condition

--

¹ Refer to Boggs Environmental Consultants, Inc. report, *Limited Asbestos Testing & Lead-In-Dust Screening for The Thomas House, September 4, 2008*.

198
A10 Foundations

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilize structurally deficient foundations at interior brick bearing walls.</td>
<td>Repair historic fabric, returned to good condition.</td>
<td>Repairs not visually intrusive; use of traditional masonry repair techniques.</td>
<td>Serious maintenance deficiencies will be corrected, stabilized brick load bearings walls.</td>
</tr>
<tr>
<td>Stabilize structurally deficient exterior stone foundation walls.</td>
<td>Repairs historic fabric, returned to good condition.</td>
<td>Repairs not visually intrusive; use of traditional masonry repair techniques.</td>
<td>Serious maintenance deficiencies will be corrected, stabilized stone foundation walls.</td>
</tr>
<tr>
<td>Carry out repairs as per Systems Upgrade package and HPTC Project Agreement.</td>
<td>Strengthens areas of foundation previously undermined and weakened.</td>
<td>Repairs will strengthen potentially weak areas of foundation.</td>
<td>Serious maintenance deficiencies will be corrected, stabilized stone foundation walls.</td>
</tr>
<tr>
<td>Inspect and repair adjacent house foundations upon removal of east and west additions.</td>
<td>Minimal – repairs only to areas damaged by removed foundations.</td>
<td>Repairs will strengthen potentially weak areas of foundation.</td>
<td>Serious maintenance deficiencies will be corrected, stabilized stone foundation walls.</td>
</tr>
</tbody>
</table>

B10 Superstructure

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deconstruct the east and west additions and salvage materials for reuse.</td>
<td>None, east and west additions not considered historic fabric.</td>
<td>Level 1 Documentation already completed by HABS.</td>
<td>Return principal façade to character-defining appearance at period of significance.</td>
</tr>
<tr>
<td>Remove extant masonry front porch and adjacent steps.</td>
<td>No direct effect on historic fabric, north porch brick paving not considered historic fabric.</td>
<td>Level 1 Documentation already completed by HABS.</td>
<td>Serious maintenance deficiencies are corrected, removal on non-character-defining features.</td>
</tr>
<tr>
<td>Re-erect north porch using original components and replace non-extant components with in-kind materials.</td>
<td>Windows W101-104 may require new thresholds and some additional weather stripping at intersection of north porch floor.</td>
<td>Level 1 HABS Documentation complete; reuse of historic components (returned to good condition); nature of work is reversible.</td>
<td>Return principal façade to character-defining appearance at period of significance.</td>
</tr>
<tr>
<td>Make permanent repairs to historic floor frame system throughout house.</td>
<td>Some deteriorated structural members may be repaired and supplemental framing members added.</td>
<td>Repairs will be documented; repairs will support floor load capacity as per 100% Construction Documents.</td>
<td>Rehabilitation of interior and adaptive reuse of space is possible by complying with structural engineer’s recommendations.</td>
</tr>
<tr>
<td>Repair and reinstall 2 historic structural columns in R101 in historic location (add footings for columns).</td>
<td>Reuse of historic components (will be returned to good condition) nature of work is reversible.</td>
<td>Repairs will be documented; installation of 2 columns returns character-defining features to historic interior space.</td>
<td>Rehabilitation of interior and adaptive reuse of space is possible by complying with structural engineer’s recommendations.</td>
</tr>
<tr>
<td>Investigate and repair structural beam at wall between R102 and 103 that also carries second floor frame.</td>
<td>Additional interior finish material may need to be removed to allow for investigation of structural members</td>
<td>Documentation of interior fabric removed and structural frame system will be possible.</td>
<td>Rehabilitation of interior and adaptive reuse of space is possible by complying with structural engineer’s recommendations.</td>
</tr>
<tr>
<td>Selectively repoint all exterior elevations at main house.</td>
<td>Traditional repairs to historic fabric, no adverse effect.</td>
<td>Repairs are compatible with extant historic fabric.</td>
<td>Historic fabric returned to good condition.</td>
</tr>
</tbody>
</table>

Table 6: Recommended treatments and work for the Interior and Exterior Rehabilitation recommended action
B20 Exterior Closure

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>D104 should be reconfigured to a window that matches W105.</td>
<td>None, extant door is not considered historic fabric.</td>
<td>Replacement window and frame will be patterned after other extant historic windows.</td>
<td>Repaired masonry wall will return secondary principal façade to its character-defining appearance at period of significance.</td>
</tr>
<tr>
<td>D001 (cellar bulkhead) to be replaced per 100% Construction Documents.</td>
<td>Some minor loss of historic fabric.</td>
<td>Level 1 Documentation already completed by HABS, Repairs are compatible with extant historic fabric.</td>
<td>Repair work complies with rehabilitation treatment and removes safety hazard at cellar entrance.</td>
</tr>
<tr>
<td>W203 to be reconfigured to match other jib door windows (historic jib doors for this unit are extant).</td>
<td>Reuse of historic components (will be returned to good condition), nature of work is reversible.</td>
<td>Level 1 Documentation already completed by HABS, Repairs are compatible with extant historic fabric.</td>
<td>Repair work complies with rehabilitation treatment and will return primary façade to historic appearance.</td>
</tr>
<tr>
<td>Masonry repairs will be required where addition roofs intersect main block house walls with stepped flashing.</td>
<td>None, stepped flashing is not considered historic fabric, traditional repairs to historic fabric, no adverse effect.</td>
<td>Level 1 Documentation already completed by HABS.</td>
<td>Repairs are compatible with extant historic fabric.</td>
</tr>
<tr>
<td>Remove wood frontpiece from D101 door surround, this includes extensions to side light and transom trim.</td>
<td>Changes to D101 not considered historic fabric, masonry repairs may be required upon removal of wood frontpiece.</td>
<td>Detailing at door will be similar to other window and door openings – trim is held recessed within masonry opening; no effect on adjoining historic fabric.</td>
<td>Repaired D101 opening will return principal façade to its character-defining appearance at period of significance.</td>
</tr>
<tr>
<td>Replace deteriorated exterior closure system at north bay of southeast exterior porch with traditional materials and reduce footprint to reinstating missing bay of porch handrail assembly.</td>
<td>None, this material not considered historic fabric.</td>
<td>Level 1 HABS documentation already completed, no adverse effect on historic fabric; removal of unsympathetic modern materials.</td>
<td>Return of porch handrail will enhance character-defining features of southeast porch by emphasizing its original footprint and differentiating between historic fabric and modern infill material.</td>
</tr>
<tr>
<td>Provide universally accessible entry to first floor of building for park staff.</td>
<td>None – does not impact historic fabric, work is reversible.</td>
<td>Level 1 HABS documentation already completed, no adverse effect on historic fabric.</td>
<td>Provides universal access to park structure as per NPS policies and federal law.</td>
</tr>
<tr>
<td>Install protective exterior storm windows and doors.</td>
<td>Minimal impact to exterior window frames; work is reversible.</td>
<td>Custom-designed and fabricated storm units will not detract from appearance of building.</td>
<td>Will enhance energy performance of building and protect recently repaired historic windows and doors.</td>
</tr>
</tbody>
</table>

(continued)
B30 Roofing

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair storm damage to slate roof covering.</td>
<td>None, roof is in-kind replacement.</td>
<td>None required.</td>
<td>Will return character-defining feature to good condition.</td>
</tr>
<tr>
<td>Replace second floor bathroom vent assembly & repair roof at this location.</td>
<td>None, roof is in-kind replacement.</td>
<td>None required.</td>
<td>Will return character-defining feature to good condition.</td>
</tr>
</tbody>
</table>

C10 Interior Construction

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair all interior plaster work with traditional plaster repair techniques.</td>
<td>Use of traditional plaster repair techniques are non-invasive, there may be minimal loss of adjacent plaster.</td>
<td>Repair historic fabric, return to good condition.</td>
<td>Traditional plaster repair techniques will preserve historic fabric.</td>
</tr>
<tr>
<td>Survey all interior doors to determine preservation protocol treatment including finish study and hardware inventory.</td>
<td>Repairs are compatible with extant historic fabric.</td>
<td>Repair historic fabric, work will be documented, new doors or hardware will be compatible with rehabilitation treatment.</td>
<td>Return historic interior doors and hardware to good condition.</td>
</tr>
<tr>
<td>Survey and prepare preservation maintenance schedule for all interior fittings including cupboards, mantels, etc.</td>
<td>Repairs may be visible.</td>
<td>Repair historic fabric, work will be documented, new work will be compatible with rehabilitation treatment.</td>
<td>Repairs are compatible with extant historic fabric and comply with preservation standards.</td>
</tr>
</tbody>
</table>

C20 Stairs

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement stair treatment per 100% Construction Documents.</td>
<td>Extant basement stair will be removed, no adverse effect – not considered historic.</td>
<td>Work will be documented, new work will be compatible with rehabilitation treatment.</td>
<td>Basement access will be compliant with building codes.</td>
</tr>
<tr>
<td>Implement recommended treatments from HSR for all interior stairs and finishes.</td>
<td>None, all recommended treatments are preservation based.</td>
<td>Work will be documented.</td>
<td>Historic stair handrails will be strengthened, finishes will be compatible with rehabilitation treatment.</td>
</tr>
</tbody>
</table>

(continued)
C30 Interior Finishes

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement recommended treatments from HSR for all interior finishes including floors, walls, ceilings and architectural trim.</td>
<td>Minor amounts of historic fabric may be removed in order to stabilize remaining adjacent materials; materials determined to be in poor condition will not be repaired.</td>
<td>HABS Level I documentation is completed, historic interior finish survey and analysis completed, materials not fully surveyed or analyzed (paint) will be preserved in-situ through paint windows.</td>
<td>Character-defining features and historic fabric will be returned to good condition and contribute to the overall integrity of the historic interior spaces.</td>
</tr>
<tr>
<td>Implement construction package for selected interior finishes as per 100% Construction Documents.</td>
<td>Does not effect historic fabric within building, new materials are limited to areas of non-historic fabric.</td>
<td>Work will be documented, new work will be compatible with rehabilitation treatment.</td>
<td>Repairs are compatible with extant historic fabric and rehabilitation treatment of interior.</td>
</tr>
<tr>
<td>Survey and prepare interior finish schedule for all remaining rooms to be occupied as offices by park staff.</td>
<td>Will preserve historic fabric and interior character-defining features.</td>
<td>Work will be documented, new work will be compatible with rehabilitation treatment.</td>
<td>Repairs are compatible with extant historic fabric and rehabilitation treatment of interior.</td>
</tr>
</tbody>
</table>

D20 Plumbing

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove extant system and fixtures.</td>
<td>None – does not impact historic fabric.</td>
<td>Extant system exhibits critical maintenance deficiencies which has resulted in failure.</td>
<td>Imminent threat to health and/or safety of user is being corrected, feature will be returned to good condition.</td>
</tr>
<tr>
<td>Implement domestic water supply and sanitation based on 100% Construction Documents; includes installation of new fixtures.</td>
<td>May be minimal impact to extant historic fabric for routing of new system, rehabilitated spaces were determined to be non-character-defining spaces.</td>
<td>Routing plan will be reviewed by NPS prior to execution, HPTC crew to complete cutting and patching of finished surfaces.</td>
<td>Install renovated bathrooms and kitchen areas per 100% Construction Documents; rehabilitation treatment will allow for administrative use of building by park staff.</td>
</tr>
</tbody>
</table>

D30 HVAC

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove extant system components (most already removed).</td>
<td>None – does not impact historic fabric.</td>
<td>Extant system exhibits critical maintenance deficiencies which has resulted in failure.</td>
<td>Imminent threat to health and/or safety of user is being corrected, feature will be returned to good condition.</td>
</tr>
<tr>
<td>Implement heating and cooling system based on based on 100% Construction Documents.</td>
<td>May be minimal impact to extant historic fabric for routing of new system, appurtenances will be visible within building.</td>
<td>Routing plan will be reviewed by NPS prior to execution; HPTC crew to complete cutting and patching of finished surfaces.</td>
<td>Rehabilitation treatment will allow for administrative use of building by park staff, improved interior climate will stabilize historic finishes.</td>
</tr>
</tbody>
</table>

(continued)
D40 Fire Protection

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement fire suppression sprinkler system based on Systems Upgrade construction package.</td>
<td>May be minimal impact to extant historic fabric for routing of new system, appurtenances will be visible within building.</td>
<td>Routing plan will be reviewed by NPS prior to execution, HPTC crew to complete cutting and patching of finished surfaces.</td>
<td>Historic building will be protected from fire, will comply with NPS policies about protection of historic resources.</td>
</tr>
</tbody>
</table>

D50 Electrical

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove extant system.</td>
<td>None – does not impact historic fabric.</td>
<td>Extant system exhibits critical maintenance deficiencies which has resulted in failure.</td>
<td>Imminent threat to health and/or safety of user is being corrected, feature will be returned to good condition.</td>
</tr>
<tr>
<td>Implement new electrical service, supply and distribution based on 100% Construction Documents.</td>
<td>May be minimal impact to extant historic fabric for routing of new system, appurtenances will be visible within building.</td>
<td>Routing plan will be reviewed by NPS prior to execution, HPTC crew to complete cutting and patching of finished surfaces.</td>
<td>Rehabilitation treatments will allow for administrative use of building by park staff.</td>
</tr>
</tbody>
</table>

E20 Furnishings

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove non-character-defining interior window shutters from R203.</td>
<td>None – does not impact historic fabric.</td>
<td>Extant feature exhibits critical maintenance deficiencies which has resulted in failure.</td>
<td>Removal of non character-defining features from interior of structure will enhance interior spaces.</td>
</tr>
<tr>
<td>Remove all interior curtains and draperies as well as all supporting hardware.</td>
<td>None – does not impact historic fabric.</td>
<td>Extant feature exhibits critical maintenance deficiencies which has resulted in failure.</td>
<td>Removal of non character-defining features from interior of structure will enhance interior spaces.</td>
</tr>
</tbody>
</table>

G20 Site Improvements

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement universal accessibility entry route as per 100% Construction Documents.</td>
<td>None – does not impact historic fabric; may effect historic scene in this area of house.</td>
<td>Accessibility measures are constructed to be reversible.</td>
<td>Required by NPS policy, will provide universal barrier-free access to park employees to access first story spaces.</td>
</tr>
<tr>
<td>Repair brick walkways and patio areas adjacent to south side of house.</td>
<td>None – does not impact historic fabric.</td>
<td>Extant feature exhibits serious maintenance deficiency with ongoing deterioration.</td>
<td>Short term threat to health and/or safety of user will be corrected.</td>
</tr>
<tr>
<td>Repair parking areas according to recommendations in forthcoming CLR.</td>
<td>None – does not impact historic fabric.</td>
<td>Extant feature exhibits serious maintenance deficiency with ongoing deterioration.</td>
<td>Deteriorated landscape features are returned to good condition, may improve site drainage features.</td>
</tr>
</tbody>
</table>

(continued)
G90 Building Site Drainage

<table>
<thead>
<tr>
<th>Recommended Treatment</th>
<th>Potential Effect on Historic Fabric</th>
<th>Mitigating Measures</th>
<th>Beneficial Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selectively regrade areas adjacent to building to establish positive site drainage</td>
<td>None – does not directly impact historic fabric</td>
<td>Archeological compliance will be required</td>
<td>Will lessen chance of water infiltration into basement and deterioration of masonry foundation and exterior walls</td>
</tr>
<tr>
<td>Establish underground drain lines for roof water runoff and discharge points or cistern</td>
<td>None – does not directly impact historic fabric</td>
<td>Archeological compliance will be required, will allow further inspection of building foundation</td>
<td>Will lessen chance of water infiltration into basement and deterioration of masonry foundation and exterior walls</td>
</tr>
<tr>
<td>Remove foundation plantings and compact areas where plants have been removed</td>
<td>None – does not directly impact historic fabric</td>
<td>Cultural Landscape Inventory has determined plantings of no significance, Archeological compliance will be required</td>
<td>Will not retain moisture at building foundation, allows for better air circulation, lessens chances of exterior mold and mildew</td>
</tr>
<tr>
<td>Remove pavement in direct contact with exterior foundation walls</td>
<td>None – does not directly impact historic fabric</td>
<td>Archeological compliance will be required, will redirect water away from the building</td>
<td>Will lessen chance of water infiltration into basement and deterioration of masonry foundation and exterior walls</td>
</tr>
<tr>
<td>Redesign, repair or remove brick patio at south end of west wing</td>
<td>None – does not directly impact historic fabric</td>
<td>Archeological compliance will be required; Cultural Landscape Inventory has determined area of no significance</td>
<td>Allows positive drainage away from building</td>
</tr>
</tbody>
</table>
of the building at the end of the field research program, April 2010 (Table 6).

The Ultimate Treatment and Work presented by this report are consistent with the Preservation and Rehabilitation standards as per The Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring & Reconstructing Historic Buildings (1995). They are also in accordance with National Park Service policy and guidelines as presented in Director’s Order No. 28 – Cultural Resource Management Guidelines.

Code Compliance

Federal legislation and NPS policies stipulate that as historic structures are preserved and rehabilitated, attempts should be made to meet applicable nationally accepted model building codes to the maximum extent feasible. Compliance with nationally accepted codes does not automatically trigger a complete code-based upgrade. Alternative criteria do exist for alterations to historic structures; these typically encourage flexibility in the literal application of the code intent.

The Public Buildings Amendment Act of 1988 instructs Federal agencies to follow, “to the maximum extent feasible,” as determined by the administrator or head of the agency, the “…nationally recognized model building codes and other applicable nationally recognized codes such as electrical codes, and fire and life safety codes.” The intent of the National Park Service is to follow this guideline and adhere to the pertinent national, state, and local codes to the maximum extent feasible.

The National Park Service has prepared Design Standards for all construction projects, including those effecting historic structures. The design standard presents all codes that should be reviewed and includes the most recent copies of the following major codes and other applicable laws, policies, codes, directives, standards and NPS guidelines. The design standards present requirements for accessibility, civil and environmental engineering, landscape architecture, architecture including roofing and waterproofing, structural, mechanical, safety and fire protection, electrical, lighting and sustainability disciplines.

Major codes to consider include:

- **Americans with Disabilities Act and Architectural Barriers Act Accessibility Guidelines (ADA-ABAAG) 2004**
- **International Building Code, International Code Council (ICC)**
- **International Existing Building Code, International Code Council (ICC)**
- **National Historic Preservation Act of 1966, as Amended (NHPA)**
- **The Secretary of the Interior’s Standards for the Treatment of Historic Properties (36 CFR 67)**

Additional references include:

- **Uniform Code for Building Conservation, International Conference of Building Officials (ICBO)**
- **Building Construction and Safety Code (NFPA 5000)**
- **National Fire Protection Association 70 (NFPA –70), National Electrical Code**
- **Installation of Lightning Protection Systems (NFPA 780)**
- **Code for the Protection of Cultural Resource Properties (NFPA 909)**
- **Code for the Fire Protection of Historic Structures (NFPA 914)**
- **Safeguarding Construction, Alteration, and Demolition Operations (NFPA 241)**

Treatment Record and Follow-up Work

Once the Ultimate Treatment and Work have been implemented for Thomas House, it is recommended per NPS Director’s Order 28 that a Completion Report, Technical Report, and As-Constructed Documentation be completed as addenda to this volume. Additionally, a Cultural Landscape Report for Thomas Farm should be completed, detailing recommended treatment and work for the Thomas House landscape including parking and circulation.

Bibliography

and W. G. Haag (editors), Louisiana State University School of Geoscience, Baton Rouge, LA. pp. 5: 177-235.

1975
Folk Housing in Middle Virginia: A Structural Analysis of Historic Artifacts. The University of Tennessee Press, Knoxville, TN.

2000
Vernacular Architecture. Indiana University Press, Bloomington, IN.

Goodman, W. L.
1964

Grimshaw, Robert
1880
Grimshaw on Saws. Philadelphia, PA.

Heikkenen, H. J. and M.R. Edwards
1983

Hindle, Brooke (editor)
1975 [1985]

1976
America’s Wooden Age: Aspects of It’s Early Technology. Sleepy Hollow Press, Tarrytown, NY.

Jandl, H. Ward (editor)
1983

1923

1924

Kimball, Fiske
1966 [1922]

Kniffen, Fred B.
1986

Lanier, Gabrielle M. and Herman, Bernard L.
1997

Library of Congress
American Memories Collection, Selected Civil War Photographs, http://lcweb2.loc.gov/pp/mbquery.html

McAlester, Virginia and Lee. A Field
1998
Bibliography

Mercer, Henry Chapman

Mullins, Lisa C. (editor) with Roy Underhill

National Park Service

Nichols, Roy F., Robert U. Johnson, Clarence C. Buel

Nelson, Lee H.

Noble, Allen G.

Peterson, Charles E. (editor)
1976 *Building Early America – Contributions toward the History of a Great Industry*. Chilton Book Company, Radnor, PA.

Ramsey, Charles G. and Harold R. Sleeper.

Rempel, John I.

Rifkind, Carole

Scott, John C.

Sloane, Eric. A

Sprague, Dr. Paul E.
Timber Framers Guild

Upton, Dell

Wallace, Philip B.

Watt, David and Peter Swallow

Wybczynski, Witold
THOMAS FARM (ARABY) HOUSE
MONOCACY NATIONAL BATTLEFIELD
4632 ARABY CHURCH ROAD
FREDERICK COUNTY, MD

SECOND FLOOR PLAN

LEGEND

Appendix A - Annotated Plans and Elevations
NORTH ELEVATION

LEGEND

- [] DOOR NUMBER
- [] DOOR TRANSOM NUMBER
- [] WINDOW NUMBER
- [] SIDE LIGHT NUMBER
- [] SHUTTER LABEL
- [] ROOM NUMBER
- [] CHIMNEY NUMBER
- [] MANTLE NUMBER

- [] 0'-0" FEET
WEST ELEVATION

LEGEND

- Door Number
- Door Transom Number
- Window Number
- Side Light Number
- Shutter Label
- Room Number
- Chimney Number
- Mantle Number

Scale: 1" = 5 FEET
These joists in R100 are supported on a ledger plate and are not mortised into the summer beam. This is the location of the original stair which went down to the first floor.
For more information, please contact:

Cultural Resource Manager
Monocacy National Battlefield
4801 Urbana Pike
Frederick, MD 21704