Percy-Lobdell Building
Jean Lafitte National Historical Park and Preserve
Historic Structure Report
Percy Lobdell Building

Jean LaFitte National Historical Park and Preserve

Historic Structure Report

March 2019
Prepared by:
WLA Studio
RATIO Architects
Palmer Engineering
Building Conservation Associates

Under the direction of
National Park Service
Southeast Regional Office
Cultural Resources, Partnerships, & Science Division
The report presented here exists in two formats. A printed version is available for study at the park, the Southeastern Regional Office of the National Park Service, and at a variety of other repositories. For more widespread access, this report also exists in a web-based format through ParkNet, the website of the National Park Service. Please visit www.nps.gov for more information.
Percy Lobdell Building
Jean Lafitte National Historical Park and Preserve
Historic Structure Report

Approved By:
Superintendent,
Jean Lafitte National Historical Park and Preserve
Date

Recommended By:
Chief, Cultural Resource, Partnerships & Science Division
Southeast Region
6/26/19

Recommended By:
Deputy Regional Director,
Southeast Region
6/27/19

Approved By:
Regional Director,
Southeast Region
Date
Page intentionally left blank.
Table of Contents

Foreword .. xvii

- Project Team .. 1
- Executive Summary ... 2
- Purpose and Scope .. 2
- Historical Overview .. 2
- Statement of Significance .. 3
- Project Methodology ... 3
- Conclusions and Recommendations ... 4
- Administrative Data ... 5
 - Locational Data ... 5
 - Related NPS Studies ... 5
 - Real Property Information ... 5
 - Size Information .. 5
 - Cultural Resource Data ... 5
 - Proposed Treatment .. 5

I.A Historical Background and Context .. 7

- Introduction .. 7
- The Town of Thibodaux ... 8
- Percy-Lobdell Company, Limited .. 13
- Thibodaux Library and Wetlands Acadian Cultural Center ... 16

I.B Chronology of Development and Use ... 21

- Early Site History | 1846-1905 ... 21
- Construction of the Percy-Lobdell Building | 1905 .. 21
- Lobdell Company / Percy-Lobdell Company Period | 1905-1975 .. 23
- Interim Period | 1975-1982 .. 26
- Lafourche Parish Public Library Period | 1982-1988 ... 26
 - Architectural Design Competition | 1982 ... 27
 - Library Remodeling | 1986-1987 ... 35
- National Park Service Period | 1988-2018 ... 38

I.C Physical Description and Condition Assessment .. 41

- Site ... 41
 - Physical Description ... 41
 - Condition Assessment .. 43
- Architectural Physical Description & Condition Assessment ... 49
 - Exterior – Percy-Lobdell Building ... 49
List of Figures

About the cover: View of Percy Lobdell Building, 2017. ... ii

I.A Historical Background and Context .. 7

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1:</td>
<td>"Portion of James B. Grinnage's 1846 map of Thibodaux, as copied by J.A. Lovell" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 38.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2:</td>
<td>Portion of 1898 Sanborn Fire Insurance Company map of Thibodaux, LA.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3:</td>
<td>"Wetlands Acadian Cultural Center project area in 1907 (after Sanborn Fire Insurance Company, 1907" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 47.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 4:</td>
<td>"Wetlands Acadian Cultural Center project area in 1912 (after Sanborn Fire Insurance Company, 1912" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 48.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 5:</td>
<td>"Wetlands Acadian Cultural Center project area in 1932 (after Sanborn Fire Insurance Company, 1932" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 52.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 6:</td>
<td>"Circa 1900 photograph looking west along Public Road and Levee. (Photograph courtesy of Ellender Memorial Library, Nicholls State University.)"</td>
<td>13</td>
</tr>
<tr>
<td>Figure 7:</td>
<td>"Wetlands Acadian Cultural Center project area in 1916 (after Sanborn Fire Insurance Company, 1916" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 49.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 8:</td>
<td>"Wetlands Acadian Cultural Center project area in 1927 (after Sanborn Fire Insurance Company, 1927" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 50.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 9:</td>
<td>West Elevation of building in 1982 and Celebration of new Library and Cultural Center. Photo in Lafourche Parish Public Library.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 10:</td>
<td>South and East Elevations of building in August 1982. Note buildings on adjacent lot. Photo in Lafourche Parish Public Library.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 11:</td>
<td>Unidentified Designers participating in Design Competition. Photo in Lafourche Parish Public Library.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 12:</td>
<td>1986 Renovations to Upper Floor. Photo in Lafourche Parish Public Library.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 13:</td>
<td>1991 Construction of New Entrance. Photo in Lafourche Parish Public Library.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 14:</td>
<td>Boardwalk under construction. Photo in Lafourche Parish Public Library.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 15:</td>
<td>Wetlands Acadian Cultural Center soon after completion. Photo in Lafourche Parish Public Library.</td>
<td>17</td>
</tr>
</tbody>
</table>
I.B Chronology of Development and Use

Figure 16: "Wetlands Acadian Cultural Center project area in 1907 (after Sanborn Fire Insurance Company, 1907)" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 47.

Figure 17: "Wetlands Acadian Cultural Center project area in 1912 (after Sanborn Fire Insurance Company, 1912)" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 48.

Figure 18: "Wetlands Acadian Cultural Center project area in 1916 (after Sanborn Fire Insurance Company, 1916)" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 49.

Figure 19: 1901-1902 standard advertisement for the Lobdell & Percy Company, Ltd. Source: Thibodaux Sentinel, December 6, 1902.

Figure 20: 1917 advertisement for the Percy-Lobdell Company. Source: Assumption Pioneer, May 26, 1917.

Figure 21: "Wetlands Acadian Cultural Center project area in 1927 (after Sanborn Fire Insurance Company, 1927)" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 50.

Figure 22: "Wetlands Acadian Cultural Center project area in 1932 (after Sanborn Fire Insurance Company, 1932)" from Thurston Hahn, "Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana," page 52.

Figure 23: View of the building from the southwest, August 1982. Source: Lafourche Parish Public Library.

Figure 24: View of the building from the southeast, August 1982. Source: Lafourche Parish Public Library.

Figure 25: Unidentified group in the first floor, facing south along west wall near southwest corner, June 1982. Source: Lafourche Parish Public Library.

Figure 26: Unidentified group in the first floor, facing north along west wall from near southwest corner, June 1982. Source: Lafourche Parish Public Library.

Figure 27: Banner hung over St. Mary Street during the charette and view of the west elevation, facing southeast, September 5, 1982. Source: Lafourche Parish Public Library.

Figure 28: View of the Percy-Lobdell Building from the southwest, September 5, 1982. Source: Lafourche Parish Public Library.

Figure 29: View northeast at first floor with historic freight elevator at right, c.1982. Source: Lafourche Parish Public Library.

Figure 30: Detail of elevator enclosure at first floor level, facing northeast, 1982. Source: Lafourche Parish Public Library.

Figure 31: View north at first floor, c.1982. Source: Lafourche Parish Public Library.

Figure 32: View southeast at first floor, showing scale, c.1982. Source: Lafourche Parish Public Library.

Figure 33: View of northwest corner of second floor during design charette, September 1982. Source: Lafourche Parish Public Library.
Figure 34: View of second floor during design charette, September 1982. Note wooden ceiling.
Source: Lafourche Parish Public Library... 29

Figure 35: Alan Chimacoff talks with a group of unidentified students during the charette, September 3, 1982. This photograph shows the northwest corner of the second floor. Source: Lafourche Parish Public Library.. 29

Figure 36: Allan Greenberg talks with a group of unidentified students during the charette, September 3, 1982. Source: Lafourche Parish Public Library.. 29

Figure 37: An unidentified student and Charles Moore during the charette, September 5, 1982. Source: Lafourche Parish Public Library.. 29

Figure 38: Unidentified student working on a design during the charette, September 6, 1982. Source: Lafourche Parish Public Library.. 30

Figure 39: Unidentified students working on the second floor during the design charette, facing southeast, September 6, 1982. Note the freight elevator enclosure in the center background. Source: Lafourche Parish Public Library.. 30

Figure 40: Charles Moore, Allan Greenberg, and Alan Chimacoff at Nichols State University during the public presentation of designs, September 7, 1982. Source: Lafourche Parish Public Library............................ 30

Figure 41: Alan Chimacoff’s team’s model, September 7, 1982. View from the north with Bayou Lafourche in the foreground. Source: Lafourche Parish Public Library... 30

Figure 42: Alan Chimacoff’s team’s model, September 7, 1982. View from the west with Bayou Lafourche at left. Source: Lafourche Parish Public Library... 30

Figure 43: Alan Chimacoff’s team’s site plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library ... 30

Figure 44: Alan Chimacoff’s team’s first floor plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library.. 31

Figure 45: Alan Chimacoff’s team’s second floor plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library.. 31

Figure 46: Alan Chimacoff’s team’s west elevation, September 7, 1982. Source: Lafourche Parish Public Library... 32

Figure 47: Alan Chimacoff’s team’s section through the building, facing east, September 7, 1982. St. Mary Street is at right. Source: Lafourche Parish Public Library... 32

Figure 48: Alan Chimacoff’s team’s section through the building (left) and proposed addition (right), facing north, September 7, 1982. Source: Lafourche Parish Public Library... 32

Figure 49: Rendering of an alternate design by Alan Chimacoff, c.1982. Source: Lily Miller, “The Dream of Martha Utley,” Acadiana Profile, Vol. 11, No. 2, 47, Lafourche Parish Public Library.............. 33

Figure 50: Charles Moore’s team’s model, view from the southwest, September 7, 1982. Source: Lafourche Parish Public Library.. 33

Figure 51: Charles Moore’s team’s model, view from the northwest, September 7, 1982. Source: Lafourche Parish Public Library.. 33

Figure 52: Charles Moore’s team’s first floor plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library.. 33

Figure 53: Charles Moore’s team’s second floor plan and section, September 7, 1982. North is at left. Source: Lafourche Parish Public Library.. 33
Figure 54: Allan Greenberg’s team’s site plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library. ... 34

Figure 55: Allan Greenberg’s team’s first floor plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library... 34

Figure 56: Allan Greenberg’s team’s second floor plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library... 35

Figure 57: Allan Greenberg’s team’s partial west elevation showing proposed new façade, portico, and cupola, September 7, 1982. Source: Lafourche Parish Public Library... 35

Figure 58: Allan Greenberg’s team’s sections, September 7, 1982. The section at left is facing south and cuts through the main building and the addition, while the section at right faces north and cuts through the main building north of the proposed addition. Source: Lafourche Parish Public Library..... 35

Figure 59: East elevation from the northeast, 1982. Source: Lafourche Parish Public Library. 36

Figure 60: View of the Percy-Lobdell Building from the southeast during initial rehabilitation, c.1980s. Source: Lafourche Parish Public Library... 36

Figure 61: View of the Percy-Lobdell Building from the southwest during initial rehabilitation, c.1980s. Source: Lafourche Parish Public Library... 36

Figure 62: View of the second floor looking south during initial rehabilitation, 1986. Note the removal of the wood ceiling. This image also appeared in Thibodaux Magazine, Vol 17, No. 5 (October 1986), 5. Source: Lafourche Parish Public Library. ... 36

Figure 63: Second floor facing north during construction, September 8, 1986. Source: Lafourche Parish Public Library. ... 36

Figure 64: Second floor facing north during construction, September 1986. Note historic stair at right. Source: Lafourche Parish Public Library... 36

Figure 65: Second floor facing southwest during construction, September 1986. Source: Lafourche Parish Public Library. ... 37

Figure 66: Southwest corner of second floor showing historic wood sash being re-glazed, September 8, 1986. Source: Lafourche Parish Public Library. ... 37

Figure 67: Digging trenches for new plumbing systems at first floor, October 21, 1986. Source: Lafourche Parish Public Library... 37

Figure 68: Second floor during construction, October 21, 1986, facing north along east wall. Source: Lafourche Parish Public Library... 37

Figure 69: Rendering of the Percy-Lobdell Building and a proposed 200-seat theater addition from the northwest, c.1988-1990. Hand-written notes on the drawing note that the main building would house a museum and Ta Wa Si Meeting Room on the first floor and the Thibodaux Branch Library on the second floor. Source: framed image displayed in the Percy-Lobdell Building. ... 38

Figure 70: View of Percy Lobdell Building from the southwest, October 24, 1990. Source: Lafourche Parish Public Library... 39

Figure 71: First floor interior during demolition, facing west, November 27, 1990. Source: Lafourche Parish Public Library... 39

Figure 72: View of construction of the west wing from the southwest. Source: Lafourche Parish Public Library... 39

Figure 73: West wing under construction, facing south, April 23, 1991. Source: Lafourche Parish Public Library... 40
I.C Physical Description and Condition Assessment

Figure 74: East portico under construction, summer-fall 1991. Source: Lafourche Parish Public Library. 40
Figure 75: South façade of addition and main building, c.1992. Source: Jean Lafitte National Historical Park. ... 40
Figure 76: View of parking lot and east elevation, c.1992. Source: Jean Lafitte National Historical Park. ... 40
Figure 77: View of pier and building, c.1992. Source: Jean Lafitte National Historical Park. 40
Figure 78: National Register plaque on east elevation listing incorrect date of construction. 40
Figure 79: Percy-Lobdell Building and Performance Building Addition. .. 41
Figure 80: Wetlands Acadian Cultural Center Parking Lot ... 41

Figure 81: Cultural Center Entrance, Flag Poles, and Foundation Plantings. 42
Figure 82: Boardwalk and Bayou Lafourche. .. 42
Figure 83: Rear (North) area of Cultural Center, Boardwalk, and Bayou Lafourche. 42
Figure 84: Rear (North) of Cultural Center, Plaza, Raised Planters. ... 42
Figure 85: South façade on St. Mary Street showing corbelled brickwork, sheet metal cornice and window hoods, historic entry door, and metal shutters. ... 49
Figure 86: Detail of shutters, window hoods, and corbelled brickwork at south façade. 49
Figure 87: Details of first-floor window behind shutter on south façade. Blackout panels behind the windows are believed to date from the 1980s. ... 49
Figure 88: Detail of second floor wood sash and window frame showing moisture-related finish deterioration and uneven application of glazing compound. ... 50
Figure 89: Detail of second floor window hoods and corbelled brickwork. 50
Figure 90: Detail of cornice pediment with enhancements to show outline of original “LOBDELL LTD” lettering removed in 1991... 50
Figure 91: Detail of distortion and water damage to sheet metal window hoods and cornice 50
Figure 92: Detail of quoin at southeast corner showing past embedments and patches; note the difference in width and tooling of the mortar joints at the pressed-brick façade and the common brick side elevations. .. 51
Figure 93: West elevation and south façade, facing northeast. ... 51
Figure 94: South façade and east elevation, facing northwest. ... 51
Figure 95: Typical door opening at west elevation, now in room 141, with 1980s window infill, historic transom and bars, and historic metal shutters. ... 51
Figure 96: Typical deteriorated wooden shutter at east elevation and broken glass at sash behind.. 52
Figure 97: Typical replacement window at second floor level... 52
Figure 98: South fire escape (1986-1987) and HVAC equipment screen wall (1990-1992). 52
Figure 99: Typical first-floor windows at east elevation with north fire escape (1986-1987) and HVAC equipment screen wall (1990-1992). ... 53
Figure 100: North part of east elevation, facing southeast. ... 53
Figure 101: North and west elevations, facing southeast. ... 53
Figure 102: North elevation. ... 53
Figure 103: Detail of failing sealant at 1980s storefront at second floor north center opening. 53
Figure 104: View of east face of roof from fly tower of west wing, facing northeast ... 54
Figure 105: View of east face of roof from fly tower of west wing, facing southeast ... 54
Figure 106: Typical downspout collector at canopy on west elevation ... 54
Figure 107: Biological growth around leaking downspout at west elevation. Failure to address drainage issues can cause extensive damage to the historic fabric of the building ... 54
Figure 108: East canopy (1990-1992), facing northwest ... 55
Figure 109: South elevation of west wing (1990-1992), facing northwest ... 55
Figure 110: View east along St. Mary Street showing south elevation of west wing and south façade of the Percy-Lobdell Building .. 55
Figure 111: Unscreened west elevation of west wing (1990-1992), facing northeast .. 55
Figure 112: West elevation of west wing and equipment enclosure, facing northeast ... 55
Figure 113: North elevation of west wing (1990-1992), facing southeast .. 56
Figure 114: Roof of west wing, facing southeast along west elevation of Percy-Lobdell Building 56
Figure 115: Gable roof over theater (room 166). .. 56
Figure 116: Roof of fly tower of west wing. ... 56
Figure 117: Room 118, facing north, showing historic timber structure and exposed brick masonry along with partitions and systems installed during 1990-1992 .. 56
Figure 118: Room 124, facing west ... 57
Figure 119: Typical partitioned spaces with exposed masonry wall, exposed structure, and modern partitions, room 125, facing east .. 57
Figure 120: West wall of room 121, showing deteriorated brick masonry and cementitious stucco, facing southwest .. 57
Figure 121: 1990s finishes within room 108 .. 57
Figure 122: Detail of typical historic timber column ... 58
Figure 123: Room 109, facing southwest, showing historic timber structure and concrete floor along with 1980s partitions and 1990s exhibit casework ... 58
Figure 124: Detail of exposed wood structure in room 124, facing northeast .. 58
Figure 125: Remnant of wood ceiling (painted white) above suspended ceiling (1986-1987) of room 106 .. 58
Figure 126: Concrete floor of room 109, facing north, showing historic scoring pattern and evidence of later floor finishes ... 58
Figure 127: Concrete floor in room 124, facing southeast, showing historic scoring pattern 58
Figure 128: Room 118, facing south .. 59
Figure 129: Typical 1990s partitions installed at center line of columns, east wall of room 119, facing northeast; this treatment allows the historic timber structure to remain visible ... 59
Figure 130: Modern stair between rooms 119 and 202, facing northeast .. 59
Figure 131: Room 201, facing south from near center of building, showing timber trusses that were historically concealed by a bead-board ceiling .. 59
Figure 132: Room 201, facing north from near south façade .. 60
Figure 133: Room 201, facing north from near center of building ... 60
Figure 134: Detail of typical sealant finish on brick masonry within second floor .. 60
Figure 135: Detail of spalled brick. This damage typically indicates moisture within the masonry wall and may be triggered by the addition of impermeable coatings or sealants .. 60
Figure 136: View of skylight, roof insulation, and 1980s systems. ... 61
Figure 137: Detail of 1986-1987 enclosure of room 202 from room 201, facing northeast. 61
Figure 138: Detail of 1980s wood flooring showing worn finish and rectangular opening with
historic tongue-and-groove wood flooring below plywood panel (removed in this view). This opening
in the 1980s wood flooring appears to have been designed to hold a plaque for the Lafourche Parish
Library. Library staff report a popular myth that this rectangle represents the historic elevator opening;
the newer floorboards below the right-hand edge of the opening mark the northern boundary of the
historic elevator's much larger opening. .. 61
Figure 139: East (top) and west (bottom) art glass panels added over historic window openings in the
1980s; these panels may have been new art glass works in the 1980s or may have been salvaged from
other buildings. .. 61
Figure 140: Gallery (room 141) of west wing, facing north. ... 62
Figure 141: Theater in use for a presentation to a school group, showing 1990s finishes. 62
Figure 142: Theater in use for a play by the Thibodaux Playhouse, Inc. ... 63
Figure 143: North entry (room 143) of west wing, facing south. ... 63
Figure 144: 1990s finishes at theater (room 166). ... 63
Figure 145: Typical conditions at stage (room 167), facing east. ... 63
Figure 146: Typical water-damaged ACT at room 149, associated with roof leaks in the 1990-1992
addition... 63
Figure 147: Typical water-damaged ACT, room 158, associated with roof leaks in the 1990-1992
addition... 63
Figure 148: Failing VCT at room 156, likely associated with moisture problems. 64
Figure 149: Typical mildew around HVAC vent in west wing, indicating excessive humidity 64
Figure 150: Typical mildew around interior HVAC vent in west wing, room 172, indicating excessive
humidity. .. 64
Figure 151: Deteriorated pipe insulation with mold and mildew at exterior mechanical room 165. .. 64
Figure 152: Percy-Lobdell Building Concrete slab with scoring pattern, room 109. 65
Figure 153: Percy-Lobdell Building interior columns on concrete pad, room 124. 65
Figure 154: Detail of exposed column capital in room 124. ... 66
Figure 155: Detail of exposed knee braces in room 124. ... 66
Figure 156: Detail of exposed joists visible in room 124. ... 66
Figure 157: Detail of wall joist pockets in room 121. ... 66
Figure 158: Modern stair system between rooms 119 and 201. ... 67
Figure 159: Detail of wood wrapped steel post in interior stairs. ... 67
Figure 160: Detail of exposed roof trusses in room 201, looking south.. 67
Figure 161: Wood cap plate running along top of exterior wall, room 201. 67
Figure 162: Horizontal Bottom Chord shown in room 201. ... 68
Figure 163: Horizontal Bottom Chord on south wall seen in room 201. .. 68
Figure 164: Truss connection in upper story, seen in room 201... 68
Figure 165: Top Chord attachment to sides of king post in room 201. ... 68
Figure 166: Detail of chord attachment to diagonal and vertical web members in room 201. 69
Figure 167: Detail of timber x-bridging and exposed sprinkler in room 201. 69
Figure 168: Detail of timber x-bridging and exposed sprinkler in room 201. 69
Figure 169: Steel Rod connection of trusses to north end wall in room 201. ... 69
Figure 170: Detail of north wall truss system in room 201... 69
Figure 171: Detail of lighting system supported by roof trusses in room 201.. 69
Figure 172: Detail of lighting system attachment to roof trusses in room 201................................. 69
Figure 173: Limited view of exposed roof framing and deck from room 201.............................. 70
Figure 174: Corrugated Roof Material, looking south. ... 70
Figure 175: Typical condition of exterior walls, east elevation... 70
Figure 176: Detail of South Elevation Exterior Wall. ... 71
Figure 177: Visible Steel Strap Wythe Connection in exterior wall. ... 71
Figure 178: Quoins on southwest corner of structure. ... 71
Figure 179: View of North Elevation Wall... 71
Figure 180: View of North Wall Cap, looking north... 72
Figure 181: View of South Parapet, looking south... 72
Figure 182: Ornamental metal cover on South Parapet... 72
Figure 183: View of South Parapet Support Rod... 72
Figure 184: View of Wood Blocking on south elevation in room 201 at roof.................... 73
Figure 185: Wall Pockets in south wall visible in room 201.. 73
Figure 186: Roof bearing Wythes visible on west elevation... 73
Figure 187: Wood Top Plate on studs and on top of truss ends.. 73
Figure 188: Exterior Canopy Frame on north elevation.. 73
Figure 189: Detail of Canopy Frame Attachment on north elevation....................................... 74
Figure 190: View of Canopy Attachment Plate on Interior of Wall in room 124............... 74
Figure 191: View of Canopy Frame Purlins on north elevation.. 74
Figure 192: View of typical Canopy Roofing.. 74
Figure 193: Detail of Steel Emergency Stair on east elevation.. 74
Figure 194: Detail of landings attachment of Steel Emergency Stair.................................... 75
Figure 195: Detail of concrete footings for Emergency Stairs... 75
Figure 196: Slab on Grade at north end of building... 77
Figure 197: Cracks in Slab in room 124.. 77
Figure 198: Detail of the 1995 Joist Repair visible in room 201... 77
Figure 199: Floor Joist Repair Drawing.. 78
Figure 200: View of visible Termite Damage... 78
Figure 201: Detail of Steel Saddles Supports in Room 201 northwest corner................................ 78
Figure 202: Detail of Truss Damage in room 201... 78
Figure 203: Detail of typical gaps in Steel Saddle Support in room 201...................................... 79
Figure 204: Detail of typical gaps in Steel Saddle Support without shims in room 201......... 79
Figure 205: View of Locking Scarf Joint on south wall in room 201... 79
Figure 206: View of Locking Scarf Joint on south wall in room 201... 79
Figure 207: View of a Bent Tie Rod in room 201... 79
Figure 208: Blocking separated from truss on south wall of room 201...................................... 80
Figure 209: View of locking scarf join of North Truss on north wall of room 201................. 80
Figure 210: View of locking scarf join of South Truss on south wall of room 201................... 80
Figure 211: Gap between roof edge and southwest corner of room 201.............................. 80
Figure 212: Filled Arch Opening in upper level of north wall. ... 81
Figure 213: 2005 Photograph of Crack on South Wall. ... 81
Figure 214: Photograph of South Wall prior to repair. ... 82
Figure 215: South Wall after repair. .. 82
Figure 216: Photograph of South Wall prior to repair. ... 82
Figure 217: Photograph of Repair of South Wall. .. 82
Figure 218: South Elevation. .. 82
Figure 219: Caulk-filled gaps on South Elevation. .. 83
Figure 220: Caulk-filled gaps on South Elevation from Interior... 83
Figure 221: Window Sill Condition on second floor of West Elevation. .. 84
Figure 222: Crack in brick veneer on north elevation of addition... 84
Figure 223: Cracks in Weatherboard and Plaster of Parapet Wall. .. 85
Figure 224: Missing Louvers in Boiler Room Door.. 85
Figure 225: Efflorescence in Equipment Yard Wall. .. 85
Figure 226: Rusting Steel Lintel at Park Sign. ... 85
Figure 227: Boardwalk Decking... 85
Figure 228: Erosion around support piles of Boardwalk. .. 86
Figure 229: Erosion around support piles of Boardwalk. .. 86
Foreword

We are pleased to make available this Historic Structure Report, part of our ongoing effort to provide comprehensive documentation for the historic structures and cultural landscapes of National Park Service units in the Southeast Region. A number of individuals and institutions contributed to the successful completion of this work. We would particularly like to thank the staff at Jean Lafitte National Historical Park and Preserve for their assistance throughout the process. We hope that this study will prove valuable to park management in ongoing efforts to preserve the historic structure and to everyone in understanding and interpreting this unique resource.

Dan Scheidt, Chief
Cultural Resources, Partnerships and Science Division
Southeast Regional Office
Page intentionally left blank.
Management Summary

Project Team

Building Investigation/Building Condition Assessment
- David Kroll, Historical Architect
- Benjamin Ross, Historic Preservation Specialist
- RATIO Architects, Inc., Indianapolis, IN
- Baku Patel, Structural Engineer
- Angela Booth, Structural Engineer
- Palmer Engineering Co., Tucker, GA
- Dorothy S. Krotzer, Director
- Building Conservation Associates, Inc.
 Philadelphia, PA
- Keyes Williamson, Principal Historian
 WLA Studio, Athens, GA

Research
- Keyes Williamson, Principal Historian
- Sean Dunlap, Historic Preservation Specialist
 WLA Studio, Athens, GA

Building Recordation
- David Kroll, Historical Architect
- Benjamin Ross, Historic Preservation Specialist
 RATIO Architects, Inc., Indianapolis, IN

Program Review
- Ali Miri, Historical Architect
 National Park Service
 Southeast Regional Office
 Atlanta, GA
- Erik Kreusch, Cultural Resource Program Manager
 Jean Lafitte National Historical Park and Preserve
 New Orleans, LA

Project Manager
- Ali Miri, Historical Architect
 National Park Service
 Southeast Regional Office
 Atlanta, GA
Executive Summary

At the request of the National Park Service (NPS), WLA Studio has developed this Historic Structure Report (HSR) for the Percy-Lobdell Building at the Wetlands Acadian Cultural Center in Thibodaux, Louisiana, a unit of the Jean Lafitte National Historical Park and Preserve (JELA). Other firms participating in the preparation of this report include RATIO Architects, Inc., Palmer Engineering Company, and Building Conservation Associates, Inc.

Purpose and Scope

The purpose of this Historic Structure Report is to document the construction history and current condition of the Percy-Lobdell Building at Jean Lafitte National Historical Park and Preserve and to provide recommendations and general guidance for its treatment and use. This HSR will guide the National Park Service in the stewardship of these historic resources.

The report includes Part I: Developmental History and Part II: Treatment and Use. Part I provides a brief review of the historical development of Thibodaux, Louisiana and the establishment of the Wetlands Acadian Cultural Center at the historic Percy-Lobdell Building. A chronology of the structure’s physical development and use provides information on the known evolution of the structure over time. This information derives largely from physical investigations with the addition of available historical documentation.

A current physical description, based on building investigations and assessment using non-destructive methods, provides a systemic accounting of both structures’ features and materials. A summary assessment of the structure’s current condition is also included.

Part II provides recommendations for the treatment and use of the Percy-Lobdell Building. The Treatment and Use chapter presents a proposed treatments for the historic structure. It emphasizes preservation and restoration of existing historic material while conforming to applicable laws, regulations, planning, and functional requirements. Treatment recommendations address foundation conditions, masonry conditions, and deterioration of the physical structure.

A bibliography provides all sources of information this report references.

An appendix contains period plans of the structures and buildings and existing plans and elevations. An analysis of historic paint finishes is also included in the appendix.

Historical Overview

The Percy-Lobdell Building is a two-story brick warehouse, constructed circa 1905, located on St. Mary Street in Thibodaux, Louisiana. The front elevation of the building features Italianate architectural elements, including rounded, arched entrances, decorative cast-iron window caps, and decorative brick cornice and parapet.

Thibodaux has served as the local seat of government for Lafourche Parish since 1808. The city, founded in the early years of the 1800s and named for Henry Schuyler Thibodaux, became an important commercial center for the region. Bayou Lafourche provided an important stimulus to economic development, providing a transportation link between the interior of the Parish and the Mississippi River, Gulf of Mexico, and trading centers including New Orleans. During the first half of the 1800s, large sugar-producing plantations began replacing the small farms that filled the region during the 1700s. By the middle decades of the 1800s, the New Orleans, Opelousas and Great Western Railroad arrived in the region and provided an additional stimulus to economic development, in particular the production of sugar, which dominated the local agricultural industry.

During the Civil War, Union and Confederate troops occupied the city of Thibodaux. Even though the city never experienced a pitched battle, retreating troops destroyed resources of commercial and industrial value. The war also negatively impacted the sugar industry, which slowly recovered by the end of the 1800s, resulting in what has been described as the “boom years” of Thibodaux around the beginning of the 1900s. It was in this period when many of the historic
commercial, civic, and residential resources that remain in Thibodaux today were constructed.

The Percy-Lobdell Building was part of an active commercial area developed west of downtown Thibodaux, just beyond the main railroad spur into town along historic Church Street. George S. Guion laid out six parcels of land west of Church Street along the banks of Bayou Lafourche in 1846. This area became the site for numerous commercial enterprises, including sawmills, ice manufacturing, foundry and machine shops, and the largest wholesale grocery warehouse in the region housed in the Percy-Lobdell Building.

The Lobdell Company purchased the parcel upon which stands the existing Percy-Lobdell Building in 1905. Real estate records indicate that the building was, at least, under construction at that time. In 1909, the Lobdell Company merged with the Percy Grocery Company, creating the Percy-Lobdell Company, Limited. The Percy-Lobdell Building served as the regional warehouse, where a diverse collection of goods were stored and distributed to smaller general stores located in smaller communities in the Lafourche Parish region.

The building and site changed over time, as the operation grew during the first few decades of the 1900s. The company enlarged adjacent structures, adding a large grain warehouse in the 1910s. During the early 1900s, the Percy-Lobdell Company utilized a railroad spur along the levee, known as the Levee Track, to transport goods to the rear yard of the warehouse. In the 1920s, the company financed the construction of a rail spur to the rear of their warehouse.

In the early 1980s, Martha Sowell Utley, a local civic leader in Thibodaux, led a campaign to convert the abandoned Percy-Lobdell Building into a cultural center and library. The Martha Sowell Utley Memorial Library Trust purchased the building in 1982. In 1986, the Friends of the Library group leased the building, initiated renovations to the building, and opened the main branch of the Lafourche Parish Library on the upper story of the building.

In 1988, the Friends of the Library donated the building to the National Park Service to become the Wetlands Acadian Cultural Center, part of the Jean Lafitte National Historical Park and Preserve. In 1990, the NPS began a major rehabilitation of the property. Having acquired additional parcels in the late 1980s, the NPS constructed a large addition on the west side of the historic structure to be a performance center. Other site improvements include a new parking area, pedestrian circulation infrastructure, and a boardwalk leading to Bayou Lafourche.

Statement of Significance

The Percy-Lobdell building was listed on the National Register of Historic Places in 1986 as part of a multiple resource nomination for the town of Thibodaux (NR 86000431) with a period of significance extending from c.1850 to the 1920s. This nomination recognizes the local significance of the building in the areas of architecture and commerce. The nomination states that the Percy-Lobdell Building was among the only remaining commercial structures with Italianate architectural styling. The building is also considered significant as a reflection of the commercial development of Thibodaux. The building was an important distribution center serving Lafourche Parish.

Project Methodology

The scope of work for this HSR defined the required level of the historical research and the architectural investigation, analysis, and documentation. Research utilized primary-source documents and public records, with most resources derived directly from the NPS archives. Additional research was conducted at the Lafourche Parish Library, the Ellender Memorial Library, and the NPS archives.
Library at Nicholls State University, the University of Georgia, and at the headquarters of the Jean Lafitte National Historical Park and Preserve in New Orleans.

Documentation of the structure began with fieldwork on November 6, 2017, when the consultant team met at the Wetlands Acadian Cultural Center for preliminary investigations. These investigations continued for the next three days. During the site visit, team members contacted local representatives of the Lafourche Historical Society, local archivists, and local architecture firms. Team members were able to secure construction documents from previous work on the building and digital copies of photographs of the building that record the structure’s condition in the 1980s and 1990s. Team members also visited Jean Lafitte National Historical Park and Preserve headquarters to review NPS construction documentation.

The historical architects referred to existing recordation documents, as available, for the preliminary analysis of the monument’s evolution and to prepare for fieldwork. The historical architect and staff prepared the existing condition plans based on these field investigations and drafted them using AutoCAD.

Conclusions and Recommendations

Documentation for the National Register of Historic Places Thibodaux Multiple Resource Area dates the Percy-Lobdell Building as “circa 1900.” The National Park Service LCS entry has the building’s construction date as between 1890 and 1910. Tax records suggest that construction of the building began in late 1904 or early 1905, prior to when the Lobdell Company, Ltd. purchased the property in April 1905.

It is recommended that the Percy-Lobdell Building receive a Rehabilitation treatment to accommodate its continued use by the NPS and the Thibodaux community. This would include restoration of the south façade to its c.1905 appearance; the rehabilitation of the other elevations; the rehabilitation of the first floor interior for continued use by the NPS; the preservation of the second floor interior for continued use by the Lafourche Parish Library and future rehabilitation of that space; and the rehabilitation of the 1990-1992 additions.

Of primary concern is ongoing water infiltration into the second floor of the building. The water appears at the gutter line at the east and west walls, particularly toward the south end of the building. The gutters appear undersized for the size of the roof and should be replaced. It is also recommended to repair the four corners of the roof where it meets the north and south façades. Structural recommendations include stabilizing and reinforcing the south façade and north parapet to prevent further separation. These recommendations are addressed in the treatment recommendations.
Administrative Data

Locational Data
Building Name: Percy-Lobdell Building
Wetlands Acadia Cultural Center,
Jean Lafitte National Historical Park and Preserve

Location: 314 St. Mary Street, Thibodaux, LA 70301
State/Territory: Louisiana

Related NPS Studies

Real Property Information
Acquisition Date: 1988
LCS ID: 064960

Size Information
Percy-Lobdell Building & Additions: 31,735 (gross) square feet ±

Cultural Resource Data
The Percy-Lobdell Building was added to the National Register of Historic Places on March 5, 1986. The building is a part of the Thibodaux Multiple Resource Area; it is contributing under the areas of significance of architecture and commerce.

Proposed Treatment
Percy-Lobdell Building
It is recommended that the Percy-Lobdell Building receive a Rehabilitation treatment to accommodate its continued use by the NPS and the Thibodaux community. This would include restoration of the south façade to its c.1905 appearance; the rehabilitation of the other elevations; the rehabilitation of the first floor interior for continued use by the NPS; the preservation of the second floor interior for continued use by the Lafourche Parish Library and future rehabilitation of that space; and the rehabilitation of the 1990-1992 additions.
I.A Historical Background and Context

Introduction

The Percy-Lobdell Building, an early twentieth-century brick building long used as a wholesale grocery warehouse, is located a few blocks west of downtown Thibodaux, Louisiana on the south bank of Bayou Lafourche. The building currently serves as the Wetlands Acadian Cultural Center, part of the Jean Lafitte National Historical Park and Preserve. This Developmental History section provides historical background and context related to the development of Thibodaux, the construction of the Percy-Lobdell Building, and the evolution of the building and its use over time. This section includes information on the commercial development of Thibodaux, which is why the National Register of Historic Places considers the building to be historically significant. This section also provides an overview of the local effort to preserve the building and its conversion to a cultural center and library prior to NPS acquiring the property in 1988.

Bayou Lafourche, which bisects the city of Thibodaux, historically served as an important transportation route through the region. From Thibodaux, the bayou provided a navigable route north to the Mississippi River and south to the Gulf of Mexico. Bayou Lafourche gives its name to the surrounding region. Lafourche, French for “the fork,” describes the way the bayou forked off the Mississippi River. The 106-mile long bayou branched off the Mississippi River near the modern city of Donaldsonville and flowed past Thibodaux to the Gulf of Mexico, making it a distributary of the Mississippi River. The US Army Corps of Engineers dammed the mouth of the branch at Donaldsonville in 1903, which prevented the free flow of water into the Bayou.

The Lafourche region is part of the Mississippi River alluvial plain, where seasonal flooding of the river deposited sediment-laden soil creating modest ridges of fertile and arable land. These ridges, rising between two to fifteen feet higher than the surrounding landscape, slope away from the river towards swamps that fill the interior of the region. The Mississippi delta is a dynamic river system that has changed over many thousand years. Bayou Lafourche appears to have formed during a diversion of the Mississippi River that began about 4,800 years ago. Bayou Lafourche began as a distributary of the main channel of the river and “the natural levees of this distributary may have reached as far south as present-day Thibodaux.”

Prior to the arrival of European explorers and settlers, local Native American tribes in the area included the Ouacha (or Washa), Chaouacha, and Chitimacha. By the time that Europeans settled the region, the native population had dwindled, likely from diseases introduced by the early explorers. Early explorers of the region called Bayou Lafourche “La Riviere de Chetimaches” or “La Forche de Chitimaches” after the Native American inhabitants. Luis de Moscoso led a detachment from Desoto’s expedition along the Mississippi River, passing the Bayou Lafourche area, in 1543. French explorer Rene-Robert Cavelier, Sieur de La Salle, travelled down the Mississippi in 1682 and named the region Louisiana to honor France’s King Louis XIV. A few years later, in 1699, French explorer Pierre Le Moyne d’Iberville, travelled up the Mississippi River and recorded the first mention of Bayou Lafourche.

France began to develop the colony in the early 1700s and founded New Orleans in 1718. By the 1720s and continuing into the 1750s, French, German, and Swiss settlers moved into the region with the encouragement of the French government, but only a few settlements were established along the upper reaches of Bayou

Lafourche. Following the Seven Year’s War, Spain took control of Louisiana from France in 1763 and remained in possession of the area until 1803. The Spanish government also promoted the area to immigrants, inviting Acadians, exiled from Nova Scotia, to settle the lands along Bayou Lafourche in the 1760s. A group of Acadians living in exile in France travelled to Louisiana in 1785 and settled along Bayou Lafourche near Thibodaux. Spanish authorities invited immigrants from the Canary Islands to settle in the area in the 1770s and 1780s. In 1794, a second wave of 277 Acadians moved to the area from Thompson Creek. “By 1798, there were 1,719 “persons” and 274 slaves living along Bayou Lafourche.”

The alluvial soils provided cultivable lands attractive to settlers wanting to establish farms. The settlers found a native forest growing thick along the upper ridges and had to clear the ash, oak, cottonwood, and magnolia trees to make way for their fields. Most of the farms and settlements during this period were clustered along the natural levees created by seasonal floods. Because the bayous were the primary route of transportation, most properties fronted the bayou and resulted in a unique settlement pattern with long narrow lots extending away from the bayous. The inhabitants of the narrow strips of lands were known as petit habitants. Because of periodic flooding, settlers began constructing additional levees along the banks of the bayous to prevent the water from overflowing its banks. The principal cash crops for these small farmers included rice, corn, other vegetables, indigo, and cotton.

The first recorded European settlers on the property that is today the Wetlands Acadian Cultural Center included Guillaume Hamon and his wife Marguerite Saulnier. Hamon and Saulnier were among a group of Acadians who immigrated to Louisiana from France on the ship the St. Remi in 1875. Shortly after arriving in New Orleans, the Spanish colonial government relocated the couple to Bayou Lafourche. Hamon received a land grant along the west bank of the bayou. The modern boundaries of this grant are Ridgefield Road, Jackson Street, Bayou Lafourche, and the Lafourche-Terrebonne Parish line.” Hamon’s neighbors at the time of the 1788 census included Joseph Boudreaux and Etienne Darois. Joseph Malbrough acquired Boudreaux’s property in the early 1790s. Malbrough’s son Francois Malbrough eventually acquired the lower half of Darois’ property in the early 1800s.

France reacquired Louisiana from Spain in 1800, though it did not reestablish an active government prior to 1803, when France sold Louisiana to the United States as part of the Louisiana Purchase. Anglo-Americans streamed into the area, buying land from Acadians and other early settlers. In 1805, the Territorial Legislative Council divided the Territory of Orleans into several counties, including Lafourche County. Then, between 1805 and 1807, territorial legislature reorganized the region into civil parishes. Lafourche Interior Parish was one of the original 19 civil parishes created by the territorial legislature. In 1822, Louisiana divided the parish, the western portion becoming Terrebonne Parish. In 1853, the name of the parish changed to Lafourche Parish. During the early American period, many of the “small farms were joined to form large sugar-producing plantations. These plantations required a substantial labor force, which introduced large-scale slavery into the region.”

The Town of Thibodaux

Thibodaux is the parish seat for Lafourche Parish. The town is named for Henry Schuyler Thibodaux, a son of exiled Acadians who acquired land in the area in the early 1800s. At the time of the Louisiana

6. Pena, Scarred By War, 15.
11. Pena, Scarred By War, 17.
14. Pena, Scarred By War, 18.
Part I - Developmental History

Purchase, much of the area that became Thibodaux was owned by Joseph Malbrough. On December 8, 1813, when Malbrough sold his property to Henry Johnson, his property was described as being bound upstream by William Hammond and downstream by Henry S. Thibodaux.

Thibodaux had purchased the tract downstream from Malbrough from Hugh G. Johnson prior to 1811. In 1820, Thibodaux hired James B. Grinage to survey and layout a new town into lots. Thibodaux died in 1827. In 1830, there was an unsuccessful attempt to incorporate the town as “Thibodauxville.” The town officially incorporated in 1838 as “Thibodeaux,” a misspelling that persisted until 1918, when the town changed the name Thibodaux. In 1846, Church Street formed the boundary between the town and George Seth Guion’s Ridgefield Plantation. In 1846, Guion had E. D. Richardson layout several lots west of Church Street outside of the town limits. These lots were to be for commercial and industrial use rather than for residential. These lots would include the future site of the Wetlands Acadian Cultural Center.

George S. Guion acquired five tracts of land, totaling about 800 acres, from John Davidson Smith in 1835. This included a portion of the land originally settled by Hamon. Smith had acquired the land in 1827, but it does not appear that Smith ever resided on the property. In fact, there is no record of anyone residing on the property between Hamon and Guion’s acquisition in 1835.

George Guion took several mortgages on the property in what appears to an attempt to raise money to develop a sugar plantation. At the time of the 1840 census, the land “was uninhabited and was used as fields or pastures.” After another mortgage on the property in 1842, Guion was able to develop the plantation and listed producing 361 hogsheads of sugar from the farm. Therefore, between 1785 and 1846, local residents used the land upon which stands the Wetlands Acadian Cultural Center for agriculture. It was in 1846, when Guion laid out the lots on the edge of the town limits that the property transitioned to an industrial and commercial use that was characteristic of its use when the Percy-Lobdell Company, Limited constructed its warehouse in the early 1900s.

Thibodaux was important commercial center for Lafourche Parish as it grew into one of the largest town in the region and became the place where local farmers came to trade and to get goods and services. In 1842, the town had 30 houses along two streets, but it was growing rapidly. That year, the town laid down five-foot-wide brick walkways along four streets. Also in 1842, Mrs. Thibodaux donated land to be used as the first cemetery in town. A year later, George Guion donated land on Jackson Street for an Episcopal Church.

The town grew into a commercial and trading post in the 1840s and 1850s taking advantage of a transportation network of bayous, wagon roads, and railroads that helped support trade into and out of Thibodaux. In the 1700s, sailboats made trips between New Orleans and Bayou Lafourche. Steamboats were plying the bayous of the region as early as 1811. Captain Ferdinand M. Streck, who owned property in Thibodaux, provided steamboat service between Bayou Lafourche and New Orleans beginning in the 1820s. Streck’s steam ship, Eagle, made its first voyage up Bayou Lafourche in 1825. A sandbar at the mouth of Bayou Lafourche periodically interrupted boat access, leading to the development of roads and railroads. A public road along the south bank of Bayou Lafourche appears on an 1846 map of Thibodaux. This road along the bayou’s levee was the main road between Thibodaux and Donaldsonville. The town installed a ferry across the bayou at the end of Maronge Street in 1847. A bridge replaced this ferry in 1857. Railroad companies started building rail lines into the area by March 1852. The New Orleans, Opelousas and Great Western Railroad travelled within three miles of Thibodaux in 1854. By 1859, a spur connected the town to the main line. This spur later extended to Houma and Donaldsonville.

Thibodaux’s growth as a commercial center was also “directly linked to that of agriculture, in this case principally sugar.” In the earliest days of Thibodaux, cotton was the most common cash crop. After a good sugar crop in 1828, out-of-state investors entered the region and began purchasing and consolidating small farms. Afterwards, sugar production grew to dominate the local economy. Prior to the Civil War, Lafourche was among the leading sugar-producing parishes. By 1859, sugar plantations occupied approximately 75% of the improved acreage in the parish. Historian Christopher Pena writes, “Before the war, the area served as the breadbasket for Louisiana. Its principal cash crop of sugar, along with other staples such as corn, rice, and some cotton, helped fuel Louisiana’s economy during the antebellum period.”

Louisiana seceded from the Union on January 26, 1861 and joined the Confederate States of America in March. At the outset of the Civil War, the Louisiana State Militia had a headquarters in Thibodaux. The conflict reached Bayou Lafourche in the summer of 1862, when Union forces attacked Donaldsonville. A few months later, Confederate and Union troops clashed again in Labadieville, several miles up Bayou Lafourche from Thibodaux. After the battle, many Confederate forces retreated to Thibodaux. In October, the Confederates abandoned Thibodaux. Before leaving, Brigadier General Alfred Mouton had his troops burn the railroad depot, bridges, sugar, and useful supplies. Union forces soon occupied the town. Union and Confederate traded possession of Thibodaux at least four times between June and July 1863, though there was never a pitched battle in the town. The town did suffer from the war. The foundry was “ransacked… the sawmill was left in virtual ruins, and the bridge was in a state of disrepair by the war’s end and effectively blocked all bayou traffic from passing Thibodaux.”

29. Pena, Scarred By War, 3.
32. Hahn, Historical and Archeological Investigations, 27.
Thurston Hahn, working for Coastal Environments, Inc., prepared a comprehensive analysis of property records and describes the various real estate transactions related to these six parcels in his 1992 study “Historical and Archeological Investigations at the Wetlands Acadian Cultural Center, Thibodaux, Lafourche Parish, Louisiana.” The following information provides an abbreviated overview of that record.

George Guion sold Lot 205 to George Anderson on March 1, 1847. Anderson and Richard S. Larkin established a metalwork shop and foundry on the site soon thereafter. Anderson had a house constructed on the property sometime in 1847. Anderson sold the property to Edward Hays in 1850. Hays and his descendants operated a cooperage on the property until they moved to New Orleans in the late 1850s. Annie and Ella Dyer purchased the property from their stepsister, Marie Catherine Hays, in 1893. The cooperage appears to have closed by 1898, when the Sanborn Fire Insurance Company map of that year shows a bakery on the site (Figure 2). The Dyers sold the property to William Jefferies in 1904. By 1907, when another Sanborn Fire Insurance Company
map was published, the bakery is gone and the two structures on the site were used as residences (Figure 3). Jeffries sold the property in 1911. In 1912, the Sanborn Fire Insurance Company map shows a large stable building occupying most of the parcel (Figure 4). The stable remained until the 1930s when it was removed during the straightening of St. Mary Street. A large grocery warehouse was built in its place34 (Figure 5).

The adjacent lot, number 204, became the eventual site of the Percy-Lobdell Building. George Guion initially sold the lot to Patrick H. Gary and Charles E. Hawley on March 4, 1848. The two constructed a sawmill which burned down soon after construction. They sold the property and partially destroyed sawmill soon after to James Brown in March 1849. Brown seems to have also been operating a sawmill at this location, but he ran into financial problems which resulted in numerous lawsuits concerning his property. Eventually, Joseph Ledet acquired the property in 1855. He held the property for only two weeks, selling it to Jean Herbert on May 3, 1855. Herbert lived on the property until 1868 and it does not appear that he operated any industry on the site. Herbert sold the parcel and purchased it back in 1871. He sold it again, on the same day he purchased it back, to Evariste Maronge. The sales deeds record a building and two cisterns on the site. The 1898 Sanborn Fire Insurance Company map shows two one-story structures on the lot. One faces the Public Road on the north side of the lot and the other faces St. Mary Street. Evariste’s Maronge’s daughter Octavia sold the lot to Dr. Thomas Stark, president of Lobdell Company, Limited, on April 12, 1905.35

East of Lot 204 were lots 200 through 203. Lots 200 and 203 fronted the Public Road along the bayou. Lots 201 and 202 were smaller and fronted St. Mary Street. Guion sold Lot 200 and Lot 203 to Captain Ferdinand Streck in 1846. Streck sold the lots in 1850 to Michael Welsh. It does not appear that Streck had made significant improvements to the lots. James Frost purchased the lots from Welsh in April 1850. Frost’s estate sold the lots in 1858 to Octave Blanchard. The 1860 census records Blanchard living at this location. Blanchard was a cooper, though it is not known if he operated a shop on this site. He sold the property to James Thompson on December 14, 1866. Thompson ran into financial problems and sold the property. Patrick Hogan purchased the lots in 1873. Hogan established the Hogan Boiler Shops and Foundry on the property. Hogan also “sold coal, ran a store and/or saloon, and resided on the lots.”36 William Ragan purchased the property at a Sherriff’s Sale in 1882. Ragan operated several businesses. The 1898 Sanborn Fire Insurance Company map shows the Ragan Foundry and Machine Shop and a residential dwelling facing Church Street (Figure 2). The 1907 Sanborn Fire Insurance Company map shows the foundry again, depicting a “fairly complex series of structures consisting of the foundry itself, a machine shop, pattern shop, stage, fuel oil tanks, and a large coal pile”37 (Figure 3). Ozeme Naquin leased the property from Ragan’s sons, operating the Thibodaux Boiler Works on the property for several years. The foundry stood until the 1920s when the Percy-Lobdell Company, Limited acquired it.38

George Guion sold Lots 201 and 202 fronting St. Mary Street on January 15, 1848. Patrick Tyrls purchased them for himself and his wife, Ellen Carrick. After Tyrls died, Carrick remarried and left the property to her second husband in her will. The subsequent auction of the lots was challenged by one of Tyrl’s sons, James, who claimed a 50% interest in the property. Eventually Patrick Hogan purchased the property from both parties in 1896.39 Hogan sold the property in 1898 to Octave J. Toups. The 1898 Sanborn Fire Insurance Company map shows a wooden tin shop standing on the corner of Church and St. Mary Street (Figure 2). William Ragan purchased a portion of the property to provide access between St. Mary Street and his foundry in 1902. Troup’s kept the remaining property until 1921. Eventually the tin shop was converted to a market building. Several other structures appear on maps of the property, including two residential dwellings.

The development of these parcels is indicative of the growth of the local economy of Lafourche Parish, which began to recover towards the end of the 1800s, led by a resurgence in the sugar industry.

34. Hahn, Historical and Archeological Investigations, 51.
35. Hahn, Historical and Archeological Investigations, 57.
38. Hahn, Historical and Archeological Investigations, 70.
Helped by tariff legislation that improved the price of sugar and a period of high production, the period between 1890 and 1912 is considered the “boom years” of sugar in the region.40 The population of Thibodaux was 1900 in 1892; it grew to 4300 by 1907. Additionally, there were 26 private schools in the town.41 During this period, Thibodaux’s importance as a regional commercial center increased. “At the time when most other communities in the parish had presumably one or two general stores, Thibodaux had over 100 mercantile establishments of many kinds. There were, for example, six grocery stores, seven restaurants, four barbers, five haberdashers, four laundries, four millinery shops, four drugstores, four saloons, four confectioners, and three banks….”42

In 1903, concerns over continued flooding led local residents to successfully petition to have a levee constructed across the mouth of Bayou Lafourche, cutting it off from the Mississippi River. The U.S. Army Corps of Engineers began the construction of a temporary dam in 1903 and completed the project in 1904. In addition to blocking boat access, the project also stopped the flow of water, leading the bayou to become stagnant without the influx of fresh water. In the 1930s, the town of Thibodaux ran a 17-mile long pipe between the Mississippi River and the town to provide fresh water. In the early 1950s, the Bayou Lafourche Fresh Water District constructed a pump station to divert a controlled flow of water from the Mississippi River into the bayou.43 With the damming of the bayou, the railroad and roads supplanted boats for personal transportation and the conveyance of goods into and out of Thibodaux.

Blocking the mouth of Bayou Lafourche at Donaldsonville removed the threat of flooding along the banks of Bayou Lafourche and made obsolete the levees constructed alongside the bayou. This allowed property owners to extend their property lines all the way to the bayou around 1905. This also led to the abandonment of the Public Road in Thibodaux that travelled along the levee on the south banks of the bayou. Prior

40 “National Register of Historic Places Inventory—Nomination Form,” Section 8, Page 3.
41 Biographical and Historical Memoirs, 241.
42 “National Register of Historic Places Inventory—Nomination Form,” Section 8, Page 4.
43 Hahn, Historical and Archeological Investigations, 11.

\textbf{Figure 6:} “Circa 1900 photograph looking west along Public Road and Levee. (Photograph courtesy of Ellender Memorial Library, Nicholls State University.)

to 1905, the Public Road was the primary road heading north and west out of Thibodaux. Upon its abandonment, St. Mary Street became the main road out of town.44

The bayou remained an active area for industry in Thibodaux. Sometime between 1898 and 1907, Morgan’s Louisiana and Texas Railroad and Steamship Company built a rail line, known as the Levee Track, between Church Street and Ridgefield Road. This rail line attracted a number of industries to establish operations along the track, including ice manufactures, a foundry, and the Percy-Lobdell wholesale grocery.45 The busy scene is captured in a circa 1900 photograph looking west along the Public Road and Levee. W.H. Ragan’s Foundry and Machine Shop is in the foreground, near the Levee Track. In the background is the large, W. H. Ragan’s Thibodaux Ice Factory (Figure 6).

By the 1910s, Thibodaux had grown into the largest town in the parish. New industries arrived in Thibodaux, including a “foundry-boiler-machine shop, three boiler works, an ice factory, and a whole sale grocery operation housed in the Percy-Lobdell Building.”46

\textbf{Percy-Lobdell Company, Limited}

Peter Randolph Percy and John L. Lobdell, local merchants who had previously partnered in

44 Hahn, Historical and Archeological Investigations, 28.
45 Ibid.
46 “National Register of Historic Places Inventory—Nomination Form,” Section 8, Page 4.
various corporations, merged their two wholesale grocery companies in 1901. On January 21, 1901, the newly formed Lobdell and Percy Company, Limited, leased a building from the Auslet family at the corner of St. Mary and Church Street just outside of downtown Thibodaux. This area of town, between Church Street, St. Mary Street, Art Street and Bayou Lafourche contains lots that eventually became part of the Wetlands Acadian Cultural Center, a unit of the Jean Lafitte National Historical Park and Preserve.

On March 26, 1904, the Lobdell and Percy Company, Limited sold its assets to the Lobdell Company, Limited. Included in the sale was rights to the lease and all the merchandise at the St. Mary and Church Street location. Also included in the transaction were livestock, wagons, carts, buggies, and a flatboat “used by them in carrying on the business of the corporation.” On April 12, 1905, the Lobdell Company, Limited purchased Lot 204 from Mrs. Octavie Maronge for $3,850. The price is almost double paid for the adjacent lot, Lot 205, a year before. “From the purchase price alone, it would appear that the present Percy-Lobdell Building was at least in the process of construction at the time of the sale.”

Lot 204 was 89 feet wide and extended from St. Mary Street on the south to the low water mark of Bayou Lafourche on the north. On January 14, 1909, the Percy-Lobdell Company was created by merging the Lobdell Company, Limited and the Percy Grocery Company, Limited. The new company combined the assets of the two companies and the primary shareholders of each company joined to form a new Board of Directors. Included on the original Board of Directors were E. U. Morvant, C. V. Mire, Joseph Claudet, P. R. Percy, and H. L. Sims from the Percy Grocery Company and Dr. Thomas Stark, R. C. Martin, Jr., James Beary, B. N. Roth and L. E. Caillout from the Lobdell Company.

It is clear that the building was there in 1907 because it is on the Sanborn Fire Insurance Company map from that year (Figure 3). The map also shows a small structure on the banks of the bayou that was some kind of warehouse or storage shed. There is also a loading ramp leading from the main building down to the bayou. The Percy-Lobdell Company, Limited made several additions to the building and surrounding property. Between 1907 and 1912, the company enlarged an existing shed behind the building, near the bayou, and added a large grain warehouse adjacent to this shed (Figure 4). Between 1912 and 1916, they added a structure to the rear of the building, enlarged the shed again, and added a grain elevator to the grain warehouse (Figure 7).

On July 11, 1918, Percy-Lobdell Company, Limited purchased the adjacent lot, west of their warehouse building, from Minnie Jones McGee for $5,000. On March 27, 1920, the company purchased two lots (200, 203, and portion of 202) east of their warehouses from William Ragan for $10,000. The Percy-Lobdell Building served as the primary warehouse for the wholesale grocery company. Boats transferred goods transported along the bayou via a loading ramp that connected the rear of the warehouse to the river. The company sold a range of goods, including “lamb gloves, potted "}

ham, tomato paste, vanilla wafers, chips, snuff, various cigars, and "Bud Beer." Prior to 1927, Percy-Lobdell Company, Limited reached an agreement with Morgan’s Louisiana and Texas Railroad and Steamship Company to build a 180-foot track along the levee behind the warehouse. Percy-Lobdell Company, Limited paid for it and assumed maintenance of the track, while the railroad company did the actual construction. The scale track had a scale for weighing cars, which could be used by both companies. This spur track led to the rear of the Percy-Lobdell Building. The 1927 Sanborn Fire Insurance Company map shows an addition on the rear of the warehouse that covers the scale track (Figure 8).

In the 1920s and 1930s, after companies discovered oil and gas in the marshlands of Lafourche Parish, the oil industry dramatically increased its presence in the local economy. The combined significance of agriculture and oil industry in the parish is reflected in its motto “Feeding and Fueling America.” In February 1921, Interstate Wholesale Grocers, Inc. bought Percy-Lobdell Company, Limited for $362,948.41. The purchase included all the property and merchandise in Thibodaux and Lockport. The Percy-Lobdell Building became a branch of the Interstate Wholesale Grocers, Inc. and the building continued to be used as a wholesale grocery warehouse under the Percy-Lobdell name. Interstate Wholesale Grocers, Inc. began selling off portions of the property in 1924. They sold Lots 200, 202, and 203 to Gulf Refining Company. Between 1927 and 1932, the shed on the edge of the bayou was reduced in size. In 1930 or 1931, St. Mary Street was realigned, resulting in a narrowing of the lot at the southwest corner of the Percy-Lobdell Building. Percy-Lobdell Company remained in operation at the building into the 1960s. Interstate Wholesale Grocers, Inc. was liquidated in the 1970s, but appear to have ceased using the Percy-Lobdell Building several years earlier. An article in *The Daily Comet* Newspaper on July 24, 1972 describes a wine bottling operation, Vermat, Inc., going into the building. According to the article, “The cavernous old Lobdell Building, which has been idle for quite some time, is fairly bursting with activity now.”

J. G. Duplantis purchased the Interstate Wholesale Grocers, Inc. property in Thibodaux, including the Percy-Lobdell Building, on October 8, 1975. The property was sold again in 1977 to Deep South Sporting Center, Inc., who opened a sporting goods store in the building.

From its initial construction in late 1904 or early 1905, the Percy-Lobdell Building was in continual use as a commercial building for approximately 75 years. Its use as a commercial building, in particular its use as a grocery warehouse, exemplifies the greater commercial development of Thibodeaux and the surrounding region in the early 1900s. The Percy-Lobdell Building reflects the evolution of the food retailing industry that transitioned during this period from local, open-air markets to stores in small towns that served surrounding rural communities. The Percy-Lobdell Building, therefore, represents Thibodeaux’s development as a commercial hub for the region and reflects the distribution of goods to consumers in the area around Thibodeaux.
Thibodaux Library and Wetlands Acadian Cultural Center

Martha Sowell Utley spearheaded a movement among local Thibodaux residents to purchase the Percy-Lobdell Building and convert it to a cultural center and library. The Martha Sowell Utley Memorial Library Trust purchased the building on February 1, 1982. A *The Daily Comet* article described the Trust’s activities to promote the creation of a library and museum in the building (Figure 9) (Figure 10). The article promoted local attendance to a design workshop where professional architects and design teams from local architecture schools would compete to generate a winning design concept for the building (Figure 11). Renovations were delayed when cost estimates for implementing the winning design were $2 million. The building was listed on the National Register of Historic Places in 1986 as part of a multiple resource area in Thibodaux. The Friends of the Library leased the building for twelve years beginning on September 2, 1986. The Friends of the Library oversaw the renovation of the building and installation of the Thibodaux Branch Library on the building’s second floor (Figure 12). Funds for the renovation included $165,000 from the Parish Council and $60,000 raised by the Friends of the Library.

Jean Lafitte National Historic Park and Preserve’s enabling legislation provided for the creation of...
of Acadian Cultural Centers in the region. The purpose of the cultural centers would be to interpret the historic importance of Acadians (Cajuns). Park staff proposed creation of three Acadian Cultural Centers, including one in Thibodaux, in 1985. While the Friends of the Library were renovating the Percy-Lobdell Building, NPS officials met with Thibodaux authorities and proposed the creation of the Wetlands Acadian Cultural Center. The NPS signed a cooperative agreement with the Friends of the Library in February 1986, agreeing to work together on exhibits and programs in the building. On November 3, 1988, the Friends of the Library donated the building and land to the Jean Lafitte National Historical Park and Preserve with the stipulation that the library could use the building for 50 years.

In 1988, the NPS purchased five acres around the building. A survey of the property dated 1988 shows a number of buildings and storage facilities on the property that the NPS quickly removed, including a large fuel tank and a corrugated steel building east of the building. These structures fronted Church Street (now abandoned). East of Church Street, on the parcel between Church Street and First Street, NPS eventually acquired and demolished two buildings to create the current greenspace. These buildings included a corrugated steel building on piers and a wood frame building on piers. Two buildings immediately east of the Percy-Lobdell Building were not part of the initial acquisition. These buildings front St. Mary Street and included a concrete block building and a frame residence. The NPS soon acquired and demolished these two buildings during the development of the site (Figure 10).

In July of 1988, Art Street became an official city street. Previously, it was called “street,” or “Ice Street, in reference to W. H. Ragan’s Thibodeaux Ice Factory located on the west side of the street. It was called Guion Street in the early 1900s, before becoming Art Street.

In 1990, the NPS began rehabilitation of the building. The architecture firm Hamilton and Associates prepared a site plan and construction documents for additions to the building and site. The drawings, dated June 1990, show that the parking lot was “recently completed or under construction.” New additions to the site, proposed in the plans, include new pedestrian circulation and a major addition on the west elevation of the Percy-Lobdell Building. This addition was a large performance center with auditorium, restrooms, and hallway/exhibit area.

64. Hahn, Historical and Archeological Investigations, 81.
They added a new entrance pavilion on the east elevation leading to the new parking lot (Figure 13). The pedestrian improvements included concrete sidewalks throughout the site and a large concrete plaza or “terrace” on the north side of the historic structure and new addition. The plans also show a boardwalk leading down to Bayou Lafourche (Figure 14). The existing NPS sign was also designed and constructed as part of this project. The Wetlands Acadian Cultural Center opened to the public in November 1992 (Figure 15). On April 17, 1993, members of the Lafourche Heritage Society and the Bayou Lafourche Chapter of the American Revolution dedicated a historical marker at the Wetlands Acadian Cultural Center to commemorate the prehistoric site of the confluence of Bayou Lafourche and Bayou Terrebonne.65

I.B Chronology of Development and Use

Early Site History | 1846-1905

The property was part of a plat by the Guion family, laid out by E. D. Richardson in June 1846.\(^{66}\) In March 1848, George S. Guion sold Lot 204, the future site of the Percy-Lobdell Building, to Patrick H. Gary and Charles E. Hawley. Gary and Hawley may have filled the lot with sand taken from the battery of the bayou. They built a sawmill on the property but it was at least partially destroyed by fire shortly after construction. In March 1849, Gary and Hawley sold the property and sawmill to James Brown for $1,954.46. In March 1851, Brown sold a half interest in the lot and planning mill to John James for $2,200. In April 1852, Brown and James sold the property and sawmill to Sumner Townsend and Arthur M. Foley, excepting a cistern and “one small cabin.”\(^{67}\) In April 1855, Townsend and Foley sold property and planning mill to Joseph Timothe Ledet for $3,300. Ledet is believed to have removed the sawmill machinery before selling the property to Jean Baptiste Hebert two weeks later. Hebert sold a building and two cisterns on the property to Pierre Bourée sometime before 1871. In January 1868, Hebert sold the property to Honora Kassiane, wife of Charles de LaBreton, for $2,400. After Kassiane’s death in 1871, Hebert re-purchased the lot at sheriff’s sale for $1,100, selling it to Evariste Maronge the same day for $1,500. After Maronge’s death in 1905, the property passed to his daughter, Octavie Maronge Frost.\(^{68}\)

As of the April 1898 Sanborn Fire Insurance Map, the site contained at least three one-story frame houses. One house was on the north end of the lot, with a porch along the façade fronting the levee road. A c.1900 photograph shows this house with a side-gabled roof, central chimney, five narrow columns along the front porch, and a wooden picket fence. The south end of the lot appears to have contained two houses, the western one being the only one documented in any detail. The western house had a porch across the south façade fronting St. Mary Street. The eastern house was approximately 20 feet to the east.

Construction of the Percy-Lobdell Building\(^{69}\) | 1905

The Lobdell & Percy Company, Ltd., grocers, was established c.1901 by Peter Randolph Percy (1872-1950) and John Little Lobdell, Jr., (1848-1910). As of the 1900 census (June 1900), Percy was living with Lobdell’s family in Thibodaux and both men were listed as merchant grocers. The company leased part of a lot at the southwest corner of St. Mary and Church Streets from Margaret Adam, widow of Remont Auslet, in January 1901, establishing a grocery and dry good store. In March 1904, J. L. Lobdell, president of the Lobdell & Percy Company, Ltd., sold the company’s assets to Dr. Thomas Ashton Stark (1866-1944), president of the Lobdell Company, Ltd., for $30,000. The sale constituted a reorganization of the company and included the store on the Auslet property, a flatboat, livestock, carts, buggies, agricultural implements, and all the company’s merchandise.\(^{70}\) J. L. Lobdell became vice-president and manager and Benjamin J. Roth of Napoleonville became secretary and treasurer of the company.\(^{71}\)

On April 12, 1905, Stark purchased Lot 104 on the north side of St. Mary Street from Octavie Maronge Frost for $3,850. Prior research suggests that construction of the Percy-Lobdell Building began in late 1904 or early 1905, possibly before the April 1905 sale of the property, and that the building was completed in late 1905 or early 1906.\(^{72}\) The building’s construction appears to correspond

69. The Percy-Lobdell Building was known as the Lobdell Company Building from c.1905 until the 1909 formation of the Percy-Lobdell Company. The name used after 1909 is used throughout this document for consistency.
with the c.1904 abandonment of the old Public Road on the levee, St. Mary Street becoming the major western entry to Thibodaux. These changes corresponded to the 1904 construction of a levee across the mouth of Bayou Lafourche on the Mississippi River at Donaldsonville. This separated Bayou Lafourche from the annual Mississippi River floods and required all shipments by water to go down the Bayou to the Gulf of Mexico and thence back up the Mississippi to New Orleans. The abandonment of the Public Road and elimination of flood threats allowed extension of properties to the batture of Bayou Lafourche. A branch line of Morgan’s Louisiana & Texas Railroad & Steamship Company’s main line from Morgan City to Lafayette extended to Thibodaux in 1879, roughly following the line of present-day W. First Street and terminating in a turntable at Jackson Street. A rail siding was built along the levee from Church Street to the city limits near the line of present-day Ridgefield Road by 1907, occupying the former line of the Public Road.

The Percy-Lodbell Building’s builders made use of sheet metal components that may have been manufactured by Mesker & Bro. of St. Louis, Missouri, or by one of the company’s competitors. The Mesker family owned two separate and competing companies—Mesker & Bro. of St. Louis and the George L. Mesker Company of Evansville, Indiana—producing cast iron and galvanized sheet metal façade components that they shipped across the United States, with peak use between the 1890s and 1910s. Mesker catalogs provided quality building materials and pre-designed façades that were widely used in smaller cities and towns but were fairly uncommon in major cities. Mesker products were used in Thibodaux during this period; the Henry Riviere & Company Building (1900) at 405 W. Third Street features a full Mesker & Bro. façade, the building at 108 Green Street features a Mesker & Bro. cornice (fleur-de-lis pattern), and the building (post-1900) at 407 W. Third Street features George L. Mesker Company storefront columns (fleur-de-lis and scroll pattern). The window hoods on the south façade of the Percy-Lodbell Building are similar to window cap No. 267 in Mesker & Bro.’s 1904 catalog. The cornice’s manufacturer has not been identified. The tin-clad fire shutters on the first-floor windows may be Mesker & Bro. product No. 275 and the bars on the building’s first-floor transoms may have been product No. 309 (window guards). The arched transom of the front entrance could have originally been fitted with a wrought steel grille for decoration and security. Grilles of this type were manufactured by Mesker & Bro. and their competitors—a similar example appears on the Bank of Lafourche Building (1897) at 206 Green Street across from the Lafourche Parish Court House. Historic finish analysis conducted in 2017-2018 found few traces of early finishes on the building’s exterior wood and metal surfaces, likely the result of extensive paint stripping during the 1986-1987 remodeling. Surviving traces of early paint finishes suggest that exterior woodwork and metalwork may have been painted a cream color. Sheet metal architectural elements were often painted cream or light gray colors to suggest stone.

A platform scale made by E. & T. Fairbanks & Company was installed in the south part of the first floor near the front entrance. Established in 1830 in Vermont, the company remains in business as of 2018. Fairbanks produced thousands of scales of various designs every year, had travelling sales representatives across the country, and maintained a store in New Orleans as of 1905. This scale was set into the floor, allowing carts to be rolled onto it and weighed. A canopy of supported by four wooden posts held the scales’ equipment.

The canopy’s upper corners were reinforced by heavy-gauge wire brackets and the east and west sides of the cornice and a horizontal bar on the south side bore the name “FAIRBANKS” in gold letters with red and orange shadows. The canopy structure survives and retains early paint finishes (See figures in following section). The flat surfaces of the wooden components are painted a yellowish tan color, with chamfered and coved edges and the heavy wire corner brackets accented in a red-orange color.

Lobdell Company / Percy-Lobdell Company Period | 1905-1975

The Percy-Lobdell Building was used as a wholesale grocery house, distributing items like rice, potatoes, flour, and sugar to local retail grocers. The 1907 Sanborn Fire Insurance Map of Thibodaux shows the building’s early configuration (Figure 16). The southeast corner of the first floor contained a partitioned office and a cold storage room was located near the northwest corner of the first floor. An elevator rose through the center of the building. A canopy extended along the west and north elevations and connected to a ramp leading down to a loading platform on the bayou. A one-story frame stable stood on the banks of the bayou north of the building. It is reported that a paddle boat called the Interstate pushed barges loaded with merchandise to Thibodeaux from New Orleans, making two deliveries each week via a conveyor belt from the loading platform on the bayou to the Percy-Lobdell Building.84

Peter Randolph Percy married Florence A. “Florrie” Frost, daughter of Henry William Frost and Florence Ragan of Thibodaux, in February 1906.85 It is unclear whether Florrie was a relative of Octavie Maronge Frost, former owner of the company’s property. In January 1909, the Lobdell Company, Ltd., merged with the Percy Grocery Company, Ltd. The two boards of directors were also merged, and the company was renamed the Percy-Lobdell Company.

John L. Lobdell seems to have retired around the time of the merger. He moved from Thibodaux to his family’s Wakefield Plantation, eight miles north of St. Francisville in West Feliciana Parish, sometime between September 1908 and April 1909.86 As of the 1910 census, the Percys were living on Jackson Street in Thibodaux. Dr. Thomas Stark seems to have maintained his medical practice as his primary business during his ownership of Lobdell Company, Ltd. He later served as sheriff of Lafourche Parish from 1917 until his death in 1944, also serving as parish coroner and president of the parish school board.87

As of 1910, the company was selling items including lamb gloves, potted ham, tomato paste, vanilla wafers, chips, snuff, cigars, and “Bud Beer”—likely Anheuser-Busch’s Budweiser.88 The 1912 Sanborn Fire Insurance Map shows the building largely as it appeared in 1907 (Figure 17). The most significant change was the construction of two additions to the bayou-front stable. These consisted of a one-story-and-basement feed and grain warehouse measuring roughly 50 by 80 feet.
on the east side of the stable and a small one-story addition across the north elevation.

In late September 1913, the Percy-Lobdell Company announced that it planned to build a modern grain elevator to handle local corn brought via Bayou Lafourche and the railroad. Mr. Percy, the company’s manager, contracted with an elevator builder from Illinois for a plant with a 20,000 bushel capacity, to be equipped with cleaners, shuckers, shellers, and cooling fans. The plant was to be complete by November 10, 1913.89 This elevator appears to have been an addition to the feed warehouse. The 1916 Sanborn Fire Insurance Map shows the elevator on the southeast corner of the grain and feed warehouse (Figure 18). The company added a one-story shed across the bayou in front of the feed warehouse. An open platform extended east from this shed to a one-story oil house clad in sheet metal. The stable on the west side of the grain warehouse had been rebuilt since 1912. The canopy along the north elevation of the main building had been replaced by a much larger canopy extending to the railroad tracks to the north. One of these projects may have been the addition to the company’s warehouse in May 1914.90

As of 1914, the company sold feed to the police department at Napoleonville.91 In 1917, A. S. Baker

of Percy-Lobdell Company, Ltd., reported that the company would be selling several railcars worth of Middle State Red Triumph and Long White seed potatoes.92 That same year, Baker also advertised that the company “in the market for your potatoes, onions, [and] garlic,” noting “we are operating our own boats and barges.”93 The company also sought ear corn and shelled corn.94 Between 1918 and 1920, the Percy-Lobdell Company purchased lot 205 to the west and lots 200, 203, and part of lot 202 to the east, acquiring control of nearly the entire block.95 The company entered into an agreement with Morgan’s Louisiana & Texas Railroad & Steamship Company to build a 180-foot-long scale track between the existing levee siding and their building. The Percy-Lobdell Company, Ltd., would be the primary user of the scale track and would pay for its construction and maintenance by the Morgan company, which would retain the right to weigh empty stock cars on the scale.96

93. Assumption Pioneer (Napoleonville, Louisiana), 5 May 1917, 3.
94. “We Want Your Corn!” Assumption Pioneer (Napoleonville, Louisiana), 6 October 1917, 3.
95. Hahn, Historical and Archeological Investigations, 60.
By 1919, the company served as distributor for a non-alcoholic Anheuser-Busch malt beverage (near beer) called “Bevo,” produced 1916–c.1929 (Figure 19, Figure 20). In 1920, the company was reportedly building a wholesale store. The company still operated boats on Bayou Lafourche as of 1920. Late in 1920, Interstate Wholesale Grocers, Inc., of New Orleans acquired the Percy Lobdell Company. Established in Covington, Louisiana, in 1891, Interstate had grown into one of the largest corporations in Louisiana and operated branches at Covington, Bogalusa, Franklin, Slidell, and Shelby, Louisiana, and Hattiesburg, Tyldertown, and Columbia, Mississippi. Interstate paid $362,948.41 for the Percy-Lobdell Company’s property and goods in Thibodaux and Lockport and the company retained its existing name. In July 1921, the company’s packet boat F. T. Nicholls and its associated barges began running extended routes from New Orleans to Thibodaux via Golden Meadow and Houma.

In January 1925, Interstate Wholesale Grocers sold part of lot 200 and a 50-percent interest in lots 200, 202, and 203 to the Gulf Refining Company. A 1924 map associated with this sale and the January 1927 Sanborn Fire Insurance Map label the stable on the west side of the feed warehouse as “shed” (Figure 21). The eastern properties contained the Gulf Oil Company’s facilities, including a new gasoline warehouse containing oil drums on the bank of Bayou Lafourche. The Percy-Lobdell building included a new platform extending north from the rear canopy along the east side of a railroad siding. Between January 1927 and March 1932, the property saw several changes (Figure 22). In 1930, Thibodaux built a 17-mile pipeline to the Mississippi River to provide the city with drinking water. Bayou Lafourche rapidly filled with sediment, water lilies, and industrial pollution. The building’s owners extended the

97. Hahn, Historical and Archeological Investigations, 58.
100. “With the Louisiana Editors,” Assumption Pioneer (Napoleonville, Louisiana), 11 December 1920, 1.
103. Hahn, Historical and Archeological Investigations, 11.
west canopy of the main building and removed the north canopy. They built a small two-story addition onto the center of the north elevation. The platform extending along the rail siding was joined by another extending south to a one-story grocery warehouse at 320 St. Mary Street. This building dates sometime between 1907 and 1912 as a sale stable. It was not in use as of 1916 and became a warehouse by 1927. The front portion of the warehouse was demolished c.1930-1931 to allow the realignment of St. Mary Street.

The feed warehouse and elevator were demolished and replaced by a smaller new warehouse with loading platforms along the railroad siding and on the banks of Bayou Lafourche. The complex saw relatively few changes by July 1949. The bayou-front loading platform and connecting chute had been removed from the north warehouse (314½ St. Mary Street). The southeast portion of the grocery warehouse at 320 St. Mary Street was now used for wine bottling. Wine arrived by rail in tank cars and was filtered, bottled, and packaged for sale in the building.

The Percy-Lobdell Company, Ltd., continued to operate into the early-1970s, when Interstate Wholesale Grocers, Inc., was liquidated.

Interim Period | 1975-1982

In October 1975, J. G. Duplantis purchased the Percy-Lobdell Company’s property in Thibodaux, including the Percy-Lobdell Building. In February 1977, Duplantis sold the property to Deep South Sporting Center, Inc., operators of a sporting goods store. This store reportedly operated in the building for a brief period during the late-1970s and early-1980s.

LaFouche Parish Public Library Period | 1982-1988

In 1922, the Woman’s Club of Thibodaux established the Thibodaux Library in the second floor of the City Council Building. In 1948, the citizens of LaFouche Parish voted on a new tax to fund the construction of branch libraries, including a Thibodaux Branch Library that opened in the new LaFouche Parish Building in 1954. In 1975, the need to expand judicial offices forced the library into temporary quarters on Green Street. At this time, Martha Sowell Utley (1927-1981) and other civic leaders, including her fellow members of a civic club called TaWaSi (said to be a local Native American term for “friend and helper”), became concerned about the need for a new library in the community. In 1979, Utley was diagnosed with cancer—a rare terminal brain tumor—and devoted herself to fundraising for a community library while battling cancer. On New Year’s Eve 1980 she, formed the Martha Sowell Utley Memorial Library Trust to fund the construction of a public library and cultural center in Thibodaux, intending to stimulate access to participation in the arts and humanities in LaFouche Parish. Utley’s leadership established a strong foundation for the project and the Trust continued to work toward its goals after her death in February 1981. The Utley Memorial Library Trust purchased the Percy-Lobdell Building and surrounding property from Deep South Sporting Center in February 1982.

Architectural Design Competition | 1982

The Utley Memorial Library Trust developed a program for the proposed facility’s use, stressing that it should incorporate “a library, theatre, art gallery, museum, arts and crafts area, a tea-room, a bayou-side park and amphitheater” and that the facility must service all members of the community regardless of age, ability, education, or identity.110 It also established the goal of making the building “a landmark in the eyes of the community… both functionally and architecturally.” 111 The program noted that the front façade on St. Mary Street was “well detailed” but was dangerously close to heavy highway traffic, necessitating use of a secondary façade for the building’s main entrance. It also stated that the building’s heavy timber structure, scales, and original elevator equipment were character-defining features that should be maintained in any design solution, although the latter items could be relocated within the building112 (Figure 23, Figure 24, Figure 25, Figure 26, Figure 27, Figure 28, Figure 29, Figure 30, Figure 31, Figure 32).

Between September 3rd and 7th, 1982, the Thibodaux Friends of the Library held an “Architectural Design Festival” to develop “fresh creative design alternatives for [a] new library and cultural center” in the Percy-Lobdell Building. The Friends group invited three nationally prominent architects “with very different design philosophies” to participate in a design charrette with teams of architecture students and faculty from Louisiana State University, Tulane University, and Mississippi State University.113 The architects were Charles Moore, Alan Greenberg, and Alan Chimacoff. It is unclear how Thibodaux was able to attract three prominent architects, but faculty at the three schools of architecture may have been instrumental in securing these professionals’ participation. Each team developed a design option for the building, working in a makeshift studio in the second floor from September 3rd through 6th. The design teams held daily open houses between noon to 1:00 PM,

111. Building Program for the proposed Martha Sowell Utley Memorial Library, 5.
allowing members of the public to see the process and to offer feedback. A public presentation was held at Talbot Hall on the Nichols State University campus on September 7th, followed by a catfish dinner at the Student Union¹¹⁴ (Figure 33, Figure 34, Figure 35, Figure 36, Figure 37, Figure 38, Figure 39, Figure 40, Figure 41, Figure 42, Figure 43, Figure 44, Figure 45).

The three architects and their teams’ projects are described below:

Alan Chimacoff graduated from Cornell University in 1962 and later returned to teach there. He became an adjunct professor of architecture at Princeton University and opened an office in Princeton, New Jersey, in the 1970s. He continues to practice and teach at Princeton and is also an architectural photographer. In a 2010 interview, Chimacoff cited the works of Louis Kahn, James Stirling, Andrea Palladio, and H. H. Richardson as architectural influences.115

Figure 38: Unidentified student working on a design during the charette, September 6, 1982. Source: Lafourche Parish Public Library.

Figure 39: Unidentified students working on the second floor during the design charette, facing southeast, September 6, 1982. Note the freight elevator enclosure in the center background. Source: Lafourche Parish Public Library.

Figure 40: Charles Moore, Allan Greenberg, and Alan Chimacoff at Nichols State University during the public presentation of designs, September 7, 1982. Source: Lafourche Parish Public Library.

Figure 41: Alan Chimacoff’s team’s model, September 7, 1982. View from the north with Bayou Lafourche in the foreground. Source: Lafourche Parish Public Library.

Figure 42: Alan Chimacoff’s team’s model, September 7, 1982. View from the west with Bayou Lafourche at left. Source: Lafourche Parish Public Library.

Figure 43: Alan Chimacoff’s team’s site plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library.
Chimacoff’s team’s design maintained the façade of the Percy-Lobdell Building in its current form. An addition to the north part of the east elevation would have contained a performing art center and additional space for the library. The first floor featured a wide hall running most of the length of the center bay, accessed from a new west porch or a new north canopy. A large staircase inside the historic main entrance would lead up to the library. The side and rear elevations would have received some new window openings and dormers. These, along with the north canopy, featured a variety of primary shapes reflective of current Postmodern design trends. The site would have included an open lawn to the northwest, including a series of paths in the shape of a five-pointed star, with a terraced amphitheater leading down from the north canopy to Bayou Lafourche. The design represented a sensitive adaptation of the building, maintaining its historic character while adding contemporary Postmodern elements to its secondary elevations (Figure 41, Figure 42, Figure 43, Figure 44, Figure 45, Figure 46, Figure 47, Figure 48). Friends of the Library summary: “A modern adaptation of the building. Notice how sensitive this scheme is in not changing the character of the building. The children’s library overlooks the bayou and has an outdoor reading area for reading and story telling [sic]. The long hallway down the middle of the ground floor takes advantage of the heavy timber aspects, as well as creating a nice place for displays of pictures, artifacts and information. The spacious park would be especially nice.”

Chimacoff appears to have prepared a revised and expanded design sometime after the charrette.

Charles Moore of Los Angeles, California
Charles Willard Moore (1925-1993) graduated from the University of Michigan in 1947 and received a Master of Architecture and a Ph.D. in Architecture from Princeton University in 1957. He served as a teaching assistant to Louis Kahn and was a classmate of Hugh Hardy, Donlyn Lyndon, and William Turnbull, Jr. Moore taught at the University of California, Berkeley, from 1959 to 1965 and served as dean of the Yale School of Architecture from 1965 to 1970. He taught at the University of California, Los Angeles from 1975 to 1985, and at the University of Texas at Austin from 1985 until his death. Moore practiced as a founding partner of several firms, including Centerbrook Architects and Moore Ruble Yudell. Moore was a leading exponent of Postmodern architecture, with his Piazza d’Italia (1978) at New Orleans serving as an icon of the historicism, irony, and colorful exuberance that defined the movement during the 1980s and 1990s.

Moore’s team’s design maintained the Percy-Lobdell Building’s shell with few alterations. The interior featured removal of portions of the second floor to create a two-story library space with bookshelves on the second level of an atrium. The historic elevator shaft was maintained as a key design element. The north part of the west canopy was to become a glass-enclosed circulation space, flowing into a connector to a new performing arts center building and a “cottage” containing a community room, both west of the existing building. A semi-circular canopy extended northeast from the rear of the building.

enclosing an amphitheater with a stage set in an inlet from Bayou Lafourche. The design embodied preservation best practices in maintaining the Percy-Lobdell Building’s integrity and historic character while expressing contemporary trends in Postmodernism and Deconstructivism and echoing traditional Acadian forms in the community cottage (Figure 49, Figure 50, Figure 51, Figure 52, Figure 53).

Friends of the Library summary: “This was the most creative and playful of the solutions. This project uses the existing building for the library and then connects the library with the theater by use of a bridge under which people walk to the amphitheater. On the bridge sits the team room which overlooks the entire complex. The meeting room is housed in a separate cottage which allows for easy scheduling and use by different community groups. The bayou side amphitheater, by being
cut into the levee, allows for the use of barges for the stage area as well as creating a reflecting pond atmosphere for general use.”

Allan Greenberg of New Haven, Connecticut

Allan Greenberg (born 1938), a native of Johannesburg, South Africa, graduated from the University of Witwatersrand. He moved to the United States in 1963, after studying in England and working in the office of Danish architect Jørn Utzon during the design of the Sydney Opera House. He received a Master of Architecture degree from Yale University, studying under Paul Rudolph and alongside Norman Foster and Richard Rogers. During the 1970s, Geenberg became disillusioned with Modernism and was influenced by the Postmodern ideas of Charles Moore, Robert Venturi & Denise Scott Brown, Robert A. M. Stern, and by the neoclassical architecture of Edwin Lutyens and Mott B.

Figure 49: Rendering of an alternate design by Alan Chimacoff, c.1982. Source: Lily Miller, “The Dream of Martha Utley,” Acadiana Profile, Vol. 11, No. 2, 47, Lafourche Parish Public Library.

Figure 50: Charles Moore’s team’s model, view from the southwest, September 7, 1982. Source: Lafourche Parish Public Library.

Figure 51: Charles Moore’s team’s model, view from the northwest, September 7, 1982. Source: Lafourche Parish Public Library.

Figure 52: Charles Moore’s team’s first floor plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library.

Figure 53: Charles Moore’s team’s second floor plan and section, September 7, 1982. North is at left. Source: Lafourche Parish Public Library.

118. “Design Festival Overview.”
Schmidt. Greenberg taught at the University of Pennsylvania, Columbia University, and the University of Notre Dame, becoming an influential figure for a generation of architects designing in a range of Postmodern historicist styles. Greenberg establish and office in 1972, with locations in Alexandria, Virginia, and New York City. A 1980 notice for a lecture at UCA referred to Greenberg as “a controversial architect of the ‘post modernist’ persuasion.” He is particularly known for the neoclassical interior redesign of the U.S. Department of State in the 1980s. In 2006, Greenberg was the first American architect to receive the Richard H. Driehaus Prize for Classical Architecture.

Greenberg’s team’s design proposed creating an entirely new neoclassical façade on the west elevation, complete with an Ionic portico, and octagonal cupola, and stone vender. The first floor contained a performing arts center behind the entrance portico, with a new stage house and support spaces in an addition to the east side. The rest of the first floor was divided into a series of rooms, several accessed separately from the new west porch. The second-floor library was to be accessed by exterior staircases under the portico or by an interior elevator. It featured a central lobby and reference space flanked by two reacing rooms and a variety of support spaces. The site plan included a lawn and allée of trees on axis with the new entrance portico and a formal garden on the north side of the allée. Parking lots were located to the north and south of this allée and to the northeast of the building. A semicircular amphitheater was located on Bayou Lafourche on axis with the building’s north elevation. The design reflected the current trends in neotraditional and historicist Postmodernism, largely disregarding the historic character of the existing building and seeking to replace it with a new academic and neoclassical expression (Figure 54, Figure 55, Figure 56, Figure 57, Figure 58).

Friends of the Library summary: “A traditional scheme, this represents a very tight and formal organization of spaces. A different approach was used in this scheme, separating the entrance to each major function, thereby reducing the interaction of people from one space to another.”

The three design options were put on display with the above descriptions and the following request under the heading “WHAT’S NEXT???:

These 3 designs were generated to help establish a direction for the project to proceed. We now have the option of proceeding with any one of the schemes or generating a new scheme, learning from the good and bad features of these proposals. To help us in this evaluation, please take a movement to jot down your comments on a sheet of paper and leave them with the librarian.

Alan Chimacoff appears to have been commissioned to create a second design sometime after the charrette. This design is known only from

121. “Design Festival Overview.”
122. “Design Festival Overview.”
Part I - Developmental History

The event achieved its purpose in helping the Thibodaux community to consider "fresh creative design alternatives for [a] new library and cultural center." The design charette offered an opportunity for architecture students from three universities to gain experience working with noted contemporary architects in the service of the Thibodaux community. The resulting conceptual designs provided a broad range of potential treatments for consideration as various groups worked toward the redevelopment of the Percy-Lobdell Building over the subsequent decade. The visions offered by the three teams likely influenced local input on the subsequent redevelopment of the building as a public library and as a component of the Jean Lafitte National Historical Park.

Library Remodeling | 1986-1987

Thibodaux Playhouse, Inc., a non-profit community theatre established in 1960, occupied a portion of the building beginning in 1983 (Figure 59, Figure 60, Figure 61). In May 1986, the Utley Memorial Trust donated the property to the Friends of the Library, Inc., Thibodaux Chapter, stipulating that the existing Percy-Lobdell Building be used as a library or cultural center. That September, the Friends of the Library leased the building to the Lafourche Parish Council for 12 years for use as a library.

During 1986 and 1987, the Percy-Lobdell Building underwent a major renovation, converting the second floor into the Lafourche Parish Public Library and a portion of the first floor into a space for the Thibodaux Playhouse, Inc. The project was designed by Thomas W. Papazoglakis, architect, whose office was at 915 Talbot Road in Thibodaux.

Figure 56: Allan Greenberg’s team’s second floor plan, September 7, 1982. North is at left. Source: Lafourche Parish Public Library.

Figure 57: Allan Greenberg’s team’s partial west elevation showing proposed new façade, portico, and cupola, September 7, 1982. Source: Lafourche Parish Public Library.

Figure 58: Allan Greenberg’s team’s sections, September 7, 1982. The section at left is facing south and cuts through the main building and the addition, while the section at right faces north and cuts through the main building north of the proposed addition. Source: Lafourche Parish Public Library.

Figure 59: East elevation from the northeast, 1982. Source: Lafourche Parish Public Library.

Figure 60: View of the Percy-Lobdell Building from the southeast during initial rehabilitation, c.1980s. Source: Lafourche Parish Public Library.

Figure 61: View of the Percy-Lobdell Building from the southwest during initial rehabilitation, c.1980s. Source: Lafourche Parish Public Library.

Figure 62: View of the second floor looking south during initial rehabilitation, 1986. Note the removal of the wood ceiling. This image also appeared in Thibodaux Magazine, Vol 17, No. 5 (October 1986), 5. Source: Lafourche Parish Public Library.

Figure 63: Second floor facing north during construction, September 8, 1986. Source: Lafourche Parish Public Library.

Figure 64: Second floor facing north during construction, September 1986. Note historic stair at right. Source: Lafourche Parish Public Library.
Papazoglakis graduated from Louisiana State University in 1978 and worked with Picous & Weimer Architects in Thibodaux until 1981. He was the president of Omega Synergistics, Inc., from 1981 to 1986, after which he relocated to New Orleans and then Baton Rouge. An undated set of construction documents and a few photos, all in the collection of the Lafourche Parish Public Library, provide the only available documentation for this project (Figure 62, Figure 63, Figure 64, Figure 65, Figure 66, Figure 67, Figure 68).

Site improvements included the creation of a shell/gravel-paved parking lot west of the building and a smaller parking lot to the northeast, behind neighboring buildings. The site design included several alternates, including a canopy and gazebo extending west from the entrance, a fountain and stream draining from near the entrance into Bayou Lafourche, an amphitheater on the bayou, a gazebo and large slide adjacent to the bayou, and a series of wooden bridges over the artificial stream. None of these alternates appear to have been taken. Exterior improvements included restoration and reglazing of the building’s historic wood sash windows, reconstruction of the canopy along the west and north elevations, the installation of windows and paneling within former door openings on the west elevation, the introduction of a ridge skylight, removal of remaining steel structure from the north addition, and the installation of storefront glazing in the openings of the north elevation. Two second floor windows on the east elevation were lengthened into doors and were fitted with exterior metal staircases to serve as emergency exits.

At the first-floor level, the project removed all existing partitions and most interior finishes. They created a new main entrance at the center loading door on the west elevation, accessed from a parking lot west of the building. This door led into the large, open northern half of the first floor. They
built an open wood staircase and a new elevator near the east wall opposite the entrance. They created a meeting room, toilet rooms, kitchenette, and mechanical spaces just south of the lobby. A new theater for the Thibodaux Playhouse, Inc., was created in the south third of the first floor. Plans show a proposed partition enclosing the north part of the first floor into a lease space, but this enclosure does not appear to have been built. They remodeled the second floor to house the Lafourche Parish Public Library. They removed the original wood ceiling, exposing the timber roof trusses. They removed a section of the floor to create a new open staircase and they enclosed the stair with weatherboard-sided partitions with windows and a wood-shingle roof suggesting a frame cottage. The second floor was mostly one open space, with small, enclosed service spaces along the center of the east and west walls and the circulation desk along the west wall opposite the staircase. The children’s area was located along the south façade, with a raised floor creating a sunken reading area. Angled mirrors were installed along the base of the roof at the east and west walls, providing views between the bookshelves. The Lafourche Parish Library opened on the second floor in 1987 and the Thibodaux Playhouse, Inc., used the first floor for theatrical performances.

National Park Service Period | 1988-2018

In November 1988, the Friends of the Library, Inc., donated the property to the National Park Service as a unit of the Jean Lafitte National Historical Park and Preserve, stipulating that the second floor be used as a public library for the next 50 years. The Jean Lafitte National Historical Park and Preserve, authorized in 1978, is a non-contiguous collection of six separate sites in Louisiana’s Mississippi Delta region. Archaeological investigations were undertaken on site in 1989. At this time, the batture area, formerly the site of the warehouse and elevator, was covered with small trees, weeds, and overgrowth.

The design for the building’s remodeling and expansion as the Wetlands Acadian Cultural Center of Jean Lafitte National Historical Park was prepared by Hamilton & Associates of Opelousas, Louisiana (Figure 69). Construction documents for the project were issued and approved in June 1990. This project transformed the site. NPS relocated the entrance to the building to the east elevation and the eastern part of the property was rebuilt as a parking lot and entry plaza. They built a performing arts center addition to the west, with a paved terrace to the north and a wooden boardwalk along Bayou Lafourche. Other site features included a new building sign and screen walls for exterior HVAC equipment.

The historic building’s exterior remained largely unchanged except for the creation of a new east entry door, the addition of a new east entry canopy and pavilion, the attachment of the new west wing, and modifications to the entrance on the south façade. The south façade entrance retained a pair of historic sliding doors, with raised panels in the lower section and four-lite glazed panels in the upper portion. These doors had been fixed in place around a hinged door and frame, mounted in the center of the opening. The historic fanlight had been removed sometime before 1982 and the opening had been covered by a piece of plywood. The later door and trim were removed, the historic sliding doors were fixed shut, and the opening was walled over at the interior. A new fanlight was custom made by a local Marvin window dealer and the 1991 detail drawing notes “fan light window is conjectural design due to lack of historic photo.” NPS removed raised sheet metal lettering reading “THE LOBDELL CO. LTD” from the cornice in 1991.

for reasons that are not documented.129 The outline of the letters remains visible on the sheet metal panel.

First floor remodeling included removal of partitions and finishes within the former theater space and the creation of new exhibits and a small presentation room, the partitioning of the north part of the first floor into offices and a crafts room, reconfiguration of the recently-built open staircase to the second floor, and the conversion of the former lobby into a reception/orientation room and gift shop for the park. A new one-story performing arts center addition was built off the west side of the building. This included a gallery/theater lobby, auditorium and stage, toilet rooms, dressing rooms, storage, and utility rooms. The second-floor library remained unchanged except for the reconfiguration of the open stair added in the 1986-1987 remodeling. The Wetlands Acadian Cultural Center of Jean Lafitte National Historical Park and Preserve opened in the building on November 21, 1992. As-constructed drawings for the project were issued in September 1993 (Figure 70, Figure 71, Figure 72, Figure 73, Figure 74, Figure 75, Figure 76, Figure 77, Figure 78).

The Percy-Lobdell Building has seen few changes since the early-1990s. The National Park Service and Thibodaux Playhouse, Inc., use the first floor largely as intended. The Lafourche Parish Public Library relocated to the former home of the \textit{The Daily Comet} newspaper in February 2012. The second floor of the Percy-Lobdell Building briefly operated as a “Wi-Fi Café” with free wireless internet and free coffee before being converted into the library system’s administrative offices.130 The Thibodaux Playhouse launched a campaign for the construction of a new performing arts center at another site in March 2014. The new building would feature a façade loosely based on that of the Grand Theatre (1919-1922, Joseph Robichaux, architect, demolished 1995) at Green and Fourth Streets.131 The status of this project is not known.

129 The Louisiana SHPO issued a finding of no adverse effect based on a telephone conversation that is not recorded in available documentation. Leslie P. Tassin to Neil C. Magnum, 28 October 1991, in Jean Lafitte National Historical Park archives.

130 “Lafourche library opens Wi-Fi Café,” \textit{Daily World} (Opelousas, Louisiana), 16 July 2012, 2.

Figure 73: West wing under construction, facing south, April 23, 1991. Source: Lafourche Parish Public Library.

Figure 74: East portico under construction, summer-fall 1991. Source: Lafourche Parish Public Library.

Figure 75: South façade of addition and main building, c.1992. Source: Jean Lafitte National Historical Park.

Figure 76: View of parking lot and east elevation, c.1992. Source: Jean Lafitte National Historical Park.

Figure 77: View of pier and building, c.1992. Source: Jean Lafitte National Historical Park.

Figure 78: National Register plaque on east elevation listing incorrect date of construction.
I.C Physical Description and Condition Assessment

Site

Physical Description
The Wetlands Acadian Cultural Center, a unit of the Jean Lafitte National Historical Park and Preserve, occupies an approximately five-acre site on the western edge of historic downtown Thibodaux, Louisiana. The site is bounded on the north by Bayou Lafourche, on the east by West First Street, on the south by St. Mary Street, and on the west by the abandoned right of way of Art Street. The Percy-Lobdell Building (circa 1905) and an attached performing arts auditorium (circa 1990) occupy the western half of the site. The eastern half of the site contains a large parking lot and a greenspace that extends along the bayou and West First Street towards downtown Thibodaux. The lot is approximately square, with the narrow greenspace projecting out from the northeast corner of the site.

The primary elevation of the building faces south towards St. Mary Street. The building stands very close to this street, separated from the busy thoroughfare by a narrow, five-foot-wide concrete sidewalk installed in the early 1990s. The auditorium addition on the west side of the historic structure steps back from the road, creating a planting zone along the south elevation of the addition. This area features several large crape myrtle trees, likely “Natchez,” planted in a narrow strip of turf. Behind these trees, a row of evergreen shrubs, including azalea and palmetto, grow along the foundation of the building (Figure 79).

A large concrete parking lot, constructed in the late 1980s or early 1990s, occupies the area east of the Percy-Lobdell Building. The entrance into the parking lot features a brick National Park Sign for Jean Lafitte National Historical Park and Preserve added in the early 1990s. Large live oak trees and bald cypress trees grow within planting islands and along the perimeter of the parking lot (Figure 80). Understory plantings of azaleas and palmettos accentuate planting areas within the parking lot. A dense screen of azalea shrubs and live oak trees create a visual buffer between the parking lot and an open turf area east of the parking lot extending to West First Street. There are minimal site furnishings in the parking lot area. These include a bike rack, Steinberg light poles mounted on concrete bases, and a historic marker commemorating the “Confluence of Bayous” Lafourche and Terrebonne. Five-foot-wide concrete sidewalks provide a pedestrian connection between the parking areas and the main entrance into the Wetlands Acadian Cultural Center. The entrance features a modern entrance portico added onto the east elevation of the historic structure in the early 1990s.

There are large masses of evergreen shrubs planted along the east elevation of the building. These beautify the entrance into the structure and screen mechanical equipment located along the
foundation of the building. These include a large massings of pittosporum and palmetto. South of the entrance there is a display of three poles flying the flags of the United States and the French and Spanish colonial flags of Louisiana (Figure 81). This is also the location of the entrance sign, which reads “Acadian Cultural Center-Public Library-Performance Center.” In addition to vegetative screens, two low brick screen walls hide HVAC units located near the southeast and northeast corners of the Percy-Lobdell Building. Other trees growing along this elevation include river birch and southern magnolia. The majority of the area also features a clipped lawn of turf.

A composite-decking boardwalk system connects to the parking lot’s pedestrian sidewalk near the rear/north corner of the Percy-Lobdell Building. This boardwalk leads to a viewing platform and boat launch area, from which boats provide tours of Bayou Lafourche (Figure 82). The area features a combination of bald cypress, maples, river birch, golden rain tree, and oaks, with understory plantings of azalea and palmetto (Figure 83). Several of the planting beds have wooden and metal edging. Site furnishings in this area include waste receptacles, benches, and lighting.

The concrete sidewalk from the parking lot expands into a large concrete plaza at the rear/ north of the Percy-Lobdell Building. The plaza extends around to the west side of the building, creating a second plaza along the north elevation and entrances into the attached auditorium. The plazas has raised brick planters, within which contain various trees, including Chinese elms (Figure 84). Several large sago palms are growing within a planting bed flanking the entrance into the auditorium. The NPS uses the area along the west elevation of the Percy-Lobdell Building on this side of the property for storing boats and a boat trailer. Site furnishings in this plaza area are limited to pedestrian scale light poles and landscape lighting in the raised planters.

The perimeter of the northwest corner of the property features open lawn areas that transition to a dense mass of trees and understory shrubs along the edge of the bayou. The west elevation of the auditorium is a service and mechanical area. A
brick enclosure contains mechanical equipment and storage buildings used to service the addition. There is also a concrete loading area and the location of a dumpster.

A series of large drain inlets located in turf areas around the buildings convey rainwater away from the site. Water from the roof flows into 4-inch corrugated plastic pipe and travels towards the bayou.

The area around the Wetlands Acadian Cultural Center is a combination of commercial and residential. Smaller commercial and private residential buildings line St. Mary Street opposite the center. A modern car wash occupies the adjacent lot west of the site. Downtown Thibodeaux is visible looking east from the site.

Condition Assessment

The landscape at the Wetlands Acadia Cultural Center is in good condition. Much of the existing vegetation dates from the early 1990s. The trees in the parking lot and north yard are in very good condition. The vegetation planted near the Percy-Lobdell Building and Performance Building has become very large and is encroaching upon the building. Large trees planted close to the front (south) elevation of the Performance Building create a very shady environment that is detrimental to the evaporation of moisture along the foundation. Leaves from trees growing too close to the building can also clog gutters, leading to problems with roof drainage. Similarly, vegetation planted near the east elevation of the Percy-Lobdell Building has become large enough to be detrimental to the building. The risk is more from moisture than roots undermining the building. However, roots should be monitored, in particular the roots from the oaks and river birches planted in the lawn area close to the buildings.

The hardscape features, including sidewalks and boardwalks, appeared in generally good conditions, though sections of the boardwalk exhibit buckling.

Roof gutters drain into underground pipes that outlet on the north side of the property. We did not observe the site during a rain event, though staff intimated issues with gutters overflowing. Some erosion appears to developing near the northwest corner of the Percy-Lobdell Building, but the cause of this erosion was not clear. It could be the result of a failure of the corrugated plastic drain pipe. Drain pipes should be inspected with a camera to ensure their proper working condition.
Page intentionally left blank.
SECOND FLOOR PLAN, 2018
ROOM NUMBERS
Architectural Physical Description & Condition Assessment

Exterior – Percy-Lobdell Building
The Percy-Lobdell Building is a two-story building measuring roughly 50 feet by 100 feet. It is enclosed by brick masonry bearing walls and covered by a front-gabled roof masked by a rectangular false-front parapet along the south façade on St. Mary Street. The south façade is the primary elevation, with the three other elevations being secondary and unornamented. The south façade is divided into three bays at the first-floor level (Figure 85). Brick pilasters define the east and west ends of the façade and the center bay projects the same distance. The outer bays each contain two punched window openings with brick sills, sheet metal window hoods with scrolls and fleur-de-lis ornaments, and sheet-metal-clad shutters supported by iron strap hinges (Figure 86). The windows are rectangular one-over-one double-hung wood sash set within segmental-arched openings. The windows remain in fair to good condition overall, the shutters having been closed over them since the mid-1980s (Figure 87). These bays feature three courses of corbelled brickwork at the top and bottom of the first-floor level, with bands above and below that are in plane with the side pilasters and projecting center bay. The projecting center bay contains an arched double-door opening with a triple-rowlock semicircular arch accented by a projecting header course band along its outer edge. Corbelled brickwork at the...
spring line of the arch creates pilasters flanking the door opening. The opening contains a pair of sliding wood doors. Each door features a horizontal raised panel in the lower quarter, with a four-lite sash covered by grilles of round metal bars in the upper part of the door. The present transom, designed and installed in the early-1990s, is a semicircular fanlight. The second-floor level of the façade is a single bay flanked by the side pilasters. The base of this bay features three courses of corbelled brickwork, stepping in to match the plane of the outer bays at the first-floor level. The upper edge of this bay is accented by five-course corbelled brick brackets. All second-floor windows are one-over-one double-hung wood sash in fair to good condition (Figure 88). These windows are in fair condition overall, showing signs of failure of paint finishes and glazing putty. A pair of windows centered over the entrance is topped by a large pedimented window hood with fleur-de-lis, egg-and-dart moldings—

and a central rosette (Figure 89). To either side of this opening are three evenly-spaced punched window openings with window hoods matching those at the first-floor level. Above the corbelled brick brackets, the parapet projects out in plane with the side pilasters. The façade is topped by a bracketed sheet metal cornice. The outer ends are accented by large projecting scroll brackets and the center section, over the main entrance, features a gabled pediment that originally contained raised sheet metal letters reading "THE LOBDELL Co. LTD." These letters were removed in 1991 but their outline remains visible under certain lighting conditions (Figure 90). The outer sections of the cornice feature smaller brackets interspersed with rosettes and running moldings. Exterior sheet metal remains in fair condition overall, with some

132. The Louisiana SHPO issued a finding of no adverse effect based on a telephone conversation that is not recorded in available documentation. Leslie P. Tassin to Neil C. Magnum, 28 October 1991, in Jean Lafitte National Historical Park archives.
distorted or damaged components and some signs of water damage and corrosion at joints and at the face of the cornice brackets (Figure 91). Paint on the window hoods has chalked and run down the face of the brick masonry. The brick masonry is in fair condition overall, with areas of light to moderate mortar loss, some past embedments, some poorly-matched replacement brick (near the southeast corner), and areas of biological growth near sidewalk level (Figure 92).

The side elevations include punched window openings, matching those of the south façade but without window hoods, within the south section of the first floor (Figure 93, Figure 94). The west elevation features a series of segmental-arched openings that originally contained paired doors topped by four-lite rectangular transoms with metal bar grilles. The doors were protected by exterior sheet-metal-clad shutters. Most of the west elevation’s doors were replaced by pairs of new six-over-six double-hung windows over wood panels during the 1986-1987 remodeling (Figure 95). These modern windows and panels are in fair to poor condition, with signs of deterioration and termite damage at the new-growth wood. The historic transoms and metal grilles remain in place and appear to be in fair condition overall, similar to the wood sash on the south façade. The east elevation had no doors but featured high-sill windows matching the transoms seen on the west elevation and a group of four windows near the south end matching those of the south façade but lacking window hoods. Shutters are fixed closed over the south windows but one was opened and was found to contain a sash with broken glass, allowing air and moisture to leak into the furred wall surface in room 109 (Figure 96). The second-floor level of each side elevation originally featured five evenly-spaced window openings with segmental-arched tops, brick sills, and six-over-six double-hung wood sash. Modern replacement
windows filled in these openings sometime after 1992 (Figure 97). These windows are in fair condition, with gaps between the windows and frames evident at several locations. Second floor occupants report that insects and lizards crawl in through the open gaps in these windows. Two windows on the east elevation became emergency exit doors during the 1986-1987 remodeling and are now fitted with exterior metal fire escape staircases that are in fair to poor condition, with visible corrosion of existing metal components, particularly the guardrails (Figure 98, Figure 99).

Figure 96: Typical deteriorated wooden shutter at east elevation and broken glass at sash behind.

Figure 97: Typical replacement window at second floor level.

Figure 98: South fire escape (1986-1987) and HVAC equipment screen wall (1990-1992).
A canopy supported by wooden brackets and roofed with corrugated metal shelters the west and north elevations (Figure 100, Figure 101). The north (rear) elevation features a gabled parapet divided into three bays (Figure 102). The center bay contains a large rectangular opening at each floor, now filled with storefront framing added in the 1986-1987 remodeling. The first floor contains a former door opening in the west bay, now infilled at the interior and covered by historic metal shutters at the exterior. The second floor includes one window opening in each outer bay. These appear to have originally been similar to those of the east and west elevations but now contain storefront framing and glazing added in the 1986-1987 remodeling. The modern storefront framing is in fair condition overall, with visible failures to the seals around the glazing (Figure 103). Second floor users report that the sill of the center opening leaks during heavy rains.

The roof of the main building is clad in corrugated metal, with a section along the ridge clad in corrugated fiberglass and serving as a linear skylight (Figure 104, Figure 105). The ridge features five cylindrical ventilators aligned with the second-floor windows. Rectangular gutters along the east and west elevations drain to a series of downspouts. These gutters are believed to date from the 1986-1987 remodeling and appear to
be undersized for the size of the roof. Park staff report that the gutters have had problems since the 1990s and that these problems have worsened over time. Second floor occupants report that there have been several incidents of heavy water infiltration at the gutter line at the east and west walls, particularly toward the south end of the building, in recent years. They also report that leaves blow in through an opening at the gutter line near the north end of the west elevation. NPS staff reports that the gutters were recently cleaned and that this appears to have stopped water infiltration. Downspouts from the main roof drain to grade on the east elevation and either to the roof of the west wing or to collectors on top of the canopy at the west elevation (Figure 106). The southwest downspout below the canopy shows signs of leaks and extensive biological growth on the surrounding masonry (Figure 107). Lightning protection is provided at the parapets and the
rooftop ventilators.

Exterior – 1990-1992 Additions

The 1990-1992 additions consist of the east entrance canopy and the west wing containing the performing arts center. These additions are clad in red brick with pilasters and corbelled details based on those of the south façade of the Percy-Lobdell Building. The additions reflect the Postmodern movement of the early-1990s, borrowing design elements from the historic building while emphasizing primary shapes. The east canopy features a gabled roof and brick-clad piers and end walls (Figure 108). The roofing and painted metal surfaces appear to be in good condition overall. The brick masonry appears to be in fair condition, with significant staining to the brick and mortar joints on the east façade of the canopy. The canopy’s standing-seam metal roof has no gutters but drains to a concrete slab at the drip line.

The design of the west wing’s south elevation reduces its visual impact on the south façade of the Percy-Lobdell Building. This elevation is set back roughly 20 feet from the façade of the main building and is screened by trees and shrubs along...
St. Mary Street (Figure 109, Figure 110). The west elevation, originally screened by trees and shrubs, now removed, presents a large brick wall subdivided into panels by pilasters and corbelled bands (Figure 111). A brick-walled equipment enclosure off the west elevation repeats the details of the main building but shows widespread efflorescence, suggesting water infiltration (Figure 112). The north elevation opens onto a plaza and repeats the design elements seen on the south elevation (Figure 113). The west wing’s brick masonry appears to be in good condition overall. The painted steel door and window frames and doors appear to be in fair condition overall, although several louvers are missing from the exterior door of room 165. The asphaltic roofing on the flat roof sections is in fair condition and appears to be approaching the end of its design life. Park staff report that leaks over the theater dressing rooms have been a recurring problem since 1992. A standing-seam metal gable roof covers the theater (room 166). Internal roof drains drain the west wing’s roof, some of which appear to be the source of leaks in the northwest part of the wing (Figure 114, Figure 115). Lightning protection is located at the roof of this wing. Standing-seam metal roofing covers canopies on the north, west, and south elevations of this wing (Figure 116).
First Floor

The first floor interior of the Percy-Lobdell Building appears to have historically been one open space except for partitioned offices at the south end and a cold storage enclosure near the northwest corner. The present interior spaces are the result of remodelings in 1986-1987 and 1990-1992. In most spaces, the unpainted surface of the brick masonry exterior walls remains exposed (Figure 117, Figure 118, Figure 119). These surfaces are concealed by modern finishes in rooms 105, 106, 108, and 109. The brick masonry appears to have been painted within the enclosed spaces at the south end of the building prior to the 1986-1987 remodeling and the east wall retains orange paint matching that seen in 1982 photographs above the suspended ceiling of room 106. The brick masonry remains in good condition overall but shows evidence of water infiltration and deterioration at the east and west walls in rooms 121 and 124. Portions of the west wall in room 121 west and north walls of 124 are covered with a cementitious stucco that appears to have accelerated the deterioration of the brick (Figure 120). The brick appears coated with some type of sealant during the 1986-1987 remodeling, giving it a slightly glossy appearance. Sealing soft brick of this type is not advised, as it may trap moisture in the wall, leading to deterioration of the bricks and mortar. The building’s original timber columns and exposed second floor wood structure remain exposed throughout the interior except in service spaces like rooms 105, 106, and 107 (built as toilet rooms).
and presentation room 108 (Figure 121). The columns consist of chamfered posts supporting wooden bolsters carrying beams running north-south, dividing the building into three bays (Figure 117, Figure 122, Figure 123, Figure 124). Wood joists run east-west between these beams and the exterior brick masonry bearing walls. The wood structure is unpainted. Historic photos indicate that some elements were painted as of 1982, suggesting that they were stripped during the 1986-1987 remodeling. The building’s original concrete floor remains exposed in rooms 109 and 124 but

is covered by modern commercial carpet in other spaces. The former office in the southeast corner of the first floor appears to have had a tongue-and-groove wood ceiling, most of which was removed during the 1986-1987 remodeling, leaving on a small remnant above the ceiling of room 106.

Figure 122: Detail of typical historic timber column.

Figure 123: Room 109, facing southwest, showing historic timber structure and concrete floor along with 1980s partitions and 1990s exhibit casework.

Figure 124: Detail of exposed wood structure in room 124, facing northeast.

Figure 125: Remnant of wood ceiling (painted white) above suspended ceiling (1986-1987) of room 106.

Figure 126: Concrete floor of room 109, facing north, showing historic scoring pattern and evidence of later floor finishes.
Part I - Developmental History

(Figure 125). This floor features a score pattern forming squares roughly two feet across and arranged in a common bond pattern (Figure 126, Figure 127). Marks from later flooring treatments, including tiles measuring roughly one-foot square, are evident on the surface of the concrete in room 109. Partitions dating from the 1980s and 1990s remodelings are clad in painted gypsum board and are generally aligned with the center-line of the wood columns, allowing the timber structure to remain visible (Figure 128, Figure 129). These modern partitions are in fair to good condition overall. Doors within the partitions include modern paneled wood doors with a stained finish and painted flush steel doors in painted hollow metal frames. These doors remain in good condition overall. Modern trim installed during the 1980s and 1990s remodelings includes stained wood baseboards, chair rails, and a staircase (Figure 130). The building’s mechanical, electrical, and plumbing systems were not assessed as a part of this report. Interior lighting consists of a mix of linear fluorescent and spotlight fixtures. These fixtures are of generally unobtrusive design but are likely nearing the end of their design life. The heating, ventilating, and air-conditioning (HVAC) systems include exposed ductwork within the first
Second Floor

The second floor of the Percy-Lobdell Building consists of one large open space with limited enclosed spaces along the east and west walls near the center of the building (Figure 131, Figure 132, Figure 133). This space has seen minimal changes since becoming the home of the Lafourche Parish Public Library in 1986-1987. The library relocated to another building in 2012 and the space now houses the library system’s administrative offices. The interior face of the exterior brick walls remains exposed. The brick is coated with some type of sealant added during the 1986-1987 remodeling, giving it a slightly glossy appearance. Sealing soft brick of this type is not advised, as it may trap moisture in the wall, leading to deterioration of the bricks and mortar (Figure 134, Figure 135). The second floor’s original wooden ceiling was removed during the 1986-1987 remodeling, exposing the wood trusses and purlins. The underside of the roof deck is concealed by fiberglass insulation and a white vinyl sheet. Fiberglass insulation produced between 1938 and 2015 was made with formaldehyde, a known carcinogen and respiratory irritant. Formaldehyde emissions from typical installations of fiberglass insulation—common in nearly all buildings built between the 1940s and the 2010s, have been documented at levels exceeding those known to have a negative impact on human health.133 The upper ends of the rafters are exposed at the ridge, where a strip of corrugated fiberglass roofing forms a linear skylight (Figure 136). Ventilation fans appear to have been installed

Figure 136: View of skylight, roof insulation, and 1980s systems.

Figure 137: Detail of 1986-1987 enclosure of room 202 from room 201, facing northeast.

Figure 138: Detail of 1980s wood flooring showing worn finish and rectangular opening with historic tongue-and-groove wood flooring below plywood panel (removed in this view). This opening in the 1980s wood flooring appears to have been designed to hold a plaque for the Lafourche Parish Library. Library staff report a popular myth that this rectangle represents the historic elevator opening; the newer floorboards below the right-hand edge of the opening mark the northern boundary of the historic elevator’s much larger opening.

Figure 139: East (top) and west (bottom) art glass panels added over historic window openings in the 1980s; these panels may have been new art glass works in the 1980s or may have been salvaged from other buildings.
below each of the historic roof ventilators, but second floor occupants report that they have never seen these in use and are unsure how they would be turned on. Partitions dating from the 1980s remodeling are clad in painted gypsum board except for the enclosure over the staircase, which is covered with weatherboard siding and a wood shingle roof in imitation of a frame house (Figure 137). The historic wood floors were covered with wood flooring and carpet during the 1986-1987 remodeling. The carpeted areas were replaced with new commercial carpet tile after the library left the building in 2012. This carpet tile remains in good condition. A rectangular opening in the wood flooring in front of the former circulation desk is believed to have once held a plaque or piece of artwork that was removed in 2012. The opening is now filled with an unfinished plywood panel (Figure 138). Library staff report that this opening has been interpreted as the outline of the building’s historic elevator. Examination of documentation and the underlying historic flooring indicates that this is untrue. The historic elevator was much larger and its northern boundary, marked by a patch in the historic floorboards, appears to be within the south part of this opening. The 1980s wood flooring remains in fair condition, with its finish in fair to poor condition. The center windows of the east and west elevation are fitted with art glass panels at the interior, installed during or shortly after the 1986-1987 remodeling. (Figure 139) The east window features an arched design in yellow, red, green, and pink and could possibly be a piece of early twentieth century art glass salvaged from another building. The east window features an image of a vase of flowers in red, clear, green, pink, and purple glass and appears to be a contemporary work from the mid-1980s. Angled mirrors are at the junction between the roof and the brick walls and originally provided surveillance between the rows of stacks. The building’s mechanical, electrical, and plumbing systems were not assessed as a part of this report. Lighting and HVAC systems within the space appear to date from the 1986-1987 remodeling. This includes linear fluorescent lighting, pendant residential ceiling fans with incandescent lamps within clear globes, and HVAC ductwork. The existing lighting was designed for the space’s prior use as a library but is ill-suited to its present low-density office use. The HVAC ductwork carefully travels along the bottom chords of the roof trusses, minimizing its visual impact. While this system is unobtrusive, it is likely near the end of its design life and newer HVAC technology may allow for more efficient operation.

Interior – 1990-1992 Additions

The 1990-1992 additions include interior space within the west wing. This wing contains a performing arts center, with a theater, gallery/lobby, toilet rooms, and support spaces. The west elevation of the Percy-Lobdell Building is within the addition’s gallery/lobby (room 141) (Figure 140). The theater (room 166) is used by Thibodaux Playhouse, Inc. (Figure 141, Figure 142). Interior finishes within this wing consist of painted gypsum-board partitions, stained wood trim, paneled wood doors in wood frames, steel doors in hollow metal frames, gypsum board and suspended ceiling with metal frame grid and white mineral fiber ceiling tiles. The existing lighting was designed for the space’s prior use as a library but is ill-suited to its present low-density office use. The HVAC ductwork carefully travels along the bottom chords of the roof trusses, minimizing its visual impact. While this system is unobtrusive, it is likely near the end of its design life and newer HVAC technology may allow for more efficient operation.

134. Second floor users reported that this panel covered a historic hoist-way, but removal of it revealed softwood tongue-and-groove flooring below. The panel is near the location of the original elevator.

135. Undated drawings for the project include this note on the east window “Future-Stained Glass Window.”
acoustical ceiling tiles (ACT), and floors clad in commercial carpet, tile, vinyl composition tile (VCT), and painted concrete (Figure 143, Figure 144, Figure 145). Painted wall and ceiling finishes remain in fair to good condition, with those of the theater (room 166) showing accumulation of dirt around HVAC grilles. ACT ceilings show signs of past water damage in several spaces (Figure 146, Figure 147). Most of these appear to be associated with leaking roof drains above rooms 149, 154, 155, 157, 158, and 163. Mismatched replacements also show evidence of water damage, suggesting that
cosmetic repairs have not addressed the underlying issue. VCT flooring exhibits widespread failure in room 156 near a drinking fountain and sink (Figure 148). This may be the result of past leaks on the plumbing or the failure to provide a vapor barrier below the slab. The building’s mechanical, electrical, and plumbing systems were not assessed as a part of this report. The systems appear to date from the wing’s construction in the early-1990s, are likely at the end of their design lives, and newer technology may allow for more efficient operation. Several areas of HVAC piping and around forced-air ventilation grilles show evidence of mildew and potential mold growth (Figure 149, Figure 150). Deteriorated pipe insulation within exterior mechanical room 165 shows signs of mold and mildew (Figure 151). Park staff report that high humidity levels in the theater and gallery (rooms 166 and 141) has been a long-term issue brought up by interpretive staff and performers for many years. Attempts to address humidity through the placement of small dehumidifiers has been unsuccessful, resulting in dehumidifiers that fill up rapidly, require constant attention, and add additional heat into spaces used by theater performers. Insulation included in the roof of the west wing appears to have had a designed R-value of R-12, far below current code requirements and construction best practices. This lack of adequate insulation likely increases the building’s cooling and heating loads.
Structural Systems Physical Description

Foundations
The foundations were not visible. As is typical with buildings of this type and age, the exterior masonry walls likely continue down below grade to a point where they become wider to spread out the load onto the subgrade. It is also possible that timber piles support the foundations. Interior column footings were also not visible, and are likely to spread out at the base or be supported by timber piles.

We have access to the Geotechnical Engineers investigation report by Woodward-Clyde Consultants dated February 15, 1989, made in preparation for the new Performance Center by Hamilton and Associates, Architects. They made deep borings to the west of the historic building. They encountered fill and silty clays in the upper 25 to 30 feet, and firm to dense silty sands below that. They recommended the design of a shallow foundation system with a bearing capacity of 1300 PSF for the isolated column footings and 1600 PSF for the continuous wall footings. They estimated footing settlements to be on the order of ¼” to ¾” for square footings 4’-0” wide and continuous footings 3’-0” wide. They also offered the option of using timber piles that would extend down to the firm to dense sands they encountered 35 to 40 feet below grade. While these recommendations do not apply directly to the historic structure, they give us an idea of the capacities of the soils below the historic structure.

Slab on Grade
Top of slab is at approximately 16.35’ elevation above sea level (Per Hamilton and Associates drawing D4 dated 6/90), sloping up and down to drains that have been filled in at some time in the past. Slab thickness was not able to be determined, however we would expect it to be 6” thick or greater due to the building’s construction for use as a warehouse. We do not expect that the slab would have been reinforced with steel bars or wires. The slab appears to have been placed and then scored into blocks in a large running bond pattern (Figure 152). Approximately half of the slab was covered at the time of review by carpet or exhibits but we expect those areas to be in a similar configuration.

Columns
There are two lines of columns running north-south. The columns are 9 ½” x 9 ½” heavy timber columns with 1” chamfered edges along their length. Some columns are cypress, with other made from pine. The columns bear on a grout or concrete pad covered with a steel cap plate (Figure 153). The connection of the columns to the slab or foundation was not visible, but there could be a steel pin from the steel plate up into the column and down into the footing to provide that connectivity. Other than the damage at two columns (See the attached layout drawings), termite activity or rot was not observed. We can surmise the wood portions of the columns are not in contact with soil or recessed into the concrete slab to extend down to the footing. The columns are capped by a 9” wide x 12” deep x approx. 4’-0” long wood capital or bolster to increase the bearing for the beams (Figure 154).
Knee Braces
Most of the columns are surrounded by up to four 4” wide x 5 ½” tall knee braces made of cypress or pine (Figure 154 and the attached layout drawings). Several braces at the north end of the building are built up of two thinner members. The braces are approximately 8 feet long and are attached to the columns at approximately 6’-0” above the slab and extend out and up at a 45 degree angle. They attach to the face of the columns, to the underside of the beams in the north-south direction, and to blocking below floor joists in the east-west direction (Figure 155) with between two and six toenails. These knee braces reduce the unbraced length of the columns allowing them to support heavier loads and helps to stiffen the floor above. We also theorize that they assist with the lateral load resisting system.

Beams
Two lines of beams run north-south on top of the columns, with a typical span of 12’-0”. Those beams are 9” wide x 12” deep. Each beam segment passes over two column bays and is lap-spliced with the next beam at every other column.

Joists
2 ½” wide x 11” deep joists at 24” on center. There are two rows of blocking at each joist span (Figure 156). The joists bear in pockets in the exterior masonry wall and there is a metal strap connecting every other joist to the exterior wall (Figure 157).
Part I - Developmental History

Floor Deck
The top of the second floor deck is at 29.75' elevation above sea level (per Hamilton and Associates drawing D4 dated 6/90), and 13'- 4 13/16" above the slab on grade. The floor consists of floorboards laid perpendicular to the joists and topped with hardwood flooring.

Interior Stairs
A portion of the second floor framing and decking was removed and wood stairs were installed per the Papazoglakis drawings from approximately 1986. These were replaced by the current wood stairs during the renovations shown in the Hamilton and Associates drawings dated 6/90. The stair consists of a wood framed intermediate landing bearing on wood wrapped steel posts (Figure 158, Figure 159). This connects an upper and a lower run of wood stringers and open treads, with wood handrails. The top stringers are connected to the second floor beam at the top.

Roof Trusses
The top of the exterior walls and the roof truss bearing is at 40.52’ elevation above sea level (per Hamilton and Associates drawings dated 6/90), and 24’- 2 1/16” above first floor slab and 10’- 9 ¼” above second floor deck. The trusses are king-post trusses constructed of heavy timber spanning 48’-0” and are spaced at 12’-0” on center (Figure 160). At the exterior wall bearing point, the bottom face of the bottom chord is coped and has approximately 8” of bearing on top of a wood cap plate running along the top of the exterior wall (Figure 161). The horizontal bottom chord is made of two 5 5/8” wide x 11 ½” tall pieces connected together with a locking scarf joint near the center of the span (Figure 162, Figure 163). The 12” x 6” king post bolts onto the bottom chord with a concealed rod with a top and bottom nut system (Figure 162, Figure 163). It continues up past the top chords to form the peak of a clerestory that runs along the length of the building (Figure 162). The top chords of the truss are 6 ½” x 6
½” and are sloped at 6:12. They connect to the bottom chord by a notch cut into the top face of the bottom chord at an angle. Then the two parts are clamped together with a concealed rod with nuts and washers at each end (Figure 164). The top chords attach to the sides of the king post with metal straps (Figure 165). In between the top and bottom chords are 6 ½”x 6 ½” diagonal and vertical web members attached to the chords with toe nails (Figure 166). At a certain point in the building’s lifespan, the addition sprinkler pipes required notching the top chord of several of the trusses. At these locations, 4” x 6” vertical web members were added to brace those cut top chords. Each truss is braced by the next with long 2” x 4 ½” timber x-bridging members (Figure 167, Figure 168). These members attach to the side of the king post with metal straps, and are connected to each other at their mid-span intersection point with a through rod. The trusses closest to the north and south end walls are tied to the exterior walls with steel rods (Figure 169). In addition, the truss closest to the south end wall has two more timber diagonals installed for two more steel rods.
Figure 166: Detail of chord attachment to diagonal and vertical web members in room 201.

Figure 167: Detail of timber x-bridging and exposed sprinkler in room 201.

Figure 168: Detail of timber x-bridging and exposed sprinkler in room 201.

Figure 169: Steel Rod connection of trusses to north end wall in room 201.

Figure 170: Detail of north wall truss system in room 201.

Figure 171: Detail of lighting system supported by roof trusses in room 201.
to further connect the wall and truss (Figure 170). The installed lighting system is supported by the bottom chord of the trusses, and due to its robust size and connections, it provides another four brace points for each of the roof trusses (Figure 171, Figure 172). The top chord of the trusses has blocking or chocks installed on top to support roof purlins that span between the trusses (Figure 171). These purlins support the roof framing, which in turn support the roof deck.

Figure 172: Detail of lighting system attachment to roof trusses in room 201.

Figure 173: Limited view of exposed roof framing and deck from room 201.

Figure 174: Corrugated Roof Material, looking south.

Figure 175: Typical condition of exterior walls, east elevation.

Roof Framing and Deck

The underside of the roof is covered with white faced sheets of fiberglass batt insulation. Based on limited viewing locations, we surmise the roof deck is made of widely spaced wood planks (Figure 173). On top of that decking are corrugated steel panels, lapped at edges and attached down to the decking with self tapping screws and rubber washers (Figure 174).
Exterior Walls

At the north, west, and east faces of the building, the exterior walls are 13” thick with three wythes of brick masonry. The brick are rougher and mortar joints are wider than they are at the exterior of the south face of the building. At these three faces of the building, there are bond courses every six courses of brick (Figure 175), connecting the outermost wythe to the center wythe. This pattern is repeated at the interior face of the building at the next course to connect the innermost wythe to the center wythe. At the south face, which is the front of the building facing LA Route 1, the exterior bricks are the more finely made, with thinner mortar joints (Figure 176). We did not observe header bricks in the face of the finer exterior brick, so we are not certain about the connectivity between this wythe and the center wythe. We saw what appears to be a piece of steel strap on the inside face of the building that does not correlate to a window or header, so it is possible that steel straps were embedded between the mortar joints to tie the two wythes together (Figure 177).

Behind the finer exterior brick are two wythes of the rougher brick, with bond courses every sixth courses (Figure 170). The brickwork at the four corners of the building appears to have been toothed together as the building was constructed. The use of finer mortar joints made the brickwork at the quoins more difficult to construct where the finer brick meets the rougher (Figure 178).

At the north face of the building, the brick extends up past the top of the sloped roof approximately 12”, and is capped with roofing materials (Figure 179, Figure 180). At the south face, the brick

Figure 176: Detail of South Elevation Exterior Wall.

Figure 177: Visible Steel Strap Wythe Connection in exterior wall.

Figure 178: Quoins on southwest corner of structure.

Figure 179: View of North Elevation Wall.
stops approximately 6’-0” short of the roof peak and wood framing continues up to form the parapet (Figure 181). The parapet is covered with ornamental metal (Figure 182). The east and west ends of the south parapet are each braced by a steel rod kicker that likely is supported by wood blocking at roof (Figure 183, Figure 184). The north and south walls are braced at the floor level by the two wood beams that bear in pockets in the wall (Figure 185). Along the east and west face, the walls are braced by the floor joists which extend into the walls for two wythes. The roof trusses also bear on two wythes, with the third exterior wythe extending up and forming part of a corbelled area that protects the truss ends (Figure 186). Behind that corbel and between the trusses, there is an approximately 11 ½” tall wood knee wall that supports the roof framing. It is constructed of a wood sill plate bolted to the top of the wall (Figure 161). This is topped by wood studs spaced at approximately 4’-0” on center which are in turn topped with a wood top plate that runs over the top of the studs and over the top of the truss ends (Figure 187).

Exterior Canopies

Canopies extend 8’-6” in plan out from face of wall. They are constructed of 4”x4” cypress frames at 10’-0” on center (Figure 188). The frames are attached to the exterior walls with two through bolts and steel plates (Figure 189, Figure 190). The frames support 4”x4” purlins that run between frames (Figure 191). The purlins are topped with corrugated metal roofing attached to the purlins with self-tapping screws. (Figure 192).
Figure 184: View of Wood Blocking on south elevation in room 201 at roof.

Figure 185: Wall Pockets in south wall visible in room 201.

Figure 186: Roof bearing Wythes visible on west elevation.

Figure 187: Wood Top Plate on studs and on top of truss ends.

Figure 188: Exterior Canopy Frame on north elevation.
Figure 189: Detail of Canopy Frame Attachment on north elevation.

Figure 190: View of Canopy Attachment Plate on Interior of Wall in room 124.

Figure 191: View of Canopy Frame Purlins on north elevation.

Figure 192: View of typical Canopy Roofing.

Figure 193: Detail of Steel Emergency Stair on east elevation.
Exterior Stairs
The two steel emergency stairs on the east face of the building are constructed of concrete-topped steel pan treads and risers supported by steel channel stringers (Figure 193). They are attached to landings constructed of steel channels and concrete-topped steel deck (Figure 194). They are supported by steel columns on concrete footings and attached to the building walls with through bolts and plates (Figure 195).

Lateral load resisting system
The building is located in an area of moderately high wind forces and low seismic forces.

2012 International Building Code and ASCE/SEI 7-10
Ultimate Wind Speed (3 second gust), Vult … 143 MPH
Nominal Wind Speed, Vasd … 111 MPH
Wind Risk Category … II
Wind Importance Factor … 1.00

Exposure Category … B
Enclosure Classification … Enclosed Building
Internal Pressure Coefficient … +/- 0.18
Seismic Risk Category … II
Seismic Importance Factor … 1.00
Site Class … D
Design Spectral Response Accelerations … SDS = 0.101g, SD1 = 0.080g
Seismic Design Category … B
Seismic Force Resisting System
Bearing Wall System – Ordinary Plain Masonry Shear Wall
Response Modification Coefficient, R … 1.5
Seismic Response Coefficient, Cs … 0.068
Seismic Base Shear, V … 0.068 x Weight of Building
The exterior unreinforced masonry walls act as the main lateral load resisting system for the building. This system is allowed in Seismic Design Category B. For wind or seismic loads applied in the general north-south direction, the roof and floor diaphragms transfer the load to the east and west masonry walls, which transfers the loads through their strong axis down to the foundations. For loads applied in the east-west direction, the north and south masonry walls resist the loads at the north and south ends of the building. But for the central third of this long thin rectangular building, we expect that the roof trusses transfer the loads through the walls in their weak axis down to the floor diaphragm, which transfers them to the knee braces and columns. This results in a supplementary lateral load resisting system made of Timber Frames that braces the central third of the building.

New Building Structural Systems
The structural systems are documented in the Hamilton and Associates drawings dated 6/90.

New Building Site Components
The site components are also documented in the Hamilton and Associates drawings dated 6/90.
Structural Systems Condition Assessment

Foundations
The cracking visible in the exterior walls does not extend down to foundations as one would expect if the cracks were caused by foundation issues. There is some erosion of the exterior grade due to gutter and downspout issues, with pooling of water close to the building. This is not desirable, as the erosion and water could cause reduction of foundation capacity over time. There is no evidence of interior column footing distress.

Slab on Grade
Slab is in relatively good condition, but there are numerous patched areas and cracks running north-south between the columns in the bays closest to the north and south ends (Figure 196). These cracks run through the running bond pattern and could be due to the heavy loads that would have been brought into the building through the large doors at the north and south ends. There are also cracks that extend northeast to southwest at three columns at the north end of the building (Figure 197). These could also be from the heavy loads. Due to their configuration, these cracks are not indicative of foundation failure below the slab or punching shear from the loads applied to the column from above.

Columns
With the exception of the column adjacent to Door 23 (See the attached layout drawings), which shows termite or rot damage and a column in Craft Room 124, which shows moisture damage, there is no visible evidence of damage or distress.

Knee Braces
A number of knee braces are missing with marks on columns to indicate that braces were present at one time, but likely removed to work with the exhibits. However in several locations there are no marks on the columns to indicate that knee braces were at one time attached.

Beams
Beams are in fine condition, with no damage or distress except at the ends where they meet the masonry walls. There is evidence of termite damage.

Joists
One joist near the west wall has been repaired with a steel plate and bolts. This repair was done around 3/14/1995 (Figure 198, Figure 199). In a number of locations, particularly at the northeast, southeast, and southwest corners there is damage to joists from termites or rot or both (Figure 200).
Floor Deck
Floor decking is in fine condition, except at the northeast, southeast, and southwest corners where there is damage from termites or rot or both. At the northeast corner, the floor surface has dropped up to 1” and the material makes cracking and snapping sounds as if the wood has delaminated when walked on.

Interior Stair
The south handrail at the top run of the stairs is loose and needs tightening. The intermediate landing sways under load. The connections could have become loose and so could be retightened. Otherwise, the landing could be either attached to the exterior walls so that the horizontal forces are transferred to the walls, or a rod x-brace could be added below the landing to laterally brace it.

Roof Trusses
The interior roof trusses are in fine condition, with no indication of distress. However the northern most and southern most trusses at the end walls have several issues. At some point in the past prior to the construction of the Performance Center (Per Hamilton and Associates drawing D3 dated 6/90), the ends of the north and south trusses were discovered to have suffered damage from termites and rot to the extent that a decision was made to bypass those ends and support the trusses with steel saddles attached to the north and south walls. The ends of the trusses still show this damage, and the through bolt at the eastern end of the south truss connecting the top chord to the bottom chord has begun to pull through the hole-riddled bottom chord, loosening the connection (Figure 201, Figure 202). We expect the decision to install the saddles was made due to the cost and difficulty of replacing the large timber bottom chords. However the trusses do not appear to have been seated in the steel saddles by trimming the wood to fit or by adding shims to fill the approximately ½” gaps between the wood and steel (Figure 203, Figure 204). We do not see signs that shims were ever placed. There are no bolts connecting the trusses
to the saddles. Therefore, it appears the only mechanism for transferring the truss loads to the saddles is the few points of contact between wood and the steel. We also do not see grout between the saddle and the masonry wall that would serve to even out the transfer of forces from the saddle to the wall. We see that there are cracks in the masonry walls at the saddle attachment points. The truss loads are being transferred to the wall in a way that is eccentric, rather than the more ideal concentric arrangement. This produces forces and moments on the walls that it ordinarily would not have experienced. We are uncertain about the efficacy of these saddles.

In addition, it appears that the south truss is moving downward relative to the wall, while the wall itself is moving outward. The locking
scarf joint is separating and the locking tenon is protruding (Figure 205, Figure 206). There are tie rods that connect the wall to the truss at eight locations. One of the tie rods, which at one time was likely horizontal, has bent downward to follow the truss (Figure 207). At another location, the blocking has separated from the truss as the truss has moved downward (Figure 208). Unfortunately, we were unable to see the condition of the two topmost rods.

At the north truss, the truss is moving downward, as we can see by the changes in the locking scarf joint (Figure 209), but we do not see the same failures at the tie rods like we do at the south truss (Figure 210).

We believe that due to the deficiencies in the saddle construction, the damaged ends of the trusses are still seeing some load. That load is causing those ends to crush, settling the truss further into the saddle. This settlement is bending and breaking the bracing connections for the south masonry wall.
Roof Deck
We could not observe the condition of the roof framing and decking. We could see daylight through the gap between the south wall and the roof edge at the southwest corner (Figure 211) as well as visible leaf debris in the gap. There is evidence of past and current damage from water leaks at these locations where the edge of the roof meets the exterior walls. Away from these edges, we did not see nor did we receive reports from the occupants about leaks in the interior of the roof. However, we could see at least one location on the top surface of the roof where a screw was not seated fully and thus could become a point of origin for a leak.

Exterior Walls
At some point in the building’s past the interior of the brick was covered with a shiny coating ostensibly to protect the surface of the brick and possibly act as a vapor barrier. This may have helped or it may have exacerbated the issues. In many locations in the interior of the building, the surface of the brick has become powdery and is flaking off. In others, the mortar is crumbling. The building occupants have stated that the bricks sweat when the weather is humid.

North
There are vertical cracks each side of the small windows at the upper level, and a vertical crack at the northeast steel saddle for the north end truss. The lintel over the larger window at the upper level is moving downward, and the weight is loading the window itself causing its seal to fail. This opening looks to have been originally an arched opening, as the arch is visible on the inside face of the wall (Figure 212). The flat opening is visible on the Papazoglakis drawings from approximately 1986, so at some point prior to that the flat-topped window was installed with a steel lintel above. We can see where the installers removed the brick at the top of the jambs to allow the installation of the steel lintel and then replaced the brick to cover it. The pattern of cracks suggests that lintel is moving downward, as well as the top of the wall is moving outward from the building. This movement is less pronounced than at the south face. We see that there are only seven connection points to brace the wall to the truss and there is no observable connection from the top of the exterior wall to the roof. The wall is braced at the second floor by

South
The south face has been repaired a number of times in the past. We see instructions to fill the large
crack above the second floor central window in the Hamilton and Associates drawing D3 dated 06/90, and we see a photograph dated 01/26/2005 of the same crack reopened and with a crack monitor (Figure 213). After that photograph was taken, the crack was then filled. It has opened up again and was repaired in 2014 (See Figure 214 for condition before repair and See Figure 215 for repaired condition from outside). It has once again begun to open back up. Lower down the face, the crack above the first floor central opening had separated enough that some of the brick had dropped. It was lifted back into place in 2014, (See Figure 216 and Figure 214 for arch condition before repair and Figure 217 and Figure 218 for repaired condition). At the time of our visit, there was a new 1/16” wide crack in this previously repaired area. In addition, large gaps between the brick and the wood jambs on each side of the first and second floor openings at the exterior and interior have been filled with caulk (Figure 219, Figure 220).

There is evidence of differential horizontal movement between the truss and the end wall, with the wall shifting outward and the truss shifting downward. This has resulted in the separation of some of the blocking connections to the trusses, while at other locations several of the rods are bending. We see that there are only eight
There is no observable connection from the roof to the top of the exterior wall. It is likely that the outward movement of the wall is the cause of the large crack at the central window. The occupants of the building report that when large trucks drive past on LA Route 1, the entire south end of the building shakes. In addition, the south end of the building sees more heating expansion and cooling contraction from the sun than the other faces of the building. We could see that vibration, and to a lesser extent the expansion and contraction as the causes of the cracking.

The end wall trusses have the exact same size and configuration as the interior roof trusses, yet they see half of the roof load that the interior trusses see. Instead, they see horizontal loads from the masonry end walls at those attachment points. The loads are transferred through the trusses to the bearing walls and saddles at each end. There is an x-brace at the center point of the truss that transfers this force to the interior trusses and up to the roof diaphragm. The lighting frame also is still enough to help brace the bottom chord of the truss and transfer the loads as well. But, the bracing may not be enough.

East

At the location where the second floor was removed to allow the interior stair to be installed, the masonry wall is unbraced out of plane for the full height of the building. This is not ideal, but the addition of the new entrance canopy roof helps to brace the wall from the outside. It also shields the exterior wall from the full force of winds.

There are cracks at a number of windows in the exterior wall. These long walls have enough capacity to resist lateral loads, so the cracks are not likely due to winds or earthquakes. We suggest that the cracks are due to the absence of expansion joints in the face of the wall. These joints are included in current construction to offset expansion and contraction of the wall itself due to moisture content and temperature changes. For this approximately 200’-0” long wall, we have calculated that we could expect up to 2” of total differential movement, in other word up to 1” of movement at each end of the long wall. As expansion and contraction occurs, diagonal cracks occur at windows or doors, extending from the head of the opening or the sill depending on the direction of movement and the path of least resistance. The effects are cumulative, with larger cracks at the end of the walls.

West

This wall shows similar cracks to those visible on the east wall, and so we believe that the cracks are due to moisture and temperature changes in the walls. However, all of the second floor window sills

Figure 219: Caulk-filled gaps on South Elevation.

Figure 220: Caulk-filled gaps on South Elevation from Interior.
have rotted and are allowing water to flow into the interior of the building (Figure 221).

Exterior Canopies
The exterior canopies are in fine condition, with the exception of the steel connections on the support frames on the west wall close to the south end of the building. Those connections are rusted and are showing corrosion expansion.

Exterior Stairs
The stairs are structurally sound, but are showing signs of damage from rust.

Lateral Load Resisting System
The exterior brick walls act as the main lateral load resisting system for the building. The cracking reduces their ability to transfer forces, and so they should be repaired by filling with mortar. We propose that the interior knee braces and columns constitute a secondary lateral system for the central third of the building. For this reason, we do not recommend removing any future braces and we suggest that any missing braces should be reinstalled.

New Building

The new performance building is in overall good condition. The exterior face of the walls show mildew and algae where air does not circulate and the sun does not reach the walls. The expansion joints between the new building and the historic building appear intact both inside and out. There is a crack in the brick veneer at the north face (Figure 222). This crack appears to be from expansion and contraction of the brick at the corner. There is cracking of the weatherboard and plaster at exterior of the gable end wall above the roof (Figure 223). Two of the louvers in the louvered door to Boiler Room 165 are missing (Figure 224). There are also a number of locations where signs of roof leaks are visible in the ceiling inside.

Site Components
Exterior sign wall, equipment yard 1 and 2 walls, as well as equipment yard 3 at the new building, show efflorescence (Figure 225). The steel lintel at the exterior sign wall is rusting (Figure 226). At the deck by the bayou, there is marked waviness in the synthetic wood decking (Figure 227). We believe this decking has replaced 3x6 decking which appears to be supported by 3X8 joists @ 6” on center, according to detail 4/C4 on Hamilton and Associates drawing C4 dated 6/90. The wood piles and wood beams appear sound, so we can surmise that the joists supporting the decking have
deflected. Erosion is visible around the support piles (Figure 228, Figure 229) and below the low ramp.
Figure 228: Erosion around support piles of Boardwalk.

Figure 229: Erosion around support piles of Boardwalk.
I.D Evaluation of Significance

Evaluation of Significance

The Percy-Lobdell Building was listed in the National Register of Historic Places in March 1986 as a contributing resource within the Thibodaux Multiple Resource Area. The building is significant in the area of Commerce at the local level, being the only surviving historic warehouse out of the seven shown on the 1916 Sanborn Fire Insurance Map of Thibodaux. The building maintains its relationship to Bayou Lafourche and to the former line of the railroad siding, the two major transportation connections associated with its historic function. The building is also significant in the area of Architecture, being a comparatively high-style commercial Italianate building. The building’s false-front, concealing its gabled roof with a rectangular commercial parapet, features extensive use of catalog-order sheet metal components. These components, typically imported from advanced manufacturing facilities in the Midwest, gave builders in smaller cities and more rural regions of the country access to quality building materials that imitated more expensive materials like cut stone. As of 1985, the Percy-Lobdell Building was identified as one of three false-front Italianate commercial buildings in Lafourche Parish retaining architectural integrity.

Period of Significance

The National Register nomination identified the period of significance for the Thibodaux Multiple Resource Area as c.1850 to the 1920s. The Percy-Lobdell Building’s period of significance would begin in c.1905, the date of its construction. For the purposes of this document, the building’s integrity was evaluated considering the period between its c.1905 construction through the 1920s, the end of the National Register district’s period of significance. The building retains no historic fabric associated with alterations made after 1912, so it is recommended that the period of significance for the building end at c.1912.

Later Significance

Although it is beyond the building’s National Register period of significance, the 1982 architectural design charrette, involving architecture students and three prominent architects of the period, is a notable local example of broad national trends of community-based design outreach from colleges of architecture during the 1970s and 1980s. Many architecture programs of the period embraced community-based work to further students’ experience while contributing to communities in need. The design festival in Thibodaux, apparently organized by local civic leaders, was a significant example of the use of a public charrette to expand the community’s vision for the future development of a vacant historic building. Although the project was ultimately realized at a more modest scale between 1986 and 1992, the development of up-to-date design options likely broadened the public’s idea of what a vacant building and overgrown lot could become. As these events approach the 50-year mark, future reevaluation of the building’s significance should consider the potential local significance of these events under Criterion A in the areas of Architecture and Education.

137. This is the period noted on the nomination form, the National Register database lists the period of significance as 1900 to 1924.
Evaluation of Integrity

Evaluation of the building’s historic fabric dating from the period of significance—from its c.1905 construction through the 1920s—considers the seven aspects of integrity identified in the National Register Criteria for Evaluation: location, design, setting, materials, workmanship, feeling, and association. The retention of essential physical features from the period of significance is necessary for the property to have sufficient integrity to convey its significance. Character-defining features of the building during its period of significance include its shape and form, original fenestration, exterior sheet metalwork, interior structure, and interior finish treatments.

Location
The building retains a high degree of integrity of location, remaining in its original location and having never been moved.

Design
The building retains a moderate to high degree of integrity of design. The 1980s and 1990s rehabilitation projects generally maintained the building’s historic design. The 1980s rehabilitation made few alterations to the exterior but included removal of the historic second floor ceiling to expose the wood trusses above and the walling over of the historic entrance and windows at the south end of the first floor. The 1990-1992 rehabilitation included major additions and changed the building’s circulation and context. The potential to enhance the building’s integrity of design through removal of these additions is discussed in the Alternatives for Treatment.

Setting
The building retains a moderate degree of integrity of setting. The site’s wider context has changed greatly since the period of significance, having transformed from an industrial area into a mix of commercial, civic, and recreational uses adjacent to downtown Thibodaux. The site itself has gone through several phases of development, including major regrading, and is now a manicured recreational landscape in contrast to the industrial character present during the period of significance.

Materials
The building retains a high degree of integrity of materials. The building features simple finishes and materials consistent with its original use and these have largely been maintained through subsequent rehabilitation work. Aside from the removal of the second floor ceiling, the original stair, and the original elevator, alterations since 1980 have added new material within the building, leaving the historic materials intact and exposed on the exterior and throughout most of the interior.

Workmanship
The building retains a moderate to high degree of integrity of workmanship. Exterior masonry, interior and exterior wooden components, timber structure, and interior concrete flooring evince the workmanship of the craftspeople who built the building.

Feeling
The building retains a moderate degree of integrity of feeling in its present condition. Feeling is an intangible quality of a historic property that evokes the sense and experience of the period of significance. The building’s exterior and interior character and interior spatial volumes contribute to its integrity of feeling, a quality compromised by non-historic finishes and the subdivision of interior spaces.

Association
The building retains a moderate to high degree of integrity of association. It provides a direct link to the economy of Thibodaux during the late nineteenth century and early twentieth century and is the only surviving historic warehouse in the city. Interpretation of this period, including the building’s place within its context, could strengthen its integrity of association.
Introduction

The April 1995 Amendment to the General Management Plan for Jean Lafitte National Historical Park and Preserve states that park purpose was preserving “for the education, inspiration, and benefit of present and future generations significant examples of natural and historical resources of the Mississippi Delta region and to provide for their interpretation in such manner as to portray the development of cultural diversity in the region.” Among the management objectives for the park, according to the General Management Plan, is to “preserve sites and structures of or directly related to the park.”

Laws, Regulations, and Functional Requirements

Applicable laws, regulations, and requirements that apply to the treatment recommendations include the following:

- Section 106 of the National Historic Preservation Act (NHPA). This act mandates that federal agencies, including the NPS, take into account the effects of their actions on properties listed or eligible for listing in the National Register of Historic Places and give the Advisory Council on Historic Preservation an opportunity to comment.
- National Park Service Cultural Resources Management Guideline (Director’s Order 28). This order requires planning for the protection of cultural resources on park property.
- Secretary of the Interior’s Standards for the Treatment of Historic Properties.
- Public Law 100-250 authorized the establishment of the folklife centers in the Acadian region.

Treatment Options

NPS considers four major treatment options for historic structures: Preservation, Rehabilitation, Restoration, and Reconstruction. NPS defines the four treatments as follows:

- **Preservation** is defined as the act or process of applying measures necessary to sustain the existing form, integrity, and materials of an historic property. Work, including preliminary measures to protect and stabilize the property, generally focuses upon the ongoing maintenance and repair of historic materials and features rather than extensive replacement and new construction. New exterior additions are not within the scope of this treatment; however, the limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other code-required work to make properties functional is appropriate within a preservation project.
- **Rehabilitation** is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features, which convey its historical, cultural, or architectural values.
- **Restoration** is defined as the act or process of accurately depicting the form, features, and character of a property as it appeared at a particular period of time by means of the removal of features from other periods in its history and reconstruction of missing features from the restoration period. The limited and sensitive upgrading of mechanical, electrical, and plumbing systems and other
code-required work to make properties functional is appropriate within a restoration project.

- Reconstruction is defined as the act or process of depicting, by means of new construction, the form, features, and detailing of a non-surviving site, landscape, building, structure, or object for the purpose of replicating its appearance at a specific period of time and in its historic location.

Recommended Treatment

The Percy-Lobdell building was listed on the National Register of Historic Places in 1986 as part of a multiple resource nomination for the town of Thibodaux (NR 86000431) with a period of significance extending from c.1850 to the 1920s.

The Recommended Treatment for the Percy-Lobdell Building is rehabilitation/restoration to accommodate its continued use by the NPS and the Thibodaux community. Treatment recommendations include restoration of the exterior to its c.1905 appearance; the rerouting of visitor circulation to better interpret the site; the rehabilitation of the first floor interior for continued use by the NPS; the preservation of the second floor interior for continued use by the Lafourche Parish Library and future rehabilitation of that space; and the rehabilitation of the 1990-1992 auditorium addition.

This approach would have the following advantages:

- The south façade largely retains its c.1905 appearance; restoration of the façade would address maintenance issues while restoring the first period paint scheme to further the interpretive value of the building’s most visible and architecturally detailed elevation.
- Restoration of the north elevation would include replacement of the modern doors and windows at the first and second floor levels and restoration of the altered second-floor door opening to its first period configuration. The east and west windows of the second floor should be replaced with new six-over-six double-hung sash following the design documented on the building’s side elevations. In lieu of detailed documentation of the treatment of the central door openings on each floor, these openings should be fitted with new frames, transoms, and doors based on available documentation or evidence of similar buildings of the period in the region.
- Re-routing of visitor traffic to enter the building on the north elevation, along with interior rehabilitation and potential site changes, would provide visitors with an experience emphasizing the historic connection between the building, Bayou Lafourche, and the railroad. This reconfiguration would include separation of 1990-1992 east canopy from the building or its demolition. It would also include the restoration of the window opening now containing the east entrance. The east exterior fire escape staircases, dating from the 1980s and now in poor condition, should be removed and replaced by new interior staircases if possible. The new exit staircases should be designed to comply with all applicable codes.
- The remaining exterior elevations could be rehabilitated, addressing maintenance issues and accommodating current needs while maintaining character-defining elements.
- The first floor interior’s historically open configuration and timber framing can accommodate rehabilitation for contemporary needs of the park, including updated interpretation and events space, a visitors’ information desk and gift shop, and park offices and service space. Restoration projects include uncovering and restoring the original historic window and door openings in the south façade and the east and west elevations. The building’s historic Fairbanks platform scale, now placed in the 1990-1992 addition, could be returned to the first floor.
- The second floor interior’s historically open configuration and timber roof trusses accommodate the present use by the Lafourche Parish Library, which retains rights to use the second floor
through 2038. Future rehabilitation of the space could accommodate contemporary needs while including the potential for restoration of the historic ceiling configuration in some areas.

- The 1990-1992 auditorium addition can be rehabilitated to better serve contemporary needs. The continued use of this addition to house accessible restrooms and building systems helps to avoid clutter within the historic building. Rehabilitation projects would include repairs to the roof and gutter system to address water infiltration, removal of VCT flooring, and abatement of existing mold and mildew on modern finishes.

The proposed treatment includes the following disadvantages:

- Retention of the 1990-1992 addition alters the context of the historic building
- The second floor interior as altered during the 1980s includes exposure of attic space and roof trusses that were historically concealed by a ceiling.

Alternatives for Treatment

In addition to the Recommended Treatment described above, the following treatment alternatives have been evaluated:

Alternative 1: Restore the entire exterior of the Percy-Lobdell Building and portions of the site to its c.1905-c.1912 appearance

This approach would have the following advantages:

- Providing a more complete image of a warehouse and its context, highlighting its significance as the only surviving early twentieth century warehouse in Thibodaux
- Potential to reestablish the historic functional relationship between the building, Bayou Lafourche, and the former railroad siding

This approach would have the following disadvantages:

- Demolition of the 1990-1992 additions would eliminate a facility that is actively used by the Thibodaux Playhouse, Inc., as well as the park and the community
- Restoration of the site would likely require demolition of well-used contemporary amenities including parts of the parking lot and the boardwalk along Bayou Lafourche
- Lack of detailed documentation of the site’s appearance during this period to facilitate accurate restoration
- Reduction of the property’s potential uses
- Higher anticipated cost

This alternative would be costly, would eliminate a well-used facility that is a source of community pride, and does not appear to meet the interpretive and programmatic needs of the property. For these reasons, this alternative is not recommended.

Alternative 2: Demolish the 1990-1992 additions and replace them with a new addition

This approach would have the following advantages:

- The potential to better accommodate present and future uses by the park and community
- The potential to create a less intrusive addition
- The potential to incorporate building materials that were part of the building’s industrial context during its period of significance
- The potential to better engage with Bayou Lafourche through a redesigned exterior space

This approach would have the following disadvantages:

- Lack of documented need
- Waste of existing building materials and embodied energy
- High anticipated cost

This alternative would be costly and does not appear to meet the interpretive and programmatic needs of the property. For these reasons, this alternative is not recommended.
Recommended Ultimate Treatment

The recommended ultimate treatment for the Percy-Lobdell Building is Rehabilitation. The administratively determined Management Category is must be Preserved and Maintained.

Recommendations for Accomplishing the Ultimate Treatment

The following recommendations are provided for the treatment of character-defining historic materials and features. Please refer to Appendix C for illustrations of Treatment Recommendations and for a prioritization matrix. Items designated Priority 1 are immediate needs that should be addressed within 12 months. Items designated Priority 2 are short-term needs that should be addressed in two to five years. Items designated Priority 3 are medium-term treatments that should be anticipated to occur in five to 10 years. Items designated Priority 4 are long-term treatments that should be anticipated to occur in 10 to 20 years. Items designated Priority M are regular maintenance treatments that should occur as noted (M1 = once per year, M2 = twice per year). Items designated Priority N are regular maintenance treatments that should occur as needed.

Masonry

- Repairs to the building’s exterior masonry will require the attention of a mason experienced in working with historic masonry. Failure to use correct tools, methods, and materials may result in further damage to the masonry.
- Mortar analysis must be conducted to determine a compatible mortar mix for repairs. Samples should be tested from both the south façade and the secondary elevations, as different mortar mixes may have been used.

Selective Repointing

- Deteriorated mortar joints should be cleaned with hand tools and repointed with compatible mortar. Use of modern Portland cement-based mortars could cause permanent damage to the masonry, leading to expensive future repairs.
- Tooling for repointed joints should be established to set expectations for finished work, with distinct treatments for the south façade and the other elevations. Joints should be tooled to match the slight recess of adjacent intact mortar and should not be filled flush with the face of the brick. Tooling of the repointed joints will visibly differentiate them from weathered mortar upon close inspection.

- Continue program of repairing cracks in mortar inside and out, using recommendations of a mortar repair specialist.

Coatings

Interior Sealant

- Review effects of sealant coating on brick health. Consider removal of this coating using the gentlest means possible.

Cementitious Stucco

- Existing cementitious stucco at the west and north walls of room 124 appears to have accelerated deterioration of the brick masonry. This stucco should be removed to the greatest extent possible, including potential cuts at mortar joints. If tests indicate that this treatment is infeasible, the stucco should be removed, and damaged and deteriorated brick should be replaced. Replacement brick should match the size, color, and texture of the undamaged historic brick and should be laid in compatible mortar.

Metalwork

- Repairs to historic metalwork should address corrosion and damage. Corrosion and paint removal should be accomplished using the gentlest means possible and compatible primers and paints should be selected to avoid trapping moisture. Rehabilitation of exterior metalwork should include removal of corrosion and loose or alligatored paint, repair or selective replacement of damaged or missing components, priming with a rust-inhibiting primer, and repainting to match the documented first period paint scheme. This treatment applies to both work items listed below:
Cornice & Window Hood Restoration

- The historic metal cornice and window hoods of the south façade should be restored to their appearance during the period of significance. This should include inspection of and repairs to the cornice’s underlying wood framing and attachment to the north parapet, coordinated with other structural repairs to the parapet.

Shutter & Window Bar Restoration

- Historic metal shutters and bars on window and door openings should be restored to their appearance during the period of significance. Shutters should be secured in open or closed positions as required on specific openings.
- Remove rust from steel exterior shutter embedments into masonry and repaint with protective paint. At locations where rust has expanded and cracked the masonry, remove embeds to remove rust and protect with paint, reinstall, and repair masonry.

Non-historic metalwork should be maintained and repaired as required, including the following work items:

- Remove rust from exterior fire escape stairs and repaint.

Wooden Components

- Repairs to deteriorated exterior and interior wooden components should attempt to save as much historic fabric as possible. Epoxy consolidation and patching may be possible for some deteriorated wood components. It is recommended that badly deteriorated exterior wood components be replaced with new old-growth wood components to match the originals. Unlike old-growth wood, new-growth wood is prone to rapid deterioration and paint delamination. Care should be taken to document all clues revealed during the removal of damaged and deteriorated components, as these may offer additional information about the building’s construction and evolution. All exterior wood components should be scraped, sanded, and repainted, with care taken to remove all loose and alligatored paint before new paint is applied.

Windows & Doors

Maintenance

- Inspect sealant around openings and replace as needed (once per year)
- Touch-up glazing putty and paint on wood sash windows as needed

Rehabilitation

Plan for the comprehensive restoration of surviving historic wood sash windows that remain on the south façade and portions of the east and west elevations.

- This should involve removal of each sash, removal of glazing, repair or selective replacement of deteriorated components, priming, re-glazing, painting, and re-installation. The historic glass panes should be reused wherever possible. The window frames should undergo similar restoration. Restoration of the wood sash and frames will help to keep the building weather-tight and will ensure the long-term preservation of these key architectural features.

- Evaluate whether exterior or interior storm sash could reduce thermal and moisture stress on historic building components. If so, such storms should be carefully designed and installed to minimize their visual impact, matching the color of the adjacent sash or frame. Mounting on interior is usually preferable because mounting on interior typically has less visual impact on historic resources. Glazing should be fitted with a film to filter ultraviolet (UV) radiation but should not be tinted or mirrored.
Consider reopening the infilled east window of room 124 and fitting it with a new window to match the surviving historic windows in comparable openings.

Plan for replacement of the modern replacement windows on the building’s north, east, and west elevations, assuming a 25-year maximum design life for the existing windows.

- New sash should match the design, profiles, and sightlines of the historic sash and should include painted finishes consistent with the original sash’s historic appearance.
- Windows in openings that historically contained divided-lite sash should have real muntins and utilize materials and design consistent with original historic fabric.
- Insulated glazing is recommended for any new replacement sash. Glazing should be fitted with a film to filter ultraviolet (UV) radiation but should not include tinted or mirrored films that would change the character of the building.

Roof & Gutters

Maintenance

- Clean gutters, downspouts, and roof drains (twice per year at minimum)
- Inspect and clean underground drain pipe (twice per year at minimum)
- Ensure that water does not pool at foundation or splash onto brick. Consider regrading to move water away from foundations.

Rehabilitation

- Plan for replacement of gutters and downspouts on the historic building with new gutters and downspouts sized to handle the quantity and speed of rainfall experienced on site. New gutters and downspouts should be of a metal selected for compatibility with other metals on the building and should be painted following evidence of the building’s first period paint scheme. Downspouts should drain as far from the building walls as possible to reduce the risk of moisture-related deterioration.

Interior Finishes & Features

Planning for rehabilitation of the first floor interior should consider the following treatments, where feasible:

- Potential to remove 1980s partitions to better expose the interior’s historically open configuration.
- Potential to remove 1980s furring covering windows and doors of the south façade and the east and west elevations.
- Potential to redesign or relocate the gallery and exhibit space that currently covers the inside of the south façade.
- Potential to re-route the building entrance closer to the south façade. Planning should consider whether the narrow sidewalk, grade issues, and heavy traffic along St. Mary Street preclude use of the historic front door as the building’s main entrance.
- Incorporation of the building’s historic Fairbanks platform scale, currently housed in the 1990-1992 addition.

Planning for rehabilitation of the second floor interior should consider the following, where feasible:

- Potential modifications to better accommodate the needs of the Lafourche Parish Public Library’s administrative offices. It may be possible to consolidate the existing functions within one half of the floor, creating more efficient office layouts and freeing up the other half of this floor for other uses by the library.
- Reconstruction of the lost bead-board ceiling that was present during the period of significance. This treatment could be applied to the whole second floor or to a selected area. This treatment could provide
additional space to conceal building systems.
- Potential to remove 1980s partitions to better expose the interior’s historically open configuration.
- Replacement of fiberglass roof insulation at the Percy-Lobdell Building with a non-toxic material providing better insulation value.
- The addition of interior glazing to the underside of the linear skylight to provide more thermal insulation.

The following recommendations are provided for the treatment of non-historic materials and features:

Paving
- Because none of the existing hardscape paving material is historic, maintain existing materials to provide safe environment for visitors.

Exterior Grade
- Adjust exterior grades around building to maintain positive drainage away from foundation.

Plantings
- Consider removal of foundation shrubs and trees that are making contact with the building.
- Prune trees to prevent limbs from touching building or overhanging gutters.

Building Systems

Structural Systems

- Continue Termite protection systems. No evidence of active termites was visible at time of visit, however there was considerable evidence of past activity all around the building.
- Develop repairs for south façade to prevent further wall separation from building. The proposed treatment includes stainless steel epoxy anchors at 24 inches on center connecting the vertical and diagonal internal truss chord members to the south façade masonry. The top chord members would be bolted to a steel angle and connected to the masonry with stainless steel epoxy anchors at 24 inches on center. Please refer to Treatment Recommendation illustrations T6 and T7 in Appendix C: Treatment Plans.
- While we do not recommend trying to pull the masonry back toward the building, we could see installing a vertical bent plate inside each corner with horizontal fiber reinforced polymer (FRP) strips or steel straps bolted into the interior face of the brick to aid in stabilizing the façade. Please refer to Treatment Recommendation illustrations T6 and T7 in Appendix C: Treatment Plans.
- Provide additional attachment points between the north wall truss and north elevation masonry following those outlined for the south façade, above.
- Perform non-destructive testing in the areas of additional attachments to determine if there are steel straps tying together the various levels. A small portion of interior wall (2’-0” x 2’-0”) can be removed from the inside (not exposing the outermost wyth) to assure connectivity. The wall can be repaired once investigation is complete.
- Consider removing steel saddles at north and south walls that were installed to support the ends of the adjacent trusses. This will require repairs to the bottom chords of the trusses. Alternately, add shims to saddles to ensure full bearing from truss to saddle.
- Grout between saddle and masonry wall with non-shrink grout.
- Repair areas of water infiltration, such as second level window sills, joints between brick and window jambs at south façade, the four corners of the roof where it meets the north and south façade.
- Repair damaged second floor framing below those four corners of the roof. Investigate water damage at first floor behind exhibits.
- Evaluate the structural capacity of the second floor during the planning for any future use or rehabilitation.
Building Systems

- The design of HVAC systems must be carefully considered to minimize negative effects on a historic building. Improper design and/or installation of HVAC systems in this climate zone may cause moisture to accumulate within masonry walls, leading to deterioration of the building’s historic fabric. Any new systems should be carefully designed to avoid creating unnecessary stress on the building’s historic fabric.
- New systems should be carefully designed to minimize their visual impact on the building’s exterior and interior and to require minimal penetrations through historic fabric.
- Systems should be designed to make use of contemporary best practices and to use existing resources, including the potential for geothermal/earth-coupled heating and cooling.

Electrical Systems
- Evaluate electrical system, examine the potential for more efficient and less intrusive fixtures

Plumbing Systems
- Evaluate plumbing system, examine the potential for more efficient systems

Fire Protection Systems
- Evaluate existing system

Security Systems

Interior of 1990-1992 Addition

- Remove mold and mildew from interior finishes. Address underlying causes and monitor these areas for reappearance of mold and mildew. Dispose of any phosphate-based cleaners in an appropriate way to avoid eutrophication of the Bayou Lafourche watershed.
- Consider removal of failing vinyl composite tile (VCT) flooring and replacement by a sealed concrete finish.

Implementation Projects

The recommendations included above and shown in the prioritization matrix in Appendix C have been categorized into a series of implementation projects below. These projects are presented in a format consistent with the Project Management Information System (PMIS) forms used by the NPS for the coordination of projects with annual funding requests. Each of the projects listed below includes a brief summary description of the project, justification for the work, and specific implementation recommendations. Items that have been identified as regular maintenance or as-needed repairs are not included in the projects identified below.

Stabilize Percy-Lobdell Building

Description: Stabilize the Percy-Lobdell Building by addressing structural and water infiltration issues and repairing associated damage.

Justification: Existing structural and water infiltration issues endanger the long-term preservation and use of the building and may constitute a risk to human life and safety.

Recommendations: Replace gutters and downspouts on historic building with appropriately sized replacements, patch roof and repair leaking roof drains at 1990-1992 addition, adjust exterior grades around building to maintain positive drainage away from foundation, stabilize and reinforce south façade and north parapet, repair steel saddle and truss connections, repair damaged second floor framing and finishes at areas of water infiltration, remove mold and mildew from finishes within 1990-1992 addition, remove VCT flooring and install sealed concrete floor in 1990-1992 addition, evaluate existing HVAC, plumbing, electrical, fire protection, and security systems.

Rehabilitate Percy-Lobdell Building (Phase 1)

Description: Rehabilitate the Percy-Lobdell Building to address masonry and building envelope deterioration.
Justification: Exterior masonry and building envelope issues that have developed since the last major building project was completed in 1992 must be addressed to prevent deterioration.

Recommendations: Selectively repoint exterior masonry, remove cementitious stucco from brick and replace damaged brick as required, restore metal cornice and window hoods at south façade, clean and repaint exterior fire escape stairs, investigate the potential for new interior or exterior storm sash, and replace roof, insulation, and drains at 1990-1992 addition.

Rehabilitate Percy-Lobdell Building (Phase 2)
Description: Rehabilitate the Percy-Lobdell Building to address building envelope deterioration and to accommodate interior programming, interpretation, systems, and finish updates.

Justification: Key building envelope items are due for rehabilitation or replacement and the building’s interior and systems are due for updates to support the park’s operation.

Recommendations: Restore metal shutters and window bars, clean and repaint exterior wooden components, restore historic wood sash windows and frames, install new storm sash, reopen infilled window of room 124 and install new window, remove sealant from interior face of brick masonry, rehabilitate first floor interior, update or replace building systems.

Rehabilitate Percy-Lobdell Building (Phase 3)
Description: Rehabilitate the Percy-Lobdell Building to address building envelope deterioration and to accommodate interior programming, interpretation, systems, and finish updates.

Justification: Modern replacement windows will reach the end of their anticipated design life. The second floor interior will likely require updates to address current needs of the Lafourche Parish Library.

Recommendations: Replace modern replacement windows, evaluate the structural capacity of the second floor during planning for any future use or rehabilitation, rehabilitate second floor interior.

Recommendations for Further Research
As mentioned in the site history, the properties surrounding the Percy Lobdell Building were historically the location of several industrial, warehouse, and residential buildings. As seen on various Sanborn maps from the late nineteenth and early twentieth century, industries adjacent to the Percy Lobdell Building included the Thibodaux Boiler Works, which included a foundry and machine shop, the Sale Stable, a market, and an oil warehouse. The Percy Lobdell Building’s lot also included additional structures and landscape features no longer present but related to its commercial operation, including ancillary warehouses, grain elevator buildings, oil storage sheds, railroad platforms, and the railroad spur that accessed the north side of the building. As outlined in the site history, the bayou served as an important transportation route during the early years of the development of this area of Thibodaux. Additionally, a public road travelled along the south bank of the bayou before it was abandoned in the first decade of the twentieth century.

The National Register of Historic Places considers the Percy Lobdell Building historically significant because of its association with the commercial and industrial history of Thibodaux. The National Register nomination states, “the Percy-Lobdell building survives to represent the all important warehousing aspect of the city’s historic role as a commercial, service, and distribution center for Lafourche Parish.” As stated in the Evaluation of Significance chapter of this report, characteristics of the Percy Lobdell Building have lost aspects of their integrity. The loss of its commercial and industrial context has diminished the integrity of the building’s landscape setting. Today, the setting is a manicured recreational landscape installed during renovations to the building in the 1990s.

In keeping with the recommended ultimate treatment of Rehabilitation for the Percy Lobdell Building, it is recommended that the NPS investigate opportunities to interpret the historic landscape setting to better convey the commercial/industrial history of Thibodaux that is the source of the building’s historic significance.
Recommendations for Future Research to Accomplish the Ultimate Treatment

Complete a Cultural Landscape Report that focuses on the evolution of the landscape associated with the Percy Lobdell Building.

Consider relocating or reorganizing vehicular and pedestrian infrastructure installed in the 1990s to better reflect the spatial organization of the historic use of the building and its historic setting. This setting was characterized by now missing features (i.e. adjacent buildings and railroad lines) and features that remain (St. Mary Street, and Bayou Lafourche). An alternative would be to relocate the parking area to the west side of NPS property. This would collect modern, incongruous landscape additions to the area now occupied by the auditorium addition to the historic building. This would also allow for the removal of the modern entrance added to the east elevation and restoration of that elevation.

Consider a redesign of the pedestrian circulation, which currently does not respond to the historic use of the building. The current pavement design on the north side of the site exclusively reflects its modern use as an assembly area for educational groups and as a plaza space for the auditorium. Also, consider developing a visual separation between the Percy Lobdell Building and the adjacent auditorium. This can include alterations to the ground plane by changes in pavement material and can include plantings to create a visual buffer between the historic building and the modern building. The auditorium plaza could be redesigned to interpret missing historic features, including the rail spur and warehouse buildings. The plaza could be reduced in size or eliminated if auditorium traffic is rerouted to an existing entrance on the south side of the building.

Resilience to Natural Hazards

The Percy-Lobdell Building is susceptible to threats associated with climate variability and environmental pollution. The site is adjacent to a waterway in southern Louisiana, approximately 40 miles from the Gulf of Mexico, making it susceptible to the increased frequency of severe weather, particularly hurricanes and tropical storms. Although the building site appears to be outside the 0.2-percent-annual-chance flood area, the site is susceptible to damage from flooding and heavy rainfall events affecting Bayou Lafourche. Rising temperatures, changes in precipitation patterns, and acid rain may lead to accelerated deterioration of wood components, increased crystallization of efflorescent salts due to increased evaporation rates, sulfur dioxide deposits damaging masonry, wind damage and weathering, damage or destruction by potential future wildfires, and added stress from sudden thermal change.169

Cultural resources including historic buildings “are fixed in place or derive much of their significance from the place within which they were created. Many are non-living, and all are unique. As a result, the capacity of cultural resources to adapt to changing environments is limited.”170

As stated in the Director’s Policy Memorandum 14-02, “NPS cultural resource management must keep in mind that (1) cultural resources are primary sources of data regarding human interactions with climate change; and (2) changing climates affect the preservation and maintenance of cultural resources.”171

An increase in temperature can lead to the “increased crystallization of efflorescent salts due to increased evaporation rates, leading to increased rates of structural cracking deterioration.”172

Higher relative humidity, resulting from higher temperatures, would increase the moisture absorption rates for wood, brick, and porous stone. This increased moisture absorption would result in the decrease of crystallization and dissolution of salts within the masonry. The increased moisture would also increase the rates of growth of vegetation on masonry surfaces, increase the rate of corrosion of ferrous metal features, and accelerate the deterioration of wooden components.173

173. Ibid.
A decrease in precipitation may be expected to increase the levels of salt deposits that collect on the surfaces of masonry and porous stone. These salt deposits would then be infiltrated into the porous stone during a rain event. This cycle would cause spalling and fractures in the material. Decreased precipitation would accelerate the shrinking and cracking of wooden components.

An increase in heavy rain events would stress the resources' ability to shed water. The infiltration of water into the Percy-Lobdell Building would cause extensive damage to its wooden interior. The extreme rain events will result in accelerated decay of wooden components and masonry due to increased extremes of wetting and drying. The extreme cycle of wetting and drying will also increase the deposition and the eventual infiltration of salts into the porous material of the structure.

Carbon dioxide, sulfur oxide, and nitrogen oxide from fossil-fuel-based power generation, automobile exhaust, and industrial pollution cause acid rain, which has been widely documented as a cause of deterioration of historic buildings, particularly masonry materials and metals. Threats associated with extreme weather events include damage from wind, rain, wind-borne debris, and wildfires.

Implications – Adapting to Natural Hazards and Increased Climate Variability

According to NPS documents, impacts to buildings and structures related to temperature and drought extremes include: deterioration, conflagration, and desiccation. A loss of resource integrity may occur over time from conditions related to increased climate variability and its impacts. Typically, documentation is one of the first mitigation techniques undertaken in response to deterioration. This document, which includes narrative, photographs, measured drawings, and recommendations, fulfills this first step in the mitigation process.

Page intentionally left blank.
Bibliography

“Let’s start planning while we have the time.” The Park Record, Park City, UT. September 7, 1989, 12.

“We Want Your Corn!” *Assumption Pioneer*, Napoleonville, Louisiana. October 6, 1917.

Page intentionally left blank.
Appendix A:
Materials Analysis
Percy-Lobdell Building

Finishes Analysis

Thibodaux, Louisiana

Prepared For
WLA Studio
Athens, Georgia

Prepared By
Building Conservation Associates, Inc.
242 Cherry Street
Philadelphia, Pennsylvania 19106
1.0 INTRODUCTION

At the request of J. Keyes Williamson of WLA Studio, Building Conservation Associates, Inc. (BCA) has prepared a finishes analysis of the Percy-Lobdell Building (also known as the Wetlands Acadian Cultural Center). The building is located in Thibodaux, Louisiana and is part of the Jean Lafitte National Historical Park and Preserve. It is a two-story brick building in the Italianate style. The goal of the analysis is to document the existing paint finishes present on the building as part of a Historic Structure Report (HSR) being prepared on the building by WLA Studio. The exterior of the building was the primary focus of the study. (Images 1 and 2)

According to the Statement of Work for the HSR issued by the National Park Service (NPS) in July 2017, the Percy-Lobdell Building was constructed in 1905 and represents the only remaining warehouse in the Thibodaux commercial district. The building was purchased by the Martha Sowell Utley Memorial Library Trust in 1982 in order to establish a branch library for the City, a service that is still provided in the building to this day. The building was listed on the National Register of Historic Places in 1986. In 1988 and 1989, ownership of the Percy-Lobdell building was transferred to the NPS from the Library Trust.

Known renovations to the building occurred in the 1980s, when the Library Trust acquired the building, and in 1990, after ownership was transferred to the NPS. While BCA was not provided with a record of the 1980s work, which was apparently performed using donated labor, architectural drawings from the 1990 renovation prepared by the firm Hamilton and Associates, were provided to BCA. These drawings include references to preparing and repainting all wood and metal work, but do not specify how or to what extent the surface preparation was to be executed.

The following report summarizes the findings of the finishes analysis. After the introductory information regarding the study methodology, the report discusses the findings of the research and then makes recommendations for appropriate restoration paint finishes. All mounted paint cross-sections have been labeled and permanently housed and will be archived at BCA’s Philadelphia office unless otherwise requested by the client.

All work required for the execution of this study was performed by Dorothy S. Krotzer, BCA Regional Director. All fieldwork was performed in November 2017 and laboratory analysis was performed in January 2018.

2.0 METHODOLOGY

Following the review of the historical documents provided by WLA Studio, a one-day site visit was made by BCA. During the site visit, the building was physically examined for intact areas from which representative samples of paint finishes could be removed.

Because of the prior renovations, historic paint evidence is scarce. These previous repair and renovation efforts included thorough removal of paint as part of the preparation and re-painting of the woodwork. In addition, it is likely that the exterior woodwork was quite weathered prior to these renovations and that much of the paint evidence had already disappeared through exposure to the elements. These prior renovation efforts also included replacement of select wood elements, such as windows and doors. Because of the apparent lack of historic paint evidence, BCA made a point to locate isolated areas where the greatest amount of paint evidence remains and removed samples from these locations. However, it is possible that even these areas do not contain original paint finishes.

A total of seventeen representative samples of paint finishes were removed from the building by BCA using an Exacto® knife. Fourteen of these samples were removed from the exterior and three from the interior. A combination of metal (strap hinges on shutters, sheet metal shutters) and wooden elements (window and door surrounds) was sampled. The specific location of all paint samples removed from the building is included in Table 1 and is also documented on drawings in Appendix B.

All finish samples were examined in reflected light using a Nikon high-resolution stereomicroscope SMZ-1500 with variable magnification (16x-160x) to identify which samples would be embedded and sectioned for analysis. The selected samples were then mounted in a commercial polyester/methacrylate resin polymerized with a methyl ethyl ketone peroxide catalyst (Bioplast®). Embedded samples were sectioned on a Leco® VC-50 micro-saw for microscopic examination. The sectioned samples were dry-polished using a series of fine Micromesh® polishing clothes ranging from 6,000 to 12,000 grit. Sectioned samples were observed under a Nikon 50i compound microscope in both visible light filtered through a daylight correction filter and ultraviolet light. The ultraviolet light was generated by a mercury illumination system filtered through a violet filter cube (EF4 V-2A Ex400/40 Dm430 Bar 450). Photomicrographs of representative samples were taken using a 5 mega pixel Nikon DigiSight color digital camera system and are included in this report to illustrate specific observations. All sample stratigraphies and photomicrographs are also included in Appendix A.

Once the stratigraphies of every sample were deciphered, significant paint layers were identified and raw samples were manipulated in order to expose these layers for color matching purposes. The exposed layers were visually matched to the standardized Munsell color system and the commercial Benjamin Moore color system. All color matches are included in Section 4.0 of this report.
Table 1. Key to Sample Locations (see Appendix B for drawings documenting sample locations)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Material</th>
<th>Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PELO.1</td>
<td>Metal</td>
<td>Exterior, east elevation, south end, first floor level. Fourth window from south, exterior face of metal shutter, strap hinge.</td>
</tr>
<tr>
<td>PELO.2</td>
<td>Metal</td>
<td>Exterior, east elevation, south end, first floor level. Metal railing of fire escape.</td>
</tr>
<tr>
<td>PELO.3</td>
<td>Metal</td>
<td>Exterior, east elevation, south end, first floor level. Southernmost window, south metal shutter, strap hinge.</td>
</tr>
<tr>
<td>PELO.4</td>
<td>Wood</td>
<td>Exterior, east elevation, north end, upper first floor level. Northernmost window, arched portion.</td>
</tr>
<tr>
<td>PELO.5</td>
<td>Wood</td>
<td>Exterior, south elevation. Center door/entrance, underside of arch, tongue-and-groove board.</td>
</tr>
<tr>
<td>PELO.6</td>
<td>Metal</td>
<td>Exterior, south elevation, second window from east, metal decorative hood.</td>
</tr>
<tr>
<td>PELO.7</td>
<td>Metal</td>
<td>Exterior, west elevation, south end, first floor level. Southernmost window, north metal shutter.</td>
</tr>
<tr>
<td>PELO.8</td>
<td>Wood</td>
<td>Exterior, west elevation, south end, first floor level. Window (formerly door) opening, surround.</td>
</tr>
<tr>
<td>PELO.9</td>
<td>Metal</td>
<td>Exterior, west elevation, south end, first floor level. Window (formerly door) opening, north metal shutter.</td>
</tr>
<tr>
<td>PELO.10</td>
<td>Wood</td>
<td>Exterior, south elevation, first floor level. Easternmost window, west surround.</td>
</tr>
<tr>
<td>PELO.11</td>
<td>Metal</td>
<td>Exterior, south elevation, first floor level. Easternmost window, metal decorative hood.</td>
</tr>
<tr>
<td>PELO.12</td>
<td>Metal</td>
<td>Interior (formerly exterior), west elevation, first floor level. Transom over door, iron bar.</td>
</tr>
<tr>
<td>PELO.13</td>
<td>Wood</td>
<td>Interior (formerly exterior), west elevation, first floor level. Transom over door, sash.</td>
</tr>
<tr>
<td>PELO.14</td>
<td>Wood</td>
<td>Interior (formerly exterior), west elevation, first floor level. Transom over door, surround.</td>
</tr>
<tr>
<td>PELO.15</td>
<td>Wood</td>
<td>Interior, closet along east wall off main reception/visitor orientation space. Wood ceiling.</td>
</tr>
<tr>
<td>PELO.16</td>
<td>Wood</td>
<td>Interior, main reception/visitor orientation space. Transom over door, surround.</td>
</tr>
<tr>
<td>PELO.17</td>
<td>Wood</td>
<td>Interior, main reception/visitor orientation space. Transom over door, sash.</td>
</tr>
</tbody>
</table>
3.0 SUMMARY OF FINDINGS

3.1 Exterior

As previously mentioned, there is minimal historic paint evidence on the Percy-Lobdell Building due to a history of lack of maintenance as well as prior renovation efforts that removed much of the paint and, in some cases, original building fabric. While BCA was careful to remove samples from areas with the greatest amount of paint evidence, it is possible that the earliest existing paint finishes (as discussed below) are not original.

Please note that the window and door openings that were originally on the exterior of the building, but are currently part of the interior due to the addition of the theater on the west elevation, are discussed in the exterior portion of this summary of findings.

Metalwork

Samples were removed from a variety of exterior metal elements including metal shutters, strap hinges on replacement wood shutters, window hoods and the fire escape. All of the samples removed from the shutters, whether the sample was removed from a strap hinge or the face of a metal shutter panel, have essentially the same overall paint layering sequence. All of the samples have an early dark cream paint layer followed by an early gray paint layer. Both layers have a distinct dirt layer and weathered surface, indicating they were exposed for a period of time. In sample PELO.9 (removed from the panel of one of the metal shutters of the former door opening at the south end of the west elevation), the order of these layers is reversed and they may actually represent different paint campaigns all together. (Images 3-6)

Following these two early paint layers are two layers of white followed by two to four layers of a dark blue-green (including the current dark green). The only historic photograph of the building, which dates to 1982 (Image 7), shows the metal shutters of the south elevation painted a uniform white. This paint scheme most likely aligns with the more recent paint layers described above.

Although cream appears to be the earliest existing paint color on the exterior metal elements examined, it is very possible that it is not the original paint color. Typically in the 19th and early 20th centuries, exterior metal was primed with a red-lead, oil-based paint prior to being painted and evidence of such a primer on the metal’s surface would signal that the metalwork’s original paint finish is intact. At Percy-Lobdell, no such primer exists on the metal except on the sample removed from the window hood (PELO.11). The cream paint could still, however, be an early paint color.

The fire escape and metal window hoods have different paint layer stratigraphies. The metal window hoods have evidence of a red primer directly on the metal followed by a cream-colored paint. The remaining evidence of cream paint is so small, it is difficult to tell if this cream is the same as the dark cream found on the shutters. On top of this paint, there are traces of a thick gray-colored material that looks like mortar. After this, there are five layers of white paint, one of which has a partial application of bright blue on top of it. The bright blue may have been used to highlight certain parts of the hood’s ornamentation. (Images 8-9)

The fire escape, which was installed during the 1986-87 renovation of the building, has many more paint layers present than was expected. The sample removed from the fire escape
contains twelve paint layers. The first six layers are creams or off-whites and the more recent layers are black finish paints on various primers (red, gray, brown). None of the creams resemble the dark cream on the metal shutters. It should be noted that, like the metal elements mentioned above, the metal substrate of the fire escape also lacks a primer. (Image 10)
Image 3. East elevation, replacement wood shutter with original iron strap hinges. Location of sample PELO.3.

Image 4. Sample PELO.3, 50x, visible light. Note the lack of a metal primer under the earliest existing paint layer, which is a dark yellowish-cream.
Image 5. West elevation, sheet metal clad shutter. Location of sample PELO.7.

Image 6. Sample PELO.7, 100x, visible light. As with Image 4 above, note the lack of a primer and the earliest existing dark cream paint layer with a distinct dirt layer on top.
Image 7. Historic photograph of the front (south) elevation of the building in 1982, showing a white color scheme on all elements of the windows, shutters and doors. This paint scheme most likely relates to the white paint layers under the blue-green paint layers in the samples removed from the exterior shutters, as seen in Images 4 and 6 above. Note poor condition of the paint in this image. (Photograph courtesy WLA Studio)
Image 8. South elevation, window opening with decorative sheet metal hood. Location of sample PELO.11.

Image 9. Sample PELO.11, 50x, visible light. This is the only exterior metal sample with evidence of a metal primer on the substrate (arrow). On top of the primer is the earliest existing paint layer, a cream. Because the amount of early cream paint is so small, it is difficult to determine if it is the same as the dark cream paint found in other samples.
Image 10. Sample PELO.2, 50x, visible light. Although the 1980s fire escape was also painted cream early in its history, none of the creams match those visible in the other exterior metalwork samples.
Wooden Elements

Exterior woodwork was also sampled, including window and door trim. Some of the window and door openings that were sampled were originally on the exterior of the building, but are currently part of the interior with the addition of the theater on the west elevation.

Like the metal work, the earliest existing paint layer on the woodwork appears to be a cream color. However, the woodwork samples were a bit more difficult to interpret given the lack of paint evidence due to the significant paint removal that occurred as part of the 1986-87 renovation of the building. Several of the samples contain a wood substrate that appears rough and worn, suggesting it has been stripped at some point or was severely weathered prior to painting. In addition, some of these samples have one to two early red-orange paint layers that resemble primers, but there is no apparent finish layer on top of them. In other samples, a white or cream is applied on top of the same red-orange paint layer and in one other sample a cream is applied below the red-orange. The only thing that is consistent about these samples is the more recent four to six layers of white paint. (Images 11-14)

Of all of the exterior woodwork samples, only sample PELO.5 (removed from the underside of the arch over the entrance on the south elevation) seems to be potentially intact. (Image 12) The wood surface of this sample looks even and unstripped. The first paint layer is a red-orange immediately followed by a cream-colored paint. The application repeats, with a red-colored primer and another cream being applied on top. The earliest cream paints look similar to the dark creams found as the earliest layers on the exterior metalwork. After the creams, are five layers of more recent white paint. Although we cannot be certain, it is possible that this exterior woodwork retains its original cream-colored paint.
Image 11. South elevation, wood arch over original main entrance. Location of sample PELO.5.

Image 12. PELO.5, 50x, visible light. This wood element, like others on the building, was primed with a red-orange primer and painted cream.
Image 13. PELO.10, 50X, visible light. Only a fragment of an early red-orange primer and cream remain in this sample (arrow). The rest of the paint is more modern, white paint.

Image 14. PELO.8, 50x, visible light. This sample contains an early red-orange primer, but only more recent white paint on top of it.
3.2 Interior

Metalwork

No metal elements were sampled on the building interior.

Wooden Elements

Because of the lack of remaining historic architectural fabric and historic paint finishes on the interior of the building, samples were removed from only three wood elements: a wood ceiling in a small closet off of the reception area along the east wall and the transom over the door to the now theater lobby on the west wall.

The samples removed from the transom have similar paint evidence as was discussed above for the exterior woodwork samples, including the same inconsistencies. Sample PELO.16 (removed from the surround/frame of the transom) has two red-brown paint layers applied over a rough wood substrate followed by four layers of modern off-white paint. Whereas, sample PELO.17 (removed from the transom sash) also has a rough wood surface topped with an early cream layer, a single red-orange paint layer, and then the same four modern, off-white paint layers as in sample PELO.16. These two samples, removed from the same window opening, should have parallel paint stratigraphies and the fact that they do not highlights the overall inconsistencies that exist among the paint samples removed from the building’s woodwork and the difficulty in interpreting this information. (Images 15-16)

The sample removed from the closet ceiling contains traces of a cream paint applied directly to the surface of the wood, as well as traces of a red-orange paint over top of this. The fragmentary nature of these early paint layers, as well as the somewhat rough surface of the wood, suggest this ceiling was stripped at some point or that it was heavily weathered prior to being painted. After these early fragmentary layers, the ceiling was painted only once with a white paint. (Images 17-18)
Image 16. PELO.16, 100x visible light. This sample, which shows a disturbed and likely stripped wood surface, only contains early red-orange primer layers and modern off-white paint.
Image 17. Ceiling of interior closet.

Image 18. Sample PELO.15, 50x, visible light. Although it is difficult to see in this photograph, there are traces (arrow) of a cream paint followed by a red-orange paint layer under the existing white paint in this sample.
4.0 CONCLUSIONS AND RECOMMENDATIONS

Although evidence of historic paint finishes on the Percy-Lobdell Building is scarce and the evidence that does remain is often applied over a weathered or previously-stripped surface indicating it may not be original, some conclusions can be drawn and historically appropriate recommendations made.

The earliest existing color on both the metalwork and woodwork appears to be a dark yellowish-cream. An early cream was found on multiple elements, on both the interior and exterior of the building. Of all of the samples removed from the building, the sample removed from the underside of the entryway arch (PELO.5) seems to be the most intact and it contains the earliest cream paint layer on the building. Therefore, a match to this cream is provided below and it is recommended that it be applied to all of the building’s woodwork and metalwork. Although the added fire escape had a unique paint history, it was painted cream multiple times early in its history, so painting it cream would also be appropriate.

If historic photographs of the building are located, better evidence of its exterior paint scheme may be revealed and could be compared to the findings of this study to confirm the existence of the cream paint finish as the building’s original paint scheme.
Color Matches and Recommended Finish Colors

Note: It is not certain that this paint color is original to the building. It is simply the earliest exiting paint color found in multiple locations on a variety of architectural elements.

<table>
<thead>
<tr>
<th>Component</th>
<th>Earliest Existing Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Woodwork</td>
<td>Dark Cream</td>
</tr>
<tr>
<td>Exterior Metalwork</td>
<td>Munsell 2.5Y 8.5/2</td>
</tr>
<tr>
<td></td>
<td>Benjamin Moore 1037 Muslin</td>
</tr>
</tbody>
</table>
Appendix A.
Paint Sample Stratigraphies and Photomicrographs
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

SAMPLE NO: PELO.1
LOCATION: Exterior, east elevation, south end, first floor level. Fourth window from south, exterior face of metal shutter, strap hinge.

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Metal/rust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Green</td>
<td>Kelly, -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cream</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Red orange</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Green</td>
<td>Kelly</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Green</td>
<td>Kelly, -</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>White</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Green</td>
<td>Kelly</td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
Percy-Lobdell Building
Paint Stratigraphy

<table>
<thead>
<tr>
<th>Layer</th>
<th>Color (VL)</th>
<th>Color (UV)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Metal/rust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cream</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cream</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Red orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dark green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Light green/gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Black</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Bold** indicates a finish layer
- `-` indicates relatively thin layer
- `+` indicates relatively thick layer
- `/` indicates heavy soiling
- `^` indicates a fractured layer

Sample No: Pelo.2
Location: Exterior, east elevation, south end, first floor level. Metal railing of fire escape.
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

50x magnification, visible light
50x magnification, ultraviolet light

<table>
<thead>
<tr>
<th>SAMPLE NO:</th>
<th>PELO.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Exterior, east elevation, south end, first floor level. Southernmost window, south metal shutter.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>No substrate/ metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Green</td>
<td>Kelly, dark</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Green</td>
<td>Kelly</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Green</td>
<td>Kelly</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Green</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

50x magnification, visible light
50x magnification, ultraviolet light

<table>
<thead>
<tr>
<th>SAMPLE NO:</th>
<th>PELO.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Exterior, east elevation, north end, upper first floor level. Northernmost window, arched portion.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAYER</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Wood (looks stripped)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Red orange</td>
<td>Traces</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

Sample No: PEL0.5
Location: Exterior, south elevation. Center door/entrance, underside of arch, tongue-and-groove board.

<table>
<thead>
<tr>
<th>Layer*</th>
<th>Color (VL)</th>
<th>Color (UV)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td></td>
<td></td>
<td>Wood</td>
</tr>
<tr>
<td>1</td>
<td>Red orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Red orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

50x magnification, visible light
50x magnification, ultraviolet light

<table>
<thead>
<tr>
<th>SAMPLE NO:</th>
<th>PELO.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Exterior, south elevation, second window from east, metal decorative hood.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td></td>
<td></td>
<td>No substrate/ metal</td>
</tr>
<tr>
<td>1</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bright blue</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

100x magnification, visible light
100x magnification, ultraviolet light

<table>
<thead>
<tr>
<th>SAMPLE NO:</th>
<th>PELO.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Exterior, west elevation, south end, first floor level. Southernmost window, north metal shutter.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>No substrate/ metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cream/tan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Light cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Red orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Green</td>
<td>Kelly</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Green</td>
<td>Kelly</td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
SAMPLE NO:
PELO.8

LOCATION:
Exterior, west elevation, south end, first floor level. Window (formerly door) opening, surround.

<table>
<thead>
<tr>
<th>LAYER</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Red orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Fracture</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Light yellow brown</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

100x magnification, visible light
100x magnification, ultraviolet light

| SAMPLE NO: | Pело.9 |
| LOCATION: | Exterior, west elevation, south end, first floor level. Window (formerly door) opening, north metal shutter. |

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td></td>
<td></td>
<td>No substrate/metal</td>
</tr>
<tr>
<td>1</td>
<td>Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gray/tan</td>
<td>Greenish</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Light cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Green</td>
<td>Kelly</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Green</td>
<td>Kelly</td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
* - indicates relatively thin layer
+ - indicates relatively thick layer
/ - indicates heavy soiling
^ - indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td></td>
<td></td>
<td>Wood (stripped)</td>
</tr>
<tr>
<td>1</td>
<td>Orange</td>
<td>Traces</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cream</td>
<td>Fragment</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td>Fragment</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Bold** indicates a finish layer
- - indicates relatively thin layer
- + indicates relatively thick layer
- \(/ \) indicates heavy soiling
- \(^\wedge\) indicates a fractured layer

Sample No: PELO.10
Location: Exterior, south elevation, first floor level. Easternmost window, west surround.
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

50x magnification, visible light

50x magnification, ultraviolet light

<table>
<thead>
<tr>
<th>SAMPLE NO:</th>
<th>PELO.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Exterior, south elevation, first floor level. Easternmost window, metal decorative hood.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>No substrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Red orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gray</td>
<td>Chunky sand layer, traces of this in PELO.3 and PELO.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

<table>
<thead>
<tr>
<th>SAMPLE NO:</th>
<th>PELO.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Interior (formerly exterior), west elevation, first floor level. Transom over door, iron bar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Metal/rust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td></td>
<td>Kelly</td>
</tr>
<tr>
<td>4</td>
<td>Green</td>
<td></td>
<td>Kelly</td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
SAMPLE NO: PELO.13
LOCATION: Interior (formerly exterior), west elevation, first floor level. Transom over door, sash.

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- * indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

SAMPLE NO: PEL0.14
LOCATION: Interior (formerly exterior), west elevation, first floor level. Transom over door, surround.

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Orange red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gray</td>
<td>Chunky, sandy</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

SAMPLE NO: PELO.15
LOCATION: Interior, closet along east wall off main reception/visitor orientation space. Wood ceiling.

<table>
<thead>
<tr>
<th>LAYER</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td></td>
<td>Wood</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

100x magnification, visible light 100x magnification, ultraviolet light

<table>
<thead>
<tr>
<th>SAMPLE NO:</th>
<th>PELO.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION:</td>
<td>Interior, main reception/visitor orientation space. Transom over door, surround.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAYER*</th>
<th>COLOR (VL)</th>
<th>COLOR (UV)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Orange</td>
<td>Trace of brown/black</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Red orange</td>
<td>Trace of brown/black</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Resinous brown</td>
<td>Chunky gray, strong auto-fluoresce</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bold indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
PERCY-LOBDELL BUILDING
PAINT STRATIGRAPHY

100x magnification, visible light 100x magnification, ultraviolet light

| SAMPLE NO: | PELO.17 |
| LOCATION: | Interior, main reception/visitor orientation space. Transom over door, sash. |

<table>
<thead>
<tr>
<th>LAYER<sup>*</sup></th>
<th>COLOR<sup>(VL)</sup></th>
<th>COLOR<sup>(UV)</sup></th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td></td>
<td>Wood</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Orange red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Brown</td>
<td>Traces</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^{*Bold} indicates a finish layer
- indicates relatively thin layer
+ indicates relatively thick layer
/ indicates heavy soiling
^ indicates a fractured layer
Appendix B: Developmental History Plans
Existing Conditions Plans
Architectural Assessment

External Elevations, c. 1907 | Sources: 1907 Sanborn Fire Insurance Map, Historic Photographs, Physical Evidence
SECOND FLOOR PLAN, 1982

FIRST FLOOR PLAN, 1982 | SOURCES: HISTORIC PHOTOGRAPHS, ARCHITECTURAL DRAWINGS, PHYSICAL EVIDENCE
PERCY LOBDELL BUILDING

Jean Lafitte National Historical Park and Preserve
UNITED STATES, DEPARTMENT OF THE INTERIOR
NATIONAL PARK SERVICE, SOUTHEAST REGION

Architectural Assessment

EXTerior Elevations, 1982 | Sources: Historic Photographs, Architectural Drawings, Physical Evidence
Architectural Assessment

SOUTH FACADE

NORTH ELEVATION

EXTERIOR ELEVATIONS, 2018
WATER DAMAGE AT BASE OF DISPLAY WALL
NEWER WOOD COLUMN AND STEEL BASEPLATE THAN ADJACENT COLUMNS

VERTICAL CRACK IN DRYWALL DIRECTLY BELOW BEAM BEARING STAINING FROM WATER ON WALL DIRECTLY BELOW ELECTRICAL SWITCHPLATE

NEWER WOOD COLUMN AND STEEL BASEPLATE THAN ADJACENT COLUMNS

FLOOR IN THIS AREA SLOPES UP AND DOWN

ROT OR TERMITE DAMAGE TO WOOD BELOW WINDOW

SLAB SLOPES DOWN TO DRAIN. DRAIN FILLED IN

WOOD DAMAGE AT BASE OF COLUMN

SPALLING OF BRICK ALONG INTERIOR OF WALL

WATER DAMAGE AT BASE OF DISPLAY WALL

ITEMS NOTED IN SITE VISIT DATED 11/07/2017

Structural Conditions Assessment
ITEMS NOTED IN SITE VISIT DATED 11/07/2017

- DAMAGED LOUVERS IN DOOR
- EVIDENCE OF STANDING WATER
- EFFLORESCENCE ON WALL
- CRACK IN BRICK VENEER DUE TO EXPANSION
- EXPANSION JOINT IN FINE CONDITION
- STAINING FROM ROOF LEAK
- RUST ON WINDOW FRAME
ITEMS NOTED IN SITE VISIT DATED 11/07/2017

FLOOR AND JOIST DAMAGE FROM TERMITES

JOIST APPEARS TO HAVE DROPPED AND THE DECKING BELOW THE CARPET CREEKS AND SNAPS LIKE WATER DAMAGED PLYWOOD THAT HAS DELAMINATED. POSSIBLY DUE TO ROT OR TERMITE DAMAGE.

RUSTED STEEL FRAMING

RUSTED STEEL LINTEL

DAMAGED EXISTING JOIST HAS BEEN REPAIRED WITH STEEL PLATE

CRACK IN DRYWALL

KNEE BRACE BRACE THAT IS MISSING, HAVING BEEN REMOVED IN EARLIER RENOVATIONS. BRACE THAT IS MISSING, BUT BASED ON MARKINGS ON COLUMNS WAS NEVER INSTALLED. BRACE APPEARS NEWER THAN OTHERS. UNABLE TO DETERMINE PRESENCE AND CONDITION OF BRACE DUE TO OBSTRUCTIONS.

JOIST BEARS IN POCKET IN MASONRY WALL, AND AT EVERY OTHER JOIST, THERE IS A METAL STRAP THAT CONNECTS JOIST TO MASONRY WALL.

2x10 @ 16" O.C. No.2 SYP JOISTS

Structural Conditions Assessment
ITEMS NOTED IN SITE VISIT DATED 11/07/2017

- RUSTED STEEL LINTEL
- RUSTED STEEL FRAMING
- STAIR LANDING DRIFTS IN THE NORTH-SOUTH DIRECTION WHEN WALKED ON
- STAIR HAND RAIL DEFLECTS UNDER LOAD
- ROOF HATCH
- NORTH STAIR IS MORE RUSTED THAN SOUTH STAIR
- DAYLIGHT VISIBLE IN JOINT BETWEEN WALL AND ROOF
- TERMITES AND WATER DAMAGE
- SEAL BETWEEN DOUBLE PANES OF WINDOW HAS FAILED
- CRACK IN LINTEL AND SILL
- ROTTED SILL
- DAYLIGHT VISIBLE IN JOINT BETWEEN WALL AND ROOF
- TERMITES AND WATER DAMAGE
- POWER AND/OR TELEPHONE LINES
- CRACK IN WALL
- ROD KICKER FOR PARAPET
- ABOVE ROOF DOWN TO BLOCKING AT ROOF
- DAYLIGHT VISIBLE IN JOINT BETWEEN WALL AND ROOF
- TERMITES AND WATER DAMAGE
- MANY RUSTED COMPONENTS AT SOUTH STAIR
- CRACK IN HEADER
WIDE Joint between brick and door frame, filled with caulk that needs work.

Side of lintel has dropped relative to other side.

Crack in exterior face.

Blocking below gutter is loose.

Pipe penetration needs sealing.

Large crack in interior face.

Rusted lintels and steel framing.

Crack in exterior facade.

Rusted stair frame.

Erosion at soil below downspout.

Brick has been replaced.

Brick and mortar loss.

Brick has been repaired.

Mortar below windows has been repaired.

Mortar has worn away at corbeled base.

Very large crack repaired with mortar, new crack visible.

Mortar has worn away at corbeled base.

Area above arch had dropped and was repaired.

New crack visible.

Repaired mortar failing from water pressure.

Soil at base of wall shows signs of flowing water.

Base of canopy kicker corroded where it meets wall.

Algae on wall at downspout, possibly clogged.

Rust on stair frame.

Rusted stair frame.

Pipe penetration needs sealing.

Brick spalling.

Brick and mortar loss.

Erosion at soil below downspout.

Crack at joint between brick and window frame has been filled with caulk, but has reopened.

Mortar has worn away at corbeled base.

Mortar below windows has been repaired.

Mortar has worn away at corbeled base.

Crack at joint between brick and window frame.

Very large crack repaired with mortar, new crack visible.

Mortar has worn away at corbeled base.

Area above arch had dropped and was repaired.

New crack visible.

Repaired mortar failing from water pressure.

Soil at base of wall shows signs of flowing water.

Base of canopy kicker corroded where it meets wall.

Algae on wall at downspout, possibly clogged.

Rust on stair frame.

Rusted stair frame.

Pipe penetration needs sealing.

Brick spalling.

Brick and mortar loss.

Erosion at soil below downspout.

Crack at joint between brick and window frame has been filled with caulk, but has reopened.

Mortar has worn away at corbeled base.

Mortar below windows has been repaired.

Mortar has worn away at corbeled base.

Crack at joint between brick and window frame.

Very large crack repaired with mortar, new crack visible.

Mortar has worn away at corbeled base.

Area above arch had dropped and was repaired.

New crack visible.

Repaired mortar failing from water pressure.

Soil at base of wall shows signs of flowing water.

Base of canopy kicker corroded where it meets wall.

Algae on wall at downspout, possibly clogged.

Rust on stair frame.

Rusted stair frame.

Pipe penetration needs sealing.

Brick spalling.

Brick and mortar loss.

Erosion at soil below downspout.

Crack at joint between brick and window frame has been filled with caulk, but has reopened.

Mortar has worn away at corbeled base.

Mortar below windows has been repaired.

Mortar has worn away at corbeled base.

Crack at joint between brick and window frame.

Very large crack repaired with mortar, new crack visible.

Mortar has worn away at corbeled base.

Area above arch had dropped and was repaired.

New crack visible.

Repaired mortar failing from water pressure.

Soil at base of wall shows signs of flowing water.

Base of canopy kicker corroded where it meets wall.

Algae on wall at downspout, possibly clogged.

Rust on stair frame.

Rusted stair frame.

Pipe penetration needs sealing.

Brick spalling.

Brick and mortar loss.

Erosion at soil below downspout.

Crack at joint between brick and window frame has been filled with caulk, but has reopened.

Mortar has worn away at corbeled base.

Mortar below windows has been repaired.

Mortar has worn away at corbeled base.

Crack at joint between brick and window frame.

Very large crack repaired with mortar, new crack visible.

Mortar has worn away at corbeled base.

Area above arch had dropped and was repaired.

New crack visible.

Repaired mortar failing from water pressure.

Soil at base of wall shows signs of flowing water.

Base of canopy kicker corroded where it meets wall.

Algae on wall at downspout, possibly clogged.

Rust on stair frame.

Rusted stair frame.

Pipe penetration needs sealing.

Brick spalling.

Brick and mortar loss.

Erosion at soil below downspout.

Crack at joint between brick and window frame has been filled with caulk, but has reopened.

Mortar has worn away at corbeled base.

Mortar below windows has been repaired.

Mortar has worn away at corbeled base.

Crack at joint between brick and window frame.

Very large crack repaired with mortar, new crack visible.

Mortar has worn away at corbeled base.

Area above arch had dropped and was repaired.

New crack visible.

Repaired mortar failing from water pressure.

Soil at base of wall shows signs of flowing water.

Base of canopy kicker corroded where it meets wall.

Algae on wall at downspout, possibly clogged.

Rust on stair frame.

Rusted stair frame.

Pipe penetration needs sealing.

Brick spalling.

Brick and mortar loss.

Erosion at soil below downspout.

Crack at joint between brick and window frame has been filled with caulk, but has reopened.

Mortar has worn away at corbeled base.

Mortar below windows has been repaired.

Mortar has worn away at corbeled base.

Crack at joint between brick and window frame.

Very large crack repaired with mortar, new crack visible.

Mortar has worn away at corbeled base.

Area above arch had dropped and was repaired.

New crack visible.

Repaired mortar failing from water pressure.

Soil at base of wall shows signs of flowing water.

Base of canopy kicker corroded where it meets wall.

Algae on wall at downspout, possibly clogged.

Rust on stair frame.

Rusted stair frame.

Pipe penetration needs sealing.

Brick spalling.

Brick and mortar loss.

Erosion at soil below downspout.

Crack at joint between brick and window frame has been filled with caulk, but has reopened.

Mortar has worn away at corbeled base.

Mortar below windows has been repaired.

Mortar has worn away at corbeled base.

Crack at joint between brick and window frame.

Very large crack repaired with mortar, new crack visible.

Mortar has worn away at corbeled base.

Area above arch had dropped and was repaired.

New crack visible.

Repaired mortar failing from water pressure.

Soil at base of wall shows signs of flowing water.

Base of canopy kicker corroded where it meets wall.

Algae on wall at downspout, possibly clogged.

Rust on stair frame.
Structural Conditions Assessment

- Crack in exterior face from corrosion expansion of steel pins
- Efflorescence on exterior face of brick
- Cracks in interior face of building
- Former curved opening visible interior face
- Bird nest in canopy
- Termite damage
- Gap between truss and wall
- Steel saddle through roof to masonry wall
- Locking scuff seat
- Lighting support base
- Light foot to attaching truss (in total)
- Tie rod to attach masonry end wall to truss (8 total)
- Top of 2 wythe thick brick parapet
- Top of 3 wythe thick brick
- Steel strap
- 4x2½" X-bracing, attached to king post with steel strap
- Steel header above window deflecting and damaging window

North Elevation

- Building section, interior trusses

Scale: see graphic scale

Percey Lobdell Building

Jean Lafitte National Historical Park and Preserve
United States, Department of the Interior

National Park Service, Southeast Region

Scale:

See graphic scale

Recorded By: BP

Date: 09.11.2018

Ratio Design

Palmer Engineering Company

WLA Studio
PERCY-LOBDELL BUILDING
Locations of Paint Samples
Building Conservation Associates, Inc.
2018

FIRST FLOOR PLAN (EAST), 2018

SCALE: see graphic scale
PERCY-LOBDELL BUILDING
Locations of Paint Samples
Building Conservation Associates, Inc.
2018

SOUTH FACADE

NORTH ELEVATION

PELO.06 (Hood) PELO.05 (Under arch) PELO.11 (Hood) PELO.10 (Window surround)
PERCY-LOBDELL BUILDING
Locations of Paint Samples
Building Conservation Associates, Inc.
2018

PERCY-LOBDELL BUILDING
Locations of Paint Samples
Building Conservation Associates, Inc.
2018

PELO.01
(Strip hinge)

PELO.02
(Metal)

PELO.03
(Strip hinge)

PELO.04
(Window arch)

PELO.07
(Metal shutter)

PELO.08
(Window surround; not visible on drawing)

PELO.09
(North metal shutter; not visible on drawing)
Appendix C:
Treatment Plans
Page intentionally left blank.
Treatment Prioritization Table

<table>
<thead>
<tr>
<th>Work Item</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selectively repoint exterior masonry</td>
<td>2</td>
</tr>
<tr>
<td>Repair cracks in interior and exterior mortar</td>
<td>N</td>
</tr>
<tr>
<td>Remove sealant from interior face of brick masonry</td>
<td>3</td>
</tr>
<tr>
<td>Remove cementitious stucco from brick in room 124</td>
<td>2</td>
</tr>
<tr>
<td>Restore metal cornice and window hoods on south façade</td>
<td>2</td>
</tr>
<tr>
<td>Restore metal shutters and window bars</td>
<td>3</td>
</tr>
<tr>
<td>Clean and repaint exterior fire escape stairs</td>
<td>2</td>
</tr>
<tr>
<td>Clean and repaint exterior wooden components</td>
<td>3</td>
</tr>
<tr>
<td>Inspect sealant around openings and replace as needed</td>
<td>M1</td>
</tr>
<tr>
<td>Touch-up glazing putty and paint on wood sash</td>
<td>M1</td>
</tr>
<tr>
<td>Restore historic wood sash windows and frames</td>
<td>3</td>
</tr>
<tr>
<td>Install new storm sash</td>
<td>3</td>
</tr>
<tr>
<td>Reopen infilled window of room 124 and install new window</td>
<td>3</td>
</tr>
<tr>
<td>Replace modern replacement windows</td>
<td>4</td>
</tr>
<tr>
<td>Clean gutters, downspouts, and roof drains</td>
<td>M2</td>
</tr>
<tr>
<td>Replace gutters and downspouts on historic building</td>
<td>1</td>
</tr>
<tr>
<td>Patch roof and repair roof drains at 1990-1992 addition</td>
<td>1</td>
</tr>
<tr>
<td>Replace roof, insulation, and drains at 1990-1992 addition</td>
<td>2</td>
</tr>
<tr>
<td>Rehabilitate first floor interior</td>
<td>3</td>
</tr>
<tr>
<td>Rehabilitate second floor interior</td>
<td>4</td>
</tr>
<tr>
<td>Maintain and repair existing site paving</td>
<td>N</td>
</tr>
<tr>
<td>Adjust exterior grades around building to maintain positive drainage away from foundation</td>
<td>1</td>
</tr>
<tr>
<td>Prune trees to prevent limbs from touching building or overhanging gutters.</td>
<td>M2</td>
</tr>
<tr>
<td>Remove shrubs and trees making contact with the building</td>
<td>M1</td>
</tr>
<tr>
<td>Continue termite protection systems</td>
<td>M1</td>
</tr>
<tr>
<td>Stabilize and reinforce south façade</td>
<td>1</td>
</tr>
<tr>
<td>Stabilize and reinforce north parapet</td>
<td>1</td>
</tr>
<tr>
<td>Repair steel saddle and truss connections</td>
<td>1</td>
</tr>
<tr>
<td>Repair damaged second floor framing and finishes at areas of water infiltration</td>
<td>1</td>
</tr>
<tr>
<td>Evaluate the structural capacity of the second floor during the planning for any future use or rehabilitation.</td>
<td>3</td>
</tr>
<tr>
<td>Evaluate existing HVAC, plumbing, electrical, fire protection, and security systems</td>
<td>1</td>
</tr>
<tr>
<td>Remove mold and mildew from finishes within 1990-1992 addition</td>
<td>1</td>
</tr>
<tr>
<td>Remove VCT flooring and seal concrete floor in 1990-1992 addition</td>
<td>1</td>
</tr>
<tr>
<td>Dispose of any phosphate-based cleaners in an appropriate way to avoid eutrophication of the Bayou Lafourche watershed.</td>
<td>N</td>
</tr>
</tbody>
</table>
Page intentionally left blank.
Treatment Recommendations

1. Selective repointing of mortar joints; match historic mortar in size, shape, and color (see pages 91 and 92 of HSR)
2. Selective replacement of damaged brick; match historic brick in size, shape, and color (see pages 91 and 92 of HSR)
3. Shaw window/door & frame; match historic materials' size, shape, and color (see pages 92 and 93 of HSR)
4. Replace modern replacement window; replacements to match design, profile, and material of historic (see page 93 of HSR)
5. Remove infill from opening; install new window; new window to match design, profile, and material of surviving historic windows (see page 93 of HSR)
6. Replace modern replacement window; replacements to match design, profile, and material of historic (see page 93 of HSR)
7. Replace metal shutters to appearance during period of significance; address corrosion and damage; paint according to paint analysis recommendations (see page 92 of HSR)
8. Repair sheet metal by addressing corrosion and damage; repaint according to paint analysis recommendations to match appearance during the period of significance (see page 92 of HSR)
9. Remove rust from fire escape and repaint (see page 92 of HSR)
10. Replace existing roof membrane and add insulation on 1990-1992 addition to improve thermal performance and improve drainage (see page 94 of HSR)
11. Consider removal of modern partitions in historic structure (see page 94 of HSR)
12. Remove sealant from all brick surfaces in historic structure (see page 92 of HSR)
13. Remove cementitious stucco on historic structure (see page 92 of HSR)
14. Repair water-damaged floor framing on second floor of historic structure (see page 95 of HSR)
15. Remove VCT flooring and install sealed concrete finish in 1990-1992 addition (see page 96 of HSR)
16. Replace broadloom carpet with commercial carpet tile in 1990-1992 addition (see page 96 of HSR)

Priority Work Items (See Appendix C; Treatment Plans)

- Selectively repoint exterior masonry
- Repair cracks in interior and exterior mortar
- Remove sealant from interior face of brick masonry
- Remove cementitious stucco from brick in room 124
- Restore metal cornice and window hoods on south façade
- Clean and repaint exterior wooden components
- Inspect sealant around openings and replace as needed
- Touch-up glazing putty and paint on wood sash
- Clean and repaint exterior fire escape stairs
- Replace gutters and downspouts with appropriately sized and with materials and color compatible with other metals on building
- Inspect sealant around openings and replace as needed
- Touch-up glazing putty and paint on wood sash
- Remove VCT flooring and install sealed concrete finish in 1990-1992 addition
- Replace broadloom carpet with commercial carpet tile in 1990-1992 addition
- Install new storm sash
- Reopen infilled window of room 124 and install new window

Recommended Treatments: First Floor Plan (East)
Treatment Recommendations

1. SELECTIVE REPOINTING OF MORTAR JOINTS; MATCH HISTORIC MORTAR IN SIZE, SHAPE, AND COLOR (SEE PAGES 91 AND 92 OF HSR)
2. SELECTIVE REPLACEMENT OF DAMAGED BRICK; MATCH HISTORIC BRICK IN SIZE, SHAPE, AND COLOR (SEE PAGES 91 AND 92 OF HSR)
3. RESTORE WOOD WINDOW/DOOR & FRAME; MATCH HISTORIC MATERIAL'S SIZE, SHAPE, AND COLOR (SEE PAGES 92 AND 93 OF HSR)
4. REPLACE MODERN REPLACEMENT WINDOW; REPLACEMENTS TO MATCH DESIGN, PROFILE, AND MATERIAL OF HISTORIC (SEE PAGE 93 OF HSR)
5. REMOVE INFILL FROM OPENING; INSTALL NEW WINDOW; NEW WINDOW TO MATCH DESIGN, PROFILE AND MATERIAL OF SURVIVING HISTORIC WINDOWS (SEE PAGE 93 OF HSR)
6. REPLACE METAL SHUTTERS TO APPEARANCE DURING PERIOD OF SIGNIFICANCE; ADDRESS CORROSION AND DAMAGE; PAINT ACCORDING TO PAINT ANALYSIS RECOMMENDATIONS (SEE PAGE 92 OF HSR)
7. REPAIR SHEET METAL BY ADDRESSING CORROSION AND DAMAGE; REPAINT ACCORDING TO PAINT ANALYSIS RECOMMENDATION TO MATCH APPEARANCE DURING THE PERIOD OF SIGNIFICANCE (SEE PAGE 92 OF HSR)
8. REPLACE GUTTERS AND DOWNSPOUTS WITH APPROPRIATELY SIZED AND WITH MATERIALS AND COLOR COMPATIBLE WITH OTHER METALS ON BUILDING (SEE PAGE 93 AND 94 OF HSR)
9. REPLACE EXISTING ROOF MEMBRANE AND ADD INSULATION ON 1990-1992 ADDITION TO IMPROVE THERMAL PERFORMANCE AND IMPROVE DRAINAGE (SEE PAGE 94 OF HSR)
10. REMOVE FURRING TO EXPOSE HISTORIC OPENINGS (SEE PAGE 94 OF HSR)
11. CONSIDER REMOVAL OF MODERN PARTITIONS IN HISTORIC STRUCTURE (SEE PAGE 94 OF HSR)
12. REMOVE SEALANT FROM ALL BRICK SURFACES IN HISTORIC STRUCTURE (SEE PAGE 92 OF HSR)
13. REMOVE CEMENTitous STucco ON HISTORIC STRUCTURE (SEE PAGE 92 OF HSR)
14. CONNECT FACADE/PARAPET TO ADJACENT TRUSS (SEE PAGE 95 OF HSR)
15. REMOVE VCT FLOORING AND INSTALL SEALED CONCRETE FINISH IN 1990-1992 ADDITION (SEE PAGE 96 OF HSR)
16. REPLACE BROADLOOM CARPET WITH COMMERCIAL CARPET TILE IN 1990-1992 ADDITION (SEE PAGE 96 OF HSR)
17. REMOVE SEALANT FROM INTERIOR FACE OF BRICK MASONRY
18. CLEAN GUTTERS, DOWNSPOUTS, AND ROOF DRAINS
19. PATCH ROOF AND REPAIR ROOF DRAINS AT 1990-1992 ADDITION
20. REPLACE ROOF, INSULATION, AND DRAINS AT 1990-1992 ADDITION
21. EVALUATE EXISTING HVAC, PLUMBING, ELECTRICAL, FIRE PROTECTION, AND SECURITY SYSTEMS
22. REMOVE MOLD AND MILDEW FROM FINISHES WITHIN 1990-1992 ADDITION
23. REMOVE VCT FLOORING AND SEAL CONCRETE FLOOR IN 1990-1992 ADDITION
24. DISPOSE OF ANY PHOSPHATE-BASED CLEANERS IN AN APPROPRIATE WAY TO AVOID EUTROPHICATION OF THE BAYOU LAFOURCHE WATERSHED.

Recommended Treatments:
First Floor Plan (West)

Priority Work Items (See Appendix C, Treatment Plans)

- Clean Gutters, Downspouts, and Roof Drains
- Patch Roof and Repair Roof Drains at 1990-1992 Addition
- Replace Roof, Insulation, and Drains at 1990-1992 Addition
- Evaluate Existing HVAC, Plumbing, Electrical, Fire Protection, and Security Systems
- Remove Mold and Mildew From Finishes Within 1990-1992 Addition
- Remove VCT Flooring and Seal Concrete Floor in 1990-1992 Addition
- Dispose of Any Phosphate-Based Cleaners in an Appropriate Way to Avoid Eutrophication of the Bayou Lafourche Watershed.
KEYNOTES:
1. SELECTIVE REPOINTING OF MORTAR JOINTS; MATCH HISTORIC MORTAR IN SIZE, SHAPE, AND COLOR (SEE PAGES 91 AND 92 OF HSR)
2. SELECTIVE REPLACEMENT OF DAMAGED BRICK; MATCH HISTORIC BRICK IN SIZE, SHAPE, AND COLOR (SEE PAGES 91 AND 92 OF HSR)
3. RESTORE WOOD WINDOW/DOOR & FRAME; MATCH HISTORIC MATERIALS’ SIZE, SHAPE, AND COLOR (SEE PAGES 92 AND 93 OF HSR)
4. REPLACE MODERN REPLACEMENT WINDOW/REPLACEMENTS TO MATCH DESIGN, PROFILES, AND MATERIALS OF HISTORIC (SEE PAGE 93 OF HSR)
5. REMOVE INFILL FROM OPENING; INSTALL NEW WINDOW/NEW WINDOW TO MATCH DESIGN, PROFILES, AND MATERIALS OF SURVIVING HISTORIC WINDOWS (SEE PAGE 93 OF HSR)
6. RESTORE METAL SHUTTERS TO APPEARANCE DURING PERIOD OF SIGNIFICANCE; ADDRESS CORROSION, AND DAMAGE; PAINT ACCORDING TO PAINT ANALYSIS RECOMMENDATIONS (SEE PAGE 93 OF HSR)
7. REMOVE RUST FROM FIRE ESCAPE AND REPAINT (SEE PAGE 92 OF HSR)
8. REPLACE MODERN REPLACEMENT WINDOWS WITH APPLICABLE MATERIALS AND COLOR MATCHING HISTORIC (SEE PAGE 93 OF HSR)
9. REMOVE SEALANT FROM ALL BRICK SURFACES IN HISTORIC STRUCTURE (SEE PAGE 92 OF HSR)
10. REMOVE CEMENTITIOUS STUCCO ON HISTORIC STRUCTURE (SEE PAGE 92 OF HSR)
11. REMOVE FURRING TO EXPOSE HISTORIC OPENINGS (SEE PAGE 94 OF HSR)
12. CONSIDER REMOVAL OF MODERN PARTITIONS IN HISTORIC STRUCTURE (SEE PAGE 94 OF HSR)
13. REPLACE EXISTING ROOF MEMBRANE AND ADD INSULATION ON 1990-1992 ADDITION TO IMPROVE THERMAL PERFORMANCE AND IMPROVE DRAINAGE (SEE PAGE 94 OF HSR)
14. REPLACE MODERN REPLACEMENT WINDOWS WITH APPLICABLE MATERIALS AND COLOR MATCHING HISTORIC (SEE PAGE 93 OF HSR)
15. CONNECT FAÇADE/PARAPET TO ADJACENT TRUSS (SEE PAGE 95 OF HSR)
16. REPAIR WATER-DAMAGED FLOOR FRAMING ON SECOND FLOOR OF HISTORIC STRUCTURE (SEE PAGE 95 OF HSR)
17. REMOVE VCT FLOORING AND INSTALL SEALED CONCRETE FINISH IN 1990-1992 ADDITION (SEE PAGE 96 OF HSR)
18. REPLACE BROADLOOM CARPET WITH COMMERCIAL CARPET TILE IN 1990-1992 ADDITION (SEE PAGE 96 OF HSR)

PRIORITY WORK ITEMS (SEE APPENDIX C: TREATMENT PLANS)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EVALUATE EXISTING HVAC, PLUMBING, ELECTRICAL, FIRE PROTECTION, AND SECURITY SYSTEMS</td>
</tr>
<tr>
<td>2</td>
<td>SELECTIVELY REPOINT EXTERIOR MASONRY</td>
</tr>
<tr>
<td>3</td>
<td>REPAIR CRACKS IN INTERIOR AND EXTERIOR MORTAR</td>
</tr>
<tr>
<td>4</td>
<td>REPLACE MODERN REPLACEMENT WINDOWS</td>
</tr>
<tr>
<td>M1</td>
<td>CLEAN AND REPAINT EXTERIOR WOODEN COMPONENTS</td>
</tr>
<tr>
<td>M1</td>
<td>TOUCH-UP GLAZING PUTTY AND PAINT ON WOOD SASH</td>
</tr>
<tr>
<td>3</td>
<td>RESTORE HISTORIC WOOD SASH WINDOWS AND FRAMES</td>
</tr>
<tr>
<td>3</td>
<td>INSTALL NEW STORM SASH</td>
</tr>
<tr>
<td>3</td>
<td>CLEAN GUTTERS, DOWNSPOUTS, AND ROOF DRAINS</td>
</tr>
<tr>
<td>1</td>
<td>REPLACE GUTTERS AND DOWNSPOUTS ON HISTORIC BUILDING</td>
</tr>
<tr>
<td>4</td>
<td>REHABILITATE SECOND FLOOR INTERIOR</td>
</tr>
<tr>
<td>3</td>
<td>REPAIR STEEL SADDLE AND TRUSS CONNECTIONS</td>
</tr>
<tr>
<td>1</td>
<td>REPAIR DAMAGED SECOND FLOOR FRAMING AND FINISHES AT AREAS OF WATER INFILTRATION</td>
</tr>
<tr>
<td>M1</td>
<td>STABILIZE AND REINFORCE SOUTH FAÇADE</td>
</tr>
<tr>
<td>M1</td>
<td>STABILIZE AND REINFORCE NORTH PARAPET</td>
</tr>
<tr>
<td>M2</td>
<td>CLEAN AND REPAINT EXTERIOR FIRE ESCAPE STAIRS</td>
</tr>
<tr>
<td>M2</td>
<td>CLEAN AND REPAINT EXTERIOR WOODEN COMPONENTS</td>
</tr>
<tr>
<td>M1</td>
<td>INSPECT SEALANT AROUND OPENINGS AND REPLACE AS NEEDED</td>
</tr>
<tr>
<td>M1</td>
<td>TOUCH-UP GLAZING PUTTY AND PAINT ON WOOD SASH</td>
</tr>
<tr>
<td>M1</td>
<td>RESTORE HISTORIC WOOD SASH WINDOWS AND FRAMES</td>
</tr>
<tr>
<td>M1</td>
<td>INSTALL NEW STORM SASH</td>
</tr>
<tr>
<td>M1</td>
<td>CLEAN GUTTERS, DOWNSPOUTS, AND ROOF DRAINS</td>
</tr>
<tr>
<td>1</td>
<td>REPLACE GUTTERS AND DOWNSPOUTS ON HISTORIC BUILDING</td>
</tr>
<tr>
<td>4</td>
<td>REHABILITATE SECOND FLOOR INTERIOR</td>
</tr>
<tr>
<td>3</td>
<td>REPAIR STEEL SADDLE AND TRUSS CONNECTIONS</td>
</tr>
<tr>
<td>1</td>
<td>REPAIR DAMAGED SECOND FLOOR FRAMING AND FINISHES AT AREAS OF WATER INFILTRATION</td>
</tr>
<tr>
<td>3</td>
<td>EVALUATE EXISTING HVAC, PLUMBING, ELECTRICAL, FIRE PROTECTION, AND SECURITY SYSTEMS</td>
</tr>
</tbody>
</table>

PRIORITY WORK ITEMS (SEE APPENDIX C: TREATMENT PLANS)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EVALUATE EXISTING HVAC, PLUMBING, ELECTRICAL, FIRE PROTECTION, AND SECURITY SYSTEMS</td>
</tr>
<tr>
<td>2</td>
<td>SELECTIVELY REPOINT EXTERIOR MASONRY</td>
</tr>
<tr>
<td>3</td>
<td>REPAIR CRACKS IN INTERIOR AND EXTERIOR MORTAR</td>
</tr>
<tr>
<td>4</td>
<td>REPLACE MODERN REPLACEMENT WINDOWS</td>
</tr>
<tr>
<td>M1</td>
<td>CLEAN AND REPAINT EXTERIOR WOODEN COMPONENTS</td>
</tr>
<tr>
<td>M1</td>
<td>TOUCH-UP GLAZING PUTTY AND PAINT ON WOOD SASH</td>
</tr>
<tr>
<td>3</td>
<td>RESTORE HISTORIC WOOD SASH WINDOWS AND FRAMES</td>
</tr>
<tr>
<td>3</td>
<td>INSTALL NEW STORM SASH</td>
</tr>
<tr>
<td>3</td>
<td>CLEAN GUTTERS, DOWNSPOUTS, AND ROOF DRAINS</td>
</tr>
<tr>
<td>1</td>
<td>REPLACE GUTTERS AND DOWNSPOUTS ON HISTORIC BUILDING</td>
</tr>
<tr>
<td>4</td>
<td>REHABILITATE SECOND FLOOR INTERIOR</td>
</tr>
<tr>
<td>3</td>
<td>REPAIR STEEL SADDLE AND TRUSS CONNECTIONS</td>
</tr>
<tr>
<td>1</td>
<td>REPAIR DAMAGED SECOND FLOOR FRAMING AND FINISHES AT AREAS OF WATER INFILTRATION</td>
</tr>
<tr>
<td>M1</td>
<td>STABILIZE AND REINFORCE SOUTH FAÇADE</td>
</tr>
<tr>
<td>M1</td>
<td>STABILIZE AND REINFORCE NORTH PARAPET</td>
</tr>
<tr>
<td>1</td>
<td>REPLACE GUTTERS AND DOWNSPOUTS ON HISTORIC BUILDING</td>
</tr>
<tr>
<td>4</td>
<td>REHABILITATE SECOND FLOOR INTERIOR</td>
</tr>
<tr>
<td>3</td>
<td>REPAIR STEEL SADDLE AND TRUSS CONNECTIONS</td>
</tr>
<tr>
<td>1</td>
<td>REPAIR DAMAGED SECOND FLOOR FRAMING AND FINISHES AT AREAS OF WATER INFILTRATION</td>
</tr>
<tr>
<td>M1</td>
<td>CLEAN AND REPAINT EXTERIOR FIRE ESCAPE STAIRS</td>
</tr>
<tr>
<td>M1</td>
<td>CLEAN AND REPAINT EXTERIOR WOODEN COMPONENTS</td>
</tr>
<tr>
<td>M1</td>
<td>INSPECT SEALANT AROUND OPENINGS AND REPLACE AS NEEDED</td>
</tr>
<tr>
<td>M1</td>
<td>TOUCH-UP GLAZING PUTTY AND PAINT ON WOOD SASH</td>
</tr>
<tr>
<td>M1</td>
<td>RESTORE HISTORIC WOOD SASH WINDOWS AND FRAMES</td>
</tr>
<tr>
<td>M1</td>
<td>INSTALL NEW STORM SASH</td>
</tr>
<tr>
<td>M1</td>
<td>CLEAN GUTTERS, DOWNSPOUTS, AND ROOF DRAINS</td>
</tr>
<tr>
<td>1</td>
<td>REPLACE GUTTERS AND DOWNSPOUTS ON HISTORIC BUILDING</td>
</tr>
<tr>
<td>4</td>
<td>REHABILITATE SECOND FLOOR INTERIOR</td>
</tr>
<tr>
<td>3</td>
<td>REPAIR STEEL SADDLE AND TRUSS CONNECTIONS</td>
</tr>
<tr>
<td>1</td>
<td>REPAIR DAMAGED SECOND FLOOR FRAMING AND FINISHES AT AREAS OF WATER INFILTRATION</td>
</tr>
<tr>
<td>3</td>
<td>EVALUATE EXISTING HVAC, PLUMBING, ELECTRICAL, FIRE PROTECTION, AND SECURITY SYSTEMS</td>
</tr>
</tbody>
</table>
1. Selective repointing of mortar joints; match historic mortar in size, shape, and color (see pages 91 and 92 of HSR).
2. Selective replacement of damaged brick; match historic brick in size, shape, and color (see pages 91 and 92 of HSR).
3. Restore wood window/door frame; match historic materials size, shape, and color (see pages 90 and 91 of HSR).
4. Replace modern replacement window; replacements to match design, profile, and materials of historic (see page 93 of HSR).
5. Replace modern window; new window to match design, profile, and material of surviving historic windows (see page 93 of HSR).
6. Selective metal shutters to appearance during periods of significance; address corrosion and damage; paint according to paint analysis recommendations (see page 92 of HSR).
7. Repair sheet metal by addressing corrosion and damage; repaint according to paint analysis recommendation to match appearance during the period of significance (see page 92 of HSR).
8. Replace gutters and downspouts on building; new gutters and downspouts to match design, profile, and materials and color compatible with other metals on building (see page 94 of HSR).
9. Repair window/door frame; match historic materials size, shape, and color (see pages 90 and 91 of HSR).
10. Replace existing roof membrane and add insulation on 1990-1992 addition to improve thermal performance and improve drainage (see page 94 of HSR).
11. Remove furring to expose historic openings (see page 94 of HSR).
12. Consider removal of modern partitions in historic structure (see page 94 of HSR).
13. Remove cementitious stucco on historic structure (see page 92 of HSR).
14. Replace metal roof on historic structure (see page 92 of HSR).
15. Connect façade/parapet to adjacent truss (see page 95 of HSR).
16. Repair water damaged floor framing on second floor of historic structure (see page 95 of HSR).
17. Remove VCT flooring and replace with commercial carpet tile in 1990-1992 addition (see page 96 of HSR).
18. Replace broadloom carpet with commercial carpet tile in 1990-1992 addition (see page 96 of HSR).

PRIORITY WORK ITEMS (SEE APPENDIX C: TREATMENT PLANS)

- Selectively repoint exterior masonry
- Repair cracks in interior and exterior mortar
- Restore metal cornice and window hood on south façade
- Restore metal shutters and window bars
- Clean and repainting exterior fire escape stairs
- Clean and repainting exterior wooden components
- Inspect sealant around openings and replace as needed
- Touch up glazing putty and paint on wood sash
- Restore historic wood sash windows and frames
- Replace modern replacement windows
- Clean gutters, downspouts, and roof drains
- Replace gutters and downspouts on historic building
- Adjust exterior grades around building to maintain positive drainage away from foundation
- Prune trees to prevent limbs from touching building or overhanging gutters
- Remove shrubs and trees making contact with the building
- Continue termite protection systems
- Stabilize and reinforce south façade
- Stabilize and reinforce north parapet

KEYNOTES:

- See graphic scale
TREATMENT RECOMMENDATIONS

KEYNOTES:

1. Selective repointing of mortar joints; match historic mortar in size, shape, and color (see pages 91 and 92 of HSR).
2. Selective displacement of damaged brick; match historic brick in size, shape, and color (see pages 91 and 92 of HSR).
3. Restore wood windows, doors, and frames; match historic materials size, shape, and color (see pages 91 and 92 of HSR).
4. Replace modern displacement windows; match design, profile, and material of surviving windows (see page 94 of HSR).
5. Repair historic fire openings; install new window to match design, profile, and materials of surviving historic windows (see page 94 of HSR).
6. Replace metal windows to appearance during period of significance; address corrosion and damage; paint according to paint analysis recommendations (see page 92 of HSR).
7. Repair brick with addressing corrosion and damage; repair according to paint analysis recommendation to match appearance during the period of significance (see page 94 of HSR).
8. Replace gutters and downspouts with appropriately sized, and with materials and color compatible with other metals on building (see page 94 of HSR).
9. Replace existing roof membrane and add insulation on 1990-1992 addition to improve thermal performance and improve drainage (see page 94 of HSR).
10. Replace existing roof membrane and add insulation on 1990-1992 addition to improve thermal performance and improve drainage (see page 94 of HSR).
11. Consider removal of modern partitions in historic structure (see page 94 of HSR).
12. Replace existing flooring of non-historic materials (see pages 91 and 92 of HSR).

PRIORITY WORK ITEMS (SEE APPENDIX C: TREATMENT PLANS)

<table>
<thead>
<tr>
<th>Priority</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prune trees to prevent limbs from touching building or overhanging gutters.</td>
</tr>
<tr>
<td>2</td>
<td>Selectively repoint exterior masonry.</td>
</tr>
<tr>
<td>3</td>
<td>Repair cracks in exterior and interior masonry.</td>
</tr>
<tr>
<td>4</td>
<td>Replace modern replacement windows.</td>
</tr>
<tr>
<td>5</td>
<td>Clean and repaint exterior fire escape stairs.</td>
</tr>
<tr>
<td>6</td>
<td>Clean and repaint exterior wooden components.</td>
</tr>
<tr>
<td>7</td>
<td>Clean and maintain roof gutters.</td>
</tr>
<tr>
<td>8</td>
<td>Replace gutters and downspouts on historic building.</td>
</tr>
<tr>
<td>9</td>
<td>Paint and maintain historic exterior metal cornice and window hoods.</td>
</tr>
<tr>
<td>10</td>
<td>Replace metal shutters and window bars.</td>
</tr>
<tr>
<td>11</td>
<td>Clean and maintain historic exterior metal shutters and window bars.</td>
</tr>
<tr>
<td>12</td>
<td>Clean and paint exterior windows and doors.</td>
</tr>
<tr>
<td>13</td>
<td>Install new windows.</td>
</tr>
<tr>
<td>14</td>
<td>Replace modern replacement windows.</td>
</tr>
<tr>
<td>15</td>
<td>Paint and maintain historic exterior metal cornice and window hoods.</td>
</tr>
<tr>
<td>16</td>
<td>Repair water-damaged floor framing on second floor of historic structure.</td>
</tr>
<tr>
<td>17</td>
<td>Remove VCT flooring and install sealed concrete floor in 1990-1992 addition.</td>
</tr>
<tr>
<td>18</td>
<td>Replace Broadloom carpet with commercial carpet tile in 1990-1992 addition.</td>
</tr>
</tbody>
</table>
AT SOME LOCATIONS, TOP CHORD WAS NOTCHED TO ALLOW SPRINKLER PIPE TO PASS. VERTICAL MEMBER WAS ADDED TO REINFORCE TOP CHORD.

SEE DETAIL A-A', SHEET T7, TYP.

SEE DETAIL B-B', SHEET T7, TYP.

LIGHTING SUPPORT BARS

LOCKING SCARF JOINT

RECOMMENDED STRUCTURAL TREATMENTS

SCALE IN FEET

0 5 10
SECTION DETAIL A-A'

EXISTING EXTERIOR MASONRY WALL

EXISTING 6'-1" X 6'-1" WOOD MEMBER

NOTE: THIS NOTE APPLIES TO TRUSS TOP CHORD @ 24" O.C.

SECTION DETAIL B-B'

EXISTING EXTERIOR MASONRY WALL

12'-0" X 6'-0" OR 6'-1/2" X 6'-1/2" TRUSS CHORD MEMBER

1/2" X 6" EMB. HILTI SS HY70 EPOXY ANCHORS @ 24" O.C.

EXTERNIR BRICK WALL

PLAN DETAIL C-C'

NORTH OR SOUTH WALL

1/2" X 8" X 8" BENT PLATE AT CORNER WITH 1/2" X 6" EMB. SS HILTI HY 70 @ 24" O.C.

1/2" X 4" X 6'-0" STRAP ON EACH SIDE OF WALL @ 4'-0" O.C. VERTICALLY

1/2" O.C. SS X 6" EMB. HILTI HY70 @ 12" O.C.

EAST OR WEST WALL

1/2" X 4" X 4 X 1 1/2" X 6"

WITH (2) 1/2" LAG BELTS TO EXISTING TRUSS

EXISTING 6'-1/2" X 6'-1/2" WOOD MEMBER

L 4" X 4" X 1/2" X 6"

(2) 1/2" SS HILTI HY70 EPOXY ANCHORS WITH 6" EMB.

T7
Appendix D:
Historic Maps and Illustrations
Page intentionally left blank.