Mammoth Cave National Park
Superintendent’s Residence
Mammoth Cave, Kentucky

Historic Structure Report

September 2013

Prepared by:
Wiss, Janney, Elstner Associates, Inc.
330 Pfingsten Road
Northbrook, Illinois 60062

Prepared for:
National Park Service
Southeast Regional Office
100 Alabama Street SW
Atlanta, Georgia 30303
About the front cover: View of the Superintendent's Residence looking northeast, August 2011.

This manuscript has been authored by Wiss, Janney, Elstner Associates, Inc., under Contract Number P09PC60883 with the National Park Service. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
Mammoth Cave National Park
Superintendent's Residence
Mammoth Cave, Kentucky

Historic Structure Report

Approved:
Superintendent, Mammoth Cave National Park
Date: 9/6/13

Recommended:
Chief, Cultural Resources Division, Southeast Region
Date: 9/10/13

Recommended:
Deputy Regional Director, Southeast Region
Date: 9/24/13

Approved:
Regional Director, Southeast Region
Date: 9/25/13
Contents

Foreword.. vii
Project Team.. viii

Management Summary

Historical Data ... 1
Treatment and Use ... 2
Administrative Data ... 2
Project Scope and Methodology ... 3

Developmental History

Historical Background and Context ... 9
 Early Settlement and Exploration ... 9
 Commerce and Tourism at Mammoth Cave in the Nineteenth and Twentieth Centuries ... 9
 Mammoth Cave National Park .. 12
Chronology of Development and Use ... 14
 Early Development at Mammoth Cave National Park ... 14
 Construction of the Superintendent’s Residence .. 15
 Maintenance and Ongoing Changes to the Superintendent’s Residence: 1942–2011 22

Physical Description and Condition Assessment

 Site ... 31
 Exterior Evaluation ... 33
 Description ... 33
 Condition Assessment .. 48
 Interior Evaluation ... 54
 Description ... 54
 Condition Assessment .. 79
 Structural Evaluation ... 84
 Description ... 84
 Condition Assessment .. 84
 Mechanical, Electrical, and Plumbing Systems Evaluation 85
 Mechanical Systems ... 85
 Electrical and Plumbing Systems ... 85
 Fire Protection System .. 86

Significance and Integrity

 Evaluation of Significance ... 87
 Significance Criteria .. 87
 National Register Significance Evaluation .. 88
 Period of Significance ... 90
 Character-Defining Features ... 91
 Summary Table of Features .. 92
 Assessment of Integrity ... 96

Treatment and Use

 Requirements for Treatment and Use .. 97
 Laws, Regulations, and Functional Requirements ... 97
 Alternatives for Treatment and Use ... 98
 Ultimate Treatment and Use .. 99
 Guidelines for Treatment ... 99
Foreword

We are pleased to make available this Historic Structure Report, part of our ongoing effort to provide comprehensive documentation for the historic structures and landscapes of National Park Service units in the Southeast Region. A number of individuals contributed to the successful completion of this work, but we would particularly like to thank the Project Team who authored the report, and the staff at Mammoth Cave National Park, including Superintendent Sarah Craighead, Deputy Superintendent Bruce Powell, Chief of Science and Resource Management Bobby Carson, Acting Chief of Interpretation Joy Medley Lyons, Chief of Facilities Management Division Steve Kovar, Management Assistant Ken Kern, and Museum Curator Terry Langford for their assistance throughout the process. We hope that this study of the Superintendent's House will prove valuable to park management in ongoing efforts to preserve the building and to everyone in understanding and interpreting this unique resource.

Dan Scheidt, Chief
Cultural Resources Division
Southeast Regional Office
2013
Project Team

National Park Service – Southeast Regional Office

 Laurie Chestnut, Contracting Officer
 Tommy Jones, Architectural Historian and Contracting Officer’s Technical Representative (former)
 Paul Hatchett, Architect and Contracting Officer’s Technical Representative
 Tracy Stakely, Chief Cultural Landscapes Program (former)
 David Hasty, Acting Chief, Cultural Landscape Program
 Beth Wheeler Byrd, Landscape Historian

National Park Service – Mammoth Cave National Park

 Sarah Craighead, Superintendent
 Patrick Reed, Superintendent (former)
 Bruce Powell, Assistant Superintendent
 Ken Kern, Management Assistant
 Steve Kovar, Chief of Maintenance/Facility Manager
 Terry Langford, Curator
 Joy Medley Lyons, Chief of Program Services
 Teresa Leibfreid, I&M Coordinator, Cumberland Piedmont Network

Wiss, Janney, Elstner Associates, Inc.

 Deborah Slaton, Project Manager/Senior Historian
 Kenneth Itle, Historical Architect
 Michael Ford, Graduate Architect/Historian
 Tim Penich, Graduate Architect/Historian
Management Summary

At the request of the National Park Service (NPS), Wiss, Janney, Elstner Associates, Inc. (WJE) has developed this Historic Structure Report (HSR) for the Superintendent’s Residence (Building 038) in Mammoth Cave National Park, Kentucky. Figure 1 is a map of the state of Kentucky showing the location of Mammoth Cave National Park. Figure 2 is a map of Mammoth Cave National Park showing the location of the Superintendent’s Residence. Figure 3 is a map showing the relationship between Core Visitor Services Area and the Superintendent’s Residence to the southeast. Figure 4 is an aerial image showing the location of the Superintendent’s Residence in relation to the Visitor Center, Mammoth Cave Hotel, and Maintenance Area.

The Superintendent’s Residence is listed in the National Register of Historic Places as a historically significant example of a Civilian Conservation Corps (CCC)-constructed building.\(^1\)

Historical Data

The idea of establishing a national park at Mammoth Cave was first broached in the late 1880s by representatives of the Louisville and Nashville Railroad, who thought that a national park would result in increased business for the railroad. Members of Congress began showing interest in creating a national park at Mammoth Cave as early as 1905. The federal Southern Appalachian National Park Commission visited Mammoth Cave in May 1925 and recommended establishing a national park. Legislation to authorize the park was enacted in 1926; however, no federal funds were available at that time for land acquisition.

The Louisville and Nashville Railroad donated more than 3,000 acres to the Mammoth Cave National Park Association in 1929. At the same time, the Association purchased a two-thirds ownership of the Mammoth Cave estate. Finally, in May 1934, new legislation allowed the Secretary of Interior to accept monetary donations for land purchases. This allowed the National Park Service to take the lead in acquiring land. On May 22, 1936, the Secretary of the Interior formally accepted deeds to 27,561 acres of land, allowing Mammoth Cave to be formally designated a national park. By the late 1930s, land acquisition began to proceed at a more rapid pace. In 1941, the amount of park owned land surpassed the 45,310 acre minimum required by the 1926 legislation, allowing Mammoth Cave to be fully established as a national park. The National Park Service assumed full responsibility for the administration, protection, and development of Mammoth Cave National Park on July 1, 1941. Despite receiving full designation as a national park in 1941, official dedication of the park was postponed until 1946 due to the involvement of the United States in World War II.

Despite the long delays in land acquisition and establishment of the national park, some funding for federally-managed improvements at the park was provided by the over $400,000 in profits realized by the Mammoth Cave Joint Operating Committee from guests visiting the park between 1934 and 1940. Four CCC camps operated

1. The Civilian Conservation Corps, mandated by the Emergency Conservation Work Act, was established on March 31, 1933, under the Federal Unemployment Relief Act with the goal of mobilizing unemployed labor forces to perform work such as reforestation, land reclamation, and building of roads and trails.
Management Summary

at the park between 1933 and 1942. Members of the CCC razed buildings on land acquired by the government and constructed several new buildings, including a park maintenance complex, a six-building housing complex for park employees, and ranger station facilities.

Initial plans for a residence to house the superintendent of Mammoth Cave National Park were made in early 1940. The house was to be located east of the employee residences built in 1937. Construction on the Superintendent’s Residence began in July 1940 and the house was substantially completed by October 1941.

Shortly after the completion of the Superintendent’s Residence in October 1941, the United States entered World War II. The CCC left Mammoth Cave in 1942, when the organization was disbanded by the federal government. During the war, visitation at Mammoth Cave decreased as well.

Superintendents of Mammoth Cave National Park resided in the structure until 1995. In 2006, the staff from the Cumberland Piedmont Network moved into the house, from which time the building has been used as office space.

Treatment and Use

The Superintendent’s Residence is an important feature of the residential area of the park and retains a significant degree of integrity. The building is currently used as offices of the Piedmont Cumberland Network and is anticipated to remain in this use. The recommended overarching treatment for the building is therefore Rehabilitation to support continued reuse while retaining and protecting historic character-defining features.

The Superintendent’s Residence is generally in good condition, although certain materials require maintenance and repair. Examples include localized stone repair, repointing, and repainting of wood siding and trim, and interior plaster repair and repainting. In addition, insect infestations including brown recluse spiders (Loxosceles reclusa), black widow spiders (Western black widow, Latrodectus hesperus, or Southern black widow, Latrodectus mactans), and wasps present a health concern in the house. At this time, the most significant long-term repair need relates to the windows. The insulating glass units in the existing replacement sash have failed gasket seals. Several options can be considered to address this condition, as further discussed in the Treatment and Use chapter.

One of the primary goals of this HSR is to ensure that there is consensus on how to move forward with the rehabilitation of the Superintendent’s Residence. The HSR is not a prescriptive document, but rather is intended to provide a conceptual plan for treatment and use. It makes recommendations, but these are of necessity somewhat general in nature and must be further developed and refined as the work moves forward, new information is uncovered, and understanding of the site is enhanced. Simply, the HSR provides a framework for decision-making as the National Park Service works to preserve the Superintendent’s Residence for this and future generations.

Administrative Data

Locational Data

Building Name: Superintendent’s Residence

Location: Mammoth Cave National Park, Kentucky

UTM Coordinates: 16N: 4115471 E: 581109

Latitude/Longitude Coordinates: 37.1833 degrees north, 86.1000 degrees west

LCS Number: The Superintendent’s Residence is listed in the List of Classified Structures (LCS). Its LCS ID is 007552.

Related Studies

Cultural Resource Data

The Superintendent’s Residence was listed in the National Register of Historic Places in 1991 for its association with the CCC.

Period of Significance: 1940-1941

Proposed Treatment: Rehabilitation

Project Scope and Methodology

The goal of the HSR is to develop planning information for use in the repair, maintenance, and preservation of these historically significant buildings of the national park. First developed by the National Park Service in the 1930s, HSRs are documents prepared for a building, structure, or group of buildings and structures of recognized significance to record and analyze the property's initial construction and subsequent alterations through historical, physical, and pictorial evidence; document the performance and condition of the structure’s materials and overall physical stability; identify an appropriate course of treatment; and, following implementation of the recommended work, document alterations made through that treatment.

The HSR addresses key issues specific to the Superintendent’s Residence, including the history and construction chronology of the building; the existing physical condition of the exterior envelope, structural systems, and primary interior spaces and features; and the historic significance and integrity of the structure.

The following project methodology was used for this study.

Research and Document Review. Archival research was performed to gather information about the original construction and past modifications and repairs for use in assessing existing conditions and developing treatment recommendations for the buildings. Documents reviewed included maps, drawings, specifications, historic photographs, and other written and illustrative documentation about history, construction, evolution, and repairs to the buildings. The research for this study built upon prior historical and archival research by the National Park Service and others, as outlined in the bibliography provided with this report. Primary reference material for this study was obtained from the Mammoth Cave National Park Museum collections with assistance from Terry Langford, Curator, and the collection of Mammoth Cave National Park Program and Interpretation Services with assistance from Joy Lyons, Chief of Program Services. Project team members also met with Steve Kovar, Chief of Facilities Management, to discuss ongoing repair and maintenance programs at the park, and with Teresa Leibfreid, I&M Coordinator for the Cumberland Piedmont Network, to discuss the Superintendent’s Residence (which Cumberland Piedmont Network staff occupies). Additional research material was obtained from the National Park Service Technical Information Center (TIC) in Denver. Copies of selected archival drawings are provided in Appendix A.

Condition Assessment and Documentation. Concurrent with the historical research, a condition survey of the Superintendent’s Residence was performed and observations documented with digital photographs, field notes, and annotation on baseline drawings. For purposes of the field survey, copies of architectural drawings from the original design and construction documents were provided to the project team by the NPS Denver Service Center Technical Information Center and have been included in Appendix A. (Drawings of later alterations were not available for review.) The condition assessment addressed the exterior and primary interior spaces and features of the buildings, as well as visible primary portions of the building structural systems.
Development of History, Chronology of Construction, and Evaluation of Significance. Based on historical documentation and physical evidence gathered during the study, a context history and a chronology of design and construction were developed. An evaluation of the significance was also prepared, taking into consideration guidelines provided by National Register Bulletin 15: How to Apply the National Register Criteria for Evaluation. This evaluation of history and significance provided the basis for the development of recommended treatment alternatives.

Guidelines for Preservation. Based on the evaluation of historical and architectural significance of the structure, guidelines were prepared to assist in the selection and implementation of preservation treatments.

Treatment Recommendations. The Secretary of the Interior’s Standards for the Treatment of Historic Properties guided the development of treatment recommendations for the significant exterior and interior features of the buildings. Following the overall treatment approach of rehabilitation, the specific recommendations addressed observed existing distress conditions as well as long-term preservation objectives.

Preparation of Historic Structure Report. Following completion of research, site work, and analysis, a narrative report was prepared summarizing the results of the research and inspection and presenting recommendations for treatment. The HSR was compiled following the organizational guidelines of NPS Preservation Brief 43: The Preparation and Use of Historic Structure Reports, with modifications to organizational structure for purposes of this project.

FIGURE 1. State map showing the location of Mammoth Cave National Park (not to scale). Source: John Milner Associates, Inc.

FIGURE 3. Excerpt of park map showing the location of the Superintendent’s Residence within Mammoth Cave National Park. (The purple box indicates the Core Visitor Services Area to the northwest of the Superintendent’s Residence.) Source: Mammoth Cave National Park website, http://www.nps.gov/maca/index.htm.
FIGURE 4. Aerial photo of Superintendent’s Residence showing its location within Mammoth Cave National Park.
Management Summary
Developmental History

Historical Background and Context

Refer to the Mammoth Cave Core Visitor Services Area Cultural Landscape Report for a more detailed narrative history of the Mammoth Cave area prior to construction of the Superintendent’s Residence.

Early Settlement and Exploration

Humans are first believed to have entered Mammoth Cave approximately 4,000 years ago, and later continuing their exploration of the cave in search of minerals valued for their medicinal properties. European exploration began in Kentucky during the early 1700s. The onset of the French and Indian War (1754–1763) brought the first Europeans to the immediate area of Mammoth Cave. Thomas Hutchins, a British soldier sent to the region during the war to conduct a survey along the Green River, was likely the first European to reach the Mammoth Cave area.

Shortly after the end of the war, the Land Proclamation of 1763 opened the land west of the Appalachians and south of the Ohio River for settlement by Indians, including Mammoth Cave and the surrounding area. British hunters and traders soon began exploring the region and noted its abundance of natural resources. Daniel Boone described it as an “earthly paradise.”

Initial settlement of the Mammoth Cave area began in the early 1780s. While the exact date of the rediscovery of the cave is unknown, it is thought to have occurred prior to 1798. The first mention of Mammoth Cave land ownership is found in a record of lands from the Warren County Survey Book, 1796–1815, which states that in 1798, Valentine Simons became the first legal owner of the cave.

Commerce and Tourism at Mammoth Cave in the Nineteenth and Early Twentieth Centuries

In 1797, Revolutionary War veteran Gilbert Imlay suggested the Mammoth Cave area as a possible domestic source of saltpeter (potassium nitrate, or nitre), which could be used to produce black gunpowder for use in the war effort. While not specifically mentioning Mammoth Cave, Imlay noted that the largest known supply of saltpeter in colonial North America was found along the

7. Ibid.
8. Ibid.
Green River. Nitre mining may have begun at Mammoth Cave as early as 1806.

The manufacture of gunpowder was an important industry in the years following the American colonies declaration of independence from Great Britain. By 1810, Kentucky was the leading producer of saltpeter in the United States, and demand for saltpeter sparked the interest of investors in Mammoth Cave. In 1811, the first known map of Mammoth Cave was drawn. This map was the first to refer to the cave as “Mammoth Cave.” It is speculated that the name was chosen to emphasize both the size and profit potential of the cave.

With the end of the War of 1812, the demand for saltpeter fell sharply. Saltpeter production was suspended at Mammoth Cave in 1815; at about the same time, people began to travel to see the wonders of the cave. In October 1815, Nahum Ward, a Massachusetts native, visited Mammoth Cave; his account of his visit was published throughout the country and appeared in England in 1817. By the 1820s, guests from as far away as Europe were visiting the cave. In 1828, the current owner of Mammoth Cave, Hyman Gratz, constructed a small log cabin near the cave to house visitors. In the early and mid-nineteenth century, visitors to Mammoth Cave were led on tours through the cave by African-American slaves including Stephen Bishop.

In 1839, Dr. John Croghan, a Louisville physician, purchased the Mammoth Cave property for $10,000. Croghan expanded guest accommodations at the site and also had several new roads constructed to better facilitate travel to Mammoth Cave. In 1842–1843, Croghan experimented with the treatment of tuberculosis by housing patients within the cave.

The popularity of Mammoth Cave as a tourist destination began to grow in the mid-nineteenth century. By the 1850s the hotel could accommodate up to 150 guests in single and double rooms, and also offered log buildings for families (Figure 5 and Figure 6). Following the Civil War, the number of visitors to Mammoth Cave grew substantially. As a result of the increase in visitors, the Mammoth Cave Railroad was incorporated in 1874 and in November 1886, the first passengers arrived at the cave by rail from nearby Glasgow Junction (Figure 7). The number of tourists visiting Mammoth Cave continued to grow in the late nineteenth century, as additional caves were discovered nearby.

The original Mammoth Cave Hotel was destroyed by fire in 1916. A second hotel, a two-story wood structure, was constructed in 1925 (Figure 8). The building, which sat on a concrete foundation, had a basement and forty-three guest rooms.

The railroad to Mammoth Cave was profitable throughout the early part of the twentieth century. However, as the automobile became a more popular form of transportation, ridership on the Mammoth Cave Railroad began to fall in the 1920s.

12. Correspondence with Mammoth Cave National Park staff, May 2012.
14. Cultural Resource Management in Mammoth Cave National Park, 43. The log inn constructed by Gratz, along with a group of log cabins constructed as housing for slaves during the early nineteenth century, served as the core of the first Mammoth Cave Hotel, which was enlarged and improved by later owners.
15. Ibid.
19. Cultural Resource Management in Mammoth Cave National Park, 49–50. The relationship between the site of the 1925 hotel building and the site of the original hotel has not been confirmed; further research is underway by the park at this writing.
FIGURE 5. An undated drawing of the original Mammoth Cave Hotel. Source: Mammoth Cave National Park Archives.

FIGURE 6. A photograph of the original Mammoth Cave Hotel, date unknown. Source: Mammoth Cave National Park Archives.

FIGURE 7. An undated photo of the Mammoth Cave Railroad. Source: Mammoth Cave National Park Archives.
In 1931, the Mammoth Cave National Park Association purchased the Mammoth Cave Railroad in order to obtain its right-of-way as part of the proposed national park at the site. On August 31, 1931, the Mammoth Cave Railroad made its final trip from Glasgow Junction. The railroad was dismantled shortly thereafter.21

Mammoth Cave National Park

The idea of establishing a national park at Mammoth Cave was first broached in the late 1880s by representatives of the Louisville and Nashville Railroad, who thought that a national park would result in increased business for the railroad. Members of Congress began showing interest in creating a national park at Mammoth Cave as early as 1905, when Kentucky Congressman James M. Richardson began to lobby the Department of the Interior to establish Mammoth Cave National Park. Legislation to create Mammoth Cave National Park was soon introduced by Representative R. Y. Thomas, who succeeded Richardson in Congress. The legislation was unsuccessful, as there was not enough public support to establish the park.22

Mammoth Cave National Park Association

In the early 1920s the Southern Appalachian National Park Commission was formed as a result of National Park Service Director Stephen Mather’s desire to establish new national parks in the more populated eastern United States. On February 21, 1925, President Calvin Coolidge signed legislation officially establishing the commission. The legislation called for the commission to survey proposed parks in the Shenandoah-Blue Ridge and Great Smoky Mountains areas and, after some last minute lobbying by the Kentucky congressional delegation, at Mammoth Cave. Members of the

21 Cultural Resource Management in Mammoth Cave National Park, 38-40.

22 Ibid., 61.
commission visited Mammoth Cave in May 1925, and on April 8, 1926, presented a report to Secretary of the Interior Hubert Work recommending that national parks be established at all three sites. In addition to recommending that the three sites be national parks, the Commission stated that the parks could not be created with the use of federal funds.23

In response to the lack of federal funds that would be available for the establishment of Mammoth Cave National Park, the Mammoth Cave National Park Association was formed. The stated goal of the Association was to establish “a national park in the Mammoth Cave region, in order to preserve for all people for all time one of the greatest of the natural wonders of the world.”24

The initial objective of the association was to lobby Congress to pass legislation authorizing the creation of a national park at Mammoth Cave. In an effort to boost local support, the association promoted the park in the \textit{Edmonson County News}. The advertisements noted the economic impact a national park would have on the area.25

Establishment of Mammoth Cave National Park. On May 25, 1926, President Calvin Coolidge signed a bill authorizing the establishment of Mammoth Cave National Park. The legislation designated a maximum park area of 70,618 acres and a minimum of 45,310 acres. It further stipulated that the National Park Service could assume administrative control of the park land following the acquisition of 20,000 acres.26

In 1928, the Kentucky Legislature established the Kentucky National Park Commission and granted it the power of eminent domain. The Governor of Kentucky was given power to appoint six members to the commission from a list submitted by the Mammoth Cave National Park Association. This process ensured that the two groups would have a close relationship.27

Initially, the acquisition of land proved to be difficult, despite the fact that several land owners were interested in selling land for inclusion in the park. The Louisville and Nashville Railroad donated more than 3,000 acres to the Mammoth Cave National Park Association in 1929. At the same time, the association purchased a two-thirds ownership of the Mammoth Cave estate formerly owned by Dr. John Croghan for $446,400. The third owner of the estate refused to sell. The establishment of the Kentucky National Park Commission allowed the commission to take ownership of the last portion of the estate. Shortly after, the Mammoth Cave National Park Association formed a committee to manage the operations of the cave and its historic entrance.28 In 1930, the Kentucky State Legislature passed the Strange-McBrayer Act, which called for the 8 percent of property tax for a two-year period to be given to the Commission to purchase additional park lands. The passage of the act provided the Commission with $1,380,000.29

In early 1931, the Kentucky National Park Commission purchased the Frozen Niagara entrance to Mammoth Cave and began to oversee operations of the entrance.30

On July 17, 1933, the Mammoth Cave National Park Association and the Kentucky National Park Commission formed the Mammoth Cave Joint Operating Committee. The committee assumed all control over both the historic entrance and the Frozen Niagara entrance. The Joint Operating Committee generated approximately $400,000 from entrance fees between 1934 and 1940, allowing it to provide funding for future land purchases and park improvements.31

Despite potential for condemnation in addition to land purchased with state funds, acquisition of

\begin{itemize}
 \item 23 Ibid., 62.
 \item 25 \textit{Cultural Resource Management in Mammoth Cave National Park}, 63.
 \item 26 Ibid.
 \item 27 Ibid., 65-66.
 \item 28 Ibid., 64-66.
 \item 29 Bridwell, 47.
 \item 30 Ibid., 48.
 \item 31 Goode, 43.
\end{itemize}
Developmental History

Further land for the park continued to prove difficult. In May 1934, new legislation was passed that allowed the Secretary of the Interior to accept monetary donations for land purchases. This allowed the National Park Service to take the lead in acquiring land. 32

On May 22, 1936, the Secretary of the Interior formally accepted deeds to 27,561 acres of land, allowing Mammoth Cave to be formally designated a national park. This transfer gave the National Park Service responsibility for the administration and protection of the land. Federal funds could not be used for administration or development of the park until the minimum 45,310 acres had been acquired. 33

By the late 1930s, land acquisition began to proceed at a more rapid pace. The parcel that would later serve as the site of the Superintendent’s Residence was owned by M. L. Charlet at the time of acquisition by the federal government. 34 In 1941, the amount of park-owned land surpassed the 45,310 acre minimum required by the 1926 legislation, allowing Mammoth Cave to be fully established as a national park. The National Park Service received full responsibility for the administration, protection, and development of Mammoth Cave National Park on July 1, 1941. This finally allowed the park to receive Congressional appropriations. Two months later, on September 16, 1941, the National Park Service was given administrative control of the cave itself. Despite receiving full designation as a national park in 1941, official dedication of the park was postponed until 1946 due to the involvement of the United States in World War II. 35

Chronology of Development and Use

Early Development at Mammoth Cave National Park

Despite federal funds not being available for the development of the park, work at Mammoth Cave National Park was able to begin in the mid-1930s. Initial funding was provided by the over $400,000 in profits realized by the Mammoth Cave Joint Operating Committee from guests visiting the park between 1934 and 1940. This money was turned over to the NPS and used to fund improvements to the new park land through work undertaken by the Civilian Conservation Corps (CCC). 36

The Civilian Conservation Corps at Mammoth Cave National Park. The Civilian Conservation Corps, initially called Emergency Conservation Work (ECW), was established on March 31, 1933, under the Federal Unemployment Relief Act. The goal of the CCC was to mobilize unemployed labor forces to perform work such as reforestation, land reclamation, and building of roads and trails. The national park system and the state parks were the beneficiaries of much CCC work. By October 1933, there were 102 CCC camps in national parks.

Four CCC camps operated at Mammoth Cave National Park between 1933 and 1942 (Figure 9). None of the camps, which housed 200 to 250 enrollees each, was functional for this entire period. Camp NP-1 was located on Flint Ridge, Camp NP-2 was situated near the Frozen Niagara entrance to Mammoth Cave, Camp NP-3 was located at Joppa Ridge, and Camp NP-4 was located at Cade (present-day Maple Springs).

The establishment of the CCC in 1933 occurred during the period of continued acquisition of land at Mammoth Cave National Park. As a result, members of the CCC stationed at Mammoth Cave

33. Ibid., 73.

34. Land ownership map provided by Mammoth Cave National Park.

36. Ibid., 73. The federal government was responsible for the salaries and overhead expenses for members of the CCC. As a result, the $400,000 was used to fund construction projects directly.
were given the task of transforming land previously used for agricultural purposes into a natural wilderness landscape to be used for recreation.

Members of the CCC performed several tasks during the nine years in which the camps functioned at the park. One of the first responsibilities of the CCC was to raze buildings on land recently acquired by the government. In addition, members of the CCC completed renovation projects at the Mammoth Cave Hotel and added underground lighting, handrails, and bridges to the cave, making it more accessible to tourists. The CCC also planted trees in fields previously used for agricultural purposes.

The development of the early infrastructure at Mammoth Cave National Park can also be attributed to the CCC, which was responsible for constructing sewage and water systems throughout the park, as well as a telephone system within the park. By April 1940, 7 miles of foot trails and 60 miles of vehicular trails had also been constructed by the CCC.

In addition to conservation and infrastructure work, the CCC constructed several new structures at Mammoth Cave National Park. In 1937, the CCC began construction on six employee residences located approximately one mile southeast of the historic entrance to Mammoth Cave. The one- and two-bedroom residences are similar in design to the hundreds of new living quarters constructed in other National Parks with New Deal funds. Although most residential buildings at this time were constructed by contractors using plans from the National Park Service Branch of Plans and Design, Eastern Division, archival documentation suggests that CCC labor was engaged in construction of the Mammoth Cave employee residences and the Superintendent’s Residence.

South of the residential district, a new maintenance complex was constructed. Originally consisting of three stone structures—a warehouse, repair shop, and paint shed and oil house—construction of the maintenance complex occurred between 1939 and 1941.

Construction of the Superintendent’s Residence

As indicated on aerial photographs from the 1930s, the area of the park in which the Superintendent’s Residence was constructed included a road and building. This area, unlike its surroundings, was not forested, and appears to have been used for agricultural purposes. It is not known through currently available documentation whether a structure existed on this specific site prior to construction of the Superintendent’s Residence.

Initial plans for a residence for the superintendent of Mammoth Cave National Park were developed in early 1940. The residence was to be located

40. Ibid.
42. According to Taylor Hoskins, Jr., the Superintendent’s Residence was designed after the Moore House at Yorktown National Battlefield Park. Oral interview with Taylor Hoskins, conducted by Mike Ford of WJE, February 12, 2013. Archival photographs indicate that the Moore House and Superintendent’s Residence share similar massing and some architectural features but have a distinctly different characters.
east of the employee residences built in 1937, and north and east of the employee residences built in the 1960s. Early plans called for a one-and-one-half story residence with two single-story wings projecting from the main portion of the house. One wing contained the kitchen while the other contained two bedrooms. A two-car garage with maid’s quarters above was connected to the house by a covered breezeway.43 (See Appendix A for the initial design drawings for the Superintendent’s Residence, which were not used in construction.)

Final plans for the Superintendent’s Residence, which differed from the earlier plans, were completed in June 1940.44 (Drawings for the residence, as constructed, are also provided in Appendix A.) At this time, workers began clearing the site and installing protective fencing around existing trees that were to remain.45 Approval of the plans for the Superintendent’s Residence was given on July 11, 1940, by acting Regional Director E. M. Lisle. The final plans called for a one-and-one-half story, stone and wood sided building, with a service wing south of the main house, a porch extending across the rear of the house, and a single story two-car garage.46 Stylistically, the main portion of the residence is a Colonial Revival Cape Cod, with a steeply pitched roof and three projecting dormers. Two brick chimneys flank this central structure. The main portion of the residence contained a living room, dining room, and study on the first floor, with three bedrooms and two bathrooms on the second floor. The south service wing was designed to have a kitchen and pantry on the first floor, with a bedroom and bathroom above.

According to Taylor Hoskins, Jr., son of the first park superintendent to occupy the residence, the building was constructed for $5,000. All of the stone was mined and the timber milled by the park, with labor provided by the CCC. The largest expenses were outside contractors needed to install services such as electrical and plumbing systems, and the cost of fixtures and appliance, which Mr. Hoskins recalls that his parents purchased in Louisville.47

On July 22, 1940, excavation work began at the site.48 Excavation work was completed by CCC labor in August 1940, at which time formwork was built and the concrete basement foundation walls were poured (Figure 10).49 Following completion of the foundation walls, stone work began at the house (Figure 11 and Figure 12). Windows and doors were installed on the first floor of the structure beginning in October 1940. The stone work was completed in December 1940 (Figure 13 and Figure 14). At the same time, sub floor, floor joists and partition walls were installed on the second floor.50

44. Drawing No. MC-2020B, Superintendent’s Residence, National Park Service, Branch of Plans and Design, June 12, 1940.
47. Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.
By the end of February 1941, all of the exterior wood siding had been installed on the house (Figure 15 and Figure 16). Copper flashing was installed on the roof of the main portion of the building, while copper roofing was installed on the shed dormer at the rear of the house (Figure 17 and Figure 18). Slate roofing was installed at the remaining roof areas. Plumbing and heating work began on the inside of the building. Work on the interior finishes of the house was progressing as of July 1941, as plastering work on the first floor was completed (Figure 19). Construction was halted for fifteen days during the month of July due to a lack of funds. Significant site work was

completed in August 1941, with construction of the driveway and service court adjacent to the garage. Other site work at this time included the installation of a flagstone walk leading to the front door (Figure 20) and the laying of stepping stones at the rear of the house.53

The Superintendent’s Residence was substantially completed by October 1941 and occupied by Superintendent R. Taylor Hoskins and his family in early November (Figure 21 through Figure 24). (A list of the superintendents at Mammoth Cave National Park is provided at the end of this chapter.)

FIGURE 15. Front view of the Superintendent’s House before roof installation, early 1941. Source: Mammoth Cave National Park Archives, image 29611.

FIGURE 16. The rear of the Superintendent’s Residence before roof installation, early 1941. Source: Mammoth Cave National Park Archives.

FIGURE 17. View from the southwest of the Superintendent’s Residence in 1941 as it neared completion. Source: Mammoth Cave National Park Archives, image 29689.

FIGURE 18. The rear of the Superintendent’s Residence in 1941 as it neared completion. Source: Mammoth Cave National Park Archives.

FIGURE 19. Interior of bedroom no. 3 during construction, 1941. Note window seat below east window group, interior wood trim, interior six-panel door, and door hardware. Source: Mammoth Cave National Park Archives, image 29730.

FIGURE 20. The front entrance to the residence during construction, summer 1941. Source: Mammoth Cave National Park Archives, image 29734.
FIGURE 21. The completed residence, 1940s. Source: Mammoth Cave National Park Archives, image 29800.

FIGURE 22. The completed residence, 1940s. Note the mature trees on the site. Source: Mammoth Cave National Park Archives, image 29802.
FIGURE 23. Rear view of the completed residence, 1940s. Note the screened back porch as well as the trees in the rear yard. Inside the screened porch, the rear exterior pantry door is visible. Source: Mammoth Cave National Park Archives, image 29803.

FIGURE 24. The living room in the completed residence, 1940s. Note radiators and built-in shelves below each window. Source: Mammoth Cave National Park Archives, image 29804.
Shortly after the completion of the Superintendent’s Residence in October 1941, the United States entered World War II. The CCC left Mammoth Cave in 1942, when the organization was disbanded by the federal government. During the war, Mammoth Cave National Park saw a decrease in visitation that would last until the late 1940s.

Maintenance and Ongoing Changes to the Superintendent’s Residence: 1942–2011

Other than routine maintenance, relatively few changes were made to the Superintendent’s Residence following its initial construction in 1941 (Figure 25 and Figure 26).

A small addition was constructed on the north side of the garage at an unknown date, presumably between 1954 and 1963. The addition is constructed of comparable materials to the original building. The garage addition is not present in historic photographs taken during initial construction of the Superintendent’s Residence, but is present in 1988 photographs submitted with the National Register Nomination. Taylor Hoskins Jr., stated that the addition was constructed during Superintendent Brown’s residency to accommodate his large-sized vehicle. The existence of the addition by 1971 was confirmed by Mary Jo Veluzat, daughter of Superintendent Joseph Kulesza.

Also between 1951 and 1971, French doors were added to the framed entrance leading from the central hall to the former living room space.

In the 1960s, nine staff residences were constructed in the area downhill and immediately south and west of the Superintendent’s Residence as part of the Mission 66 program. The houses were constructed in the Ranch style, were oriented on an east-west axis, and were arranged across the clearing and into the adjacent wooded area.

In August 1982, the coal powered heating system was replaced with an oil-burning system. Ductwork for the new forced-air heating system was added in the basement and attic. At this time, vertical chases were added to the closets in the first and second floor central hall as well as in a closet at the southeast corner of the kitchen and in bedroom no. 4. Vent grilles were installed through the floor of the first floor rooms for air supply and return, and similar vents were added at the ceiling of the second floor rooms for air supply. The original radiators were removed.

In 1995, following the conclusion of David Mihalic’s tenure as park superintendent, the superintendent of Mammoth Cave National Park no longer occupied the residence. Superintendent Ronald Switzer, who followed David Mihalic as Park Superintendent, chose to purchase and reside in a private residence in Bowling Green, Kentucky.

Since the house was no longer being occupied by the Superintendent, plans were made to renovate the structure. The renovation was part of projects funded for Fiscal Year 1995; however, the Superintendent’s Annual Report for 1996 notes that contractor problems delayed completion of this project until October 1996. In Fiscal Year 1996, work completed included the removal of lead paint from all doors, windows, siding, and trim, as well as removal of existing lead-contaminated soils and sod to a depth of 4 inches along a 5 foot wide path around the entire perimeter of the building. New sod and plants were installed. The slate roof was repaired and ridge caps were installed. A new propane heating system was installed to replace the previous oil-burning system. The project cost was given in the annual report as $97,000.

54 Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.
55 Ibid.
56 Ibid. Based on discussion with Mr. Hoskins and Ms. Veluzat, the French doors were not present immediately after construction (i.e., not original) but were present by 1971.
57 Hand written note on Building 038 data form, copy provided by Mammoth Cave National Park.
58 Superintendent’s Annual Report, 1996.

In 1997, renovation work continued, including completion of slate roof repairs, replacement of rotted wood throughout the structure, and the replacement of gutters. A contract was awarded for window replacement, to be completed in Fiscal Year 1998. The Superintendent’s Annual Report for 1997 noted that the total cost of “all of this work” exceeded $60,000, and that the source of funding was the Regional Cyclic Maintenance Program and the park’s quarters account. In addition, the report described this work as “the final phase of an on-going multi-year effort to stabilize this historic structure.”

In 1998, all of the wood window sash on the building were replaced with new wood sash with insulating glass units. (The steel-framed basement windows remain.) The Superintendent’s Annual Report for the year noted that “the installation of new energy efficient windows that maintained the historicity of the structure was completed.” The original wood window frames were retained and modified to allow for the installation of the new sash. The work was performed by an outside contractor.

A tree fell on the rear porch in 1999 (Figure 27). As part of the repairs implemented at the porch, modifications were made to the screens and framing. The configuration of the wood-framed screens and the east screen door are similar to those present when the house was first constructed.

In 2006, staff of the Cumberland Piedmont Network moved into the building and its use changed from residence to offices. As a result of the change of function, minor interior changes were made to the building. A Project Management Information System (PMIS) statement and work orders indicate that a project was initiated in May 2007 and completed in October 2008 to address cyclical maintenance repairs of the exterior and interior of the building. These repairs included pressure-washing of exterior sandstone, washing and painting of exterior trim, and replacement of exterior caulking around windows and doors. The PMIS statement noted that the exterior wood had not been painted for at least fifteen years at that time. In addition, the component completion report noted that repointing of the sandstone exterior was not completed because the contractor could not satisfactorily provide the required mortar analysis.

![Figure 27. Damage to the house caused by tree fall, 1999. Source: Mammoth Cave National Park.](image)

In January 2009 a large storm struck Mammoth Cave National Park, resulting in damage or loss of numerous trees within the park. At this time, a 30-inch-diameter oak tree, located adjacent to the north elevation of the residence, fell onto the building and penetrated the roof sheathing. The north chimney and roof area sustained damage that included the loss of slate roof tiles, three broken windows, and structural damage to the exterior walls and roof. Work to repair the damage was completed in 2009 and was performed to match the existing features of the building.

61. Compare Figure 23 with Figure 40 in the Physical Description and Condition Assessment chapter.
62. PMIS 102881, “Exterior Enclosure of 7 Structures and Interior Walls of 1 Structure,” created December 12, 2003; last updated December 17, 2008. Component Completion Report dated December 17, 2008, noting component start date of May 1, 2007, and component completion date of October 6, 2008. The total project cost, $59,900.00, includes work on other buildings and, as noted in the report, reflects a savings of $30,400 to the government through exclusion of repointing of the sandstone exterior.
In 2010, a new zoned heating, ventilating, and air conditioning (HVAC) system was installed. Pipes and condensate lines were installed through the north exterior wall of the building and into the basement. (This work may have been performed as part of modifications to the HVAC system in 2010.)

Other interior finishes renovations were completed by 2010, including painting the walls and ceilings in the basement; painting the papered finish at ceiling in the kitchen, pantry, one bathroom, and bedroom no. 4; patching and painting plaster ceilings in the first floor bathroom and second floor bathroom no. 1; repainting selected interior surfaces, including windows and trim, the living room walls and ceiling, the hall ceiling near the living room, the bedroom no. 3 walls and ceiling, bathroom no. 1 ceiling, and bathroom no. 3 ceiling; and replacement of wallpaper in the study, bedroom no. 1, bathroom no. 2, and bathroom no. 3.64 Shutter were present on the house at the time of completion or soon thereafter. According to Taylor Hoskins, Jr., during the period from 1941 through 1951, exterior wood shutters were present on the west and east elevations. At that time the shutters were painted white; they were later painted yellow by the park, and eventually repainted blue.65 Shutter were present at first.

64. Work Order 456983, Bldg 038, Piedmont Network Office - Paint Basement Area, completed August 20, 2010; Work Order 456988, Bldg 038, Piedmont Network Office - Paint Ceilings, completed August 20, 2010; Work Order 456989, Bldg 038, Piedmont Network Office - Patch Plaster Ceiling, completed August 20, 2010; Work Order 456990, Bldg 038, Piedmont Network Office - Paint Doors, Windows, Trim, completed August 20, 2010; and Work Order 456991, Bldg 038, Piedmont Network Office - Replace Wall Covering, completed August 20, 2010.

Existing physical evidence suggests that several other modifications were made to the residence between completion in 1941 and the present. Dates of these alterations are unknown, undocumented in drawings available at this time, and could not be confirmed through oral history interviews conducted for this study. These modifications include the following.

- Construction of the concrete patio at the rear of the house. During the years in which Superintendent Hoskins and his family occupied the residence, the patio did not exist and the back yard was a grass-covered area.67

- During the early years of occupancy, a stone walkway circled the house. The walkway led from the driveway around the garage to the east door of the screen porch, and then along the north side of the house, where it met the existing flagstone path.68

- The metal garage doors on the south elevation are not original and were added to the building after 1976.69 Until at least that time, the garage was fitted with wood doors.70

- The central stair to the basement was closed off and converted into a closet sometime after 1951. The exact date of this modification is not known. With this exception, and the

66. National Register Nomination photographs, 1988. Walk-through with Mary Jo Veluzat by Ken Kern of MACA on January 29, 2013. These shutters may have been removed as part of the exterior lead paint abatement in 1996 and not reinstalled.

68. Ibid.

70. Ibid.
installation of new mechanical and electrical equipment, the basement remains as it appeared after construction.71

- Various alterations were made to the kitchen. Features remaining from original construction include the light fixtures with circular tube fluorescent lamps and some of the cabinets, although new knobs and drawer pulls have been installed. The root vegetable cabinet adjacent to the stove is not original but was likely added early in the history of the residence. The plastic laminate countertops with metal trim are also non-original features; the original countertops were dark red linoleum throughout the kitchen. The countertops next to the stove were replaced with plastic laminate prior to 1971, while the other countertops were replaced with wood-appearance plastic laminate sometime after that date. The metal trim on the countertop just to the right (east) of the stove may be original. The dishwasher was installed after 1972.72

- There was no first floor bathroom in the residence as originally constructed. Alterations to convert the original pantry to a bathroom were made after 1954, when Superintendent Thomas (Cal) Miller left.73 Conversion of the pantry to a bathroom occurred sometime before 1971, and the mirror, light and cabinets currently present date from 1971 or earlier. The existing tile and the light fixture in the hallway outside this bathroom were installed after 1976.74

- In about the same time period that the first floor bathroom was constructed, all three second floor bathrooms were renovated. New ceramic tile wainscot was installed, replacing the linoleum wainscot identified on the drawings. New sheet vinyl flooring was installed, replacing the original linoleum flooring. Some plumbing and lighting fixtures also were likely replaced.75

- Removal of doors between the pantry and kitchen, and between the kitchen and the east entrance area, sometime between 1951 and 1971.76

- Ceiling fans were installed in many of the rooms including the bedrooms, dining room, living room, and porch after 1976.

- Replacement of the screen door on the south end of the porch with a new vinyl screen door.

(Refer to the Physical Description and Condition Assessment chapter for further discussion of original and non-original features.)

71. Ibid.
73. Ibid.
74. Walk-through with Mary Jo Veluzat by Ken Kern of MACA on January 29, 2013.
75. Based on comparison of existing materials and fixtures in the second floor bathrooms to the materials in the non-original first floor bathroom.
76. Ibid.
Superintendents of Mammoth Cave National Park. Following is a list of superintendents of Mammoth Cave.77 Superintendent R. Taylor Hoskins was the first to live in the Superintendent’s Residence. (Hoskins was acting superintendent from 1938–1941 and officially became superintendent with the establishment of the park on July 1, 1941.) Mihalic was the last superintendent to reside in the building, in 1995. Administrative officer Jim Hooyboer lived in the house after Superintendent David Mihalic, until he left Mammoth Cave National Park in 1998.78

<table>
<thead>
<tr>
<th>Name</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Taylor Hoskins, Superintendent</td>
<td>1941–1951</td>
</tr>
<tr>
<td>Thomas C. Miller, Superintendent</td>
<td>1951–1954</td>
</tr>
<tr>
<td>Perry E. Brown, Superintendent</td>
<td>1954–1963</td>
</tr>
<tr>
<td>Paul McG. Miller, Superintendent</td>
<td>1963–1965</td>
</tr>
<tr>
<td>John A. Aubuchon, Superintendent</td>
<td>1966–1968</td>
</tr>
<tr>
<td>Robert H. Bendt, Superintendent</td>
<td>1968–1971</td>
</tr>
<tr>
<td>Joseph Kulesza, Superintendent</td>
<td>1971–1976</td>
</tr>
<tr>
<td>Robert L. Deskins, Superintendent</td>
<td>1979–1984</td>
</tr>
<tr>
<td>Richard N. Strange, Acting Superintendent</td>
<td>1984</td>
</tr>
<tr>
<td>Franklin D. Pridemore, Superintendent</td>
<td>1984–1988</td>
</tr>
<tr>
<td>David A. Mihalic, Superintendent</td>
<td>1988–1995</td>
</tr>
</tbody>
</table>

78 \textit{Superintendent’s Annual Report} indicates that Jim Hooyboer left during Fiscal Year 1997, thus moved out in 1997.
Mammoth Cave National Park Superintendent’s Residence Chronology

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>circa 1800</td>
<td>John Houchin rediscovered the natural entrance to Mammoth Cave.</td>
</tr>
<tr>
<td>1815</td>
<td>Saltpeter mining was suspended at Mammoth Cave.</td>
</tr>
<tr>
<td>1828</td>
<td>Hyman Gratz constructed a small log cabin near the cave to house visitors.</td>
</tr>
<tr>
<td>1839</td>
<td>Dr. John Croghan purchased the Mammoth Cave property and continued to expand visitor accommodations.</td>
</tr>
<tr>
<td>1886</td>
<td>Mammoth Cave Railroad began service from Glasgow Junction to Mammoth Cave.</td>
</tr>
<tr>
<td>1916</td>
<td>The original Mammoth Cave Hotel was destroyed in a fire.</td>
</tr>
<tr>
<td>1925</td>
<td>A new Mammoth Cave Hotel was constructed.</td>
</tr>
<tr>
<td>1926</td>
<td>President Calvin Coolidge signed a bill authorizing the establishment of Mammoth Cave National Park.</td>
</tr>
<tr>
<td>1931</td>
<td>The Mammoth Cave Railroad ceased operation.</td>
</tr>
<tr>
<td>1933</td>
<td>The Civilian Conservation Corps was established and the first CCC camp was established at Mammoth Cave National Park.</td>
</tr>
<tr>
<td>1937</td>
<td>The CCC began construction on six residences for park employees at Mammoth Cave National Park.</td>
</tr>
<tr>
<td>1939-1941</td>
<td>The CCC constructed three maintenance structures at Mammoth Cave National Park.</td>
</tr>
<tr>
<td>1940-1941</td>
<td>The Superintendent’s Residence is constructed by members of the CCC.</td>
</tr>
<tr>
<td>1942</td>
<td>The CCC leaves Mammoth Cave as the organization was disbanded by the federal government following the United States entrance in to World War II.</td>
</tr>
<tr>
<td>1951-1971</td>
<td>Concrete patio was constructed at the rear of the house.</td>
</tr>
<tr>
<td>1951-1971</td>
<td>French doors were added to the framed entrance leading from the central hall to the former living room space.</td>
</tr>
<tr>
<td>1951-1971</td>
<td>Stone walkway that circled the house was partially removed.</td>
</tr>
<tr>
<td>1951-1971</td>
<td>Various alterations to the kitchen including countertops and removal of two interior doors.</td>
</tr>
<tr>
<td>1951-2006</td>
<td>The central stair was enclosed.</td>
</tr>
<tr>
<td>1954-1963</td>
<td>A small addition was constructed on the north side of the garage.</td>
</tr>
<tr>
<td>1954-1971</td>
<td>Renovation of the pantry into a bathroom; modifications to second floor bathrooms.</td>
</tr>
<tr>
<td>1976-2006</td>
<td>Kitchen floor was removed and replaced.</td>
</tr>
<tr>
<td>1976-2006</td>
<td>Wood garage doors were removed and replaced with metal garage doors.</td>
</tr>
<tr>
<td>1976-2006</td>
<td>Ceiling fans were installed in the dining room, living room, porch, and all bedrooms.</td>
</tr>
<tr>
<td>1982</td>
<td>The coal powered heating system was removed and replaced by an oil-burning furnace. New floor vents were installed at the first floor level, and ceiling vents at the second floor level.</td>
</tr>
<tr>
<td>1988-2010</td>
<td>Shutters were removed from the west elevation of the building.</td>
</tr>
<tr>
<td>1995</td>
<td>David Mihalic’s tenure as park superintendent ended. He was the last park superintendent to reside in the Superintendent’s Residence.</td>
</tr>
<tr>
<td>1996</td>
<td>Renovations were made which included lead abatement, repairs to the slate roof, and installation of a new heating system.</td>
</tr>
<tr>
<td>1997</td>
<td>Renovations were made which included completion of slate roof repairs, replacement of rotted wood features, and replacement of gutters.</td>
</tr>
<tr>
<td>Year</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>1998</td>
<td>All wood window sash were removed and replaced.</td>
</tr>
<tr>
<td>1997</td>
<td>Administrative Officer Jim Hooyboer, the last NPS staff member to reside in the residence, departed Mammoth Cave National Park.</td>
</tr>
<tr>
<td>1999</td>
<td>A fallen tree caused damage to the screened porch. Repairs were made to the screens and wood-framing.</td>
</tr>
<tr>
<td>2006</td>
<td>The Cumberland Piedmont Network moved into the building to utilize the space as offices.</td>
</tr>
<tr>
<td>2009</td>
<td>A fallen tree caused structural damage to the north end of the building. Repairs to the roof and walls were made. Additional repairs were made to the garage and garage roof.</td>
</tr>
<tr>
<td>2010</td>
<td>New heating and air-conditioning equipment was installed.</td>
</tr>
</tbody>
</table>
Developmental History
Physical Description and Condition Assessment

Site

The Superintendent’s Residence is located in a collection of maintenance, support, and employee residences approximately one mile southeast of the visitor center of Mammoth Cave National Park. The Superintendent’s Residence is situated in a clearing at the peak of a gently rolling hill. It is bounded by wooded areas to the north and east, and set back from the access road behind an open lawn to the south and west. The wooded areas extend approximately 10 feet closer to the residence than they did when the building was constructed. A long driveway leads to the house. At the time of construction of the house, many of the trees on site were mature (refer to Figure 16 through Figure 18 in the Developmental History chapter). 79

A small enclave of employee residences is located approximately 500 feet west of the Superintendent’s Residence and slightly downhill (Figure 28). The enclave is composed of structures from two different eras of construction. The residences closest to the Superintendent’s Residence are one-story Ranch style structures oriented on an east–west axis and built as part of Mission 66 park improvements (Figure 29 and Figure 30). The buildings have slab-on-grade foundations, horizontally-oriented siding, and asphalt shingle gable roofs. Character defining features include aluminum-framed stacked awning windows and a covered carport with built-in wood cabinets along the exterior wall. At some residences, the carport has been enclosed (Figure 31 and Figure 32).

Significant alterations have been made to the two Mission 66 residences located south of the Superintendent’s Residence, which are currently used as offices (Figure 33). At these two structures, the windows have been replaced with new casement units, the carport has been enclosed, and the facade has been clad with a stone veneer foundation and new siding.

West of the Mission 66 houses is a cluster of six rustic style CCC-built structures accessed from a loop road. The CCC residences are one-story wood-framed structures with stone foundation, wood-siding, and a stepped gable roof. The buildings feature screened porches and stone chimneys. View of the CCC residences from the Superintendent’s Residence is obscured by mature trees, foliage, and the Mission 66 houses.

![Figure 28. View of the residential enclave, looking west from the front entrance of the Superintendent’s Residence. Photograph by Ken Kern, Mammoth Cave National Park.](image)

79. Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.
FIGURE 29. View of Building 044, mostly unchanged since original construction. Photograph by Ken Kern, Mammoth Cave National Park.

FIGURE 30. View of Building 035, mostly unchanged since original construction. The existing siding is grooved plywood. Photograph by Ken Kern, Mammoth Cave National Park.

FIGURE 31. View of Building 037; the original carport at left has been enclosed as a garage. Photograph by Ken Kern, Mammoth Cave National Park.

FIGURE 32. View of another former residence, now used as offices. The original carport at right has been enclosed as additional office space. Photograph by Ken Kern, Mammoth Cave National Park.

FIGURE 33. View of Building 042, showing significant alterations after original construction. The building is now used as offices. Photograph by Ken Kern, Mammoth Cave National Park.
Exterior Evaluation

Description

The Superintendent’s Residence is a one-and-one-half-story Colonial Revival style house with an L-shaped plan. Although constructed in one phase, the house consists of four distinct sections differentiated by construction material, roof line, and function; these include the main portion of the building, an attached south wing, a screened porch, and a garage wing.

The main portion of the building, measuring 42 feet by 27 feet in plan and comprising the northernmost portion of the house, shares a slate gable roof and common end gable wall with the south wing. The south wing is 21 feet 6 inches by 18 feet 3 inches in plan and is setback 9 feet from the west facade of the main portion of the building. A wood post and lintel-framed screened porch extends along the entire east elevation of the main portion of the building and south wing and measures approximately 62 feet by 8 feet in plan. The three structures are oriented on a north–south axis. The garage wing is approximately 20 feet wide and extends 25 feet on an east–west axis, perpendicular to the south end of the screened porch.

The Superintendent’s Residence is characterized by its sandstone and clapboardsiding, slate gable roof, multi-light windows, projecting wood-framed dormers, and stone chimneys. Since 2006, the building has served as the headquarters for the Cumberland Piedmont Network and houses its regional offices and professional staff.

FIGURE 34. Overall view of the west elevation of the Superintendent’s Residence.
FIGURE 35. West elevation of the main portion of the building.

FIGURE 36. West elevation of the south wing of the house.
FIGURE 37. South elevation of the south wing.

FIGURE 38. South elevation of the main portion of the building.
FIGURE 39. South elevation of the screened porch and garage wing.

FIGURE 40. East elevation of the Superintendent’s Residence, with main portion of the building and screened porch.
FIGURE 41. East elevation of the garage wing.

FIGURE 42. North elevation of the main portion of the building.
FIGURE 43. North elevation of the screened porch.

FIGURE 44. North elevation of the garage wing.
The west facade of the Superintendent’s residence contains the formal entrance and is comprised of five bays (refer to Figure 34). The three northernmost bays are located on the main portion of the building (refer to Figure 35). The remaining two bays are situated on the attached south wing of the building (refer to Figure 36). Each bay has a gable roof dormer with painted wood diagonal shiplap siding. At the main portion of the building, the dormers extend from the roof surface, while at the south wing the dormers are flush with the plane of the elevation (Figure 45 and Figure 46). A decorative box-framed cornice with crown molding extends along the roof eave and is concealed behind a non-original aluminum drainage gutter.

The main entrance is located at the center bay of the main portion of the building facade and is accessed via a flagstone paved walkway and a small flagstone stoop with wrought iron hand rails. The railing is set in cementitious grout (Figure 47). On the stone facade at either side of the door opening is a non-original metal wall-mounted sconce.\(^{80}\)

![Figure 45](image1.png) Typical dormer window at the main portion of the building.

![Figure 46](image2.png) Typical flush dormer window at the south wing of the house.

![Figure 47](image3.png) Main entrance located on the west elevation of the main portion of the building.

The bays on either side of the main entrance consist of a stone-clad facade with a window opening and a gable roof dormer. Painted S-shaped metal shutter holdbacks are wall-mounted on either side of the window opening at the sill height and are original to the structure (Figure 48). At the corners of the main portion of the building, aluminum drain leaders extend from the gutter to clay drainage pipes embedded in the soil.

80. Archival photographs dating to the 1940s show different fixtures at this location. Refer to Figures 21 and 22 in the Development History chapter.
The west elevation of the attached south wing has an 8-inch overhang at the second floor. The northernmost bay of the south wing has a window at the first floor level and a wall dormer at the second floor level. Drain leaders extend from the gutter to clay drainage pipes embedded in the ground on either side of the dormer. A vent opening with metal vent hood projects from the wall immediately south of the window opening. The south bay contains a window at the first floor level and a wall dormer. An aluminum drain leader extends from the gutter at the southwest corner of the building.

The south elevation of the Superintendent’s residence has three components: the south wing end gable, the exposed portion of the main portion of the building end gable, and the entrances to the screened porch and garage wing.

The south elevation of the south wing has three openings centered on the end gable (refer to Figure 37). The openings at the first and second floors contain windows, while the uppermost opening located below the peak of the roof contains a wood louvered vent. A non-original electrical service meter is mounted to the wood clapboard siding and an iron coal hatch, original to the structure, is located on the east end of the elevation at the foundation level. The company name “Majestic” is stamped on the coal hatch door.

flanked by gabled dormers. A third gabled dormer is located at the south end of the roof surface.

The garage wing extends from the east elevation of the screened porch (refer to Figure 41). The east gabled wall has a window centered on the elevation. A non-original electrical junction box is mounted to the south end of the elevation and a non-original abandoned wall-mounted light socket is located in the gable above the window.

The north elevation consists of three components differentiated by materials and setback. The west end of the elevation is the end gable of the main portion of the building (refer to Figure 42). It has a central stone chimney stack that extends approximately 4 feet above the ridge of the roof; this chimney has a metal ash clean-out door at grade. The first floor has windows that flank the chimney. Non-original electrical junction boxes serving the air conditioning condensers are mounted to the stone units east of the chimney. The gable portion of the elevation has window units on either side of the chimney. At the attic level, two triangular louvered wood vents abut the chimney.

Directly east of the main portion of the building is the end elevation of the screened porch (refer to Figure 43). It is set back 4 feet from the adjacent wall and consists of a single post and lintel-framed bay. The opening between the posts contains wood-framed screens.

The east section of the north elevations is set back approximately 40 feet from the end of the porch and comprises the rear of the garage wing (refer to Figure 44). It is divided into west and east sections. The west section has a projecting shed addition that was not a part of the original plans for the building. A window unit is centered on the projecting shed addition and a drain leader, located at the northeast corner, extends from the cornice-mounted gutter and discharges onto the concrete patio. The east section of the elevation has a window unit, a wall-mounted flood light, and a drain leader extending to a drain pipe at the northeast corner of the building.
Windows and Doors. The existing windows at the Superintendent’s Residence are wood-framed multi-light units similar in pattern and window type with the original construction and design of the building. Although the window frames are original to the structure, the wood sash, hardware, and glazing have been replaced. No original wood window sash were observed to remain on the building. Existing wood replacement sash have thicker muntin profiles than the original sash illustrated in the construction documents, the apparent vinyl or rubber wraparound glazing is inconsistent with traditional glazing techniques, and the original monolithic glass has been replaced with insulating glass units. Although window hardware is not depicted in the original construction documents and is not clearly visible in the available archival photographs of the interior, the existing window sash locks are contemporary coated steel components that were most likely installed with the replacement sash.

Window units are primarily double-hung and are painted white. The windows can be grouped into four typical configurations. The difference between window types lies primarily in the window light configuration and addition of wood panels, and is dependent upon the floor level, elevation, and building wing.

Windows at the first floor level of the east and west elevations of the main portion of the building are typically six-over-nine double-hung units, with a lower wood panel that extends from the bottom of the window unit to a level equivalent to the interior finished floor height (Figure 50). Construction drawings indicate that the windows were originally designed to have three-panel shutters flanking the window and attached to the wood-frame with strap hinges (Figure 51). The wood shutters from the west facade window locations have been removed and are stored in the garage. Physical evidence on the west window frames indicate that the shutters were last installed with mortised flat hinges. The remaining shutters, located on the east elevation, were installed with mortised flat hinges. No physical evidence was observed to suggest that the existing shutters were ever attached with strap hinges.\(^{82}\)

![Figure 50](image)

FIGURE 50. Typical first floor window at the west and east elevations of the main portion of the building.

![Figure 51](image)

FIGURE 51. Detail from original construction documents of the first floor window at the main portion of the building. (NPS drawing 135-2020C, “Superintendent’s Residence,” National Park Service, Branch of Plans and Design, Regional Office, July 2, 1940.)

\(^{82}\) Physical evidence is supported by commentary by Taylor Hoskins, Jr., who indicated that existing S-shaped shutter hardware is original to the structure. Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.
First floor windows on the north and south elevations of the main portion of the building also have six-over-nine double-hung sash but do not have the additional wood panel or attached wood shutter (refer to Figure 38).

At the south wing, first floor window openings contain six-over-nine double-hung sash set in the beaded clapboard siding (Figure 52 and Figure 53).

Windows at the garage wing and one window unit on the west elevation of the south wing are six-over-six light double-hung sash (Figure 54 and Figure 55). Second floor windows also typically have six-over-six light double-hung sash but are set in gabled dormers (Figure 56 and refer to Figure 45).

Windows associated with the shed dormer on the east elevation from the building vary from the typical window configuration, and consist of horizontally ganged units. The ganged windows consist of a wood-framed multi-light fixed sash flanked by six-over-six double-hung windows; the individual window units are separated by wood mullions (Figure 57 and Figure 58).

FIGURE 52. Typical first floor window at the south wing.

FIGURE 54. Typical window at the garage wing.

FIGURE 56. Detail from original construction documents of the typical dormer window units. (NPS drawing 135-2020C, “Superintendent’s Residence,” National Park Service, Branch of Plans and Design, Regional Office, July 2, 1940.)

FIGURE 57. Ganged windows at the second floor of the main portion of the building.

FIGURE 58. Detail from original construction documents of the ganged windows at the second floor level. (NPS drawing 135-2020C, “Superintendent’s Residence,” National Park Service, Branch of Plans and Design, Regional Office, July 2, 1940.)

Four types of exterior doors were observed on the building, varying by building wing and elevation. All doors on the main portion of the building and south wing have a flat arch stone door opening and wood-framed door surround painted white, and are original to the structure. The main entrance vestibule on the west elevation consists of a recessed jamb with wood paneling. The main entrance door is a six-paneled wood door flanked by sidelights. Each sidelight is composed of four upper lights and a bottom wood panel that extends to the finished floor height (Figure 59 and refer to Figure 47).
On the east elevation, the typical door type is a wood-framed glazed door of mortise-and-tenon construction. The door has twelve lights above two bottom panels (Figure 60 and Figure 61). The wood-framed door units, framing, and glass lights are original to the structure.

FIGURE 59. Detail from original construction documents of the main entrance door. (NPS drawing 135-2020C, “Superintendent’s Residence,” National Park Service, Branch of Plans and Design, Regional Office, July 2, 1940.)

FIGURE 60. Typical exterior door, viewed from interior.

FIGURE 61. Detail from original construction documents of typical exterior door. (NPS drawing 135-2020C, “Superintendent’s Residence,” National Park Service, Branch of Plans and Design, Regional Office, July 2, 1940.)
Other door types on the building include the garage doors and porch screen doors. Construction drawings do not detail or illustrate the garage doors but note that the doors should be a “stock overhead door” with glazed top sections (Figure 62). The existing garage doors are aluminum sectional roll-up doors and are not original to the structure.

FIGURE 62. Detail from original construction documents of south garage wing elevation with doors indicated. (NPS drawing 135-2020C, “Superintendent’s Residence,” National Park Service, Branch of Plans and Design, Regional Office, July 2, 1940.)

Currently, all exterior doors to the main portion of the building and south wing have a non-historic aluminum-framed screen doors. At the west main entrance door, the available archival photographs depict the original screen door as a wood-framed door with one large upper panel and paired lower panels (refer to Figure 16 in the Developmental History chapter).

The original two-panel wood-framed porch east wall screen door is visible in one archival photograph dating to the 1940s (refer to Figure 18 in the Developmental History chapter). Also, the original drawings depict a wood-framed screen door of this type (Figure 63). Although the available archival photographs do not show the south porch door, the original drawings do indicate that the south door was also a screen door. The existing south porch door consists of a glazed two-panel vinyl door; this door is not original (refer to Figure 49 and the discussion of the screened porch under Interior Evaluation, page 65, below). The east porch entrance has a two-panel aluminum-framed screen door with fretwork in the upper panel (Figure 64). The existing east screen door was installed prior to 1988; however, based on the archival photograph mentioned above, the existing screen door is not original to the structure. 83 Also, former resident Taylor Hoskins, Jr., stated that the screen door at the south end of the porch has been replaced since he lived in the house between 1941 and 1951. 84

FIGURE 63. Detail from original construction documents of screen door. (NPS drawing 135-2020C, “Superintendent’s Residence,” National Park Service, Branch of Plans and Design, Regional Office, July 2, 1940.)

83. Comparison of archival photographs submitted for the 1988 National Register nomination and existing conditions.

84. Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.
In addition to the doors and windows, the building features a partially enclosed wood-framed screened porch on the east elevation. Original construction documents and one archival photograph indicate that the porch was enclosed with wood-framed screens. The existing division of screen panels matches the original design as seen in one archival photograph of the east side of the residence (refer to Figure 18 in the Developmental History chapter). According to Taylor Hoskins, Jr., the configuration of the porch screens is similar to his recollection of its appearance in 1941 to 1951.\footnote{Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.}

Walls. The building has stone and wood-framed exterior wall construction that is original to the structure. The first floor level of the main portion of the building foundation of the south wing and screened porch, and two chimney stacks are constructed of rock-faced random ashlar sandstone with raked (recessed) mortar joints (Figure 65). Typical stone units are either 3 inches or 6 inches tall and vary in length up to 2 feet long and a thickness of approximately 20 inches. Larger stone units are located at the window sills and heads. Window sills are composed of a single 3-inch-tall stone unit that extends 2 inches beyond the width of the window on either side. Windows have flat arch stone heads composed of five stone units. Each header unit is approximately 12 inches tall and 8 inches wide (Figure 66). Mortar joints are approximately 1/2 inch wide, have a light beige color that blends with the surrounding stone, and a concave joint profile.
exterior color of the siding was white (refer to Figures 16 through 18 in the Developmental History chapter).

![FIGURE 67. Beaded clapboard siding.](image)

and have an 8-inch exposure. The shed dormer has a standing seam copper roof.

Condition Assessment

The following notable conditions were observed at the building exterior:

Sandstone Cladding.

- In general, the stone cladding is in good condition. The majority of the observed deterioration and distress is located at the north elevation wall and chimney.

- Cracking was observed at the mortar joints at the north elevation chimney and wall. At all locations, the cracked joints had a stepped pattern (Figure 69) and sometimes extended through the narrower stone units (Figure 70).

- Cracking was observed in the mortar joints at multiple locations in the stone foundation wall (Figure 71).

- Spalling was observed at one stone unit at the north chimney stack (Figure 72). The entire face of the stone had spalled.

- Severe staining and efflorescence were observed on the face of stone units at the north chimney (Figure 73).

![FIGURE 68. Diagonal-oriented shiplap siding at dormers.](image)

Roofing. The Superintendent’s Residence has a combination of wood-framed gable and shed roofs with slate and copper roofing. The roof structure and materials appear to be original to the building.

Shed roofs are located above the screened porch, at the garage wing addition, and above the shed dormer on the east elevation of the building. With the exception of the shed dormer, the existing roofs have shingle-lapped grey slate roofs nailed into the sheathing and copper flashing. The slate shingles are approximately 10 inches by 20 inches

![FIGURE 69. Cracking in mortar joints at north chimney.](image)

86. Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.
Wood Elements.

- In general, the wood siding is in good condition.

- Displaced wood siding boards were observed at a few locations in the shiplap cladding on the dormers as well as at the beaded clapboard adjacent to the north chimney (Figure 74 and refer to Figure 45).

- Cracking and checks were observed at the ends of approximately 5 percent of the wood siding members (Figure 75). Typically, the deterioration was located parallel to the direction of the wood grain and often correlated with the location of metal fasteners.

- Cracking and deterioration was observed at the end of a few wood siding members adjacent to stone cladding units on the north elevation (Figure 76).

- Deterioration along the end grain of wood window components was observed at a few window dormer units (Figure 77). The observed deterioration typically occurred along the bottom edge of vertically oriented window elements.
Physical Description and Condition Assessment

- Cracked, blistered, chipped, and peeling paint coatings were observed on wood siding and window sills at localized areas on all elevations (Figure 78 and refer to Figure 67). The house was repainted in 2012 (after completion of the site work for this report).

![Figure 74. Displaced wood siding.](image)

FIGURE 74. Displaced wood siding.

![Figure 75. Checks and cracks in wood siding.](image)

FIGURE 75. Checks and cracks in wood siding.

![Figure 76. Deterioration of wood siding adjacent to stone cladding.](image)

FIGURE 76. Deterioration of wood siding adjacent to stone cladding.

FIGURE 77. Deteriorated wood window trim.

FIGURE 78. Cracked, blistered, and peeling paint on wood siding.

Slate Roofing.

- In general, the slate roof is in fair to good condition. Reportedly, the park recently performed repairs to the north end of the roof adjacent to the stone chimney. It appeared that some of the slate shingles in the field of the roof had been replaced as well (Figure 79).

- Displaced slate shingles were observed at a couple locations along the edge of the dormer windows and in the field of the roof (Figure 80).

- A small number of cracked or broken slate shingles were observed in the field of the roof (Figure 81).

- Mild scaling of the upper surface was observed on approximately 50 percent of the roof slate shingles (Figure 82).
Physical Description and Condition Assessment

- Wood window frames, mullions, and muntins are typically in fair to good condition.

- All wood window units have been retrofitted with insulating glass lights set in replacement sash. The glass appears to have been set in a vinyl or rubber wraparound, or marine, glazing “gasket” rather than with traditional glazing putty or more contemporary glazing tape and sealant. The glazing is in poor condition, as in all windows surveyed the glazing gasket around the insulating glass lights was observed to be deteriorated and displaced (pinched at the corners and loose, or displaced outward, toward the center of each muntin) (Figure 83). The observed displacement and deterioration of the current glazing appears to have occurred over time, as it is unlikely that the glazing would have been acceptable to the National Park Service if provided in this condition upon installation. Further investigation would be required to determine the causes of failure of the gasket as well as the extent of any consequential damage caused by the lack of an effective weather seal. (See further discussion under Recommendations, below.)

- Loose and displaced weather stripping was observed at the meeting rail between the upper and lower sash at two west elevation dormer windows (Figure 84).
Flagstone Pavers.

- Cracking was observed at two locations in the stone pavers at the west entrance stoop. In both instances, the cracking appeared to originate from the grouted handrail pockets (Figure 85). There was no evidence that the stone was loose or unsound.

- Cracked and open mortar joints were observed between flagstone pavers at the west walkway (Figure 86).

- Biological growth was observed in open mortar joints between pavers, as well as at the expansion joint between the stone stoop and concrete jamb at the west doorway (Figure 87 and Figure 88).
Metals.

- Deterioration was observed at the metal flashing and reglet joints in the chimneys (Figure 89). In addition, the flashing installation did not appear to provide adequate flashing coverage to protect the chimney/roof interface from moisture penetration.

- Minor distress was observed at the metal roof flashing below the dormer windows (Figure 90). Portions of the flashing had been turned up.

Concrete.

- Minor cracking was observed at a few locations in the concrete foundation wall of the garage wing (Figure 91).

Other Elements.

- Abandoned anchors and light fixtures were observed at various locations throughout the building facades. In some instances, the abandoned anchors are associated with corrosion staining (Figure 92).

- Pest infestations were observed at multiple locations around the building. The most prevalent infestations include what appear to be mud dauber nests (Figure 93) and spider webs. Holes associated with burrowing were observed adjacent to the building foundation (Figure 94). No evidence of termite infestation was observed.
Interior Evaluation

Description

The interior of the Superintendent’s Residence reflects its exterior appearance. The interior can be divided into four sections: the main portion of the building, south wing, screened porch, and garage wing.

The main portion of the building has a two-pile central hall plan. Historically, the public spaces and areas of entertainment were located at the first floor level and bedrooms were located at the second floor level. Although connected through interior doorways, the south wing has a different architectural character than that of the main building. It was designed as a utilitarian and servant-oriented space, with the kitchen and pantry at the first floor level and servant’s quarters at the second floor level. Both the main portion of the building and the south wing directly access the screened porch. The garage wing is accessed through a separate doorway from the screened porch.

Each portion of the building and floor level has distinguishing interior finishes. Certain conditions relating to doors and windows are consistent throughout all portions of the building.

Most of the interior doors throughout the building are wood-framed, six-panel doors, all of which are original to the building (Figure 95). Many of the doors retain the original brass hardware (Figure 96). All interior door openings have a wood jamb and 5-inch-wide wood trim. Typical exterior doors are described in the exterior description above. Many of the exterior doors are original to the structure but have non-historic aluminum storm doors.
finishes precedes the description of each portion of the building and floor level.

First Floor – Main Portion of the Building.
The typical original interior finishes for the first floor of the main portion of the building include tongue-and-groove oak floor with 2-inch-wide floor boards, 5-inch-tall wood baseboard with quarter-round base shoe, wood chair rail, plaster walls with patterned wall covering, and plaster ceiling with ceiling mounted fan and light fixture (Figure 97 and Figure 98). The wood flooring, wood baseboard and chair rail, and plaster walls are original to the structure, based on the original drawings and two available archival photographs of the interior as it appeared in the 1940s. However, at areas where a non-original covering has been installed, it is not known from physical evidence and available archival documentation if the existing ceiling is the original plaster. Metal air grilles are set into the wood flooring, installed in 1982 as part of new mechanical system (Figure 99).

As described in the exterior description, first floor windows are typically wood-framed, six-over-nine units, while second floor windows are typically six-over-six. Although the sash, glazing, and hardware have been replaced, the wood frames are original to the structure.

The building is currently being used as offices and support space for the Cumberland Piedmont Network. For clarity and consistency, the rooms are referred to in this discussion by their historic designations. A description of common interior

FIGURE 95. Typical original six-panel interior door

FIGURE 96. Typical original brass door hardware.

FIGURE 97. Typical oak wood flooring with 2-inch-wide boards is original to the structure.
FIGURE 98. Typical original wood chair rail trim with patterned wall covering.

In addition to the typical interior conditions, the main portion of the building has a unique window detail. Typically, the windows are set in a 12-inch-deep recessed bay that extends to the finished floor. At each window, a wood shelf unit painted white with a rounded edge is located at the window sill height (Figure 100). The shelves are original to the building and provided a surface above the original heating radiator located below each window.

FIGURE 100. Typical original recessed area at window and wood shelf at sill. Originally, heating radiators were installed at these recessed areas.

The first floor of the main portion of the building is accessed from the primary entrance on the west facade and consists of a central hall that spans the width of the house and wraps around a staircase along the south wall of the hall (Figure 101). It provides access to the living room to the north, dining room and study to the south, and the screened porch through an exterior door on the east. The hall has typical interior finishes, as well as two ceiling-mounted light fixtures.

FIGURE 101. Overall view of the first floor central hall.
Centered on the north wall of the hall is a pair of multi-light French doors that lead to the living room (Figure 102). The door opening is framed with wood trim painted white. At the east end of the hall is the exterior door to the screened porch. Adjacent to the exterior door is a closet that has been retrofitted to function as a vertical chase for the heating and air conditioning system (Figure 103). The hall turns to the south under the stairway and leads to a typical interior door that provides access to the dining room. Situated under the staircase is a typical interior door that leads to a basement stair. The space containing the stair has been retrofitted for use as a closet through the removal of handrails and installation of new flooring. The wood plank treads and risers from the original basement stair remain and are visible from the basement level.

The wood staircase located along the south wall of the hall is the main feature of the space and the primary access to the second floor level (Figure 104). The staircase has a decorative wood stringer with ogee-shaped scrolls, a turned-wood balustrade and newel post approximately 36 inches tall, and a lower bull-nose step (Figure 105). Along the south wall of the stair is a wall-mounted wood handrail. At the foot of the stairs is a typical interior door leading to the study.

87. Based on physical evidence, original construction drawings, and oral histories, it is believed that the French doors were installed between 1951 and 1971. Oral interview with Taylor Hoskins, conducted by Mike Ford, WJE, February 12, 2013. Walk-through with Mary Jo Veluzat by Ken Kern of MACA on January 29, 2013.

88. In 1982, alterations were made to the structure that included replacing the coal-fired heating system with an oil-burning system. At this time vertical chases were installed at the central hall closet and vents were installed at the first floor level.

89. The date of the alteration is not known through available archival documentation or photographs; however, according to Taylor Hoskins, Jr., this alteration occurred after 1951. Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.

90. Based on the style and materials of the handrail, it may be original. No documentation was available to confirm the date of the handrail.
Physical Description and Condition Assessment

in the room: one centered on the west elevation, two located on the north wall on opposite sides of the fireplace, and one window centered on the east elevation, looking onto the screened porch. An air grille is set in the floor below each window opening. A non-original ceiling-mounted fan with light is centered on the ceiling (Figure 107).

The living room is located north of the central hall. It has typical interior finishes, although with exposed plaster rather than wall covering and the addition of a 5-inch-wide crown molding covering the top of the walls. The room is currently being used as an open office space with three work stations and a printer station, and is accessed from the hall through the pair of French multi-light doors on the south side of the room.

The focal point of the room is a fireplace with wood mantel, decorative stone fire apron and surround, and a metal firebox centered on the north wall (Figure 106). There are four windows of typical first floor window design and configuration located in the living room.

The study, which is currently being used as an office by the I&M Coordinator of the Cumberland Piedmont Network, is located south of the central hall and accessed through an interior door at the west end of the hall. The office has typical interior finishes as well as wood crown molding at the top of the walls. In addition to the doorway from the central hall, an interior door on the east wall of the room leads to the dining room. There are three
typical first floor window units, two on the west wall and one on the south wall. A brass pendant light with cast glass with frosted ribs is located at the center of the room (Figure 108).

![Figure 108. Brass and cast glass light fixture in the study, which may be original to the structure, based on its materials and style.]

The dining room is located east of the study and is currently being used as a multi-purpose work station, copy center, and resource library. The dining room has typical interior finishes, as well as a 3-inch wooden crown molding and picture rail at the top of the walls and a surface-applied ceiling covering that has a wallpaper-like appearance (Figure 109). In addition to the entrance from the study, there are two other doorways in the room. One doorway on the north wall contains a typical interior door that leads to the hall. Another doorway on the south wall contains a six-panel swinging door that provides access to the pantry in the south wing of the building. Two typical first floor windows are located on the east wall of the room and look onto the screened porch. A door chime is mounted on the wall above the north hall door and a round metal Honeywell thermostat gauge is mounted on the south wall. The door chime is likely original, while the thermostat was likely added at a later date. A non-original fan and light unit is mounted at the center of the ceiling.

![Figure 109. Original wood crown molding and picture rail at the perimeter of the dining room ceiling. Note the patterned wall covering and painted paper ceiling covering.]

First Floor – South Wing. The south wing is located south of the main portion of the building and is accessed through a swinging door from the dining room, as well as through two exterior doors from the screened porch portion of the building. For the most part, typical interior finishes for the first floor of the south wing of the Superintendent’s Residence appear non-original to the structure. The finishes include sheet vinyl flooring with a faux-tile pattern on a raised plywood subflooring, 3-1/2-inch-high wood baseboard and quarter-round base shoe, plaster walls with patterned wall coverings, and plaster ceilings with ceiling-mounted light fixtures (Figure 110).

91. Original construction documents do not identify a finish for the ceilings. The date for installation of the ceiling covering is not known through available archival documentation and photographs; however, the paper covering was painted as part of preparations for occupancy of the Cumberland Piedmont Network in 2006.

92. According to an oral interview with Taylor Hoskins, Jr., and a walk-through with Mary Jo Veluzat, alterations were made to the pantry and kitchen areas of the south wing between 1954 and 1971. The most notable alterations were the renovation of the pantry into a bathroom and numerous modifications to interior finishes in the kitchen.
The historic pantry is the northernmost room in the south wing portion of the building. Alterations to the space include the addition of a wood-framed partition wall that divides the pantry into a bathroom to the west and a rear entrance foyer with vestibule to the east.

The entrance foyer has a T-shaped plan with typical first floor south wing interior finishes. In addition to these finishes, there is a 2-1/2-inch-wide crown molding at the ceiling perimeter (Figure 111). The foyer is accessed through the aforementioned six-panel swinging door from the dining room (Figure 112). The east wall of the foyer has a decorative false arch that provides access to a small vestibule and an exterior door that leads to the screened porch (Figure 113). In addition to providing access to the exterior door, the vestibule contains a closet with built-in 3/4-inch-thick wood shelves, and a service staircase that leads to the second floor level (Figure 114 and Figure 115). On the south wall of the foyer is a wood-framed door opening from which a previously existing swinging door has been removed. The doorway leads to the kitchen. The west wall of the entrance foyer is the non-historic partition wall that divides the foyer from the bathroom (Figure 116). It has a wood-framed six-panel door, a possible reuse of an original door, with non-historic brass hardware (Figure 117).
Figure 113. View of typical original exterior door located in the vestibule of the foyer.

Figure 114. Closet with original six-panel interior door located in the vestibule of the foyer.

Figure 115. Service stair with interior door located in the vestibule of the foyer.

Figure 116. View from the rear entrance foyer of the entrance to the bathroom.
The bathroom side of the historic pantry is accessed from the entrance foyer. This bathroom was constructed sometime after 1954 but before 1971. Finishes added as part of the construction of the bathroom consist of sheet vinyl flooring on raised wood substrate, 4-inch by 4-inch ceramic tile wainscot with wall covering above, and a gypsum board ceiling (Figure 118). There is one six-over-six double-hung window on the west wall of the bathroom (Figure 119). The historic pantry originally had wood built-in cabinets, some of which were altered for reuse in the bathroom renovation. On the north wall of the bathroom is an original wood cabinet with metal drawer pulls that has been modified by the addition of a ceramic tile countertop and porcelain sink (Figure 120). The south wall of the bathroom has an original wood-framed full height closet with metal drawer pulls. The closet is separated from the adjacent toilet by partition wall clad with ceramic tile and wall covering (Figure 121).
South of the entry foyer and bathroom is the kitchen, which has typical first floor south wing interior finishes including a ceiling-mounted light fixture with exposed circular fluorescent bulb. The existing sheet vinyl flooring in the kitchen is not original and was added after 1976. ³³

Appliances and upper and lower wood-framed cabinets along the north, south, and east walls are likely original to the building as they match the cabinet details shown on the original drawings. The wood-framed cabinets have metal hardware and a recessed toe kick. Above the upper cabinets is a plaster soffit. Between the upper and lower cabinets, a non-original faux-wood plastic laminate backsplash has been added (Figure 122); the original drawings call for linoleum at this location.

³³ Walk-through with Mary Jo Veluzat by Ken Kern of MACA on January 29, 2013.

At the south and east walls of the kitchen, the countertops appear to have been replaced with a faux-wood patterned laminate. At the north wall, kitchen cabinets have a non-original plastic laminate countertop with stainless steel trim (Figure 123). Although the plastic laminate covering is not original, the metal trim at the cabinet to the right (east) of the stove may date to original construction. According to Taylor Hoskins, Jr., the original countertop finish was dark red linoleum with metal trim. ³⁴ Although not original to the structure according to Taylor Hoskins, Jr., one unique lower cabinet unit on the north wall may have been designed for storing root vegetables. It is characterized by vent holes in the paneling and a hinged countertop (Figure 124). ³⁵

³⁴ Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.

³⁵ According to Taylor Hoskins, Jr., the root vegetable cabinet was not present during his occupancy. Oral interview with Taylor Hoskins, Jr., conducted by Mike Ford of WJE, February 12, 2013.
FIGURE 123. Non-original plastic laminate countertop with stainless steel trim.

FIGURE 124. Non-original wood cabinet was possibly designed for root vegetable storage.

In addition to the upper and lower cabinetry, the south wall of the kitchen features a six-over-six window with wood trim over a stainless steel sink (Figure 125). The opening is framed by a wooden valance, cut in a scallop pattern, and wood shelves, cut in the shape of a quarter-circle on either side (Figure 126).

FIGURE 125. Trimmed window unit of south elevation of kitchen.

FIGURE 126. Original quarter-circle shelf units that frame the south-facing window.

A wood-framed door opening is located at the south end of the east wall of the kitchen. The original interior door has been removed from this opening. Beyond the doorway is a small vestibule with typical first floor south wing finishes. In addition to the doorway to the kitchen, the vestibule contains an exterior door that provides access to the screened porch, a typical interior door that leads to the basement, and a full height cabinet with flush-panel wood doors and metal hardware (Figure 127 and Figure 128). The cabinet has custom wood shelving units and has been retrofitted for use as a vertical HVAC duct shaft.
Screened Porch. The screened porch extends along the east elevation and encloses the stone cladding of the main portion of the building and south wing. It is a one story structure with flagstone paver flooring, decorative wood post and lintel framing, wood-framed screen inserts with metal screening, and a V-jointed tongue-and-groove wood board ceiling (Figure 129). The west wall of the screened porch has three wood-framed window openings, each with original wood shutters, and three door openings, each with original exterior doors and non-original aluminum screen doors. Electrical conduit and switches are exposed to view and surface-mounted to the stone cladding and wood roof.

The east wall is divided into five bays by wood post and lintel framing. Each post sits on a plinth and has a capital (refer to Figure 129). The four northernmost bays contain typical wood-framed window screens with metal screening. A non-original aluminum screen door is centered on the second bay from the north (Figure 130). The original drawings and one archival photograph depict a wood screen door at this location.

The southernmost bay of the east elevation encloses the beaded clapboard siding of the garage wing and has a wood-framed multi-light door (Refer to Figure 60).
As stated in the exterior description, the south wall of the porch consists of four original wood posts with ornamental post blocks (Figure 131). Non-original aluminum-framed storm windows have been installed between the outer wood posts, and a non-original aluminum-framed storm door is located between the two center posts. Although the existing configuration of these posts and the screening are not depicted on the original drawings, one archival photograph from the 1940s suggests that the posts were likely built in their existing configuration with screening.

A soffit is aligned with the north edge of the garage wing and divides the ceiling of the screened porch into two sections (Figure 132). As depicted on the original drawings, a solid wall with a centered screen door was intended to be located at this soffit to divide the northern part of the porch, which would be screened, from an open southern part of the porch. However, as seen in early 1940s photographs of the building, this wall was never built, and the full extent of the porch was always enclosed by screening. North of the soffit, the west portion of the wood ceiling is flat. The east portion slopes to follow the plane of the shed roof structure. Two non-original ceiling-mounted wood fanlights are centered on the ceiling. South of the soffit, the wood ceiling is primarily flat with ceiling-mounted light fixture (Figure 133).

FIGURE 131. Non-original storm door located on south entrance of screened porch. Note wood posts with plinths and capitals.

FIGURE 132. View of soffit in screened porch area.

FIGURE 133. Ceiling-mounted light fixture at the south part of the porch.

96. The existing screen door is not original to the structure; however, the date of installation is unknown. An oral interview with Taylor Hoskins, Jr., indicates that the door was installed after 1951. Comparison of existing conditions with archival photographs submitted for the National Register nomination indicates that it was installed before 1988.
Garage Wing. The garage wing is accessed from an exterior door from the screened porch. Two steps descend approximately 12 inches to grade (Figure 134). It has an exposed concrete floor with exposed framing and sheathing. Electrical conduit and panels are exposed to view and surface mounted to the framing members and sheathing. The ceiling is composed of exposed 2x6 wood tie beams, 2x10 rafters, and roof framing members. There are two garage door entrances on the south wall of the building (Figure 135). A typical window unit is centered on the east elevation (Figure 136). On the north wall, a typical window unit is centered in the shed addition of the garage. Plywood shelving has been installed and partially obscures the window from the interior (Figure 137).

FIGURE 134. West interior elevation of the garage wing.

FIGURE 135. South interior elevation of the garage wing with non-original garage doors.

FIGURE 136. East interior elevation of the garage wing. Note original wood window shutters from the west exterior wall stored in the garage.

FIGURE 137. North interior elevation of the garage wing showing the shed addition and plywood shelves.

Second Floor– Main Portion of the Building. Historically, the second floor of the house contained private bedroom and living quarters. All historic bedrooms are currently being used as offices. Typical interior conditions at the second floor level consist of oak flooring, 5-inch-tall, three-part wood baseboard with molded base cap and quarter-round base shoe, plaster walls, plaster ceiling with ceiling-mounted light fixture and fan, and a metal air vent with damper control (Figure 138 through Figure 140). In each room, a portion of the ceiling plane is sloped to follow the angle of the gable roof structure.
Many of the offices have been retrofitted with metal cable chase boxes to conceal computer and electrical cables running along the walls and floor (Figure 141). Electrical outlets are typically located on each wall of the room.

FIGURE 138. Typical original second floor base trim, wood floor, and wall covering.

FIGURE 139. Typical ceiling-mounted fan and light are not original to the structure but typical in rooms currently being used as offices.

FIGURE 140. Typical ceiling air vent with damper.

FIGURE 141. Metal cable chase boxes are not original.

Typical windows are wood-framed six-over-six units with a sill height approximately 4 feet above the finished floor. The windows are set into dormers that extend from the finished ceiling to the finished floor (Figure 142). Similar to the first floor level, a wood shelf unit painted white has been installed approximately 18 inches below each window sill. The shelf is an original feature that provided a surface above the original heating radiator located below each window.
FIGURE 142. Dormer window with shelf (refer to Figure 100 for shelf detail) installed approximately 18 inches below the sill.

The second floor plan is similar to the first floor plan in that it is concentrated around a central hall, which contains the primary stairway and provides access to all rooms at the second floor level of the main portion of the building. The stairway is located on the south side of the hall and is bordered by an original wood balustrade with a turned wood newel post, approximately 36 inches tall. The balustrade rail is finished with a dark-colored stain and the turned balusters have been painted white (Figure 143). A dark-stained wood handrail is mounted to the wall south of the stairway. A ceiling-mounted light fixture is centered over the hall.

FIGURE 143. Original stair balustrade at second floor hall.

At the top of the stair on the south wall of the hall is a typical interior door leading to bedroom no. 3 (Figure 144). On the east wall of the hall is a closet with a typical interior door. As noted above, all typical six-panel doors are a part of the original construction. The closet has been retrofitted for use as a vertical chase for mechanical equipment. Historic wall covering remains in this closet (Figure 145). Directly north of the closet is a typical second floor window unit. The north wall of the hall consists of two typical interior doors, one leading to bedroom no. 1 and the other to bedroom no. 2. The west wall has a typical interior door with plated brass hardware that provides access to bathroom no. 1. The west wall area above the head height of the stairway has original decorative wood panel wainscot that extends to the height of the balustrade (Figure 146).

FIGURE 144. View of west end of second floor hall.

97. It is unclear through existing archival documentation and physical evidence if the wallpaper is original to the structure.
FIGURE 145. Remnant of historic wallpaper in closet. It is unknown through existing archival documentation if the wallpaper is original to the structure.

FIGURE 146. Wood paneling, that appears to be original, above the head height of the stairway.

Bathroom no. 1 is located at the west end of the hall. Although there is no archival documentation, most of the fixtures and finishes appear to be largely non-original replacements, since they match the non-original first floor bathroom. The bathroom is finished with sheet vinyl flooring, 4-inch by 4-inch ceramic tile wainscot, plaster walls with wall covering, and a plaster ceiling with light fixture and metal air vent. The plane of the gable roof structure is expressed on the west end of the room (Figure 147). Adjacent to the door, on the east elevation of the bathroom, is a wall-mounted porcelain sink with mirror and wall-mounted sconce. A tub with sliding glass door is located along the south wall. A typical window unit is centered on the west wall and the toilet fixture is located on the north wall. The plan of bathroom no. 1 is slightly different than that shown on the original construction documents, as the location of the toilet and sink are reversed. This change was likely made during original construction.

FIGURE 147. South elevation of bathroom no. 1. Note the sloped roof plane.

Bedroom no. 1 is located at the northwest corner of the building and is accessed from the north side of the central hall. It is currently used as an office. The room has typical interior finishes with the sloped ceiling plane on the west side of the room. In addition to the typical interior door from the central hall, the room has two typical window units one on the west elevation and one on the north elevation (Figure 148 and Figure 149). A closet with plaster walls, a built-in wood shelf, and a typical interior door are located on the south elevation of the room (Figure 150).
Bedroom no. 2, located at the northeast corner of the building, is the mirror image of bedroom no. 1. Similar to bedroom no. 1, the room is accessed from the north side of the central hall, has typical interior finishes, and has a similar configuration of windows, closet, and sloped ceiling plane. Elements located along the west wall of bedroom no. 1 are located on the east wall of bedroom no. 2.

Bedroom no. 3 is accessed from a typical interior door on the south wall of the central hall and extends the full width of the main portion of the building. The room has typical interior finishes with the sloped ceiling plane on the west side of the room, concealed within closet spaces. The main feature of the room is a bank of ganged windows centered on the east wall of the room (Figure 151). The wood-framed window units consist of a twenty-light fixed window flanked by six-over-six windows, with the three window units separated by wood mullions. Although the glazing has been replaced, the frames and surrounding trim are original to the structure. Below the window unit is a wood-framed seat, approximately 18 inches tall and 18 inches deep, that extends the length of the wall (Figure 152). The south interior elevation of the room contains a typical interior door that leads to bathroom no. 2. The west wall of the room contains a typical second floor window unit centered on the wall and framed by closets with typical interior doors. Both closets
have a sloped ceiling plane with a ceiling-mounted light fixture (Figure 153). The closets have wood shelves and trim, and a wood-framed shelf. The south closet contains a wall access panel and ladder to the attic space. At the east end of the north elevation of the room is the interior door from the central hall.

![Image](image1.png)

FIGURE 151. Multi-light ganged window in bedroom no. 3.

![Image](image2.png)

FIGURE 152. Wood seat under ganged window in bedroom no. 3.

FIGURE 153. Closet in bedroom no. 3 with light fixture.

Bathroom no. 2 is located south of bedroom no. 3 and is accessed through a typical interior door. Similar to bathroom no. 1, it has many non-original features that match the non-original first floor bathroom. The bathroom has sheet vinyl flooring, 4-inch by 4-inch ceramic tile wainscot, plaster walls, and a plaster ceiling with light fixture (Figure 154 and Figure 155). In addition to the entry door from the bedroom, a toilet fixture is located on the north wall of the bathroom. The east wall contains a built-in cabinet and a typical second floor window (Figure 156). The built-in cabinet has wood trim, doors with chrome-plated handles, decorative furniture hinges that have been painted, and wood shelves (Figure 157 and Figure 158). Although not depicted on the original construction documents, the cabinet appears to date to original construction as it matches other original casework in the building. The south wall of the bathroom has a porcelain wall-mounted sink with wall-mounted mirrored medicine cabinet and towel rack. Above the mirror is a wall-mounted light fixture with fluted glass lamp shades. Adjacent to the sink is a typical interior door that provides access to the bedroom no. 4 suite. The west wall of the bathroom has a built-in tub with aluminum-framed sliding glass shower door.
Historically, bedroom no. 4 was a separate bedroom suite, most likely for servant staff. This bedroom is located in the south wing portion of the building and is composed of a small hall with linen closet, bathroom no. 3, and bedroom area with closet. Bedroom no. 4 is currently used as a single office. Upon entering the space from bathroom no. 2 on the north, there is a 6-inch step down (Figure 159). The hall has typical second floor interior finishes, with a linen closet located along the east wall and access to bathroom no. 3.
along the west wall (Figure 160). The configuration of partitions in this area is somewhat different than that shown on the original drawings, but this likely represents a change during original construction, since there is no evidence in the wood flooring of subsequent remodeling. The linen closet has a narrow three-panel wood-framed door with brass hardware and wood shelves. The ceiling plane of the closet is sloped to match the angle of the gable roof framing.

Bathroom no. 3 is accessed through a typical interior door. Similar to bathrooms no. 1 and no. 2, it has many non-original features that match the non-original first floor bathroom. It has sheet vinyl flooring, 4-inch by 4-inch ceramic tile wainscot, plaster walls with wall covering, and plaster ceiling with light fixture (Figure 161 and Figure 162). The west side of the bathroom ceiling is sloped to match the angle of the gable roof (Figure 163). The toilet fixture and wall-mounted sink, mirrored medicine cabinet, and fluted glass shade sconce are located on the south wall of the bathroom and appear to be original to the bathroom. The west wall contains a typical second floor window unit. On the north side of the bathroom is a built-in tub with aluminum-framed sliding glass doors. A small wood access door is located on the north wall, east of the tub (Figure 164). It provides access to the water shut-off valves for the bathtubs in bathrooms no. 2 and 3.
documents indicate a separate doorway between the vestibule and the bedroom portion of the suite, there is no evidence to suggest that this was constructed.

A service stairway is located along the east wall of the bedroom and leads to the historic pantry at the first floor level (Figure 165). The service stairway is a wood-framed stair with naturally stained wood treads, painted wood stringer, plaster walls with wall covering and wall-mounted wood handrail, and a sloped plaster ceiling with wall covering. A typical second floor window unit is located at the top of the stairway, at the south end (Figure 166).

The bedroom portion of the suite has typical second floor finishes with a sloped ceiling plane on the west side of the room, concealed in the closet, and a service stairway on the east side of the room. Typical second floor window units are centered on the west and south walls. The east wall has a closet located at the south end and also contains a doorway with the interior door to the service stairway. The closet has an interior door with a ceiling-mounted light fixture and built-in wood shelves. Although original construction

98. Based on the style and materials of the handrail, it may be original. No documentation was available to confirm the date of the handrail.
Physical Description and Condition Assessment

FIGURE 166. Doorway to service stair. Note window with recessed jamb located in the stair well.

Basement. The basement of the Superintendent’s Residence has a concrete floor, exposed cast-in-place concrete foundation walls with the upper portion composed of random ashlar stone, and a textured plaster ceiling (Figure 167). All pipes, conduit, and mechanical equipment are exposed to view and surface-mounted on the walls or ceiling (Figure 168).

FIGURE 167. Concrete and stone basement and foundation walls

FIGURE 168. HVAC equipment mounted to ceiling of basement.

The basement is composed of north and south sections divided by a partition wall that corresponds to the division between the main portion of the building and the south wing (Figure 169). The south section of the basement is accessed from the east vestibule of the kitchen via a wood-framed stairway with wood handrail (Figure 170). The south portion of the basement has a fluorescent light fixture and insulated mechanical ductwork mounted to the ceiling.

FIGURE 169. Partition wall and doorway that separate the south and north portions of the basement.
At the south end of the west wall is a steel-framed three-light window set in a stonewall (Figure 171). The window provides access to a below grade light well. The light well is constructed of stone and is covered by a metal grille at grade. The glazing at the northernmost light has been replaced with a blank-out panel and flexible vent duct. A water heater is located in the southwest corner of the room. A storage/electrical room is accessed from the south end of the south basement. It is separated from the rest of the south basement by a stone wall and wood door clad in galvanized metal (Figure 172). The storage/electrical room has free-standing wood-framed shelves and wall-mounted electrical and security panels.

The north basement has brass light fixtures and insulated mechanical ductwork mounted to the ceiling (Figure 173 and Figure 174). There are two window openings with steel-framed six-light awning windows in the north section of the basement, one centered on the west wall and the other located at the west end of the south wall (Figure 175). The windows have a painted steel lintel and steel hardware, and are glazed with putty. Both windows are associated with a stone below-grade light well covered by a metal grille at grade. The north portion of the basement houses a gas furnace and various mechanical and electronic data collection systems to support the building. A wood-framed staircase is located at the north end of the room (Figure 176). Due to alterations, which included converting the upper portion of the stairway into a closet accessible from the first floor level, the stairway is no longer serviceable.
Attic. The attic is accessed from a wood-framed ladder through a wall hatch in the south closet of bedroom no. 3. The attic is an unfinished gable roof space located above the main portion of the building and south wing. The north wall of the attic contains a stone chimney flanked by triangular louvered vents (Figure 177). A second stone chimney stack is located at the center of the attic, adjacent to the wood access ladder. A rectangular louvered vent is located at the south end gable (Figure 178).

The atticspace consists of exposed wood joists spaced at 16 inches on center with batt insulation between the joists. The gable roof structure is exposed and consists of 2x10 rafters with wood plank sheathing. Two wood planks laid atop the ceiling joists provide a limited walking surface. Insulated ductwork extends along the east end of the attic. Various flexible electrical conduit, insulated low-voltage cables, and metal pipes
extend between joist framing members and span across the attic, mounted to the joists or rafter framing. Two cast iron vertical stack vent pipes, aligned with the upstairs bathroom locations, penetrate the roof sheathing (Figure 179).

![Figure 179. Cast iron vent stack penetrates the roof sheathing. Note mud dauber wasp nests developing on the pipe.](image)

Condition Assessment

The following notable conditions were observed at the building interior:

Finishes.

- The finishes, which included plaster or gypsum board ceilings, wall coverings and paint coatings, wood trim, and wood and sheet vinyl flooring, are typically in fair to good condition.

- Cracked, peeling, and blistered paint was observed at the walls and ceilings in all four bathrooms (Figure 180).

- Cracked and stained plaster and blistered paint was observed at the northeast corner of the ceiling in the living room (Figure 181). The cracks appeared to be aligned with ceiling joist locations and the wall surface above the east window on the north elevation appeared to be bowed towards the interior.

- Cracked plaster, with cracks typically radiating from light fixture locations, was observed at the ceiling of the first floor main hall and study (Figure 182).

- Cracking was observed in the field of the plaster ceiling in the first floor study as well as in bedrooms no. 1, 2, and 3 at the second floor level (Figure 183).

- Cracked and deteriorated sheet vinyl flooring was observed in the pantry and kitchen. The most severe deterioration was located at the threshold of door openings where the sheet vinyl flooring had cracked and worn away, revealing the wood underlayment (Figure 184).

- Stained and deteriorated plaster and paint coating was observed at the west end of the first floor main hall (Figure 185). The staining was most likely caused by water leakage associated with the upstairs bathroom and is currently not an active condition.

- Mold and mildew was observed on the ceiling and walls of the first floor bathroom, bathroom no. 3, and on the inside face of the second floor hall door (Figure 186).

- Staining and peeling ceiling covering was observed on the ceiling of the dining room (Figure 187). The pattern of staining followed the seams of the covering.

- Staining and surface loss was observed on the stone surround of the living room fireplace (Figure 188 and Figure 189).

- Loose trim was observed under stair treads at the service stair and at the crown molding in the living room (Figure 190).
FIGURE 181. Cracked and stained plaster at the northeast corner of the ceiling of the living room.

FIGURE 182. Cracking in plaster radiating from location of light fixture.

FIGURE 183. Cracking in the field of the ceiling was observed in the study as well as bedrooms no. 1, 2, and 3.

FIGURE 184. Typical deterioration of the sheet vinyl flooring.

FIGURE 185. Staining and blistering of paint in the first floor central hall.

FIGURE 186. Mold and mildew on interior face of close door previously retrofitted for use as an HVAC duct chase.
FIGURE 187. Staining and peeling of ceiling covering along seam lines in the dining room.

FIGURE 188. Drip staining on stone surround of living room fireplace.

FIGURE 189. Surface loss of stone on surround of fireplace located in the living room.

FIGURE 190. Loose trim under service stair tread.

Windows and doors.

- Interior wood doors are generally in good condition.

- Unsealed and open voids were observed between wood window frames and sash in bedrooms No 2 and 3 (Figure 191).

- Cracked window lights were observed at two locations: one in bedroom no. 4 and one in the basement (Figure 192 and Figure 193).

- Cracked and brittle glazing putty was observed in steel window units in the basement (Figure 194).

- Mild surface corrosion was observed at steel lintels over basement window openings (Figure 195).
Physical Description and Condition Assessment

FIGURE 192. Broken insulating glass unit at second floor window.

FIGURE 193. Cracked window light at basement window.

FIGURE 194. Cracked and brittle glazing putty in steel framed basement windows.

FIGURE 195. Mild surface corrosion at the steel lintels above basement windows.

FIGURE 196. Stone foundation and partition walls at the basement level are painted.

Stone Cladding.

- The interior face of the stone foundation walls in the basement is covered with a paint coating (Figure 196). The paint coating appears to be in good condition.

- Staining was observed from the attic on the stone cladding of the north chimney (Figure 197). The staining was most likely related to water leakage associated with damage caused by a fallen tree. The damage has since been repaired and the water leakage is no longer active.
Other.

- Wasp infestation and nesting was observed in mortar joints between stone cladding units at the screened porch (Figure 198).

- Burrowing holes, most likely caused by vermin infestation, were observed in the batt insulation at the attic (Figure 199).

- Insects such as lady bugs, spiders, and wasps, and associated nests, were observed within the attic space of the house and on exterior walls of the screened porch (Refer to Figure 179). Some of the observed spiders had physical characteristics consistent with the brown recluse (Loxosceles reclusa) species. The brown recluse is a small but venomous spider found in parts of Kentucky. Although not aggressive, it will bite when threatened. According to building users, both brown recluse spiders and black widow spiders (Western black widow, Latrodectus hesperus, or Southern black widow, Latrodectus mactans), which are also venomous, are present in the house, and brown recluse spiders have been observed in office spaces.

- Slight water ponding was observed near one basement floor drain to which, at the location where condensate pipes discharge (Figure 200).
Structural Evaluation

Description

Walls. As shown in the original drawings, the entire building is constructed on a below grade continuous concrete footing measuring 21 inches wide by 12 inches deep. Atop the footing at the south wing, screened porch, and main portion of the building is a 20-inch-thick stone foundation wall. The garage wing has a concrete foundation wall measuring 8 inches thick.

At the main portion of the building, the first floor exterior walls are of stone wall construction. The garage wing, south wing, and end gables of the main portion of the building are composed of 2x4 wood-framed construction, wood sheathing, and horizontally-oriented beaded clapboard siding.

Floors. The floor at the basement level and at the garage wing is a 4-inch-thick concrete slab. Subsequent floor levels at the south wing and main portion of the building are constructed of 2x10 joists spaced at 16 inches on center with 2x10 bridging. At the living room and bedrooms no. 1 and 2, the joist spacing is reduced to 12 inches on center.

Roofs. The gable roofs have a slope of 13:12 and are built with 2x6 wood tie beams with a finished ceiling attached to the underside of the beams, 2x10 rafters spaced at 16 inches on center, and wood plank sheathing. At the garage wing, there is no finished ceiling and the framing is exposed to view. Gable dormer roofs have the same steep slope but are constructed of 2x4 rafters with wood plank sheathing. The shed dormer roof, located on the east elevation, is constructed of 2x6 rafters with wood sheathing. It has a slope of approximately 5:12.

Condition Assessment

Wood Framing.

- Moisture staining was observed on wood rafters and framing members in the attic (Figure 201). The staining was most likely associated with leakage that occurred after a tree fall damaged the roof. This damage has since been repaired and leakage is no longer active.

FIGURE 201. Moisture staining on the wood rafters does not appear to be an active condition.
Mechanical, Electrical, and Plumbing Systems Evaluation

Mechanical Systems

The building has a forced air system supplied by two high-efficiency gas furnaces located in the basement (Figure 202). The furnaces were installed as part of systems upgrades completed in 2010. Each furnace is connected to a condenser unit located at grade outside the north wall of the building. Although each furnace is connected to its own thermostat—one at each occupied floor—the ductwork is configured as one combined network. Both furnaces appear to serve both floors. Also, there is no return air ductwork at the second floor; all return air comes from grilles located in the floor of the first floor entrance hall. Basement-level ductwork supplies conditioned air to the first floor spaces through metal registers in the floor. The second floor is supplied by ductwork that ascends through the hall closets at both levels up to the attic. A horizontal main duct runs east-west in the attic, with branch ducts supplying metal ceiling registers in each second floor room.

![Figure 202. One of two furnaces located in the basement. The ducts running to the left connect to the return air grilles at the first floor. The duct wrapped in brown-colored insulation at right is the main supply air duct serving the first floor.](image)

Ductwork is exposed to view and ceiling-mounted at the basement of the building. There appear to be two vintages of ductwork, which are characterized by ducts wrapped with exterior insulation and ducts without exterior insulation. The later appears to be a part of systems upgrades completed in 2010. Ductwork in the basement, closets, and attic wrapped with external brown-colored insulation was most likely installed as part of the mechanical system replacement made in 1982.

In addition to the forced air system, the building has two chimney stacks, one located at the north end and one at the south end of the main portion of the building. The north chimney serves the living room fireplace. The south chimney served the original coal-fired boiler in the basement but is now abandoned.

Electrical and Plumbing Systems

The building is served by a 100 amp, 120/240 volt, single phase electrical panel board located in the basement of the house. The existing electrical panel is in good condition and appears to have been installed as part of upgrades to the structure made in 2010. The building also has an emergency generator, located at grade at the south wall of the building. The transfer switch for the emergency generator is located in the basement adjacent to the main electrical panel (Figure 203).

![Figure 203. Main electrical panel (left) and transfer switch (right) for emergency generator.](image)

Typically, each room of the building is outfitted with an electrical outlet on each wall. Visible electrical wiring is typically wired through BX cable with some metal conduit runs. Reportedly, knob-and-tube style wiring formerly existed in the attic of the building; this wiring has been replaced.
with either BX cable or plastic-sheathed (Romex) cable.99

Hot water is supplied by a gas-powered domestic hot water heater. Plumbing supply, waste, and vent stacks are composed of cast iron pipes and fitting. At the basement level, pipes are exposed to view and have been wrapped in pipe insulation. More recent additions to the plumbing system have been made using polyvinyl chloride (PVC) piping. Water shut-offs are located at each plumbing fixture.

Fire Protection System

Fire protection is currently provided by battery-powered smoke detectors and handheld fire extinguishers. ABC fire extinguishers are located in the garage, kitchen, bedroom no. 3, and the basement (Figure 204).100 Combination smoke and carbon monoxide detectors are located at the second floor ceiling at the head of each stair (Figure 205). Other smoke-only detectors are located at the head of the basement stairs in the kitchen, in the basement, and at the disused basement staircase under the central stairs (Figure 206).

The building has a lightning protection system, but currently this system is not functional.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fire_extinguisher.jpg}
\caption{Fire extinguisher in the kitchen. Photograph courtesy of Mammoth Cave National Park.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{smoke_detector.jpg}
\caption{Combination smoke and carbon monoxide detector at the head of the kitchen wing staircase, second floor. Photograph courtesy of Mammoth Cave National Park.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{smoke_detector_basement.jpg}
\caption{Smoke detector in the basement. Photograph courtesy of Mammoth Cave National Park.}
\end{figure}

99 Discussion by authors with Mammoth Cave National Park Facilities personnel, July 2013.

100 Fire extinguishers rated ABC are effective against fires involving wood, paper, and plastics (A), flammable liquids such as cooking oils and paints (B), and live electric equipment (C). Generally, fire extinguishers of this type contain monoammonium phosphate and/or sodium bicarbonate.
Significance and Integrity

Evaluation of Significance

Significance Criteria

The Criteria for Evaluation for listing in the National Register of Historic Places state:

The quality of significance in American history, architecture, archeology, engineering, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and:

A. That are associated with events that have made a significant contribution to the broad patterns of our history; or

B. That are associated with the lives of persons significant in our past; or

C. That embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or

D. That has yielded, or may be likely to yield, information important in prehistory or history.

Criteria Considerations

Ordinarily cemeteries, birthplaces, graves of historical figures, properties owned by religious institutions or used for religious purposes, structures that have been moved from their original locations, reconstructed historic buildings, properties primarily commemorative in nature, and properties that have achieved significance within the past 50 years shall not be considered eligible for the National Register. However, such properties will qualify if they are integral parts of districts that do meet the criteria or if they fall within the following categories:

a. A religious property deriving primary significance from architectural or artistic distinction or historical importance; or

b. A building or structure removed from its original location but which is primarily significant for architectural value, or which is the surviving structure most importantly associated with a historic person or event; or

c. A birthplace or grave of a historical figure of outstanding importance if there is no appropriate site or building associated with his or her productive life; or

d. A cemetery that derives its primary importance from graves of persons of transcendent importance, from age, from distinctive design features, or from association with historic events; or

e. A reconstructed building when accurately executed in a suitable environment and presented in a dignified manner as part of a restoration master plan, and when no other building or structure with the same association has survived; or

f. A property primarily commemorative in intent if design, age, tradition, or symbolic value has invested it with its own exceptional significance; or

ɡ. A property achieving significance within the past 50 years if it is of exceptional importance.\(^\text{101}\)

National Register Significance Evaluation

The Mammoth Cave National Park Superintendent’s Residence was listed in the National Register of Historic Places on May 8, 1991, as part of a Multiple Property Submission, as a historically significant example of a structure constructed by members of the CCC. The structure is considered significant under National Register Criterion A for its association with the CCC. As noted in the National Register of Historic Places nomination:

The Superintendent’s House is historically significant in the area of Entertainment/Recreation and represents the property type “Civilian Conservation Corps Buildings and Structures.” The period of significance, 1941–1942, falls within the years that the men of the CCC were constructing buildings and structures during the development of Mammoth Cave National Park, i.e., 1933–1942.

When the Civilian Conservation Corps was created in 1933 by the Roosevelt Administration, the Mammoth Cave properties were in transition from private and state ownership to nation park status. The CCC was charged with the responsibility of developing a recreation wilderness area out of what had been primarily agricultural land for decades. In addition to razing structures, planting trees, and building roads and park facilities, the CCC also constructed buildings and structures to meet the operational needs of a national park, such as employee housing, maintenance facilities, ranger stations, and an entire plumbing system.

The Superintendent’s House is one of eight residential structures built by the CCC for inhabitation by park employees, one of seven in the park’s residential area. The dwelling was built specifically to house the park’s Superintendent Though the house shares some common characteristics with the park’s other CCC-constructed buildings, namely a combination of frame and masonry construction and decorative woodwork, it is the most elaborate of the CCC residential buildings in terms of size and style, reflecting the prestige of the Superintendent’s position in the park. The park’s residential area was constructed to house a community of park rangers and other employees who wished to reside within the boundaries of the park. Due to the building’s outstanding design qualities in comparison to other CCC-built structures in the Park, the Superintendent’s house possess[es] exceptional significance within the narrowly defined period, 1933–1942.102

The Multiple Property Documentation Form for Mammoth Cave National Park completed in 1991 states that the buildings constructed by the CCC at the park are

. . . locally significant in the history of the Mammoth Cave area of Kentucky as representative examples of the CCC’s role in the development of an infrastructure to support tourism and recreational use of the new national park.103

As noted in the National Register nomination, the CCC played an important role in the early development of Mammoth Cave National Park. The CCC was established on March 31, 1933, with the goal of mobilizing underemployed labor forces to perform work such as reforestation, land reclamation, and building roads and trails. The national park system was the beneficiary of much of the work performed by members of the CCC. By October 1933, there were 102 CCC camps in national parks.

A total of four CCC camps operated at Mammoth Cave National Park between 1933 and 1942. CCC activities at the park included razing buildings on newly acquired park land, the completion of renovation projects at Mammoth Cave Hotel, adding handrails, and bridges to the cave, planting trees, and constructing a new water and sewage system throughout the park.

In addition to conservation and infrastructure work, the CCC was responsible for constructing several new structures at the park. These buildings included six rustic style residences for park staff, constructed in 1937; three maintenance structures built between 1939 and 1941; and the Superintendent’s Residence, constructed in 1941.

The Superintendent’s Residence at Mammoth Cave shares certain characteristics with other CCC-constructed buildings at the park, such as a combination of frame and stone construction and decorative woodwork. However, it has a much more formal design than the other buildings, reflecting the Superintendent’s important position in the park. For example, while the six employee residences share certain materials and characteristics with the Superintendent’s Residence, such as sandstone foundation and chimneys, wood siding, gable roofs, and screened porches, their design is much more vernacular than the formal Colonial Revival design of the Superintendent’s Residence. Similarly, while the maintenance buildings constructed by the CCC incorporate exterior stone work comparable to that on the Superintendent’s Residence, these buildings are more utilitarian in their design.

The setting of the Superintendent’s Residence also contrasts with the other structures constructed by the CCC at Mammoth Cave. Unlike the employee residences, which are clustered in a partially wooded area along a circular drive, the Superintendent’s Residence is set back from the road behind an open lawn. The original landscape for the house included several pre-existing as well as newly planted shade trees set within the expansive lawn, which partially obscured the house from view; many of these trees have since been lost to storms or felled. A long driveway leads to the house. Conifers originally lined the north side of the drive.104 The Superintendent’s Residence sits slightly higher than the other residential buildings, allowing it to be seen as one enters the residential area by vehicle or on foot.

The National Register nomination does not cite significance under Criterion C; however, the results of this study suggest that the Superintendent’s Residence can also be considered significant under National Register Criterion C as an example of a residence within a national park designed and constructed in the Colonial Revival style. This style was popular in domestic architecture throughout the United States during the 1930s and 1940s. Colonial Revival refers to the renewed interest in the houses of early English settlers in New England and Virginia, which were typically constructed in the Georgian and Adamesque styles. Early examples of the Colonial Revival style featured numerous architectural references to their colonial prototypes. In later Colonial Revival designs, the defining architectural characteristics were limited to stylized door surrounds, cornices, and detailing that suggested colonial precedents.

Colonial Revival structures typically feature simple classical detailing such as symmetrical facade with an accentuated central front entrance, sometimes with a portico supported on slender columns and featuring overhead fanlights or sidelights; double-hung windows with multi-pane glazing and a rectangular plan featuring a central hall.105 With the exception of the fanlight and projecting portico, all of these features are present on the Mammoth Cave National Park Superintendent’s Residence. The building has an asymmetrical massing due to the extension of the kitchen wing, but retains a symmetrical appearance in its primary elevation, as viewed from the approach to the site.

The Superintendent’s Residence is a representative example of a particular building type—superintendent’s quarters—constructed in

national parks by the CCC. A number of superintendent's residences in the national parks were designed by the NPS Branch of Plans and Design, including residences at Mammoth Cave National Park and Crater Lake National Park.

The superintendent’s residences constructed in the national parks during this period typically reflect careful attention to architectural design. In addition, although many park structures of the 1930s and 1940s were designed in the Park Rustic style, superintendent’s residences were often designed in other architectural styles. In some cases these residences were designed to respond to the character of local architecture, or to the style of architecture that was likely present at the park during its period of significance.

The Superintendent’s Residence at Crater Lake National Park in southern Oregon (1932), with its rustic stone and timber walls and steeply sloped wood shake roof, can be considered an architectural response to its setting as well as characteristic of Park Service Rustic design. The distinctly regional example of the Superintendent’s Residence at Mesa Verde National Park in Colorado (1921) was constructed with Pueblo features including sandstone exterior walls and a projecting peeled-beam roof structure. The Monument Custodian’s Residence at Bandelier National Monument in New Mexico (1941), also with Pueblo architectural characteristics, features rustic facades of regional stone and flat roofs.

Several superintendents’ residences of this era were designed in response to popular architectural styles of the day, in many cases Revival styles reflecting earlier historical architecture. The Superintendent’s Residence at Mammoth Cave National Park is an example of this stylistic approach. Another example is the Superintendent’s Residence at Wind Cave National Park in South Dakota (1934), a stucco and sandstone bungalow reflecting a popular architectural style of the era. The residence at Wind Cave also illustrates design in a contemporary style with influences of NPS rustic character.

Similar to the Superintendent’s Residence at Mammoth Cave National Park, the Superintendent’s Residence at Guilford Courthouse National Military Park (1934) was constructed in the Colonial Revival style. Although the exterior facades of this house are primarily brick rather than stone, the overall style and character are similar to the Superintendent’s Residence at Mammoth Cave National Park. The selection of this architectural style for the Superintendent’s Residence at Guilford Courthouse suggests the popularity of the Colonial Revival at the time of construction, and is also thought to reflect the Colonial architectural style characteristic of the time period (though not necessarily the specific location) of the Battle of Guilford Courthouse.

Period of Significance

The Superintendent’s Residence is significant as an example of CCC construction within Mammoth Cave National Park, and as the original residence constructed for the superintendent of Mammoth Cave National Park. Construction of the building permitted the superintendent to reside within the park and to be directly engaged with the resources, activities, and people on site. Therefore, its period of significance is defined by the National Register nomination as the years in which initial construction occurred, 1940-1941.

Following initial construction in 1940-1941, the house retained its original function as a residence for the park superintendent until 1995, the end of Superintendent David Mihalic’s tenure. Administrative Officer Jim Hooyboer resided in

106. A brief discussion of CCC-constructed superintendents’ residences follows to help establish the context for this area of significance for the Mammoth Cave Superintendent’s Residence. See also excerpt from the National Register nomination for this structure provided above.

the house until 1997; the building then remained vacant for several years. Since 2006, the house has been used as offices of the Cumberland Piedmont Network.

Based on the continuity of function of the house as a superintendent’s residence from initial construction through the tenure of Superintendent Mihalic, consideration could be given to extending the period of significance from initial construction in 1940 through 1995, the last year it housed the park superintendent. However, changes that occurred to the house between 1941 and 1995 are not considered to have added to its inherent significance, and the architectural and historical significance of the house remains associated with its initial period of construction. The changes that occurred to the house from 1941 to 1995 as well as from 1995 to present, while not typically themselves significant, are also not considered to have significantly affected the integrity of the house as an example of 1940–1941 CCC construction. Refer to Assessment of Integrity, below.

Character-Defining Features

The historic nature of significant buildings and structures is defined by their character, which is embodied in their identifying physical features. Character-defining features can include the shape of a building; its materials, craftsmanship, interior spaces, and features; and the different components of its surroundings.¹⁰⁸

Some modifications were made to the house during its period of use as a superintendent’s residence (1941 to 1995). Certain modifications may be considered of historical interest; an example is the interesting addition of a root vegetable cabinet in the kitchen. According to Taylor Hoskins, Jr., this cabinet was not an original feature of the house; however, based on the existing countertop at this location (which predates other countertop material in the kitchen), the cabinet is likely an early addition. Other modifications have been made after 1995, including those implemented to accommodate office use of the building beginning in 2006.

The following table identifies existing exterior and interior elements and features of the Superintendent’s Residence, provide dates of origin where known, and indicates which features contribute to the historic character of the building. (Refer to the Development History and Physical Description and Condition Assessment chapters for further discussion of changes to the house over time.) The determination of whether each element is a contributing feature is made with reference to the period of significance (1940–1941), and is based on documentation and research materials available at this time. Features notes as non-contributing are not necessarily intrusive to the historic character of the house.

Summary Table of Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Date of Extant Material</th>
<th>Contributing Feature</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site and Exterior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting of the house atop a slight rise on a large lawn with forested background, and approach along a curving drive</td>
<td>1941</td>
<td>Y</td>
<td>Immediate setting changed in the Mission 66 era by the construction of park staff residences. Some original trees have been lost.</td>
</tr>
<tr>
<td>Overall building configuration and massing, including offset between floor levels and L-shaped plan</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Flagstone entrance steps, porches, and iron balustrades</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>East concrete patio</td>
<td>After 1951, before 1971</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Exterior stonework, including walls and chimney</td>
<td>1941</td>
<td>Y</td>
<td>Repairs, 2007–2008; north chimney area repaired, 2009</td>
</tr>
<tr>
<td>Exterior wood trim, including panels below first floor windows and front entrance surround</td>
<td>1941</td>
<td>Y</td>
<td>Lead paint abated, 1996; repainting, 2007–2008</td>
</tr>
<tr>
<td>Steeply pitched gable roof with slate shingles and copper flashings</td>
<td>1941</td>
<td>Y</td>
<td>Repairs, 1996–1997; north end repaired, 2009</td>
</tr>
<tr>
<td>Gabled dormers and continuous dormer at rear elevation</td>
<td>1941</td>
<td>Y</td>
<td>Repairs, 1996–1997</td>
</tr>
<tr>
<td>Hanging gutters and downspouts</td>
<td>1997</td>
<td>N</td>
<td>Original gutters were semicircular profile</td>
</tr>
<tr>
<td>Rear porch, including wood columns and screening enclosure</td>
<td>1941; 1999</td>
<td>Y</td>
<td>Repaired at east side after tree-fall damage in 1999.</td>
</tr>
<tr>
<td>South end rear porch enclosure</td>
<td>1941</td>
<td>Y</td>
<td>Originally built in current configuration (not as shown on original drawings); screen panels and screen door are not original</td>
</tr>
<tr>
<td>Exterior aluminum screen doors</td>
<td>1960s–1970s</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Exterior vinyl screen door, south end of rear porch</td>
<td>1990s–2000s</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Window sash, first and second floors</td>
<td>1998</td>
<td>N</td>
<td>All sash and glazing replaced, repainting, 2007–2008</td>
</tr>
<tr>
<td>Steel window sash, basement</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Exterior wood shutters, west elevation</td>
<td>1941 (2 missing, 2 in storage)</td>
<td>Y</td>
<td>Removed after 1988 but before 2010, perhaps during 1996 lead abatement. Two shutters are currently stored in garage.</td>
</tr>
<tr>
<td>Exterior wood shutters, east elevation</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Shutter holdbacks</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Garage doors</td>
<td>After 1976</td>
<td>N</td>
<td>Original garage doors were wood</td>
</tr>
<tr>
<td>North extension of garage</td>
<td>Between 1954 and 1963</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>North chimney ash clean-out door</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Exterior light fixtures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At front door</td>
<td>Before 1988</td>
<td>N</td>
<td>Original fixtures were similar, but with a square rather than tapered glass portion</td>
</tr>
<tr>
<td>At south end of porch</td>
<td>Unknown</td>
<td>N</td>
<td>Utility caged fixture, could be original or newer</td>
</tr>
<tr>
<td>Feature</td>
<td>Date of Extant Material</td>
<td>Contributing Feature</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Between garage doors</td>
<td>1990s–2000s</td>
<td>N</td>
<td>Newer motion-sensor fixture</td>
</tr>
<tr>
<td>At east gable of garage</td>
<td>Unknown</td>
<td>N</td>
<td>Older style fixture, not original</td>
</tr>
<tr>
<td>At north wall of garage</td>
<td>Unknown</td>
<td>N</td>
<td>Older style fixture, not original</td>
</tr>
<tr>
<td>Interior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-inch oak flooring</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Sheet vinyl flooring in former pantry, kitchen, and bathrooms</td>
<td>1960s–1980s</td>
<td>N</td>
<td>Different areas of vinyl flooring may date to different years</td>
</tr>
<tr>
<td>Wallpaper in study, bedroom no. 1, bathroom no. 2, and bathroom no. 3</td>
<td>2007–2010</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Wallpaper in dining room, pantry, and elsewhere</td>
<td>After 1976</td>
<td>N</td>
<td>Based on recollections of Mary Jo Veluzat.</td>
</tr>
<tr>
<td>Wallpaper in second floor hall closet</td>
<td>1941 (or later)</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Painted millwork including 5-inch baseboard with quarter-round base shoe, chair rail, crown molding, and door and window trim</td>
<td>1941</td>
<td>Y</td>
<td>Portions repainted 2007–2010.</td>
</tr>
<tr>
<td>Living room fireplace mantel</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Built-in window shelves</td>
<td>1941</td>
<td>Y</td>
<td>Originally, radiators were located below each shelf; removed 1982.</td>
</tr>
<tr>
<td>Wood window seat in bedroom no. 3</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Wood cabinets in pantry</td>
<td>1941</td>
<td>Y</td>
<td>Modified as part of first floor bathroom construction</td>
</tr>
<tr>
<td>Wood cabinets in kitchen</td>
<td>1941</td>
<td>Y</td>
<td>Root vegetable storage cabinet is non-original but is an early modification, likely 1950s. Recollections of Taylor Hoskins, Jr.</td>
</tr>
<tr>
<td>Plastic laminate countertop with stainless steel trim in kitchen</td>
<td>Before 1971</td>
<td>N</td>
<td>Original countertops are reported to have been dark red linoleum. Steel trim at right (east) of stove may be original. Recollections of Taylor Hoskins, Jr.</td>
</tr>
<tr>
<td>Plastic laminate wood-grain pattern countertop in kitchen</td>
<td>After 1971</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Main staircase, including balustrade and paneled wainscot at second floor</td>
<td>1941</td>
<td>Y</td>
<td>Handrail along south wall may be original.</td>
</tr>
<tr>
<td>Central basement stair</td>
<td>1941 (modified)</td>
<td>N</td>
<td>Closed up after 1951, perhaps in 1982, when ductwork installed in original hall closet</td>
</tr>
<tr>
<td>Kitchen wing staircase</td>
<td>1941</td>
<td>Y</td>
<td>Handrail along east wall may be original.</td>
</tr>
<tr>
<td>Wood sixpanel interior doors with brass hardware</td>
<td>1941</td>
<td>Y</td>
<td>Door between the pantry and kitchen as well as door between the kitchen and the east entrance area removed between 1951 and 1971. One door salvaged for use at new partition for first floor bathroom. Other door stored in basement.</td>
</tr>
<tr>
<td>French doors at living room entrance</td>
<td>After 1951, before 1971</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Date of Extant Material</td>
<td>Contributing Feature</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>First floor bathroom in former pantry, including new partition wall,</td>
<td>After 1954, before 1971</td>
<td>N</td>
<td>Six-panel door at new partition salvaged from one of two removed</td>
</tr>
<tr>
<td>ceramic tile wainscot, and conversion of original wood cabinet to</td>
<td></td>
<td></td>
<td>kitchen door locations</td>
</tr>
<tr>
<td>form lavatory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second floor bathroom no. 1 fixtures and ceramic tile</td>
<td>1960s–1980s</td>
<td>N</td>
<td>Bathtub may be original; no documentation available</td>
</tr>
<tr>
<td>Second floor bathroom no. 2 fixtures and ceramic tile</td>
<td>1960s–1980s</td>
<td>N</td>
<td>Bathtub may be original; no documentation available</td>
</tr>
<tr>
<td>Second floor bathroom no. 2 built-in cabinet</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Second floor bathroom no. 3 fixtures and ceramic tile</td>
<td>1960s–1980s</td>
<td>N</td>
<td>Bathtub and sink may be original; no documentation available</td>
</tr>
<tr>
<td>Ceiling fans, including bedrooms, dining room, living room, and porch</td>
<td>After 1976</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Ceiling fixtures in first floor hall</td>
<td>1941?</td>
<td>Y</td>
<td>Possibly original. Fixture near front door has cloth-wrapped electrical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cord, indicating it is likely original</td>
</tr>
<tr>
<td>Ceiling fixture in study</td>
<td>1941?</td>
<td>Y</td>
<td>Possibly original</td>
</tr>
<tr>
<td>Door chime in dining room</td>
<td>1941?</td>
<td>Y</td>
<td>Possibly original</td>
</tr>
<tr>
<td>Ceiling fixture in foyer (former pantry)</td>
<td>Likely 1980s</td>
<td>N</td>
<td>Date based on observed style and materials of fixture</td>
</tr>
<tr>
<td>Wall-mounted fixture in first floor bathroom</td>
<td>1960s–1980s</td>
<td>N</td>
<td>Installed as part of bathroom construction</td>
</tr>
<tr>
<td>Ceiling fixture in kitchen (circular fluorescent)</td>
<td>1941?</td>
<td>Y</td>
<td>Possibly original</td>
</tr>
<tr>
<td>Ceiling fixture in back hall (circular fluorescent)</td>
<td>1941?</td>
<td>Y</td>
<td>Possibly original</td>
</tr>
<tr>
<td>Ceiling fixture at south end of screened porch</td>
<td>1941?</td>
<td>Y</td>
<td>Possibly original</td>
</tr>
<tr>
<td>Wall-mounted fixture in rear porch next to door to hall</td>
<td>Missing</td>
<td>—</td>
<td>Replaced by surface-mounted wiring to serve new ceiling fan and fixture.</td>
</tr>
<tr>
<td>Second floor hall ceiling fixture</td>
<td>1941?</td>
<td>Y</td>
<td>Identical to fixture at east end of first floor hall, possibly original</td>
</tr>
<tr>
<td>Bathroom no. 1 ceiling fixture</td>
<td>1941?</td>
<td>Y</td>
<td>Glass globe is missing. Fixture is possibly original</td>
</tr>
<tr>
<td>Bathroom no. 2 ceiling fixture</td>
<td>1941?</td>
<td>Y</td>
<td>Similar to bathroom no. 1 ceiling fixture, with fluted glass globe</td>
</tr>
<tr>
<td>Bathrooms, wall-mounted two-arm lavatory light fixtures</td>
<td>Unknown</td>
<td>N</td>
<td>No documentation available; however, based on observation of features,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>unlikely to date to period of significance</td>
</tr>
<tr>
<td>Bathroom no. 3 ceiling fixture</td>
<td>1941?</td>
<td>Y</td>
<td>Possibly original</td>
</tr>
<tr>
<td>Bedroom no. 3 closets ceiling fixtures</td>
<td>1941?</td>
<td>Y</td>
<td>Possibly original. Similar to bathroom no. 3 ceiling fixture</td>
</tr>
<tr>
<td>Rear stair ceiling fixture</td>
<td>Unknown</td>
<td>N</td>
<td>No documentation available. Plastic-sheathed electrical cable indicates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fixture is not original</td>
</tr>
<tr>
<td>Basement brass light fixtures</td>
<td>1941?</td>
<td>Y</td>
<td>Possibly original</td>
</tr>
</tbody>
</table>

Mechanical, Electrical, and Plumbing

<table>
<thead>
<tr>
<th>Feature</th>
<th>Date of Extant Material</th>
<th>Contributing Feature</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior coal chute door, south exterior wall</td>
<td>1941</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Wall-mounted electrical service, south exterior wall</td>
<td>1990s–2000s</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Wall-mounted gas service, south exterior wall</td>
<td>1996</td>
<td>N</td>
<td>Assumed to have been added when propane-gas heating installed in 1996</td>
</tr>
<tr>
<td>Back-up electrical generator</td>
<td>2000s</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Date of Extant Material</td>
<td>Contributing Feature</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Wall-mounted electrical service, east exterior wall of garage</td>
<td>Missing</td>
<td>—</td>
<td>Original electrical service entered the building along this wall, north of the window.</td>
</tr>
<tr>
<td>Lightning protection system</td>
<td>After 1988</td>
<td>N</td>
<td>Currently disconnected</td>
</tr>
<tr>
<td>Air conditioning condensers and associated wall-mounted components, north exterior wall</td>
<td>2010</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Furnaces in basement</td>
<td>2010</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Floor and ceiling grilles</td>
<td>1982</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Ductwork in closets</td>
<td>1982</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Radiators</td>
<td>Missing</td>
<td>—</td>
<td>Removed in 1982</td>
</tr>
<tr>
<td>Honeywell round thermostat in dining room</td>
<td>Unknown</td>
<td>N</td>
<td>Not original; this type of thermostat was first patented in 1946.</td>
</tr>
<tr>
<td>Programmable thermostats at first and second floors</td>
<td>2010</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Cast iron water supply and waste piping</td>
<td>1941</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>
Assessment of Integrity

Assessment of integrity is based on an evaluation of the existence and condition of the physical features which date to a property’s period of significance, taking into consideration the degree to which the individual qualities of integrity are present. The seven aspects of integrity as defined in the National Register Criteria for Evaluation are location, design, setting, materials, workmanship, feeling, and association. As noted in the National Register Bulletin, *How to Apply the National Register Criteria for Evaluation*:

Location. Location is the place where the historic property was constructed or the place where the historic event occurred. Design is the combination of elements that create the form, plan, space, structure, and style of a property. Setting is the physical environment of a historic property. Materials are the physical elements that were combined or deposited during a particular period of time and in a particular pattern or configuration to form a historic property. Workmanship is the physical evidence of the crafts of a particular culture or people during any given period in history or prehistory. Feeling is a property’s expression of the aesthetic or historic sense of a particular period of time. Association is the direct link between an important historic event or person and a historic property.

The property must retain the essential physical features that enable it to convey its historical significance. The essential physical features are those features that define both why a property is significant (National Register criteria) and when it was significant (period of significance). The National Register Bulletin, *How to Apply the National Register Criteria for Evaluation*, defines integrity as “the ability of a property to convey its significance.”

Integrity of Location. The Superintendent’s Residence retains a high degree of integrity of location. The location of the building is unchanged since it was completed in 1941.

Integrity of Design. The Superintendent’s Residence retains a high degree of integrity of design. With the exception of a small addition to the garage, the basic form of the house is unchanged. While some interior spaces have seen small changes in layout, the original design of the house is still largely intact.

Integrity of Setting. The Superintendent’s Residence retains a high degree of integrity of setting. The structure was constructed in a residential area first developed during the 1930s. Since its completion in 1941, construction of staff residences continued in this area of the park. The original landscape included deciduous trees that shaded the house, many of which have since been lost. However, despite the addition of several new housing units to the area and loss of trees, the setting of the Superintendent’s Residence is essentially unchanged from the period of significance.

Integrity of Materials and Workmanship. The Superintendent’s Residence retains a high degree of integrity of materials and workmanship. The alteration of some original materials, such as the replacement of window sash and modifications to the kitchen and pantry, the majority of the original materials remain.

Integrity of Feeling. The Superintendent’s Residence retains a high degree of integrity of feeling. The residence still portrays the character of a CCC-constructed building at Mammoth Cave National Park, and the formal ambiance of the home of an important personage within the park.

Integrity of Association. The Superintendent’s Residence retains integrity of association, as it remains as part of the larger assemblage of CCC-constructed residential buildings in the area. Also, despite the change in use, the building still conveys its historic appearance as a residence designed for the most senior member of park staff.

110. Ibid.
Treatment and Use

Requirements for Treatment and Use

Laws, Regulations, and Functional Requirements

Key laws, regulations, and functional requirements that apply to the recommended work include the following:

- National Park Service Cultural Resources Management Guideline (Director’s Order 28), which requires planning for the protection of cultural resources on park property.

- Section 106 of the National Historic Preservation Act (NHPA), which mandates that federal agencies, including the National Park Service, take into account the effects of their actions on properties listed or eligible for listing in the National Register of Historic Places and give the Advisory Council on Historic Preservation a reasonable opportunity to comment.

Treatment of the building and site are also to be guided by the following:

- Secretary of Interior’s Standards for the Treatment of Historic Properties
- Americans with Disabilities Act (ADA)
- International Building Code (IBC), 2012
- International Existing Building Code (IEBC), 2012

The State of Kentucky has adopted the 2006 IBC, and has not adopted the IEBC.

The National Park Service is self-regulating in terms of enacting and enforcing building code standards. Mammoth Cave National Park is therefore not legally subject to local or state building code requirements. When undertaking repairs to buildings structures, NPS endeavors to have the work comply with model building code standards. At this time, the 2012 IBC with Appendices (replacing Chapter 34 with the IEBC) is the model building code used by the NPS and is referenced by the NPS Denver Service Center for design and construction. The NPS Denver Service Center also references the 2012 IEBC, with Appendices and Resource A.

The 2012 IEBC includes the following statement in paragraph 408.1, Historic Buildings:

The provisions of this code relating to the construction, repair, alteration, addition, restoration and movement of structures, and change of occupancy shall not be mandatory for historic buildings where such buildings are judged by the building official to not constitute a distinct life safety hazard.

Newly installed electrical systems and components, including any significant alterations to existing electrical systems, should comply with applicable provisions of the National Electrical Code (NEC).
Executive Order 13514 issued in 2009 directs all federal agencies to implement sustainable design and construction practices. For the Superintendent’s Residence, the relevant guidelines in this executive order require:

. . . managing existing building systems to reduce the consumption of energy, water, and materials, and identifying alternatives to renovation that reduce existing assets’ deferred maintenance costs . . . [and] ensuring that rehabilitation of federally owned historic buildings utilizes best practices and technologies in retrofitting to promote long term viability of the buildings.\(^\text{111}\)

With historic structures, attempts to achieve strict conformance with model building code standards that are intended for new buildings can lead to destruction of the historic fabric. Alternative compliance procedures, such as Chapter 12 of the IEBC relating to historic buildings, should be referenced in determining code compliance.

Alternatives for Treatment and Use

The U.S. National Park Service has developed definitions for the four major treatments that may be applied to historic structures: preservation, rehabilitation, restoration, and reconstruction. The four definitions are as follows:

Preservation is defined as the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. New exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a preservation project.

Rehabilitation is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values.

Restoration is defined as the act or process of accurately depicting the form, features, and character of a property as it appeared at a particular period of time by means of the removal of features from other periods in its history and reconstruction of missing features from the restoration period. The limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a restoration project.

Reconstruction is defined as the act or process of depicting, by means of new construction, the form, features, and detailing of a non-surviving site, landscape, building, structure, or object for the purpose of replicating its appearance at a specific period of time and in its historic location.\(^\text{112}\)

Preservation, which involves sustaining the building in its existing form, is to some extent in progress as a result of ongoing repair and cyclical maintenance implemented by the Park. Alterations and repairs to the building since original construction have generally retained historic features and materials, with the primary except of replacement of the window sash and glazing. However, as a treatment alternative preservation would not accommodate current and future use of the residence to effectively meet park and user needs.

Restoration would return the building to its appearance during the period of significance. A restoration target date would need to be selected

112. The Secretary of the Interior’s Standards for the Treatment of Historic Properties.
within the period of significance. As a treatment alternative, restoration would also not accommodate current and future use of the residence effectively meet future park and user needs.

Rehabilitation of the building would include all of the repairs necessary to stabilize and preserve the Superintendent’s Residence in its existing state, coupled with modifications (as needed) to accommodate improvements to heating, ventilating, air conditioning, electrical, and plumbing systems, as well as to meet code and universal access requirements, for use by the park and other entities such as the Piedmont Cumberland Network. The treatment Rehabilitation permits selective restoration of character-defining elements where missing or altered, if appropriate archival documentation is available. (Refer to the Developmental History and the Significance and Integrity chapters for further discussion of character-defining features.) Of the four treatment alternatives, the treatment Rehabilitation is considered the most appropriate for the Superintendent’s Residence, given its historic significance and need for continued use or compatible reuse.

The continued use of the Superintendent’s Residence is anticipated to be similar to its current function, as offices of the Cumberland Piedmont Network. If changes in use are anticipated, a use that requires significant alterations to the historic exterior or primary interior spaces and features should not be considered. Where future modifications are considered to provide universal accessibility, incorporate improvements to mechanical, electrical, and plumbing systems, and meet code requirements (e.g., handrails), these modifications should be designed taking into consideration the goal of retaining original historic materials and features wherever possible. Where incorporation of new amenities would require significant alterations to the building that could diminish its integrity as an historic resource, consideration should be given to limiting or avoiding these modifications.

Many of the distinctive materials, features, and spaces of the Superintendent’s Residence are essentially intact, and in spite of certain alterations the building retains its historic integrity. Repair of original materials and character-defining features as part of the overall rehabilitation is practical and appropriate, and can be achieved without implementing an overall treatment of preservation of the building in its current state or restoration to an earlier appearance.

Ultimate Treatment and Use

Guidelines for Treatment

Guidelines and requirements for treatment have been defined based on the preservation objectives and requirements for treatment and use outlined above for the Superintendent’s Residence at Mammoth Cave National Park. All treatment guidelines and recommendations were developed in accordance with the *Secretary of Interior’s Standards for Rehabilitation*.

The Secretary of the Interior’s Standards for Rehabilitation are as follows:

1. A property shall be used for its historic purpose or be placed in a new use that requires minimal change to the defining characteristics of the building and its site and environment.

2. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

3. Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.

4. Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.

5. Distinctive features, finishes, and construction techniques or examples of
craftsmanship that characterize a property shall be preserved.

6. Deteriorated historic features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

7. Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.

8. Significant archeological resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken.

9. New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

10. New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.

The basic guidelines for work on the Superintendent’s Residence are as follows:

- Undertake all work in compliance with the Secretary of the Interior’s Standards for Rehabilitation.

113. Ibid.

Prioritization of Treatment

Based on the condition assessment performed as part of the Historic Structure Report, the following prioritization is recommended for work on the Superintendent’s Residence. Repairs related to structural stabilization and safety issues, such as replacement of broken glass, should be completed first. Work related to exterior envelope waterproofing should follow to prevent water infiltration and deterioration of building envelope materials, and to address conditions that may lead to continued deterioration and loss of historic fabric. These types of repairs include repairs to roofing and flashings, masonry repairs, and window and door repairs. The next priority is modifications required to permit continued use of the building, such as work required to meet code, for universal access, for egress, to rehabilitate interior finishes, to upgrade building systems, or to address mitigation of hazardous materials (if present).
Finally, in addition to the specific repairs recommended, cyclical maintenance tasks such as inspection, painting of exterior wood and metal elements, recoating of concrete and stucco finishes, pointing of mortar joints in stonework, replacement of joints sealants, tree care, and other ongoing maintenance tasks must be continually implemented to avoid damage to the historic site and building fabric and to reduce the need for large-scale repair projects in future.

All work performed on the building and site features should be documented through notes, photographs, and measured drawings and/or sketches, or with as-built annotations to construction documents at project completion. The project work orders currently developed using the NPS Facility Management Software System can provide a basis for this documentation. (Within this system, the Superintendent’s Residence is identified as Building 038 at MACA.)

These records should be permanently archived at NPS or park archives as a part of the permanent record of the building and to provide information for future repairs and ongoing maintenance. In addition, these records will allow future observers to identify which materials are historic.

Recommendations

Site

Although assessment of landscape conditions is outside the scope of this study, consideration of immediate environs and setting of the Superintendent’s Residence is recommended as part of planning for repair and maintenance. The following general recommendations address the goal of maintaining the historic character of the setting for the house, with the understanding that specific guidance will be provided in future by a cultural landscape study for this portion of the park.

- The existing overall spatial organization and topography of the site should be preserved, as well as the relationship of the house to nearby building groups.

- Views and vistas to and from the house, including the view of the house from the head of the entrance drive, should be preserved and restored.

- Site grading, such as the slope of the site beyond the house, and circulation pathways such as the sidewalk, patio, and driveway, that date to the period of significance should be retained and maintained.

The following recommendations are provided for site features adjacent to the house.

Flagstone Pavers.

- Voids between the mortar-filled hand rail pockets and metal hand rails should be sealed with a non-staining elastomeric sealant.

- Cracked and deteriorated mortar joints between concrete pavers should be repointed with new mortar. Repointing should be performed using a mortar compatible with the adjacent stonework. (Mortar compositional analysis may be performed to characterize the original mortar. If the original mortar mix is determined to be compatible and appropriate for use, it may be replicated for repointing.)
Treatment and Use

- Weeds and organic growth at open mortar and expansion joints between pavers should be removed. Regular maintenance should be performed to remove biological growth.

Exterior Recommendations

Safety Measures. Although the house is generally in good repair, isolated broken glazing presents a localized hazard and should be repaired. Also, deterioration of the stonework on the north chimney presents a potential localized safety hazard. Loose stone spalls should be removed if overall repairs are not scheduled in the near term.

Sandstone Cladding.

- Masonry repairs should be performed where cracking of mortar joints and stone units has occurred. This distress is concentrated at the north elevation; therefore, if the work is phased, it would be appropriate to prioritize repair of the north elevation and chimney.

- Repointing of the entire north wall and chimney, and localized pointing of deteriorated or open mortar joints at other locations, should be performed using a mortar compatible with the adjacent stonework. (Mortar compositional analysis may be performed to characterize the original mortar. If the original mortar mix is determined to be compatible and appropriate for use, it may be replicated for repointing.)

- Severely spalled stone units should be replaced with new matching stone units or dutchman units as appropriate. Minor shallow spalls can be removed and the stone surface redressed to a sound substrate.

- Severely cracked stone units should be replaced with matching stone units or dutchman units as appropriate. Moderate cracks can be repaired by installation of an appropriate cementitious grout, compatible with the stone and detailed to match the adjacent surface. Hairline cracks do not require repair. If a crack is active (accommodating movement), sealant may be considered for repair; however, sealant crack repairs can be visually intrusive and should be used only where necessary to accommodate movement. These repairs should be detailed to be as unobtrusive as possible. Non-staining sealants matching the color of adjacent mortar should be used; sand can be broadcast into the wet sealant to further conceal the repair. Sealant should not be used for repair of non-moving cracks.

- The exterior stonework should be cleaned to remove efflorescence, organic growth, animal nests, and general soiling. Cleaning products should be selected based on field trials with preference given to the gentlest means of cleaning that is effective in removing deleterious materials. No cleaning products containing strong acids (e.g., hydrofluoric or hydrochloric acid) should be used on the exterior stonework at any time, as such acids are harmful to users, animals, and the environment, and can cause damage and staining of the stone.

Wood Elements.

- Deteriorated wood elements including wood siding, window trim, and decorative elements should be repaired.

- Displaced, loose, distressed, and missing siding should be selectively repaired, or removed and replaced. Loose or displaced siding in good condition should be salvaged for reinstallation. Boards with cracking, checks, or rot should be replaced with new boards that match the material and profile of the existing siding. Siding should be installed with nails along the top edge of the board, in contrast to previous repairs that included adding exposed nails at the base of the siding boards.

For individual wood siding or trim elements with minor decay, consolidation can be used to retain the original material. The wood surface should be prepared by removing all material affected by decay. All cracks and voids should be filled to re-create the original
profile. Where decay in a particular wood element is extensive, replacement of the element with a new replica wood element matching the original configuration and profile is indicated. In particular, trim boards with simple rectangular profiles and siding are generally more readily replaced than repaired. An appropriate wood matching the original should be selected where replacement pieces are required.

- As part of annual ongoing maintenance, damaged or peeling paint coatings should be touched up or recoated to provide an intact paint coating to protect the wood elements from decay. As part of this work, scraping of partially debonded areas to reach an intact surface is appropriate. Areas of bare wood should be primed prior to repainting.

In some cases, the irregular build-up of paint layers on historic wood elements may be aesthetically objectionable, may interfere with the proper adhesion of new paint coatings, or may present a risk of lead contamination (if present) if paint fragments were to become detached. In this case, it is appropriate to strip all paint layers using chemical strippers, down to bare wood. Samples of the paint coating should be taken to provide archival documentation of original and later coatings and color schemes. Following any required wood repair or replacement, the wood surface should be primed and painted.

- The historic color scheme for painting of the building siding, trim, and exterior windows and doors should be confirmed and replicated in repainting campaigns. Consideration can be given to also replicating historic interior color schemes as work is performed on the interior.

Slate Roofing.

- Slate roofing should be repaired where cracking, breakage, and displacement of slates has occurred. The repair should include selective removal of deteriorated slate shingles and replacement with new slates to match the existing. Slates should be secured with nails where possible or slate tabs where necessary. In addition, slates should be installed at areas where missing.

- Mild scaling and delamination of the slate shingles does not require repair or replacement of slate at this time, due to the thickness of the slate shingles.

Windows and Doors. The marine-type glazing gasket used in the replacement wood window sash is not only an inappropriate application for this condition but also tends to be vulnerable to leakage. Although active window leaks were not reported by building users during this survey, the failed gaskets are unsightly, interfere with views from the building interior, detract from the historic appearance of the building, and may lead to premature deterioration of the wood framing elements.

Several approaches can be considered to address the window glazing issues

- It may be possible to replace the existing glazing gaskets with more traditional glazing materials such as putty or sealant, depending on the construction of the muntins. In this case, the insulating glass units could be removed, the marine glazing discarded, and the glass reinstalled with glazing tape and sealant or glazing compound as appropriate. Dismantlement of glazing from one or more representative sash is recommended to evaluate this approach as a trial repair, assess the feasibility of reutilization of the existing insulating glass units, and also to determine whether glazing leaks (although unnoted at the building interior) may be contributing to deterioration of the wood sash at concealed locations. If the wood sash is found to be intact and undamaged, consideration could be
given to removing and reinstalling the glass units as described above, to improve the appearance and future performance of the windows. (Existing broken glass units should be replaced in any case, and this replacement would provide an opportunity for trial repairs.)

- Another approach would be to reglaze the existing sash with new monolithic glass to be more in keeping with the original condition. Use of insulating glass in this application is not recommended as an approach to the restoration or maintenance of these windows. The use of insulating glass in this application is typically in response to energy concerns, but rarely does the cost of this installation result in a timely recovery of the initial cost. In addition, insulating glass units have a limited service life (ten to twenty years) compared to monolithic glass, which can last hundreds of years. Also, insulating glass has a very different reflective quality compared to the original monolithic glass, and the added weight of the insulating glass units most likely was responsible for the significant increase in the size of the muntins of the replacement sash as compared to the original sash, resulting in the current uncharacteristic heavy sightlines. Experience has shown that a more cost-effective solution to addressing energy concerns with wood windows is to improve the window weather stripping and, if necessary, add unobtrusive interior storm windows (see below).

- Or, consideration could be given to replacing the existing replacement sash with new reproduction sash. Replacement sash could be true divided lights (similar to the existing sash) but with more historically accurate sightlines.

It is important to note that use of reproduction sash with single pane lights with applied muntins to match the divided light pattern of the original windows is not recommended, in that this approach will not accurately replicate the appearance of the historic sash. The use of applied muntins is sometimes considered with insulating glass units, however, to reduce both initial cost and replacement cost of glass lights over time.

- If non-insulating glass is used in reglazing the sash or in replacement sash but improved energy performance is desired, as discussed above interior storm windows could be provided. Interior storm windows would not interfere with the historic appearance of the building facades, and would be removable seasonally and as desired to permit operation of the double-hung sash windows.

In addition to repairs to address the deteriorated glazing seals, the following repairs should be performed where needed:

- Repair and repaint deteriorated wood window elements (see further discussion under Wood, above).

- Repair loose weather stripping at the meeting rail between the upper and lower sash.

- Replace damaged weather stripping with new weather stripping as required.

- Repair deteriorated wood sash and frame elements. Maintain paint coatings to provide protection for wood sash and frames. (Refer to recommendations for wood and finishes.)

- Remove and replace cracked and deteriorated glazing putty in steel-framed windows. Where cracked and broken lights exist in the steel windows, replace glass and install new monolithic glazing, beads, and putty.

- As part of ongoing maintenance, scrape, prime, and paint steel windows at areas of deteriorated coating with a rust-inhibitive coating system. If overall refurbishment of the windows is undertaken, remove glazing; remove sash and repair, prime, and coat in shop; reinstall glazing; prepare, prime, and paint frames in situ; and reinstall sash.

The recommendations outlined above also pertain to doors with glazing. For further discussion of doors, refer to finishes recommendations.
Metals.

- Deteriorated metal flashing at the chimney stacks should be removed and replaced with new metal flashing. The new flashing should extend at least 8 inches above the roof plane, with a reglet into the joints between the stone units.

- All existing flashings should be examined close-up to verify that it is watertight. Bent and distressed metal flashing should be reshaped into place and secured with rivets.

Concrete.

- Minor cracking observed on the concrete foundation does not require repair at the present time. Monitor existing cracks to ensure that they do not worsen over time, requiring repair.

Other Elements.

- All abandoned anchors in the exterior stonework or wood siding should be removed. Once removed, the stone or wood siding and trim at abandoned anchor locations should be cleaned and repaired. The historic brackets for all of the wood window shutters should be retained.

- The foundation walls, building walls at grade, and basement should be regularly assessed for holes and other potential avenues of entrance for small animals or insects. Holes and openings at the basement level of the exterior envelope should be sealed and protected.

Interior Recommendations

Architectural Finishes.

- Stained, loose, cracked, and blistered paint should be removed, sanded as needed to prepare the surface, primed, and repainted.

- At bathroom locations where high humidity and condensation have led to plaster and paint deterioration and provide an environment conducive to mold and mildew, consideration should be given to installing an exhaust vent.

- Vents should be carefully detailed to minimize their effect on the historic character of the building.

- Minor cracks and deterioration in plaster finishes should be repaired in place by filling cracks or damaged areas with compatible new material.

- Moderate deterioration of the plaster should be repaired in place by applying a compatible new plaster finish coat.

- Deteriorated vinyl flooring in the kitchen, pantry area, and upstairs bathrooms, which is non-original to the building, should be removed and replaced with new flooring appropriate to the historic character of the house.

- Stained and peeled ceiling coverings in the dining room should be removed. The ceiling plaster should be assessed for cracks and distress conditions and appropriate plaster repairs should be performed. The plaster should be cleaned, prepared, primed, and painted.

- The stone fireplace surround should be cleaned to remove surface staining.

- Mold and mildew should be removed where present (e.g., on interior of closet doors), and the substrate material thoroughly cleaned.

- Loose wood trim should be secured into place with finishing nails.

Other.

- Vermin infestations in that attic, if currently present, should be addressed. Live traps may be used.

- Insect infestations that present a health concern within the house should be addressed. In particular, measures to manage wasps and venomous spiders should be implemented. Wasp nests should be identified and removed as part of cyclical maintenance activities. Building users indicated that the
Treatment and Use

park program for management of venomous spiders does not permit the use of insecticides. Attention should be given to stored materials within the house to avoid creating areas where spiders can hide.

Mechanical, Electrical, and Plumbing Recommendations

- The lightning protection system should be inspected, repaired, and returned to functional condition.

- Condensate pipes should be extended and rerouted to drain directly into the floor drain in the basement.

- Consideration should be given to modifying the existing forced-air heating and cooling system to provide for separate zones for each floor level. The system currently includes two furnaces and two air conditioning condensers controlled by separate thermostats at each level, but changes to the existing ductwork are needed to have two fully independent zones. Since the second floor is served by one major vertical riser duct, separating the supply air should be relatively straightforward and would involve ductwork in the basement only. However, as currently configured, return grilles are located only at the floor of the first floor. Further study is needed to determine appropriate locations for ducts and grilles to return air from the second floor to the basement-level mechanical systems.

- Replace iron domestic water supply piping with new soldered copper supply piping. Consideration could be given to replacing only those portions of the piping system that are exposed within the basement; dielectric unions should be used wherever new copper pipe transitions to older iron pipe.

- Consideration should be given to installing an integrated fire and smoke detection alarm system in the building, connected to code-compliant horns and strobe lights.

- Consideration should be given to installing a fire suppression (sprinkler) system in the building.
Recommendations for Further Research

- Perform finishes analysis to identify historic color schemes for exterior wood siding, trim, and windows and doors during the period of significance.

- Perform finishes analysis to identify historic color schemes for interior painted features.

- Perform analysis of existing wood flooring to ensure any replacement flooring installed matches the historic character of the original wood flooring.

- Perform materials studies of the stone, slate, and mortar present on the Superintendent’s Residence.

- Conduct additional research to understand how much of the original pantry was reused in the new bathroom, such as paint stratigraphy studies of wood casework, trim, and the six-panel door. Also, remove the wallpaper in the bathroom to see if evidence such as a ghosted paint line remains to indicate the original linoleum wainscot.

- Conduct additional research to determine whether existing wall and ceiling plaster throughout the house are original, including selective removal of existing wallpaper to inspect for underlying paint or paper finishes.

- Conduct additional research to understand in greater detail construction of the exterior and interior wall systems, as well as to confirm information shown on the construction drawings. Implementation of any repairs in the future will provide an opportunity for examination and documentation of concealed conditions and may provide further information about past alterations to the house.

- Conduct additional oral history interviews (and walk-through site visits if possible) with Taylor Hoskins, Jr., and other persons who lived in, were associated with, or may have knowledge of the house during its occupancy as a residence, particularly persons familiar with the house during the period of significance (1940–1941), to obtain additional information about the original appearance of the house and modifications over time. If interviewees have family photographs showing the house in past years, obtain copies or scans of the photographs for the park archives, if possible.

- Conduct additional research to understand the relationship between the Mammoth Cave Operating Committee and its use/direction of CCC labor for construction projects in the park.

- Complete a Cultural Landscape Report (CLR) for the residential and maintenance areas of the park.
Sources of Information

Narrative Sources

Bridwell, Margaret M. *The Story of Mammoth Cave National Park, Kentucky: A Brief History*. Mammoth Cave, Kentucky: 1952.

Sources of Information

Construction Reports

Archival Drawings

Sources of Information
Appendices

Appendix A: Archival Drawings
Appendix A: Archival Drawings

Not constructed.

Not constructed.

Not constructed.

As constructed.

As constructed.

Landscape design may be as constructed; not confirmed as part of this study.