ON THE COVER
Bumpass Hell. Bumpass Hell is one of the primary hydrothermal areas within Lassen Volcanic National Park. At sunset (shown on cover) it appears golden, while during the day, the pools look aqua blue (fig. 15). National Park Service photograph, available at http://flic.kr/p/cePV8N (accessed 12 November 2013).

THIS PAGE
Lassen Peak. Lassen Peak is the southernmost active volcano in the Cascade Range. Before the 1980 eruption of Mount St. Helens in Washington, Lassen Peak was the most recent volcanic outburst in the contiguous 48 states. A series of eruptions occurred between 1914 and 1917, with the most powerful on 22 May 1915. Photography by Benjamin Franklin Loomis, available at http://www.flickr.com/photos/lassennps/8435233161/ (accessed 5 November 2013).
Lassen Volcanic National Park

Geologic Resources Inventory Report

National Park Service
Geologic Resources Division
PO Box 25287
Denver, CO 80225

January 2014

US Department of the Interior
National Park Service
Natural Resource Stewardship and Science
Fort Collins, Colorado
The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public.

The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability.

All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.

Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government.

Printed copies of this report are produced in a limited quantity and they are only available as long as the supply lasts. This report is available from the Geologic Resources Inventory website (http://www.nature.nps.gov/geology/inventory/gre_publications.cfm) and the Natural Resource Publications Management website (http://www.nature.nps.gov/publications/nrpm/). To receive this report in a format optimized for screen readers, please email irma@nps.gov.

Please cite this publication as:

Contents

List of Figures and Tables ... iv
Executive Summary .. v
Acknowledgements and Credits ... vii
Introduction .. 1

Geologic Features and Processes .. 5
 Volcanic Features ... 5
 Geothermal and Hydrothermal Systems .. 11
 Hydrothermal Features ... 13
 Glacial Features ... 16
 Lakes ... 19
 Meadows .. 20
 Streams and Waterfalls ... 21

Geologic Issues ... 23
 Hydrothermal Hazards .. 23
 Volcano Hazards .. 25
 Seismic Activity ... 27
 Slope Movements .. 28
 Geothermal Development ... 29
 Abandoned Mineral Lands ... 30
 Disturbed Lands Restoration .. 30
 Manzanita Lake Dam ... 33

Geologic History .. 35
 Regional Volcanism ... 35
 Volcanic Centers .. 35
 Glaciations .. 38
 Recent Volcanic Activity ... 39
 Present-Day (Non-Volcanic) Geologic Activity 42

Geologic Map Data ... 43
 Geologic Maps ... 43
 Source Maps .. 43
 Geologic GIS Data ... 43
 Map Unit Properties Table ... 44
 Geologic Map Graphic ... 44
 Use Constraints ... 44

Glossary ... 47

Literature Cited .. 51
Additional References .. 57

Appendix A: GRI Participants ... 59

Map 1: Simplified Geologic Map .. in pocket
Map 2: Map of Lassen Volcanic National Park .. in pocket
Map Unit Properties Table .. in pocket
Geologic Resources Inventory Products CD attached
List of Figures

Figure 1. Lassen Peak ... 1
Figure 2. Cascade volcanic arc ... 2
Figure 3. Geologic time scale .. 3
Figure 4. Active volcanoes, tectonic plates, and the "Ring of Fire." .. 4
Figure 5. Types of volcanoes .. 6
Figure 6. Lassen domefield ... 6
Figure 7. Volcanic rock at Lassen Peak .. 7
Figure 8. Cinder Cone ... 7
Figure 9. Brokeoff Volcano ... 9
Figure 10. Hat Creek Basalt .. 9
Figure 11. Devastated Area ... 10
Figure 12. Painted Dunes ... 10
Figure 13. Cinder Cone, lava flows, and ash 11
Figure 14. Lassen hydrothermal system ... 12
Figure 15. Bumpass Hell ... 13
Figure 16. Devils Kitchen ... 13
Figure 17. Boiling Springs Lake ... 13
Figure 18. Terminal Geyser ... 14
Figure 19. Fumarole ... 14
Figure 20. Mud pot ... 14
Figure 21. Big Boiler ... 14
Figure 22. Hydrothermal alteration ... 15
Figure 23. Boiling pool ... 15
Figure 24. Algal and bacterial mats ... 15
Figure 25. Glacial landforms ... 16
Figure 26. Missing summit of Brokeoff Volcano 17
Figure 27. Glacial erratic and polish .. 18
Figure 28. Glacial deposits ... 18
Figure 29. Till and moraines ... 19
Figure 30. Hydrothermal hazards at Sulphur Works 23
Figure 31. Volcano hazards .. 25
Figure 32. Chaos Craggs and Chaos Jumbles 28
Figure 33. Walker O geothermal well .. 30
Figure 34. Dream Lake .. 31
Figure 35. Breaching of the dam at Dream Lake 31
Figure 36. Spring-fed channel at the former Dream Lake 31
Figure 37. Dream lake/meadow ... 31
Figure 38. Ditch through Drakesbad Meadow............................... 32
Figure 39. Map of Drakesbad Meadow .. 32
Figure 40. The return of Drakesbad fen .. 33
Figure 41. Boardwalk across Drakesbad Meadow 33
Figure 42. Manzanita Lake ... 34
Figure 43. Map of regional geologic setting of Lassen Volcanic National Park .. 36
Figure 44. Volcanic centers .. 37
Figure 45. Chaos Craggs .. 40
Figure 46. Snag and Butte lakes ... 40
Figure 47. Fantastic Lava Beds flow 2 .. 41
Figure 48. 1915 crater at summit of Lassen Peak 42
Figure 49. GPR source maps ... 45

List of Tables

Table 1. Volcanic rocks ... 5
Table 2. Hydrothermal areas in Lassen Volcanic National Park 14
Table 3. Correlation of outwash and till in the Lassen area 19
Table 4. Volcanic centers .. 36
Table 5. Glacial/volcanic chronology of the Lassen area 39
Table 6. Geology data layers in the Lassen Volcanic National Park GIS data .. 44
Executive Summary

The Geologic Resources Inventory (GRI) is one of 12 inventories funded by the National Park Service (NPS) Inventory and Monitoring Program. The NPS Geologic Resources Division held a GRI scoping meeting for Lassen Volcanic National Park in California on 1 March 2004 and a follow-up conference call on 8 April 2013 to discuss geologic resources, the status of geologic mapping, and resource management issues and needs. This report synthesizes those discussions and is a companion document to the previously completed GRI digital geologic map data.

This Geologic Resources Inventory (GRI) report was written for resource managers at Lassen Volcanic National Park to assist in science-informed decision making; it may also be useful for interpretation. It was prepared using available geologic information. The NPS Geologic Resources Division did not conduct any new fieldwork in association with report preparation. The various sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing park resource managers, describe the geologic history leading to the park’s present-day landscape, and provide information about the GRI geologic map data. Clynne and Muffler (2010, geologic map) and Muffler et al. (2010, database) were the sources of these data. The GRI team converted the source map data to the GRI data model. The geologic map graphic (map 1, in pocket) illustrates these data, and the Map Unit Properties Table (in pocket) summarizes report content for each map unit.

Geologic features and processes of particular significance for resource management include:

- **Volcanic Features.** Few places in the world have such a diversity of volcanic landforms in such a relatively small area as Lassen Volcanic National Park. The park contains the four primary types of volcanoes (composite volcanoes, shield volcanoes, cinder cones, and lava domes), as well as lava flows, pyroclastic flows (density currents of volcanic gases, ash, and rock), and tephra (deposits of volcanic material ejected from a volcano). Before the eruption of Mount St. Helens in 1980, Lassen Peak was the only Cascade volcano to have erupted in the 20th century. The currently active volcanic center, the “Lassen volcanic center,” of which Lassen Peak is a part, is within the park. This center is superimposed upon a volcanic platform created by regional volcanoes, which in addition to the volcanic center also occur in the park. Over its $25,000-year lifespan, the Lassen volcanic center has consisted of a collapsed caldera complex filled by the now much-eroded Brokeoff Volcano and the Lassen domefield. Three eruptions have occurred at the Lassen volcanic center in the last 1,050 years, the most recent in 1914–1917.

- **Geothermal and Hydrothermal Systems.** A deep, geothermal heat source—probably a body of hot or molten rock beneath Lassen Peak—drives the Lassen hydrothermal system, which underlies most of the southern half of the park. The heat source is about 8–10 km (5–6 mi) below the surface and is related to recent volcanism. A long-held model interprets the Lassen hydrothermal system as consisting of a central vapor-dominated reservoir (or reservoirs) underlain by a reservoir of hot water discharging at lower elevations. Using seismic and geothermal data, investigators recently refined this model by including two separate hydrothermal cells. One cell originates as precipitation on the southwestern flank of Lassen Peak and the remnant topography of Brokeoff Volcano and discharges at Growler and Morgan hot springs south of the park. A second cell originates on the southeastern flank of Lassen Peak and discharges as steam at Drakesbad and Terminal Geyser.

- **Hydrothermal Features.** Lassen Volcanic National Park contains the most extensive, intact network of hydrothermal features in the Cascade Range. These features—including fumaroles (vents from which steam and volcanic gases issue), hot springs (thermal springs with water temperatures higher than that of the human body), and mud pots (hot springs containing boiling mud)—are the surface manifestation of ongoing volcanism. The main hydrothermal areas within the park are Sulphur Works, Little Hot Springs Valley, Bumpass Hell, Devils Kitchen, Boiling Springs Lake, and Terminal Geyser.

- **Glacial Features.** Although no glaciers exist in the park today, glaciers and volcanoes in tandem created the present landscape. During the Pleistocene ice ages, glaciers deepened major valleys, removed bedrock from large parts of the landscape, and created or enlarged hundreds of lake basins. Glacial and volcanic debris is commonly intercalated and reworked in mudflows, lahars, landslides, and moraines. Till (material directly deposited from glacial ice) often covers lava flows.

- **Lakes.** Lassen Volcanic National Park contains more than 200 lakes. Most of these are small, glacial lakes, but exceptions include lakes dammed by lava flows, lahars, and slope deposits, and those in tectonically down-dropped basins.

- **Meadows.** Lakes are ephemeral features and serve as “traps” for stream-delivered sediment, organic materials provided by plants and animals, and dust from atmospheric deposition. They ultimately fill in
becoming meadows. Meadows in the park that were once lakes include upper Kings Creek Meadow and the meadow adjacent to (west of) Horseshoe Lake. Dersch, Cameron, and Lower Kings Creek meadows also were probably once lakes.

- Streams and Waterfalls. Lassen Volcanic National Park is in the Sacramento River watershed. Numerous tributaries flow within the park boundaries, which in the rugged terrain are generally down-cutting and far from a steady state condition. Despite relief and ample streamflow, few sizable waterfalls occur within the park, but two notable examples are Mill Creek and Kings Creek falls. These waterfalls flow over resistant layers of Brokeoff Volcano rocks.

Geologic issues of particular significance for resource management were identified during the 2004 scoping meeting and a 2013 conference call include:

- Hydrothermal Hazards. Hydrothermal features such as hot springs and fumaroles are a major visitor attraction at the park; they are also one of the main hazards. High-temperature fumaroles and mud pots pose potential burn hazards to people who stray from trails and boardwalks, and thin surface crusts are susceptible to collapse under the weight of people walking on them. Hydrothermal features, which are high-temperature and highly acidic, result in the alteration of volcanic rocks and the alteration of anthropogenic features such as boardwalks and roads. A primary area of concern is Sulphur Works, where migrating fumarolic activity is impacting the park road (California Highway 89).

- Volcanic Hazards. The most common volcanic activity in the Lassen area consists of small to moderate-sized, mafic (low silica, gas-poor) eruptions from regional volcanoes. Many of these volcanoes occur in the vicinity of the park, and some occur within the park. Future regional volcanism would produce effusive, nonexplosive outpourings of lava. These eruptions could build a new cinder or spatter cone, produce modest ash fallout downwind from a vent, and emit lava flows that spread a few kilometers from a vent. With respect to the Lassen volcanic center, the most likely type of eruption would be explosive, starting with intermittent steam explosions that eject rocks near the vent and emit ash clouds, followed by explosive silicic (higher silica, gas-rich) lava flows. Also, lahars (highly mobile, fast-moving debris flows composed mostly of volcanic materials) are a significant hazard in the drainages originating on Lassen Peak.

- Seismic Activity. The Lassen area experiences tectonic, volcanic, and hydrothermal earthquakes. Tectonic earthquakes occur because the Lassen volcanic center is located along the western edge of the Basin and Range physiographic province, which contains many closely spaced normal faults. Volcanic earthquakes are generally interpreted as reflecting movement of mafic magma into the deep crust below an active volcanic area. Hydrothermal earthquakes are a result of movement of hydrothermally altered rocks and brittle failure of rock in the Lassen hydrothermal system.

- Slope Movements. Steep-sided volcano edifices like those within the park are inherently unstable and susceptible to slope movements such as landslides, rockfall, debris avalanches, and debris flows. Covering an area of 7 km² (3 mi²), Chaos Jumbles is a notable debris-avalanche deposit within the park. It formed when dome C of Chaos Crags partially collapsed. Also, landslides and rockfalls are significant hazards in the hydrothermally altered core of Brokeoff Volcano, in particular at Brokeoff Mountain and Pilot Pinnacle.

- Geothermal Development. Two instances of geothermal exploration have had the potential to impact the hydrothermal features at the park—a geothermal well on an inholding near Terminal Geyser, and proposed leasing for energy development on Forest Service lands adjacent to the park. As a result of the Geothermal Steam Act, the Bureau of Land Management established a buffer zone in Lassen National Forest south of the park, where no geothermal energy production is to take place.

- Abandoned Mineral Lands (AML). A servicewide AML database maintained by the NPS Geologic Resources Division lists eight surface mines within Lassen Volcanic National Park. In 1999, resource specialists from the Geologic Resources and Water Resources divisions made an assessment of disturbed lands (22 sites), including abandoned mineral lands, within the park. The connection between these sites and those listed in the AML database is unknown, but the AML inventory of National Park System units in California is underway and will provide an updated inventory of mineral lands within the park.

- Disturbed Lands Restoration. Disturbed lands within Lassen Volcanic National Park include roads, dams, stream channel modifications, and drained wetlands. Recent restoration efforts removed an earthen dam at Dream Lake, which was constructed in 1932 for recreational purposes at the Drakesbad Guest Ranch. This effort helped to restore Drakesbad Meadow to a wet meadow–fen complex in the Warner Valley. The wetland had been drained in the early 1900s to provide better pasture for domestic livestock.

- Manzanita Lake Dam. In 1911 the Northern California Power Company constructed a dam at Manzanita Lake to enlarge the natural feature and increase water supply to a downstream power plant. Ownership of the dam and reservoir was transferred to the federal government and incorporated into Lassen Volcanic National Park in 1931. The impoundment remains, and the lake is a scenic and popular visitor attraction. Dam failure would impact downstream infrastructure, in particular a segment of California Highway 44. Also, Forest Service Road 17 would likely be washed out. Whenever rainfall exceeds 5 cm (2 in) in a 24-hour period and after significant storms, the National Park Service inspects the dam and would initiate an established emergency response plan in the eventuality of dam failure. The National Park Service also conducts an annual inspection of the dam. In the event of an earthquake greater than magnitude (M) = 5.4, the National Park Service would also inspect the dam.
Acknowledgements

The GRI is administered by the Geologic Resources Division of the Natural Resource Stewardship and Science Directorate.

The NPS Geologic Resources Division relies on partnerships with institutions such as Colorado State University and other universities, the US Geological Survey, state geological surveys, and museums to develop products for the Geologic Resources Inventory.

The GRI team would like to thank the participants at the 2004 scoping meeting, who are listed in Appendix A, including Sid Covington (NPS Geologic Resources Division; geologist, now retired), who wrote the scoping summary. Also, thanks to Janet Coles, formerly with Lassen Volcanic National Park and currently chief of Resource Management at Guadalupe Mountain National Park, who reviewed and provided input for the “Disturbed Lands Restoration” section of this report. Julia Brunner (NPS Geologic Resources Division, policy and regulatory specialist) provided input for the “Geothermal Development” section. Also, this report benefited from the code-writing “magic” of Mike Cox (former Colorado State University, research associate). His know-how saved the author hours of time compiling the Map Unit Properties Table. And last, but certainly not least, thanks very much to Michael A. Clynne (US Geological Survey, research geologist) and L. J. Patrick Muffler (US Geological Survey, scientist emeritus) for answering questions, providing background information, clarifying specific points of interest, reviewing this report, and of course, mapping Lassen Volcanic National Park. Without them, this report would not have been properly completed.

Credits

Author
Katie KellerLynn (Colorado State University)

Report Review
Michael A. Clynne (US Geological Survey)
Patrick Muffler (US Geological Survey)
Jason Kenworthy (NPS Geologic Resources Division)

Report Editing, Formatting, and Distribution
Jason Kenworthy (NPS Geologic Resources Division)

Source Maps and Data
Michael A. Clynne (US Geological Survey)
Dillon R. Dutton (US Geological Survey)
Tracey J. Felger (US Geological Survey)
Patrick Muffler (US Geological Survey)
Joel E. Robinson (US Geological Survey)

GRI Geologic Map Graphic Design
Max Jackl (Colorado State University)

GRI Geologic Map Graphic Review
Michael A. Clynne (US Geological Survey)
Patrick Muffler (US Geological Survey)
Georgia Hybels (NPS Geologic Resources Division)
Jason Kenworthy (NPS Geologic Resources Division)
Rebecca Port (NPS Geologic Resources Division)
Introduction

This section briefly describes the National Park Service Geologic Resources Inventory Program and the regional geologic setting and history of Lassen Volcanic National Park.

Geologic Resources Inventory Program

The Geologic Resources Inventory (GRI) is one of 12 baseline natural resource inventories funded by the National Park Service (NPS) Inventory and Monitoring Program. The Geologic Resources Division of the NPS Natural Resource Stewardship and Science Directorate administers the GRI.

The objectives of the GRI are to provide geologic map data and pertinent geologic information to support resource management and science-based decision making in more than 270 natural resource parks throughout the National Park System. To realize these objectives, the GRI team undertakes three tasks for each natural resource park: (1) conduct a scoping meeting and provide a scoping summary, (2) provide digital geologic map data in a geographic information system (GIS) format, and (3) provide a GRI report. These products are designed and written for nongeoscientists. Scoping meetings bring together park staff and geologic experts to review available geologic maps, develop a geologic mapping plan, and discuss geologic issues, features, and processes that should be included in the GRI report. Following the scoping meeting, the GRI map team converts the geologic maps identified in the mapping plan to digital geologic map data in accordance with their data model. Refer to the “Geologic Map Data” section for additional map information. After the map is completed, the GRI report team uses these data, as well as the scoping summary and additional research, to prepare the geologic report. This geologic report assists park managers in the use of the map and provides an overview of the park’s geology, including geologic resource management issues, geologic features and process, and the geologic history leading to the park’s present-day landscape.

The compilation and use of natural resource information by park managers is called for in the 1998 National Parks Omnibus Management Act (section 204), Management Policies 2006, and the Natural Resources Inventory and Monitoring Guideline (NPS-75). Refer to the “Additional References” section for links to these and other resource management documents.

For additional information regarding the GRI, including contact information, please refer to the GRI website (http://go.nps.gov/gripubs). The current status and projected completion dates of GRI products are available on the GRI status website (http://www.nature.nps.gov/geology/GRI_DB/Scoping/Quick_Status.aspx).

Park Setting

Lassen Volcanic National Park contains 430 km² (170 mi²) of volcanic landforms, glacially sculpted terrain, and spectacular thermal features (map 2, in pocket). Lassen Peak, and ultimately the park, took their name from Peter Lassen, one of the first white settlers in the northern Sacramento Valley and a discoverer of a route, the “Lassen Trail,” through the mountains.

Interest in preserving the geologic and scenic wonders of the Lassen area as a national park and protecting them from commercial development arose in the early 1900s. Initially, two smaller national monuments—Cinder Cone and Lassen Peak—were designated by President Theodore Roosevelt in 1907. The eruptions of Lassen Peak, starting in 1914, inspired renewed efforts for the establishment of a national park, which had languished since the smaller monuments’ designations in 1907. In 1916, Congress established Lassen Volcanic National Park by combining the previously designated national monuments.

Figure 1. Lassen Peak. The summit of Lassen Peak is 3,187 m (10,457 ft) above sea level. Volcanism started building the volcano edifice about 27,000 years ago. The most recent eruption occurred less than 100 years ago. The mountain is a lava dome composed of dacite (64%–65% silica; see table 1). National Park Service photograph by Amanda Sweeney.
Geologic Setting
Lassen Peak is the southernmost active volcano in the Cascade Range (figs. 1 and 2). Mount Meager in British Columbia, Canada, marks the northernmost summit of Cascade volcanism. Before the 1980 eruption of Mount St. Helens in Washington, Lassen Peak was the most recent volcanic outburst in the contiguous 48 states. During a series of eruptions starting in 1914, Lassen Peak erupted explosively on 22 May 1915. Pyroclastic flows, debris avalanches, debris flows, and associated flood waters devastated nearby areas, and volcanic ash fell across hundreds of miles to the east. Other historic eruptions in the Cascade Range include Mount St. Helens (mid-1800s; 1980–1986; 2004–2008) and Cinder Cone (1666), and possible historic eruptions at Mount Shasta (1786), Mount Baker (mid-1800s), Mount Hood (mid-1800s), and Mount Rainier (mid-1800s).

Lassen Peak and the other volcanoes of the Cascade Range are part of the Cascade volcanic arc, which extends from southern British Columbia to northern California (fig. 2). The volcanic arc is a result of oblique subduction of the Explorer, Juan de Fuca, and Gorda plates on the western edge of the continent. Commonly, the Explorer and Gorda plates, north and south, respectively, of the Juan de Fuca plate, are considered “subplates” of the larger plate (fig. 2). Landward from the plunging tectonic plates, magma has worked its way to the surface and built a series of conspicuous volcanic landscapes, ranging in age from Miocene to Holocene (fig. 3). Subduction, and resulting volcanoes and earthquakes, inspired the collective name “Ring of Fire” for the circle of volcanoes that surround the Pacific Ocean (fig. 4). Cascade arc volcanoes, including Lassen Peak, make up a segment of this ring.

The heat source (magma chamber) of active volcanism at the park yields remarkable hydrothermal features, including roaring fumaroles, mud pots, boiling pools, and thermal ground. These features are indicators of the ongoing potential for future volcanic eruptions in the Lassen volcanic center.

Although the park is noted primarily for its volcanic terrain and associated hydrothermal features, volcanism and glaciation have gone hand in hand in the creation of the park’s landscape. Large ice caps covered the mountainous terrain several times during ice ages of the recent geologic past (fig. 3). Glacial landforms such as moraines and outwash deposits “overprint” much of the volcanic foundation. The alteration of volcanic rocks by hydrothermal processes facilitated glacial erosion, and glacially eroded features such as cirques and arêtes occur throughout the park.

Figure 2. Cascade volcanic arc. Volcanism at Lassen Volcanic National Park is a result of the Gorda oceanic plate—commonly considered a “subplate” and the southernmost part of the Juan de Fuca plate—subducting under the North American continental plate. The Gorda plate is part of the Cascadia subduction zone, which created the Cascade volcanic arc. This arc of volcanoes runs from northern California to southern Canada and includes 16 major volcanoes, four of which are within the National Park System: Lassen Peak in Lassen Volcanic National Park, Medicine Lake volcano in Lava Beds National Monument, Mount Mazama in Crater Lake National Park, and Mount Rainier in Mount Rainier National Park. Mount St. Helens National Volcanic Monument is under the stewardship of the Forest Service. Transform plate boundaries are north and south of the convergent plate boundary of the Cascadia subduction zone. The well-known San Andreas Fault is a transform plate boundary south of the Cascadian subduction zone. The Queen Charlotte Fault is a transform plate boundary north of the Cascadia subduction zone. National Park Service graphic by Jason Kenworthy (NPS Geologic Resources Division) after Lillie (2005, figure 5.5).
<table>
<thead>
<tr>
<th>Eon</th>
<th>Era</th>
<th>Period</th>
<th>Epoch</th>
<th>MYA</th>
<th>Life Forms</th>
<th>North American Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quaternary (Q)</td>
<td></td>
<td>Holocene (H)</td>
<td>Extinction of large mammals and birds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pleistocene (P)</td>
<td>Modern humans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cenozoic (C)</td>
<td></td>
<td>2.6</td>
<td></td>
<td>Ice ages; glacial outburst floods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neogene (N)</td>
<td>Linking of North and South America (Isthmus of Panama)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pliocene (P)</td>
<td>Columbia River Basalt eruptions (NW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Miocene (M)</td>
<td>Basin and Range extension (W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oligocene (O)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eocene (E)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paleocene (P)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>66.0</td>
<td></td>
<td>Early primates</td>
<td>Laramide Orogeny ends (W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mass extinction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Placental mammals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Western Interior Seaway (W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Early flowering plants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sevier Orogeny (W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dinosaurs diverse and abundant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nevadan Orogeny (W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elko Orogeny (W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mass extinction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First dinosaurs; first mammals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flying reptiles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Breakup of Pangaea begins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mass extinction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sonoma Orogeny (W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Supercontinent Pangaea intact</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ouachita Orogeny (S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alleghany (Appalachian)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Orogeny (E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ancestral Rocky Mountains (W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mass extinction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First amphibians</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acadian Orogeny (E-NE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First forests (evergreens)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Taconic Orogeny (E-NE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First land plants</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extensive oceans cover most of proto-North America (Laurentia)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mass extinction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primitive fish</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tethys maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rise of corals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Early shelled organisms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complex multicelled organisms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Supercontinent rifted apart</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Formation of early supercontinent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grenville Orogeny (E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First iron deposits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abundant carbonate rocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simple multicelled organisms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oldest known Earth rocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(~3.96 billion years ago)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oldest moon rocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.46 billion years ago)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Origin of life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Formation of Earth's crust</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pre-Cambrian (PC, X, Y, Z)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Geologic time scale. The divisions of the geologic time scale are organized stratigraphically, with the oldest at the bottom and youngest at the top. GRI map abbreviations for each geologic time division are in parentheses. The most significant geologic events at Lassen Volcanic National Park took place during the Holocene (H) and Pleistocene (P) epochs. A few Pliocene (Pl) units occur within the park, primarily from the Maidu and Dittmar volcanic centers. Major North American life history and tectonic events are included. Compass directions in parentheses indicate the regional locations of events. Bold horizontal lines indicate major boundaries between eras; boundary ages are millions of years ago (MYA). Graphic design by Trista Thornberry-Ehrlich (Colorado State University) and Rebecca Port (NPS Geologic Resources Division), using dates published by the International Commission on Stratigraphy (http://www.stratigraphy.org/index.php/ics-chart-timescale; accessed 23 September 2013).
Figure 4. Active volcanoes, tectonic plates, and the "Ring of Fire." Cascade-arc volcanoes are part of the "Ring of Fire" around the Pacific Ocean. The ring is composed of active volcanoes over subducting plates, and delimited by intense earthquake activity (yellow circles). "MVB" refers to the Mexican Volcanic Belt. "CA Arc" refers to the Central American Arc. National Park Service graphic by Jason Kenworthy (NPS Geologic Resources Division), modifying a base map from Lillie (2005) with information from Simkin et al. (2006) and Michael A. Clynne and Patrick Muffler (US Geological Survey, written communications, 25 July 2013).
Geologic Features and Processes

Geologic resources underlie park ecosystems and geologic processes shape the landscape of every park. This section describes the most prominent and distinctive geologic features and processes in Lassen Volcanic National Park.

During the 2004 scoping meeting and 2013 conference call, participants (see Appendix A) identified the following distinctive geologic features and processes:

- **Volcanic Features**
- **Geothermal and Hydrothermal Systems**
- **Hydrothermal Features**
- **Glacial Features**
- **Lakes**
- **Meadows**
- **Streams and Waterfalls**

Volcanic Features

Few places in the world have such a diversity of volcanic features in such a relatively small area as Lassen Volcanic National Park. The park contains lava flows, pyroclastic flows, tephra deposits, and of course, volcanoes. All four primary types of volcanoes (cinder cones, shield volcanoes, lava domes, and composite volcanoes) occur in the park (map 2, in pocket; and fig. 5). These categories provide a system for classification and thus a means for understanding and communication. In reality, however, volcanoes occur in a continuum of sizes and shapes and have a variety of origins. For example, Raker Peak has characteristics of both shield (its shape) and composite (its history) volcanoes, and is more accurately described as a “lava cone” (Michael Clynne, US Geological Survey, research geologist, written communication, 21 November 2013). Its edifice consists of a cone of andesite (PEarp), which erupted about 270,000 years ago, and an underlying steep-sided lava dome composed of rhyolite (PERr), which extruded when the Rockland caldera complex was active 825,000–609,000 years ago (fig. 6).

Volcanic Rocks

Geologists use silica (silicon dioxide, SiO$_2$) content as a means for classifying volcanic rocks. The term “mafic” refers to rocks with lesser amounts of silica, such as basalt and basaltic andesite (table 1). “Mafic” is a term derived from magnesiu$^+$m + ferric to describe an igneous rock having abundant dark-colored, magnesium- or iron (chemical symbol, Fe)–rich minerals. Mafic lavas tend to erupt effusively as lava flows. The term “silicic” refers to rocks with higher amounts of silica, for instance, dacite, rhyodacite, and rhyolite (table 1). Andesite has more silica than basalt and basaltic andesite (mafic rocks), but it is not necessarily considered silicic. Although there is no firm agreement among petrologists, a silicic rock is usually said to have at least 65% silica (Neuendorf et al. 2005).

The percentage of silica controls many properties of magma, including viscosity and explosiveness. In general, lavas with more silica are more viscous and explosive (table 1). There are exceptions, of course, for example, the silica content of the 18 May 1980 eruption of Mount St. Helens was the same as the dome-building events that followed in 2004–2008. The difference was the volatile component (water or carbon dioxide) in the magma. The volatile component, in this case water, had a sufficiently high vapor pressure to be concentrated in a gaseous phase. Rapid ascent of magma from depth meant that the volatile component could not separate from the magma. Thus, when it reached a certain overpressure near the surface, it “exploded” in a violent eruption. The same magma ascending slowly has time to “lose its gas” and erupt passively as a dome (Michael Clynne, US Geological Survey, research geologist, written communication, 19 July 2013).

Table 1. Volcanic rocks

<table>
<thead>
<tr>
<th>Name</th>
<th>Percentage Silica (SiO$_2$)*</th>
<th>Viscosity</th>
<th>Explosiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhyolite</td>
<td>>72%</td>
<td>High</td>
<td>Very</td>
</tr>
<tr>
<td>Rhyodacite</td>
<td>68%–72%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dacite</td>
<td>63%–68%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andesite</td>
<td>57%–63%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basaltic andesite</td>
<td>53%–57%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basalt</td>
<td><53%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*From Clynne and Muffler (2010).

Examples of well-known volcanoes help to illustrate the influence of silica on volcanic activity: Hawaiian volcanoes produce basalt (low silica) that erupts effusively as lava flows (see GRI reports by Thornberry-Ehrlich 2009, 2011 for summaries). The lava flows of Medicine Lake volcano in Lava Beds National Monument provide a Cascade example of this type of eruption (see GRI report by KellerLynn 2014 for a summary). Stepping up in explosiveness, Lassen Peak erupted dacite (fig. 7). Mount Mazama, which climactically exploded and formed Crater Lake caldera in Oregon, erupted rhyodacite (see GRI report by KellerLynn 2013 for a summary). Finally, deposits of rhyolite represent the most explosive volcanoes on Earth. After a rhyolite eruption, volcano edifices often do not look like volcanoes because the eruptions are so explosive that the volcano ends up collapsing in on itself. The Yellowstone caldera in Yellowstone National Park erupted rhyolite. Large calderas such as Yellowstone represent “supervolcanoes”—a popular term for the largest volcanoes on Earth.
Figure 5. Types of volcanoes. Lassen Volcanic National Park is known for its diversity of volcanic features. Four primary types of volcanoes occur within the park: composite volcano (upper left; Brokeoff Mountain, which is a remnant of Brokeoff Volcano), cinder cone (upper right; Cinder Cone; in the background is the Lassen Peak lava dome), shield volcano (lower left; Prospect Peak), and lava dome (lower right; the domes of Chaos Crags). See map 2 (in pocket) for the locations of these and other volcanoes in the park. US Geological Survey photographs by Michael A. Clynne (upper and lower left) and Patrick Muffler (upper and lower right).

Figure 6. Lassen domefield. The four general types of volcanoes are composite, shield, cinder cone, and lava dome. Lassen Peak and Chaos Crags, which are part of the Lassen domefield, are lava domes. Mount Diller (in the middle background of the photograph) is a remnant of the Brokeoff Volcano—a composite volcano that dominated the Lassen landscape between 590,000 and 385,000 years ago. Raker Peak (below and left of Lassen Peak) is a “lava cone,” having characteristics of both shield and composite volcanoes. US Geological Survey photograph by Patrick Muffler.
Figure 7. Volcanic rock at Lassen Peak. Lassen Peak is composed of 27,000-year-old dacite (map unit PEdl)—a silica-rich volcanic rock. The explosive eruption of the volcano in 1915 also erupted dacite (Hd4), which contains conspicuous phenocrysts (white specks, shown here) up to 12 mm (0.5 in) in diameter. National Park Service photograph.

With respect to viscosity (internal friction), low-silica basalts form fast-moving, fluid, lava flows that spread out in broad, thin sheets up to several kilometers wide. In contrast, flows of andesite and dacite tend to be thick and sluggish, traveling only short distances from a vent. Dacite and rhyodacite lavas often squeeze out of a vent to form irregular mounds or lava domes. In this way, the viscosity of magma determines the type of volcano edifice built by an eruption. The variety of magma types in the Lassen volcanic center led to the variety of volcano types in the park.

Regional Volcanoes

Geologists often separate the volcanoes of the Cascade arc into two broad categories—regional volcanoes and volcanic centers. Hundreds of closely spaced, small, short-lived, regional volcanoes (cinder cones and shield volcanoes; see descriptions below) make up much of the Cascade arc (Clynne and Muffler 2010). These volcanoes are mafic in composition (table 1). Moreover, these volcanoes are usually monogenetic; that is, they typically erupt only once for a brief period (weeks to a few years). Once a given mafic eruption has run its course, subsequent eruptions typically issue from new vents. Over tens to hundreds of thousands of years, these short-lived eruptions build broad platforms consisting of many extinct volcanoes (Clynne and Muffler 2010).

In the case of shield volcanoes, prolonged basaltic volcanism at a single site may produce a sizeable edifice, such as the broad, relatively flat Prospect Peak (fig. 5) and Sifford Mountain (fig. 26) in the park. Shield volcanoes are active for longer periods (centuries to a few millennia) than smaller cinder cones. Both types of volcanoes are “regional volcanoes.”

In the vicinity of Lassen Volcanic National Park, regional volcanism occurs mainly along chains of vents aligned in a north or northwest direction, parallel to regional faults. For example, the regional volcanoes that make up the Caribou volcanic field on the eastern side of the park and in the Caribou Wilderness tend to erupt as groups in linear arrays or chains. Faults, which serve as pathways for ascending magma, control the locations of these volcanoes (Clynne and Muffler 2010). The best-documented of these chains is the Poison Lake Chain, just northeast of the park (Muffler et al. 2011).

Cinder Cones

Cinder cones are piles of vesicular (“bubbly”) fragments of lava called cinders or scoria. Cinder cones form during a mildly explosive eruption of relatively fluid, gas-rich basalt-to-andesite magma that is thrown out of a vent and piled up around it. Lava may also erupt from fissures around the base of a cone. Cinder cones rarely exceed 300 m (1,000 ft) in height and typically have only a short period of activity.

Cinder cones dot the landscape in the park and are representative of regional volcanism. For example, Red Cinder Cone (PEmrc) is a notable landmark on the eastern side of the park. The cone, marked by two vents, is geographically and geologically part of the Caribou volcanic field.

Although cinder cones typify regional volcanism, many of the cinder cones at the park are part of the Lassen domefield within the Lassen volcanic center, including Hat Mountain (PEah), Fairfield Peak (PEmfp), and Crater Butte (PEac). The most prominent cinder cone in the park is Cinder Cone (Hmfci). Cinder Cone is a major attraction and textbook example of this type of volcano (figs. 5, 8, and 13). It stands 215 m (700 ft) above its base and has a maximum diameter of 0.8 km (0.5 mi). Its summit crater is 72 m (240 ft) deep and 305 m (1,000 ft) across.

Figure 8. Cinder Cone. Located in the northeastern corner of Lassen Volcanic National Park, Cinder Cone is a major attraction and a textbook example of this type of volcano. Note the oxidized ash in the Painted Dunes area in the mid-ground of the photograph. National Park Service photograph, available at http://www.flickr.com/photos/61860846@N05/8368095135/ (accessed 12 April 2013).

Shield Volcanoes

Shield volcanoes are shaped like an inverted shield and form where relatively mafic (basalt to andesite) lava erupts effusively and flows far from a vent. Multiple shield volcanoes will often overlap to form a lava plain. The shield volcanoes at the park occur near the boundaries (map 2, in pocket). Table Mountain (PEat)
centers—Dittmar and Lassen. On the geologic map
Lassen. The park contains rocks from two of these
volcanoes (see GRI reports by Thornberry-Ehrlich 2009,
2011 for summaries), the shield volcanoes in the park are
small and have a variety of compositions (basalt, basaltic
andesite, and andesite).

Volcanic Centers
Volcanic centers—which are focused sites of long-lived,
voluminous volcanic activity—are intercalated with
regional volcanoes. Five volcanic centers occur in the
vicinity of the park: Latour, Yana, Dittmar, Maidu, and
Lassen. The park contains rocks from two of these
centers—Dittmar and Lassen. On the geologic map
graphic (map 1, in pocket), these rocks are shown as unit
PEPL-D (for the Pliocene [PL] and Pleistocene [PE]
rocks of the Dittmar [D] volcanic center) and seven units
for the sequences of the Lassen volcanic center (see
“Geologic History” section).

Each volcanic center had a distinctive history from the
others, but all generally consisted of an initial phase of
silicic volcanism followed by construction of a large,
andesitic composite volcano flanked by a variety of
younger more silicic rocks such as dacite. Late in the
history of a volcanic center, an acidic hydrothermal
system, driven by heat from silicic magma bodies, altered
permeable rocks of the composite volcano to clay
minerals and silica, thus facilitating later fluvial and
glacial erosion. The outcome is selective preservation of
a central rim of thick cone-building lava flows, composed
of basaltic andesite to andesite, around a central
depression flanked by andesitic to silicic rocks (Clynne
1990).

The Lassen volcanic center, which is within the park, is
the current active volcanic center in the Lassen area. The
center consists of widely distributed vents that extend
more than 20 km (12 mi) north–south and 25 km (15 mi)
east–west, mingling with nearby regional volcanoes. The
Lassen volcanic center consists of the following features:
(1) the Rockland caldera complex, (2) a composite
volcano (Brokeoff Volcano); and (3) the Lassen
domefield, which is composed of small, closely spaced,
silicic lava domes and flows. These three components of
the Lassen volcanic center formed sequentially—caldera,
composite volcano, then the domefield—from a single
evolving magmatic system (Clynne and Muffler 2010).
The most recent volcanic eruptions took place in the
domefield (fig. 6).

Lava Domes
Lava domes (also called “plug domes”) form when gas-
poor, dacite-to-rhyolite magma piles up over a vent
because it is too viscous to flow away. More than any
other type of volcano, lava domes characterize the
Lassen landscape (Kane 1980). Lava domes have steep
sides and come in a range of sizes. Lassen Peak is the
world’s largest lava dome and reaches 3,187 m (10,457 ft)
in elevation (US Geological Survey 2003). Lassen Peak
began as a volcanic vent on Brokeoff Volcano’s northern
flank and now rises 610 m (2,000 ft) from its base. Other
lava domes in the park cluster around Lassen Peak and
include the six domes at Chaos Crags (domes A–F, Hrca–
HRcf; figs. 5 and 6), Crescent Crater (PEDc), Reading
Peak (PEDr), Bumpass Mountain (PEDb), Eagle Peak
(PERE), Vulcans Castle (PEDv), Loomis Peak (PERlm),
and the rhyodacite domes at Sunflower Flat (PERsf).

Composite Volcanoes
When most people think of a volcano, they probably envision a composite volcano, also referred to as a
“stratovolcano.” The iconic summits of Mount Fuji in
Japan and Mounts Shasta (see fig. 10) and Rainier in the
Cascade Range are composite volcanoes. Unlike the
other three general types of volcanoes (cinder cones,
shield volcanoes, and lava domes), a representative of
this type is not easily recognizable at the park (fig. 5).

Once upon a time, however, an impressive composite
volcano—Brokeoff Volcano—existed (fig. 9). This
volcano was eroded, primarily by glaciers, so that only
remnants remain. The surviving portions of the central
rim include Brokeoff Mountain (fig. 5), Mount Diller
(fig. 6), Mount Conrad, and Pilot Pinnacle. During its
heyday Brokeoff Volcano occupied the entire
southwestern part of what is now Lassen Volcanic
National Park and would have dominated the skyline.
The volcano was an estimated 20 km (12 mi) in diameter
and rose about 1,800 m (6,000 ft) above the landscape to
an elevation of 3,300 m (11,000 ft) (Kane 1980).

In contrast to regional volcanoes, composite volcanoes
are large, long-lived features that erupt episodically for
tens to hundreds of thousands of years from the same or
closely spaced vents. Moreover, they are thousands of
meters high and display a wide range of eruptive and
explosive styles—andesite, dacite, rhyodacite, and
rhyolite. Brokeoff Volcano erupted primarily andesite.

Lava Flows
In the same way that volcanoes in the Lassen area are
divided into “regional” and “volcanic centers,” so are
lava flows. Mafic lava is vented from regional volcanoes,
such as those in the eastern part of the park and Caribou
Wilderness. Andesitic to silicic lava flows erupted within
the Lassen volcanic center.

Mafic Lava Flows
The most common volcanic feature on the Lassen
landscape is mafic (low silica, low viscosity) lava flows
associated with cinder cones (Clynne and Muffler 2010).
Mafic lava flows are generally small—typically limited to
a few kilometers in length—and cover an area of a few
square kilometers. In the last 100,000 years, 54 eruptions
built cinder cones and/or emitted mafic lava flows in the
Lassen area (Clynne and Muffler 2010; Clynne et al.
2012). Of these, the basalt and basaltic andesite flows of
the regional volcanoes of the Caribou volcanic field, in
particular the Red Cinder chain (see Map Unit
Properties Table), are notable for the park.

The largest mafic lava flows in the Lassen area are fluid
basaltic flows associated with Basin and Range volcanism
and designated as “tholeiitic basalts” (Clynne and
Muffler 2010; Clynne et al. 2012). None of this type of
mafic flow occurs at the surface of the park, but two
Figure 9. Brokeoff Volcano. Before hydrothermal alteration weakened and glacial advances eroded its edifice, Brokeoff Volcano was a large composite volcano, rising 3,400 m (11,000 ft) above sea level. The hypothesized height would have exceeded that of present-day Lassen Peak. US Geological Survey photograph by Michael A. Clynne.

Figure 10. Hat Creek Basalt. This 330° view from Prospect Peak in the park shows a segment of the axis of the Cascade Range and includes many Cascade-arc volcanoes. Mount Shasta, in the background, is a young composite volcano north of the park and west of the Cascade-arc axis. The largest mafic lava flows in the Lassen area are fluid basalt flows associated with Basin and Range volcanism and designated as “tholeiitic basalts.” The tholeiitic Hat Creek Basalt (map unit PEbhC) floors the Hat Creek graben. It is the nearest and youngest flow of this type to Lassen Volcanic National Park. US Geological Survey photograph by Patrick Muffler.
probably occur in the subsurface—tholeiitic basalts of Nobles Trail (PEbn) and Warner Valley (PEbwv); these are now buried by younger rocks (Patrick Muffler, US Geological Survey, scientist emeritus, written communication, 17 July 2013). Units of tholeiitic basalt are included in the GRI data set (see “Geologic Map Data” section and accompanying digital geologic data). The nearest and youngest of this type of flow to the park is the 24,000-year-old Hat Creek Basalt (PEbhc; Turren et al. 2007) to the north (fig. 10). This flow erupted from a fissure vent just south of Old Station. In the Lassen area, this type of flow most commonly erupted slightly east of the main Cascade-arc axis. These fluid flows erupted from fissures with little associated ash, and the lava was generally distributed via lava tubes.

Andesitic to Silicic Lava Flows

Andesitic to silicic lava flows and domes are common eruptive features within the park. Silicic flows surround Lassen Peak and Chaos Crags in the western part of the park, and thick, andesitic lava flows form the eastern part of the Lassen domefield. Typically, these flows are much thicker and tend to have larger volumes than mafic lava flows.

Four andesite lava-flow complexes have been emplaced on the Lassen domefield in the past 100,000 years: the andesites of Crater Butte (PEac), Eagle Peak (PEae), Hat Mountain (PEah), and hill 7416 (PEa74) (Clynne and Muffler 2010). The largest of these, Hat Mountain (PEah), covers nearly 100 km² (40 mi²) and has a volume of about 5 km³ (1 mi³). The others are smaller, but still substantial and cover a combined area of approximately 40 km² (15 mi²).

Pyroclastic Flows

Pyroclastic flows are masses of hot, dry, rock fragments mixed with hot gases. Pyroclastic flows travel rapidly (tens of meters per second) away from a volcanic vent or collapsing flow front, and typically exceed 800°C (1,500°F) in temperature. They are extremely hazardous because of their high speeds and high temperatures (see “Volcano Hazards” section). A particularly significant pyroclastic flow for Lassen’s recent volcanic past was the “glowing avalanche” that flowed down Lassen Peak on 22 May 1915. This pyroclastic flow came from a single vent that had been plugged. The bottleneck created by the plug caused a tremendous buildup of gas pressure in the rising magma. Eventually, and violently, the magma found an exit and blasted vertically while simultaneously spilling down the volcano’s slope. This particular pyroclastic flow (Hpw2) created “one of the park’s most awesome sites” (Kane 1980, p. 34)—the scarred pyroclastic flow referred to as the “Devastated Area” (fig. 11).

Tephra

Tephra is the general term for all pyroclastic material ejected out of a volcano. The size of erupted debris ranges from fine dust to blocks a meter or more in diameter (Crandell and Mullineaux 1970). The force of a pyroclastic eruption may hurl tephra many thousands—or even tens of thousands—of meters into the air.

Pumice

Pumice is a common tephra type in the park. Pumice is violently erupted magma full of stretched voids that contained magmatic gas, making it more easily carried long distances by wind. Deposits of pumice accumulate as fragments that settle more or less vertically out of the air. Pumice tends to form a continuous mantle over the affected topography, rather than being confined to valleys like lava flows. Pumice commonly has the composition of rhyolite (table 1). At the park, the rhyodacites of Chaos Crags (Hpc), Kings Creek (PEpk), Sunflower Flat (PEpsf), and Eagle Peak (PEpe) contain pumice.

Painted Dunes Ash

The Painted Dunes area in the park has a distinctive tephra deposit, informally called the “Painted Dunes ash” (fig. 12). This material, which is as much as 2 m (8 ft) thick, was deposited during the eruption of Cinder Cone in 1666 (Sheppard et al. 2009) (fig. 13). Heiken (1978) measured and described the tephra, and divided it into three numbered units. Units 1 and 2 erupted from an older, remnant cinder cone (Hmpci), and are

![Figure 11. Devastated Area. During the most recent volcanic eruption of Lassen Peak, magmatic activity was confined to the period from about 14 to 22 May 1915 and affected primarily the northeastern flank and slope of the mountain, which is now referred to as the “Devastated Area,” as well as the valleys of Lost and Hat creeks as far as about 50 km (30 mi) downstream. US Geological Survey photograph by Michael A. Clynne.](image1)

![Figure 12. Painted Dunes. The Painted Dunes area in the park is covered by an ash deposit of the Cinder Cone eruption sequence. The ash—informally known as “Painted Dunes ash”—became brightly oxidized when it landed on still-hot lava flows. National Park Service photograph by I-Ting Chiang, winner of the Lassen Volcanic National Park 2012 photo contest.](image2)
lithologically similar to the Painted Dunes flows (Hmp1 and Hmp2). However, most Painted Dunes lava erupted as the tephra fall was waning (Clynne and Bleick 2011). Unit 3 erupted from Cinder Cone (Hmf1c), and is lithologically similar to the Fantastic Lava Beds flows (Hmf1 and Hmf2). Minimal amounts of ash were erupted during or after the time that the Fantastic Lava Beds flows were emplaced, and these flows’ surfaces are nearly ash free. Ash covers the Old Bench flow (Hmo)—with only a few lava pinnacles of the Old Bench flow poking through the ash—and the Painted Dunes flows (Hmp1 and Hmp2).

A distinctive feature of the Painted Dunes ash deposit is its color (fig. 12). The brightly oxidized ash demonstrates that the Old Bench and Painted Dunes lava flows were still hot when ash fell on them. Additionally, the ash deposit is cemented in places by opal (Finch and Anderson 1930), which adds further color to the Painted Dunes area.

Geothermal and Hydrothermal Systems
Following Neuendorf et al. (2005), this report uses the term “geothermal” to describe Earth as a heat source (e.g., geothermal gradient) or Earth’s heat when it is harnessed for use (e.g., geothermal exploration, development, reservoir, and resources; see “Geothermal Development” section). By contrast, the term “hydrothermal” pertains to hot water and its actions and products (e.g., hydrothermal water, alteration, deposit, feature, and eruption). Additionally, a hydrothermal system is a groundwater system that has a source (or area) of recharge, a source (or area) of discharge, and a heat source. This usage conforms to that provided in Heasler et al. (2009) in Geothermal Monitoring (see “Geologic Issues” section). The terms “geothermal” and “hydrothermal” may be used differently in other publications, however.

The Lassen hydrothermal system underlies most of the southern half of the park. White et al. (1971) originally suggested a model for vapor-dominated systems, such as the Lassen hydrothermal system. At Lassen, a deep, geothermal heat source, 8–10 km (5–6 mi) below the surface, drives the system. The source of heat is probably a body of hot or molten rock beneath Lassen Peak (Clynne et al. 2003). Water from rain and snow that falls on Lassen Peak and other high-elevation areas in the park percolates down to this geothermal source where it is heated and as a result rises to 1–2 km (0.6–1.2 mi) below the surface, forming a reservoir of near neutral pH, chloride-bearing, hot water at a temperature of approximately 240°C (460°F). This part of the system is referred to as the “liquid-dominated zone” (fig. 14). Above the liquid-dominated zone, lower pressure allows rising hot water to boil in what is referred to as the “vapor-dominated zone.” As steam rises through the vapor-dominated zone to feed higher elevation thermal features in the park, gas–depleted hot water flows laterally along permeable pathways from the liquid-dominated zone. This water reaches the surface at lower elevations—about 1,500 m (5,000 ft) above sea level—
Figure 14. Lassen hydrothermal system. Recharge of the Lassen hydrothermal system starts at high elevations. The upper image illustrates circulation in cell 1 of Janik and McLaren (2010); the lower image illustrates circulation in cell 2 of Janik and McLaren (2010). In both cells meteoric water percolates to a depth limited by a zone of hot rock overlying a magma body. Hot water rises convectively along favorable flow paths and boils in response to decreasing pressures to form a vapor-dominated zone that releases steam and gases to surface fumaroles and acidic hot springs. The residual thermal water flows laterally down gradient and emerges as hot springs south of the park (cell 1) or continues to flow downward into the subsurface (cell 2). Graphic by Trista Thornberry-Ehrlich (Colorado State University) with information from Clynne et al. (2003), Janik and McLaren (2010), and Michael A. Clynne and Patrick Muffler (US Geological Survey, written communication, 30 September 2013).
south of the park, forming Growler and Morgan hot springs (Muffler et al. 1982; Ingebritsen and Sorey 1985; Clyne et al. 2003; Janik and McLaren 2010).

Using seismic and geothermal data obtained since 1982, Janik and McLaren (2010) refined the long-standing model for Lassen (Muffler et al. 1982), and showed that the flow of water is limited by a zone of hot rock overlying the Lassen magma body. Earthquakes occur in this hot rock in response to changing hydrostatic and fluid pressures in pores and fractures, and to local tectonic stresses. Janik and McLaren (2010) refined the model to include two separate hydrothermal cells (fig. 14). Meteoric water originating on the southwestern flank of Lassen Peak and other high-elevation areas, such as the remnant topography of Brokeoff Volcano, is incorporated into “cell 1” and discharges at Growler and Morgan hot springs south of the park. Cell 1, which has a fluid reservoir at 235°C–270°C (455°F–518°F), “fuels” Little Hot Springs Valley, Bumpass Hell, Sulphur Works, and Pilot Pinnacle. Little Hot Springs Valley and Bumpass Hell are above the greatest upflow (with respect to volume and ascent rate) from the thermal reservoir. Sulphur Works and Pilot Pinnacle are on the western margin of the reservoir where upflow is less.

Meteoric water originating on the southeastern flank of Lassen Peak and Reading Peak forms “cell 2” of Janik and McLaren (2010) and discharges as steam at Terminal Geyser and thermal water at Drakesbad. Outflow of this cell was intercepted by the Walker O well (see “Geothermal Development” section) and continues in a south–southeast direction at 180–610 m (590–2,000 ft) depth toward the North Fork Feather River drainage (Janik and McLaren 2010). Cell 2 incorporates a reservoir of hot fluid, 220°C–240°C (428°F–464°F), which rises and boils to form small parasitic vapor zones that feed steam to Devils Kitchen and Boiling Spring Lake.

Hydrothermal Features

The Lassen volcanic center hosts far and away the most extensive hydrothermal system in the Cascade arc (Clynne et al. 2012). Lassen Volcanic National Park contains the surface manifestation of the Lassen hydrothermal system at (listed in order of size, table 2) Little Hot Springs Valley, Sulphur Works, Bumpass Hell (fig. 15), Devils Kitchen (fig. 16), Boiling Springs Lake (fig. 17), Drakesbad, Pilot Pinnacle, and Terminal Geyser (fig. 18). These areas contain many thermal vents that form superheated fumaroles from which gases are emitted (fig. 19), hot springs where water temperatures are higher than that of the human body, mud pots that range in temperature from boiling to near ambient (fig. 20), and warm to hot ground commonly covered with orange and yellow sulfates. In addition, the slow seepage of cold CO₂—one of the prominent gases emitted from the system—occurs beneath water in a few places and causes bubbling in Soda Lake and Cold Boiling Lake (Kane 1980). Extensive areas of hydrothermally altered rocks are a further surface expression of hydrothermal activity and indicate that the hydrothermal system moves around with time.

Figure 15. Bumpass Hell. A boardwalk provides passage through Bumpass Hell. The area was named for Kendall Vanhook Bumpass, an explorer and mountain man who fell into a boiling mud pot in 1865 and had to have his leg amputated. US Geological Survey photograph, available at http://volcanoes.usgs.gov/volcanoes/lassen_volcanic_center/lassen_volcanic_center_gallery_4.html (accessed 20 November 2013).

Figure 17. Boiling Springs Lake. Boiling Springs Lake is a bubbling lake with a temperature around 52°C (125°F). The lake formed in a down-dropped basin in the basalt and basaltic andesite of Sifford Mountain (PEbsm). Mud pots and steam vents line part of the shore and drainage creeks. National Park Service photograph, available at http://flic.kr/p/e2RJcJ (accessed 12 November 2013).
The boiling point of water varies with elevation but in general is about 95°C (203°F) at the park. Measured temperatures of hot springs range from 52°C to 97°C (126°F to 207°F) in the Lassen area (Clynne et al. 2003). Fumaroles have temperatures as high as 161°C (322°F) at Bumpass Hell, notably Big Boiler (fig. 21; Truesdell et al. 1983), and 147°C (297°F) at Little Hot Springs Valley (Janik and Bergfeld 2010).

The vigor of Lassen’s hydrothermal features varies from season to season and year to year. In spring, when cool groundwater from snowmelt is abundant, the fumaroles and pools have lower temperatures, and mud pots are more fluid. In late summer and in drought years, the features become drier and hotter because less mixing occurs with shallow, cool groundwater. On a longer time scale, hydrothermal features may shift position, die out, or evolve into different types of features (see “Hydrothermal Hazards” section). For example, an area of steaming ground in upper Sulphur Works collapsed in the early 1980s, forming a huge, boiling mud pot (Clynne et al. 2003).

Table 2. Hydrothermal areas in Lassen Volcanic National Park

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little Hot Springs Valley</td>
<td>79,000 m² (850,000 ft²)</td>
</tr>
<tr>
<td>Sulphur Works</td>
<td>58,000 m² (624,000 ft²)</td>
</tr>
<tr>
<td>Bumpass Hell</td>
<td>46,000 m² (495,000 ft²)</td>
</tr>
<tr>
<td>Devils Kitchen</td>
<td>40,900 m² (440,000 ft²)</td>
</tr>
<tr>
<td>Boiling Springs Lake</td>
<td>14,300 m² (154,000 ft²)</td>
</tr>
<tr>
<td>Drakesbad</td>
<td>10,000 m² (108,000 ft²)</td>
</tr>
<tr>
<td>Pilot Pinnacle thermal area</td>
<td>7,500 m² (80,700 ft²)</td>
</tr>
<tr>
<td>Terminal Geyser</td>
<td>900 m² (9,700 ft²)</td>
</tr>
</tbody>
</table>

Source: Sorey and Colvard (1994); see map 2 (in pocket) for locations.
Hydrothermal Alteration, Minerals, and Thermophiles

Hot water at 240°C (460°F) in a deep reservoir provides the steam that feeds hydrothermal features at the surface in the park. This steam contains hydrogen sulfide (H₂S), which oxidizes in the near-surface environment to produce sulfuric acid. Sulfuric acid, in turn, reacts with near-surface volcanic rocks, altering them to soft, light-gray to white slopes composed primarily of opal (hydrous SiO₂) and kaolinite (a clay mineral). Where the acidity of the water is relatively high, nearly pure opal forms; lower acidity and lower temperatures produce mainly kaolinite (Kiver and Harris 1999).

Hydrothermal alteration is widespread in and around the thermal areas of the park (fig. 22). Hydrothermally altered rocks occur in active thermal areas (Hh) and in the hydrothermally altered core of Brokeoff Volcano (Hsh). Hydrothermally altered rocks are prone to slope movements (see “Slope Movements” section).

Many distinctive rocks and minerals form in the highly acidic, hydrothermal environment at the park. Pyrite (FeS₂) is common in many of the hot springs as linings of vents and discharge channels, scum floating on the surface of pools, and dispersions in gray or black mud pots (fig. 23). Additionally, native sulfur (S) often coats the walls of steam vents with yellow, whereas sulfates (SO₄) appear orange.

Springs depositing travertine (Hht, shown as part of unit Hh on map 1, in pocket) occur on the periphery of some of the steam-dominated thermal areas in Little Hot Springs Valley. Travertine is finely crystalline, white, tan, or cream-colored calcium carbonate (CaCO₃) formed by chemical precipitation from solution in surface water and groundwater. Clynne and Muffler (2010) mapped two travertine deposits in Little Hot Springs Valley, and located another deposit too small to show at map scale (1:50,000) on the south side of Hot Springs Creek about 240 m (800 ft) along trail from Warner Valley picnic area. In the 1970s and 1980s, Patrick Muffler mapped a third travertine deposit in Little Hot Springs Valley, but in 2004 could not relocate the deposit and its vent. It had apparently eroded away or been removed by a landslide (Patrick Muffler, US Geological Survey, scientist emeritus, written communication, 17 July 2013).

Algal and bacteria colonies also lend color to Lassen’s thermal areas (fig. 24). Called thermophilic (heat-loving) bacteria, these organisms are not true bacteria but belong to a group known as Archaea (relating to Archaean of geologic time; fig. 3), which survive at temperatures as high as 80°C (175°F). Investigators have found species of Archaea in many environments previously thought to be sterile, such as acid hot springs (Clynne et al. 2003). Some studies suggest that life on Earth may have sprung from microbes similar to modern Archaea. Thus, Lassen Volcanic National Park serves as a laboratory for studying very early life on Earth (Clynne et al. 2003). Work by Siering et al. (2006) characterized the microbial and geochemical diversity of hot acidic environments in the park. With temperatures ranging from 50°C to 115°C (122°F to 239°F) and pH from 0 to 3, hydrothermal features at the park represent some of the most extreme life-supporting environments on Earth (Siering et al. 2006).
Glacial Features
Although the park's landscape is devoid of glaciers today, glaciers advanced at least five times during the ice ages of the Pleistocene Epoch. Valley glaciers radiated out from the base and northeastern flank of Lassen Peak, and an ice cap was situated over the central plateau area of the park (Kane 1982; Turrin et al. 1998). Additionally, two small moraines near the base of Lassen Peak record early Holocene glacial activity, between about 8,000 and 12,000 years ago (Christiansen et al. 2002).

The main effects of Pleistocene glaciation in the park were erosional (fig. 25). Glaciers deepened major valleys (see “U-shaped Valleys” section), removed bedrock from large parts of the landscape (see “The Missing Summit of Brokeoff Volcano” section), and created or enlarged hundreds of lake basins (see “Lakes” section). Glaciers also polished and scratched striations and grooves on bedrock surfaces (see “Glacial Polish, Striations, and Grooves” section), and formed cirques and arêtes at high elevations (see “Cirques” and “Arêtes” sections), and roches moutonnées in valleys (see “Roches Moutonnées” section).

Glacial deposition also helped to shape the Lassen landscape. Glaciers widely distributed till (a mixture of clay, silt, sand, gravel, and boulders), developed moraines (mounds or ridges of till; see “Till and Moraines” section), and deposited erratics (see “Glacial Erratics” section). Glacial meltwater deposited outwash (sand and gravel) beyond the margins of glacial ice (see “Outwash” section).

U-shaped Valleys
Mountain valleys cut by streams are characteristically V-shaped but become U-shaped if they are carved by repeated advances of glacial ice. As a glacier moves down a valley, it steepens the valley walls and broadens the floor, transforming the cross profile to resemble a “U.”

Many valleys in the park exhibit U-shaped forms, including Mill Creek valley, which is best viewed from around Diamond Peak or Lake Helen; and the North Fork of Bailey Creek (Blue Lake Canyon), which is best viewed from Ski Heil. Profiles of U-shaped valley are also apparent across Warner Valley and the valley of Hot Springs Creek, though these particular valleys are bounded by faults, and tectonic down-dropping in addition to glacial scouring probably deepened these valleys. Kane (1982) estimated that glacial scouring deepened Mill Creek valley about 185 m (600 ft) and the North Fork of Bailey Creek by about 275 m (900 ft).

The Missing Summit of Brokeoff Volcano
The huge quantities of bedrock that glaciers scoured, plucked, and abraded from the Lassen landscape may be inferred not only from the results of valley deepening but from the “missing summit” of Brokeoff Volcano (fig. 26). Some investigations have attributed the missing summit.
to partial collapse of the volcano into its magma chamber, but on a landscape covered by glacial deposits and wrought with classic, glacially eroded forms, glacial ice clearly played a significant role in the mountain’s demise (Williams 1932). A reconstructed profile of the original volcano reveals that at least 90 m (300 ft) of rock have been eroded from the old volcano’s flanks. Long-lived hydrothermal activity weakened the volcanic rocks, altering their mineralogies to clay and opal, which are more susceptible to erosion, including glacial erosion (Crowley et al. 2004; John et al. 2006, 2009).

Cirques
Cirques are a classic glacial landform consisting of a bowl-shaped, amphitheater-like hollow eroded into the side of a mountain. Cirques in the park are typically about 800 m (0.5 mi) across and set into a mountainside below a boulder-strewn headwall, 120–150 m (400–500 ft) high (Kane 1982). Most are closed depressions and contain small tarns (see “Lakes” section).

Many cirques occur on the flanks of the divide running between Brokeoff Mountain and Reading Peak (Kane 1982). A particularly nice example of this type of glacial landform lies on the northern side of the crest of Loomis Peak, overlooking Manzanita Lake (Schulz 1952). In addition, cirques occur just west of Lake Helen and on the northern side of Brokeoff Mountain. The cirque on Lassen Peak’s northeastern flank was eroded by a glacier that extended 11 km (7 mi) down-valley (Clynne et al. 1999).

Arêtes
Mountains that are, or have been, surrounded by glaciers tend to have characteristic features derived from the fracturing and plucking action of ice. Resultant landforms are the steep rock walls at the heads of cirques and narrow serrate ridges, called “arêtes,” between adjoining cirques. The large bowl-like depression contained within the Brokeoff Mountain–Mount Diller–Bumpass Mountain–Mount Conrad ridge exemplifies glacial erosion; the western part of this ridge is an arête, formed between the Bailey Creek cirques on the west and the Mill Creek cirque-like feature on the east (Kane 1982).

Roches Moutonnéées
Roches moutonnéées are asymmetrical, elongate knobs or hillocks of resilient bedrock that have been smoothed and scoured by moving ice on the up-glacier (stoss) side. On the down (lee) side, the rock is steep and hackly (jagged) from glacial quarrying. The term “roche moutonnéée” may have come from the resemblance of this landform to the wigs ("moutonnées") worn in late-1700 Europe and by barristers and judges in British courts. The smooth bangs and curly backs of these wigs resemble this glacial form. The term may also be translated as “rock sheep;” the landform may have appeared as fleecy grazing sheep. In the park, roches moutonnéées are present just west of the saddle between Lassen and Eagle peaks (Schulz 1952).

Glacial Polish, Striations, and Grooves
Rocks and sediment frozen to the base and sides of a glacier act like sandpaper and grind, scratch, and polish
the bedrock over which they pass. Glacially transported rocks may also become smoothed and rounded. These features—called glacial polish, striations, and grooves—are abundant in Lassen’s high country. Visitors can see excellent examples of scratched and polished dacite surfaces at the Lassen Peak trailhead and along the trail to Bumpass Hell (fig. 27).

Figure 27. Glacial erratic and polish. At the Bumpass Hell trailhead, a glacial erratic rests on glacially polished bedrock of Brokeoff Volcano (map unit PEad). A glacier carried and deposited this large block of dacite from Bumpass Mountain (PEdb), which remained at the edge of the canyon after the glacier had receded. National Park Service photograph (“Out of Place, Out of Time”) by Barbara Matthews (submission in Park Science 2011 Wilderness Edition Photo Contest), available at http://www.nature.nps.gov/ParkScience/graphics/vol_28_3/PhotoContest/index.html (accessed 14 November 2013).

Till and Moraines

Till is the general term for the poorly sorted mixture of fine to coarse rock debris deposited directly from glacial ice. Clynne and Muffler (2010) mapped two broad units of till—younger (PEty) and older (PEto)—though no older till deposits (PEto) occur within the boundaries of the park. Glaciers laid down till while volcanoes erupted within the park. Till covers many lava flows (see Map Unit Properties Table, in pocket, and “Geologic History” section).

In the Lost, Hat, and Manzanita Creek drainages, Christiansen et al. (2002) mapped glacial features in greater detail (scale 1:24,000). The most important remaining geologic mapping problem in the Lassen area is the extension of the detailed glacial stratigraphy from these valleys to the rest of the park and beyond (Clynne and Muffler 2010). Christiansen et al. (2002) delineated six ages of glacial deposits that represent five Pleistocene glacial advances and one Holocene advance. From youngest to oldest, these units are (1) till of Badger Mountain (PEtb), (2) till of Raker Peak (PEtr), (3) post-maximum till of Raker Peak consisting of Lassen Peak avalanche debris (PEtrl), (4) till of Anklín Meadows (PEta), (5) late till of Anklín Meadows (HPetal), and (6) till or protalus-rampart debris (Hth). The till of Badger Mountain (PEtb) is equivalent to the younger part of unit PEto (Clynne and Muffler 2010). The other tills—PEtr, PEtrl, PEta, PEtal, and Hth—are equivalent to the younger till unit (PEty). For a visual representation on the Lassen Volcanic National Park landscape, see map 1 (in pocket) where all till deposits are combined as unit HPEt.

Moraines are the most obvious landforms composed of till (figs. 28 and 29). These features can be undulating mounds or sharp ridges, depending on how long a glacier remained stable in a particular position or how much erosion and weathering have taken place in the intervening years between deposition and the present. In general, till from younger glaciations (PEty) has well-preserved moraines, whereas till from older glaciations (PEto) has only moderately to poorly preserved moraines (Clynne and Muffler 2010).

Figure 28. Glacial deposits. This schematic graphic illustrates deposits and features associated with glacial processes. Typically, glacial landscapes only preserve a fraction of the possible deposits. Till (generic term for material deposited by glacial ice) and moraines (composed of till) occur within Lassen Volcanic National Park (see fig. 29). Graphic by Trista Thornberry-Ehrlich (Colorado State University).

Lateral moraines form on the sides of glaciers and merge with end and terminal moraines, which are arc-like ridges of till that form at the terminus of glaciers. Terminal moraines mark the farthest point of a glacier’s advance. Glaciers spilled down the valleys to elevations as low as 1,800 m (6,000 ft) (Kane 1982) and built terminal moraines as much as 8 km (5 mi) away (Kiver and Harris 1999). Most terminal and lateral moraines are beyond the park boundary (Kane 1982). Some recessional moraines occur in a few places at higher elevations within the park, such as in the area sweeping northeast from Reading Peak and enclosing Summit Lake, and in Cameron Meadow south of Mount Hoffman (Kane 1982).

Outwash

During warm periods, glacial meltwater laden with sediment is “washed out” and deposited in flat areas beyond the margins of a glacier. Outwash deposits consist of unconsolidated sand and gravel, and may contain boulders up to 2 m (7 ft) in diameter. Within and surrounding the park, five outwash deposits are related to till deposits that were deposited at the same time (table 3). Only three of these outwash deposits occur within the park—PEor, PEou, and PEoy. All outwash deposits are grouped and shown as unit PEO on the geologic map graphic (map 1, in pocket).
Figure 29. Till and moraines. The view shown here is looking north from Red Rock Mountain across the South Fork Bailey Creek and includes tills of Raker Peak (map unit PETr) and Anklin Meadows (PETa). The brushy ridge extending from the upper right to the left center is a medial moraine between South Fork and North Fork Bailey Creek that consists of the late Pleistocene till of Raker Peak. Hill 6924 is an agglutinate vent of the andesite of Viola (PEav), part of the older Twin Lakes sequence of the Lassen volcanic center; its flow forms the forested slope to the left. In the right distance is Loomis Peak, composed of the rhyodacite of Loomis Peak (PERlm), part of the Bumpass sequence of the Lassen volcanic center. In the far distance on the left is Latour Butte, an andesitic volcano that is part of the Latour volcanic center. US Geological Survey photograph by Michael A. Clynne.

Table 3. Correlation of outwash and till in the Lassen area

<table>
<thead>
<tr>
<th>Outwash Gravel</th>
<th>Till</th>
<th>Age, years ago</th>
</tr>
</thead>
<tbody>
<tr>
<td>Younger (PEoy)</td>
<td>Younger (PETy)</td>
<td>35,000–8,000</td>
</tr>
<tr>
<td>Undivided (PEou)</td>
<td>Younger (PETy) and older (PETo)</td>
<td>>130,000–8,000</td>
</tr>
<tr>
<td>Anklin Meadows (PEoa)</td>
<td>Anklin Meadows (PETa)</td>
<td>25,000–17,000</td>
</tr>
<tr>
<td>Raker Peak (PEor)</td>
<td>Raker Peak (PETr)</td>
<td>35,000–27,000</td>
</tr>
<tr>
<td>Older (PEoo)</td>
<td>Older (PETo)</td>
<td>>130,000–60,000</td>
</tr>
</tbody>
</table>

Source: Clynne and Muffler (2010).

Glacial Erratics

In many glaciated areas, large boulders end up stranded when glaciers recede. These out-of-place rocks, called “erratics,” lie scattered on bedrock surfaces different from their own compositions and attest to the effectiveness of glacial erosion, transport, and deposition. The boulder sitting just to the left of the parking area at Bumpass Hell is an erratic (National Park Service 1972) (fig. 27). It is a large block of dacite from Bumpass Mountain (PEdb), which was carried by a glacier and left perched at the edge of the canyon when ice melted and the glacier receded. The erratic sits on Brokeoff Volcano andesite (PEad).

Lakes

Lassen Volcanic National Park contains more than 200 lakes (National Park Service 2010). Many are small and seasonal (Kane 1982), and most have a glacial origin and occur in glacial till or scoured glacial basins. However, volcanism, faulting, and slope movements also played roles in lake formation at the park.

Glacial Lakes

All glacial lakes within the park lie within the limit of Anklin Meadows till (PETa) and are, as such, 25,000–17,000 years old. An exception is Dry Lake—a closed depression in the Badger Mountain till (PETb; 70,000–60,000 years old), specifically the terminal Badger Mountain moraine in the Panther Creek drainage (Kane 1982). However, this lake is not within the park. Thus, all the small, till-depression lakes within the park have been on the landscape less than 25,000 years, though at least one in the area may have formed as much as 60,000 years ago.

Lakes with glacial origins also include those impounded by moraines such as Summit Lake (Kane 1980). Also, small lakes, called “tarns,” commonly occupy high-elevation basins created during the formation of a cirque (see “Glacial Features” section). In the park, Emerald Lake and Lake Helen are tarns created by glaciers that hollowed out the sides of mountains. Tarns are usually impounded by a bedrock lip covered by till or a small moraine (Kane 1982).
Lakes also form in the scoured basins of glacial valleys, including Crumbaugh, Cold Boiling, Terrace, Cliff, Shadow, Blue, and Crystal lakes in the park. Small glacial lakes may also occur in rugged terrain and on plateaus, for example, Island, Glen, East, and Indian lakes in the eastern part of the park, and Sifford and Bench lakes in the central part of the park.

Located near the southeastern corner of the park, Juniper Lake is the largest and deepest—2.1 km (1.3 mi) wide, and 72 m (235 ft) deep—in the park (Kane 1982). During the Pleistocene ice ages, the site of Juniper Lake was covered by a small ice field, which spilled south into Warner Valley and Benner Creek. The present outlet of Juniper Lake is into Warner Valley (to the west). Juniper Lake is carved into the down-dip direction of an approximately 1.4-million-year-old lava flow (PEad2) of the Dittmar volcanic center (Michael Clynne, US Geological Survey, research geologist, written communication, 10 April 2013). The lake basin also is partly bounded by 188,000-year-old lavas from Mount Harkness (PEamh). Although Kane (1982) suggested that Juniper Lake appeared to be more of a constructional depression—that is, formed by “upbuilding” (via deposition of material or volcanic eruption)—than an erosional basin, glacial carving clearly enhanced the basin (Michael Clynne, written communication, 10 April 2013).

Slope Movements and Lakes
Hat Lake is east of the Devastated Area and adjacent to the park road. Although the age of many of the lakes within the park is constrained by glacial till (see “Glacial Lakes” section), knowing the exact date of formation of a lake is unusual, but such is the case for Hat Lake. It formed on 22 May 1915 when a viscous debris flow (Hw2) slid from the upper slopes of Lassen Peak. The debris-flow deposit created the lake basin and dammed Hat Creek, creating the small lake. In addition, slope movements played a role in the development of lake basins at Forest Lake and a number of other small lakes below Brokeoff Mountain, which are associated with the 3,310-year-old landslide (Hsh) from Brokeoff Volcano that went down Mill Canyon. Also, Soda Lake is bounded by a landslide (Hsh), as well as alluvium (HPEf) and colluvium and talus (HPEC). The age of this landslide is unknown but could easily be younger than the 3,310-year-old slide from Brokeoff Volcano (Michael Clynne, US Geological Survey, research geologist, written communication, 10 April 2013). In the northwestern corner of the park, Manzanita Lake formed when blocky, angular rubble of the first debris avalanche of Chaos Jumbles (Hsj) dammed Manzanita Creek. Reflection and Craggs lakes also formed as a result of the Chaos Jumbles debris avalanche (see “Slope Movements” section). Manzanita Lake was created in 278 ± 28 radiocarbon years before present (BP), which translates to 1672 CE. Radiocarbon ages are recorded as years before present (BP), with “present” being 1950 CE. This date was determined from trees that were drowned by Manzanita Lake (Clynne and Muffler 2010). Tree-ring data suggest that this date should be about 25 years earlier, but it is not precise (Michael A. Clynne, US Geological Survey, research geologist, written communication, 23 July 2013).

Volcanism, Faulting, and Lakes
Volcanism also played a role in the formation of lakes within the park. For instance, Snag Lake formed during the eruption of Cinder Cone in 1666 (Sheppard et al. 2009). The Painted Dunes flows (Hmp1 and Hmp2) blocked streamflow from the south into Butte Lake, which occupies a tectonically down-dropped basin, and created Snag Lake (Clynne and Muffler 2010).

Boiling Springs Lake (fig. 17), which occurs in the basalt and basaltic andesite of Sifford Mountain (PEbsm), is another interesting example of lake formation. During the middle Pleistocene Epoch (approximately 170,000 years ago), lava erupted from a vent marked by Sifford Mountain and formed this small shield volcano and associated flows. A fault runs across the Sifford Mountain lava flows directly beneath Boiling Springs Lake. The lake probably formed via a combination of down-dropping along the fault and enhanced erosion of hydrothermally altered rock. The fault serves as a pathway for thermal fluids. However, most of the water in the lake basin is meteoric (rain and snowmelt), not thermal water. Thermal activity at Boiling Springs Lake is dominated by steam and gas (Michael Clynne, US Geological Survey, research geologist, email communication, 14 August 2013).

Meadows
In general, few geologic landforms are as ephemeral as lakes, which serve as “traps” for sediment delivered by streams, organic materials provided by plants and animals, and dust from atmospheric deposition. When a lake becomes completely filled with inorganic and organic material, it has made the transition to meadow, having first gone through a wetland phase.

Not all meadows were once lakes, but at least two in the park were—upper Kings Creek Meadow and the meadow adjacent to (west of) Horseshoe Lake. Also, Dersch, Cameron, and Lower Kings Creek meadows; the meadow in Blue Lake Canyon below Soda and Blue lakes; and the meadow in the upper west fork of Manzanita Creek were probably lakes (Kane 1980).

Along with the slow encroachment of marshy edges, an important factor in the in-filling process of many lakes is the growth of a delta. Extending into the lake from the mouth of an inflowing stream, a delta is often visible as a barely submerged “fan” of sediment. This gradual replacement of a lake by delta growth occurs in the park at Crumbaugh, Manzanita, Horseshoe, and Hat lakes. In the 1980s, Hat Lake, the smallest and youngest, was well on its way to being filled in by delta growth (Kane 1980), but beavers dammed the outlet in the 1990s, raising the lake level by several feet. These beavers have since left the lake, and their dam is disintegrating (Michael Clynne, written communication, 17 July 2013).
Streams and Waterfalls
Lassen Volcanic National Park is in the Sacramento River watershed. Numerous tributaries flow within the park’s boundaries such as Manzanita, North Fork Bailey, Panther, Hat, Butte, Grassy, Kings, and Hot Springs creeks. When viewed broadly, the overall drainage pattern of the park’s streams appears “radial” and is controlled by basic topography. Streams radiate from a high-elevation area in the southwestern part of the park around Lassen Peak and Brokeoff Mountain. Upon closer inspection, however, the drainage pattern is not quite so simple, and geologic factors other than topographic relief control many stream locations. For example, Kings Creek, Hot Springs Creek, and the East and West forks of Sulphur Creek are probably controlled by the locations of faults. Other stream courses, such as Grassy Swale Creek and Echo-Twin Lakes drainage, follow routes that are geologic contacts (where two different ages of volcanic rocks meet, often creating natural topographic depressions). Still other streams, like upper Manzanita Creek and the headwater tributaries of Hat Creek, follow courses determined by lateral moraines (Kane 1980).

Streams in the rugged Lassen region are generally downcutting and far from a steady state condition. Stream loads consist mostly of coarse material, with a relative paucity of silts and clays. Channel gradients are irregular, often alternating along a particular stream from steep in places where the channel is in bedrock to gentle where alluvium (HPEf) has been deposited (Kane 1980).

Despite rugged relief and ample streamflow, sizable waterfalls within the park are few (Kane 1980). Mill Creek Falls at the confluence of the eastern and western branches of the East Fork of Sulphur Creek is the highest waterfall in the area with a double-drop of about 20 m (60 ft). The stream there flows over a layer of Brokeoff Volcano lava (i.e., andesite of Mill Canyon, PEamc) that is particularly resistant to weathering. The only other major waterfall in the park is Kings Creek Falls, about 15 m (50 ft) high, which also flows over a resistant outcrop of Brokeoff Volcano lava (i.e., andesite of Rice Creek, PEar).
Geologic Issues

Geologic issues described in this section may impact park resources or visitor safety and could require attention from resource managers. Contact the Geologic Resources Division for technical or policy assistance.

During the 2004 scoping meeting and 2013 conference call, participants (see Appendix A) identified the following geologic resource management issues:

- Hydrothermal Hazards
- Volcano Hazards
- Seismic Activity
- Slope Movements
- Geothermal Development
- Abandoned Mineral Lands
- Disturbed Lands Restoration
- Manzanita Lake Dam

Resource managers may find *Geological Monitoring* (Young and Norby 2009; http://go.nps.gov/geomonitoring) useful for addressing these geologic resource management issues. *Geological Monitoring* provides guidance for monitoring vital signs (measurable parameters of the overall condition of natural resources). Each chapter of *Geological Monitoring* covers a different geologic resource and includes detailed recommendations for resource management and suggested methods of monitoring.

Hydrothermal Hazards

The three required elements of a hydrothermal system—abundant groundwater, permeable rock, and a heat source at depth—are present at Lassen Volcanic National Park and result in remarkable hydrothermal features at the surface. Hydrothermal features such as hot springs and fumaroles are one of the major visitor attractions at the park. However, they are also one of the main hazards (Covington 2004). The high-temperature fumaroles and mud pots pose potential burn hazards to people who stray from trails and boardwalks (Clynne et al. 2012). Thin surface crusts in hydrothermal areas are susceptible to collapse under the weight of people walking on them. Boiling mud, boiling water, and steam can cause first-, second-, and third-degree burns, which are sometimes fatal (Clynne et al. 2012).

The high-temperature, acidic, hydrothermal features at the park result in the alteration of volcanic rocks. These features also result in the alteration of anthropogenic features such as boardwalks and roads. Even boardwalks constructed on seemingly cool ground can be affected because steam vents and mud pots change in temperature and character and can migrate laterally over time. In some cases, wood posts in the ground have served as conduits or “wicks” for steam and acid. Over the years, the National Park Service has relocated the boardwalks in Bumpass Hell, Devils Kitchen, and Sulphur Works many times because acid vapors have affected both the wood and metal of these structures. At Sulphur Works, the boardwalks north of the park road were so severely compromised by thermal activity that in 2007 the National Park Service removed these structures in the interests of safety to both visitors and NPS personnel (Clynne and Muffler 2009).

Thermal activity also affects roads. Such impacts are prominent at Sulphur Works (Clynne and Muffler 2009, 2011). In recent years, fumarolic activity north of California Highway 89 (the “park road”) has migrated south towards the road and become concentrated in a large, boiling mud pot adjacent to the sidewalk curb (fig. 30). Borings taken by the Federal Highway Administration in April 2009 and November 2011

![Figure 30. Hydrothermal hazards at Sulphur Works. Hydrothermal activity poses a hazard where the park road (California Highway 89) crosses Sulphur Works. In recent years, fumarolic activity just north of the road has migrated south towards the road. The figure shows the view south from above the large boiling mud pot (feature 4196P) looking across California Highway 89 to the hill above a fumarole (4194C). Also shown in the photograph are a hissing, steaming pit, 2 m (7 ft) in diameter (4196E) and a large persistent fumarole on the southern side of the road (4195B). US Geological Survey photograph (with annotations) from Clynne and Muffler (2011).](image-url)
recorded that boiling temperatures have risen through the substrate and compromised the integrity of the roadbed, in particular under the north lane where boiling temperatures were recorded 5–7 m (16–23 ft) below the road surface (Clynne et al. 2012). Hazard mitigation in this hydrothermal area is ongoing. Periodically, for example in May 2013 during preparation of this report, the Lassen Volcanic National Park website alerts visitors to areas such as Sulphur Works where road work and repairs are in progress and delays are expected.

Temporal and spatial variation of fumaroles has been observed in all thermal areas of the park, and has been systematically documented in recent years at Sulphur Works, Little Hot Springs Valley, and Pilot Pinnacle (Clynne et al. 2012). As hydrothermal features continue to change seasonally and annually, park staff must monitor thermal activity, particularly in areas with high visitation (Covington 2004; see “Hydrothermal Monitoring” section).

Hydrothermal Explosions
Hydrothermal explosions are produced where water contained in near-surface rock at temperatures as high as about 250°C (450°F) flashes to steam and violently disrupts the confining rock. These explosions are due to the same instability and chain reaction mechanism as geyser eruptions but are so violent that a large proportion of solid debris is expelled along with water and steam (Muffler et al. 1971).

Hydrothermal explosions present a significant hazard in many hot-spring areas (Browne and Lawless 2001; Christiansen et al. 2007). However, such hazards are more likely in thermal areas with active discharge of neutral pH, high-chloride waters, especially those hosting geysers, such as Yellowstone National Park (Muffler et al. 1971). By contrast, the hydrothermal system at Lassen Volcanic National Park is vapor dominated with acid-sulfate alteration (Christiansen et al. 2007). Thus the likelihood of a large hydrothermal explosion at the park is very low at present (Clynne et al. 2012). However, small hydrothermal explosions are possible anywhere a landslide “un-roofs” ground containing fluid above the boiling point. Such explosions have occurred in the last few decades in Bumpass Hell, Devils Kitchen, and Sulphur Works (Michael Clynne, US Geological Survey, research geologist, written communication, 17 July 2013). Moreover, intrusion of new magma into the Lassen volcanic system could alter the hydrothermal regime and make hydrothermal explosions more likely (Clynne et al. 2012).

Gas Hazards
Water vapor is the primary gas (≥90%) emitted in thermal areas. However, carbon dioxide (CO₂), hydrogen sulfide (H₂S), sulfur dioxide (SO₂), hydrogen (H₂), and fluorine (F) are commonly present. Normally, volcanic gases dissipate quickly into the atmosphere, and only rarely are visitors present in areas of Lassen Volcanic National Park where gas concentrations can cause harm (Clynne et al. 2012). However, thermal areas become especially hazardous when they are buried by snow after a significant storm (Clynne et al. 2012). Gases are trapped in the snow in air pockets, caves, wells, and depressions. In 1995, a skier fell into a snow cave at Sulphur Works, and although he was rescued, he died a week later in the hospital, probably of CO₂ poisoning (Michael Clynne, US Geological Survey, research geologist, written communication, 17 July 2013).

The first reported death associated with volcanically produced carbon dioxide in the United States occurred in the Horseshoe Lake area on the southern flank of Mammoth Mountain in eastern California (Hill 2000). Managers at Lassen Volcanic National Park may find the Forest Service’s response at Horseshoe Lake of interest and use. High concentrations of carbon dioxide kill trees at this location, and managers mark the tree-kill zone as “keep out” during the winter months. Cross-country skiing, snowmobiling, snowshoeing, and “snow play” of any kind are considered unsafe activities due to the potential for falling into a snow well or landing face first in the snow. During the summer months, the tree-kill zone is safe for adults to walk, bike, and pass through, but activities that draw adults close to the ground such as sunbathing or picnicking are discouraged. The Forest Service does not recommend that small children or dogs enter the tree-kill area at any time (Hill 2000).

The hazard from CO₂ is amplified because CO₂ is odorless and colorless and thus not perceived readily (Wilcox 1959). By contrast, other volcanic gases such as hydrogen sulfide (H₂S) have a conspicuous “rotten egg” odor, resulting from the presence of sulfur. However, at concentrations above 0.015% (150 parts per million, ppm), the olfactory nerve is overwhelmed and the sense of smell disappears, commonly with an awareness of danger. In many cases where people have smelled “sulfurous” fumes, analysis showed that several other gases were present in equal or greater quantities. Other gases that are frequently present include hydrochloric acid, hydrofluoric acid, carbonic acid (dissolved carbon dioxide), and ammonia—all of which may be harmful if inhaled in sufficient concentration for a sufficient length of time (Wilcox 1959).

Air-Quality Monitoring
Lassen Volcanic National Park is downwind of the populated Sacramento Valley and areas of agriculture and manufacturing. Air-quality studies and monitoring at the park focus on the deposition of nitrogen, sulfur, and toxic air contaminants, including mercury, from these human sources, and the effects of these compounds on natural resources, rather than on naturally emitted toxic gases from hydrothermal features. Concentrations of sulfur from volcanic emissions are considered relatively low and not known to cause acidification on sensitive resources such as high elevation lakes (National Park Service 2011). The NPS Air Resources Division supports air-quality monitoring at the park, and posts monitoring results and key references at http://nature.nps.gov/air/Permits/aris/lavo/. Park managers are encouraged to contact the Air Resources Division for technical assistance with air-quality issues.
Hydrothermal Monitoring

Hydrothermal features are dynamic. Their vigor varies both seasonally and annually, and the location of activity can change (Clynne et al. 2012). Identifying the often-changing locations of these features and monitoring their heat, water flow, and chemistry provides resource managers with data needed to make informed decisions about management options (Heasler et al. 2009). Monitoring may also help to detect changes caused by a renewed influx of magma into the Lassen volcanic center (Clynne et al. 2012).

Heasler et al. (2009)—the chapter in Geological Monitoring about geothermal systems and hydrothermal features—described the following methods and vital signs for understanding geothermal systems and monitoring hydrothermal features: (1) thermal feature location, (2) thermal feature extent, (3) temperature and heat flow, (4) thermal water discharge, and (5) fluid chemistry.

To potentially provide early warning of volcanic activity (see “Volcano Hazards” section), the thermal features at the park are chemically and physically monitored by the US Geological Survey and National Park Service (Sorey 1986). In addition, researchers from California State University, Chico, implemented a monitoring system at two sites within the Lassen volcanic center: (1) Sulfur Works in the central part of the volcano complex, and (2) Boiling Springs Lake southeast of the main volcano edifice (Fassett et al. 2010). Following installation of data loggers in 2007, water temperatures have been continuously measured at both sites. Sulfur Works temperatures are typically around 75°C–90°C (167°F–194°F). Water temperatures are lower during spring and early summer, following snowmelt; temperatures are generally lowest in mid-June, about 76°C (169°F). Temperatures of Boiling Springs Lake are generally between 60°C and 70°C (140°F and 158°F), with temperature decreases to 40°C or 50°C (104°F or 122°F) during the spring (Fassett et al. 2010). Researchers from California State University, Chico, hypothesized that as magmatic activity of the system changes, the temperature of the hydrothermal systems will also change, along with CO₂ concentration emitted by the magmatic system.

Volcano Hazards

Volcanic eruptions from within the Lassen volcanic center and from regional volcanoes within and near the park would impact park infrastructure, including roads, thus affecting evacuation from park areas. Hazards from regional volcanoes include effusive mafic lava flows and airborne ash. Hazards from the Lassen volcanic center include explosive silicic eruptions that create lava domes and lava flows, as well as pyroclastic flows, lahars, and airborne ash (Clynne et al. 2012) (fig. 31).

An eruption generating extremely large pyroclastic flows—for example a caldera-forming eruption that produces tens to hundreds of cubic kilometers of lava and ash—is exceedingly unlikely in the vicinity of the park because the present magmatic system is not configured for this type of eruption (Clynne et al. 2012). Although several such events have occurred in the past 3 million years, none have occurred since the eruption of the Rockland tephra (Pbpr) approximately 609,000 years ago (Lanphere et al. 2004; Clynne and Muffler 2010).

Hazards from Regional Volcanoes

The most common volcanic activity in and around the park consists of small to moderate-sized eruptions from regional volcanoes that build cinder cones as high as 300 m (1,000 ft), produce basaltic lava flows that can cover more than 2.5 km² (1 mi²), and blanket many square kilometers with ash as much as several meters thick. These eruptions typically last a few months to a year, but may continue for several years. The probability of this type of eruption in the next year in the vicinity of the park is 2.3 × 10⁻⁴ (0.00023) or 0.023% (Nathenson et al. 2012). The hazard is neither higher nor lower because of the length of time since a previous eruption.

The most likely locations for eruptions of regional volcanoes around the park are in (1) a zone between the Red Cinder chain and California Highway 44 (approximately the area in and around the northeastern corner of the park), (2) a zone from south of Old Station to the Pit River, (3) a zone from the southern end of Tumble Buttes chain to the vicinity of Burney Mountain, and (4) the area of the Red Lake cluster (Clynne et al. 2012).
Hundreds of eruptions have occurred in the Lassen volcanic center during its 825,000-year existence, including at least 14 eruptions in the past 100,000 years. Since about 25,000 years ago, the Lassen volcanic center has been relatively quiet, but three eruptive episodes during the last 1,050 years, the most recent in 1914–1917, demonstrate that the center is still active (Clynne and Muffler 2010). Eruptions have consisted of explosive events, tephra (ash falls), lahars, lava flows, and construction of lava domes (fig. 31). The probability of this type of eruption in the next year at the Lassen volcanic center is 6.9×10^{-4} (0.00065) or 0.065% (Nathenson et al. 2012). Like regional volcanism, the hazard is neither higher nor lower because of the length of time since a previous eruption.

Within the Lassen volcanic center, the most likely type of eruption would be explosive (vs. effusive eruptions from regional volcanoes). Precursory activity could include intermittent phreatic (steam) explosions that eject rocks near the vent. Erupted ash could rise several kilometers into the air and deposit local accumulations. Columns of ash that rise high into the atmosphere pose hazards to aircraft, particularly those with jet engines (Clynne et al. 2000b). Tephra from the most violent eruption of Lassen Peak on 22 May 1915 was carried by prevailing winds as far as about 500 km (310 mi) to the east where it fell on Elko, Nevada (Miller 1989).

A magmatic eruption may follow precursory activity. Silicic magma typically erupts explosively, creating a vertical eruption column and producing large volumes of tephra. Collapse of the column could generate pyroclastic flows. Objects and structures in the path of a pyroclastic flow, which tend to follow valleys, are generally destroyed or swept away. Hot debris and gases can ignite vegetation, wood, and other combustible materials. Humans and animals may be injured or killed by a direct impact from a pyroclastic flow (e.g., burial) or inhalation of hot ash and gas around the margins of a pyroclastic flow (Miller 1989).

After an initial explosive eruption, extrusion of gas-depleted magma commonly forms lava domes. Dome formation and associated lava flows could continue for a few months to a few years. Growing lava domes are inherently unstable, and collapse of their steep sides often generates pyroclastic flows of lava blocks and ash capable of travelling several kilometers. The Chaos Crags domes (A–F) and associated deposits likely formed in this manner about 1,050 years ago. The Chaos Crags area remains the most susceptible for future dome formation and collapse at the park (Clynne et al. 2012).

Lahars
Lahars are highly mobile, fast-moving mixtures of volcanic rock fragments, sand, mud, and water that can flow many kilometers down valleys at very high speeds, as much as 100 kph (60 mph). Because of their high speeds, they are one of the deadliest volcano hazards. The major hazard to human life from a lahar is burial or impact by debris. People and animals also can be severely burned by hot debris carried by lahars. Buildings and other property in the path of a lahar can be buried, smashed, or carried away. Lahars can move or carry away vehicles and other objects as large as bridges and locomotives because of their relatively high density and viscosity (Miller 1989). Compared to “normal” storm-related flooding, the high sediment content of floods associated with lahars makes them especially dangerous and damaging (Miller 1989).

Pyroclastic flows moving over snow or an avalanche of hot rock that incorporate large amounts of snow are the most likely causes of a lahar at the park. Both these types of lahars occurred during the 1915 eruption of Lassen Peak (Clynne et al. 2012). Although lahars are often generated when hot lava or pumice rapidly melt snow or ice, they do not require a volcanic eruption to be triggered. Heavy rainfall can also generate a lahar on a steep-sided volcano. In 1963, torrential rains triggered a small lahar on the lower slopes of Lassen Peak, mobilizing recently deposited loose volcanic and sedimentary material (Clynne et al. 2012). A lahar may also form by the addition of streamflow. For example, 1,050 years ago during the Chaos Crags eruption, a pyroclastic flow moving down the Manzanita Creek drainage was transformed into a lahar by incorporating water from the creek (Clynne et al. 2012). Other lahar deposits in the geologic record at the park illustrate other means for lahar hazards. About 8,000 years ago, during the last deglaciation, lahars were initiated on Lassen Peak by mobilization of recently deposited glacial sediments (Marron and Laudon 1986; Christiansen et al. 2002). This type of lahar is very unlikely under present climatic conditions, however.

Volcano Monitoring
Although some volcanoes have erupted violently without any apparent warning, most eruptions are preceded days, weeks, months, or even years by volcanic activity on a small, relatively harmless scale (Crandell and Mullineaux 1970). The most significant precursory phenomena often include the following:

- Marked and continuing increase in the frequency and magnitude of local earthquakes
- Appearance of steam jets and clouds of water vapor, possibly accompanied by explosions and rockfalls
- Subterranean rumbling noises
- Substantial increase in the temperature and activity of hot springs and fumaroles, and the appearance of these features in new areas
- Increase in the amount of sulfur and chlorine or fluorine in fumarolic gases
- Repeated landslides on the flanks of a volcano

People living near volcanoes may detect such phenomena before an eruption. However, most precursory changes are subtle, and the most effective means for detecting these changes are instrumental and include a variety of geophysical, geodetic, and geochemical techniques (Miller 1989). In the Geological
Volcanic Earthquakes

The Lassen area is subject to considerable seismic activity. Three notable earthquake sequences occurred in the region in 1936, 1945–1947, and 1950 (Norris et al. 1997). These included main shocks as large as magnitude \(M = 5.5 \) and thousands of smaller events that were attributed to east–west extension on Basin and Range normal faults (Norris et al. 1997). Smaller bursts of seismic activity—generally with earthquakes of \(M = 4 \) to 5 and dozens of smaller shocks—occur every few years. If the earthquakes are of tectonic origin, the resulting hazard would be chiefly from landslides, rather than from volcanic phenomena (Crandell and Mullineaux 1970; see “Slope Movements” section).

Major faults in the area, including the Hat Creek fault and faults with large offsets in the Lake Almanor area, are capable of earthquakes as large as \(M = 7 \) (Wills 1990a, 1990b; Clynne et al. 2012). The Hat Creek fault offsets the 24,000-year-old Hat Creek Basalt (map unit PEbhc) by as much as 30 m (100 ft) (Muffler et al. 1994; Turrin et al. 2007). Displacement of outwash gravels (outwash of Anklin Meadows, PEOa) overlying the Hat Creek Basalt shows that vertical offset on the Hat Creek fault has averaged 1.3 mm (0.05 in) per year for the past 15,000 years (Clynne et al. 2012); this is similar to the long-term average of the fault (Muffler et al. 1994).

Work by Walker and Kattenhorn (2008) characterized the slip history and evolution of the Hat Creek fault, which reflects a complex interplay between tectonic and magmatic influences. In response to these influences, the northern portion of the fault system has migrated progressively westward, abandoning older scarps in its wake, whereas the southern portion continues to use Pleistocene slip surfaces (Walker and Kattenhorn 2008). Additionally, Blakeslee and Kattenhorn (2010) studied the evolution of the segmented Hat Creek fault, as well as the earthquake hazard associated with it. These investigators determined that the Hat Creek fault system has the potential to produce an earthquake of at least \(M = 6.5 \).

Seismic Activity

The Lassen area experiences tectonic, volcanic, and hydrothermal earthquakes. Tectonic earthquakes occur because the Lassen volcanic center is located along the western edge of a region of closely spaced normal faults—the Basin and Range physiographic province, which impinges on the Cascade arc (Guffanti et al. 1990). Volcanic earthquakes are generally interpreted as reflecting movement of mafic magma into the deep crust below an active volcanic area (Pitt et al. 2002). As magma moves through the Earth, it displaces and fractures rock along the way, causing earthquakes. About 25% of the seismic events in the Lassen region are associated with the Lassen hydrothermal system (Klein 1979; Walter et al. 1984). These small earthquakes are clustered beneath the hydrothermal features at shallow depth and typically occur in episodes of 10–25 events over a 1–3 day period. This seismicity is related to hydrothermal alteration and brittle failure of rock in the hydrothermal system (McLaren and Janik 1996; Janik and McLaren 2010).

Tectonic Earthquakes

The California Volcano Observatory (CalVO) in Menlo Park, California, coordinates monitoring of the Lassen volcanic center via periodic measurements of ground deformation and volcanic-gas emissions and continuous transmission of data from a local network of 13 seismometers (see “Seismic Activity” section). Ground deformation (swelling upward and outward of Earth’s surface as magma moves into a volcanic system) is measured using the global positioning system (GPS) (US Geological Survey 2012a). Refer to the CalVO website for more information: http://volcanoes.usgs.gov/observatories/calvo/ (accessed 6 November 2013).

Although monitoring systems may be useful by indicating an increase in the probability of volcanic activity and its possible location, they typically do not indicate the kind or scale of an expected eruption, or even its certainty. Precursors to volcanic activity may continue for weeks, months, or even years before eruptive activity begins, or activity can subside at any time and not be followed by an eruption (Clynne et al. 2012).

Volcano Hazard Mitigation

The California Volcano Observatory will immediately deploy scientists and instrumentation to evaluate potential threats identified during monitoring. The National Park Service has developed an emergency operations plan (National Park Service 2012) to protect the public in the event of an impending eruption. Park managers distribute a site bulletin covering basic evacuation procedures (National Park Service 2006).

In the event of renewed volcanic activity in the park, the time of year would be an important factor. During the winter, much of the park road is covered with snow and closed, but mudflows, debris flows, or lahars could cover segments of the main park road, as well as service roads and California Highways 44 and 36, affecting both day use and overnight camping. During the summer, several thousand visitors could be in the park and almost as many more in nearby communities and resorts. Evacuation of visitors from the park, especially in the wilderness area, would be difficult without assistance from other agencies.

Monitoring chapter about volcanoes, Smith et al. (2009) described seven vital signs and methodologies for understanding and monitoring volcanoes: (1) earthquake activity, (2) ground deformation, (3) emission at ground level, (4) emission of gas plumes and ash clouds, (5) hydrologic activity, and (6) slope instability.

The USGS California Volcano Observatory (CalVO) in Menlo Park, California, coordinates monitoring of the Lassen volcanic center via periodic measurements of ground deformation and volcanic-gas emissions and continuous transmission of data from a local network of 13 seismometers (see “Seismic Activity” section). Ground deformation (swelling upward and outward of Earth’s surface as magma moves into a volcanic system) is measured using the global positioning system (GPS) (US Geological Survey 2012a). Refer to the CalVO website for more information: http://volcanoes.usgs.gov/observatories/calvo/ (accessed 6 November 2013).

Although monitoring systems may be useful by indicating an increase in the probability of volcanic activity and its possible location, they typically do not indicate the kind or scale of an expected eruption, or even its certainty. Precursors to volcanic activity may continue for weeks, months, or even years before eruptive activity begins, or activity can subside at any time and not be followed by an eruption (Clynne et al. 2012).

Volcano Hazard Mitigation

The California Volcano Observatory will immediately deploy scientists and instrumentation to evaluate potential threats identified during monitoring. The National Park Service has developed an emergency operations plan (National Park Service 2012) to protect the public in the event of an impending eruption. Park managers distribute a site bulletin covering basic evacuation procedures (National Park Service 2006).

In the event of renewed volcanic activity in the park, the time of year would be an important factor. During the winter, much of the park road is covered with snow and closed, but mudflows, debris flows, or lahars could cover segments of the main park road, as well as service roads and California Highways 44 and 36, affecting both day use and overnight camping. During the summer, several thousand visitors could be in the park and almost as many more in nearby communities and resorts. Evacuation of visitors from the park, especially in the wilderness area, would be difficult without assistance from other agencies.

Seismic Activity

The Lassen area experiences tectonic, volcanic, and hydrothermal earthquakes. Tectonic earthquakes occur because the Lassen volcanic center is located along the western edge of a region of closely spaced normal faults—the Basin and Range physiographic province, which impinges on the Cascade arc (Guffanti et al. 1990). Volcanic earthquakes are generally interpreted as reflecting movement of mafic magma into the deep crust below an active volcanic area (Pitt et al. 2002). As magma moves through the Earth, it displaces and fractures rock along the way, causing earthquakes. About 25% of the seismic events in the Lassen region are associated with the Lassen hydrothermal system (Klein 1979; Walter et al. 1984). These small earthquakes are clustered beneath the hydrothermal features at shallow depth and typically occur in episodes of 10–25 events over a 1–3 day period. This seismicity is related to hydrothermal alteration and brittle failure of rock in the hydrothermal system (McLaren and Janik 1996; Janik and McLaren 2010).

Tectonic Earthquakes

The Lassen area is subject to considerable seismic activity. Three notable earthquake sequences occurred in the region in 1936, 1945–1947, and 1950 (Norris et al. 1997). These included main shocks as large as magnitude \(M = 5.5 \) and thousands of smaller events that were attributed to east–west extension on Basin and Range normal faults (Norris et al. 1997). Smaller bursts of seismic activity—generally with earthquakes of \(M = 4 \) to 5 and dozens of smaller shocks—occur every few years. If the earthquakes are of tectonic origin, the resulting hazard would be chiefly from landslides, rather than from volcanic phenomena (Crandell and Mullineaux 1970; see “Slope Movements” section).

Major faults in the area, including the Hat Creek fault and faults with large offsets in the Lake Almanor area, are capable of earthquakes as large as \(M = 7 \) (Wills 1990a, 1990b; Clynne et al. 2012). The Hat Creek fault offsets the 24,000-year-old Hat Creek Basalt (map unit PEbhc) by as much as 30 m (100 ft) (Muffler et al. 1994; Turrin et al. 2007). Displacement of outwash gravels (outwash of Anklin Meadows, PEOa) overlying the Hat Creek Basalt shows that vertical offset on the Hat Creek fault has averaged 1.3 mm (0.05 in) per year for the past 15,000 years (Clynne et al. 2012; this is similar to the long-term average of the fault (Muffler et al. 1994).

Work by Walker and Kattenhorn (2008) characterized the slip history and evolution of the Hat Creek fault, which reflects a complex interplay between tectonic and magmatic influences. In response to these influences, the northern portion of the fault system has migrated progressively westward, abandoning older scarps in its wake, whereas the southern portion continues to use Pleistocene slip surfaces (Walker and Kattenhorn 2008). Additionally, Blakeslee and Kattenhorn (2010) studied the evolution of the segmented Hat Creek fault, as well as the earthquake hazard associated with it. These investigators determined that the Hat Creek fault system has the potential to produce an earthquake of at least \(M = 6.5 \).

Volcanic Earthquakes

Volcanic earthquakes, which often provide the initial sign of volcanic unrest, are measured with seismometers at the park (US Geological Survey 2012c). The signals of volcanic earthquakes differ from tectonic earthquakes: they tend to be found at depths shallower than 10 km (6 mi), are small in magnitude (\(M < 3 \)), occur in swarms, and
are restricted to the area beneath a volcano (US Geological Survey 2012c).

Between 1982 (when the Lassen seismic network was established) and 2002, seismometers detected 29 volcanic earthquakes at depths from 13 to 23 km (8 and 14 mi), primarily in an area about 5–8 km (3–5 mi) west of Lassen Peak near the northwestern corner of the park (Pitt et al. 2002). Investigators estimated an average of about two volcanic earthquakes per year in this area. However, seismicity is clearly episodic, and as many as eight earthquakes have occurred in one year (1988) and none in others (e.g., 1991) (Pitt et al. 2002).

Since 2002, improvements in the Lassen seismic network have led to increased detection of volcanic earthquakes. Unpublished data document an average of 11 volcanic earthquakes per year between 2003 and 2011, most in small clusters (Clynne et al. 2012).

Seismic Monitoring
Currently, the US Geological Survey monitors and maintains 13 seismometers around the Lassen volcanic center. The network was installed in 1976 with several additional instruments added in each decade since (US Geological Survey 2012c). The USGS Earthquake Hazards Program posts online information about seismic activity in California, including historic information, earthquake institutions and USGS branches in California, maps, notable earthquakes, recent earthquakes, tectonic information, and information on other topics (e.g., the San Andreas fault) (http://earthquake.usgs.gov/earthquakes/states/?region=California; accessed 22 March 2013).

In the chapter in Geologic Monitoring about earthquakes and seismic activity, Braile (2009) described the following methods and vital signs for understanding earthquakes and monitoring seismic activity: (1) monitoring earthquakes, (2) analysis and statistics of earthquake activity, (3) analysis of historical and prehistoric earthquake activity, (4) earthquake risk estimation, (5) geodetic monitoring and ground deformation, and (6) geomorphic and geologic indications of active tectonics.

Slope Movements
In the chapter in Geologic Monitoring about slope movements, Wieczorek and Snyder (2009) described five vital signs for understanding and monitoring slope movements: (1) types of landslide, (2) landslide causes and triggers, (3) geologic materials in landslides, (4) measurement of landslide movement, and (5) assessment of landslide hazards and risks. Also, Highland and Bobrowsky (2008) and the US Geological Survey Landslide Hazards Program (http://landslides.usgs.gov/, accessed 6 November 2013) provide detailed information regarding slope movements, monitoring, and mitigation options.

The following factors contribute to slope movement at the park: volcano edifices are typically covered with loose material; hot lava and interbedded fragmental deposits produce weak, fractured rock masses when they cool; and new lava is often deposited on steep surfaces. Furthermore, weathering and hydrothermal alteration weaken volcano edifices.

Clynne and Muffler (2010) mapped a variety of deposits related to slope movements within the park, including landslides (Hsh), debris avalanches (Hsj, PEs4, and PEs82), debris flows (Hwh and PEwb), and deposits of talus and colluvium (HPEC and PEC). Locations of past slope movements as delineated by these map units may be prone to future activity. These units are combined and depicted as unit HPEsm on the geologic map graphic (map 1, in pocket).

Slope movement on volcano edifices can be triggered by a variety of volcanic and non-volcanic events. The onset of volcanic unrest—which includes seismic activity, steam explosions, and intrusion of magma—greatly increases the likelihood of slope movements. Non-volcanic triggers include tectonic earthquakes, rainstorms, rapid snowmelt, and day-to-day erosional processes (Clynne et al. 2012).

Chaos Jumbles
Very large debris avalanches are particularly hazardous because of their possible high speeds. The avalanche deposits of Chaos Jumbles (Hsj; fig. 32) are a noteworthy example at the park (Eppler 1984; Eppler et al. 1987). Chaos Jumbles was the result of the partial collapse of dome C (Hrcc) of Chaos Crags. Covering an area of 7 km² (3 mi²), Chaos Jumbles consists of three debris-avalanche deposits that all formed during a single, short episode (Crandell and Mullineaux 1970; Clynne et al. 2002; Clynne and Muffler 2010). Trees drowned in Manzanita Lake, which formed as a result of the first debris avalanche (see “Lakes” section), yielded a radiocarbon age of 278 ± 28 radiocarbon years BP. These debris avalanches were the result of slope instability and probably not caused by a volcanic eruption (US Geological Survey 2011).

![Figure 32. Chaos Crags and Chaos Jumbles. Chaos Jumbles—a huge avalanche-debris deposit (map unit Hsj)—formed as a result of partial collapse of dome C of Chaos Crags (Hrcc). The collapse was catastrophic, and three debris avalanches were emplaced in quick succession. Material from the avalanche deposits created Chaos Jumbles, which is in the foreground of the photograph. National Park Service photograph, available at http://www.flickr.com/photos/61860846@N05/ (accessed 26 March 2013).](http://www.flickr.com/photos/61860846@N05/)
The first and largest avalanche traveled 6 km (4 mi) downslope and ascended 120 m (400 ft) up the side of Table Mountain. The other avalanches were successively smaller and shorter, but thicker. The distance traveled—over relatively gentle slopes and up the flanks of Table Mountain—suggests that this material moved as high-speed, air-cushioned avalanches (Crandell and Mufflineaux 1970; US Geological Survey 2011). Although the speed of these slides was not recorded, similar large slides elsewhere in the world attain speeds between 105 and 340 kph (65 and 210 mph). Such speeds make almost any kind of alarm system ineffective (Crandell and Mufflineaux 1970). For example, an avalanche traveling 160 kph (100 mph) would move from the base of the Chaos Crags to Summertown or the Loomis Museum in about 90 seconds (Crandell and Mufflineaux 1970).

Brokeoff Volcano
The hydrothermally altered core of Brokeoff Volcano—in particular Brokeoff Mountain and Pilot Pinnacle—is susceptible to slope movements. The remaining volcano rim and core are unstable and subject to small landslides and debris flows (Hsh), dozens of which have occurred in the drainages of Sulphur Creek (Clynne and Muffler 2010). These deposits are Holocene in age, and some are subject to reactivation during spring snowmelt. In addition, several major landslides of Holocene age (Hsh) originated from the high, interior parts of the eroded volcano. The largest of these broke away from a scarp above Forest Lake about 3,310 years ago and flowed nearly 7 km (4 mi) down Mill Creek (Clynne et al. 2002). This landslide deposit contains bedrock blocks as much as 100 m (330 ft) long. Another large landslide originated from the northwestern side of Pilot Pinnacle and flowed north into Blue Lake Canyon (Clynne and Muffler 2010).

Lassen Peak
Lassen Peak is also noted for slope movements, and Clynne and Muffler (2010) mapped two significant deposits: (1) avalanche debris from Lassen Peak spread across glacial ice (PEs), and (2) debris-flow deposits from the northeast side of Lassen Peak (Hw). These slope deposits were emplaced during the late Pleistocene and Holocene, respectively. In addition, USGS scientists from the California Volcano Observatory noted a recent rockfall event on the northeastern flank of Lassen Peak; 10,000 m³ (13,000 yds³) of debris slid 610 vertical meters (2,000 vertical feet) away from the edifice in 1994. Because the park’s seismic monitoring equipment did not record any seismic activity prior to this rockfall, failure most likely resulted from normal weathering that weakened the fractured volcanic rocks (US Geological Survey 2012b).

Geothermal Development
Development of geothermal resources can have significant adverse effects on hydrothermal features such as geysers, hot springs, fumaroles, mud pools, sinter terraces, and thermal ground (Barr 2001). Reduction or loss of thermal features is generally caused by declining reservoir pressure, which affects the amount of hydrothermal fluids reaching the surface. Activities such as geothermal drilling and withdrawal may result in reservoir pressure decline. If allowed to continue, the hydrothermal features may die and hydrothermal flow may reverse with cold groundwater flowing down into the reservoir (Barr 2001).

The Geothermal Steam Act of 1970 as amended in 1988 provides the basis for managing and protecting hydrothermal features within the National Park System (Barr 2001; see also Appendix B). Mitigating impacts of geothermal development on park resources involves not only the National Park Service, but also the US Geological Survey, which does research in parks; the Bureau of Land Management (US Department of the Interior), the leasing agency (regardless of federal land ownership); and the Forest Service (US Department of Agriculture), the principal surface management agency adjacent to many parks. The Department of Energy, which deals with energy issues, may also become involved (Barr 2001).

In the history of Lassen Volcanic National Park, two instances of geothermal exploration have had the potential to impact hydrothermal features. First, in 1962, the Shasta Forest No. 1 well was drilled on an inholding in the park (Patrick Muffler, US Geological Survey, scientist emeritus, written communication, 19 July 2013). The inholding included Terminal Geyser, which is one in a series of fumaroles that encompasses Devils Kitchen, Drakesbad, and Boiling Springs Lake. This exploratory well was drilled to a depth of 392 m (1,285 ft). At the time of drilling, no geothermal resource was evident, so drilling was stopped and the well was capped in a manner to allow future exploration at the site (Herbst 1979). Renewed development activity and deepening of the well, now referred to as the Walker O well (fig. 33), in 1978 by the Phillips Petroleum Company raised public and NPS concern over potential damage to nearby park thermal features (see Clynne et al. 1982). Concern prompted condemnation proceedings of the private land and mineral rights in the early 1980s. Ultimately, Lassen Volcanic National Park acquired the land and mineral rights at fair market value (Barr 2001). The National Park Service also acquired the liability for plugging the well and reclaiming the site.

The Walker O well, abandoned in 1979, remained unplugged and un-maintained until the late 1990s. Over the intervening years, the access road to the site began to erode and the drill pad began to slump. Park staff became increasingly concerned about the stability of the well and the potential for a blowout or emission of hazardous gas (Nagle 1985). The well was finally plugged in October 1997 (Mark Ziegenbein, Geologic Resources Division, geologist, email communications, March 2005). Staff from Yosemite and Lassen Volcanic national parks reclaimed the access road and well site in July 1999 (Louise Johnson, Lassen Volcanic National Park, chief of Resource Management, email communications, March 2005).
National Park Service is in the process of conducting an inventory and assessment of its abandoned mineral lands (AML). The inventory is completed except for an inventory and assessment of its abandoned mineral lands. The National Park Service obtained the land and mineral rights. The well was finally plugged in 1997. National Park Service photograph by John M. Mahoney, copied from Krahe and Catton (2010).

The second instance of potential impacts to hydrothermal features at the park occurred when the Forest Service proposed leasing of approximately 405,000 ha (1 million ac) for energy development south of the park. This geothermal area became known as the Lassen Known Geothermal Resource Area (KGRA).

A study conducted by the US Geological Survey found a hydrologic connection between the KGRA and the hydrothermal areas within the park (Muffler et al. 1982). These findings and the Geothermal Steam Act Amendments of 1988, which require determination of the impacts to geothermal features listed in the act before any leasing actions occur, resulted in the Forest Service putting a hold on potential leases (National Park Service 1994). Ultimately, the Bureau of Land Management established a buffer zone south of the park where no leasing of land for geothermal development occurs (Barr 2001; Clynne et al. 2003). Areas east and west of the park are not known to have a connection to the Lassen hydrothermal system, and these areas have not been closed to leasing for hydrothermal energy development (Barr 2001). However, the Bureau of Land Management, National Park Service, US Geological Survey, and the Forest Service have an interagency agreement in place that ensures that the National Park Service is consulted prior to any leasing, drilling, or other development in an area that may impact the park’s hydrothermal features (Covington 2004).

Abandoned Mineral Lands

The National Park Service is in the process of conducting an inventory and assessment of its abandoned mineral lands (AML). The inventory is completed except for National Park System units in California, where approximately 80% of the documented AML features are located (Burghardt et al. 2013). The AML database lists eight surface mines within Lassen Volcanic National Park. However, with the inventory of California parks still underway, much is unknown about these sites, and no assessment has occurred since 1999 (see Ziegenbein and Wagner 2000).

In 1999 the NPS Geologic Resources and Water Resources divisions responded to a technical assistance request to assess disturbed lands in the park. As part of this inventory, Ziegenbein and Wagner (2000) assessed and summarized the status of 22 disturbed sites, including eight gravel/borrow pits, two volcanic rock (dacite) quarries, and a pumice pit (a total of 11 sites with mining activity). At the time of this assessment, four of these 11 sites were “active,” primarily for storing sand and gravel, and disposing of concrete, asphalt, tree stumps, and slash. Ziegenbein and Wagner (2000) did not indicate that extraction of mineral resources was occurring at these sites. Three of the sites were noted as possibly containing hazardous or contaminated materials: Butte Lake pit, Crags pit, and Summertown pumice pit (Ziegenbein and Wagner 2000).

During the review process of this report, Patrick Muffler (US Geological Survey, scientist emeritus) noted that Sulphur Works apparently had been mined for sulfur at some point in the historic past (written communication, 30 June 2013). Indeed, Krahe and Catton (2010)—an administrative history of Lassen Volcanic National Park—reported that Dr. Mathias B. Supan of Red Bluff held a mining claim in Sulphur Works from which he extracted sulfur each summer for about 20 years, ca. 1865. Supan hauled the material by pack train to a furnace and retort on Paynes Creek. According to Krahe and Catton (2010, p. 12), Supan “used his knowledge of chemistry and medicine to experiment with various products that he dispensed in his drug store in Red Bluff. Cooking the sulphur in kilns, he made bricks and various kinds of earthenware products. Using the ferrous salts that formed a crust at the edge of the hot springs, he produced dyes and printers’ ink, which he sold in San Francisco.” In addition, Bumpass Hell also attracted prospectors. In the early 1880s, a surveyor of the General Land Office labeled “Bumper’s [sic.] Hell, Boiling Sulphur Spring” on a map and recorded a mining shaft 20 feet deep (abandoned)” (Krahe and Catton 2010, p. 12).

The Geologic Resources Division, which is administering the AML inventory, may be consulted for assistance and guidance regarding AML sites within the park, as well as about updates on the status of the inventory.

Disturbed Lands Restoration

Activities such as logging, ranching, and recreation created disturbed lands prior to park establishment in 1916. After establishment of the park, the National Park Service built roads and other infrastructure to facilitate administration and management. Many of these activities disturbed surface hydrology (Zeigenbein and Wagner 2000).
Dream Lake
An assessment of disturbed lands in Lassen Volcanic National Park by Ziegenbein and Wagner (2000), and the 2004 Geologic Resources Evaluation (now Geologic Resources Inventory) scoping summary, identified Dream Lake for restoration. An earthen dam—about 80 m (260 ft) long, 4 m (11 ft) high, and 1.2 m wide (4 ft) at its top—created Dream Lake—a small, 0.7-ha (1.7-ac) reservoir on the southern side of Drakesbad Meadow (fig. 34). The dam, constructed in 1932, impounded approximately 1.2 surface ha (3 surface ac) of water for recreational purposes at the Drakesbad Guest Ranch.

Ziegenbein and Wagner (2000) documented evidence of erosion and piping on the downstream side of the dam. These signs of deterioration showed that water had briefly flowed over the top of the dam at some point in the past. Erosion and piping in an earthen dam are precursors to dam failure, which could occur the next time stream inflow exceeded the spillway channel capacity (Ziegenbein and Wagner 2000). The dam had survived many seasons, but Ziegenbein and Wagner (2000) warned that failure could occur at any time within the next few years or up to 20 years, and a flood resulting from dam failure would have been hazardous to park visitors and employees, as well as infrastructure in the area. Sudden release at maximum reservoir volume and high discharge would have been relatively violent and could have released tons of sediment to the system, as well as scoured the abandoned streambed and relict riparian areas below the dam. Scouring and vegetative damage would have likely created bank instability and increased erosion for years thereafter (Ziegenbein and Wagner 2000).

In July 2011, park staff began to restore the area with guidance from the Warner Valley comprehensive site plan and final environmental impact statement (National Park Service 2010). The process of removing the dam and lake began with extraction of trees that had grown on the dam, followed by breaching the dam by hand (fig. 35). Resource staff monitored water quality for turbidity...
throughout the drainage and earth moving processes. Complete drainage of the lake took five weeks (Janet Coles, Guadalupe Mountains National Park, chief of Resource Management, formerly with Lassen Volcanic National Park, written communication, 9 April 2013).

After draining, spring-fed streams established channels in the former lake bed (fig. 36). Natural revegetation started almost immediately once organic material within the lake bed was exposed to the sun (Carpenter 2012; Janet Coles, written communication, 9 April 2013; fig. 37). Placement of plugs of native grasses and sedges in disturbed areas augmented natural revegetation (Carpenter 2012).

In mid-October 2011, park personnel removed the remainder of the dam with a small excavator and used the excavated material to help reestablish the original grade of the basin. Additional material was removed from the dam site in 2012 in order to match the new level of the water table (Janet Coles, written communication, 9 April 2013).

Drakesbad Meadow

In the early part of the 20th century, ranchers dug thousands of meters of ditches to drain a 33-ha (82-ac) wet meadow–fen complex in the Warner Valley in order to provide better pasture for domestic livestock (fig. 38). The process created Drakesbad Meadow and dewatered (and degraded) an uncommon montane fen ecosystem (Havens 2012). Agricultural uses of the meadow ceased in the 1950s, but later modifications include a service road that blocked sheet flow (overland flow) from hillside springs to the upper meadow (fig. 39). Additionally, an elevated causeway was built to facilitate horseback and hiker access from the Drakesbad Guest Ranch to surrounding trails. The causeway, which bisects the meadow from north to south, prevents surface water flow from west to east (Schook and Potter 2012).

Figure 38. Ditch through Drakesbad Meadow. Ranchers in Warner Valley created ditches to divert spring–fed water flow through the meadow and into adjacent Hot Springs Creek in order to make the meadow more favorable for livestock grazing. National Park Service photograph, available at http://flic.kr/p/dCtG6S (accessed 13 November 2013).

Figure 39. Map of Drakesbad Meadow. Historically, Drakesbad Meadow (location within the park indicated by a yellow star on inset map) was a montane fen, which had been degraded and dewatered with drainage ditches (fig. 38) and by a road that impacted surface and groundwater flow of springs north of the meadow. Snag Lake, Horseshoe Lake, and Juniper Lake are highlighted in blue on the inset map, north to south respectively. The site map (right) shows topography (red lines), wetland/groundwater discharge areas, and major groundwater flow paths (blue arrows). Aerial imagery from ESRI ArcGIS imagery base map, annotation by Trista Thornberry-Ehrlich (Colorado State University) with information from Patterson and Cooper (2007).
The alteration of water flow as a result of trenches, road, and causeway impacts hydrology and plant communities. Fens in the Lassen region will not persist under the drought-like conditions created by these water diversions (Patterson and Cooper 2007). However, well-designed restoration projects can be used to restore modified hydrologic regimes and peat-forming vegetation necessary for the persistence of fen wetlands. Patterson and Cooper (2007) implemented a pilot restoration project by installing a series of culverts placed under the road to allow water to flow toward Drakesbad Meadow. This effort provided partial restoration of the meadow’s hydrologic regime, but could be improved with the construction of a permeable road base (Cooper et al. 2012).

In fall 2012, park staff began formal restoration of Drakesbad Meadow (fig. 40; see Cooper et al. 2012). The deepest ditches were filled with a soil mixture specially prepared for the project and then revegetated in order to slow and spread surface water. Within just a few days after completion of the fill project, the water table began to rise (Havens 2012). Groundwater levels will continue to be monitored (Janet Coles, written communication, 9 April 2013). In addition, a “floating” boardwalk replaced the causeway and now permits flow of water across the area while still providing access for horseback riders and hikers (fig. 41).

Manzanita Lake Dam

In 1911 the Northern California Power Company constructed Manzanita Lake Dam to enlarge a natural lake and increase water supply to a downstream power plant. Manzanita Lake presently contains about 640,000 m3 (520 acre-feet) of water. The dam is believed to be homogeneous fill, consisting of silty sand and gravel (Danley 2004).

In 1931, ownership of the dam and reservoir was transferred to the federal government and incorporated into Lassen Volcanic National Park. The dam is not historically significant, but the lake is a popular visitor attraction, and the dam maintains lake levels (fig. 42). Also, the dam (and higher water levels) creates wetland habitat for native trout and bald eagles (National Park Service 1994).

As currently configured, the dam’s spillway cannot handle more than a 5- to 10- year flood without overtopping. In addition to the potentially inadequate spillway, large-diameter conifer and deciduous trees are growing on the dam. Seeping and piping around rotting tree root cavities, as well as rodent burrows or unconsolidated dam fill, may create unstable conditions. During an annual inspection of the dam, NPS staff members monitor tree health and look for evidence of piping and seepage (Harry 2008).

Following a 1996 environmental assessment that identified alternatives and addressed public comments, park managers decided to maintain the dam and develop an appropriate emergency action plan in the event of imminent dam failure. The plan calls for inspecting the dam whenever rainfall exceeds 5 cm (2 in) in a 24-hour period and after significant storms.

Due to the age and unknown construction and materials of the dam, the National Park Service considers any...
earthquake greater than magnitude (M) = 5.4 occurring in the vicinity of the Manzanita Lake as a threat to the dam, and will initiate an emergency inspection if such an event occurs (Harry 2008). Notably, seismic activity may coincide with a volcanic eruption, and due to the proximity of vents to Manzanita Lake, ash fall, debris flows, and lava flows could hinder access to the dam for inspection.

Should the dam fail, the flood would significantly impact California Highway 44, which is 6.8 km (4.2 mi) downstream of the dam (Trieste 1995). In addition, dam failure would likely wash out Forest Service Road 17, which is 1.6 km (1 mi) below the dam. If failure appears imminent, the emergency plan will be put into action and local emergency management and transportation personnel will be notified immediately.

Figure 42. Manzanita Lake. In 1911 the Northern California Power Company constructed a dam to enlarge Manzanita Lake, a popular visitor attraction. The dam maintains lake levels and creates wetland habitat. National Park Service photograph, available at http://flic.kr/p/eY87Ea (accessed 13 November 2013).
Geologic History

This section describes the rocks and unconsolidated deposits that appear on the digital geologic map of Lassen Volcanic National Park, the environment in which those units were deposited, and the timing of geologic events that formed the present landscape.

Volcanism in the Lassen area is an outcome of the Cascadia subduction zone offshore of northern California (fig. 2). For the past 12 million years, the axis of the Lassen segment of volcanism has migrated westward from the California-Nevada border to its present position, while the width of the volcanic arc has narrowed (Guffanti et al. 1990) (fig. 43). Twelve million years ago, the southern limit of active volcanism was approximately at the latitude of Lake Tahoe, 180 km (110 mi) southeast of the park. By 3 million years ago, the southern limit of active volcanism had moved toward the Yana volcanic center, 30 km (20 mi) south of Lassen Peak near Lake Almanor. Today, active volcanism corresponds to the southern boundary of the park (Clynne and Muffler 2010).

Regional Volcanism

Regional volcanoes, including cinder cones and shield volcanoes within and surrounding the park, have built a broad platform of volcanic rocks that are part of the Cascade arc. Volcanic centers, such as the Lassen volcanic center, punctuate this volcanic platform. Clynne and Muffler (2010) mapped regional volcanic rocks north and west (shown as unit PE-Rnw on map 1, in pocket) and south and east (PE-Rse) of the Lassen volcanic center, as well as in the Caribou volcanic field (PE-Re), which is centered 20–30 km (12–19 mi) east of the Lassen volcanic center. Older volcanic rocks (PEPL-Ro), deposited more than 650,000 years ago, surround the Caribou volcanic field to the north, east, and south, and form a base on which the volcanic field was built.

Regional Volcanic Rocks North and West of the Lassen Volcanic Center, 1.8 million to 11,700 years ago

Clynne and Muffler (2010) separated the regional volcanic rocks north and west of the Lassen volcanic center by age; these rocks are middle Pleistocene and older (1.8 million–125,000 years ago) and late Pleistocene (125,000–11,700 years ago). None of these late Pleistocene volcanic rocks occur within the park. The 24,000-year-old Hat Creek basalt (PEbhc) is the closest and youngest of these rocks. The southernmost edge of the flow is north of the park (fig. 10).

Cinders of basaltic andesite of Little Bunchgrass Meadow (PEmbgci) are part of the “middle Pleistocene and older” grouping and were emplaced 143,000 ± 6,000 years ago. This unit is the youngest of these regional volcanic rocks within the park. Andesite of section 22 (PEa22) is the oldest unit of these regional volcanic rocks within the park, and was emplaced during the early Pleistocene Epoch, approximately 1 million–900,000 years ago (Clynne and Muffler 2010). The shield volcanoes of Prospect Peak, which is composed of andesite and basaltic andesite of Prospect Peak (PEap), and Table Mountain, which is composed of andesite of Table Mountain (PEat), are part of this grouping of regional volcanic rocks.

Regional Volcanic Rocks South and East of the Lassen Volcanic Center, 1.7 million to 65,000 years ago

Regional volcanic rocks south and east of the Lassen volcanic center are bracketed in age by the basaltic andesites of South Fork Battle Creek (PEmbc; approximately 1.7 million years ago) and tholeiitic basalts of Buzzard Springs (PEbbs; approximately 65,000 years ago). Sifford Mountain (PEbsm, PEbsmci), Mount Harkness (PEamh, PEamhci), and Huckleberry Lake (PEmlh, PEmlhci) are features of this grouping of rocks within the park. Sifford Mountain is the youngest dated regional volcano from this grouping of regional volcanic rocks. This 170,000-year-old peak is the southernmost volcano in the park. The oldest unit within the park from this grouping of rocks is the middle-Pleistocene basaltic andesite of Huckleberry Lake (PEmlh, PEmlhci).

Regional Volcanic Rocks of the Caribou Volcanic Field, 450,000 years ago to the present

Volcanic activity in the Caribou volcanic field began about 450,000 years ago and is still active, and thus contemporaneous with the Lassen volcanic center. Regional volcanic rocks of the Caribou volcanic field include the Red Cinder chain in the eastern part of the park and Caribou Wilderness. This chain of vents takes its name from Red Cinder—a cinder cone composed of basaltic andesite (PEemr). The summit of Red Cinder—2,552 m (8,374 ft) in elevation—is just east of the park; the western flank of Red Cinder and much of the lava flow associated with the cone is within the park boundary. Red Cinder is the dominant volcano in this chain. Nearby Red Cinder Cone, within the park, is composed of two vents that issued basaltic andesite (PEmrc) from the more northern vent and basalt (PEbrc) from the southern vent. The southern vent area of Red Cinder Cone—2,441 m (8,008 ft) in elevation—is the highest point in the eastern part of the park.

Volcanic Centers

Five volcanic centers occur in the park and vicinity: Latour, Yana, Dittmar, Maidu, and Lassen (table 4). Typically, a single volcanic center is active and becomes extinct before, or as, the next center begins. However, activity within the Maidu and Dittmar volcanic centers coincided (table 4).
Figure 43. Map of regional geologic setting of Lassen Volcanic National Park. The Lassen volcanic center (Ln) is the currently active volcanic center in the Lassen area. Bold purple letters indicate the positions of the volcanic centers in the Lassen area: Y = Yana, M = Maidu, D = Dittmar, Ln = Lassen, and Lt = Latour. C = Caribou volcanic field. The Snow Mountain volcanic center (S) is north of the map area and is not discussed in this report. Though not labeled specifically, regional volcanoes are part of the light-yellow background area, which covers volcanic rocks of late Pliocene to Holocene age. Green background indicates Paleozoic to Mesozoic metamorphic-plutonic basement of the Sierra Nevada and Klamath provinces. Short, dashed red lines show the position of the axis of the Cascade volcanic arc at the times indicated; Ma = millions of years ago. Thick, dashed black lines indicate the southern terminus of arc volcanism at the times indicated. Thin violet lines show the location of faults. Orange dots indicate the locations of volcanic vents younger than about 7 million years; older vents are not shown. The black outline indicates the area covered by the GRI digital geologic data. The red outline indicates the boundary of Lassen Volcanic National Park and the area covered by the geologic map graphic (map 1, in pocket). Graphic from Clynne and Muffler (2010).

Table 4. Volcanic centers

<table>
<thead>
<tr>
<th>Volcanic Center</th>
<th>Age (years ago)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lassen</td>
<td>825,000–0</td>
</tr>
<tr>
<td>Maidu</td>
<td>2.4–1.2 million</td>
</tr>
<tr>
<td>Dittmar</td>
<td>2.4–1.4 million</td>
</tr>
<tr>
<td>Yana</td>
<td>3.4–2.4 million</td>
</tr>
<tr>
<td>Latour</td>
<td>>3 million</td>
</tr>
</tbody>
</table>

Source: Clynne and Muffler (2010).

Latour, active more than 3 million years ago
The Latour volcanic center is northwest of the park (fig. 43). It consisted of an andesite volcano and flanking silicic rocks similar to the other volcanic centers in the Lassen area. Latour Butte is a remnant of the larger volcanic center. Scientists know very little about the history of this particular volcanic center (Clynne and Muffler 2010).

Yana, active from 3.4 to 2.4 million years ago
The Yana volcanic center is south of the park, approximately 20 km (12 mi) southwest of Chester, California (figs. 43 and 44). Rocks of the Yana volcanic center dominate the area southwest of Lake Almanor (fig. 43). Butt Mountain, Ruffa Ridge, and Humboldt Peak are the major remnants of a deeply eroded andesitic composite volcano that was 15–20 km (24–32 mi) in diameter (fig. 44).

Dittmar, active from 2.4 to 1.4 million years ago
The Dittmar volcanic center (shown as unit PEPL-D on map 1, in pocket) is in the southeastern part of the park and centered in the upper Warner Creek valley just north of Kelly Mountain (fig. 43). The center has a diameter of about 20 km (12 mi). Saddle Mountain, Pilot Mountain, Kelly Mountain, and Mount Hoffman are the largest remnants of a deeply eroded andesitic composite volcano that once dominated this volcanic center.

Maidu, active from 2.4 to 1.2 million years ago
The Maidu volcanic center is southwest of the park in the area around Battle Creek Meadows near the town of...
Lavone Geologic Resources Inventory Report 37

Figure 44. Volcanic centers. The southern flank of Brokeoff Mountain is covered mostly by lava flows of the regional basaltic andesite of Huckleberry Lake (map unit PEmhl). Volcanic rocks of the Maidu and Yana volcanic centers are in the distance. The forested area at the left bottom of the photograph is floored by the 3,310 ± 55 year BP landslide (Qsh) that originated at the large scarp below Brokeoff Mountain and flowed for at least 7 km (4 mi) down Mill Canyon. The dacites of Morgan Mountain, Christie Hill, and Plantation Gulch, prominent in the upper center of the photograph, are partially buried by lavas from Brokeoff Volcano. These three domes are part of the Rockland caldera complex and at an estimated 825,000–800,000 years old are probably the oldest preserved units of the Lassen volcanic center. The dissected area between Childs Meadows and Battle Creek Meadows forms the eastern flank of the Maidu volcanic center and is mostly beyond the area mapped by Clynne and Muffler (2010). The Mill Creek Plateau is one of several large and thick rhyolite lava flows that flank the Maidu volcanic center. The andesites of Doe Mountain and Wild Cattle Mountain are part of the Dittmar volcanic center. The Yana volcanic center and Butt Mountain form most of the skyline well beyond the map area. Deer Creek is between the Maidu and Yana volcanic centers. The northern Sierra Nevada mountain range is partially visible beyond the Yana volcanic center. US Geological Survey photograph by Michael A. Clynne.

Mineral, California (figs. 43 and 44). Lava flows (PLam) from the Maidu volcanic center underlie the park headquarters. The center was at least 25 km (15 mi) across. Hampton Butte and Turner Mountain are the largest remnants of the hydrothermally altered and deeply eroded andesitic composite volcano. Outcrops of the remnant volcano are well exposed in the canyon walls of Mill Creek. Early work by scientists suggested that the central depression (Battle Creek Meadows) was a caldera, but no evidence has been found to support this hypothesis (Wood and Kienle 1990).

Lassen, active from 825,000 years ago to the present
The Lassen volcanic center is the presently active volcanic center in the Lassen area (fig. 43). Clynne and Muffler (2010) designated the major stratigraphic divisions / eruptive stages of the Lassen volcanic center as the Rockland caldera complex, Brokeoff Volcano, and the Lassen domefield. Each stage is distinctive from the others, but all are linked by a common magmatic system (Clynne and Muffler 2010). Together they represent a continuum of volcanic activity over the past 825,000 years.

Rockland Caldera Complex, 825,000 to 609,000 years ago
The life of the Rockland caldera complex (shown as unit PE-Lr on map 1, in pocket) ended with the eruption of Rockland tephra (PEpr), approximately 609,000 years ago, which slightly predates the Brokeoff Volcano. Wind widely distributed this ash-fall deposit, but no Rockland tephra occurs within the park. Tephra was deposited in northern and central California, off the northern California coast, and northeast into Idaho (Sarna-Wojcicki et al. 1985; Clynne and Muffler 2010). The estimated volume of the Rockland tephra is 50 km³ (12 mi³) dense rock equivalent (Sarna-Wojcicki et al. 1985), which is similar to the amount produced during the climactic eruption of Mount Mazama at Crater Lake National Park (Bacon 1983; see the GRI report by KellerLynn 2013 for a summary). Although not readily apparent on the landscape today, an eruption of this magnitude must have formed a collapse caldera, which volcanic materials of Brokeoff and younger volcanoes likely filled (Clynne and Muffler 2010). The Rockland caldera complex consists of a group of mostly dacite and rhyolite domes and their associated flows, including the dacites of Panther Creek (PEdp), Flatiron Ridge (PEdfr), and Bench Lake (PEdb1); and the rhyolite of Raker Peak...
Brokeoff Volcano, 590,000 to 385,000 years ago

Soon after eruption of the Rockland tephra, the Rockland caldera began to fill as renewed activity formed Brokeoff Volcano—a large composite volcano with a volume of 80 km3 (19 mi3) (Clynne and Muffler 2010). Before hydrothermal alteration weakened and glacial advances eroded the volcano edifice, this mountain dominated what is now the southwestern part of Lassen Volcanic National Park. The summit rose to an elevation of 3,300 m (11,000 ft) (Kane 1980).

Clynne and Muffler (2010) divided the stratigraphy of Brokeoff Volcano into two sequences: Mill Canyon (shown as unit PE-Lvm on map 1, in pocket) and Diller (unit PE-Lvd). The Mill Canyon sequence consists of the andesite of Mill Canyon (PEamc) and the dacite of Twin Meadows (PEdt). These lava flows erupted from a central vent between about 590,000 and 470,000 years ago; the vents, however, are not preserved (Clynne and Muffler 2010).

The Diller sequence consists primarily of six voluminous, andesitic lava flows that erupted from vents on the flanks of Brokeoff volcano between 470,000 and 385,000 years ago. These units include the andesites of Rice Creek (PEar), Bluff Falls quarry (PEabf), Glassburner Meadows (PEag), Manzanita Creek (PEamz), Digger Creek (PEadc), and Mount Diller (PEamd).

Lassen Domefield, 300,000 years ago to the present

The Lassen volcanic center was “quiet” from about 385,000 to 315,000 years ago. Then, the character and focus of volcanism changed dramatically—from the andesitic composite cone of Brokeoff Volcano to the Lassen domefield, which consists of a core of dacite domes surrounded by an arc of andesite and basaltic andesite dome flows. The domefield, which is focused in the northwestern corner of the park, became active about 300,000 years ago.

Dacite domes of the Lassen domefield erupted along the northern flank of Brokeoff Volcano and are divided on the basis of age into two sequences—the Bumpass (shown as unit HPE-Lb on map 1, in pocket; approximately 300,000–190,000 years ago) and Eagle Peak (unit HPE-Le; approximately the last 70,000 years). A notable feature of the Bumpass sequence is the dacite that makes up Bumpass Mountain (PEdb). The 27,000-year-old dacite of Lassen Peak (PEdl) and the 1,050-year-old rhyodacites of Chaos Crags (Hrca–Hrcf) are part of the Eagle Peak sequence.

The andesite and basaltic andesite flows that form an arc around the dacite domes erupted in two groups—the older Twin Lakes sequence and the younger Twin Lakes sequence. The older Twin Lakes sequence (unit HPE-Lto on map 1, in pocket; 310,000–240,000 years ago) is contemporaneous with the Bumpass sequence (of dacite domes). The andesite of Raker Peak (PEarp) is part of the older Twin Lakes sequence. These andesite lava flows are much younger than the underlying rhyolite of Raker Peak (see “Rockland Caldera Complex” section). The andesite formed a lava cone with agglutinate scoria at the vent.

The younger Twin Lakes sequence (unit HPE-Lty; approximately the past 90,000 years) is contemporaneous with the Eagle Peak sequence (of dacite domes). Cinder Cone and the summit eruptions of Lassen Peak are part of the younger Twin Lakes sequence (see “Recent Volcanic Activity” section).

The Lassen domefield was apparently “quiet” for 100,000 years between 190,000 and 90,000 years ago (Clynne and Muffler 2010).

Glaciations

More than 130,000 to 8,000 years ago

Glaciers covered the park’s landscape while Lassen Peak was forming 27,000 years ago. Glacial deposits in the Lost, Hat, and Manzanita Creek drainages, which are intercalated with volcanic rocks of the Eagle Peak sequence, are evidence of glacier-volcano interactions. The Eagle Peak sequence includes the most prominent young volcanic features in the park, such as Lassen Peak and Chaos Crags. Most of the rock units of the Eagle Peak sequence are glaciated, for example, the rhyodacites of Eagle Peak (map units PEpe and PEre), section 27 (PEr27), Krummholz (PEkr), Sunflower Flat (PEsf and PErsf), and Kings Creek (PEpk and PEpk).

Five episodes of Pleistocene glaciations and one Holocene glacial advance are recognized in the Lassen area. These advances are represented by the tills of Badger Mountain (PEtb), Raker Peak (PEtr), and Anklin Meadows (PEta); the post-maximum till of Raker Peak (PEtrl); and late till of Anklin Meadows (HPEtal). In addition, an early Holocene advance—represented by till or protalus-rampart debris (Hth)—occurred at the base of Lassen Peak. Outside the Hat, Lost, and Manzanita Creek drainages, Clynne and Muffler (2010) grouped glacial deposits into two units—till, older glaciation (PEto) and till, younger glaciations (PEty). Units PEtr, PEtrl, PEeta, PEtal, and Hth, mapped in the Lost, Hat, and Manzanita Creek drainages, are equivalent in age to the younger till unit (PEty). The younger part of PEto is equivalent in age to till of Badger Mountain (PEtb) (table 5).

The estimated age of the older till unit (PEto) ranges between about 130,000 and 60,000 years ago (Clynne and Muffler 2010). Till from the younger glaciations (PEty) is between 35,000 and 8,000 years old. The boundary between these two units corresponds to the boundary between middle and early Wisconsinan glacial stages as defined by Colman and Pierce (1992), or approximately the Tioga and Tahoe glacial advances as used by Kane (1982) (table 5).

Outwash gravel is associated with these till deposits. Clynne and Muffler (2010) mapped five units/ages of outwash deposits. From youngest to oldest these are (1) outwash gravel of older glaciations (PEoo), which corresponds to older tills (PEto); (2) Raker Peak outwash (PEor), which corresponds to Raker Peak till (PEtr); (3)
Table 5. Glacial/volcanic chronology of the Lassen area

<table>
<thead>
<tr>
<th>Estimated Age (years ago)</th>
<th>Map Units from Clynne and Muffler (2010)</th>
<th>Map Units from Christiansen et al. (2002)</th>
<th>Correlation to Sierra Nevada Glacial Chronology Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,000–8,000</td>
<td>Till, younger glaciations (PEty)</td>
<td>Till or protalus-rampart deposit (Hth)</td>
<td>Late Tioga till</td>
</tr>
<tr>
<td>12,000</td>
<td></td>
<td>Late till of Anklin Meadows (HPetal)</td>
<td></td>
</tr>
<tr>
<td>25,000–17,000</td>
<td>Till of Anklin Meadows (PEta)</td>
<td></td>
<td>Late Tioga till</td>
</tr>
<tr>
<td>27,000</td>
<td>Dacite of Lassen Peak (PEcdl, PEpfl)</td>
<td></td>
<td>Middle Tioga till</td>
</tr>
<tr>
<td>~27,000</td>
<td>Till, younger glaciations (PEty)</td>
<td>Post-maximum till of Raker Peak, consisting of avalanche debris (PEtI)</td>
<td>Early Tioga till</td>
</tr>
<tr>
<td>35,000–27,000</td>
<td>Rhyodacite of Kings Creek (PEpk, PErk)</td>
<td>Till of Raker Peak (PEtr)</td>
<td></td>
</tr>
<tr>
<td>35,000</td>
<td>Rhyodacite of Sunflower Flat (PEpsf, PErst)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43,000</td>
<td>Rhyodacite of Krummholz (PEnk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60,000–50,000</td>
<td>Rhyodacite of section 27 (PEr27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boundary between middle and early Wisconsinan glacial stages</td>
<td></td>
</tr>
<tr>
<td>70,000–60,000</td>
<td>Till, older glaciations (PETo)</td>
<td>Till of Badger Mountain (PETb)</td>
<td>Tahoe till</td>
</tr>
<tr>
<td>65,000</td>
<td>Rhyodacite of Eagle Peak (PEpe, PEre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70,000–60,000</td>
<td>Till, older glaciations (PETo)</td>
<td>Till of Badger Mountain (PETb)</td>
<td>Tahoe till</td>
</tr>
<tr>
<td>>130,000</td>
<td></td>
<td></td>
<td>Pre-Tahoe till</td>
</tr>
</tbody>
</table>

Sources: Crandell (1972), Kane (1982), Christiansen et al. (2002), and Clynne and Muffler (2010).

Recent Volcanic Activity

The Lassen volcanic center is still active, and three eruptions have occurred during the Holocene Epoch (fig. 3). These are Chaos Crags, Cinder Cone, and the Lassen Peak.

Chaos Crags, erupted 1,050 years ago

Located northwest of Lassen Peak, Chaos Crags is the youngest unit of the Eagle Peak sequence and consists of six rhyodacitic lava domes and associated pyroclastic deposits (Christiansen et al. 2002). These deposits illustrate a typical silicic eruption in the Lassen volcanic center. Initial activity included formation of a tephra cone, emplacement of two pyroclastic flows, and growth of a dome that plugged the vent. After a brief hiatus in activity, a violent eruption destroyed the first dome (dome A, Hrca) and emplaced a pyroclastic flow and tephra. This violent eruption was followed by the growth of five domes—domes B, C, D, E, and F (Hrbc–Hrcf; fig. 45). Hot, dome-collapse debris avalanches affected domes D and E (US Geological Survey 2011). Later (278 ± 28 years BP), dome C (Hrcc) partially collapsed as a series of three debris avalanches, which emplaced Chaos Jumbles (Hsj) (Eppler 1984; Eppler et al. 1987; Clynne and Muffler 2010).

Cinder Cone, erupted in 1666

Cinder Cone is the youngest cinder cone in Lassen Volcanic National Park and the second youngest eruption in the Twin Lakes sequence. The story of Cinder Cone highlights many types of volcanic features in the park. It also incorporates the creation of one lake and the partial infilling of another. The story includes the formation of two cinder cones, five lava flows, and a blanket of tephra, all during a single eruptive sequence in 1666 (Sheppard et al. 2009). Total volume of erupted material was approximately 0.4 km³ (0.1 mi³), with 88% as lava and 12% as tephra (Clynne and Bleick 2011).

Three of the five flows—Old Bench lava flow (Hmo) and Painted Dunes flows 1 and 2 (Hmp1 and Hmp2)—erupted from a cone that is now located on the southern side of the volcano known as “Cinder Cone.” This other cone shares the same composition as the flows erupted from it (i.e., units Hmo, Hmp1, and Hmp2). Eruption of the Painted Dunes lava flows destroyed most of this cone, and much of what remained of the cone was buried during the construction of Cinder Cone and eruption of Fantastic Lava Beds flows (Hmf1 and Hmf2). Blocks of red cemented scoria within the Painted Dunes lava flows are pieces of this other cone that were transported by flowing lava (Clynne et al. 2000a). Several meters of weakly oxidized ash from later eruptions almost completely cover the cone. Remnants of the cone are recognized by their irregular shape and Painted Dunes composition (Clynne and Muffler 2010). During the eruption of this cinder cone, the Painted Dunes flows blocked drainage from the central part of the park and created Snag Lake (fig. 46).

Construction of Cinder Cone (Hmfci) and eruption of the Fantastic Lava Beds flows 1 and 2 (Hmf1 and Hmf2) followed destruction of the previous cone (Hmpci).
Figure 45. Chaos Crags. Chaos Crags consists of six rhyodacite lava domes and associated pyroclastic deposits. Dome A is visible in the crater of the tuff cone (light-colored area at the right of the photograph). The large sloping landform from upper right to lower left is dome B. The high craggy dome in the center of the photograph is dome D, and dome E is visible on the skyline behind it. Domes C and F are hidden behind domes D and E, respectively. US Geological Survey photograph by Michael A. Clynne.

Figure 46. Snag and Butte lakes. During the eruption sequence of Cinder Cone, Snag Lake (at upper left of photograph) formed as the Painted Dunes lava flows (map units Hmp1 and Hmp2) dammed drainages coming from the center of Lassen Volcanic National Park. Butte Lake (bottom left, foreground) was partially filled by the Fantastic Lava Beds flows (Hmf1 and Hmf2). US Geological Survey photograph from Clynne et al. (2012).
Two days later (22 May 1915), the eruptive sequence culminated with a vertically directed column of pumice and gas, which blasted through the 19–20 May lava flow (Hp9), created a new crater, and rose to 9,100 m (30,000 ft) into the air. Partial collapse of the column initiated a pyroclastic flow (Hpw2) on the northeastern slope of Lassen Peak, which rapidly melted snow in its path. By the time this pyroclastic flow reached the lower Devastated Area, it had transformed into a fluid debris flow (also Hpw2) that traveled down Lost Creek to beyond Twin Bridges, where it released water and caused a second flood along Hat Creek north of Old Station. Continued fallout from the eruption cloud emplaced a pumice deposit (Hp2) on the upper slopes of Lassen Peak. Pumice that fell on high-elevation, snow-covered areas generated six viscous debris flows (Hw2) that were emplaced on the western, northern, and eastern flanks of Lassen Peak. One of these debris flows (Hw2) dammed streamflow and created Hat Lake. The 19 May lava flow (Hp9) on the northeastern flank of Lassen Peak was removed during this eruption and incorporated into the 22 May 1915 deposits (Hpw2, Hp2, and Hw2). The still-hot lava at the summit partially slumped back into the 22 May 1915 crater.

For several subsequent years, spring snowmelt percolating into Lassen Peak encountered hot rock that triggered steam explosions. Particularly vigorous

Lassen Peak, erupted in 1914–1917

The 1914–1917 eruptions of Lassen Peak comprise the most recent volcanic activity in the Twin Lakes sequence (fig. 48). Magmatic activity affected primarily the northeastern flank and slope of Lassen Peak, now called the “Devastated Area,” and the valleys of Lost Creek and Hat Creek as far as about 50 km (30 mi) downstream (fig. 11).

Lassen Peak began erupting on 30 May 1914, with a phreatic (steam) explosion at the summit. By mid-May 1915, more than 180 steam explosions had blasted out and created a 300-m- (1,000-ft-) wide crater.

In the week before 19 May 1915, a small dacite lava dome (Hd4) began to fill the crater. Late in the evening of 19 May 1915, the growing dacite dome was disrupted by a large explosion. Hot blocks of lava (Hp9) were thrown onto the snow-covered upper flanks and summit of Lassen Peak, which initiated an avalanche of snow and rock that swept down the steep northeastern face, over the low ridge northeast of Emigrant Pass, and into Hat Creek (Hsw9). A debris flow (also Hsw9), consisting of melted snow and underlying loose rock, came soon after. The debris flow followed the same path as the avalanche until it encountered the low ridge northeast of Emigrant Pass, which deflected it west into Lost Creek. The debris flow continued down Lost Creek for another 7 km (4 mi) before coming to rest in a large, flat area 3 km (2 mi) west of Twin Bridges.

During the early morning hours of 20 May 1915, the debris-flow and avalanche deposits (Hsw9) released large volumes of water that caused a flood along Hat Creek north of Old Station. These flood deposits (Hf9) occur beyond the boundaries of the park. Also in the late evening and early morning of 19–20 May 1915, dacite lava (Hd9), which was more fluid than that erupted during the previous week, welled up into and filled the newly excavated crater. This lava flowed over two low areas on the rim and emplaced two short flows on the steep western and northeastern flanks of Lassen Peak.

Though chemically distinct, the lava flows and cinders at Cinder Cone are similar in appearance. They are dark, fine-grained rocks, containing a few visible crystals of the minerals olivine, plagioclase, and quartz. Both the Painted Dunes and Fantastic Lava Beds flows have rough, block-covered surfaces with considerable relief (fig. 47).

The informally named “Painted Dunes ash deposit” makes up the tephra component of the Cinder Cone eruption sequence. The colorfully oxidized ash covers the Old Bench and Painted Dunes 1 flows (figs. 12 and 13).

Figure 47. Fantastic Lava Beds flow 2. The rough, minimally weathered surface of the Fantastic Lava Beds flow misled early scientists and visitors into believing that the eruption had occurred relatively recently. It was reputed to have been witnessed in 1851 (Clynne et al. 2000a). However, the eruption is now known to have occurred in 1666 as a single, continuous event that probably spanned no more than a few months. Fantastic Lava Beds flow 2 was the last flow erupted at Cinder Cone. US Geological Survey photograph from Clynne et al. (2000a), available at http://pubs.usgs.gov/fs/2000/fs023-00/fs023-00.pdf (accessed 3 April 2013).
phreatic explosions in May 1917 blasted out the western of the two craters at the summit of Lassen Peak and emplaced phreatic deposits (Hp17).

Present-Day (Non-Volcanic) Geologic Activity
At present, hydrothermal features such as those at Bumpass Hell and Devils Kitchen attest to an active geothermal heat source underlying the Lassen volcanic center, as well as to the potential for future volcanic activity. The focus of hydrothermal activity shifts with time as underground plumbing changes and pathways of fluid are sealed by mineral deposition or fractured by earthquakes (Clynne et al. 2003). Hydrothermal alteration of volcanic rocks makes them susceptible to erosion and slope movements. The ongoing hydrothermal activity at the park brings the geologic story to the present day, as park managers address infrastructure and public-safety challenges caused by these dynamic, shifting conditions.

Figure 48. 1915 crater at summit of Lassen Peak. The summit of Lassen Peak consists of the 27,000-year-old dacite of Lassen Peak (map unit PEdl). Deposits of the 19–20 May 1915 eruption partly fill the crater formed at the summit between 30 May 1914 and 14 May 1915. The 19 May 1915 pyroclastic deposit was formed by an explosion that reopened the summit crater through the dacite dome of 14–19 May 1915. The dacite lava flow of 19–20 May 1915 (unit Hd9) fills this crater and is mantled by the pumice-fall deposit of 22 May 1915 (Hp2). US Geological Survey photograph by Patrick Muffler.
Geologic Map Data

This section summarizes the geologic map data for Lassen Volcanic National Park. The geologic map graphic (map 1, in pocket) displays the map data draped over imagery of the park and surrounding area. The Map Unit Properties Table (in pocket) summarizes this report’s content for each geologic map unit. Complete GIS data are included on the accompanying CD and are also available at the GRI publications website: http://go.nps.gov/gripubs.

Geologic Maps

Geologic maps facilitate an understanding of an area’s geologic framework and the evolution of its present landscape. Using designated colors and symbols, these maps show the location, extent, and age of rocks and unconsolidated deposits. Geologic maps can be divided into two primary types: surficial and bedrock. Surficial geologic maps typically encompass deposits that are unconsolidated and formed during the past 2.6 million years (the Quaternary Period). Surficial map units are differentiated by geologic process or depositional environment. Bedrock geologic maps encompass older, typically more consolidated sedimentary, metamorphic, and/or igneous rocks. Bedrock map units are differentiated based on age and/or rock type. Both bedrock and surficial geologic map data are provided in the GRI data set for Lassen Volcanic National Park.

Geologic maps also commonly depict geomorphic features, structural interpretations (such as faults and folds), and locations of past geologic hazards that may be prone to future activity. Anthropogenic features such as mines or quarries, as well as observation or collection localities, may be indicated on geologic maps.

Source Maps

The GRI team converts digital and/or paper geologic source maps to GIS formats that conform to the GRI GIS data model. The GRI digital geologic map product also includes essential elements of the source maps such as a correlation chart of map units, unit descriptions, map legend, map notes, references, and figures. The GRI team used the following sources to produce the digital geologic data for the Lassen Volcanic National Park GRI data set:

GRI digital geologic data are included on the attached CD and are available through the NPS Integrated Resource Management Applications (IRMA) portal (https://irma.nps.gov/App/Reference/Search?SearchType=Q). Enter “GRI” as the search text and select a park. The following components and geology data layers are part of the data set:

- Data in ESRI geodatabase and shapefile GIS formats
- Layer files with feature symbology (see table 6)
- Federal Geographic Data Committee (FGDC)–compliant metadata
- An ancillary map information document (PDF) that contains other information captured from source maps such as map unit descriptions, geologic unit correlation tables, legends, cross sections, and graphics
- An ESRI map document (.mxd) that displays the digital geologic data

Clynne and Muffler (2010; scale 1:50,000) provided information for the “Geologic Features and Processes,” “Geologic Issues,” and “Geologic History” sections of this report. Muffler et al. (2010; scale 1:24,000) includes the six quadrangles (i.e., Lassen Peak, Mount Harkness, Manzanita Lake, Prospect Peak, Reading Peak, and West Prospect Peak) that cover the area of the park (fig. 49). These data accompany Clynne and Muffler (2010) and are provided on the attached CD. These data are also available at http://pubs.usgs.gov/sim/2899/database.html (accessed 9 August 2013).

Geologic GIS Data

The GRI team implements a GIS data model that standardizes map deliverables. The data model is included on the enclosed CD and is also available at http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm. This data model dictates GIS data structure, including layer architecture, feature attribution, and relationships within ESRI ArcGIS software. The GRI team digitized the data for Lassen Volcanic National Park using data model version 2.1.
Table 6. Geology data layers in the Lassen Volcanic National Park GIS data

<table>
<thead>
<tr>
<th>Data Layer</th>
<th>Data Layer Code</th>
<th>On Geologic Map Graphic?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologic sample locations</td>
<td>lavogsl</td>
<td>No</td>
</tr>
<tr>
<td>Volcanic point features</td>
<td>lavovpf</td>
<td>Yes</td>
</tr>
<tr>
<td>Glacial line features</td>
<td>lavogfl</td>
<td>No</td>
</tr>
<tr>
<td>Ash from cinder cones, isopachs</td>
<td>lavoch1</td>
<td>Yes</td>
</tr>
<tr>
<td>Volcanic line features</td>
<td>lavovlf</td>
<td>Yes</td>
</tr>
<tr>
<td>Map symbology</td>
<td>lavosym</td>
<td>Yes</td>
</tr>
<tr>
<td>Faults</td>
<td>lavoflt</td>
<td>Yes</td>
</tr>
<tr>
<td>Geologic contacts</td>
<td>lavoglga</td>
<td>No, simplified</td>
</tr>
<tr>
<td>Geologic units</td>
<td>lavoglg</td>
<td>Yes, simplified</td>
</tr>
</tbody>
</table>

Map Unit Properties Table

The Map Unit Properties Table (in pocket) lists the geologic time division (age), GRI map symbol, and a simplified description for each of the geologic map units within Lassen Volcanic National Park. Following the structure of the report, the Map Unit Properties Table summarizes the geologic features and processes, issues, and history associated with each map unit. Symbols used on the geologic map graphic (map 1, in pocket) are also listed.

The source map by Clynne and Muffler (2010) delineated 327 map units. Thus to make the accompanying Map Unit Properties Table of a reasonable size, only the map units that occur within the boundaries of the park are included. These units are from the 1:50,000-scale map (i.e., Clynne and Muffler 2010). For a list and description of all units in the GRI GIS data, refer to lavo_geology.pdf on the attached CD.

Geologic Map Graphic

The geologic map graphic (map 1, in pocket) displays the GRI digital geologic data draped over a shaded relief image of the park and surrounding area. The geologic map is simplified and clipped to the park boundary. It consists of 18 units that delineate alluvium, slope-movement deposits, hydrothermal deposits, glacial deposits (till and outwash), diatomite, the seven sequences of the Lassen volcanic center, rocks of the Dittmar volcanic center, regional volcanic rocks (north and west, south and east, and within the Caribou volcanic field), and older rocks of the Caribou area. For graphic clarity, not all GIS feature classes are visible on the geologic map graphic, as indicated in table 6. Geographic information and selected park features have been added to the graphic. Digital elevation data and added geographic information are not included with the GRI GIS data but are available from a variety of online sources.

Use Constraints

Based on the scales of the source maps (1:24,000 and 1:50,000) and US National Map Accuracy Standards, geologic features represented in the geologic map data are horizontally within 12 m (40 ft) on 1:24,000-scale maps and 25 m (82 ft) on 1:50,000-scale map of their true locations. Minor inaccuracies may exist regarding the locations of geologic features relative to other geologic or geographic features on the geologic map graphic (map 1, in pocket).

Graphic and written information provided in this report is not a substitute for site-specific investigations. Ground-disturbing activities should neither be permitted nor denied based upon the information provided here. Please contact the NPS Geologic Resources Division with any questions.
Figure 49. GRI source maps. This figure shows areas of published geologic mapping for Lassen Volcanic National Park and vicinity. The “area of map” outlined in black delineates the extent of mapping by Clynne and Muffler (2010; scale 1:50,000). At a scale of 1:24,000, Muffler et al. (2010) provided data for six quadrangles (i.e., Lassen Peak, Mount Harkness, Manzanita Lake, Prospect Peak, Reading Peak, and West Prospect Peak), which cover the area of the park. These data accompany Clynne and Muffler (2010) and are part of the GRI data set (see attached CD). Graphic from Clynne and Muffler (2010).
Glossary

This glossary contains brief definitions of selected geologic terms relevant to this report. Definitions are based on those in the American Geosciences Institute Glossary of Geology (5th edition; 2005). Additional terms are defined at: http://geomaps.wr.usgs.gov/parks/misc/glossarya.html.

aa. A Hawaiian term for lava flows typified by a rough, jagged, spinose, clinkery surface.

agglutinate. A welded pyroclastic deposit. The term is commonly used for deposits of bombs fused while hot and viscous. Agglutinate typically occurs in spatter cones.

alluvium. Stream-deposited sediment.

andesite. Volcanic rock (or lava) characteristically medium dark in color and containing 57%–63% silica and moderate amounts of iron and magnesium.

arc. See “volcanic arc” and “magmatic arc.”

arête. A sharp-edged rocky ridge or spur, commonly present above the snowline in rugged mountains sculpted by glaciers. An arête results from the continued backward growth of the walls of adjoining cirques.

ash (volcanic). Fine material ejected from a volcano. Also see “tuff.”

basalt. Volcanic rock (or lava) that characteristically is dark in color (gray to black), contains 45%–53% silica, and is rich in iron and magnesium. Basaltic lavas are more fluid than andesites or dacites, which contain more silica.

basaltic andesite. Volcanic rock, commonly dark gray to black, with about 53%–57% silica.

basement. The undifferentiated rocks, commonly igneous and metamorphic, that underlie rocks exposed at the surface.

basin (sedimentary). Any depression, from continental to local scale, into which sediments are deposited.

block. A pyroclast ejected in a solid state with a diameter greater than 64 mm (2.5 in).

breccia. A coarse-grained, generally unsorted sedimentary rock consisting of cemented angular clasts greater than 2 mm (0.08 in).

brittle. Describes a rock that fractures (breaks) before sustaining deformation.

caldera. A large bowl- or cone-shaped depression at the summit of a volcano. Formed by explosion or collapse.

carapace. As used by Clyne and Muffler (2010), carapace is the outer “shell” or covering of a lava flow.

cinder. A glassy pyroclastic fragment that falls to the ground in an essentially solid condition.

cinder cone. A conical hill, often steep, formed by accumulation of solidified fragments of lava that fall around the vent of a single basaltic or andesitic eruption. The rock fragments, often called cinders or scoria, are glassy and contain numerous gas bubbles “frozen” into place as magma exploded into the air and then cooled quickly. Cinder cones range in size from tens to hundreds of meters tall.

cirque. A deep, steep-walled, half-bowl-like recess or hollow located high on the side of a mountain and commonly at the head of a glacial valley. Produced by the erosive activity of a mountain glacier.

chalcedony. A cryptocrystalline variety of quartz. It is commonly microscopically fibrous, may be translucent or semitransparent, and has a nearly waxlike luster, a uniform tint, and a white, pale-blue, gray, brown, or black color. Chalcedony is the material of much chert, and often occurs as an aequous deposit filling or lining cavities in rocks.

chert. An extremely hard sedimentary rock with conchoidal (smooth curved surface) fracturing. It consists chiefly of interlocking crystals of quartz. Also called “flint.”

clast. An individual grain or rock fragment in a sedimentary rock, produced by the physical disintegration of a larger rock mass. Also, the term is often used in lieu of “pyroclast” for igneous (pyroclastic or debris flow) deposits.

clastic. Describes rock or sediment made of fragments of pre-existing rocks (clasts). Also see “epiclastic.”

clay. Can be used to refer to clay minerals or as a sedimentary fragment size classification (less than 1/256 mm [0.00015 in]).

coignimbrite. Refers to fallout tephra deposited from a pyroclastic flow. Near-vent breccias composed of large lithic clasts that dropped from pyroclastic flows and fine-grained ash elutriated from the top of a pyroclastic flow by the turbulent rise of hot gases.

colluvium. A general term for any loose, heterogeneous, and incoherent mass of soil material and/or rock fragments deposited through the action of surface runoff (rainwash, sheetwash) or slow continuous downslope creep. Usually collects at the base of a slope or hillside, but includes loose material covering hillsides.

columnar joints. Parallel, prismatic columns, polygonal in cross section, in basaltic flows and sometimes in other extrusive and intrusive rocks; they form as a result of contraction during cooling.

composite volcano. Steep, conical volcanoes built by the eruption of viscous lava flows, tephra, and pyroclastic flows. They are usually constructed over tens to hundreds of thousands of years and may erupt a variety of magma types (basalt to rhyolite). They typically consist of many separate vents. Also called “stratovolcano.”

continental crust. Crustal rocks rich in silica and alumina that underlie the continents; ranging in thickness from 35 km (22 mi) to 60 km (37 mi) under mountain ranges.
“Continental” is also used in reference to a plate. See “plate tectonics.”

crust. Earth’s outermost compositional shell, 10 to 40 km (6 to 25 mi) thick, consisting predominantly of relatively low-density silicate minerals. Also see “oceanic crust” and “continental crust.”
dacite. Volcanic rock (or lava) that characteristically is light in color and contains 62%–69% silica and moderate amounts of sodium and potassium. Dacite lavas are viscous and tend to form thick blocky lava flows or steep-sided piles of lava called lava domes. Dacitic magmas tend to erupt explosively, thus also ejecting abundant ash and pumice.
debris flow. A moving mass of rock fragments, soil, and mud, in which more than half of particles are larger than sand.
defor-mation. A general term for the processes of rock faulting, folding, and shearing as a result of various Earth forces, such as compression (pushing together) and extension (pulling apart).
delta. A sediment wedge deposited where a stream flows into a lake or sea.
diatomite. A light-colored, soft, silica-rich sedimentary rock consisting chiefly of diatoms.
diatom. A microscopic, single-celled alga that secretes walls of silica, called frustules. Diatoms live in freshwater or marine environment.
dip. The angle between a bed or other geologic surface and the horizontal plane.
drift (glacial). A general term applied to all rock material (clay, silt, sand, gravel, and boulders) transported by a glacier and deposited directly by or from the ice, or by running water emanating from a glacier.
ductile. Describes a rock that is able to sustain deformation (folding, bending, or shearing) before fracturing.
edifice. The constructional mass of a volcano.
effusive eruption. An eruption that produces mainly lava flows and domes (as opposed to an explosive eruption).
erratic. A rock fragment carried by glacial ice deposited at some distance from the outcrop from which it was derived, and generally, though not necessarily, resting on bedrock of different lithology. Size ranges from a pebble to a house-size block.
explosive eruption. An energetic eruption that produces mainly ash, pumice, and fragmental ballistic debris (as opposed to an effusive eruption).
fault. A break in rock characterized by displacement of one side relative to the other.
feldspar. A group of abundant (more than 60% of Earth’s crust), light-colored to transluscent silicate minerals found in all types of rocks. Usually white and gray to pink. May contain potassium, sodium, calcium, barium, rubidium, and strontium along with aluminum, silica, and oxygen.
formation. Fundamental rock-stratigraphic unit that is mappable, lithologically distinct from adjoining strata, and has definable upper and lower contacts.
fracture. Irregular breakage of a mineral. Any break in a rock (e.g., crack, joint, fault).
geology. The study of Earth, including its origin, history, physical processes, components, and morphology.
geomorphology. The study of the general configuration of surface landforms and their relationships to underlying structures, and of the history of geologic changes as recorded by these surface features.
graben. A down-dropped structural block bounded by steeply dipping, normal faults.
granite. An intrusive igneous (plutonic) rock composed primarily of quartz and feldspar. Mica and amphibole minerals are also common. Intrusive equivalent of rhyolite.
hydrology. The study of liquid and solid water properties, circulation, and distribution, on and under the Earth’s surface and in the atmosphere.
kaolinite. A common white clay mineral with a high aluminum oxide content.
kipuka. An area surrounded by a lava flow.
lahar. A mixture of water and volcanic debris that moves rapidly downstream. Consistency can range from that of muddy dishwater to that of wet cement, depending on the ratio of water to debris. Also called a volcanic mudflow or debris flow. A key characteristic of a lahar is that it has a substantial component (generally >50%) of fine-grained material, clay- and sand-sized that acts as a matrix to give the deposit the strength it needs to carry the bigger clasts.
landslide. Any process or landform resulting from rapid, gravity-driven mass movement.
lapilli. Pyroclastic materials that may be essential, accessory, or accidental in origin, of a size range that has been variously defined within the limits of 2 and 64 mm (0.08 and 2.5 in). The fragments may be either solidified or still viscous when they land (though some classifications restrict the term to the former); thus there is no characteristic shape. An individual fragment is called a lapillus.
last glacial maximum. Time period when continental ice sheets and glaciers reached their maximum extent during the most recent ice age (about 20,000 years ago).
lava. Molten or solidified magma that has been extruded onto Earth’s surface though a volcano or fissure.
lava dome. A steep-sided mass of viscous and often blocky lava extruded from a vent; typically has a rounded top and covers a roughly circular area. May be isolated or associated with lobes or flows of lava from the same vent. Typically silicic (rhyolite or dacite) in composition.
lava tube. Natural conduits through which lava travels beneath the surface of a lava flow. Forms by the crusting over of lava channels and pahoehoe flows. Also, a cavernous segment of the conduit remaining after flow ceases.
mafic. Derived from magnesium + ferric (Fe is the chemical symbol for iron) to describe an igneous rock having abundant dark-colored, magnesium- or iron-rich minerals such as biotite, pyroxene, or olivine; also, describes those minerals.
magma. Molten rock beneath Earth’s surface capable of intrusion and extrusion.
magma reservoir. A chamber in the shallow part of the lithosphere from which volcanic materials are derived; the magma has ascended from a deeper source.

magmatic arc. Zone of plutos or volcanic rocks formed at a convergent boundary. The arc is generally 100–200 km (60–120 mi) or more behind the surface expression of the convergent boundary, that is the oceanic trench.

meteoric water. Water of recent atmospheric origin.

mineral. A naturally occurring inorganic crystalline solid with a definite chemical composition or compositional range.

moraine. A mound, ridge, or other distinct accumulation of unsorted, unstratified glacial drift, predominantly till, deposited by glacial ice movement.

normal fault. A dip-slip fault in which the hanging wall moves down relative to the footwall. Compare with “reverse fault” and “thrust fault.”

oceanic crust. Earth’s crust, formed at spreading ridges, that underlies ocean basins; 6 to 7 km (3 to 4 mi) thick and generally of basaltic composition. “Oceanic” is also used in reference to a plate. See “plate tectonics.”

opal. A mineral or mineral gel: SiO₂·nH₂O. It consists of packed spheres of silica, and has a varying proportion of water (as much as 20% but usually 3%–9%). It occurs in nearly all colors, is transparent to nearly opaque, and typically exhibits a marked iridescent play of color.

outwash. Glacial sediment transported and deposited by meltwater streams.

pahoehoe. A Hawaiian term for a type of basaltic lava flow typified by a smooth, billowy, orropy surface.

phenocryst. A large, ordinarily conspicuous crystal in a porphyritic igneous rock.

phreatic eruption. An eruption that primarily involves steam explosions. Usually groundwater flashed (became suddenly converted) into steam by the heat of subsurface magma.

piping. Erosion or solution by percolating water in a layer of subsoil, resulting in caving and in the formation of narrow conduits, tunnels, or “pipes” through which soluble or granular soil material is removed, especially the movement of material, from the permeable foundation of a dam or levee, by the flow or seepage of water along underground passages.

plate tectonics. The concept that the lithosphere is broken up into a series of rigid plates that move over Earth’s surface above a less viscous asthenosphere.

porphyritic. Describes an igneous rock of any composition that contains conspicuous phenocrysts in fine-grained groundmass.

pumice. Solidified “frothy” lava; highly vesicular and very low density.

pyroclast. An individual particle ejected during a volcanic eruption.

pyroclastic. Describes clastic rock material formed by volcanic explosion or aerial expulsion from a volcanic vent; also pertaining to rock texture of explosive origin. In the plural, the term is used as a noun.

pyroclastic flow. A hot—typically >800°C (1,470°F)—chaotic mixture of rock fragments, gas, and ash that travels rapidly (tens of meters per second) away from a volcanic vent or collapsing flow front.

quartz. Crystalline silica, an important rock-forming mineral: SiO₂.

radiocarbon age. Also, carbon-14 age. An isotopic age expressed in years and calculated from the quantitative determination of the amount of carbon-14 remaining in an organic material.

recharge. Infiltration process that replenishes groundwater.

rhyodacite. Volcanic rock (or lava) that is intermediate in composition between rhyolite and dacite. It contains 68%–72% silica.

rhyolite. Volcanic rock (or lava) that characteristically is light in color, contains 69% or more of silica, and is rich in potassium and sodium. Low-silica rhyolite contains 69%–74% silica. High-silica rhyolite contains 75%–80% silica. Rhyolitic lavas are viscous and tend to form thick blocky lava flows or steep-sided piles of lava called lava domes. Rhyolite magmas tend to erupt explosively, commonly also producing abundant ash and pumice.

rift. A region of crust where extension results in formation of many related normal faults, often associated with volcanic activity.

rift valley. A depression formed by grabens along the crest of an oceanic spreading ridge or in a continental rift zone.

roche moutonnée. An elongate, eroded ridge or knob of bedrock carved by a glacier parallel to the direction of motion, with gentle upstream and steep downstream surfaces.

rock. An aggregate of one or more minerals (e.g., granite, shale, marble), a body of undifferentiated mineral matter (e.g., obsidian), or a body of solid organic material (e.g., coal).

rockfall. The most rapid mass-wasting process, in which rocks are dislodged and move downslope rapidly.

scoria. A bomb-size pyroclast that is irregular in form and generally very vesicular.

scoria cone. A conical volcanic feature formed by the accumulation of cinders and other pyroclasts, normally of basaltic or andesitic composition.

sheet flow. An overland flow or downslope movement of water, in the form of a thin, continuous film, over relatively smooth soil or rock surfaces and not concentrated into channels larger than rills.

shield volcano. A broad shield-shaped volcano that is built up by successive, mostly effusive, eruptions of low-silica lava.

silica. Silicon dioxide, SiO₂. It occurs as crystalline quartz, cryptocrystalline chalcedony, and amorphous opal; dominantly in sand, diatomite, and chert; and combined in silicates as an essential constituent of many minerals.

silicate. A compound whose crystal structure contains the SiO₄ tetrahedra.

siliceous. Said of a rock or other substance containing abundant silica.

silicic. Said of a silica-rich igneous rock or magma. Although there is no firm agreement among petrologists, the amount of silica is usually said to constitute at least 65% or two-thirds of the rock. In addition to the combined silica in feldspars, silicic
rocks generally contain free silica in the form of quartz. Granite and rhyolite are typical silicic rocks.

sinter. The lightweight, porous, opaline variety of silica that is white or nearly white and deposited as an incrustation by precipitation from the waters of geysers and hot springs. Also known as “siliceous sinter.”

slope. The inclined surface of any geomorphic feature or measurement thereof. Synonymous with “gradient.”

slump. A generally large, coherent mass movement with a concave failure surface and subsequent backward rotation relative to the slope.

soil. The unconsolidated mineral or organic matter on the surface of the earth that has been affected by climate (water and temperature) and organisms (macro and micro), conditioned by relief, acting on parent material over a period of time. Soil differs from the material from which it is derived in many ways.

spring. A site where water issues from the surface due to the intersection of the water table with the ground surface.

stratovolcano. A volcano that is constructed of alternating layers of lava and pyroclastic deposits, along with abundant dikes and sills.

stream. Any body of water moving under gravity flow in a clearly confined channel.

stream channel. A long, narrow depression shaped by the concentrated flow of a stream and covered continuously or periodically by water.

striations (glacial). One of a series of long, delicate, finely cut, commonly straight and parallel furrows or lines inscribed on a bedrock surface by the rasping and rubbing of rock fragments embedded at the base of a moving glacier, and usually oriented in the direction of ice movement; also formed on the rock fragments transported by the ice.

subduction zone. A convergent plate boundary where oceanic lithosphere descends beneath a continental or oceanic plate and is carried down into the mantle.

sulfate. A mineral compound characterized by the sulfate radical SO_4^{2-}. Anhydrous sulfates, such as barite, BaSO_4, have divalent cations linked to the sulfate radical; hydrous and basic sulfates, such as gypsum, $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$, contain water molecules.

talus. Rock fragments, usually coarse and angular, lying at the base of a cliff or steep slope from which they have been derived.

tectonic. Describes a feature or process related to large-scale movement and deformation of Earth’s crust.

tectonics. The geologic study of the broad structural architecture and deformational processes of the lithosphere and asthenosphere.

tephra. A collective term used for all pyroclastic material, regardless of size, shape, or origin, ejected during an explosive volcanic eruption.

till. Unstratified drift deposited directly by a glacier without reworking by meltwater and consisting of a mixture of clay, silt, sand, gravel, and boulders ranging widely in size and shape.

tuff. Generally fine-grained, igneous rock formed of consolidated volcanic ash.

topography. The general morphology of Earth’s surface, including relief and locations of natural and human-made features.

vent. Any opening at the Earth’s surface through which magma erupts or volcanic gases are emitted.

vesicular. Describes a volcanic rock with abundant holes that formed from the expansion of gases while the lava was molten.

volcanic. Describes anything related to volcanoes. Can refer to igneous rock crystallized at or near Earth’s surface (e.g., lava).

volcanic arc. A commonly curved, linear zone of volcanoes above a subduction zone. On the scale of hundreds of kilometers.

water table. The upper surface of the saturated zone; the zone of rock in an aquifer saturated with water.

Wisconsinan. Pertaining to the classical fourth glacial stage of the Pleistocene Epoch in North America, following the Sangamonian interglacial stage and preceding the Holocene.
Literature Cited

This section lists references cited in this report. Contact the Geologic Resources Division for assistance in obtaining these documents.

Cooper, D. J., D. Schook, and E. Wolf. 2012. Restoration prioritization and procedures for Drakesbad Meadow, Lassen Volcanic National Park, California (February 2012). Colorado State University, Department of Forest and Rangeland Stewardship, Fort Collins, Colorado, USA.

LAVO Geologic Resources Inventory Report

Havens, M. 2012. Large-scale ecological restoration completed in Warner Valley. Online article (InsideNPS). Lassen Volcanic National Park, Mineral, California, USA.

Kane, P. S. 1980. Through Vulcan’s eye—the geology and geomorphology of Lassen Volcanic National Park. Lassen Loomis Museum Association, Mineral, California, USA.

National Park Service. 2006. Basic evacuation procedures for Lassen Volcanic residents. Site bulletin. Lassen Volcanic National Park, Mineral, California, USA.

Wills, C. J. 1990b. Faults in the Lake Almanor area, Plumas and Lassen counties, California. Fault evaluation report 212. California Department of Conservation, Division of Mines and Geology, Sacramento, California, USA.

Additional References

This section lists additional references, resources, and websites that may be of use to resource managers. Web addresses are current as of November 2013. Refer to Appendix B for laws, regulations, and policies that apply to NPS geologic resources.

Geology of National Park Service Areas

NPS Geologic Resources Division (Lakewood, Colorado): http://nature.nps.gov/geology/
NPS Geologic Resources Inventory:
http://www.nature.nps.gov/geology/inventory/index.cfm
NPS Geoscientist-In-the-Parks (GIP) internship and guest scientist program:
http://www.nature.nps.gov/geology/gip/index.cfm
NPS Views program (geology-themed modules are available for Geologic Time, Paleontology, Glaciers, Caves and Karst, Coastal Geology, Volcanoes, and a variety of geologic parks):
http://www.nature.nps.gov/views/

NPS Resource Management Guidance and Documents

1998 National parks omnibus management act:
Management Policies 2006 (Chapter 4: Natural resource management):
http://www.nps.gov/policy/mp/policies.html#_Toc157232681
NPS-75: Natural resource inventory and monitoring guideline:
http://www.nature.nps.gov/nps75/nps75.pdf
NPS Natural resource management reference manual #77:
http://www.nature.nps.gov/Rm77/
Geologic monitoring manual:
http://nature.nps.gov/geology/monitoring/index.cfm

NPS Technical Information Center (TIC) (Denver, Colorado; repository for technical documents):
http://www.nps.gov/dsc/technicalinfocenter.htm

Geological Surveys and Societies

California Geological Survey:
http://www.conservation.ca.gov/CGS/Pages/Index.aspx
USGS California Volcano Observatory:
http://volcanoes.usgs.gov/observatories/calvo/
Geological Society of America:
http://www.geosociety.org/
American Geosciences Institute: http://www.agiweb.org/
Association of American State Geologists:
http://www.stategeologists.org/

US Geological Survey Reference Tools

US Geological Survey geologic names lexicon (GEOLEX; geologic unit nomenclature and summary):
http://ngmdb.usgs.gov/Geolex/geolex_home.html
US Geological Survey geographic names information system (GNIS; official listing of place names and geographic features): http://gnis.usgs.gov/
US Geological Survey geoPDFs (download searchable PDFs of any topographic map in the United States):
http://store.usgs.gov (click on “Map Locator & Downloader”)
US Geological Survey tapestry of time and terrain (descriptions of physiographic provinces):
US Geological Survey, Volcano Hazards Program online glossary:
http://volcanoes.usgs.gov/vsc/glossary.html#glnk-56
Appendix A: GRI Participants

The following people attended the GRI scoping meeting for Lassen Volcanic National Park, held on 1 March 2004, or the follow-up report writing conference call, held on 8 April 2013. Discussions during these meetings supplied a foundation for this GRI report. The scoping summary document is available on the GRI publications website: http://go.nps.gov/gripubs.

2004 scoping meeting participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Connors</td>
<td>NPS Geologic Resources Division</td>
<td>Geologist</td>
</tr>
<tr>
<td>Sid Covington</td>
<td>NPS Geologic Resources Division</td>
<td>Geologist</td>
</tr>
<tr>
<td>Anne Poole</td>
<td>NPS Geologic Resources Division</td>
<td>Geologist</td>
</tr>
<tr>
<td>Pete Biggam</td>
<td>NPS Natural Resources Information Division</td>
<td>Soil Scientist</td>
</tr>
<tr>
<td>Chris Currens</td>
<td>US Geological Survey, Biological Resources Division</td>
<td>Aquatic Biologist</td>
</tr>
<tr>
<td>Marsha Davis</td>
<td>NPS Columbia Cascades Support Office</td>
<td>Geologist</td>
</tr>
<tr>
<td>Louise Johnson</td>
<td>Lassen Volcanic National Park</td>
<td>Chief, Natural Resources</td>
</tr>
<tr>
<td>Daniel Sarr</td>
<td>NPS Klamath Network</td>
<td>Network Coordinator</td>
</tr>
<tr>
<td>Bob Truitt</td>
<td>NPS Klamath Network</td>
<td>Data Manager</td>
</tr>
<tr>
<td>Hanna Waterstat</td>
<td>NPS Klamath Network</td>
<td>Data Miner</td>
</tr>
<tr>
<td>Gary Rosenlieb</td>
<td>NPS Water Resources Division</td>
<td>Water Quality Program Lead</td>
</tr>
</tbody>
</table>

2013 conference call participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Clynne</td>
<td>US Geological Survey</td>
<td>Geologist</td>
</tr>
<tr>
<td>Marsha Davis</td>
<td>NPS Columbia Cascades Support Office</td>
<td>Geologist</td>
</tr>
<tr>
<td>Katie KellerLynn</td>
<td>Colorado State University</td>
<td>Geologist, GRI Research Associate</td>
</tr>
<tr>
<td>Jason Kenworthy</td>
<td>NPS Geologic Resources Division</td>
<td>Geologist, GRI Reports Coordinator</td>
</tr>
<tr>
<td>Patrick Muffler</td>
<td>US Geological Survey</td>
<td>Scientist Emeritus</td>
</tr>
<tr>
<td>Rebecca Port</td>
<td>NPS Geologic Resources Division</td>
<td>Geologist, GRI Report Writer/Editor</td>
</tr>
<tr>
<td>Dave Worthington</td>
<td>Lassen Volcanic National Park</td>
<td>Chief of Resource Management</td>
</tr>
</tbody>
</table>
Appendix B: Geologic Resource Laws, Regulations, and Policies

The Geologic Resources Division developed this table to summarize laws, regulations, and policies that specifically apply to National Park Service minerals and geologic resources. The table does not include laws of general application (e.g., Endangered Species Act, Clean Water Act, Wilderness Act, National Environmental Policy Act, or National Historic Preservation Act). The table does include the NPS Organic Act when it serves as the main authority for protection of a particular resource or when other, more specific laws are not available. Information is current as of January 2014. Contact GRD for detailed guidance.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocks and Minerals</td>
<td>NPS Organic Act, 16 USC. § 1 et seq. directs the NPS to conserve all resources in parks (which includes rock and mineral resources) unless otherwise authorized by law.</td>
<td>36 C.F.R. § 2.1 prohibits possessing, destroying, disturbing mineral resources...in park units.</td>
<td>Section 4.8.2 requires NPS to protect geologic features from adverse effects of human activity.</td>
</tr>
<tr>
<td></td>
<td>Exception: 16 USC. § 445c (c) – Pipestone National Monument enabling statute authorizes Native American collection of catlinite (red pipestone).</td>
<td>Exception: 36 C.F.R. § 7.91 allows limited gold panning in Whiskeytown.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exception: 36 C.F.R. § 13.35 allows some surface collection of rocks and minerals in some Alaska parks (not Klondike Gold Rush, Sitka, Denali, Glacier Bay, and Katmai) by non-disturbing methods (e.g., no pickaxes), which can be stopped by superintendent if collection causes significant adverse effects on park resources and visitor enjoyment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 4.8.2.3 requires NPS to -Preserve/maintain integrity of all thermal resources in parks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Work closely with outside agencies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Monitor significant thermal features.</td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td>Geothermal Steam Act of 1970, 30 USC. § 1001 et seq. as amended in 1988, states -No geothermal leasing is allowed in parks. -“Significant” thermal features exist in 16 park units (the features listed by the NPS at 52 Fed. Reg. 28793-28800 (August 3, 1987), plus the thermal features in Crater Lake, Big Bend, and Lake Mead). -NPS is required to monitor those features. -Based on scientific evidence, Secretary of Interior must protect significant NPS thermal features from leasing effects.</td>
<td>None Applicable.</td>
<td>Section 4.8.2.3 requires NPS to -Preserve/maintain integrity of all thermal resources in parks. -Work closely with outside agencies. -Monitor significant thermal features.</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Mining Claims</td>
<td>Mining in the Parks Act of 1976, 16 USC. § 1901 et seq. authorizes NPS to regulate all activities resulting from exercise of mineral rights, on patented and unpatented mining claims in all areas of the System, in order to preserve and manage those areas.</td>
<td>36 C.F.R. § 5.14 prohibits prospecting, mining, and the location of mining claims under the general mining laws in park areas except as authorized by law.</td>
<td>Section 6.4.9 requires NPS to seek to remove or extinguish valid mining claims in wilderness through authorized processes, including purchasing valid rights. Where rights are left outstanding, NPS policy is to manage mineral-related activities in NPS wilderness in accordance with the regulations at 36 C.F.R. Parts 6 and 9A.</td>
</tr>
<tr>
<td></td>
<td>General Mining Law of 1872, 30 USC. § 21 et seq. allows US citizens to locate mining claims on Federal lands. Imposes administrative & economic validity requirements for “unpatented” claims (the right to extract Federally-owned locatable minerals). Imposes additional requirements for the processing of “patenting” claims (claimant owns surface and subsurface). Use of patented mining claims may be limited in Wild and Scenic Rivers and OLYM, GLBA, CORO, ORPI, DEVA.</td>
<td>36 C.F.R. Part 6 regulates solid waste disposal sites in park units.</td>
<td>Section 8.7.1 prohibits location of new mining claims in parks; requires validity examination prior to operations on unpatented claims; and confines operations to claim boundaries.</td>
</tr>
<tr>
<td></td>
<td>Surface Uses Resources Act of 1955, 30 USC § 612 restricts surface use of unpatented mining claims to mineral activities.</td>
<td>36 C.F.R. Part 9, Subpart A requires the owners/operators of mining claims to demonstrate bona fide title to mining claim; submit a plan of operations to NPS describing where, when, and how; prepare/submit a reclamation plan; and submit a bond to cover reclamation and potential liability.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>43 C.F.R. Part 36 governs access to mining claims located in, or adjacent to, National Park System units in Alaska.</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| Nonfederal minerals other than oil and gas | NPS Organic Act, 16 USC §§ 1 and 3
Surface Mining Control and Reclamation Act of 1977, 30 USC § 1201 et. seq. prohibits surface coal mining operations on any lands within the boundaries of a NPS unit, subject to valid existing rights. | NPS regulations at 36 C.F.R. Parts 1, 5, and 6 require the owners/operators of other types of mineral rights to obtain a special use permit from the NPS as a § 5.3 business operation, and § 5.7 – Construction of buildings or other facilities, and to comply with the solid waste regulations at Part 6.
SMCRA Regulations at 30 C.F.R. Chapter VII govern surface mining operations on Federal lands and Indian lands by requiring permits, bonding, insurance, reclamation, and employee protection. Part 7 of the regulations states that National Park System lands are unsuitable for surface mining. | Section 8.7.3 states that operators exercising rights in a park unit must comply with 36 CFR Parts 1 and 5. |
| Park Use of Sand and Gravel | Materials Act of 1947, 30 USC. § 601 does not authorize the NPS to dispose of mineral materials outside of park units.
Exception: 16 USC §90c 1(b) the non-wilderness portion of Lake Chelan National Recreation Area, where sand, rock and gravel may be made available for sale to the residents of Stehekin for local use as long as such sale and disposal does not have significant adverse effects on the administration of the National Recreation Area. | None applicable. | Section 9.1.3.3 clarifies that only the NPS or its agent can extract park-owned common variety minerals (e.g., sand and gravel), and:
- Only for park administrative uses.
- After compliance with NEPA & other federal, state, and local laws, and a finding of non-impairment.
- After finding the use is park’s most reasonable alternative based on environment and economics.
- Parks should use existing pits and create new pits only in accordance with park-wide borrow management plan.
- Spoil areas must comply with Part 6 standards
- NPS must evaluate use of external quarries.
Any deviations from this policy require written waiver from the Secretary, Assistant Secretary, or Director. |
|----------|------------------------|-----------------------------|-------------------------|
| Upland and Fluvial Processes | **Rivers and Harbors Appropriation Act of 1899, 33 USC. § 403** prohibits the construction of any obstruction, on the waters of the United States, not authorized by Congress or approved by the USACE.
Clean Water Act 33 USC. § 1342 requires a permit from the USACE prior to any discharge of dredged or fill material into navigable waters (waters of the US (including streams)).
Executive Order 11988 requires federal agencies to avoid adverse impacts to floodplains. (see also D.O. 77-2)
Executive Order 11990 requires plans for potentially affected wetlands (including riparian wetlands). (see also D.O. 77-1) | None Applicable. | **Section 4.1** requires NPS to manage natural resources to preserve fundamental physical and biological processes, as well as individual species, features, and plant and animal communities; maintain all components and processes of naturally evolving park ecosystems.
Section 4.1.5 directs the NPS to re-establish natural functions and processes in human-disturbed components of natural systems in parks unless directed otherwise by Congress.
Section 4.4.2.4 directs the NPS to allow natural recovery of landscapes disturbed by natural phenomena, unless manipulation of the landscape is necessary to protect park development or human safety.
Section 4.6.4 directs the NPS to manage for the preservation of floodplain values; and minimize potentially hazardous conditions associated with flooding
Section 4.6.6 directs the NPS to manage watersheds as complete hydrologic systems and minimize human-caused disturbance to the natural upland processes that deliver water, sediment, and woody debris to streams.
Section 4.8.1 directs the NPS to allow natural geologic processes to proceed unimpeded. Geologic processes...include...erosion and sedimentation...processes.
Section 4.8.2 directs the NPS to protect geologic features from the unacceptable impacts of human activity while allowing natural processes to continue. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils</td>
<td>Soil and Water Resources Conservation Act, 16 USC. §§ 2011 – 2009 provides for the collection and analysis of soil and related resource data and the appraisal of the status, condition, and trends for these resources. Farmland Protection Policy Act, 7 USC. § 4201 et. seq. requires NPS to identify and take into account the adverse effects of Federal programs on the preservation of farmland; consider alternative actions, and assure that such Federal programs are compatible with State, unit of local government, and private programs and policies to protect farmland. NPS actions are subject to the FPPA if they may irreversibly convert farmland (directly or indirectly) to nonagricultural use and are completed by a Federal agency or with assistance from a Federal agency. Applicable projects require coordination with the Department of Agriculture’s Natural Resources Conservation Service (NRCS).</td>
<td>7 C.F.R. Parts 610 and 611 are the US Department of Agriculture regulations for the Natural Resources Conservation Service. Part 610 governs the NRCS technical assistance program, soil erosion predictions, and the conservation of private grazing land. Part 611 governs soil surveys and cartographic operations. The NRCS works with the NPS through cooperative arrangements.</td>
<td>Section 4.8.2.4 requires NPS to: - Prevent unnatural erosion, removal, and contamination. - Conduct soil surveys. - Minimize unavoidable excavation. - Develop/follow written prescriptions (instructions).</td>
</tr>
</tbody>
</table>
The Department of the Interior protects and manages the nation’s natural resources and cultural heritage; provides scientific and other information about those resources; and honors its special responsibilities to American Indians, Alaska Natives, and affiliated Island Communities.

NPS 111/123450, January 2014
Map 2. Map of Lassen Volcanic National Park. This map highlights hydrothermal areas and the locations of the four “classic” types of volcanoes. “Composite remnants” mark the topographic remains of Brokeoff Volcano, such as Pilot Pinnacle, which also is a hydrothermal area. Raker Peak is marked as a shield volcano because this is the “best fit” with respect to the four primary volcano types. However, this volcano is more suitably called a “lava cone,” which shares characteristics of both shield and composite volcanoes. National Park Service map, annotated by Jason Kenworthy (NPS Geologic Resources Division) using Clynne et al. (2003) and personal communications (Patrick Muffler, USGS scientist emeritus, and Michael Clynne, USGS research geologist, 2013).
Map Unit Properties Table: Lassen Volcanic National Park

The units listed occur within Lassen Volcanic National Park. Refer to "lava.geology.pdf" on the attached CD for a list and geologic description of all units in the GRI GIS data set. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clynne and Muffler (2010) or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years ago.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol) GIS Data</th>
<th>Geologic Map Graphic (Symbol) Map 1 (in pocket)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alkuvium</td>
<td>Alluvium (HPEf)</td>
<td>Sand and gravel in modern stream channels.</td>
<td>Glacial Features—includes reworked glacial outwash in some areas.</td>
<td>None reported.</td>
<td>Present-Day Geologic Activity—deposited primarily during the Holocene Epoch, but includes some Pleistocene alluvium.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Streams and Waterfalls—including stream terraces in some areas. Channel gradients at the park are irregular, often alternating along a particular stream from steep in places where the channel is in bedrock to gentile where alluvium has been deposited.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volcanic Features—includes flat, generally internally drained areas of windblown ash related to eruption of nearby cinder cones in northern Canbou volcanic field. Does not include debris emplaced while still hot from growing dacite domes in Lassen domemfield.</td>
<td>Slope Movements—deposits of talus and colluvium (HPEc) may be prone to future movement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lakes—Soda Lake is bounded by a landslide (Hsh), as well as alluvium (HPEf) and colluvium and talus (HPEC).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rubble consisting mainly of talus at the base of ciffs or steep slopes of exposed bedrock, but locally occurs as slopewash or thin, local debris flows.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volcanic Features—late in the history of a volcanic center, an acidic hydrothermal system, driven by heat from silicic magma bodies, altered permeable rocks of the composite cone, making them prone to slope movement.</td>
<td>Slope Movements—much of the hydrothermally altered core of Brokeoff Volcano is unstable and subject to small landslides and debris flows. Some slides are subject to reactivation during spring snowmelt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydrothermal Features—hydrothermal alteration is widespread in and around the thermal areas of the park such as Bumpass Hell, Devils Kitchen, and Sulphur Works.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lakes—Hsh surrounds Forest Lake and Soda Lake.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rubble in small slumps, debris flows, and landslides on slopes underlain by unconsolidated or hydrothermally altered rocks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volcanic Features—emplaced later via glacial processes while still hot from growing dacite domes in Lassen domemfield.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hydrothermal Features—hydrothermal alteration is widespread in and around the thermal areas of the park such as Bumpass Hell, Devils Kitchen, and Sulphur Works.</td>
<td>Slope Movements—deposits of talus and colluvium (HPEc) may be prone to future movement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lakes—Manzanita Lake formed when first debris avalanche (in series of three) dammed Manzanita Creek.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Debris-flow deposits from the northeast side of Lassen Peak (PEsl).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nonsorted, unconsolidated, nonbedded rubble consisting entirely of dacite of Lassen Peak (PEgl). Commonly pink in color, but ranges from pink to gray, reflecting lithology of source dacite on different parts of Lassen Peak dome. Thickness less than 1–6 m (3–20 ft).</td>
<td>Slope Movements—one of two significant deposits on Lassen Peak; the other is PEl. Formed as mudflows from steep, high, northeastern slopes of Lassen Peak.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glacial Features—interpreted as debris spread across the surface of a glacier in Hat Creek valley after partial glacial retreat from terminal position during Raker Peak glaciation (see PEl).</td>
<td>Slope Movements—one of two significant deposits on Lassen Peak; the other is Hwh.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glaciations—slope movement that occurred during Pleistocene ice ages, less than 27,000 years ago.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The units listed here are those mapped within Lassen Volcanic National Park. Refer to "lavo.geology.pdf" for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clynne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol)</th>
<th>Geologic Map Graphic (Symbol)</th>
<th>Map 1 (in pocket)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDDLE PLIOCENE</td>
<td>Avalanche deposit from dacite of hill 8283 (PEd82)</td>
<td>Slope-movement deposits (HPEsm)</td>
<td>None.</td>
<td>Nonsorted, unconsolidated, nonbedded rubble with blocks commonly as large as 1–2 m (3–7 ft) across.</td>
<td>Volcanic Features—consists almost entirely of dacite of hill 8283 (PEd82).</td>
<td>Slope Movements—unconsolidated material; may be prone to future movement.</td>
<td>Although not mentioned in "Geologic History" section, unit was deposited between approximately 261,000 and 199,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Hydrothermally altered rocks in active thermal areas (Hht)</td>
<td>Hydrothermal deposit (Hh)</td>
<td>None.</td>
<td>Typically, light-gray or orange-brown, altered andesite and dacite. Occasionally areas of kaolinite and silica with scattered blocks of intensely altered rock.</td>
<td>Hydrothermal Features—mapped in areas of intense active hydrothermal alteration at Bumpass Hell, Devils Kitchen, and Sulphur Works. Rocks are so intensively altered that their original lithology and stratigraphy are indeterminable.</td>
<td>Hydrothermal Hazards—hazards include first-, second-, and third-degree burns; collapse of thin thermal surface crusts; impacts to infrastructure; and emission of toxic gases.</td>
<td>Present-Day Geologic Activity—hydrothermal alteration is ongoing as active hydrothermal areas change and migrate.</td>
</tr>
<tr>
<td></td>
<td>Travertine (Htr)</td>
<td></td>
<td>None.</td>
<td>Calcium carbonate deposited by flowing hot water around active hot-spring vents. Form mounds 1–4 m (3–13 ft) in diameter. Deposits around modern but inactive vents are white, sometimes forming multiple terraces each 0.4 m (1.3 ft) high. Older travertine deposits are brown and commonly broken into 0.1 m (0.3 ft) angular blocks.</td>
<td>Hydrothermal Features—deposits occur mostly in Little Hot Springs Valley. Commonly streaked with brightly colored green and orange algae.</td>
<td>Glacial Features—deposited after glaciers retreated from the area; travertine deposits are all younger than younger till (PETy).</td>
<td>Hydrothermal Hazards—hazards include first-, second-, and third-degree burns; collapse of thin thermal surface crusts; impacts to infrastructure; and emission of toxic gases.</td>
</tr>
<tr>
<td></td>
<td>Till or protalus-rampart debris (HPEta)</td>
<td>Slope-movement deposits (HPEsm)</td>
<td>None.</td>
<td>Poorly sorted, unconsolidated, nonbedded rock and rock fragments (silt to boulders) of dacite of Lassen Peak (PETy).</td>
<td>Glacial Features—represents Holocene glacial advance. Forms small moraines or ramparts at approximately 2,400–2,700 m (7,800–9,000 ft) in elevation near southern and eastern base of Lassen Peak.</td>
<td>Slope Movements—unstable and subject to movement.</td>
<td>Glaciations—deposited 12,000–8,000 years ago.</td>
</tr>
<tr>
<td>LATE PLIOCENE/EARLY HOLOCENE</td>
<td>Till, younger glaciations (PETy)</td>
<td>Glacial deposits, till (HPEt)</td>
<td>None.</td>
<td>Poorly sorted, unconsolidated, nonbedded rock and rock fragments with boulders commonly as large as 2 m (7 ft) across, consisting of a range of volcanic rock types.</td>
<td>Glacial Features—occurs as sheetlike deposits and large (well-preserved) moraines as low as about 1,800 m (5,900 ft) in elevation. Subdivided into late till of Ankle Meadows (PEtai), till of Ankle Meadows (PEta), and till of Raker Peak (PETr) in the Lost Creek, Hat Creek, and Manzanita Creek drainages.</td>
<td>The most important remaining geologic mapping problem in the Lassen area is the extension of the detailed glacial stratigraphy from Lost, Hat, and Manzanita Creek valleys to the rest of Lassen Volcanic National Park and beyond.</td>
<td>Glaciations—deposited 25,000–8,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Late till of Ankle Meadows (HPEta)</td>
<td>Glacial deposits, till (HPEt)</td>
<td>None.</td>
<td>Poorly sorted, unconsolidated, nonbedded rock and rock fragments with boulders of locally derived dacite as much as 4 m (13 ft) across.</td>
<td>Glacial Features—occurs as small moraines at approximately 2,200–2,700 m (7,600–9,000 ft) in elevation on eastern and southern sides of Lassen Peak. Overlain by debris-flow deposits from the northeast side of Lassen Peak (HWH). Also found buried beneath pumiceous pyroclastic-flow and fall deposits of rhyodacite of Chaos Crag (HPC) in Crescent Crater and at approximately 2,300 m (7,600 ft) in elevation in small cirque east of Chaos Crag.</td>
<td>Glaciations—deposited around 12,000 years ago.</td>
<td>Glaciations—deposited 25,000–12,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Till of Ankle Meadows (PETa)</td>
<td>Glacial deposits, till (HPEt)</td>
<td>None.</td>
<td>Poorly sorted, unconsolidated, nonbedded rock and rock fragments from a variety of bedrock sources with boulders commonly as much as 2 m (7 ft) across and occasionally larger.</td>
<td>Glacial Features—dominated by material derived from Lassen Peak and distinguished from till of Raker Peak (PETr) by the presence of dacite of Lassen Peak (PEDi) in Hat, Lost, and Manzanita Creek drainages. Occurs as sheetlike deposits and large (well-preserved) moraines as low as 1,700 m (5,500 ft) in elevation in Lost Creek, 1,900 m (6,100 ft) in elevation in Hat Creek, and 1,900 m (6,100 ft) in elevation in Manzanita Creek. Lakes—all small glacial lakes in the park lie within the limits of PETa.</td>
<td>None reported.</td>
<td>Glaciations—deposited 25,000–17,000 years ago.</td>
</tr>
</tbody>
</table>
LAVO Map Unit Properties Table, Page 3 of 18

The units listed here are those mapped within Lassen Volcanic National Park. Refer to "lavo_geology.pdf" for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clynne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol)</th>
<th>Geologic Map Graphic (Symbol)</th>
<th>Map 1 (in pocket)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATE PLEISTOCENE</td>
<td>Post-max till of Raker Peak consisting of Lassen Peak avalanche debris (Petr)</td>
<td>Glacial deposits, till (HPet)</td>
<td>Poorly sorted, unconsolidated, nonbedded rock and rock fragments with boulders as large as 1.5 m (5 ft) across, consisting almost entirely of dacite derived from avalanche debris from Lassen Peak spread across glacial ice (PEsr).</td>
<td>Glacial Features—forms a small moraine at the northeastern base of Raker Peak.</td>
<td>Glacial Features—typified by moderately to poorly preserved and eroded moraines. Occurs as sheetlike deposits and subdued moraines preserved beyond the limits of younger till (Pety). Younger part is equivalent in age to till of Badger Mountain (PEtb) as mapped in Hat, Lost, and Manzanita Creek drainages.</td>
<td>None reported.</td>
<td>Glaciations—deposited approximately 27,000 years ago.</td>
</tr>
<tr>
<td>LATE PLEISTOCENE</td>
<td>Till of Raker Peak (Petr)</td>
<td>Glacial deposits, till (HPet)</td>
<td>Poorly sorted, unconsolidated, nonbedded rock and rock fragments from a variety of bedrock sources with boulders commonly as large as 2 m (7 ft) across and occasionally larger.</td>
<td>Glacial Features—occurs as sheets and subdued moraines preserved beyond the limits of younger till (Pety). Younger part is equivalent in age to till of Badger Mountain (PEtb) as mapped in Hat, Lost, and Manzanita Creek drainages. Occurs at 1,700–2,000 m (5,500–6,500 ft) in elevation.</td>
<td></td>
<td></td>
<td>Glaciations—deposited between 35,000 and 27,000 years ago.</td>
</tr>
<tr>
<td>LATE PLEISTOCENE</td>
<td>Till of Badger Mountain (PEtb)</td>
<td>Glacial deposits, till (HPet)</td>
<td>Poorly sorted, unconsolidated, nonbedded rock and rock fragments from a variety of bedrock sources with boulders commonly as large as 2 m (7 ft) across and occasionally larger.</td>
<td>Glacial Features—occurs as sheets and subdued moraines preserved beyond the limits of younger till (Pety). Younger part is equivalent in age to till of Badger Mountain (PEtb) as mapped in Hat, Lost, and Manzanita Creek drainages. Occurs at 1,700–2,000 m (5,500–6,500 ft) in elevation.</td>
<td></td>
<td></td>
<td>Glaciations—deposited between 70,000 and 60,000 years ago.</td>
</tr>
<tr>
<td>LATE PLEISTOCENE</td>
<td>Outwash gravel, younger glaciations (PEoy)</td>
<td>Glacial deposits, outwash (PEos)</td>
<td>Moderately sorted, unconsolidated gravel and sand, commonly containing boulders as much as 2 m (7 ft) across consisting of same rock types as the correlative Pety. Unconsolidated outwash gravel corresponding to units Pety and PEto.</td>
<td>Glacial Features—occurs as partial valley fills, thick sheets, or alluvial fans in drainages. Equivalent to outwash gravel of Anklin Meadows (PEoa) and outwash gravel of Raker Peak (PEoa) in Hat Creek and to part of outwash gravel, undivided (PEou), in Manzanita Creek and Battle Creek meadows. Probably includes older outwash in some areas.</td>
<td></td>
<td></td>
<td>None reported.</td>
</tr>
<tr>
<td>LATE PLEISTOCENE</td>
<td>Outwash gravel, undivided (PEou)</td>
<td>Glacial deposits, outwash (PEos)</td>
<td>Moderately sorted, unconsolidated gravel and sand, commonly containing boulders as much as 2 m (7 ft) across consisting of the same rock types as correlative Pety and PEto. Undivided outwash gravel corresponding to units Pety and PEto.</td>
<td>Glacial Features—occurs as partial valley fills and thick sheets in valleys of South Fork Battle Creek and Manzanita Creek where outwash gravels are not divided.</td>
<td></td>
<td></td>
<td>Glaciations—deposited more than 130,000 years ago to 8,000 years ago.</td>
</tr>
<tr>
<td>LATE PLEISTOCENE</td>
<td>Outwash gravel of Raker Peak (PEor)</td>
<td>Glacial deposits, outwash (PEos)</td>
<td>Moderately sorted, unconsolidated gravel and sand, commonly containing boulders as much as 2 m (7 ft) across consisting of the same rock types as correlative till of Raker Peak (PETr). PEor is distinguished from outwash gravel of Anklin Meadows (PEoa) by the absence of clasts derived from Lassen Peak (PEoa). Equivalent to PETr.</td>
<td>Glacial Features—occurs as partial valley fill, thick sheets, or alluvial fans in Hat Creek drainage. Obscured by thin pyroclastic-flow and associated fluid debris-flow deposits from the 22 May 1915 eruption of Lassen Peak (Hpw2). Collectively PEor and PEoa are equivalent to PEo and make up part of PEou in other drainages.</td>
<td></td>
<td></td>
<td>None reported.</td>
</tr>
<tr>
<td>HOLOCENE</td>
<td>Diatomite (Hd)</td>
<td>Diatomite (Hd)</td>
<td>Deposits of diatomite in ancient Butte Lake. Many other diatomite deposits in Butte Lake area are too small to show at map scale (1:50,000).</td>
<td>volcanic Features—"builtup" by lava flows. Disturbed sediment located peripheral to Cinder Cone lava flows for about 2 km (1.2 mi) west from present shores of Butte Lake, as kipukas in Fantastic Lava Beds flows from Cinder Cone, and on eastern shore of Butte Lake. Lakes—Hd around base of the Fantastic Lava Beds flows (Hmf1 and Hmf2) indicates that Butte Lake was considerably larger before the eruption of Cinder Cone in 1666 CE.</td>
<td></td>
<td></td>
<td>None reported.</td>
</tr>
</tbody>
</table>
Map Unit Properties Table

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol)</th>
<th>Geologic Map Graphic (Symbol)</th>
<th>GIS Data</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1917 CE, phreatic deposit, May-June (Hp17)</td>
<td>Lassen volcanic center, Twin Lakes sequence, younger (HPE-Lty)</td>
<td>Map 1 (in pocket)</td>
<td>P poorly sorted, partly indurated, thin to thick beds of lithic ash, lapilli, and blocks deposited in 1917. Matrix is generally very fine, indurated, and pale-yellowish-brown ash. Thins abruptly from several meters on crater rim (northern edge of Lassen Peak summit) to a few centimeters at edge of deposit.</td>
<td>Volcanic Features—tephra (ash). Consists mainly of material derived from dacite dome of Lassen Peak. Ejected in steam-blast eruptions from crater in the northwestern part of the Lassen Peak summit.</td>
<td>Volcanic Hazards—steam explosions from Lassen volcanic center.</td>
<td>Recent Volcanic Activity—deposited mainly during May and June 1917.</td>
<td></td>
</tr>
<tr>
<td>1915 CE, viscous debis-flow deposits, 22 May (Hpw2)</td>
<td>Slope-movement deposits (HPEam)</td>
<td></td>
<td>Nonsorted, unconsolidated, nonbedded debris-flow deposits with lapilli and blocks, greater than 1 m (3 ft) and rarely to 2 m (7 ft) across, in a sandy to silt matrix. Generally lobate with scarp-like margins as high as 2 m (7 ft). Thickness ranges from a few centimeters to about 3 m (10 ft).</td>
<td>Volcanic Features—dominated by banded and light-colored pumice of the 22 May 1915 eruption but also contains fragments of Hd9, Hd4, and Pedi. Lakes—created Hat Lake, adjacent to Devastated Area, in 1915.</td>
<td>Volcanic Hazards—pyroclastic flows are extremely hazardous due to their high speeds and temperatures. Slope Movements—debris flows. Exposed in the middle to lower Devastated Area on northeastern side of Lassen Peak and in drainages of Lost Creek and Hat Creek near Old Station.</td>
<td>Recent Volcanic Activity—deposited 22 May 1915.</td>
<td></td>
</tr>
<tr>
<td>1915 CE, pumice-fall deposit, 22 May (Hpw2)</td>
<td></td>
<td></td>
<td>Well-sorted, unconsolidated, thick-to-thin beds of dacitic (precise SiO2 content not provided; see table 1 for general range) pumice. Mapped on northern and eastern sides of Lassen Peak, where thickness generally exceeds 2 m (7 ft).</td>
<td>Volcanic Features—tephra (pumice). Consists of blocks, lapilli, and ash.</td>
<td>Volcanic Hazards—tephra erupted from Lassen Peak on afternoon of 22 May 1915.</td>
<td>Recent Volcanic Activity—deposited 22 May 1915.</td>
<td></td>
</tr>
<tr>
<td>1915 CE, pyroclastic-flows and debris-flows, 22 May (Hpw2)</td>
<td></td>
<td></td>
<td>Nonsorted, unconsolidated, nonbedded material with lapilli and blocks of Hd9, Hd4, and Pedi as large as 3 m (10 ft) in a sandy to silt matrix. Blocks of banded pumice with dark-gray andesitic (59.7%–61.0% SiO2) and light-gray to nearly white dacitic (64.2%–66.8% SiO2). Layers are conspicuous and diagnostic. Contains abundant fragments of wood, some charred, including numerous decayed logs lying in positions pointing downslope away from summit of Lassen Peak.</td>
<td>Volcanic Features—pyroclastic flows. Consists of pyroclastic-flow and associated debris-flow deposits erupted on the afternoon of 22 May 1915 that grade into other middle in Distastated Area.</td>
<td>Volcanic Hazards—pyroclastic flows are extremely hazardous due to their high speeds and temperatures. Slope Movements—debris flows. Exposed in the middle to lower Devastated Area on northeastern side of Lassen Peak and in drainages of Lost Creek and Hat Creek near Old Station.</td>
<td>Recent Volcanic Activity—deposited 22 May 1915.</td>
<td></td>
</tr>
<tr>
<td>1915 CE, dacite flow, 19–20 May (Hd9)</td>
<td>Lassen volcanic center, Twin Lakes sequence, younger (HPE-Lty)</td>
<td>Map 1 (in pocket)</td>
<td>Dacite (64%–65% SiO2) erupted from vent at summit of Lassen Peak that was reopened by phreatic explosion on evening of 19 May 1915. Lava filled crater and flowed through notch on western side of summit and approximately 300 m (1,000 ft) down western flank. Another similar flow on northeastern side of Lassen Peak.</td>
<td>Volcanic Features—lava flows. Was still fluid enough on 22 May, two days after the eruption, to partially slump back into the crater created by pyroclastic eruption (Hpw2). Has uneroded, spiny ash surface with 5–15 m (16–50 ft) of relief.</td>
<td>Volcanic Hazards—lava flows are one type of hazard at Lassen volcanic center; other hazards are pyroclastic flows, tephra, lahars, and construction of lava domes.</td>
<td>Recent Volcanic Activity—deposited 19–20 May 1915.</td>
<td></td>
</tr>
<tr>
<td>1915 CE, avalanche and debris-flows, 19–20 May (Hp9)</td>
<td>Composite unit: Avalanche deposit—composed of nonsorted, unconsolidated, nonbedded debris from Hd4, Pedi, Hpc, and much wood debris. Debris-flow deposits—composed of nonsorted, unconsolidated, generally nonbedded sand to boulders as much as 3 m (10 ft) in diameter of fragments of Hd4, Pedi, Hpc, and logs derived from underlying avalanche deposit of 19–20 May 1915 or adjacent areas of forest. Debris-flow was deposited immediately following avalanche.</td>
<td></td>
<td>Volcanic Features—avalanche deposit occurs in Devastated Area on northeastern side of Lassen Peak and across low divide northeast of Emigrant Pass in Hat Creek drainage. Debris-flow deposit occurs in Devastated Area on northeastern side of Lassen Peak and down Lost Creek drainage to a few kilometers east of Twin Bridges. Glacial Features—avalanche deposit originated in cirque at the top of the eastern face of Lassen Peak.</td>
<td>Volcanic Hazards—Hd9, which was thrown onto the snow-covered upper flanks and summit of Lassen Peak, initiated avalanche of snow and rock (Hw9). Slope Movements—debris flows. Near margins, numerous standing trees predating deposits are scarred from collisions with boulders and logs carried in debris flows. Piles of boulders and logs behind large trees or boulders are common along margins of deposit.</td>
<td>Recent Volcanic Activity—deposited late in the evening of 19 May 1915 and early morning of 20 May 1915.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1915 CE, pyroclastic deposits, 19 May (Hp9)</td>
<td></td>
<td></td>
<td>Nonsorted, unconsolidated, nonbedded deposit of blocks to fine lithic ash, consisting entirely of dense clasts of Hd4 and Pedi. Ranges from a layer approximately 4 m (13 ft) thick to a field of discontinuous blocks.</td>
<td>Volcanic Features—pyroclastic flow. Preserved only in Lassen Peak summit area.</td>
<td>Volcanic Hazards—erupted by pyroclastic explosion that opened summit crater through dacite dome (Hd4). Recent Volcanic Activity—emplaced late in evening of 19 May 1915.</td>
<td>Recent Volcanic Activity—emplaced late in evening of 19 May 1915.</td>
<td></td>
</tr>
<tr>
<td>1915 CE, dacite dome, 14–19 May (Hd4)</td>
<td>Dacite (64%–65% SiO2) that forms remnants of a small dome at summit of Lassen Peak.</td>
<td></td>
<td></td>
<td>Volcanic Features—lava dome. The dome filled the crater excavated by phreatic explosions that began on 30 May 1914, and was partially disrupted by single large phreatic explosion on evening of 19 May 1915.</td>
<td>Volcanic Hazards—construction of lava domes is one type of hazard at Lassen volcanic center; other hazards include pyroclastic flows, tephra, lahars, and lava flows.</td>
<td>Recent Volcanic Activity—emplaced between about 14 May and evening of 19 May 1915.</td>
<td></td>
</tr>
</tbody>
</table>
The units listed here are those mapped within Lassen Volcanic National Park. Refer to "lavo_geology.pdf" for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clynne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol)</th>
<th>Geologic Map Graphic (Symbol)</th>
<th>Map 1 (in pocket)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEISTOCENE</td>
<td>Basaltic andesite of Cinder Cone, Fantastic Lava Beds, flow 2 (Hmf2)</td>
<td>Lassen volcanic center, Twin Lakes sequence, younger (HPE-Ly)</td>
<td>Cinder (Hmfc)</td>
<td>Thin to thick, block-lava flow of basaltic andesite (55.1%–56.2% SiO₂) erupted from southern base of Cinder Cone. Hmf2 consists of cinders related to the explosion of Hmf2.</td>
<td>Volcanic Features—lava flows and cinder cone. Lakes—lava flowed in a channel across Hmf1 and entered Butte Lake.</td>
<td>Volcanic Hazards—this cinder cone sequence is part of Lassen volcanic center (vs. regional volcanism).</td>
<td>Recent Volcanic Activity—deposited during a single volcanic episode in 1666 CE.</td>
</tr>
<tr>
<td>Basaltic andesite of Cinder Cone, Fantastic Lava Beds, flow 1 (Hmf1)</td>
<td>Cinder (Hmfc)</td>
<td></td>
<td></td>
<td>Block-lava flow as thick as 20 m (70 ft) of basaltic andesite (56.4%–57.3% SiO₂). Erupted from southern base of Cinder Cone. Comprises Cinder Cone and a ring of dense agglutinate bombs as large as 3 m (10 ft) across at base of Cinder Cone.</td>
<td>Volcanic Features—lava flows. Lakes—small outcrop on eastern shore of Butte Lake demonstrates that Hmf1 lava underlies much of the lake basin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basaltic andesite of Cinder Cone, Painted Dunes, flow 2 (Hmp2)</td>
<td>Cinder (Hmcp)</td>
<td></td>
<td></td>
<td>Basaltic andesite (54.1%–56.1% SiO₂). Erupted from remnant cone at southern base of Cinder Cone. Thickness up to 40 m (130 ft). Hmpci consists of cinders related to the explosion of Hmp1.</td>
<td>Volcanic Features—lava flows, tephra, and cinder cone. Covered by Painted Dunes ash deposit that characterizes Painted Dunes area of the park. Ash-covered kipukas in area south of continuous outcrop indicate that flow is more extensive and was partially buried by younger flows (Hmf2, Hmf1). Lakes—created Snag Lake.</td>
<td>Volcanic Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
<td>Volcanic Center (Lassen)—emplaced 65,800 years ago.</td>
</tr>
<tr>
<td>Basaltic andesite of Cinder Cone, Painted Dunes, Old Bench flow (Hmo)</td>
<td>Cinder (Hmcp)</td>
<td></td>
<td></td>
<td>Basaltic andesite (53.5%–54.1% SiO₂). Eruption from remnant cone at the eastern base of Cinder Cone. Thickness up to 10 m (33 ft).</td>
<td>Volcanic Features—lava flows and tephra. Almost completely covered with a several-meter-thick deposit of weakly oxidized ash from later eruptions of Cinder Cone; only a few pinnacles of Hmo lava extend through the ash. Flow was more extensive than shown on the map and is mostly buried by Painted Dunes and Fantastic Lava Beds flows.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eocene</td>
<td>Andesite of Hat Mountain (Peh)</td>
<td>Cinder (Peahc)</td>
<td></td>
<td>Andesite (58.0%–61.6% SiO₂). Flow passes through brecciated cone of agglutinated cinder and spatter. Thickness generally 100 m (330 ft). Peahc consists of cinders and agglutinate cones.</td>
<td>Volcanic Features—lava flows and cinder cone. Glacial Features—entire edifice has been glaciated; original block surface of lava flows was removed by erosion.</td>
<td>Volcanic Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
<td>Volcanic Center (Lassen)—emplaced 82,000 years ago.</td>
</tr>
<tr>
<td>Late Cretaceous</td>
<td>Andesite of Eagle Peak (PEae)</td>
<td></td>
<td></td>
<td>Heterogeneous unit formed by mixing of rhodacite of Eagle Peak (PEae) and andesite magmas. Variable lithology (61%–68% SiO₂).</td>
<td>Hydrothermal Features—poorly exposed in small area of mostly oxidized and altered rock between Ski-Heil Peak and Eagle Peak.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basaltic andesite of Fairfield Peak (PEmf)</td>
<td>Cinder (Pefmc)</td>
<td></td>
<td></td>
<td>Basaltic andesite (54.4% SiO₂). Erupted from vent marked by agglutinate cone of Fairfield Peak. Peimfc consists of cinder and agglutinate cones.</td>
<td>Volcanic Features—short stubby lava flow and cinder cone. Cone is composed of scoria, cinders, and blocks of vesicular lava armored by agglutinated surface. Glacial Features—original block surface of flow has been removed by glacial erosion. Till, younger glaciation (Pety) buries part of PEmf.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geologic History

The units listed here are those mapped within Lassen Volcanic National Park. Refer to “lavo.geology.pdf” for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in “Geologic History” column are from Clynne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Map Unit</th>
<th>Geologic Map Graphic (Symbol) Map 1 (in pocket)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAVA PLUTONIC</td>
<td>Andesite of Crater Butte (PEarpci), Cinders (PEacci)</td>
<td>Lassen volcanic center, Twin Lakes sequence, younger (HPE-Lty)</td>
<td>Andesite (60.4%–60.5% SiO₂) lava flow. Erupted from vent marked by agglutinate cone. Thickness as much as 150 m (490 ft). PEacci consists of cinder and agglutinate cones.</td>
<td>Volcanic Features—lava flows and cinder cone. Glacial Features—original block surface of flow has been removed by glacial erosion.</td>
<td>Volcanic Center (Lassen)—emplaced 93,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Andesite of basaltic andesite of Cluster Lakes (PEaci), Cinders (PEacc)</td>
<td>Lassen volcanic center, Twin Lakes sequence, older (HPE-Lts)</td>
<td>Andesite (56.6%–57.9% SiO₂) of two lava flows, one near vent and another in Box Canyon. Erupted from vent marked by agglutinate cone (PEaci). PEaci consists of cinder and agglutinate cones.</td>
<td>Volcanic Features—lava flows and cinder cone. Glacial Features—original block surfaces have been removed by glacial erosion.</td>
<td>Volcanic Center (Lassen)—estimated age, 300,000–250,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Andesite of Raker Peak (PEarp), Cinders (PEarc)</td>
<td>Lassen volcanic center, Eagle Peak sequence (HPE-Le)</td>
<td>Andesite (57.4%–58.7% SiO₂) lava flows. PEarp consists of cinder and agglutinate cones.</td>
<td>Volcanic Features—lava flows, also forms a lava cone with agglutinate scoria at vent. Raker Peak (2,281 m, 7,483 ft) was the vent for the andesite of Raker Peak. Glacial Features—nearly entire unit, except the northern distal portions of lava flows and summit area, has been glaciated.</td>
<td>Volcanic Center (Lassen)—emplaced 270,000 ± 18,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Chaos Crags, tephra, emplaced hot from domes B–F (Hcco)</td>
<td>Lassen volcanic center, Chaos Crags, and another in Box Canyon. Erupted from vent marked by agglutinate cone (Hcco) and dome D (Hrcd). Deposited at the base of domes.</td>
<td>Lateral sorted deposits of nonbedded blocks from Chaos Crags domes B–F (PErcb, PErcc, PErdc, PErcf, and PErce). Deposited at the base of domes.</td>
<td>Volcanic Features—initially talus was emplaced while lava was still hot.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Chaos Crags, dome E (Hrce)</td>
<td>Lassen volcanic center, Chaos Crags, and another in Box Canyon. Erupted from vent marked by agglutinate cone (Hcco). Consists entirely of fragments from dome E (Hrce).</td>
<td>Rhyodacite (67%–68% SiO₂) lava dome. Erupted into the scar created by partial collapse of dome E (Hrce) and covered its vent.</td>
<td>Volcanic Features—lava dome. Part of Chaos Crags, which consists of six rhyolitic andesite domes (Hrce–Hrcf) and associated pyroclastic deposits.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Chaos Crags, dome F (Hrce)</td>
<td>Lassen volcanic center, Chaos Crags, and another in Box Canyon. Erupted from vent marked by agglutinate cone (Hcco). Consists entirely of fragments from dome E (Hrce).</td>
<td>Nonsorted, unconsolidated, nonbedded deposit of fine rubble to blocks commonly as large as 2 m (7 ft) across, a few as large as 10 m (30 ft) across. Deposit on eastern side of Chaos Crags. Consists entirely of fragments from dome E (Hrce).</td>
<td>Volcanic Features—pyroclastic flow. Emplaced while lava was still hot. Formed by partial collapse of dome E (Hrce) before emplacement of dome F (Hrce) in resulting avalanche scar.</td>
<td>Volcano Hazards—pyroclastic flows are extremely hazardous due to their high speeds and temperatures.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Chaos Crags, dome D (Hrce)</td>
<td>Lassen volcanic center, Chaos Crags, and another in Box Canyon. Erupted from vent marked by agglutinate cone (Hcco). Consists entirely of fragments from dome E (Hrce).</td>
<td>Nonsorted, unconsolidated, nonbedded deposit of fine rubble to blocks as large as about 2 m (7 ft) across, a few to 10 m (33 ft). Consists of material derived from dome B (HRcb) and dome D (Hrcd).</td>
<td>Volcanic Features—pyroclastic flow. Emplaced hot. Formed by partial collapse of dome D (Hrcd). Resultant avalanche swept across surface and incorporated pyroclastic blocks from underlying dome B (HRcb). Blocks derived from dome D (HRcb) were either still hot from emplacement of the dome or were reheated in the hot deposit.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Chaos Crags, dome D (Hrce)</td>
<td>Lassen volcanic center, Chaos Crags, and another in Box Canyon. Erupted from vent marked by agglutinate cone (Hcco). Consists entirely of fragments from dome E (Hrce).</td>
<td>Rhyodacite (69% SiO₂) lava dome. Erupted from a vent now covered by the dome.</td>
<td>Volcanic Features—lava dome. Dome D has the highest elevation of the six Chaos Crags lava domes. Partial collapse of dome D produced a hot litchi pyroclastic flow (Hrdc).</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
</tbody>
</table>
The units listed here are those mapped within Lassen Volcanic National Park. Refer to "lavo_geology.pdf" for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clynne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol)</th>
<th>Geologic Map Graphic (Symbol)</th>
<th>Map 1 (in pocket)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEMI</td>
<td>Rhyodacite of Chaos Crags, dome C (Hrcc)</td>
<td></td>
<td></td>
<td>Dacite (68% SiO₂) lava dome. Erupted from a vent now covered by the dome.</td>
<td>Volcanic Features—lava dome. Rocks from Brokeoff Volcano (PEad) at summit of dome C indicate dome grew as a solid plug.</td>
<td>Volcano Hazards—Hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. Slope Movements—nearly vertical, northwest-facing cliff of dome C breaks away at edge of Chaos Jumbles and exposes strongly oxidized pink dacite of dome C’s interior.</td>
<td>Volcanic Center (Lassen)—emplaced 1,050 years ago. Chaos Jumbles (Hsj), which is composed primarily of Hrcc, was deposited 278 ± 28 years BP.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Chaos Crags, dome B (Hrdb)</td>
<td></td>
<td></td>
<td>Rhyodacite (69.5%–70% SiO₂) lava dome. Erupted from partially filled and buried the tuff cone of upper pyroclastic flow of unit Hpc.</td>
<td>Volcanic Features—relatively flat-topped lava dome. Lava flowed sluggishly north.</td>
<td>Volcano Hazards—pyroclastic flows are extremely hazardous due to their high speeds and temperatures.</td>
<td>Volcanic Center (Lassen)—emplaced 1,050 years ago.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Chaos Crags, pumiceous pyroclastic-flow and fall deposits (Hpc)</td>
<td></td>
<td></td>
<td>Includes three pumiceous pyroclastic flows, a coignimbrite (fallout tephra deposited from a pyroclastic flow) of nearly white rhyodacite pumice, and two tuff cones.</td>
<td>Volcanic Features—pyroclastic flow and tephra. Eruption of Hpc destroyed dome A (Hrca); blocks of dome A are common in proximal exposures of the upper pyroclastic flow of Hpc.</td>
<td>Volcano Hazards—Hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. In Manzanita Creek, upper pyroclastic flow transformed into a lahah and flowed nearly to the site of McCumber Reservoir.</td>
<td>Volcanic Center (Lassen)—emplaced 1,050 years ago.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Chaos Crags, dome A (Hrca)</td>
<td></td>
<td></td>
<td>Rhyodacite (69.5%–70% SiO₂) lava dome. Erupted into and partially filled tuff cone from which the lower and middle pyroclastic flows (Hpc) erupted.</td>
<td>Volcanic Features—lava dome mostly destroyed by the eruption of upper pyroclastic flow of Hpc; only a remnant of the original dome remains.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
<td>Volcanic Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
<tr>
<td></td>
<td>Lassen volcanic center, Eagle Peak sequence (HPE-Le)</td>
<td></td>
<td></td>
<td>Poorly sorted, unconsolidated, nonbedded volcanic ash blocks as large as 3 m (10 ft) across, consisting of dacite (68.0% SiO₂) that is lithologically identical to the dacite dome of Lassen Peak (PEd).</td>
<td>Volcanic Features—pyroclastic flow. Formed by hot, dome-collapse, pyroclastic flows during emplacement of Lassen Peak dacite dome (PED). Forms sheet at Manzanita Creek, upper Lost Creek. Also exposed in north-facing toe of Survivors Hill and present in subsurface at Emitter Pass (north of the Devastated Area parking lot).</td>
<td>Volcano Hazards—pyroclastic flows are extremely hazardous due to their high speeds and temperatures.</td>
<td>Volcanic Center (Lassen)—formed during emplacement of Lassen Peak dacite dome (PEd) 27,000 years ago.</td>
</tr>
<tr>
<td>LATE PLEISTOCENE</td>
<td>Dacite of Lassen Peak, lithic pyroclastic-flow deposits forming part of collapse of dome (PEpl)</td>
<td></td>
<td></td>
<td>Dacite (68% SiO₂) lava dome. Erupted from a vent now covered by the dome.</td>
<td>Volcanic Features—pyroclastic flow. Formed by hot, dome-collapse, pyroclastic flows during emplacement of Lassen Peak dacite dome (PED). Forms sheet at Manzanita Creek, upper Lost Creek. Also exposed in north-facing toe of Survivors Hill and present in subsurface at Emitter Pass (north of the Devastated Area parking lot).</td>
<td>Volcano Hazards—pyroclastic flows are extremely hazardous due to their high speeds and temperatures.</td>
<td>Volcanic Center (Lassen)—emplaced 27,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Dacite of Lassen Peak, dome (PED)</td>
<td></td>
<td></td>
<td>Large dacite dome, 2 km³ (0.6 mi³), covers its vent. Composition ranges from approximately 70% SiO₂ in northeast-projecting ridge to approximately 65.5% SiO₂ in spine low on northeastern side above upper Manzanita Creek, but bulk of dome is 66%–68% SiO₂.</td>
<td>Volcanic Features—world’s largest lava dome.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
<td>Volcanic Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Kings Creek, flows (PEK)</td>
<td></td>
<td></td>
<td>Thick rhyodacite (69.1%–70.3% SiO₂) lava flows that erupted from vent (small, poorly preserved tuff cone) at the eastern end of (what is now) the Lassen Peak parking lot.</td>
<td>Volcanic Features—lava flows. Glacial Features—although glaciated, flow morphology is well preserved.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
<td>Volcanic Center (Lassen)—emplaced 35,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Rhyodacite of Kings Creek, pumiceous pyroclastic-flow deposits (PEpk)</td>
<td></td>
<td></td>
<td>Poorly sorted, unconsolidated volcanic ash, with pumice blocks to approximately 1 m (3 ft) across. Pumice is light gray to white, glassy, coarsely pumiceous, and weathers to pale yellow.</td>
<td>Volcanic Features—pyroclastic flows and tephra (pumice). Tuff cone just east of Lassen Peak parking lot marks the vent. Glacial Features—original extent of PEpk was markedly reduced by glacial erosion.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
<td>Volcanic Center (Lassen)—emplaced 27,000 years ago.</td>
</tr>
</tbody>
</table>
The units listed here are those mapped within Lassen Volcanic National Park. Refer to "lavo_geology.pdf" for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clynne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit Graphic (Symbol)</th>
<th>GIS Data</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDDLE PLEISTOCENE</td>
<td>Rhodacite of Sunflower Flat, domes (PEr27)</td>
<td>Lassen volcanic center, Bumpass sequence (PE-Lb)</td>
<td>Overlapping complex of eight rhodacite (68.3%–70.0% SiO₂) domes.</td>
<td>Volcanic Features—lava domes. Erupted in a linear array north of Chaos Crags.</td>
<td>Glacial Features—overlain by lateral moraines of till of Anklin Meadows (Peta) on northern flank.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. Volcanic Center (Lassen)—emplaced 41,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Rhodacite of Sunflower Flat, pumiceous pyroclastic-flow deposits (PEpsf)</td>
<td>Lassen volcanic center, Eagle Peak sequence (HPE-Ea)</td>
<td>Poorly to moderately sorted, unconsolidated, volcanic ash with pumice blocks (rhodacite, 69.0%–69.3% SiO₂) as large as 50 cm (20 in) across.</td>
<td>Volcanic Features—pyroclastic flows. Occurs as pyroclastic flows from Sunflower Flat to Lost Creek and as proximal fall deposits (not mapped separately) forming a pumice crater southeast of Sunflower Flat.</td>
<td>Glacial Features—presence of pumice from Chaos Crags eruption (Hpa).</td>
<td>Volcano Hazards—pyroclastic flows are extremely hazardous due to their high speeds and temperatures. Volcanic Center (Lassen)—emplaced 43,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Rhodacite of Krummholz (PErkr)</td>
<td>Lassen volcanic center, Eagle Peak sequence (HPE-La)</td>
<td>Rhodacite (68.3%–69.3% SiO₂) flow. Small dome marks the vent.</td>
<td>Volcanic Features—lava dome and lava flows. Mostly obscured by thick blanket of pumice from Chaos Crags eruption (Hpc).</td>
<td>Geologic Features—dome and flow are glaciated.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. Volcanic Center (Lassen)—emplaced 50,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Rhodacite of section 27 (PEr27)</td>
<td>Lassen volcanic center, Eagle Peak sequence (HPE-La)</td>
<td>Rhodacite (68.7%–69.8% SiO₂) flows on the northern flank of Lassen Peak. Vent was probably in the area now occupied by Lassen Peak.</td>
<td>Volcanic Features—lava flows. Glacial Features—flows are slightly to moderately glaciated, and original flow morphology and pumiceous carapace (outer "shell" or covering) are preserved in some places.</td>
<td>Glacial Features—overlain by lateral moraines of till of Anklin Meadows (Peta).</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. Volcanic Center (Lassen)—emplaced 66,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Rhodacite of Eagle Peak, dome and flow (Pere)</td>
<td>Lassen volcanic center, Bumpass sequence (PE-Lb)</td>
<td>Rhodacite (71.0%–71.6% SiO₂) lava flow with summit dome that overlies its vent.</td>
<td>Volcanic Features—lava dome and lava flows. Glacial Features—although glaciated, flow morphology is well preserved.</td>
<td>Glacial Features—present within limits of late Pleistocene glaciation.</td>
<td>Volcano Hazards—pyroclastic flows are extremely hazardous due to their high speeds and temperatures. Volcanic Center (Lassen)—emplaced 66,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Rhodacite of Eagle Peak, pumiceous pyroclastic-flow deposits (PErpe)</td>
<td>Lassen volcanic center, Bumpass sequence (PE-Lb)</td>
<td>Rhodacite (70.9% SiO₂) pumice pyroclastic flow, similar in composition to Perea. Contains white, poorly sorted, matrix-supported, unconsolidated ash, lapilli, and pumice blocks. Erupted from a vent now covered by dome and lava flow (PEpe). Most extensive area of outcrop is west of Manzanita Lake, where deposit occurs as a single approximately 2-m (7-ft) thick bed.</td>
<td>Volcanic Features—pyroclastic flows. Immediately preceded eruption of and is the same age as the associated dome and lava flow (Pere). Glacial Features—preserved only within limits of late Pleistocene glaciation.</td>
<td>Glacial Features—present within limits of late Pleistocene glaciation.</td>
<td>Volcano Hazards—pyroclastic flows are extremely hazardous due to their high speeds and temperatures. Volcanic Center (Lassen)—emplaced 66,000 years ago.</td>
</tr>
<tr>
<td>MORE RECENTLY</td>
<td>Rhodacite of Dench Meadows (Perr)</td>
<td>Lassen volcanic center, Bumpass sequence (PE-Lb)</td>
<td>Thick rhodacite (69.4% SiO₂) lava flow. Vent location unknown but probably east of Paradise Meadows.</td>
<td>Volcanic Features—lava flow. Glacial Features—five discrete outcrop areas are separated by extensive cover of till (Pey and Peta). Pumiceous upper surface of flow has been removed by glacial erosion.</td>
<td>Glacial Features—five discrete outcrop areas are separated by extensive cover of till (Pey and Peta). Pumiceous upper surface of flow has been removed by glacial erosion.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. Volcanic Center (Lassen)—emplaced 193,000 ± 11,000 years ago. Last unit of Bumpass sequence to be emplaced.</td>
</tr>
<tr>
<td></td>
<td>Dacite of Reading Peak (PEdr)</td>
<td>Lassen volcanic center, Bumpass sequence (PE-Lb)</td>
<td>Complex of dacite (64.9%–68.9% SiO₂) lava domes. Lithology and composition of dacite is slightly variable.</td>
<td>Volcanic Features—lava domes. Dome complex rained Lassen Peak in volume at the time of emplacement. Glacial Features—extensively glaciated. Includes protalus ramps and small moraines on north-facing upper slopes of domes.</td>
<td>Glacial Features—extensively glaciated. Includes protalus ramps and small moraines on north-facing upper slopes of domes.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. Volcanic Center (Lassen)—emplaced 212,000 ± 5,000 years ago.</td>
</tr>
</tbody>
</table>
The units listed here are those mapped within Lassen Volcanic National Park. Refer to "lavo_geology.pdf" for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clyne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol)</th>
<th>Geologic Map Graphic (Symbol)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDDLE PLIOCENE</td>
<td></td>
<td></td>
<td>Dacite of Bumpass Mountain (PEdb)</td>
<td>Dacite (64.1%–64.4% SiO₂) dome and lava flow. Thickness greater than100 m (300 ft). PEdbbr is explosion breccia related to PEdb.</td>
<td>Volcanic Features—lava dome and lava flows. Lava flow emerged from beneath the dome at Bumpass Mountain and flowed southeast for several kilometers, covering approximately 12 km² (5 mi²). Remnants of a fragmental deposit related to dacite of Bumpass Mountain (PEdb) are preserved in area south and west of Bumpass Mountain. Hydrothermal Features—the Bumpass Hell thermal area occupies the area of the Bumpass Mountain vent. Glacial Features—extensively glaciated; original glapy carapace of dome completely stripped. Glacial erosion greatly reduced original extent of lava flow.</td>
<td>Volcanic Center (Lassen)—238,000 ± 8,000 years ago.</td>
</tr>
<tr>
<td>Dacite of Crescent Crater (PEcs)</td>
<td></td>
<td></td>
<td>Lithologically and compositionally zoned unit composed of dacite (65.6% SiO₂) dome and thick rhyodacite (68.9% SiO₂) lava flow. Dome covers the vent.</td>
<td>Volcanic Features—lava dome and lava flows. Glacial Features—depression at the summit is a cirque that exposes interior of dome.</td>
<td></td>
<td>Volcanic Center (Lassen)—236,000 ± 1,000 years ago.</td>
</tr>
<tr>
<td>Dacite of Ski Heil Peak (PEsd)</td>
<td></td>
<td></td>
<td>Dacite (64.2%–66.5% SiO₂) dome that covers its vent.</td>
<td>Volcanic Features—lava dome. Summit area of dome is covered by pumiceous pyroclastic-flow deposits (PEpe) of Eagle Peak. Glacial Features—extensively glaciated.</td>
<td></td>
<td>Volcanic Center (Lassen)—244,000 ± 10,000 years ago.</td>
</tr>
<tr>
<td>Dacite of Mount Helen (PEdh)</td>
<td></td>
<td></td>
<td>Large dacite (65.5% SiO₂) dome forming Mount Helen. Vent was beneath Mount Helen on steep flank of Brokeoff Volcano.</td>
<td>Volcanic Features—lava dome and lava flows. Some lava flowed eastward towards Kings Creek Meadows to produce short, thick lava flow. Glacial Features—extensively glaciated.</td>
<td></td>
<td>Volcanic Center (Lassen)—249,000 ± 12,000 years ago.</td>
</tr>
<tr>
<td>Dacite under Mount Helen (PEduh)</td>
<td></td>
<td></td>
<td>Dacite (64.2% SiO₂) that forms small remnant of dome on northern flank of Mount Helen.</td>
<td>Volcanic Features—lava dome. Dacite of Mount Helen (PEdh) buried much of PEduh. Glacial Features—extensively glaciated. Only a small area of the interior of the dome remains.</td>
<td></td>
<td>Volcanic Center (Lassen)—estimated age, 260,000–250,000 years ago.</td>
</tr>
<tr>
<td>Dacite of Summit Creek (PEdsc)</td>
<td></td>
<td></td>
<td>Thick flow and associated fragmental deposits of dacite (65.0% SiO₂) exposed in Kings Creek drainage. Location of source vent is unknown but is probably located near Reading Peak.</td>
<td>Volcanic Features—lava flows. Glacial Features—source vent is probably buried beneath glacial deposits or younger dacites. Flow was extensively glaciated; its original form is poorly preserved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dacite of Lassen Peak parking lot (PEdpl)</td>
<td></td>
<td></td>
<td>Dacite (63.7% SiO₂) lava dome.</td>
<td>Volcanic Features—lava dome. Glacial Features—extensively glaciated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Map Unit (Symbol)</td>
<td>Geologic Map Graphic (Symbol)</td>
<td>Map 1 (in pocket)</td>
<td>Geologic Description</td>
<td>Geologic Features and Processes</td>
<td>Geologic Issues</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MIDDLE PLEISTOCENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dacite of Vulcans Castle (PEva)</td>
<td></td>
<td></td>
<td></td>
<td>Dacite (65.6%–66.5% SiO₂) lava dome.</td>
<td>Volcanic Features—lava dome. Glacial Features—highly sculpted by glacial erosion and slope movements.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. Slope Movements—lava dome susceptible to slope movement.</td>
</tr>
<tr>
<td>Dacite of hill 8283 (PEi82)</td>
<td></td>
<td></td>
<td></td>
<td>Dacite (65.7%–66.4% SiO₂) dome and lava flow. Hill 8283 marks vent.</td>
<td>Volcanic Features—lava dome and lava flows. Lava flowed 3.5 km (2.2 mi) north toward Lost Creek. Glacial Features—flow is heavily glaciated. Carapace is entirely stripped. Dome is also heavily glaciated, but remnants of its pumiceous carapace are preserved.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. Slope Movements—lava dome susceptible to slope movement.</td>
</tr>
<tr>
<td>Dacite of upper Manzanita Creek (PEdmz)</td>
<td></td>
<td></td>
<td></td>
<td>Dacite (66.0%–67.0% SiO₂) dome.</td>
<td>Volcanic Features—lava dome. Glacial Features—dome is heavily glaciated. Streams and Waterfalls—glacial and fluvial erosion along Manzanita Creek cut the single dome into several remnants.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
<tr>
<td>Rhyodacite of Manzanita Chute (PErvz)</td>
<td></td>
<td></td>
<td></td>
<td>Rhyodacite (69.3% SiO₂) lava flow and dome. Erupted from vent beneath summit dome.</td>
<td>Volcanic Features—lava dome and lava flows. Lava flowed downhill (northwest) about 3 km (2 mi). Glacial Features—although unit is older than several glacial advances, flow is unglaciated and has well-preserved flow morphology such as well-defined crescentic flow ridges and a pumiceous carapace.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
<tr>
<td>Rhyodacite of Mount Conard (PErmc)</td>
<td></td>
<td></td>
<td></td>
<td>Rhyodacite (69.1%–71.0% SiO₂) lava flows on northern, western, and southeastern flanks of Mount Conard, including remnant of lava flow at Terrace Lake.</td>
<td>Volcanic Features—lava flows. Appear to have flowed southward from a yet-to-be-identified vent that was high on eastern flank of Brokeoff Volcano.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
<tr>
<td>Rhyodacite of Loomis Peak (PEfmin)</td>
<td></td>
<td></td>
<td></td>
<td>Thick rhyodacite (68.6% SiO₂) lava flow, which erupted from vent located at approximately Loomis Peak and flowed northwest.</td>
<td>Volcanic Features—lava flows. One of the oldest units of Lassen domefield. Glacial Features—extensive glacial erosion of flow margins.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes.</td>
</tr>
<tr>
<td>MIDDLE PLEISTOCENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andesite of Mount Diller (PEad)</td>
<td></td>
<td></td>
<td></td>
<td>Andesite (61.2%–63.0% SiO₂) lava flows erupted from vent high on northern flank of Brokeoff Volcano. Vent is not preserved. Thickness of flow is 300–400 m (1,000–1,300 ft) on ridge oriented northwest from Mount Diller.</td>
<td>Volcanic Features—remnant of composite volcano and lava flows. Youngest lava of the Diller sequence. Forms the uppermost slopes of Brokeoff Volcano on its western, northern, and northeastern flanks. Hydrothermal Features—flows bordering core of Brokeoff Volcano are hydrothermally altered to varying degrees.</td>
<td>Volcano Hazards—none at present; part of extinct Brokeoff Volcano. Slope Movements—hydrothermally altered core of Brokeoff Volcano is prone to landslides.</td>
</tr>
<tr>
<td>Andesites of Diller sequence, undivided (PEad)</td>
<td></td>
<td></td>
<td></td>
<td>Andesite (60%–63% SiO₂) lava flows.</td>
<td>Volcanic Features—lava flows. Outcrops occur on northern and western sides of Lassen domefield. Glacial Features and Processes—younger glacial and volcanic deposits obscure vents and extent of these lava flows.</td>
<td>Volcano Hazards—hazards at Lassen volcanic center include pyroclastic flows, tephra, lahars, lava flows, and the construction of lava domes. Slope Movements—lava dome susceptible to slope movement.</td>
</tr>
<tr>
<td>Map Unit</td>
<td>Age</td>
<td>Map Data</td>
<td>Geologic Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andesite of Digger Creek (PEadc)</td>
<td>MIDDLE PLEISTOCENE</td>
<td>GIS Data</td>
<td>Andesite (61.3%–61.9% SiO₂) lava flows erupted from vent that is not preserved but was higher on western flank of Brokeoff Volcano than hill 819B. Thickness 30–60 m (100–200 ft).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andesite of Manzanita Creek (PEar)</td>
<td>MIDDLE PLEISTOCENE</td>
<td>GIS Data</td>
<td>Andesite (62.6% SiO₂) block-lava flow. Erupted from vent marked by small cinder cone south of Manzanita Lake that consists of PEamzc. PEamzc consists of cinder and agglutinate cones.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andesite of Glassburner Meadows (PEag)</td>
<td>MIDDLE PLEISTOCENE</td>
<td>GIS Data</td>
<td>Andesite (61.4%–61.7% SiO₂) lava flows erupted from unpreserved vent on southern flank of Brokeoff Volcano. Thickness 30–60 m (100–200 ft).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andesite of Bluff Falls quarry (PEabf)</td>
<td>MIDDLE PLEISTOCENE</td>
<td>GIS Data</td>
<td>Andesite (59.0%–59.1% SiO₂) lava flows erupted from unpreserved vent on eastern flank of Brokeoff Volcano. Thickness 30–60 m (100–200 ft).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andesite of Rice Creek (PEAR)</td>
<td>MIDDLE PLEISTOCENE</td>
<td>GIS Data</td>
<td>Andesite (62.4%–63.0% SiO₂) lava flows erupted from unpreserved vent on eastern flank of Brokeoff Volcano. Thickness 30–60 m (100–200 ft).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dacite of Twin Meadows (PEdt)</td>
<td>MIDDLE PLEISTOCENE</td>
<td>GIS Data</td>
<td>Dacite (66.1%–68.0% SiO₂) lava flows. Vent area not preserved. Thickness generally 100 m (330 ft); but as much as 200 m (660 ft).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geologic Description

<table>
<thead>
<tr>
<th>Map Unit</th>
<th>Geologic Features and Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesite of Digger Creek (PEadc)</td>
<td>Volcanic Features—lava flows. Forms the upper slopes of Brokeoff Volcano on its western flank. Lava flowed west and was diverted around dome of Red Rock Mountain.</td>
</tr>
<tr>
<td>Andesite of Manzanita Creek (PEar)</td>
<td>Volcanic Features—cinder cone and lava flows. Eroded cinder cone is built of andesite scoria. Lava flowed from cone west for 8 km (5 mi). Glacial Features—lava flow is unglaciated and retains considerable original flow morphology.</td>
</tr>
<tr>
<td>Andesite of Glassburner Meadows (PEag)</td>
<td>Volcanic Features—lava flows. Forms uppermost slopes of Brokeoff Volcano on part of its southern flank. Glacial Features—lava flow was glaciated, and typical outcrops are small cliffs exposing flow interiors.</td>
</tr>
<tr>
<td>Andesite of Bluff Falls quarry (PEabf)</td>
<td>Volcanic Features—lava flows. Glacial Features—typical outcrops are glacially eroded cliffs that expose flow interiors.</td>
</tr>
<tr>
<td>Andesite of Rice Creek (PEAR)</td>
<td>Volcanic Features—lava flows. Unit is oldest of Diller sequence lavas. Glacial Features—typical outcrops are glacially eroded cliffs that expose flow interiors. Streams and Waterfalls—Kings Creek Falls spills over PEar bedrock.</td>
</tr>
<tr>
<td>Dacite of Twin Meadows (PEdt)</td>
<td>Volcanic Features—lava flows. Flows cap Mill Canyon sequence and form the most important widespread stratigraphic marker of Brokeoff Volcano. Flows occur high on southwestern flank of Brokeoff Volcano and form most of upper part of the mountain. Hydrothermal Features—cinder cone and lava flows from Brokeoff Volcano are strongly hydrothermally altered. Prevented or partly prevented by excessive heating, these rocks are highly altered and are difficult to determine. Streams and Waterfalls—Mill Creek Falls spills over PEdt bedrock.</td>
</tr>
</tbody>
</table>

Geologic Issues

Volcanic Center (Lassen)—estimated age, 451,000 ± 10,000 years ago.

Volcanic Center (Lassen)—not dated, but probably similar in age to andesite of Digger Creek (PEadc), 451,000 ± 10,000 years ago.

Volcanic Center (Lassen)—two different samples yielded K-Ar ages of 485,000 ± 12,000 and 477,000 ± 14,000 years ago.
<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit</th>
<th>Map Unit Properties Table</th>
<th>Geologic Map Graphic (Symbol)</th>
<th>Geologic History</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic Issues</th>
<th>Geologic Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Pliocene</td>
<td>Andesites of Maidu volcanic center, stage 1, undivided (Plami)</td>
<td>Not depicted. Note: Underlies park headquarters near Mineral, California.</td>
<td>Variety of basaltic andesite, andesite, and dacite lava flows forming the older part of Maidu volcanic center. Analyzed samples range in composition from 55%-65% SiO2; most are andesite. Flows and associated fragmental deposits erupted from central vents that cannot be precisely located.</td>
<td>Volcanic Features—lava flows.</td>
<td>None reported.</td>
<td>Volcanic Center (Maidu)—best estimate for the age is 2.375 million to 2.150 million years ago.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliocene</td>
<td>Rhyolites of Dittmar volcanic center, stage 3 (PEs3)</td>
<td>Isolated erosional remnants or buried lava domes and flows of rhyolite and andesite (70.9%-75.0% SiO2) on northern flank of Dittmar volcanic center. Includes rocks on Pilot Mountain, in Summit Creek and Grassy Swale, and just east of Hidden Lake.</td>
<td>Volcanic Features—lava domes and lava flows, part of composite volcano of Dittmar volcanic center. Glacial Features—rocks related to PEs3 have been more abundant prior to glaciation, and similar rocks undoubtedly lie buried beneath younger rocks of Lassen volcanic center and in the Caribou volcanic field.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volcano Hazards—lahar deposits were common during the volcano’s history. Pyroclastic flows are extremely hazardous due to their high speeds and temperatures.</td>
<td>None reported.</td>
<td>Volcanic Center (Dittmar)—K-Ar ages of three samples are 1.650 million ± 35,000, 1.785 million ± 35,000; and 2.315 million ± 29,000 years ago, and indicate a long eruptive history for early phase of this volcanic center.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliocene</td>
<td>Andesites of Dittmar volcanic center, stage 2, undivided (PEad2)</td>
<td>Andesite (58%-63% SiO2) and sparse dacite (63%-64% SiO2) lava flows that covered the flanks of the volcano. Erupted from vents probably located on upper slopes or at the summit of volcano and not preserved. Thickness 30-60 m (100-200 ft). Flows exposed in southern face of upper part of Dab Mau volcanic center.</td>
<td>Volcanic Features—lava flows and remnant of composite volcano. These flows dip radially away from core area of Dittmar volcanic center, which was centered just southwest of Mount Dab Mau. Glacial Features—typical outcrops consist of glacially eroded cliffs that expose flow interiors. Lakes—Juniper Lake developed in this lava flow.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None reported.</td>
<td>Volcanic Center (Dittmar)—K-Ar age of sample from hill 7399 is 827,000 ± 18,000 years ago.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliocene</td>
<td>Andesites of Dittmar volcanic center, stage 1, undivided (PEPld3)</td>
<td>Early part of Dittmar composite cone. Composed of lithologically diverse, generally thin, basaltic andesite to andesite lava flows and fragmental deposits and sparse pyroclastic pyroclastic deposits. Flows range in composition from 55.7% to 68% SiO2, but the majority are 55.7%-58.4% SiO2.</td>
<td>Volcanic Features—composite volcano, lava flows, pyroclastic flows, and tephra (fallout of lithic pyroclastic flow deposits). A pyroclast (68.4% SiO2) ash flow is exposed on northern flank of Kelly Mountain. Hydrothermal Features—hydrothermal alteration and poor exposure limit recognition of some deposits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volcano Hazards—lahar deposits were common during the volcano’s history. Pyroclastic flows are extremely hazardous due to their high speeds and temperatures.</td>
<td>Volcano Center (Dittmar)—K-Ar age of sample from hill 7399 is 827,000 ± 18,000 years ago.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The units listed here are those mapped within Lassen Volcanic National Park. Refer to "lavo_geology.pdf" for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clyde and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit</th>
<th>Map Unit Graphic</th>
<th>Geologic Map Graphic</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDDLE PLEISTOCENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basaltic andesite of Little Bunchgrass Meadow, cinders (PEmbgi)</td>
<td></td>
<td></td>
<td></td>
<td>Cinder and agglomerate cones composed of basaltic andesite (64.2% SiO2) of Little Bunchgrass Meadow (PEmbgi). Only cinders from this eruption occur within the park.</td>
<td>Volcanic Features—cinder cone.</td>
<td></td>
<td>Regional Volcanism—143,000 ± 6,000 years ago.</td>
</tr>
<tr>
<td>Tholeiitic basalt of Nobles Trail (PEnb)</td>
<td></td>
<td></td>
<td></td>
<td>Basaltic (48.0% SiO2) lava flow in Hat Creek northeast of Raker Peak. Location of vent is unknown, but is probably buried beneath younger lava flows of andesite of Hat Mountain (PEah) at the center of the park.</td>
<td>Volcanic Features—lava flow. Consists of multiple flow units of tube-fed pahoehoe. Glacial Features—weakly glaciated but well preserved.</td>
<td></td>
<td>Regional Volcanism—estimated age, 250,000–200,000 years ago.</td>
</tr>
<tr>
<td>Andesite and basaltic andesite of Prospect Peak, cinders (PEapci)</td>
<td></td>
<td></td>
<td></td>
<td>Block-lava flows that forms Prospect Peak shield volcano. Three types of lava flows erupted to build Prospect Peak: one basaltic andesite and two types of andesite (53%–58% SiO2). Earlier andesite lavas form bulk of edifice and the area beyond northern flank of volcano, north of Hat Creek fault. Late-stage basaltic andesite lava flows that erupted from summit crater cover some flanks of the volcanic</td>
<td>Volcanic Features—shield volcano and cinder cones. Shield is capped by cinder cone composed of PEapci with several flank vents near summit. Summit crater contains pumice from Chaos Crags eruption (1,050 years ago). Glacial Features—lower flanks on southern and western sides of volcano are buried by till and moraines.</td>
<td></td>
<td>Volcano Hazards—hazards from regional volcanoes include construction of cinder cones, production of lava flows, and emission of tephra.</td>
</tr>
<tr>
<td>Andesite of West Prospect Peak (PEwp)</td>
<td>Regional volcanic rocks north and west of Lassen volcanic center (PE-Rnv)</td>
<td></td>
<td></td>
<td>Lava flows of two types of andesite (59.3%–61.2% SiO2) that form a steep-sided cone.</td>
<td>Volcanic Features—cinder cone and lava flows. Glacial Features—small cirque occupies northwestern flank just below the summit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basalt of Badger Flat (PEmbfi)</td>
<td></td>
<td></td>
<td></td>
<td>Basalt (51.3%–52.2% SiO2) lava flow and cinder cone. Thickness approximately 10 m (30 ft).</td>
<td>Volcanic Features—cinder cone and lava flows. Glacial Features—flow and cone were glaciated, and much till (PEty) was deposited on flow. At distal end of flow, original flow surface is preserved.</td>
<td></td>
<td>Regional Volcanism—estimated age, 400,000–300,000 years ago.</td>
</tr>
<tr>
<td>Andesite of Table Mountain (PEat)</td>
<td></td>
<td></td>
<td></td>
<td>Andesite (61.4% SiO2) lava flows that form a small shield volcano. Vent area is poorly preserved.</td>
<td>Volcanic Features—shield volcano and lava flows. Flow tops are conspicuously rubbly. Glacial Features—edifice was not glaciated.</td>
<td></td>
<td>Volcano Hazards—hazards from regional volcanoes include construction of cinder cones, production of lava flows, and emission of tephra. Volcano Hazards—hazards from regional volcanoes include construction of cinder cones, production of lava flows, and emission of tephra. Sesimc Activity—several faults oriented north–northwest slightly offset the volcano edifice. Sesimc Activity—several faults oriented north–northwest slightly offset the volcano edifice.</td>
</tr>
<tr>
<td>Andesites of Badger Mountain (PEabm)</td>
<td></td>
<td></td>
<td></td>
<td>Andesite (two types, 56.7%–62.7% SiO2) lava flows that formed a small shield volcano. Vent area is poorly preserved. Thickness up to 10 m (30 ft).</td>
<td>Volcanic Features—shield volcano and lava flows. Glacial Features—shield is glaciated on northwestern margin. Overlain by avalanche debris from Lassen Peak spread across glacial ice (PEsi).</td>
<td></td>
<td>Volcano Hazards—hazards from regional volcanoes include construction of cinder cones, production of lava flows, and emission of tephra. Sesimc Activity—several faults oriented north–northwest slightly offset the volcano edifice. Volcano Hazards—hazards from regional volcanoes include construction of cinder cones, production of lava flows, and emission of tephra. Sesimc Activity—several faults oriented north–northwest slightly offset the volcano edifice.</td>
</tr>
</tbody>
</table>

(LAVO Map Unit Properties Table, Page 13 of 18)
Geologic Description

Andesite of Butte Lake (PEab)
- Regional volcanic rocks north and west of Lassen volcanic center (PE-Riwa)
- Andesite (60.5% SiO₂) lava flow. Vent location unknown.

Andesite of section 22 (PEa22)
- Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
- Andesite (59.9% SiO₂) lava flows. Vent location unknown.

Geologic Features and Processes

Volcanic Features—lava flows.
- Glacial Features—lava flows heavily glaciated and mostly buried by till (PEty).

Andesite of section 22 (PEa22)
- Volcanic Features—lava flows.
- Glacial Features—lava flows heavily glaciated; surface features of flow are not preserved. Mostly buried by till (PEty).

Geologic Issues

Volcano Hazards—hazards from regional volcanoes include construction of cinder cones, production of lava flows, and emission of tephra.

Seismic Activity—lava flows are exposed in upthrown fault scarp east of Butte Lake.

Regional Volcanism—estimated age, 1 million–900,000 years ago.

Geologic History

Early Pleistocene
- **Andesite of Butte Lake (PEab)**
 - Regional volcanic rocks north and west of Lassen volcanic center (PE-Riwa)
 - Andesite (60.5% SiO₂) lava flow. Vent location unknown.

Early Pleistocene
- **Andesite of section 22 (PEa22)**
 - Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
 - Andesite (59.9% SiO₂) lava flows. Vent location unknown.

Volcanic Features—lava flows.
- Glacial Features—lava flows heavily glaciated and mostly buried by till (PEty).

Regional Volcanism—estimated age, 1 million–900,000 years ago.

Middle Pleistocene

Andesite and basalt of Mount Harknes (PEamh)
- Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
- Older basalt (51.8% SiO₂) and younger andesite (57.9% SiO₂) erupted from Mount Harkness shield volcano.
- Pemh consists of cinders.

Basaltic andesite of Huckleberry Lake (PEmhi)
- Basaltic andesite (53.1%–54.0% SiO₂) lava flows. Erupted from vent high on southern flank of Brokeoff Volcano. Vent is marked by small plug intruded into a cinder cone.
- Pemhi consists of cinder and agglutinate cones from this eruption.

Volcanic Features—cinder cone, lava dome, and lava flows.
- Glacial Features—lava flows heavily glaciated. Most of the cinder cone (intruded by small lava dome) was removed by glacial erosion.

Regional Volcanism—estimated age, 300,000 years ago.

Andesite and basaltic andesites of Sifford Mountain (PEbsm)
- Variety of lithologically distinct basalt and basaltic andesite (51.5%–57.4% SiO₂) block-lava flows that form the small shield volcano of Sifford Mountain. Eroded scoria cone at summit marks vent.
- Pebsmci consists of cinder and agglutinate cones from this eruption.

Andesite and basalt of Mount Harknes (PEamh)
- Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
- Older basalt (51.8% SiO₂) and younger andesite (57.9% SiO₂) erupted from Mount Harkness shield volcano.
- Pemh consists of cinders.

Basaltic andesite of Huckleberry Lake (PEmhi)
- Basaltic andesite (53.1%–54.0% SiO₂) lava flows. Erupted from vent high on southern flank of Brokeoff Volcano. Vent is marked by small plug intruded into a cinder cone.
- Pemhi consists of cinder and agglutinate cones from this eruption.

Volcanic Features—shield volcano and lava flows.
- Glacial Features—shield volcano and lava flows. Sifford Mountain is youngest regional shield volcano south of Lassen volcanic center and marks southern limit of young regional volcanism in Cascade arc.
- Glacial Features—Sifford Mountain shield is weakly glaciated and little eroded. More Pbsm may be present under till (PETy) east of Domingo Spring.

Regional Volcanism—estimated age, 1 million–900,000 years ago.

Andesite and basalt of Mount Harknes (PEamh)
- Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
- Older basalt (51.8% SiO₂) and younger andesite (57.9% SiO₂) erupted from Mount Harkness shield volcano.
- Pemh consists of cinders.

Andesite and basalt of Mount Harknes (PEamh)
- Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
- Older basalt (51.8% SiO₂) and younger andesite (57.9% SiO₂) erupted from Mount Harkness shield volcano.
- Pemh consists of cinders.

Basaltic andesite of Huckleberry Lake (PEmhi)
- Basaltic andesite (53.1%–54.0% SiO₂) lava flows. Erupted from vent high on southern flank of Brokeoff Volcano. Vent is marked by small plug intruded into a cinder cone.
- Pemhi consists of cinder and agglutinate cones from this eruption.

Volcanic Features—shield volcano and lava flows.
- Glacial Features—shield lava flows represent some of the youngest regional volcanism in southern Lassen Volcanic National Park.
- Glacial Features—a small cirque on the northern side of Mount Harkness exposes vent complex. Andesite lavas cascaded over glacial cliffs of Warner Valley and partly filled valley bottom. Blocky/jointed andesite lava on northeastern margin of mountain indicates confinement of flowing lava by ice. Basalt lava flows are best exposed on glacially eroded northern flank of volcano above Juniper Lake.
- Lakes—Pemh partly surrounds Juniper Lake.

Regional Volcanism—188,000 ± 32,000 years ago.

Andesite and basalt of Mount Harknes (PEamh)
- Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
- Older basalt (51.8% SiO₂) and younger andesite (57.9% SiO₂) erupted from Mount Harkness shield volcano.
- Pemh consists of cinders.

Andesite and basalt of Mount Harknes (PEamh)
- Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
- Older basalt (51.8% SiO₂) and younger andesite (57.9% SiO₂) erupted from Mount Harkness shield volcano.
- Pemh consists of cinders.

Basaltic andesite of Huckleberry Lake (PEmhi)
- Basaltic andesite (53.1%–54.0% SiO₂) lava flows. Erupted from vent high on southern flank of Brokeoff Volcano. Vent is marked by small plug intruded into a cinder cone.
- Pemhi consists of cinder and agglutinate cones from this eruption.

Volcanic Features—cinder cone, lava dome, and lava flows.
- Glacial Features—cinder cone, lava dome, and lava flows. Flows covered at least 18 km² (7 mi²) of the southern flank of Brokeoff Volcano. However, this regional mafic lava is unrelated to the Lassen volcanic center magmatic system, and its presence on the flank of Brokeoff Volcano marks the end of a viable Brokeoff Volcano magmatic system.

Regional Volcanism—estimated age, 300,000 years ago.

Andesite of Butte Lake (PEab)
- Regional volcanic rocks north and west of Lassen volcanic center (PE-Riwa)
- Andesite (60.5% SiO₂) lava flow. Vent location unknown.

Andesite of section 22 (PEa22)
- Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
- Andesite (59.9% SiO₂) lava flows. Vent location unknown.

Volcanic Features—lava flows.
- Glacial Features—lava flows heavily glaciated and mostly buried by till (PEty).

Regional Volcanism—estimated age, 1 million–900,000 years ago.

Andesite and basalt of Mount Harknes (PEamh)
- Regional volcanic rocks south and east of Lassen volcanic center (PE-Rae)
- Older basalt (51.8% SiO₂) and younger andesite (57.9% SiO₂) erupted from Mount Harkness shield volcano.
- Pemh consists of cinders.

Basaltic andesite of Huckleberry Lake (PEmhi)
- Basaltic andesite (53.1%–54.0% SiO₂) lava flows. Erupted from vent high on southern flank of Brokeoff Volcano. Vent is marked by small plug intruded into a cinder cone.
- Pemhi consists of cinder and agglutinate cones from this eruption.

Volcanic Features—cinder cone, lava dome, and lava flows.
- Glacial Features—cinder cone, lava dome, and lava flows. Flows covered at least 18 km² (7 mi²) of the southern flank of Brokeoff Volcano.

Regional Volcanism—estimated age, 300,000 years ago.
The units listed here are those mapped within Lassen Volcanic National Park. Refer to "lavo_geology.pdf" for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clynne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol)</th>
<th>Geologic Map Graphic (Symbol)</th>
<th>Map 1 (in pocket)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATE PLEISTOCENE</td>
<td>Basaltic andesite of Red Cinder Cone (PEbr22ci)</td>
<td></td>
<td></td>
<td>Basaltic andesite (53.1% SiO₂) block-lava flows. Erupted from northeasterly of a pair of vents collectively called Red Cinder Cone, 1 km (0.6 mi) northwest of Red Cinder. PEbr22ci consists of cinder and agglutinate cones from this eruption.</td>
<td>Volcanic Features—cinder cones and lava flows. Glacial Features—flows only slightly eroded by glaciers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basalt of Red Cinder Cone (PEbr25)</td>
<td></td>
<td></td>
<td>Basalt (52.1% SiO₂) lava flow. Erupted from the more southern vent in a pair of vents collectively called Red Cinder Cone. PEbr25 consists of cinder and agglutinate cones from this eruption.</td>
<td>Volcanic Features—cinder cone and lava flow. Most of the cinder cone built over the vent was destroyed by eruption of lava flow and by glaciation. Glacial Features—flow is short and thick and may have been confined by glacial ice. Lava flow was only slightly eroded by glaciers, but cinder cone was destroyed by eruption by lava flows and glaciation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basalt of section 25 (PEbr25)</td>
<td></td>
<td></td>
<td>Basalt (52.9% SiO₂) lava flow. Vent is cinder cone that forms hill 7711 at north-northwest end of Red Cinder chain. PEbr25 consists of cinder and agglutinate cones.</td>
<td>Volcanic Features—cinder cone and lava flow. Glacial Features—cinder cone and lava flow are weakly glaciated; surface of lava flow and conical shape of cone are fairly well preserved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATE PLEISTOCENE</td>
<td>Basalt of hill 8030 (PEbr80)</td>
<td>Regional volcanic rocks of the Caribou volcanic field (PE-Rc)</td>
<td></td>
<td>Basalt (52.0%–52.3% SiO₂) lava flows. Erupted from vent marked by cinder cone 1 km (0.6 mi) southeast of Red Cinder at hill 8030.</td>
<td>Volcanic Features—cinder cone and lava flows. Glacial Features—glaciated but not deeply eroded, though not much of the original surface morphology is preserved. Older than last glacial maximum.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basalt of Cameron Meadow (PEbrm)</td>
<td></td>
<td></td>
<td>Basalt lava flows. Precise SiO₂ content not provided (see table 1 for general range). Erupted from vent to the east now buried by younger lavas.</td>
<td>Volcanic Features—lava flows. Glacial Features—glaciated lava flow.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basalt of Ash Butte (PEbra)</td>
<td></td>
<td></td>
<td>Basalt (52.0% SiO₂) lava flow. Erupted from Ash Butte cinder cone at north-northwest end of Red Cinder chain. PEbra consists of cinder and agglutinate cones from this eruption.</td>
<td>Volcanic Features—cinder cone and lava flows. Glacial Features—cinder cone and lava flows. Flow is short and thick. Rubby surface of flow and shape of cone are well preserved, although cone is sufficiently eroded to expose agglutinated core in some places. Cinders are generally oxidized. Part of cone was rafted away by lava flow. Glacial Features—glaciated but generally free of thick till deposits. Older than last glacial maximum.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basalt of hill 2283 (PEbr22)</td>
<td></td>
<td></td>
<td>Basalt (52.5% SiO₂) lava flow. Erupted from well-preserved cinder cone at hill 2283. Thickness as much as 20 m (70 ft). PEbr22 consists of cinder and agglutinate cones.</td>
<td>Volcanic Features—cinder cone and lava flow. Cone is composed of agglutinated cinders that are mostly oxidized. Glacial Features—glaciated, but cone shape is well preserved. Flows extensively buried by till (PEty) and poorly exposed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Map Unit (Symbol)</td>
<td>Geologic Map Graphic (Symbol)</td>
<td>Map 1 (in pocket)</td>
<td>Geologic Description</td>
<td>Geologic Features and Processes</td>
<td>Geologic Issues</td>
<td>Geologic History</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>LATE PLEISTOCENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andesite of Red Cinder (PEar)</td>
<td></td>
<td></td>
<td></td>
<td>Andesite (59.6%-60.3% SiO2) block-lava flows. Erupted from vent now buried by younger lavas of basaltic anodesite of Red Cinder (PEmrg).</td>
<td>Volcanic Features—lava flows. Comprises largest-volume unit of the Red Cinder chain. Glacial Features—lava flows were glaciated but are not significantly eroded.</td>
<td>Volcanic Hazards—volcanic activity contemporaneous with Lassen volcanic center. Red Cinder chain of volcanoes is likely location of future eruption.</td>
<td>Regional Volcanism—69,000 ± 20,000 years ago.</td>
</tr>
<tr>
<td>Basalt lava flow. Precise SiO2 content not provided (see Table 1 for general range). Erupted from cinder cone 500 m (1,600 ft) east of Ash Butte. Thickness 20–30 m (70–100 ft).</td>
<td>Basalt of Widow Lake (PEbreci)</td>
<td>PEbreci</td>
<td>consists of cinder and agglutinate cones from this eruption. Basalt (52.1% SiO2) lava flows at north-northwest end of Red Cinder chain. Erupted from two cinder cones 0.5 km (0.3 mi) northeast of Widow Lake. Thickness as much as 10 m (33 ft). A third cone of PEmgb occurs approximately 0.75 km (0.5 mi) southwest of Widow Lake.</td>
<td>Volcanic Features—cinder cones and lava flows.</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center, and still active. Seismic Activity—flow offset by two small faults along discontinuous fault zone between Lake Almanor and Hat Creek grabens.</td>
<td>Regional Volcanism—precise age unknown, but younger than basaltic anodesite of Black Cinder Rock (PEmgb). 667,000 ± 24,000 years ago.</td>
<td>Regional Volcanism—estimated age, 100,000–70,000 years ago.</td>
</tr>
<tr>
<td>Basaltic anodesites of Long Lake, unit 3 (PEmrg3)</td>
<td>Basaltic anodesites of Long Lake, unit 3 (PEmrg3)</td>
<td>PEEmrg3</td>
<td>Regional volcanic rocks of the Caribou volcanic field (PE-Rc)</td>
<td>Basaltic anodesite (53.2% SiO2) lava flow. Erupted from poorly preserved cinder cone that forms hill 7602, 5 km (3 mi) west-northwest of Posey Lake.</td>
<td>Glacial Features—flow was heavily glaciated and is partly buried by till (PEty); surface features not preserved.</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center.</td>
<td>Regional Volcanism—estimated age, 70,000–50,000 years ago.</td>
</tr>
<tr>
<td>Basaltic anodesites of Long Lake, unit 2 (PEmrg2)</td>
<td>Basaltic anodesites of Long Lake, unit 2 (PEmrg2)</td>
<td>PEEmrg2</td>
<td>Basaltic anodesite (55.5%–56.3% SiO2) lava flow. Lithology is somewhat variable. Erupted from poorly preserved vent at hill 7603 north-northwest of Posey Lake.</td>
<td>Glacial Features—flow was heavily glaciated and is partly buried by till (PEty); surface features not preserved.</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center, and still active. Seismic Activity—flow offset by one of two small faults along discontinuous fault zone between Lake Almanor and Hat Creek grabens.</td>
<td>Regional Volcanism—precise age unknown, but immediately underlies (is older than) unit PEmrg3.</td>
<td>Regional Volcanism—estimated age, 70,000–50,000 years ago.</td>
</tr>
<tr>
<td>Basaltic anodesite of Black Cinder Butte, unit 1, cinders (PEmbd1b1c)</td>
<td>Basaltic anodesite of Black Cinder Butte, unit 1, cinders (PEmbd1b1c)</td>
<td>PEmbd1b1c</td>
<td>Consists of cinders and agglutinated cones associated with basaltic anodesites of Black Cinder Butte, unit 1 (PEmbd1b), which is composed of basaltic anodesite (55.8%-56.1% SiO2) . Some areas of lava flow are covered by PEemd1b.</td>
<td>Volcanic Features—cinders. Associated cinder cone, 0.5 km (0.3 mi) west of Black Butte, was partially destroyed when lava flows were extruded from its base. Glacial Features—the majority of the lava flow related to PEmbd1b1c is beyond the limits of glaciation, but part of the flow is buried by till (PEty).</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center, and still active.</td>
<td>Regional Volcanism—estimated age, 302,000 ± 7,000 years ago.</td>
<td>Regional Volcanism—estimated age, 302,000 ± 7,000 years ago.</td>
</tr>
<tr>
<td>Basalt of Lost Spring (PEbds)</td>
<td>Basalt of Lost Spring (PEbds)</td>
<td>PEbds</td>
<td>Basalt (52.7%–53.0% SiO2) lava flow and cinder cone. Exposed near Duck Lake, north of Butte Lake. Vent is 1 km (0.6 mi) southeast of Duck Lake.</td>
<td>Volcanic Features—flow was largely preserved by till (PEty).</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center, and still active.</td>
<td>Regional Volcanism—estimated age, 302,000 ± 7,000 years ago.</td>
<td>Regional Volcanism—estimated age, 302,000 ± 7,000 years ago.</td>
</tr>
<tr>
<td>Basaltic andesite of Black Cinder Butte, unit 1, cinders (PEmbd1b)</td>
<td>Basaltic andesite of Black Cinder Butte, unit 1, cinders (PEmbd1b)</td>
<td>PEmbd1b</td>
<td>Basaltic andesite (55.8%-56.1% SiO2) lava flow.</td>
<td>Volcanic Features—flow was heavily glaciated and partially covered by thick deposits of till (PEty). Cinders are generally oxidized. Glacial Features—cinders and agglutinated cones from this eruption.</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center.</td>
<td>Regional Volcanism—estimated age, 100,000–70,000 years ago.</td>
<td>Regional Volcanism—estimated age, 100,000–70,000 years ago.</td>
</tr>
<tr>
<td>Basaltic andesite of Black Cinder Butte, unit 2, cinders (PEmbd2c)</td>
<td>Basaltic andesite of Black Cinder Butte, unit 2, cinders (PEmbd2c)</td>
<td>PEmbd2c</td>
<td>Basaltic andesite (55.8%-56.1% SiO2) lava flow.</td>
<td>Volcanic Features—flow was heavily glaciated and partially covered by thick deposits of till (PEty). Cinders are generally oxidized. Glacial Features—cinders and agglutinated cones from this eruption.</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center.</td>
<td>Regional Volcanism—estimated age, 100,000–70,000 years ago.</td>
<td>Regional Volcanism—estimated age, 100,000–70,000 years ago.</td>
</tr>
<tr>
<td>Basaltic andesite of Black Cinder Butte, unit 3, cinders (PEmbd3c)</td>
<td>Basaltic andesite of Black Cinder Butte, unit 3, cinders (PEmbd3c)</td>
<td>PEmbd3c</td>
<td>Basaltic andesite (55.8%-56.1% SiO2) lava flow.</td>
<td>Volcanic Features—flow was heavily glaciated and partially covered by thick deposits of till (PEty). Cinders are generally oxidized. Glacial Features—cinders and agglutinated cones from this eruption.</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center.</td>
<td>Regional Volcanism—estimated age, 100,000–70,000 years ago.</td>
<td>Regional Volcanism—estimated age, 100,000–70,000 years ago.</td>
</tr>
</tbody>
</table>

The units listed here are those mapped within Lassen Volcanic National Park. Refer to “lavo_geology.pdf” for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in “Geologic History” column are from Clynne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.
<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol)</th>
<th>Geographic Map Graphic (Symbol)</th>
<th>Map 1 (in pocket)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basalts of Sunrise Peak, unit 2 (P Ebss2ci)</td>
<td></td>
<td></td>
<td>Basalt (52.3% SiO₂) lava flows and agglutinated scoria cone. PEbss2ci consists of cinder and agglutinate cones.</td>
<td>Volcanic Features—scoria cone and lava flows. Glacial Features—overlies unit PEbss1, but is otherwise completely surrounded by till (PETy).</td>
<td>Regional Volcanism—volcanic activity contemporaneous with Lassen volcanic center, and still active.</td>
<td>Regional Volcanism—age is slightly younger than PEbss1 (393,000 ± 4,000 years ago).</td>
</tr>
<tr>
<td></td>
<td>Basalts of Sunrise Peak, unit 1 (PEbss1)</td>
<td>Regional volcanic rocks of the Caribou volcanic field (PE-Rc)</td>
<td></td>
<td>Basalt (51.4% SiO₂) lava flows and agglutinated scoria cone.</td>
<td>Volcanic Features—lava flows and scoria cone. Glacial Features—surrounded by till (PETy).</td>
<td>Regional Volcanism—volcanic activity contemporaneous with Lassen volcanic center, and still active.</td>
<td>Regional Volcanism—393,000 ± 4,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Basalt of Bathub Lake (PEbsi)</td>
<td></td>
<td></td>
<td>Basalt lava flows. Precise SiO₂ content not provided (see table 1 for general range). Occur in Butte Creek, north of Butte Lake. Lithologies of several flows are somewhat variable. Vent locations unknown.</td>
<td>Volcanic Features—lava flows. Outcrops of flows are partly buried by ash from Cinder Cone eruption (Fantastic Lava Beds flows, Hmf1 and Hmf2) and discontinuous. Glacial Features—heavily glaciated; surface features are not preserved. Vents were probably removed by glaciation. Outcrops of flows are discontinuous and are mostly buried by till (PETy), as well as ash from Cinder Cone eruption.</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center, and still active.</td>
<td>Regional Volcanism—estimated age, 400,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Basalt of Island Lake (PEbi)</td>
<td></td>
<td></td>
<td>Basalt (52.7% SiO₂) lava flow. Erupted from eroded vent at hill 7470, 2.3 km (1.4 mi) north-northeast of Bonte Peak.</td>
<td>Volcanic Features—lava flow. Glacial Features—heavily glaciated and partially buried by till (PETy). Surface features not preserved; only cores of flow preserved in outcrops.</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center, and still active.</td>
<td>Regional Volcanism—estimated age, 350,000–300,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Basalt of East Lake (PEbie)</td>
<td></td>
<td></td>
<td>Basalt (52.9% SiO₂) lava flows. Erupted from poorly preserved vent at hill 7321, 1 km (0.6 mi) northeast of Bonte Peak.</td>
<td>Volcanic Features—lava flows. Glacial Features—lava flows were heavily glaciated. Typically only flow cores remain; till (PETy) obscures much of southern part.</td>
<td>Volcano Hazards—volcanic activity contemporaneous with Lassen volcanic center, and still active.</td>
<td>Regional Volcanism—331,000 ± 45,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Older basalts and basaltic andesites south of Caribou volcanic field (PEboc)</td>
<td>Older regional volcanic rocks of the Caribou area (PEPL-Ro)</td>
<td></td>
<td>Basalt and basaltic andesite (52.3%–52.7% SiO₂) lava flows. In general, these older basalts and basaltic andesites have compositions and lithologies similar to younger lavas in the Caribou volcanic field. Vent locations unknown, but probably somewhere northwest of flow near Bailey Creek. Affinities of these flows to other units are unknown.</td>
<td>Volcanic Features—lava flows. Scattered throughout southern Caribou volcanic field and exposed in 60 small outcrops, mostly in the Red Cinder 7.5-minute quadrangle. Glacial Features—heavily glaciated, flow morphologies are subdued or absent. Typically, only small areas of flow crop out beneath thick cover of till (PET0 or PETy).</td>
<td>Volcano Hazards—none at present; these volcanoes were active more than 650,000 years ago.</td>
<td>Regional Volcanism—estimated age, 725,000–600,000 years ago. These lava flows are older than Caribou volcanic field.</td>
</tr>
<tr>
<td></td>
<td>Basaltic andesite of Jakey Lake (PEmjp)</td>
<td></td>
<td></td>
<td>Basaltic andesite lava flow. Precise SiO₂ content not provided (see table 1 for general range). Erupted from vent at hill 7741, 2.6 km (1.6 mi) northeast of Juniper Lake in southern Caribou volcanic field.</td>
<td>Volcanic Features—lava flow. Glacial Features—heavily glaciated; surface features not preserved. Partially buried by till (PETy).</td>
<td>Volcano Hazards—none at present; these volcanoes were active more than 650,000 years ago.</td>
<td>Regional Volcanism—estimated age, 650,000 years ago.</td>
</tr>
<tr>
<td></td>
<td>Basaltic andesite of Black Cinder Rock (PEmb)</td>
<td></td>
<td></td>
<td>Basaltic andesite (54.2%–55.0% SiO₂) lava flows. Lithology of lava flows is slightly variable. Erupted from vent marked by scoria cone at Black Cinder Rock and at least one other vent.</td>
<td>Volcanic Features—scoria cone and lava flows. Located south of Caribou volcanic field. Glacial Features—heavily glaciated; typically only flow cores remain and crop out.</td>
<td>Volcano Hazards—none at present; these volcanoes were active more than 650,000 years ago.</td>
<td>Regional Volcanism—667,000 ± 24,000 years ago.</td>
</tr>
</tbody>
</table>
The units listed here are those mapped within Lassen Volcanic National Park. Refer to "lavo_geology.pdf" for a list and geologic description of all units in the GRI GIS data. A geologic map graphic (map 1, in pocket) is a simplified geologic map of the park using the listed units. Precise ages and age estimates in "Geologic History" column are from Clyrne and Muffler (2010), or as compiled in Nathenson et al. (2012) for Lassen volcanic center eruptions less than 100,000 years old.

<table>
<thead>
<tr>
<th>Age</th>
<th>Map Unit (Symbol)</th>
<th>Geologic Map Graphic (Symbol)</th>
<th>Map 1 (in pocket)</th>
<th>Geologic Description</th>
<th>Geologic Features and Processes</th>
<th>Geologic Issues</th>
<th>Geologic History</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDDLE PLEISTOCENE</td>
<td>Basaltic andesites and basalt of Snag Lake (PEmsn)</td>
<td>Older regional volcanic rocks of the Caribou area (PEPL-Ro)</td>
<td>Basaltic andesite and basalt lava flows. Precise SiO2 content not provided (see table 1 for general range). Vent locations unknown. Rocks probably are not directly related but are combined because of similar lithology and age.</td>
<td>Volcanic Features—lava flows. Occur in five isolated areas near Juniper and Snag lakes, southwest of Caribou volcanic field. Glacial Features—heavily glaciated, typically only flow cores remain and crop out. Outcrops have thick cover of till (PEty).</td>
<td>Volcano Hazards—none at present; these volcanoes were active more than 650,000 years ago.</td>
<td>Regional Volcanism—estimated age, 725,000-675,000 years ago.</td>
<td></td>
</tr>
<tr>
<td>EARLY PLEISTOCENE</td>
<td>Basalt of Bonte Peak (PEbnt)</td>
<td></td>
<td>Basalt (51.6%-53.1% SiO2) lava flows. Vent was probably near summit of Bonte Peak.</td>
<td>Volcanic Features—lava flows. Located south of Caribou volcanic field. Glacial Features—heavily glaciated, typically only flow cores remain and crop out. Flanks of Bonte Peak (location of vent) were oversteepened by glacial erosion. Till (PEty) buries much of the lava flow away from the Bonte Peak summit.</td>
<td>Seismic Activity—faulting along the discontinuous fault zone between Lake Almanor and Hat Creek grabens may cut lavas, but relations are obscured by glacial erosion and till deposits.</td>
<td>Regional Volcanism—estimated age, 700,000-675,000 years ago.</td>
<td></td>
</tr>
</tbody>
</table>