CULTURAL LANDSCAPE REPORT

Platt Historic District
Chickasaw National Recreation Area, Oklahoma

by Heidi Hohmann, Katarzyna Grala

IOWA STATE UNIVERSITY 2004
Publication Credits

Information in this publication may be copied and used, with the condition that full credit is given to the authors and the National Park Service. Appropriate citations and bibliographic credits should be made for each use.
Table of Contents

1. **CHAPTER 1: Introduction** ..1

2. **CHAPTER 2: Early History to 1902** ...7

3. **CHAPTER 3: Creating Platt National Park, 1902-1903** ..17

4. **CHAPTER 4: The CCC Years, 1933-1940** ..65

5. **CHAPTER 5: Maintenance and Change, 1940-2003** ...119

6. **CHAPTER 6: Existing Conditions, 2002** ..169

7. **CHAPTER 7: Analysis of Character-defining Features and Integrity** ...213

8. **CHAPTER 8: Treatment Philosophy for the Platt Historic District** ...255

9. **CHAPTER 9: District-wide Design and Management Guidelines** ..259

10. **CHAPTER 10: Vegetation Change and Management** ..277

11. **CHAPTER 11: Treatment Projects** ...323

12. **BIBLIOGRAPHY** ...381

13. **APPENDICES: Plant List, Drawings** ..385
Many individuals and institutions have contributed to the completion of this project. We are particularly grateful to the staff at Chickasaw National Recreation Area for their help in research and in reviewing drafts. We are thankful to Judy Kahlor, for her vast knowledge of park history and willingness to located, copy, and send us historic documents. Cal Myers and Tim Jarrell brought insights on park maintenance to the project, while Steve Burrough and Ron Parker provided advice and reviewed drafts from the perspectives of natural resource management and interpretation, respectively. Finally, Ken Ruhnke deserves special thanks for his unflagging devotion to the entire project and his support of the ISU project team in ways too numerous to describe here.

At Iowa State University, thanks are due to research assistants Dorothy Tang, Bryan Wright, and Zach Bitting for their drawing, research, and proofreading assistance. We are also grateful to Emmaly Fenton Renshaw for her help in the graphic design of the report. Thanks are also due to the Department of Landscape Architecture and department head Timothy Keller, for their overall support of our efforts. Finally, although we have not personally met all of these people, we would like to the other researchers of Platt National Park, including harlen Groe, Kay Sallee, James Steely, and Jacilee Wray, whose earlier work helped paved the way for this project,
Chapter 1: Introduction

SCOPE OF WORK

This project is a cultural landscape report for the Platt Historic District of Chickasaw National Recreation Area (CNRA). As stated in *A Guide to Cultural Landscape Reports*, a cultural landscape report (CLR) is "a flexible document, the scope of which is determined by the needs of park management, type of landscape, budget, and staffing requirements."

The purpose of the *Cultural Landscape Report for the Platt District* is:

- To document the physical evolution of the district's cultural landscape and provide a base of information to develop a preservation treatment plan.
- To document existing conditions of the cultural landscape, to identify and describe character-defining landscape features, and to analyze landscape significance and integrity.
- To develop appropriate treatment guidelines, strategies, and/or plans for the preservation and enhancement of cultural landscape resources within the Platt District.

Other recent research projects (described below) have inventoried and documented the history of the Platt District and its features. This project has tried to build on, rather than duplicate, those efforts. Therefore, it focused on two main goals. The first was clarifying the physical history of the park—charting the evolution of its physical characteristics and features. Therefore, the project does not emphasize the social or administrative history of the park and assumes readers' general familiarity with park history. The second goal, given the number of management issues requiring attention, was to emphasize the treatment portion of the project.

METHODOLOGY

The park history emphasizes the years 1933-1940, the years during which most of the extant park features were designed and constructed. Research for the history was primarily conducted at the park archives and the National Archives in Fort Worth, though the Oklahoma State Archives and other archives were also consulted. In general, resources documenting the physical characteristics of the park landscape in the years prior to 1902 are rather limited. Archeological surveys have been few and historic documents are restricted to large-scale land ordinance survey maps, survey reports, and short verbal descriptions. This is in contrast to a much larger body of official correspondence documenting the treaties and negotiations surrounding the formation of the park. As a result, the chapter documenting the physical history of the park prior to 1902 is abbreviated.

Information about the district after 1902 is much more extensive, to the degree that the authors were not able to review all primary resources during the time allotted for research. Secondary sources including Palmer Boeger’s book, *Oklahoma Oasis*, and the recent “Chickasaw National Recreation Area: Ethnohistory of Associated Park Use and Values” (in draft) by Jacilee Wray and Alexa Roberts were preferentially consulted in some cases. Contradictions between secondary sources were found, usually regarding dates. When possible, efforts were made to confirm information from original sources. For the years 1933-1940, research focused on primary documents from the National Park Service (NPS), especially original park drawings and monthly and semi-annual narrative reports produced by NPS landscape architects on their Emergency Conservation Work projects. Unfortunately, the record of these narrative reports is not entirely complete, and information for the years 1936-1940 is quantitatively much less than for the prior CCC years. Extensive endnotes are provided to aid park managers in finding original documentation when required for future treatment project design.

Other resources consulted for the years 1933-1969 included master plans, vegetation maps, aerial photographs, and the park’s numerous historic photographs. The narrative history (Chapters 2 through 5) is illustrated with many of the prints and photographs consulted during the research. Unless otherwise noted in the captions, figures are scanned reproductions of
originals held in the park archives. For other figures, the archival locations of original drawings or photographs is likewise noted in the caption.

The narrative history is also accompanied by a set of period plans, located in a separate section at the back of the report. The period plans include a district-wide plan each for 1933 and 1940 to demonstrate overall development and scale relationships. A set of nine detailed plans for the year 1940 were also constructed; these show components of the district in much greater detail at the end of the CCC period. A tenth plan, documenting Rock Creek Campground after its construction in 1950, was also constructed. A final overall period plan, for 1969, shows changes implemented up to and during the park's Mission 66 campaign. It should be noted that period plans for prior years were not constructed because the lack of spatial data for these times would have resulted in maps so speculative as to be misleading. Instead, copies of important historic plans, such as the 1909 Map of Platt National Park are used as records of development and as illustrative exhibits when appropriate.

The period plans were constructed in AutoCAD, using base data from the 1984 aerial topographic survey as a base. Although at least three topographic surveys (1933, 1937, and 1984) were examined, none of these surveys coincided. For consistency and comparison’s sake, and because of a higher level of detail, base data was digitized directly from the 1984 topographic survey and extrapolated backwards to 1933. In some cases this may create slight discrepancies between contour lines and topographic features such as swales. This was deemed unavoidable given the time allotted for the project. For clarity at a published scale, ten-foot contours are shown on all plans.

A set of existing conditions plans similar to those produced for the 1940s were also created. These, too, are located at the back of the document. The existing conditions plans primarily document the 2002 conditions of the district and were mostly based on field work conducted in August of 2001 and 2002. Some minor changes that occurred between 2002 and 2004, however, have also been added. The existing conditions plans are accompanied by a narrative text (Chapter 6). This narrative utilizes the system of character-defining features laid out in the Secretary of the Interior’s Guidelines for the Treatment of Cultural Landscapes to explicate the district’s current appearance. Existing conditions photographs further illustrate the district landscape in the early 2000s. These photographs in Chapter 6 were primarily taken by Heidi Hohmann and Kate Grala from Iowa State University. The only exceptions to this are photographs dating to 2004; these were taken by CNRA landscape architect Ken Ruhnke.

Analysis (Chapter 7) focuses on an assessment of integrity, highlighting changes between the existing conditions and the period of significance. This analysis defines the historic character of each individual landscape during the period of significance and then summarizes the change that has occurred in the intervening 60-odd years. The analysis also provides a series of tables describing each feature within the district, including its contributing or non-contributing status and its condition. Although the authors had hoped to coordinate these tables with the park’s List of Classified Structures (LCS), the differing timetables of the two projects ultimately prevented such coordination. However, the LCS data, although still being finalized, was instrumental in our research and documentation of the landscape. Chapter 7 then assesses the integrity of each landscape within the district, followed by an assessment of overall district integrity. The chapter concludes with a statement of the district’s historic significance and period of significance, based on National Register criteria.

Based on the analysis, an overall treatment philosophy for the district was determined and is outlined in Chapter 8. Chapters 9, 10, and 11 form the treatment plan for implementing this overall vision. Chapter 9 presents district-wide guidelines for preserving the overall character and features common to the entire district. Chapter 10 presents a comprehensive look of the district’s vegetation, including recommendations for its future management. Chapter 11 then describes a series of over 100 preservation projects keyed to individual component landscapes. These projects address the deterioration of the landscape and recommendations generally balance issues of historic integrity with current management and use concerns. Project descriptions are general; they are not detailed specifications, but rather chart an overall course of future preservation actions. Projects are indicated on a set of treatment plan drawings located in the drawing set at the back of the report. Cost estimates were also completed for the treatment projects; these estimates provided to the park as a separate document.
Work on the Platt District CLR has been conducted in accordance with current NPS cultural resource policies, including A Guide to Cultural Landscape Reports; the Secretary of the Interior’s Standards for the Treatment of Historic Properties and Guidelines for the Treatment of Cultural Landscapes; National Register Bulletin 18: How to Evaluate and Nominate Historic Designed Landscapes; and National Register Bulletin 30: Guidelines for Evaluating and Documenting Rural Historic Landscapes. The work has also been conducted in accordance with the park’s enabling legislation, which requires preservation and protection of the park’s mineral springs and streams while providing public access.

STUDY BOUNDARIES

Chickasaw National Recreation Area (CNRA) is located in Murray County in south central Oklahoma and covers approximately 10,000 acres of predominantly forested land surrounding the Lake of the Arbuckles. The Platt District is comprised of 928 acres located in the extreme northeast corner of the CNRA. The Platt District is located near the town of Sulphur, 90 miles south of Oklahoma City, Oklahoma and 120 miles north of Dallas, Texas.

The boundaries of the CLR study are the boundaries of the Platt District. These boundaries coincide, with a few minor exceptions, with the historical boundaries of the former Platt National Park, which existed from 1906 until 1976, when it was combined with the Arbuckle Recreation Area to form the CNRA.

Today, the district’s north, west and southeast boundaries form a jagged line abutting the City of Sulphur. The district’s west and southwest boundaries are contiguous with the rest of the CNRA. The Platt District is approximately three miles wide, east to west and varies in depth, north to south. It is approximately 4,800 feet wide near the center of the district, 6,400 feet wide near the western edge and 2,300 feet along its eastern edge.

By 1979, an additional small parcel of land, approximately fifteen acres, was added adjacent to the district with the purchase of the Vendome Well area. This area is not included in the study boundary, as it is currently under development as a new park-wide Visitor Center. In 1983, a small portion of the original park, a strip of land on both sides of Rock Creek, north of Broadway Avenue (State Highway 7) was removed from the district, when the NPS exchanged it with the City of Sulphur for 343.74 acres (the Veterans’ Lake area adjacent to the south edge of Rock Creek Campground). This area is also not included as part of the CLR study area.

HISTORICAL SUMMARY

Originally known as Sulphur Springs Reservation, and later renamed Platt National Park, the park was established in 1902 through an agreement with the Chickasaw and Choctaw Nations and the federal government. The Chickasaw Nation sold the land to the government in order to protect the unique freshwater and mineral springs along Travertine and Rock Creeks.

Though a number of landscape elements in the Platt District relate to the early period of the park’s establishment (1902-1932), the majority of historic landscape resources relate to the period 1933-1940. During this period, NPS professionals planned and designed extensive park infrastructure which was constructed by the Civilian Conservation Corps (CCC). Elements included mineral spring pavilions, campgrounds, picnic areas, dams and waterfalls; these were linked by a network of roads and trails. Over one-half million trees and shrubs were planted and an ambitious silviculture program implemented. The CCC work group at Platt National Park was the largest and longest running of any in Oklahoma, employing about 200 workers at any given time between 1933 and 1940.

After 1940, the park first went through a period of wartime economy, followed by minor expansion in 1950. A nature center was added and other changes were made during the NPS’s Mission 66 era. In the 1970s, the park merged with the Arbuckle National Recreation Area to become Chickasaw National Recreation area. The former national park lands became designated as the Travertine District, later renamed the Platt District.
MANAGEMENT SUMMARY

In recent years, the cultural landscape of the Platt District has been carefully maintained and documented. Documentation has included an extensive inventory by both the List of Classified Structures (LCS) and the Cultural Landscape Inventory (CLI). Two phases of LCS structure inventory have been completed. A “Level 1” CLI was completed in 1997 and documented the entire district on a broad scale. A “Level 2” CLI documenting ten component landscapes within the overall landscape was completed in 2002. National Register documentation, in the form of a National Historic Landmark application, began in 2002 and should be completed soon. Other park studies currently underway include the CNRA Ethnohistory of Associated Park Use and Values and a Historic Resource Study.

The district is managed as a part of the larger CNRA and recent management documents have included a CNRA “General Management Plan” (1980), and a Statement for Managment (1990), and an “Amendment to General Management Plan” (1994). A new General Management Plan (GMP) is currently underway and is slated for completion by 2004.

PHYSIOGRAPHIC CONTEXT

The Platt District is located at the northern edge of a range of steep-sided limestone and conglomerate hills called the Arbuckle Mountains in an area known as the Arbuckle Mountains Uplift. Once higher than the Rocky Mountains, the Arbuckles—which surround the Platt District on the south, east and west—have eroded over the years. Soil deposits from this erosion have defined the geologic conditions of lower elevations, including the Platt District. Elevations in the district range from 920 feet in the Rock Creek stream channel to 1,150 feet above sea level at Bromide Hill.

In the Arbuckle range, the layer of conglomerate and its underlying sedimentary layers were left slightly tilted toward the southwest. As a result, the high ground around Sulphur and the Platt District is the northernmost extension of the conglomerate cap. The surface rock in the area is known as the Vanoss formation, and contains successive layers of sandstone, shales and conglomerates. Conglomerate rock is a characteristic feature throughout the district. It is widely seen in ridges and outcroppings, and is composed of mountain sands, pebbles and rocks cemented together by mineral solution.

The hydrology of the district is intimately tied to its geology. The district’s freshwater springs originate in rock formations beneath the park. Falling rain percolates through the sulphur- and bromide-free porous sands and sandstone conglomerates of the Pontotoc Series to the east of the district. Forced up through fissures, this water emerges as freshwater springs throughout the park. The water of these springs contains calcium carbonate, which over time precipitates out of solution, creating travertine rock. This calcareous tufa rock is a typical feature in the Travertine Creek valley in the eastern part of the district. In contrast, the park’s mineral springs originate from sandstone beds of the Simpson Group. Water leaches bromide, sulfur, and other minerals out of these soils and holds them in solution, resulting in waters with high mineral contents.

The Platt District is located at the western edge of the eastern deciduous forest and western plains grassland, and, as a transitional zone, contains a rich mixture of woodland and prairie species. More than 600 different plant species have identified in the Platt District in numerous studies spanning more than 60 years. Soils contribute to this diversity, since the limestone-rich soils of the area can support grassland species in dry places and forest species in wetter stream and floodplain environments. Rich, loamy bottomland soil of the Garvin and Elandco types, characterized by moderate water capacity, moderate permeability and a deep root zone, lies along the creeks of Travertine, Limestone and Rock Creeks, promoting growth of a riparian environment of oak-hickory species.
Notes to Chapter 1

5 Barker and Jameson, Platt National Park: Environment and Ecology, 70.
Chapter 2: Early History to 1902

PREHISTORY

Little site-specific information for the Platt District exists prior to the 1800s. Evidence of human habitation of the area around the district (i.e., Murray County) dates to Early Archaic times, as early as 7,000 years ago, and to Late Archaic times, approximately 4,000 years ago. About 1,000 years ago, the area was inhabited by groups assigned to the late Woodland times. Unlike the Early and Late Archaic occupants, these Woodland inhabitants were early agriculturalists who brought pottery, bone tools, and arrow points to the area.

Archeological sites at the Lake of the Arbuckles area, south of the district, have confirmed habitation of the CNRA dating to the Woodland period. An early archeological survey done in 1942 by H.R. Antle, at a site approximately 100 feet south of Antelope Springs was the earliest true archeological study in the Platt district and also confirmed prehistoric occupation of the area. This site was reinvestigated in 1968 and 1982, and it was concluded that the occupation relates to either Woodland or Plains Village times. This site may also be an indication of the earliest human use of the springs.

NATIVE TRIBES DURING EARLY EUROPEAN SETTLEMENT, 1500-1700

By the mid 1500s, when the early Spanish explorers De Soto (who entered the Gulf Region to the east of the Platt District) and Coronado (who explored the western plains to the west) arrived, the area was associated with the central and southern Caddoan-speaking Plains tribes, including Caddoes and Wichitas, who settled in agricultural villages. The Osage, Apaches, and Comanches also hunted and followed migratory herds across the area. Early historical accounts also place Kickapoo tribes in the area, and according to the early 20th-century author A.A. Abbott, the Kickapoos were the first to use the Platt district’s springs, forty-one years before Coronado. However, this may be local folklore, since prior to European contact, the Kickapoos lived in Illinois, Wisconsin, northwest Ohio and southern Michigan.

THE LOUISIANA PURCHASE AND INDIAN REMOVAL, 1700-1870

By the 1700s, Oklahoma was claimed by France as part of Louisiana, which was then ceded to Spain in 1760. During this time few lasting European settlements arose in the area, though Chickasaw and Choctaw tribes began hunting and trading west of the Mississippi as early as 1719. After the Louisiana Purchase in 1803, the United States, under President Thomas Jefferson, determined a policy of removing all eastern Indian tribes to Louisiana. This policy culminated in the Indian Removal Act of 1830 under President Andrew Jackson. Southern Oklahoma was awarded to the Choctaw under a patent issued by the United States. In 1832, the Chickasaw ceded their homelands east of the Mississippi and in 1837 settled on lands occupied by the Choctaw.

Historical descriptions of southern Oklahoma (then known as Indian Territory) in the years before the Civil War focus on political and social conditions, and early descriptions of the physical character of the area or the nature of settlements are limited. The tribes farmed, raising corn, cotton, and livestock. Homes, schools, small businesses, and grist and lumber mills were also constructed. Historians Opal Hartsell Brown and Richard Garrity describe the nature of the settlements:

All tribes held their land in common, each member occupying and utilizing that not claimed by another. The Choctaws built log homes with clapboard roofs, dirt floors, stick and clay or stone chimneys. Later, they built double log houses with “puncheon floors,” corn cribs, smoke houses, and slave cabins.

There is one early description of the springs dating to about 1848. A “cowman,” H. H. Allen, settled on a ranch near Sulphur in 1882, but recalled visiting the springs in the 1840s:
That was about ten years after the Indians had emigrated here from Mississippi. Where your pavilion springs now are was a perfect loblolly of mud and water. This was a favorite place for great herds of buffalo that roamed over the rocky hills and valleys at that time. They would coat their furry hides with a plaster of mud in order to free themselves from insect pests. After completely plastering themselves with mud, the buffalo would stand around the wallows and sup up the water, so I presume this is how the springs came to be called “Buffalo Suck.” During my first visit to the springs I shot buffalo on the hills south of the pavilion. Deer antelope and wild turkey were to be seen in great herds and flocks.

In 1851 Fort Arbuckle, located about fifteen miles to the west of the current Platt District, was constructed by the U.S. government on Wild Horse Creek, near the site of a Kickapoo village. The fort protected the newly settled tribes from marauding Plains tribes and, until 1870, was the headquarters for government surveying parties. The fort joined Fort Washita, located about ten miles upstream from the junction of the Red and Washita Rivers. A road and stage route between the two forts was established, and this north-south route passed only a few miles west of the Platt District. Although Indian Territory is often described as having a “network of trails,” few of these were mapped.

The Chickasaw and Choctaw Nations separated in 1854, and the Chickasaw Nation was established in south-central Oklahoma, with Tishomingo as the tribal capital (Figure 2-1). The future Platt District was located more or less in the middle of the Chickasaw Nation.

When the Civil War broke out, the Chickasaw sided with the Confederacy, and the war years were characterized by shortages of food and shelter. Following the war, cattle became a major industry in the Chickasaw Nation, with livestock grazing on the prairies and wooded ravines of the western part of their territory. Texas ranchers also drove their cattle north to the railroad in Kansas. To the east, cotton farming was more common.

SULPHUR SPRINGS, 1870-1902

Although the history of its early establishment is somewhat sketchy, Sulphur Springs, on the site of the current Platt District, was in existence by 1870. The earliest reference to the town is in an account by George Conover, who described a cholera outbreak at a U.S.
Army encampment located between Sulphur Springs and Davis. The area, however, was still largely unsettled, since Conover noted that there was not one house between the town of Stonewall and Fort Arbuckle.

Following on the heels of Conover’s description is perhaps the earliest map of the area, the 1871 Land Survey map (Figure 2-2). The Platt District is located in what was then Township Number 1 South, Range Number 3, East of the Indian Meridian. The township map shows no town where the Platt District now lies, only a stream labeled “Rock Creek” meandering on an east-west line through the area. The fact that Sulphur (now Travertine) Creek is not labeled may also be indicative of a general lack of detailed knowledge about the area. The stream is located within a wooded zone, variably described in the survey notes as “first-rate” or “second rate” timber. Areas appearing on the map as white space generally correspond to descriptions of “first rate” or “second rate” prairie. Slopes of the terrain are also indicated in the surveyor’s notes. Within the entire township, only three tiny areas in the southern half of the township are shown as agricultural fields. South of Rock Creek, a single road running northwest-southeast is labeled “Road from Fort Arbuckle to Boggy Depot.” Boggy Depot was a well-known trading center just over the border in the Choctaw Nation to the east.
However, other transportation routes developed rapidly and opened the area to settlement. In 1871-72, a freight and mail line ran from Boggy Depot to Fort Sill, passing near Sulphur. In 1872, the Missouri Kansas and Texas Railway was constructed on a southern line through the Choctaw Nation, passing just fifty miles east of Sulphur Creek (Figure 2-1). By the mid- to late 1870s, the area around Sulphur Springs was open range, collectively owned by the tribe. While the Chickasaw allowed individuals to claim land, the range was largely unfenced, and creeks were used to water livestock. During the summer, Indian families would camp along the creeks. White settlement increased throughout the 1870s. Although white settlers required a permit to enter the area and run a business or lease land from the Chickasaw government, some entered the Chickasaw Nation illegally, while others married Chickasaw women to lay claim to lands. Some mixed blood families established ranches, some of which were quite large.

The earliest ranch at Sulphur Springs was established by Noah Lael, a former mail carrier from Gainsville, Texas. Lael married the daughter of the Chickasaw Governor Cyrus Harris, according him the ability to claim land for use. The center of the “Diamond Z Ranch” was a four-room “pole house” erected just south of Pavilion Springs in 1879. In 1882, the ranch was sold to Perry Froman, a white settler who had married a Chickasaw widow. The ranch, described in the bill of sale as “a certain place lying on Rock Creek, Tishomingo County; known as the Noah Lael ‘Sulphur Springs Place’ and all the improvements belonging to said place” was said to be four miles square and was sold for $350. Froman had the claim on the land until 1903, when the government took possession. The ranch house (Figure 2-3) was said to be the first structure erected on the site of the future park, and was later removed by the government.

Sometime around 1885, the first store opened near the former “Buffalo Suck” (see quote by Allen, above) which eventually became known as “Seven Springs” and then “Pavilion Springs.” Accounts vary as to whether this was Brookshore or Webster store. The settlement itself became known as Sulphur Springs, and by 1889, it probably consisted of some small buildings clustered around springs encased in hollow logs. In 1887, the Atcheson, Topeka and Santa Fe railroad was constructed south from Kansas through the Chickasaw Nation into Texas, passing just nine miles west of the burgeoning settlement. By this time, the springs were already well-known for their medicinal qualities, and both whites and natives flocked to the area as visitors or potential residents.

Throughout the early 1890s, the town expanded. Buildings and businesses (including homes, stores, hotels, dining and drinking establishments, bathhouses, a livery, a blacksmith shop, and a bank) were primarily constructed by white settlers, but were all built on lands leased from the Chickasaw. The early town was a primitive landscape with dirt streets and wood and log buildings. Visitors gathered around the seven springs, which were encased in wide diameter tiles, encircled by a low stone wall (Figure 2-4).
south of the community. The stone house would later become the park headquarters. In 1895, a post office was established.

Also in 1895, R.A. Sneed organized a group of investors as the Sulphur Springs Improvement Company to incorporate the town. The group bought a tract of land—or at least its occupancy rights—that included the town and the seven springs, from Perry Froman. They surveyed the area and divided into lots and after the passage of the Curtis Act of 1898, the town was incorporated. The new town, named Sulphur Springs, was conceived as a health resort of sorts; by 1895, the springs were already being hailed by local newspapers as “the great health mecca and summer resort.”

Graphic documentation of the town improves for the years around 1900. In 1899, the town was included in a second government land survey. The 1899 Land Survey Map (Figure 2-5) shows “Sulphur” located in section 3 of Township Number 1 South, Range Number 3 East of the Indian Meridian. On this map, a smattering of buildings are shown along an abbreviated network of streets just south of the confluence of Sulphur and Rock Creeks.

In contrast to the 1871 Land Survey Map (Figure 2-2), the banks of the creeks are shown as much less wooded, presumably due to the removal of trees for building construction in the intervening 28 years. Further south in the township, many more agricultural fields are also seen in the landscape, indicating increasing numbers of farms as well as a dissolution of shared, open Chickasaw range land in favor of allotted land ownerships.
Figure 2-6. June 1900 Sanborn Fire Insurance Map, showing locations of buildings, springs, and creeks in Sulphur Springs.
The growth of Sulphur Springs following its incorporation in 1896 is also evidenced in the production of a Sanborn Fire Insurance map for the town in 1900 (Figure 2-6). Sanborn maps were originally produced for insurance underwriters to determine risks and establish premiums, and the map for Sulphur Springs evidences the increasing investment in the town. The map shows the town organized around the Seven Springs, now located in a defined, rectangular area labeled “Sulphur Park.”

On the Sanborn map, a large pavilion is shown situated in the middle of the park. This building was built in 1895 or 1896 by C.J. Webster, the town’s first banker, along with some other promoters. A somewhat crude and massive, timber-framed structure, the pavilion had two stories (Figure 2-7). The springs were located on the ground floor, and a dance hall was located above. Over time, the pavilion acquired advertisements on its exterior.

The Sanborn map also shows a series of offices, a meat shop, and the “Brown Cottage” across the street from the pavilion on East Street. On the west side were a number of hotels, bath houses, and boarding houses, along with the town livery. To the north, lining both sides of Beach Avenue along Sulphur Creek were a number of food and drinking establishments; there was even a “canvas bowling alley.” Directly north of the pavilion, in close proximity to the springs, was a large hotel. Buildings in the town ranged from wooden lean-tos to more substantial stone buildings, all constructed side-by-side (Figures 2-8 and 2-9). In contrast, the area around the rest of the town, away from the center, was less densely settled, with homes and outbuildings located in larger lots (Figure 2-10).

By 1900, the population of the town was 1,198. It had two newspapers and a telephone exchange, and in 1900 the St. Louis-San Francisco Railway constructed another rail line, this one just seven miles east of Sulphur. A short spur was laid into Sulphur from the town of Scullin in 1903.

The booming town soon began to threaten the resource around which it had been built, both in terms of pollution, due to a lack of sanitary facilities in the town, and due to the springs’ potential for commercialization for the profit of a few. Although Secretary of the Interior Ethan Allen Hitchcock had visited the area in 1897 and recommended that the springs be made a federal reservation, over the years no action was taken.
on his suggestion. It was not until 1901, as the town began to be surveyed and platted, that the notion of reserving the springs from development arose in a serious manner. Senator Orville Platt took up the idea and under the auspices of the Dawes Commission, Indian inspectors were sent to present the idea to the Choctaw and Chickasaw governments. Eventually, the two tribes agreed to cede an area up to 640 acres, to be reserved from platting and allotment for the town, to the U.S. government at a price of $20 per acre. This agreement, creating Sulphur Springs Reservation, was signed by the native tribes in March 1902, and ratified by the U.S. Congress in July.
Notes to Chapter 2

2 Katherine Sallee, “An Expanded Narrative of the Platt District” (xerox copy in files of the Level 1 Cultural Landscape Inventory), 1.
7 Wright, A guide to the Indian Tribes, 10.
9 Brown, City of Many Facets, 5.
12 Brown, City of Many Facets, 4.
14 Brown, City of Many Facets, 7.
15 Ibid.
19 Boeger, Oklahoma Oasis, 38.
20 Ibid.
21 Jacilee Wray and Alexa Roberts, “Chickasaw National Recreation Area: Ethnohistory of Associated Park Use and Values,” (unpaginated draft report, February 2000), chapter entitled “‘Free to All Comers in Perpetuity:’ Sulphur Springs Reservation,” n.p.; Brown, City of Many Facets, 9; Boeger, Oklahoma Oasis, 42. Brown and Boeger’s accounts differ slightly as to the date and amount of land purchased. Wray and Roberts present another account, probably more accurate.
22 Boeger, Oklahoma Oasis, 42
23 Ibid.
24 Brown, City of Many Facets, 11.
Chapter 3: Creating Platt National Park, 1902–1933

BACKGROUND

Designation and Survey, 1902-1904

On July 1, 1902, Congress approved the Supplemental Agreement with the Chickasaw and Choctaw tribes. The agreement authorized a reservation that protected and controlled the springs and creeks and that caused “the least interference with the contemplated town site.” It also ordered that the town site be located outside the 640 acres of the reserved lands, and that prior improvements such as bathhouses and buildings be removed. In July of 1902, Secretary of the Interior Ethan Allen Hitchcock detailed Special Inspector Frank C. Churchill and Geologist Joseph Taff of the United States Geological Survey to Sulphur to examine the springs, streams and topography of the area and to select the land to be acquired by the United States. Their reconnaissance included not only Rock Creek, Sulphur (Travertine) Creek, and the springs within Sulphur Springs, but also Buckhorn Creek and its springs, located four miles southeast of Sulphur.

The survey team found the area around Sulphur and Rock Creeks to be the preferred site for the reservation, primarily because “the Buckhorn springs and valley posses [sic] no beauty surpassing that of Sulphur springs and creek, and the latter is capable of being beautified to a much greater extent.” The team characterized the area surrounding the springs as “high prairie land,” and the spring areas were described as “forested valleys.” They identified more than twenty species of trees within the forest areas, and described the stream valleys, densely vegetated with a tangle of understory shrubs and vines, as “jungles.” Perhaps foreshadowing the revegetation plans of the 1930s, the team also observed the expansion of trees on the upland prairies, noting that “extending into the recent prairie, since its protection from fires, the forest is rapidly spreading, and without a doubt can be made to extend over any part of the prairie land by care and protection.” Yet at the same time, they observed that farming had also eliminated forest, since a “considerable part of the forest on Sulphur and Rock Creeks has been cleared away, and the places are now occupied by narrow, cultivated fields.”

In their report the team also characterized the area’s springs and water resources, based in part upon Taff’s previous survey of the springs in 1901. The springs, they noted, included the seven springs at the site of present-day Pavilion Springs; a single large spring known then, as now, as Hillside Spring; three large springs located at the junction of Rock and Sulphur (Travertine Creek) near today’s Flower Park; two springs in the present-day Bromide area, one at the base of the cliff and one issuing from the bed of Rock Creek; two “Bromide Sulphur” springs located in the southern part of town on a branch of Rock Creek; and “Wilson Spring” located in the southeastern part of Sulphur. The report also described Antelope and Buffalo Springs as a potential water supply for the town of Sulphur. The scenic beauty of Sulphur Creek was also observed, though the team described the natural pools along its bed as “not sufficiently large nor deep for successful use as swimming pools.” Instead, the team proposed damming the creek near current-day Little Niagara Falls and constructing an artificial lake thirty feet deep, one half mile long and five hundred to one thousand feet wide along the stream course.

The survey resulted in a boundary line for the proposed new reservation. Churchill and Taff rationalized their boundary based on the following principles, ordered from most to least importance:

First, the preservation and protection of the springs against contamination.
Second, the preservation and protection of Sulphur and Rock Creeks.
Third, the reservation of reasonable space for public passage and comfort in connection with the waters thus reserved.
Fourth, the matter of utilizing the waters and preserving the beauty of the grounds thus reserved.

In addition, they emphasized the need to protect the area around the springs, noting that “the protection only of the immediate banks of the streams, leaving the bordering wooded slopes of the valley near at hand to be marred
and occupied by private nuisances would destroy the value of the reservation."

The team worked hard to limit the size of the reservation while protecting the springs. This was important because the town, where “little care is had for the disposition of sewerage” was concentrated around the springs on the steepest slopes in the area. To prevent “certain and serious contamination” from adjacent development, the reservation boundary encompassed most of Sulphur’s constructed core around Pavilion Springs. A small area three-quarters of a mile away from the town around Wilson Springs was also included in the reservation; this ten-acre parcel was not, however, contiguous with the lands encompassing Sulphur and Rock Creeks. Churchill noted that “[t]o preserve these springs within the main reservation would include ground useless for the purpose intended.” As much as possible, the boundaries were also constructed to conform to existing land surveys, to reduce subdivisions of existing properties. Located east of the town site, the reservation narrowly encompassed both sides of Sulphur (Travertine) Creek. Churchill’s survey proposed that a total of 629.33 acres be included in the reservation; the original boundary of the reservation is shown in Figure 3-1.

Based on the survey, the two tribes ratified the Supplemental Agreement in September, and were paid a total of $12,586.60 for the reservation lands. In addition, the government also agreed to pay residents for improvements (such as buildings) that they had made to the lands. This insured that settlers who had leased properties from the tribes would be remunerated for their investment in the properties. Improvements were to be reimbursed at their appraised values at the time of the agreement’s ratification. On November 19, 1902, Sulphur Springs Reservation was officially proclaimed.

Appraisements began in January of 1903, under the direction of Frank Churchill. A total of $86,981 was paid out for improvements. Some owners rejected the government’s offer and chose to move their improvements instead; houses and even churches were hitched to wagon teams and moved to new locations. In August 1903, all inhabitants were asked to officially leave the reservation; those who chose to remain temporarily could do so, but were required to pay rent on the government property they inhabited.

These situations disgruntled the townspeople. A new plat for the town site was now needed, and disputes arose over both the appropriate size and the new location.
of the town. One group thought more land should be allocated to the town to the south and east, while another group wanted the town to expand to the north and west. Residents and speculators began to build new homes and businesses in both areas, and lobbied the government to side with their cause. Yet even as they built, the Department of Interior, concerned about encroachment and pollution of the springs, began to explore options for adding acreage to the reservation. The situation was finally resolved with the Indian Appropriation Act of April 21, 1904. In this agreement, the government bought an additional 218.89 acres for the reservation from the tribes at a price of $60.00 per acre. The new land included a parcel around Rock Creek to the north, but most of it was located southeast of the first reservation boundary, joining the Wilson Springs group to the rest of the reservation. Townspeople who had built in this location were required to pick up and move—those who had rebuilt there, for the second time. Figure 3-1 shows the final boundaries of both the reservation and the town as determined in 1904.

A second round of appraisals for newly condemned properties ensued, and in July the “Map of Sulphur Springs Reservation” (Figure 3-2) was produced to show the total number of new properties to be appraised. Once purchased by the government, most of the appraised buildings sat vacant. In 1904, a building survey undertaken by Joseph Swords revealed that 101 vacant dwellings and 11 vacant stores remained in the reservation. These were mostly located on the recently acquired lands, since 42 structures had previously been removed from the original reservation in the prior year. Throughout 1905, a series of building sales were held to purge the reservation of unwanted structures; those too big to move were simply razed. However, removals took time. The large, brick Bland Hotel, built by speculators in the southern part of the park and never inhabited, was not fully torn down until 1908.
Chapter 3: Creating Platt National Park, 1902–1933

Park-wide Development 1904-1933

The reservation officially opened to the public on April 29, 1904 and within two years, on June 29, 1906, was renamed Platt National Park. During these early years, overall park development was slow. Superintendent Swords supervised tree and grass plantings and routine maintenance such as mowing. Construction focused on high-use areas of the park; detailed aspects of changes are described below.

Overall, little changed immediately. Earlier land uses continued, though there is little information on the physical or spatial aspects of these. In 1909, the Interior Department directed that oat hay and alfalfa be grown in the park, and harvests of these and corn were recorded in 1913. Leases of livestock pasture were also recorded as late as 1915. The park, unfenced, was also part of the open range, and cattlemen grazed and watered their herds in the reservation. In 1907, cattlemen drove at least 6,000 head through the park, and possibly more, since cattle driven through at night were not recorded.

To prevent cattle damage, parts of the park were fenced off as early as 1904, when Superintendent Swords fenced off Antelope and Buffalo Springs. In 1908, Superintendent Greene proposed a fence around most of the park’s boundary. Over 300 citizens signed a petition against the fence, since it eliminated the use of twenty roads crossing the park. Despite the protest, the Department of the Interior sided with Greene, stating that the Department would “not consent to the maintenance of unnecessary roads . . . as will result in the practical dismemberment of the reservation and throwing it open to the indiscriminate use of cattle-owners.” A barbed wire fence was erected in the fall of 1908 at a price of $2,500. The fence ran along the park boundaries for a total of about nine miles and along major lanes through the interior of the park, for about three miles. Flood gates were provided where the fence crossed streams and stiles were constructed to allow pedestrians to enter the park along former cross-park routes. Fencing continued to be an ongoing issue, since Superintendent Sneed reported the loss of 5,000 feet of new woven wire fencing in the flood of 1916.

In 1906 Charles Gould, geologist with the Oklahoma Geological Society, examined the area and wrote a report on the park’s hydrology, describing the creeks and categorizing a total of thirty-three springs in the reservation. In 1908, the U.S. Geological Society surveyed the park. Though written descriptions and later map annotations reveal that the survey did not record many structures or features, the resulting 1909 Map of Platt National Park (Figure 3-3) remains the best documentation of the park’s early appearance, showing topography, major roads, the creek system, and trails.

Figure 3-3. Map of Platt National Park, United States Department of the Interior, 1909. A larger version of this figure is also provided at the back of the report, as part of the drawing set.
Chapter 3 Creating Platt National Park, 1902–1933

DRAWING 1: PLATT NATIONAL PARK, 1933

Drawing 1 (located at the back of the report) is a 1933 period plan of Platt National Park, showing the extant conditions in the park at the end of the 1902-1933 period, prior to changes made by the CCC. The drawing depicts all features implemented between the years 1902 and 1933 and still extant in 1933. The drawing is based on photographic and written evidence and the 1933 Plan of Platt National Park (NP-PLA-4948), though topography is based on the 1984 survey. This plan provides the most comprehensive overview of the larger park landscape in the 1930s. Labels on Drawing 1 reflect the 1930s naming and numbering conventions; some of these names later changed. Subsequent period and existing conditions plans will label elements according to their period or contemporary names.

The following narrative describes the park’s individual landscapes in much greater detail than can be discerned at the scale of Drawing 1. The narrative addresses individual landscapes as they developed over time, from 1902 to 1933, building on information from the previous chapter. Overall park landscapes, such as the water, road, and trail systems are addressed first, followed by individual designed landscapes. Documentation for different areas within the park varies greatly, so the development of some landscapes is described more completely than others.

Hydrology: Rock and Travertine Creeks

The 1909 Map of Platt National Park (Figure 3-3) is perhaps the first detailed map of the area’s hydrologic system. All the springs and creeks noted by Taff and Churchill in 1902 are present on the map, as are Rock and Travertine Creeks, as well as Limestone Creek (labeled Nigger Run). The map also reflects information gleaned by geologist Charles Gould in his 1906 study of the springs and creeks. His description of Sulphur Creek is perhaps what led Superintendent Greene to rename it “Travertine Creek” in 1908:

Sulphur Creek...is a perennial stream 1-3/4 miles long. The water of the creek contains calcium carbonate in sufficient quantities that, when exposed to the air, it is deposited in the form of travertine, forming numerous small cascades and waterfalls, so that from its source to its mouth Sulphur Creek consists of a series of pools or still reaches, and small water falls, of which latter there are said to be over 60 along the creek.
Many of these falls were local scenic landmarks, with names reflecting their physical or scenic quality. Many were also recorded in postcard views of the early 1900s. Lake Placid (Figure 3-4) was a large, peaceful area of smooth water, while Grand Rapids (Figure 3-5) was a large bank of white water. Little Niagara (Figure 3-6) was a more vertical falls, and was named after its counterpart in New York. The names and locations for the major falls along Travertine Creek are shown on the 1909 Map (Figure 3-3). Superintendent Greene named Garfield Falls after James Garfield, then Secretary of the Interior. Some of the lesser falls were arbitrarily named by the survey team. Two areas simply labeled “Falls” on the 1909 Map were presumably smaller and less important rapids or riffles.

Mapping the falls may have been difficult in the early days, since the stream channels sometimes changed. Park management, however, was interested in preserving these favored features of the park. In June 1907, Superintendent Greene described Sycamore Falls and problems with stream diversion:

‘Sycamore Falls’ consists of two falls each of about five feet in perpendicular height over irregular and picturesque ledges of travertine rock, and are justly considered among the great attractions of the beautiful Sulphur Creek, being near and just above one of the principal fords of the stream. The water has found an easier way, and by cutting into an alluvial bank, has diverted the entire flow at normal stage around these falls.

He described similar conditions at Lost Falls, just downstream from Bear Falls. The diversions eroded bank soil and uprooted large trees, and Greene proposed damming the new channels around both falls with bags of Portland cement grout, laid in walls two feet high and no longer than fifteen feet. The entire proposed cost of this work to “make an indestructible barrier to the detours of the stream, and restore the falls to their former condition of beauty, as well as protect the banks from further erosion” did not exceed $20.00.

In the early part of the century, the creeks became an important part of the Sulphur’s water supply. Gould’s 1906 report provided scientific data about the area’s springs, and he determined that Buffalo & Antelope Springs had an approximate flow of 2,000 and 1,500 gallons per minute, respectively. Because of this prodigious flow, in the spring of 1907 the town approached the park and Superintendent Swords about using Travertine Creek as a temporary town water supply. Consent was granted and sometime in 1908, a reservoir was constructed near Little Niagara and approximately 100,000 gallons were removed per day. The usefulness of the supply was short-lived, because Antelope and Buffalo Springs went dry in March and April of 1910 or 1911. They began flowing again in April 1912, with Buffalo Spring at a reduced rate and Antelope Spring located eighty feet away from its previous location. But the springs dried up again in September and did not start up until November 1913. Another dry period occurred from February 1918 to March 1919. During such dry spells, the city got its water from city wells. By 1921 there were five of these.

The town’s use of the creek proved to be a bit more than temporary. Boeger says that the city stopped taking water in 1913, but according to Wray and Roberts, Sulphur continued to take water out of Travertine Creek until about 1924. During the early 1920s, the public health offices were concerned about contamination from cattle in the watershed and the Department of the Interior was unhappy about the appearance of the city reservoir dam, which “flood[ed] out the rapids.” The city still preferred to use the creek, however, since its gravity feed system was cheaper than running the pumps on the city wells. Yet by 1924 the city converted over completely to its own system, and tried to charge the park for its water consumption. Interior Director Cammerer politely rebuffed the request.
Yet Travertine and Rock Creeks were even more important to both the town and the reservation for their recreational aspects. Fishing, swimming and wading are well documented in photographs since the park’s earliest times. As Churchill and Taft noted in their early report, however, none of the extant pools were particularly deep or inviting for swimming. Superintendent Sneed remedied this situation in 1917, when he had a five-foot-tall concrete dam built across Travertine Creek at Sylvan Cove below Panther Falls to create a swimming pool. Though known early on as a scenic locale, as demonstrated by a typical postcard view (Figure 3-7), Panther Falls soon became a popular bathing destination. Dressing rooms for bathers were built near the Creek by stretching canvas around poles in the ground. The pool was built with funds from concessionaires’ fees. Today the concrete dam, still extant, is known as Panther Falls. No records of other swimming pool construction between 1902 and 1933 have been located. However, there were other designated swimming areas even though these do not appear on maps. There is a 1916 description of swimming at Cave Island Falls and a 1930s Chamber of Commerce brochure reported “many free swimming pools in the park.”

By the early 1930s, the two creeks no longer served as a water supply and had become a recreational landscape running through the park. The creeks were also part of a segregated landscape. By 1933, on an overall plan of the park, the Panther Falls pool and its surrounds had been designated as a segregated “Colored Camp.” This designation implies that white swimming occurred elsewhere in the park. It is possible the “colored camp” area was located near Panther Falls because of its proximity to Sulphur’s African-American residential community. It is not clear exactly when the area became segregated, but the practice seems to have been entrenched by the mid-1930s. The designation appears on another map dating to 1935 and the book Oklahoma: A Guide to the Sooner State, published in 1941 by the Depression-era Federal Writers’ Project, describes a “Negro Area” as being located at “the bend in the creek.” It also seems African-Americans were not permitted to camp overnight at Panther Falls (or presumably anywhere else in the park) since the “Negro area” was described in later park reports as “available only for picnicking and swimming.”

Sewer Systems

During the early period of the park, sewer and stormwater systems were problematic for the park. In fact, both Rock Creek and Travertine Creeks served for some time as the repository for Sulphur’s stormwater and sewage. This use of surface drainage for sewage disposal was typical for early towns, and likely dated to before the reservation, as evidenced by the early surveyors’ concern for contamination of springs by sewage. After the
formation of the park, sewage disposal continued to be a problem, in part because the town could not afford to build a sewage system and the federal government refused to finance it alone. In April 1906, the city asked to build a “water drain” across the park along Rock Creek. This request was denied, but the city was allowed to dig open ditches carrying runoff from the town. By 1909, Superintendent Greene began to lobby the Department of the Interior for federal funds to finance a joint town-park sewer, “as a matter of self-interest and protection of its own valuable property.” His justification was the park’s “unsanitary conditions,” which he enumerated in detail. As one of about ten examples, he noted:

At the corner of Davis Avenue and First Street West, … is an unsightly septic tank, which is, however, but little better than a cess pool, and which discharges a large volume of sewage continually down the ravine which is the natural boundary between East Central Park and West Central Park, into the Travertine Creek, a few rods above the Lincoln Bridge just completed. The odor from this discharge is so offensive as to be an occasion of unfavorable criticism by visitors and the public generally. It discolors and contaminates the water to such a degree that thirsty animals refuse to drink it.

Although Greene consulted an engineer and had plans drawn up in 1909, the sewer was not immediately constructed. It was finally constructed in October 1912, jointly funded by the park and the city. The initial line ran from the old Artesian Hotel to Flower Park, where it crossed Rock Creek. It then ran along the north side of the creek until it emptied into the creek 1,000 feet downstream of Bromide Springs.

In 1931, a joint city-park sewage treatment plant was constructed and eliminated the practice of dumping untreated sewage into the Creek. This plant was located on the west bank of Rock Creek, just west of today’s Chigger Hill. To get the sewage to the treatment plant, a pumping station was also constructed just northwest of the Bromide Area, at the end of today’s Lindsay Avenue. By 1931, the park’s main sewer line had been extended as far east as Cold Springs Campground and as far south as the Veteran’s Hospital outside the park (Figure 3-8).

Road System

The roadway infrastructure in the park also developed slowly. The 1909 Map of Platt National Park (Figure 3-3) shows a rudimentary system of major roads, though there were likely multiple small lanes and roads left over from the town (Figure 3-9). As described above, local citizens used these roads to cross the park, and in some cases, move cattle across the park, prior to the park’s fencing in 1908. After 1908, pedestrian traffic across the park continued, and stiles built over fences facilitated this. Thus the 1909 map might be considered as a map.
Chapter 3: Creating Platt National Park, 1902–1933

of major routes, without showing common pedestrian routes. The 1909 map shows Buckhorn Road and Sulphur-Bromide Lane as the major north-south routes running through the park and connecting to points beyond. The routes are interesting, since they align themselves more with local topography than with the roads shown on the plat of Sulphur (Figure 3-2). Other roads on the map dead end in the park or are indicated as “secondary” roadways. A third type of road indicated is the “boulevard” around the park. This was constructed early on after the reservation was created, as a wide road at the park’s boundary. However, the boulevard did not live up to its grand name. Instead, during the park’s early years, it appears to have been a rather unsavory region, appropriated by adjacent property owners and functioning in some areas as a sewer. Superintendent Greene noted that “the conditions prevailing on the boulevard, by reason of its being made a general dumping ground by the city, are most unsanitary and tending to produce an epidemic.”

One of the secondary roadways was the road to Buffalo and Antelope Springs. This road was constructed in 1907 under the supervision of Superintendent Greene. It seems a trail to the springs had existed for some time previously, but had never been a passable wagon road. Greene’s new road, sometimes called “Brookside Trail,” had nine fords across the creek. Greene described it proudly:

Based on a post card view circa 1912, Brookside Trail was a narrow, single-lane affair with a dusty surface (Figure 3-10). Yet it proved very popular, and Superintendent Greene’s subsequent reports are filled with descriptions of its frequent repairs. The road was not only enjoyed by visitors, but also by local residents, who used it for general east-west travel. This annoyed Greene, who felt the road along the creek was the park’s “show place.” Furthermore, he thought that tourists being “met by droves of cattle, horses, and swine, wagon loads of hay, and other farm produce on the way to market” was not “desirable,” besides which the heavy traffic further injured the road. The issue was ultimately resolved by the completion of the park’s boundary fences, which restricted animal and vehicle traffic.

Other road work undertaken by Greene included the construction of a ford across Rock Creek on Bromide Lane in 1907 or 1908 and improvement of the ford at Coney Island (where Black Sulphur Causeway now stands). Greene stabilized the area’s banks with large brush mattresses.

Road improvements were regularly undertaken between 1909 and 1920. In 1913, Superintendent French began to upgrade Brookside Trail. Work began with the installation of a dirt road along the north side of the Creek as far as Cold Springs. In the summer of 1914, this was extended to Buffalo and Antelope Springs, and gravel and culverts were installed as far as Cold Springs. In 1915 Superintendent Sneed annotated the 1909 Map of Platt National Park to show road improvements
completed by the end of 1914. His annotations depict a total of twenty culverts installed across the entire system; these included elements labeled on the map as rock culverts, concrete pipe culverts and “box drains.” A major ford is shown at Bromide Springs and fords across Travertine Creek are shown in at least five locations, including: at Central Park east of Lincoln Bridge; downstream of Panther Falls; at Sycamore Falls; east of Lake Placid; and near Buffalo and Antelope Springs. The map shows another couple of minor crossings, where old and new road and trail alignments intermixed. Interestingly, on this plan, Lincoln Bridge is connected to trails in Central Park, likely indicating that the bridge was not used on a regular basis for vehicular traffic. A portion of Sneed’s annotated plan is seen in Figure 3-11.

In 1915, better access to the western half of the park was provided with the construction of Rock Creek Drive between Central Park and Bromide Springs. The work cost $792. In June a causeway near Black Sulphur Springs (in approximately the same location where it is now) was constructed. The bridge was concrete and was 16 feet wide and 146 feet long (Figure 3-12). With

the new road and causeway, a continuous drive between Buffalo Springs to Bromide Springs had been created.

Unfortunately, the January 1916 flood damaged 4,400 feet of the new Rock Creek Drive and destroyed another 600 feet of it. Repairs were made in the following summer. Nineteen seventeen saw the construction of low-water crossings at the fords along Travertine Creek at Sycamore Falls, Panther Falls, and Lake Placid, and a causeway was built carrying Buckhorn Road across Travertine Creek. By the 1930s, this crossing was known as a “nuisance,” since during and after rainstorms, the causeway “would be submerged from one to four feet, blocking all vehicular traffic from the park to Sulphur and all intended traffic through the park on State Highway no. 18.”

Little graphic documentation has been located for the road system in the 1920s and 1930s, and major changes to the road system were not documented. However, the 1931 “Utilities Layout” (Figure 3-8) shows changed access to Little Niagara Falls and Buffalo and Antelope Springs. This plan shows a short spur crossing Travertine Creek (near present-day Lost Cave Falls) and accessing
Travertine Island with a small turnaround loop. This turnaround likely functioned as a small parking area. A similar turnaround was constructed at Antelope Spring, and a short road leading from the turnaround was constructed to loop around Buffalo Spring. The known extent of the overall road system in 1933, including these changes, is shown in Drawing 1.

Trail System

A rudimentary trail system developed in the early years of the park. The 1909 map (Figure 3-3) shows only one major trail, running east along the face of Bromide Hill from Bromide Springs to Sulphur Bromide Spring in the southern part of the park. Superintendent Greene established the trail, which he named “Cliffside Trail” in the latter part of 1908. He described it as a “safe and comfortable footpath….ditched for drainage purposes in all practicable places and wherever necessary graveled to insure a dry passage.” The path included an iron railing placed at “all dangerous points on the face of the mountain.” Eventually, the path included a series of small footbridges. In the early part of 1912 concrete steps were built up the switchback just above Rock Creek. The steps had two stone masonry banister posts through which an iron chain was strung as a railing on the outer edge. A woven wire fence was installed as protection along the steepest part of the trail just below Robber’s Roost.

A road and trail plan of 1915 (Figure 3-11) shows a second trail, branching off Cliffside Trail and more or less paralleling Rock Creek enroute to Pavilion Springs. Superintendent Greene proposed this trail in 1909, and described it “as one of the most romantic in the park.” It was also one of the best-used, being the shortest distance from North Sulphur to Bromide Springs. Although Greene named it Riverside Trail, it is labeled “Bromide Trail” on the plan and three footbridges are located along it. This trail links to another gravel trail shown running north from Pavilion Springs to Lincoln Bridge, where it connects with small trails in Central Park.

The rest of the 1915 plan (not shown) indicates no other trails in the eastern part of the park. However, it does show three more footbridges at Lake Placid, Cave Island, and Sycamore Falls, indicating that pedestrians did venture into that part of the park. These footbridges may have been those constructed by Superintendent Greene in 1909 to allow schoolchildren living on the south side of Travertine Creek to cross the creek. The bridges were described as being “safe and sightly” and constructed “[out of old materials—lumber and nails—and at a trifling expense for carpenter’s services (Figure 3-13).”

In 1916, portions of Cliffside Trail were washed away in the January flood. Superintendent Sneed commented particularly on the loss of all its small footbridges and the undermining of the concrete steps at the Bromide end of the trail. It is not clear how much of the trail was repaired.

It is difficult to tell how great a role trails played in the visitor experience; photographs of visitors on trails (Figure 3-14) are not as common as creek or spring photographs. The 1931 Utilities Layout and 1933 park map do not show that major new trail construction occurred between 1915 and 1930. In fact, on both of these maps, the original Cliffside Trail to Sulphur Bromide Springs...
has been eliminated, replaced instead by a looping switchback up to the top of Robber’s Roost. It is not clear precisely when this spur to the top of Bromide Hill was constructed. No new trails were constructed in the eastern part of the park, either, though the 1931 Utilities Plan (Figure 3-8) shows a trail along Travertine Creek to Buffalo and Antelope Springs as “proposed.” Trail building would increase in the 1930s, with the coming of the CCC.

Bromide Springs Area

By the early 1900s, one of the major areas of focus for mineral water consumption was the area around Bromide Spring, which by 1902 had been named for its spring and noted for its scenic qualities. Of the site, Frank Churchill wrote: “Immediately north of the Bromide spring there is a park of forest trees, and on the south are high bluffs of much natural beauty.” These “high bluffs” of Bromide Hill were also known at this time as Council Rock, a Native American name for the area and Robber’s Roost, a name bestowed because of the hill’s rumored use as a hideout for outlaws.

The description of the area at the base of the hill as “a park” implies that the area below the bluffs was a patch of savannah-like landscape of prairie grass with large trees. Unfortunately, there is little graphic documentation of the appearance of this area in the early 1900s. The earliest plan of the area is the 1904 “Map of Sulphur Springs Reservation” (Figure 3-2). The Bromide area is unplatted, perhaps indicating that it was excluded from private or commercial ownership because of the special nature of the springs.

In contrast, the immediate area around the springs is better documented. A postcard view dating to circa 1900, prior to the existence of a spring house, shows carriages lining the south bank of Rock Creek, and people clustered on the well-trodden banks of the creek (Figure 3-15). A faint set of steps leads to Bromide Spring higher up the bank. A string of flat stepping stones also appears to lead across the stream in the foreground.

In 1901, the town built a small, open, concrete cistern (Figure 3-16), approximately three feet in diameter and three feet deep, to store water from the “small volume” spring. A semi-circular lip on the square basin provided a place where patrons could dip tin cups into the open cistern to collect the mineral water. Patrons could sit on a low, stone seatwall set into the steep bluff slope behind the spring, and a billboard-like sign was located just east of the cistern, advertising bathhouses and other commercial ventures in Sulphur.
Chapter 3: Creating Platt National Park, 1902–1933

In 1906, Charles Gould inventoried three springs at Bromide. He described the main Bromide Spring as growing weaker, with smaller springs breaking out nearby. Cliff Bromide Spring was located one hundred yards east of the Bromide Spring, and consisted of three small seepages emanating from the conglomerate rock along the cliff. He also inventoried an unnamed spring (which he labeled No. 19) in the middle of the creek bed. Gould noted that the water from these springs was “eagerly sought after” by residents and visitors and that the demand for the medicinal waters far exceeded supply.

By 1906, the Bromide area proved more popular among water takers than any other spring in the park, and in November, work began on improvements for the spring. Despite little financial support from the Department of the Interior, Superintendent Swords built a “barn-like” pavilion next to a short, cylindrical concrete cistern that housed the spring (Figure 3-17). The concrete “sil” was prominently labeled with the spring’s name and date, and a set of clearly defined stepping stones crossed Rock Creek to the spring house.

Located near the original cistern, on the south side of Rock Creek, the wood-framed pavilion was a two-story, open-air structure, built around an elm tree. To reduce costs, the building was constructed from salvaged materials; the corrugated iron roof, for instance, was taken from the Bland Hotel formerly located in the park. Attached to the eastern end of the building was a lean-to, which housed a watchman and contained a wood stove (Figure 3-18). In July 1908, a pay phone was installed in the pavilion, presumably for the convenience of spring visitors. One can imagine patrons perhaps calling their hotels to summon carriages after an afternoon of sipping bromide water.

The pavilion and cottage were followed by the construction of a suspension bridge across Rock Creek, just east of the pavilion. Plans for the bridge were completed by engineer H. V. Hinckley of Sulphur in late summer 1907. The design of the bridge was “disliked” by the Department of the Interior and in September, the Department rejected the bids on the project because they were too high. After revisions and rebidding, construction began in January 1908 and was completed in June. The bridge (Figure 3-19), had a deck three feet wide, a span of one hundred and twelve feet, and its deck was located twenty-four feet above low water. The deck was suspended on heavy wire cables from two twenty-seven-foot-tall towers each constructed of four seventy-pound railroad rails set in a concrete base. Photographs show the bridge abutments’ conglomerate stone masonry and white wooden railings along the side of the bridge. A flagpole was located at the landing on the south side of the creek near the approach to the pavilion. The bridge, sometimes called the “Swinging Bridge,” was something of a small engineering wonder for its time and location.
and was featured in the August 29, 1908 issue of *Scientific American*.

Around this time, a cottage to house “the laborer at the Bromide Springs” was either repaired or rebuilt from an existing structure. Described as “an old one put together,” the little building had a foundation and featured a porch and a small kitchen. The 1909 *Map of Platt National Park* shows this structure located on the flat terrace of Rock Creek, slightly north of the suspension bridge. A 1915 memo from Superintendent Sneed describes this structure as a frame cottage with “3 rooms, 1 pantry, and 1 porch. Located 10 rods north of Bromide Springs.”

Just west of the cottage was a henhouse and to the northwest was a small frame barn, both “crudely constructed.”

The 1909 *Map of Platt National Park* (Figure 3-3) shows a few other features in the Bromide area. Most prominent are the roads and trails. These include a continuation of Bromide Lane, which forms a U-shaped loop to 12th Street through the level “park-like” area just north of the creek. Two other small roads are seen leading from 12th and 14th Streets to the Bromide Bridge. Pedestrians likely used these trails when accessing the springs from the town to the north. The other major circulation feature shown is Cliffside Trail. One final feature on the map is a fence line; this may have divided the camping area from nearby farm fields, since it is recorded that there were cornfields near Bromide Spring. A slightly more detailed sketch map of the area (Figure 3-20) dates to 1908. In addition to the features shown on the 1909 Map, seats, gates, more fences, and hitching racks are also indicated. Most interesting, however, is the name of the area, which is shown as “Cliffside Park.” The map was drawn to demonstrate means for preventing erosion on the banks below the new swinging bridge, by removing a sandbar in the middle of Rock Creek.

Other improvements for increasing numbers of visitors soon followed. Appropriations of $5,000 in 1911 and $18,000 in 1912 from the federal treasury aided in construction and maintenance. In the early part of 1912 concrete steps were built up the Rock Creek side of Bromide Hill on the Cliffside Trail. Also around 1912 Medicine Spring, discovered 200 feet west of Bromide Spring in 1909, was developed with a concrete cistern. Within two years, this water was piped into Bromide Pavilion. Another spring, Cliff Bromide Spring, was located just east and up slope from Bromide Spring along Cliffside Trail. A set of concrete steps were constructed to reach this spring, which was developed with a concrete, brick and stone masonry structure (Figure 3-21). In 1917, a fourth spring, named “Ellen Wilson..."
Chapter 3: Creating Platt National Park, 1902–1933

Sodium Chloride Spring, by Superintendent Sneed, was discovered in the bed of Rock Creek, 90 feet northwest of Bromide Spring. This was eventually, in the 1920s, piped into a second Bromide Springs pavilion that was built in 1917 to replace the first pavilion. The first pavilion was badly damaged in a flood on January 21, 1916, when the park received three inches of snow followed by sleet and eight hours of heavy rain (about six and one-half inches). In the Bromide area, Rock Creek rose about nine feet above previously recorded levels. The pavilion's lean-to was torn off, it lost all its doors, and its roof and floor were badly damaged. The suspension bridge was a "total wreck;" its "heavy railroad steel towers . . . were bent like baling wires, and two of them snapped, and the whole bridge broken in sections and laid up against the north bank of the creek."80 The laborer's cottage was ripped off its foundation and wedged between two trees. As noted above, portions of Cliffside Trail and the new Rock Creek Drive were also washed away.

Within two days, Superintendent Sneed had requested funds for repairs from the Department of the Interior, but these were not immediately forthcoming. Regardless, by May of 1916, H. V. Hinckley, now working out of Oklahoma City, had prepared a plan for a new suspension bridge that was 6.8 feet higher than the old bridge, presumably to protect it from high water.81 It appears, however, that the Department of the Interior had expressed a preference for a truss bridge, so Hinckley also submitted a crude sketch of a truss bridge (Figure 3-22). The new bridge, a single arch truss, was built about 200 feet upstream from the site of the old suspension bridge.
bridge. It was built by the Illinois Steel Bridge Company of Jacksonville, Illinois, and had a one-hundred-twenty-foot span with a six-foot camber. The bridge had a massive concrete abutment on the south side of the creek (Figure 3-23). The bridge deck was ten feet wide and was equipped with electric lights mounted on posts above the railings. The bridge (Figure 3-24) was completed in April 1917, for a total cost of $4,353. It was sometimes called the “Iron Bridge” or the “Rainbow Bridge,” the latter name presumably because of its bowed shape.

Hinckley also submitted a plan for a new Bromide Pavilion, located more or less on the site of the old pavilion. The new plan (Figure 3-25) featured a somewhat more sophisticated building with windows, siding, and latticework. The building had two levels and was built into the side of Bromide Hill. Construction began as soon as possible to get the spring up and running for the summer season, and the building was ready for public use by June 1916. However, it was by no means finished—funds ran out and plastering, painting, latticework, and finished floors were deferred until later.

The pavilion was finally finished in 1919 (Figure 3-26). A primitive sketch by Superintendent Branch (Figure 3-27), gives an idea of the interior’s appearance and function. Along the south wall, conglomerate rock of Bromide Hill formed the base of the wall. A concrete bench was also located here, but did not extend the length of the building. Along the north wall was a concrete platform on which three earthenware containers of spring water were mounted. Hand pumps were connected via pipes running through the basement to Bromide, Sodium Chloride, and Medicine Springs; these pumps were operated by the “Keeper” of the spring house and supplied the earthenware containers. Visitors retrieved cups of water from spigots in the containers, and a small basin below the spigots caught any overflow. An analysis of the spring waters was painted on the wall of the pavilion.

In 1926, plans to further improve the interior of the pavilion were drawn up by Superintendent Branch and approved by Daniel Hull, Chief Landscape Engineer of the National Park Service. Branch proposed constructing three new spring water containers with automatic electric pumps. The new containers were to be located along the south wall of the pavilion and constructed of a more appealing, rustic style conglomerate stone masonry. The plans were approved by Hull, who wrote Branch:

![Figure 3-25. Drawing for second Bromide Pavilion, by H.V. Hinckley, 1916. Note “line of conglomerate,” indicating structure was built directly against the cliff. Courtesy National Archives, file 620-50.](image1)

Figure 3-25. Drawing for second Bromide Pavilion, by H.V. Hinckley, 1916. Note “line of conglomerate,” indicating structure was built directly against the cliff. Courtesy National Archives, file 620-50.

![Figure 3-26. Postcard view of the second Bromide Pavilion, circa 1920.](image2)

Figure 3-26. Postcard view of the second Bromide Pavilion, circa 1920.

Personally, I feel that you need the full side of the building for the spring outlets and I would certainly try to get rid of that old concrete seat which is poorly proportioned and uninviting. Besides, I think it is not well to have people sit in such close proximity to the spring, but rather on the terrace which we proposed to furnish them...
adjoining the building. I do not see any construction difficulties with building over the conglomerate where the seat now exists. I will send along a rough sketch indicating the type of layout as I see it. This you will note eliminates the window as it would be a jarring [sic] note in the otherwise wall of rock. 85

The completed interior (Figure 3-28) was a great improvement.

Based on the correspondence between the two men, Hull visited Platt at least once, and was an active participant in the design of park features in the 1920s. In 1922, he designed two community houses, one each for the Bromide and Cold Springs Campgrounds. 86 These small houses, to be used for gatherings in case of bad weather, were paid for by the Sulphur Chamber of Commerce, and the estimated expenditure for both houses was $14,000. 87 The buildings were of wood frame construction and were essentially one large room with a stone fireplace and small porch (Figure 3-29). They were sided with one- by ten-inch wood siding (eight and one-half inches to weather) and roofs were wood-shingled. The shingles were designed to be (four and one-half inches to weather), with every sixth course of shingles doubled; however historic photos show a more random pattern with four and one-half to five and one-half inches exposed and every ninth course doubled.

The community house was located in the northwest portion of the Bromide area, as shown in Hull’s plan for siting the buildings (Figure 3-30). The plan shows proposed limits for camping as well as two new comfort stations to be constructed in the Bromide area. Hull also suggested that the comfort stations be screened from the road, while the community stations were to be more prominently sited.

Figure 3-27. Sketch by Superintendent Branch, showing interior plumbing system of 1917 Bromide Pavilion, 1926. Courtesy National Archives, Fort Worth, File 620-50.

Figure 3-28. Reconstructed pavilion interior, circa 1926.

Figure 3-29. “Community House: Bromide Springs,” 1922, Drawing NP-PLA-5. The second page of this drawing shows an almost identical structure for Cold Springs.

Figure 3-30. Portion of 1909 Map of Platt National Park annotated by Daniel Hull, 1922. Note locations of the community house and men’s and women’s comfort stations. Courtesy National Archives, Fort Worth, File 620-50.
It is not clear whether these two comfort stations were constructed. Supplying rest room facilities for campers in the Bromide area had been an issue since the early days of the park, and numerous comfort stations were constructed in the years between 1900 and 1933. A 1915 map accompanying an inventory of buildings by Superintendent Sneed indicates three comfort stations in the area: a “new” frame comfort station with two “compartments” located approximately 250 feet east of Bromide Springs and two “old” comfort stations with “four or five compartments” located 500 feet north and 600 feet northeast of Bromide Springs. It appears that some of the earlier stations were torn down, but still, by 1931, a total of five comfort stations existed in the area, as shown on the 1931 “Utilities Layout” (Figure 3-8).

In the 1920s a new caretaker’s residence was constructed, perhaps as a replacement for the previous “laborer’s residence” with its hen house and barn. The new caretaker’s residence was slightly larger, and seems to have been built close by or on the site of the earlier building.

Throughout the 1920s, use of the Bromide area continued to increase, fueled by the expansion of the Sulphur to the north. Development along West 12th Street included hotels and bathhouses that catered to visitors arriving by both rail and automobile; the Bromide area offered these visitors an easy stroll into the park and convenient access to the health-giving mineral waters. In 1923, 18,617 people visited Bromide Springs on July 4th alone. Many visitors declined the hotel lifestyle, preferring to camp in the Bromide Campground, which by this time was concentrated on the east side of the large level terrace located in the creek bend. Camping was an informally structured activity, with carriages, automobiles, and tents deployed haphazardly throughout the area (Figure 3-31).

![Figure 3-31. Camping at Bromide Springs, circa 1920.](image)

Figure 3-31. Camping at Bromide Springs, circa 1920.

Figure 3-32. “Topographical Map of Bromide Spring Area,” 1930. Drawing NP-PLA-4783. Note the locations of the pavilion (spring house), iron bridge, springs, low water crossing, and caretaker’s residence. The crossing and residence are extant today.
Chapter 3: Creating Platt National Park, 1902–1933

The early 1930s provide some of the first detailed graphic documentation of the area. In 1930, a topographical survey was undertaken in the area just around the spring house. On the “Topographical Map of Bromide Spring Area” (Figure 3-32) are the three springs (Medicine, Bromide, and Sodium Chloride Springs) and the spring house, the latter shown with a porch and concrete terrace as described by Hull. Also shown are the iron bridge and a second bridge, a concrete low water crossing located west of Bromide Spring. Irregularly shaped masonry walls line much of the south bank, and steps are shown leading up toward Bromide Hill. The plan simply lists the northwestern part of the site, where the campground officially began, as “well-wooded,” and reveals a slightly more irregular road than is shown on the larger scale 1931 and 1933 plans. Finally, the caretaker’s residence is also shown, with a concrete walk. Two features removed at a later date, a “sulphur stream” and a concrete walk, are also shown on the plan. The source of the stream is not indicated, but may have been runoff from one of the wells known to exist to the north in the town (such as the Jack Diamond well).

This topographic plan may have been created in order to facilitate the construction of a retaining wall along the base of Bromide Hill to prevent erosion and clarify the trail between the spring house and the Iron Bridge. The drawings for this work (Figure 3-33) were approved in April 1931. Work was undertaken in the summer and fall of 1931 (Figure 3-34). The wall was constructed of “native stone,” using “as large rock as . . . possible,” with a mortar composed of one part cement, three parts sand, and one-tenth part lime paste. It had a batter of 1:8 and varied in height depending on the natural grade. On the uphill side of the wall, a level grade for the trail was created on fill, with the top of the wall extending two feet six inches above grade to form a railing for the trail. This railing, however, was not solid stone. Rather, it was created by constructing four-foot-wide stone pillars located fourteen feet on center; between the pillars were two seven- by seven-inch square adzed beams eleven feet long, which were inserted six inches into the pillar walls. The beams were stained with Cabot Creosote Stain #248. The width of the walkway above the wall varied to accommodate both trees and the curvature of the cliff face behind it. It was also wide enough to contain two wooden seats (Figure 3-35). The walkway also had a twelve-inch-deep concrete gutter on its uphill side, built to carry drainage. Figures 3-36 and 3-37 show the completed walls and walkways. Figure 3-36 is particularly interesting, because it shows the contrast in masonry work between two eras of park construction. The steps to Robber’s Roost use a cobble-like masonry style of small, almost spherical stones, while the retaining wall is a much bolder, ashlar style of masonry.

Although the plan for the wall (Figure 3-33) also shows a new pavilion, it was not constructed. Plans throughout
the early 1930s continued to show a proposed structure in this location, but the idea was later abandoned in favor of the extant pavilion constructed in 1936. However, while the wall at the base of Bromide Hill was being constructed, a similar project added eighty feet of retaining wall under Robber’s Roost.91

Drawing NP-PLA-4948 (Figure 3-38) shows the locations of the comfort stations, residence, community house and the roads within the area. By the early 1930s the roads were significantly more formalized than shown on the 1909 Map of Platt National Park. The Bromide-Lincoln Bridge road shows a smooth, curvilinear...
alignment along Rock Creek until it exits the park at 14th Street. Also shown on the plan is a symmetrical Y-shaped entrance from 12th Street.

This road layout is confirmed in a circa 1933 oblique aerial photograph of Bromide Springs (Figure 3-39), which also shows the general character of the park and the town prior to major changes which would occur during the CCC era. In the photograph the campground and Bromide Hill are strikingly shady, vegetated areas that contrast with the predominantly open and unvegetated surrounds. Tents are scattered across the entire flat plain.
north of the Creek, extending east into a former farm field located near present-day Walnut Grove. Smaller roads or paths crisscross the campground, showing its chaotic organization. The steep slope of Bromide Hill encloses the south side of the campground, making it the clear termination of sprawling residential Sulphur to the North. In contrast to the vegetated and randomly organized park, Sulphur appears as an open, grided settlement of small frame houses, many surrounded by fenced yards. The large Frye Sanatorium and bathhouse are situated in the center of the photo. The close relationship between this private concession and the park was similar to the contemporary relationship that existed between the Vendome Plunge Pool and adjacent private property and Flower Park. A concrete path connects to the sidewalk on West 12th Street and leads diagonally from the bathhouse to the Bromide Springs Pavilion; it is easy to imagine visitors taking this direct route to the springs.

Walnut Grove

Little is known about the specific appearance of the Walnut Grove area in the early years of the park. There are no early photographs, drawings, or designs for this area dating to this time period. The 1904 “Map of Sulphur Springs Reservation” (Figure 3-2), merely shows the area platted. Names associated with the plats in this area include M. D. Walker and W. J. Brown. The 1909 Map of Platt National Park (Figure 3-3) provides a little more information, showing the area as level and separated from platted part of West Sulphur by a slight ridge running southwest-northeast. Tishomingo Avenue, unlabeled but lined by a few buildings, appears to the north.

Given the level nature of the area, it is possible that it was agricultural fields during the early 1900s. Superintendent Sneed grew hay and oats within the park's boundary, and there was an alfalfa field near Walnut Grove. How close this alfalfa field was to the actual area of Walnut Grove is not clear.

In 1915, Rock Creek Drive was constructed, changing access to the area. Prior to this time, visitors approached Bromide from the northwest via 12th or 14th Street or from the southeast via Buckhorn Road and Bromide Lane. The drive between Flower Park and Bromide first appears on maps dating from the 1930s. The 1931 “Utilities Layout” (Figure 3-8) shows this road, as well as the park's main sewer line, running through the area.

The 1931 “Utilities Layout” also shows the western end of the Walnut Grove area delineated as deer paddock. A town map dating to the 1920s confirms this use. The park obtained three deer from the Oklahoma City Zoo in April 1917, and their numbers increased to five by 1918. It is not known if the deer were immediately pastured in the Walnut Grove area, but they were removed by 1933, since maps of this date and later no longer show a deer paddock as part of the park. A postcard view of deer in the park (Figure 3-40) was likely taken at Walnut Grove.

The only known feature in the area by 1933 was the double tennis court shown on a 1933 plan of the park. The Chamber of Commerce first proposed the courts to the park in 1917, along with a proposal for a golf course. The proposal guaranteed the features would be built "without expense to the government" and without cutting any trees or disturbing the “rustic beauty” of the park. Superintendent Sneed forwarded the request to Washington, since he felt that the golf course and tennis court “could not interfere in any way with the administration of the park and would be healthful aids to the curative properties of the waters of the park.” If, as might be assumed, the tennis courts went into the park at the same time as the golf course, they were constructed in 1923.
Black Sulphur Springs

In 1902, the area known today as Black Sulphur Springs was composed of three springs described as

issue[ing] from the west bank of Rock Creek, immediately above the mouth of Sulphur [Travertine] Creek. . . . All of these springs are extensively used by the public resorting here; besides the three . . . are utilized by a private company, and the water shipped in bottles.99

Two years later, the 1904 Map of Sulphur Springs (Figure 3-2) shows the area around the springs as partially platted. A dotted rectangle circumscribing the name C. G. Frost appears in the approximate location of the springs. Frost seems to have been the bottler of the springs, since a building inventory identifies Frost as owning a frame building, “known as the bottling works on [the] west side of Rock Creek.”100

Something of the physical nature of the area may be revealed by the place names provided in early maps. The 1904 map shows “Beach Avenue” leading directly to the spring area from the east. A similar name is provided for the whole area on the 1909 Map of Platt National Park (Figure 3-3), which shows three small circles labeled “Beach Springs.” On both maps, a marsh-like area is shown just to the southwest of the spring location. On the 1904 map, this area is labeled “Coney Island.” No documentation has been located that describes why this area was called Coney Island, but by 1900, Coney Island, New York was a famous resort with a national reputation for beaches and amusements. This possible reference to the well-known bathing resort, along with the names Beach Springs and Beach Avenue, may indicate that as early as 1904, this area had a sandy, beach-like quality much as it does today.

Gould’s 1906 report on the springs in the park noted that there were a total of four springs in the area. One, which he called “Sand Spring” simply bubbled up through the water and sand at the edge of Rock Creek. The other three, which he called Beach Springs, were located “in a row, approximately 10 feet apart, on a sand bar 30 yards west of the creek.” The three springs, with an estimated combined flow of 70 gallons per minute, were contained in “a joint of tiling standing 2 feet above a platform of sand, surrounded by a semi-circular stone retaining wall 3 feet high and 30 feet long.”101 According to Boeger, this wall was built in 1906.102 Although Gould mentions that the water was bottled and shipped, he unfortunately provides no details on that process. By 1908, Superintendent Greene described the area as only improved with tiles and enclosed by curbs.103

The first significant documented structure in the area was a “small, squarish wooden pavilion . . . just above the sandy beach”104 constructed along with a cistern for mineral water. Both of these features were built in 1915 or 1916 under the direction of Superintendent Sneed. As far as is known, no documentation of the exact location, appearance, and size of this pavilion has been located. Given the type of construction elsewhere in the park at the time, it was likely a simple wood frame structure located near or over an open concrete cistern.

A ford existed at Coney Island by 1908, and in June of 1915, a low-water causeway was built across Rock Creek at Black Sulphur Springs (Figure 3-11).105 Built of concrete, the new structure did not have a waterway underneath it, so water simply flowed over the top of the concrete surface.106 With the new road to Bromide, the causeway created a direct, continuous drive between Buffalo Springs to Bromide Springs.

In 1929, the first pavilion was replaced by a new, neoclassically-styled pavilion. It was sited on the hill above the confluence of Travertine and Rock Creeks.107 The plan for the new structure (Figure 3-41) depicts a rectangular, open-sided building approximately eleven
feet by seventeen feet. Built atop a concrete slab, the corners of the open building were constructed of concrete with a stucco finish. The corners and four columns framing the openings on the long side of the building supported a metal tile roof, painted red. A concrete bench lined three sides of the interior, surrounding a central fountain. The fountain’s proposed five small jets filled a circular basin that overflowed into a larger hexagonal pedestal basin. Water was piped into the fountain from a spring located just to the north of the pavilion. A photograph taken during the pavilion’s construction (Figure 3-42), may show this spring in the foreground. The pavilion is interesting because of its use of the formal, neoclassical style. In contrast, other buildings in the park were simple wood frame structures, designed with utilitarian goals in mind. These included the simple wood and stucco comfort stations and the community houses, which looked like settler’s houses. Even the two earlier Bromide pavilions, which had been designed by park personnel or local engineers such as H. V. Hinckley, similarly emphasized functional rather than aesthetic or decorative concerns. But if the design of neoclassical structure at Black Sulphur Springs was something of a departure from earlier design ideas, neither did it fit into the rustic style of design evolving within the NPS at this time and soon to be utilized at Platt National Park. Thus was the fate of the little pavilion as something of a design non-sequitor in the park sealed. By the 1930s, the pavilion had been neglected and was in poor condition, as shown in Figure 3-43.

Flower Park

As shown on early Sanborn fire insurance maps (Figure 3-44), the built area of the town seems to have been well-bounded by the steep banks of Sulphur (Travertine) Creek to the north. As a result, though there is reasonably good photographic documentation of the Sulphur town site, there is little detailed documentation of the Flower Park area, located directly to the north. On the 1904 Map of Sulphur Springs (Figure 3-2), for example, the area, which also encompasses today’s Central Campground, is shown as unplatted open space labeled “Central Park.”

In the early 1900s, townspeople accessed Central Park by a bridge and walkways over the creek. These appear in slightly different configurations on the various Sanborn insurance maps from 1900-1903. It is difficult to know which is the wooden wagon bridge described by Palmer Boeger in his book *Oklahoma Oasis*. According to Boeger, the twelve-foot-wide wooden bridge, which carried up to one-hundred wagons a day, was located at the approximate site of today’s Lincoln Bridge.111 It was first built on pilings, and was moved slightly and reconstructed on stone piers in 1903. These stone foundations with a symbol labeled “walk” appear on the December 1903 Sanborn map (Figure 3-44) in the approximated location of the Lincoln Bridge. However, a wider symbol labeled “bridge” appears over the creek slightly to the west. On the 1900 Sanborn map this wider symbol is more clearly annotated as “wagon bridge,” and its location is confirmed in the 1904 plat map (Figure 3-2). A photograph (Figure 3-45) shows either the bridge, or perhaps more likely, one of the walkways. The image shows the primitive nature of these structure as well as the
buildings constructed overhanging the southern bank of Sulphur (Travertine) Creek.

The appearance of the “Central Park” area beyond the bridges and walkways to the north at this time is not well understood due to little documentation. An area known as “Travertine Falls” was located along the creek, and was a popular photo spot (Figure 3-46). The flat level area of Central Park became a campground. By 1908, the area was used for “public gatherings, conventions, ex-Confederate Soldier meetings, and summer Chatauquas.”

The first major park development was likely the construction of Lincoln Bridge, which was built after repairs on the wooden wagon bridge were undertaken in both 1907 and 1908. According to Boeger, Forrest Townsley, the park’s first full-time ranger, was the designer. The construction contract for the Lincoln Bridge was signed in 1908 and construction began in February with Lieberantz and Robinson of Oklahoma City as the contractor. The bridge, sometimes described as “Gothic Revival,” was a single-arch masonry bridge with four cylindrical, crenelated towers forming its abutment. The masonry, of grey limestone, used both horizontal coursing on the bridge and, uniquely, vertical coursing on the towers. Small spiral steps led up the towers, which were each crowned with a flagpole. Overall, the bridge was approximately one hundred feet long and twenty feet wide, which was said to be wide enough for four horses to cross abreast. Eight electric globe lights were installed on the bridge, completing one of the grandest structures in the park. The bridge was opened on February 20, 1909. The bridge rapidly became a favorite scenic spot within the park, confirmed by the multiple postcard views taken of it in the early 19th century (Figures 3-47 and 3-48). An interesting aspect of these views is how open the area around the bridge is and how little vegetation screens it from view, particularly in comparison with today’s conditions.
Chapter 3: Creating Platt National Park, 1902–1933

The 1909 Map of Platt National Park shows Lincoln Bridge in its proper location; yet no road is connected to it on this plan. Rather, a trail leads from it north through the park to Sulphur. In 1908, Superintendent Green constructed this trail, and described it as

the greatest thoroughfare for persons on foot in the park. The entire population of North Sulphur and visitors at the principal hotels use this trail in reaching West Central Park and Pavilion Springs. I have named it Roberts Trail in honor of Miss Una Roberts, the clerk in this office, who projected it.

The name of this trail appears to have been short-lived. However, the description Greene provides contradicts the idea that Lincoln Bridge was regularly used for major horse and wagon traffic. Instead, also shown on this plan is a road heading north and dividing “Central Park” into east and west halves. Although there was no bridge over Travertine Creek on this road, an apparent extension of Buckhorn Road, the road was still the major route into Sulphur. In 1909, Superintendent French recommended a wagon bridge be constructed over the river at this location, since the ford here would flood after heavy storms. French believed constructing this bridge would eliminate the numerous post-rainstorm requests to use Lincoln Bridge for vehicle traffic.

In 1909, Superintendent French constructed a concrete walkway in the western half of Central Park; this was perhaps an improvement of Greene’s Roberts Trail between 2nd Street and Lincoln Bridge. The walkway is seen on a circa 1915 annotation of the 1909 map, as are two gravel trails. The paths in the park soon became favored scenic postcard views (Figures 3-49 and 3-50).
Other improvements to the area followed. In 1913, 108 shade trees were planted in East and West Central Park. The species, numbers, and locations of these plantings are not known. By 1915, two “new” comfort stations were located in West Central Park, one “just west of Lincoln Bridge” and one 600 feet north of the bridge. The sewer line for the stations was connected into the main sewer line for the town and park, which already ran through the middle of the West Central Park. A “small frame pavilion,” perhaps for another, minor spring, located 600 feet northwest of Beach Springs, was also documented in West Central Park in 1915. In June that same year, the low water causeway across Rock Creek at Black Sulphur Springs was completed.

Flowers were also added to the area. As early as 1909, Superintendent Greene reported planting twelve-foot diameter flower beds in Flower Park (one can be seen in Figure 3-50):

> At each end of this [Lincoln] bridge I have caused circular flower beds to be prepared and inclosed by rustic walls of conglomerate stone. By permission of the Superintendent, the ladies of the Civic League of Sulphur provided and planted a large variety of highly ornamental shrubs and flowers in these inclosures. Similar flower beds planted in like manner have been provided in Cliffside Park [now Bromide] near the north approach to the wire suspension bridge.

Although much of Flower Park over time became “covered with sweet clover and weeds,” flowers continued to be planted under Superintendent Sneed. According to Boeger, the flower planting became a community endeavor:

The flood of January 21, 1916 was a minor setback for the development of the area. The flood damaged the northeast abutment of Lincoln Bridge. Worse,

> One of the new comfort stations in West Central Park washed down the creek so that no trace of it has been found, and at least 20 of the new park benches went down the stream so that it will be impossible to recover them.

The comfort station appears to have been the one to the north of Lincoln Bridge; it was replaced with a new one, located to the west, in the summer of 1917. In March 1922, probably as a part of Superintendent Ferris’ campaign to expand the park’s collection of animals, the park acquired a bald eagle, whose cage “hung in a tree in Central Park.” Where this was located and how long the eagle lived there are both unclear.
Also in 1922, the Vendome well, located adjacent to the northwest corner of Flower Park, was drilled. The well’s prodigious outflow of 2,500 gallons per minute was directed in a stream (sometimes described as a ditch) running through the park and dumping into Rock Creek across from Black Sulphur Springs. The stream first appears on a 1933 plan. This plan also shows the two comfort stations in Flower Park and an entry feature of some sort at the intersection of Davis and First Street and Highway 18. These were probably stone piers with a turnstile similar to ones elsewhere in the park (see Figure 3-63 below).

Buffalo Pasture

After 1902, when the town of Sulphur Springs had moved south from the location of the first town site, the area now known as the Buffalo Pasture and Prairie Uplands was fast becoming a new town. Documentation of this area at this time is relatively sparse, but the 1904 “Map of Sulphur Springs Reservation” (Figure 3-2) provides an idea of the extent of the settlement at the time. An inventory of 1902 and 1904 claims for government restitution for buildings and structures reveals that a majority of the properties in the southern part of the town were improved. Improvements ranged from simple, “box houses” to more extensive layouts where property owners invested greater capital. For example, Josephine Jones’ property in the southern part of the park reservation was listed as containing a “Three-room house, one-room house, buggy house, stable, fruit trees, etc., in Block 22.” Other types of improvements listed on properties in this inventory included barns, log houses, frame houses, picket and plank fences, stone foundations without structures, outhouses (which probably referred to out buildings, not privies), and grapevines. From the inventory, and from photographs of typical Sulphur residences (Figure 3-53), a picture emerges of the upland area as an open landscape dotted with trees and primitive houses.

Figure 3-54 is another example of the type of construction and the appearance of the landscape in the prairie upland area. This building was constructed near Wilson Spring, which appears as the southernmost spring in the park on the 1909 Map of Platt National Park. The spring was named for Virgil Wilson, who was an early Sulphur resident. In part, it appears that the addition of the extra 218-odd acres of the park in 1904 was done to protect this, and other, springs in the area.

The springs in the upland part of the park were numerous, but were not extensively developed by 1906, according to Gould’s “Report on Springs.” Gould organized the springs in the upland area into two main groups. Seven springs were located in the “notch” along the park’s southern boundary, an area known at the time as “Churchill Park.” These springs included Wilson Spring, Churchill Spring, Rucker’s Spring, Iron Spring, Jericho Spring and two unnamed springs (Nos. 32 & 33). Only two of these were primitively developed for water collection, Wilson Spring with a tile and Rucker’s Spring with a small basin carved into the surrounding rock formation. A second group of seven springs were located west of Churchill Park in a ravine near the southern park boundary. Shown accessed by Sulphur Bromide Lane and the Cliffside Trail on the 1909 Map of Platt National Park (Figure 3-3), these springs included Black Sulphur Spring, Sulphur Spring, Taff’s Spring, Iron Spring, Soda Spring and two more springs also named Sulphur Spring. All of these springs were listed as flowing at rates of two to three gallons per minute. In 1906, only Black Sulphur Spring and Taff Spring were listed as developed, their waters flowing into a hollow log and a wooden box respectively.

Once the additional lands were added to the park and the new boundary finalized, the upland landscape was stripped of its previous signs of habitation. Though citizens moved many structures, many were purchased by the government and demolished. This was not a rapid process, and as late as 1933, features of the old town were still being cleared from the park. Some buildings were retained to house park staff. Others were torn down and their materials used elsewhere; as noted above, the first Bromide Pavilion was constructed from portions of the former Bland Hotel. Although the 1909 Map of Platt National Park (Figure 3-3) does not show many of these
buildings, a 1915 building inventory of “each building or structure of any kind within the park limits” completed by Superintendent Sneed shows six structures within the area. These included a six-room frame cottage housing two park laborers (W. C. and A. K. Milligan) and a barn and grain crib in a cluster approximately one-third mile south of Pavilion Springs. The other three buildings were pavilions at springs. Two at Black Sulphur Springs and Sulphur-Bromide Springs were described as being small, recently repainted, and in good condition. Figure 3-55 is one of the early Black Sulphur Springs pavilions.

Though it does not show all of the extant buildings, the 1909 map does show some other features of the landscape. The most significant feature shown are the roads running through the area. The most important of these is Buckhorn Road. Buckhorn Road was the major thoroughfare between the communities of Scullin and Sulphur and also accessed a large farming community along Buckhorn and Oil Creeks. On the 1909 map Buckhorn Road bisects the upland area and runs from the southeast corner of the park up to Pavilion Spring. Bromide Lane and Sulphur Bromide are shown forking off Buckhorn and respectively heading west to Bromide Springs and southwest to Black Sulphur and Sulphur Bromide Springs.

To the west, a road running north-south, just east of Mount Airy, bounded the edge of the upland prairie area. This road was known as Lockwood Lane. In addition to these main routes, two other short private roads are shown in the southeastern part of the park. It is likely that the roads shown do not adequately represent the true number of private or informal roads that existed in the area; given the number of settler’s houses which existed here prior to 1904, the area was probably crisscrossed with primitive lanes and driveways.

Three fence lines are also shown running through the area on the 1909 Map. These probably indicate locations of pastures or fields, because hay, oats, corn and alfalfa were grown in the park, though exact locations of these fields are unclear. The park’s mules were also pastured in the Buffalo Pasture area beginning in 1914. In 1915, two large pasture areas were leased out to local ranchers. One hundred and fifty acres on the approximate site of the future golf course were leased to “Moss & Jennings” for “pasturage purposes.” This area was bounded on the south and west by Buckhorn Lane; on the east by the park boundary and Lockwood Lane; and on the north by Travertine Creek and “inside line fences.” One hundred and seventy acres were leased to B. A. Williams, and was comprised by the area bounded by Bromide Lane, Sulphur Bromide Lane, the steep slope of Bromide Hill and the park boundary. Unfortunately the terms of these leases are not known. Grazing continued in the park, perhaps in these locations, until 1921, when Stephen Mather visited the park and instructed Superintendent Ferris to “stop all grazing of cattle in the park after present contracts expire.”
The next major land use change in the area occurred in 1923, when a nine-hole golf course was constructed in the area east of Buckhorn Road. The golf course had first been proposed in 1917 by the Sulphur Chamber of Commerce, who noted that there were several “ideal” sites where a nine-hole golf course could be located without having to “cut any trees or in anyway disturb the rustic beauty of the place.” Though Sneed forwarded the request to the Department of the Interior, stating that “people who visit a resort must be provided with amusements of some sort,” little action on the proposal was taken. Then, in 1923, under Superintendent Ferris, Sulphur businessmen raised approximately $1,100 and hired Guy Crooks, a golf course engineer from Oklahoma City, to begin construction of a course. It appears the course was at some time authorized by the Department of the Interior, though later administrators disclaimed any knowledge of it. The course was located east of Buckhorn Road, with its first hole located just south of Pavilion Springs and the cluster of employee residences located there. The local businessmen formed the “Platt National Park Golf Club” to financially support the construction and upkeep of the course. Membership averaged about 40, and dues cost ten dollars annually. By 1934 the club had spent about $12,000 on the course, averaging $1,100 annually. Course play was free to out-of-town visitors, but local golfers from Davis and Sulphur had to pay a fee, which was fifty cents a day in 1926. In 1925, the club constructed a “corrugated club house” somewhere on the golf course site. Little other development occurred in the Buffalo Pasture and Prairie Uplands throughout the 1920s and into the 1930s. Drawing 1 shows the area’s appearance prior to major changes by the CCC. In general, Drawing 1 contains most of the roads and features seen on the 1909 Map of Platt National Park, indicating they were retained throughout the period. These features include Buckhorn Road, Sulphur Bromide Lane, and the Milligan house, now labeled “Residence #2,” and with an access road shown leading to it. Features missing from the 1909 map are the fence lines and narrow lanes in the southernmost part of the park, as well as indication of any structures at Wilson Spring, Black Sulphide (Sulphur) Spring, and Sulphur Bromide Spring. Features shown on this map but not shown on previous maps include Gilsonite Lane (connecting Buckhorn Road to Division Street outside the park), as well as areas for the golf course, the mule pasture, and an area called the “wagon camp.” Of the latter three features, only the “wagon camp” has not been discussed. There is little record of this area, but it appears to have been an early campground, perhaps started as early as 1905 or 1906. Like other camping areas, the wagon camp was not shown on the 1909 map (Figure 3-3). However a 1915 building inventory records two new, two-compartment comfort stations in the “public campground.” Located 500 feet northwest and 1500 feet due west of the Superintendent’s office, these would have been situated in or near the wagon camp. A 1933 plan shows a small access road leading to this area but no comfort stations. Two new built features on the plan are the Superintendent’s Residence (labeled Residence #7) and an entry feature of some sort located at the south entrance of the park on Buckhorn Road, just west of Fair Ave and the Veteran’s Hospital. The Veteran’s Hospital had been built in 1922 and may have precipitated the construction of a set of entry piers. Superintendent Branch chose the site for the Superintendent’s Residence, near the top
of the highest point in the prairie uplands, in 1932. As a result, it had excellent views of most of the park. Work began on the house on September 2, 1932 and was finished just prior to the establishment of the CCC camp.

Pavilion Springs

By 1902, Pavilion Springs was the heart of the burgeoning town of Sulphur, Oklahoma. As a result, documentation of the central core area of the future Platt National Park dating to the early 1900s is quite good. Early historic photographs show it to be a typical frontier town. Mercantile stores, lodging accommodations and private residences sprang up around a central open square where the town’s namesake springs bubbled out of the ground.

The springs were seven in number, and in 1906 were indicated as being Big Tom Spring, Arsenic Spring, Little Tom Spring, Sword’s Spring, Townsley’s Spring, and Dog Spring by Charles Gould. These six were listed as being “developed,” with either cement basins or tiles to contain the water for use. The seventh spring was listed as “undeveloped” and simply indicated as No. 11. Gould analyzed the mineral content of these sulphur springs and noted that the “odor from these springs is strong, and may be detected sometimes for the distance of a half a mile.” Big Tom was the strongest spring, flowing at forty gallons per minute, while the others flowed at anywhere from two to eight gallons per minute.

The springs were located in an open square sometimes labeled “Sulphur Park” centered in the little town; their locations are indicated as small circles in a circa 1900 Sanborn Insurance map (Figure 3-56). The open town square is also depicted on the 1904 “Map of Sulphur Springs Reservation” (Figure 3-2).

The Sanborn map details a large number of buildings situated around “Sulphur Park,” as well as a stream carrying the overflow from the springs toward Rock Creek. A dashed line indicates the pavilion constructed over two of the springs. As noted in the previous chapter, a double-storied pavilion had been built in this location in 1895 or 1896.

When the Sulphur Springs Reservation was established in 1902, the town of Sulphur was forced to move south and west, away from the springs around which it had been founded. Because of the dispute over the boundary of the reservation, as described in the introduction to this chapter, the buildings took some time to remove. Though the reservation officially opened to the public in August 1904, the process of selling, moving, and tearing down the buildings surrounding the Seven Springs did not get fully underway until 1905. As shown on the 1909 Map of Platt National Park, the town streets around the area were also obliterated, with Buckhorn Road, the primary route leading north south through the park, skirting the east side of the pavilion on the former alignment of East Street (see Figure 3-56 for the location of East Street).

However, some access on the west was still maintained, as the 1909 Map (Figure 3-3) also shows a foot trail running on the west side of Pavilion Springs.
Chapter 3: Creating Platt National Park, 1902–1933

In 1903, the government replaced the original two-story pavilion with the somewhat more elegant single-story structure (Figure 3-57). The new pavilion had a hip roof supported by fourteen square wooden columns, with wooden arches over the openings between each pair of columns. Early photos show the pavilion and the whole of “Sulphur Park” surrounded by a white picket fence, though others, taken later, do not. An interesting aspect of these early photographs is that they show the pavilion located in a distinct depression compared to the surrounding grade, and a wooden bridge with stairs leading down seems to provide access from the street to the floor of the pavilion. The interior of the pavilion was rather primitive, with the springs encased in cylindrical tiles (Figure 3-58).

The structure saw heavy wear and was fixed a number of times. In 1906 the roof of the pavilion was replaced. In 1911, the awkward grade around the pavilion was fixed when Big Tom was repaired. The impetus behind the repair of Big Tom is unclear, but the work resulted in a new concrete spring head constructed over the spring, which previously had emanated from a cylindrical tile. A funnel casing and pipe was constructed over the existing tile to direct the water up to the new concrete spring head, whose base was located almost six feet higher than the original grade (Figure 3-59). The six feet of low grade around the spring was filled in with red clay. Water flowed out of the side of the concrete spring head, which was almost four feet tall and topped with a circular globe (Figure 3-60). Excess spring water flowed into curbed depression in the concrete floor underneath and thence via a drain into a pipe, another improvement over the earlier open stream.

By 1915, the pavilion at the springs was the major building left from the original town center. A building inventory dated to this year describes the pavilion as “recently repaired and repainted” and as “[l]ocated over ‘Big Tom’ and ‘Beauty’ Springs of the Pavilion Group.” However, the building inventory also describes a second, “smaller frame pavilion….[l]ocated just northeast of the larger pavilion.” It’s not known exactly when this second pavilion was constructed, but Figure 3-61 shows both pavilions. They are situated in a rural setting that bears little resemblance to the commercial area that formerly surrounded the springs. This photograph exists in stark contrast to earlier photographs of the previously bustling town site (Figure 3-59).

The years between 1915 and 1933 are not as well-documented as the spring’s early years. Based on this documentation, there does not seem to have been major change at the pavilion until it was reconstructed by the CCC in the late 1930s.

The Leeper House and Hillside Springs

Just uphill and to the southwest of Pavilion Springs, two other structures from the early town site were retained: the Leeper House and a pavilion over Hillside Springs. The origins of the Leeper House were described in the previous chapter. In 1904 the lease on the building
expired, and it became the superintendent’s office. The building appears as a simple square on the 1909 Map of Platt National Park (Figure 3-3). No access road is shown to the building, but presumably it had an access driveway from Buckhorn Road.

As far as can be told, little was done to the building to convert it to the superintendent’s office. In 1909, a park sign and flagpole were added in front of the building (Figure 3-62). In July of 1913, Superintendent French requested that a new administrative building be constructed in the park to replace a vermin-infested wood-frame structure that had previously done the job. However, the request was denied by the Department of the Interior, and as a result, it appears that administrative offices joined the superintendent’s offices in the Leeper House.

Around 1914, some repairs and additions, including a porch, were made to the building, and by 1915, the park’s building inventory succinctly described the office as a “Stone building, 2 rooms, 1 porch and coalshed attached, with inside toilet and 2 clothes presses.” The same inventory noted that a small frame tool house and comfort station was located just southwest of the office. It is not known when this little outbuilding was built or removed.

The early history of the pavilion at Hillside Springs is not as clear as that of the park office building. A published photo in the park archives reveals that this spring was also sometimes known as Beauty Springs, though another spring at Pavilion Springs was also called this. It is not known when the first pavilion was built at Hillside Springs. Churchill and Taff described the spring as a sulfur water spring emanating from beds of limestone conglomerate. Sanborn maps from 1900 and 1903 simply label the spring as a well. An early town photo (Figure 3-63) taken sometime between 1896 and 1903, shows an open-sided pavilion with a pyramidal hip roof at a rocky hillside location. This is likely Hillside Springs, but details about the construction of this pavilion have not yet been found.

In 1906, Charles Gould confirmed that the spring was located under a pavilion of some sort, with water collecting “in a stone reservoir 5 feet deep and 3 feet in diameter” from whence it flowed into a “cement basin where it is taken for use.” He provided the following early history of the spring, which was located at the head of a small ravine approximately 150 yards southwest of the Pavilion group. Formerly there were two springs at this place, a Sulphur spring and a fresh water spring, but the latter has ceased to flow while the water in the former has...
increased in amount, but is said to not contain so great a percent of Sulphur as formerly. These facts lead to the inference that the flow from the two springs has been united.167

By 1907, the spring was one of the most popular in the park, with hundreds of daily visitors. Some of these visitors bathed their feet or watered their stock at the spring, polluting the area.168 Superintendent Greene fenced ten acres around the spring, producing a small sketch map of the area (Figure 3-64) in the process. By 1908, he described the spring’s wooden pavilion as “rude and dilapidated.”169

By 1909, a small pond was located just below the spring, as seen on the 1909 Map of Platt National Park (Figure 3-3).170 The early use of this pond is not clear, but by 1930, the pond was used to water the park’s elk (see below). In 1911 a bathhouse was proposed near Hillside Spring by Superintendent Greene and in 1913, Superintendent French proposed that a swimming pool be built “through which the water from Hillside Spring could flow naturally in a constant stream.”171 While it is presumed neither of these features was ever built, their descriptions raise questions about a small pond located below the spring, which appears on maps from 1909 through 1933.

In 1915, a pavilion with conglomerate rock columns, a concrete floor and a “pagoda roof” was constructed on the site.172 A postcard dating to circa 1918 (Figure 3-65) shows the pavilion set into the hillside with the park offices (former Leeper House) located just above it. Between the two is a stone retaining wall, which may indicate that the water was piped from the hillside behind the wall into the pavilion. The roof of the building, with a flag pole, is also seen in Figure 3-66. This view also shows an interesting conglomerate stone turnstile that was located somewhere between the park office and the pavilion. This style of conglomerate rock construction matches that of the Hillside Pavilion’s columns,
stonework in the Bromide Pavilion, and entry piers elsewhere in the park. This conglomerate stonework may have been typical for the years prior to the CCC era.

Small changes continued to be proposed and implemented in the area. In August 1918, J. P. Slaughter, meteorologist from the Oklahoma Weather Bureau Office, established a small weather observation station (rain gauge and thermometers for minimum and maximum temperature) housed in a little white box in front of the park office. In 1917, Superintendent Sneed proposed building a bathhouse near Hillside Spring, but the request was denied by Washington. Other changes between 1917 and 1933 are not well-documented. A photograph taken prior to the pavilion's demolition by the CCC shows the structure intact, but looking a little forlorn in wooded surroundings (Figure 3-67).

Wagon Camp, Elk Paddock, Buffalo Paddock

As the park developed, tourism increased, and the former central town site was one of the hubs of tourist activities between 1902 and 1933. Three new features geared to visitors soon encircled the two springs and the park office. Probably the first of these built was a public campground located to the west of the Leeper House, in what is now the westernmost part of the Maintenance Area and northernmost part of the Buffalo Pasture. What little is known about this area is described above as part of the description of the Buffalo Pasture. The other two features were two paddocks, one for elk and one for buffalo, constructed in late 1919 with the help of local businessmen. The elk paddock was located immediately adjacent to and just west of Hillside Springs and the park office. As noted above, a pool formed from the run-off of Hillside Springs appears to have been the elk's water supply. The buffalo paddock was located just east of Pavilion Springs, on the other side of Buckhorn Road. Bounded on the north by Travertine Drive, the buffalo paddock had a “feeding grounds” located next to the drive. This probably allowed visitors an easy view of the bison. Drawing 1 indicates the locations of the elk and bison pastures and the public campground.

The elk (Figure 3-68) and bison were brought to the park by Superintendent Ferris, who felt that having animals made the park “a pleasant place to come and visit when [a visitor felt] run down and tired.” Ferris begged three elk from Yellowstone National Park and two buffalo from Wichita Mountains Forest Reserve and they arrived in December 1919 and February 1920, respectively. By 1921, two of the three elk had died. By 1925, despite replacements, only one buffalo remained and so two more buffalo were added to the “herd” in 1931. Ferris also secured ostriches and other animals for the park, though it is not clear exactly where these were housed.
Employee Residence Area

Housing for park staff was also addressed in the central area of the park. This likely occurred because it was easier to convert a few of the former town site’s abandoned buildings into park housing rather than build new ones. Thus, the 1915 building inventory recorded two residences and associated outbuildings in the area east of Hillside Springs where Building 2 is today. One of these was the first Superintendent’s residence, a seven-room frame house with an attached servant’s room, located 700 feet south of Pavilion Springs (Figure 3-69). Around the Superintendent’s residence were a new barn, a hen house and a storage building. In 1931, when the new Superintendent’s residence was built, this building became ranger housing, and was renamed “Residence #3.”

The other residence located in the area was a five room ranger’s house with an associated frame stable and storage building. By 1933, this building had become known as “Residence #4.” (This building was modified by the CCC and remains extant today as Building 2). In addition to these two houses were two “new” comfort stations located just southeast and southwest of the ranger’s house in 1915. These may have been the toilet facilities for the residences. How much change occurred in the employee residence area between 1915 and 1933 is difficult to tell. However, given that the buildings were completely overhauled by the CCC, it appears that the area was minimally maintained.

A number of other staff residences were extant in the park in 1933. One residence (Residence #5) was located near the buffalo paddock, just northwest of Panther Falls. Another residence (Residence #6) was located across the creek, near the boundary of the park at the intersection of First Street East and Wapanucka Ave. And of course there was the ranger’s house in Bromide (Residence #1) and ranger’s house near Sulphur-Bromide Lane (Residence #2), both of which have already been described. All of these residences appear on Drawing 1.

1933 Overview of the Pavilion Springs Area

Little major change appears to have occurred in the former town site area following the early 1920s. In November 1930, the portion of Buckhorn Road running through the area was repaved with cold asphalt paving by the park and the state. Work included new base and shoulder, but the road was not significantly realigned.

The 1933 period plan, Drawing 1, provides a good overview of the entire central core area of the park and shows all of the elements described above. Based on the 1933 “Plan of Platt National Park” (NP-PLA-4948), the plan is labeled with contemporary names. On the plan, the former Leeper House is labeled “Superintendent’s Office.” Access roads are shown to both this office and to the residences east of Buckhorn Road. With the relocation of the Superintendent’s Residence south in the prairie uplands, the residences to the south of Pavilion Springs were simply renamed Residences #3 and #4, indicating their use as ranger housing. Drawing 1 does not show outbuildings that may have been associated with these residences, since these do not appear on the 1933 “Plan of Platt National Park.”

Drawing 1 also shows Pavilion Springs and the pavilion at Hillside Spring, as well as the small pond below it. The drawing also depicts a dashed trail line running from Hillside Spring along the south side of Rock Creek to Lincoln Bridge. This footpath likely existed along old town road traces documented in the 1900 Sanborn Map (Figure 3-57). The map also shows the extents of the buffalo and elk pastures located on either side of Buckhorn road. In general, the central core area was a compact arrangement of features important to both the visitor experience and the day-to-day functioning of the park. This compact arrangement and the close relationship between these two different aspects of the park would be significantly altered after the arrival of the CCC-era designers.

Central Campground

When Sulphur Springs Reservation was created in 1902, the area now known as Central Campground was part of the area known as Central Park. The campground’s name was presumably derived from the name of the original park and its location in the center of the plat of Sulphur Springs. As shown in Figure 3-3, the original Central Park was divided into two halves by a road running north-south between the town site to the north and the rest of the park to the south (Figure 3-70). Around this time, Central Campground was known as “East Central Park.” In 1908, Superintendent Greene designated six acres in this area as a campground for “organizations
Little additional written or graphic documentation of the design, layout, or features of the campground are available for the years between 1908 and 1933. A memo written by Superintendent Sneed in 1915 indicates that two comfort stations were built in East Central Park around 1915. One of these comfort stations appears in an early view of camping in the park (Figure 3-71). These two comfort stations are also presumably those labeled “#8” and “#9” on Drawing 1, as per the 1933 “Plan of Platt National Park” (NP-PLA-4948). Missing from the original 1933 plan are any other campground features such as roads or campsites; the only things shown are two drainage ways running through the campground into Travertine Creek. Drawing 1 thus summarizes the meager body of information known about the appearance and features of Central Campground in 1933.

Cold Springs Campground

The Cold Springs area is named after two springs located in or near Travertine Creek at the base of Mount Airy, between Pebble Falls and Garfield Falls, as shown on the 1909 Map of Platt National Park (Figure 3-3). The exact date of the springs’ discovery is not known. Churchill and Taff did not inventory them during their 1902 survey, nor do they appear on any maps prior to 1915. In 1906, however, Charles Gould noted two weak, iron-containing springs, “located on the bank of Sulphur Creek about half way between the Pavilion Springs and...”
the Buffalo and Antelope Springs.” Gould indicates that these springs (which he named “No. 3 Cunningham Spring” and “No. 4 Buse Spring” or the “Chalybeate Group”) were located near the “old Cunningham Place.” A plat labeled Cunningham is seen near the Cold Springs area on the 1904 “Map of Sulphur Springs Reservation” (Figure 3-2) and would thus appear to confirm that these springs are the namesake for the area. Figure 3-72 is an early photograph of the “Cunningham Place” taken by Superintendent Swords and thus may be the earliest photograph of the Cold Springs area.

The area around Cold Springs, though shown platted on the 1904 “Map of Sulphur Springs Reservation,” was likely sparsely settled, being on the edge of the original town. The land was also probably agricultural, since “cultivated fields” were described near Cold Springs during Superintendent Sneed’s administration, from 1914-1919 and likely before. In the winter of 1912, Superintendent French had fifty acres around Cold Springs thinned of timber and cleared of underbrush, presumably beginning the campground. Under his supervision, a 36-foot long table with benches, additional benches and two comfort stations were constructed. These comfort stations were listed on the 1915 building inventory. By 1914, a road was built along Travertine Creek all the way to Buffalo and Antelope Springs, and a gravel surface and culverts were installed as far as Cold Springs, improving access.

By the 1920s, the area was firmly established as a campground. A town brochure from circa 1920 shows the Cold Springs area labeled as “Free Campground #3,” and vehicles and tents were spread out under the trees (Figure 3-73). In 1922 a community house was added to the campground. This building, designed by Daniel Hull, was almost identical to the one constructed in the Bromide Campground and is described above. Along with the community house, two additional comfort stations were built in the area. Hull also recommended eliminating the cornfields near the campground and extending the camping area upstream.

Campground use was heavy throughout the 1920s and 1930s, and in 1931, one-half of Cold Springs was closed to let the ground and vegetation recover from the heavy use. Cold Springs’ community house and three comfort stations are shown on Drawing 1. It is presumed that the easternmost comfort station was constructed in 1913, while the other two date from 1922. Unfortunately no documentation has been found about circulation patterns or locations of campsites within the campground. A barn and staff housing (Residence #6) are shown located directly west of the campground area on Drawing 1. The barn across the river from Residence #6 appears to have been built sometime between 1915 and 1933, since it is not described in the 1915 building inventory of the park.

Travertine Island and Little Niagara Falls

In 1902, the eastern part of the newly minted reservation was less developed than the town site centered around Pavilion Springs. Thus, early documentation of the eastern areas of the park is much less extensive than the central core area. The 1904 “Map of Sulphur Springs Reservation” (Figure 3-2), for example, extends only as far as about Cold Springs. As a result, less is known about the park’s eastern areas. This is particularly true for Travertine Island and Little Niagara Falls.

In fact, the earliest drawing of these two areas is probably the 1909 *Map of Platt National Park* (Figure 3-3) produced by the United States Geological Society (USGS). This plan shows Travertine Island as an almost triangularly shaped area created by the ox-bow-like confluence of a stream labeled “Nigger Run” with Travertine Creek. Located at the three “corners” of the “triangle” are three falls, two of which are simply labeled “Falls” and the third of which is labeled “Little Niagara Falls.” The falls were so-named because of their resemblance, in miniature, to Niagara Falls in New York, and by 1909 they were a well-visited sylvan scenic locale.
Chapter 3: Creating Platt National Park, 1902–1933

A 1908 description of the falls noted that “according to photographs and statements” the falls were fifteen feet tall and “separated at the brink by a jutting rock into two divisions.” Numerous postcards from the early 1900s (Figures 3-6 and 3-74) show such a view of water pouring over mossy rocks.

Oddly, on the 1909 map the label of Little Niagara Falls is located near the northern “corner” of the island, and not near the falls that is today associated with the name of Little Niagara. This is somewhat perplexing, but the location of the label remains consistently on the northern falls on all maps of the park produced prior to 1933. Thus, it seems possible that the falls were relocated or renamed sometime after 1909. It’s possible that such a relocation was connected with the construction of the reservoir for the town water supply.

Little Niagara Falls were just one feature of the Travertine Island area, which became more popular for picnicking and day trips once Travertine Drive was improved in 1914. Road improvements were important, since visitors of the time felt that Travertine Island’s distance from the center of the park made it accessible primarily to visitors who came by automobile. Another attraction was a natural swimming area located at Cave Island Falls, just downstream from the island.

It is unknown how much development occurred in the area during the 1920s. The 1931 “Utilities Layout” (Figure 3-8) shows about the same information as the 1909 Map, except that it shows a spur leading off Travertine Drive, across Travertine Creek and ending in a loop on Travertine Island. This spur provided vehicular access to the area and might have existed earlier than 1931. No documentation recording the general appearance or specific features of the area in the 1920s has been located. However, by the time the CCC arrived in the park, Travertine Island was one of the “most attractive and popular” areas of the park.

Antelope and Buffalo Springs

Antelope and Buffalo Springs, the sources of Travertine Creek, have been important since the park’s beginnings. The Indians reportedly named the springs after the buffalo and antelope that once roamed the area, and the names were then translated into English with the coming of European settlers. Frank Miles, an Indian born in the area, told how historically Antelope Spring was known as Buffalo Spring because of the “striking likeness from a certain point of view of a buffalo with a calf running at its side, formed by a rock in the center of the spring.”

Documentation of the area’s early days has proven so far to be sparse. Perhaps the earliest information of the area is a verbal description of the two springs written by Churchill and Taff following their 1902 survey of the area:

The larger of the two springs as the source of Sulphur [Travertine] Creek issues from the bed of the valley in a dense jungle of young forest trees; the other issues from beneath a projecting bluff of limestone conglomerate on the south slope of the valley about midway in the slope above the main channel.

Churchill and Taff, who describe the larger park in scenic terms, do not, oddly enough, describe what would later
become a favored scenic spot. Rather, they discussed the area in resource value terms, noting that the springs, elevated 100 feet above the town, could be a source of municipal water, “simply by leading the water to the city by piping.” This idea would be raised a few more times in the early years of the park.

The earliest photographic documentation of the area is equally uninformative about the details of the two springs’ appearance. A cyanotype taken by Superintendent Swords in the early 1900s (Figure 3-75) shows the area above Antelope Springs as level, open, rocky, and sparsely vegetated. The dominant elements in the photo are a log and a frame house, two structures that were presumably removed once the government established the Sulphur Springs Reservation. Other elements in the photos are deciduous trees and shrubs.

It is not until a decade later that the scenic qualities of the area are documented. A postcard view (Figure 3-76) shows Antelope Springs bubbling out of the rocky slope sometime around the 1910s. By this time, both Antelope and Buffalo Springs were popular day-trip destinations within the park, and were together known as the “Head of the Springs.” However, during the early years of Sulphur Springs Reservation, the eastern section of the park was the least developed and the poor roads, likely located along road traces used by early settlers, encouraged only the hardiest visitors to explore the furthest reaches of the park. In 1914, a more permanent road was constructed to the two springs, though it still lacked a gravel surface. This 1914 alignment seems to be shown on a circa 1915 sketch by Superintendent Sneed. Drawn in pencil and ink on the 1909 map of the park, the plan shows a new loop around Buffalo Springs, two box culverts near Antelope Springs, as well as a “rustic wagon bridge” along the route.

Throughout the 1910s, the springs’ drying up was a relatively common occurrence, and a problematic one. Without the springs, Travertine Creek and its scenic waterfalls were nonexistent. The two springs went dry from the spring of 1911 to April 1912; from September 1912 to November 1913; and from January 1918 to December 1919. The springs apparently also slightly shifted location sometimes. For Antelope Springs, this shifting is confirmed on maps created in different years, which show the spring as having one, two or even three sources.
In the early 1920s, the city approached the park about using water from Buffalo and Antelope Springs as a backup supply. Clouding the issue of whether or not the park should allow the city to pipe water from the springs, was Superintendent Ferris’ suggestion to improve the springs at about the same time. In late December, he wrote a letter to Washington (later forwarded to Daniel Hull in Yosemite, California for approval) proposing a new setting for Buffalo Springs. The letter provides a good description of the springs at the time:

I suppose you will remember that Buffalo Spring, in the east end of our park bubbles up in a hole in the ground, being lower than the surrounding ground, it is subject to the drainage of the surface water pouring into it, which spoils the beauty of the spring to some extent. The spring comes out of the ground with such force that of course it washes itself clean. I guess you remember the sand boiling in the bottom and the gas bubbles coming up through the water.

It is our plan, if you approve, to encircle this spring with a stone wall laid in cement, something after the manner of the enclosed diagram.

We believe that this will not be too great a cost as the cement is practically all we will have to buy.

The above circle mentioned will cut off the surface water and leave the spring water clear and pure. If this meets with your approval we will start operations immediately.

The sketch attached to the letter (Figure 3-77) is dimensionless, yet it shows some striking similarities to the existing spring enclosure, including the circular form, exit location of the water, and the use of a walled structure around the spring. However, the design is also different, with its proposed central island (planted with caladiums!) and bridge.

Not surprisingly, the scheme was not approved by Hull. He initially objected to the plan because it did not fulfill either goal of preserving natural beauty or supplying hygienic water to the city:

If the town should find it unnecessary to utilize water from this spring I can see no reason why it should be improved. We certainly could not make the place more beautiful as a natural landscape and, after all, the natural landscape is the thing we are trying to preserve. On the other hand, if water from this spring is to be utilized for city supply the scheme outlined would not pass the watchful eye of a health officer for with the walk, bridge, etc. we at once encourage traffic about the spring and this increases the danger of contamination.

Two weeks later, however, he literally underscores the main issue at hand:

Evidently I had not made myself perfectly clear in my letter of the 13th... I am glad the city has decided to look elsewhere... for its water supply and this being the case I still feel... that we cannot add to the charm or beauty of Buffalo Spring by any man made structure [emphasis Hull's].

This letter seems to have been the last word on the subject.

Although Buffalo Springs itself was not improved, there was at least one “man-made” structure near the site—a pergola or gazebo-like structure (Figure 3-78). The pergola was a four columned-structure, with an
arch from each column meeting to create an overhead enclosure. Square seating areas were provided at the base of each column. The structure’s exact date of construction and location are not known. However, its materials—conglomerate stone and concrete—and style of construction matches those used in the early Hillside Pavilion, the water spigots in the second Bromide Pavilion, and the piers established at park gateways in the 1910s and 20s.

Little other pre-CCC-era documentation of the two springs has been found. There is no record, for example, of features such as comfort stations. The two park maps from the 1930s primarily show the area’s circulation patterns. On the 1931 “Utilities Layout” (Figure 3-8) Travertine Drive is shown crossing Travertine Creek in new and different locations than seen in the 1909 Map of Platt National Park (Figure 3-3), though a dashed line seems to indicate trails located on the old alignments shown. In addition, a turnaround loop is shown at Antelope Springs. The 1933 map of the park shows a similar configuration.

CONCLUSION

Between 1902 and 1933 Sulphur Springs Reservation evolved from a settlement and town site into a national park. As outlined above, this evolution required almost equivalent amounts of obliteration and construction of buildings, roads, and landscape features. Because of this, as shown in Drawing 1, by 1933, the 848 acres of park had relatively few developed areas, concentrated in tiny areas around the springs.

The quality of this development is also perhaps not what we think of today when we think of NPS Rustic design of the era 1916-1942. Both Platt National Park itself—an intimate landscape of small streams and low rock outcroppings—and its new construction—flower beds, animal pens and a golf course—were somewhat atypical of NPS parks, when compared with the great landscape parks with their sublime landscapes and monumental hotels and lodges. Yet visitors certainly didn’t seem to care; in 1914, Platt’s visitation outstripped that of both Yellowstone and Yosemite and was second only to Hot Springs Reservation in Arkansas.209

The nature of park development, however, would change in the late 1930s, with the coming of the public works
programs following the Depression. Whereas the 1910s and the 1920s were characterized by superintendents requesting federal monies to implement their visions, the free-flow of federal dollars in the 1930s would place designers from centralized NPS offices in charge of park design. As will be seen in the next chapter, this would, in effect, bring the design of Platt National Park more closely in line with NPS standards.
Notes to Chapter 3

1. E. A. Hitchcock, Secretary of the Interior to Frank C. Churchill, Special Inspector 8 July 1902. Chickasaw National Recreation Area Archives (hereafter cited as CNRA Archives)
3. Ibid.
4. Ibid.
9. Ibid., 72.
10. Ibid., 64.
13. Thomas Ryan, Acting Secretary of the Interior to Joseph Swords, February 16, 1904. CNRA Archives.
14. Acting Secretary of the Interior (signature illegible) to A. R. Greene 19 August 1908, CNRA Archives.
17. A. R. Greene to the Secretary of the Interior, 2 October 1908, Superintendents’ Reports, Book VI, 291; See also Superintendents’ Reports, Book VI, 457. CNRA Archives.
18. R. A. Sneed to the Secretary of the Interior, 23 January 1916, File 801-02, Platt National Park Files, Record Group 79, National Archives and Records Administration, Fort Worth (hereafter cited as National Archives, Fort Worth).
23. A. R. Greene to James Rudolph Garfield 3 June 1907. CNRA Archives.
24. Boeger, Oklahoma Oasis, 64.
27. W. J. French to the Secretary of the Interior, 15 April 1912, Superintendents’ Press Book #11, 5 February to 12 October 1912. CNRA Archives.
31. Ibid.
33. “Plan of Platt National Park,” Drawing NP-PLA-4948 (Office of the Chief Engineer, San Francisco, 1933). The only copies of this drawing the authors have been able to locate are attached to W. E. Branch, “Construction Report on ‘Widen Culverts and rebuild bridge abutments, Existing Roads,’ Account F. P. 125 8N1R, 1933-35,” (typed report with photographs, no date). CNRA Archives.
37. Boeger, Oklahoma Oasis, 78.
40. Boeger, Oklahoma Oasis, 89.
41. Boeger, Oklahoma Oasis, 121.
43. A. R. Greene to the Secretary of the Interior, 3 August 1908. Superintendents’ Reports, Volume VI, 97. CNRA Archives.
44. A. R. Greene to the Secretary of the Interior, 3 February 1908, Superintendents’ Reports, Volume IV, 191. CNRA Archives.
46. A. R. Greene to the Secretary of the Interior, 7 September 1908, Superintendents’ Reports, Volume VI, 217. CNRA Archives.
47. Boeger, Oklahoma Oasis, 90.
Chapter 3 Creating Platt National Park, 1902-1933

Boeger, *Oklahoma Oasis*, 91.

R. A. Sneed, Copy of the 1909 *Map of Platt National Park*, annotated with roads and trails, File 621–Construction Projects, Box 50 National Archives, Fort Worth.

Boeger, *Oklahoma Oasis*, 93.

Ibid.

R. A. Sneed to the Secretary of the Interior, 23 January 1916. File 801-02, National Archives, Fort Worth. All description of flood damage comes from this letter.

These two loops are seen on the 1931 “Utilities Layout” (Figure 3-8) and Drawing NP-PLA-4948.

A. R. Greene to the Secretary of the Interior, 4 January 1908, Superintendents’ Reports Volume VII, 3. CNRA Archives.

R. A. Sneed to the Secretary of the Interior, 23 January 1916.

Boeger, *Oklahoma Oasis*, 86; R. A. Sneed to the Secretary of the Interior, 23 January 1916. See also map cited in note 49.

Ibid.

Anonymous, “Platt National Park: Place Names Recommended for Approval or Abandonment,” (typed table, presumably for submission to the Division of Geographical Names, Department of the Interior, 16 November 1935). Copy in file “Place Names” received from park staff.

Ibid., 97.

Cliff Bromide Spring may have been known as Iron Spring for a short time, based on Figure 3-21. Two other Iron Springs were located in the southern part of the park for a while. See Gould’s “Report on Springs.”

R. A. Sneed to the Secretary of the Interior, 30 March 1917 and D. L. Houston, Secretary of the Department of Agriculture to the Secretary of the Interior, 24 March 1917. Superintendents’ Reports, CNRA Archives. Copy provided by park staff.

R. A. Sneed to the Secretary of the Interior, 23 January 1916, 2.

H. V. Hinckley to R.A. Sneed, 13 May 1916, File 650-04. National Archives, Fort Worth. Letter has attached sketches of truss and suspension bridges.

Boeger, *Oklahoma Oasis*, 95.

Ibid.

Ibid., 103.

Dan R. Hull, Chief Landscape Engineer, to William Branch, Superintendent, 15 April 1926, File 620-50. National Archives, Fort Worth. Letter to the attached are three sketches by Branch done for a 30 March 1926 letter and one drawing dated 16 April 1926 by the Landscape Engineering Division that is obviously a re-drafting of Branch’s ideas.

Boeger, *Oklahoma Oasis*, 110.

R. A. Sneed to the Secretary of the Interior, 7 May 1915, File 621: Construction Projects—General, Box 50. National Archives, Fort Worth. A building inventory and map of buildings is attached to this letter. See notes 60 and 73.

Boeger, *Oklahoma Oasis*, 97.

Boeger, *Oklahoma Oasis*, 121.

Identification of building by Roland Earsom, Arbuckle Historical Society

Boeger, *Oklahoma Oasis*, 93

Ibid., 97.

G. H. Harris, Secretary, Sulphur Chamber of Commerce, to Colonel R. A. Sneed, Superintendent, Platt National Park, 10 March 1917. Superintendents’ Reports, CNRA Archives.

Superintendent, Platt National Park (presumably Sneed), to Superintendent of National Parks, Department of the Interior, 12 March 1917. Superintendents’ Reports, CNRA Archives.

George M. Merrill, Landscape Foreman to J. C. Miller, Resident Chief

Chapter 3 Creating Platt National Park, 1902-1933

Boeger, *Oklahoma Oasis*, 90.

A. R. Greene to the Secretary of the Interior, 13 April 1908. Superintendents’ Reports, Volume IV, 355. CNRA Archives.

Boeger, *Oklahoma Oasis*, 86; R. A. Sneed to the Secretary of the Interior, 23 January 1916, 3.

Boeger, *Oklahoma Oasis*, 86.

Superintendent (presumably R. A. Sneed, but no signature on copy) to the Secretary of the Interior,” 7 May 1915. File 621–Construction Projects, Box 50, National Archives, Fort Worth. An attachment to this letter is a key/inventory to the 1909 *Map of Platt National Park*, annotated (by Sneed) with the locations of all buildings located in the park in 1915. A portion of this map is seen in Figure 3-11. See note 60.
Landscape Architect,” (CCC progress report, 1 October 1934), 4. CNRA Archives.

100 Brown, Perry, “A History of Platt National Park,” 63. This information comes from Appendix D: Structures offered for Sale in 1902 and 1904 when Area Was Made a Reservation, which appears to be a typed version of the handwritten building surveys made in 1902 and 1904.

102 Boeger, Oklahoma Oasis, 68

103 A. R. Greene to the Secretary of the Interior, Superintendent’s Reports, Volume VI, 428. CNRA Archives.

104 Boeger, Oklahoma Oasis, 94.

105 Ibid., 93.

107 The first drawing to show a pavilion located at Black Sulphur Springs is drawing NP-PLA-4948, “Platt National Park,” dating to 1933.

109 “Topographical Map–Flower Park Area,” Drawing NP-PLA-5033 (Office of the Chief Engineer, San Francisco, 1936) for the location of the spring. (Presented here as Figure 4-55).

111 Boeger, Oklahoma Oasis, 80.

113 Boeger, Oklahoma Oasis, 80.

114 Ibid., 82. Townsley came to the park in 1904.

115 Ibid., 80.

119 Boeger, Oklahoma Oasis, 86.

120 R. A. Sneed to the Secretary of the Interior,” 7 May 1915. See notes 60 and 73.

122 R. A. Sneed to the Secretary of the Interior,” 7 May 1915. See notes 60 and 73.

123 Ibid.

124 A. R. Greene to the Secretary of the Interior, 10 May 1909, Superintendents’ Reports, Volume VII, 322. CNRA Archives.

127 Boeger, Oklahoma Oasis, 93.

129 A. R. Greene to the Secretary of the Interior, 7 November 1908, Superintendents’ Reports, Volume VI, 383. CNRA Archives.

130 R. A. Sneed to the Secretary of the Interior, 23 January 1916, 5.

131 Ibid., 4.

132 Boeger, Oklahoma Oasis, 97.

133 Ibid., 111.

135 Brown, Perry, “A History of Platt National Park,” Appendix D, 63. This building inventory matches the property names and locations listed on the 1904 “Map of Sulphur Springs Reservation” (Figure 3-2) quite closely. Together, the two documents give an idea of how developed the town was prior to its moving. Excluding the ring of properties located immediately around the Pavilion Springs area and the properties north of Rock and Sulphur Creeks, a comparison of these two documents revealed that at least 156 properties on the map had a minimum of one building, and additional 63 properties had enough improvements, such as a house, barn and outbuildings, and fruit trees to be considered a well-established homestead. These numbers are probably low, however, since the inventory may not have included houses and improvements that were not sold for government reimbursement.

137 William Branch to The Director of the National Park Service, 19 September 1936. Copy in File “Place Names,” CNRA Archives.

140 R. A. Sneed to the Secretary of the Interior, 7 May 1915. Ibid. See also Figure 3-9. Lockwood Lane led to the Lockwood Settlement seen on this figure.

142 Boeger, Oklahoma Oasis, 94. Drawing NP-PLA-4948 delineates the Mule Pasture in the middle of the present-day Buffalo Pasture, just south of wagon camp.

143 Sneed to the Secretary of the Interior, 7 May 1915, 1-2. See notes 60 and 73.

Stephen Mather to Superintendent Ferris, 2 November 1921, Superintendents' Reports, CNRA Archives.

G. H. Harris to R. A. Sneed, 10 March 1917.

Boeger, *Oklahoma Oasis*, 101. According to Boeger, volunteers picked up stones and began leveling rough spots for the course on Memorial Day of 1917.

R. G. Morris to The Director, National Park Service 17 January 1924; Arno Cammerer, Acting Director to Superintendent Morris, 8 January 1924. Both letters are located in File 601-15, National Archives, Fort Worth. In response to a query from Morris about closing the golf course on Sundays to "teach the rising generation to respect the Sabbath," Cammerer writes, "I …am indeed surprised to learn of the existence of golf links on Platt National Park." But he goes on to say that "[a]s Platt Park is perhaps more of a city park than any of the other parks in the system, lying as it does in the heart of Sulphur, I am not going to issue instructions that golfing be stopped on Sunday. I can find no record that permits the installation of golf links but as long as they are there it is not my purpose for the present to remove them." In a respectful reply, Morris refers him to the "Superintendent's Monthly Report" of February 1923 as the park's notification of construction. It seems that definitive permission may have been given to Sneed in 1917 by mail but not acted upon until 1923 when Ferris gave the go ahead. This idea is based on pencil annotations on a later letter from Cammerer to Ferris in which Cammerer again disavows administrative knowledge of the course's construction. Pencil notes in margin underline the disavowal, and indicate disbelief, referring to other letters to and from the park dated 12 March 1917, 28 March 1917, and 4 April 1917 and noting that "It was authorized!" Arno Cammerer, Assistant Director to Dallas Rose, 25 March 1926. Same file in National Archives.

Boeger, *Oklahoma Oasis*, 112.

Arno Cammerer, Assistant Director, to Dallas Rose, 25 March 1926, File 601-15, National Archives, Fort Worth.

Boeger, *Oklahoma Oasis*, 122.

H. A. Kneinkamp, "Report to the Chief Landscape Architect through the Superintendent of Platt National Park, 17 October 1932" (short, typewritten memorandum), File 620—Buildings, Box 50, National Archives, Fort Worth.

Ibid.

Boeger, *Oklahoma Oasis*, 56.

Ibid., 40.

Ibid., 69.

Sneed to Secretary of the Interior, 7 May 1915. See notes 60 and 73.

Boeger, *Oklahoma Oasis*, 80.

Sneed to Secretary of the Interior, 7 May 1915; Boeger, *Oklahoma Oasis*, 91. According to Boeger, the porch was added on in 1914 or 1915.

Boeger, *Oklahoma Oasis*, 20; other sources as well.

A. R. Greene to the Secretary of the Interior, 3 December 1907, Superintendents' Reports, Volume IV, 58. CNRA Archives.

A. R. Greene, Superintendents' Reports of 1909, Volume VI, 427. CNRA Archives.

Boeger, *Oklahoma Oasis*, 68.

Sneed to Secretary of the Interior, 7 May 1915.

Boeger, *Oklahoma Oasis*, 103.

Boeger, *Oklahoma Oasis*, 98.

Superintendent (Thomas Ferris) to Joe Patterson, Superintendent of Parks, Oklahoma City, 16 June 1921, File 700, Box 58, National Archives, Fort Worth.

Thomas Ferris to Superintendent, Yellowstone National Park, 20 December 1919, File 700, Box 58, National Archives, Fort Worth; Boeger, *Oklahoma Oasis*, 107.

Ferris to Patterson, 16 June 1921. The first died due to bruises received during the trip from Yellowstone, see previous source for note 176. The second elk probably did not thrive in the southern climate zone.

Sneed to the Secretary of the Interior, 7 May 1915, 1-2. See note 73 regarding attachments.

A. W. Burney, "Final Construction Report on Improvement and Surfacing a Portion of the Buckhorn Road Account No. 505," (mimeographed completion report, 3 March 1931), copy provided by park staff. CNRA Archives.

A. R. Greene to the Secretary of the Interior, 23 November 1908, Superintendents' Reports, Volume VI, 418.

Sulphur Chamber of Commerce, "Condensed Information of Sulphur and Platt National Park," (map and brochure, no date). CNRA Archives.

Sneed to the Secretary of the Interior, 7 May 1915. See notes 60 and 73.

The earliest graphic representation of Cold Spring identified so far is Sneed's circa 1915 annotated 1909 *Map of Platt National Park*. Although the annotations primarily show roads and trails, Cold Springs is also marked.

Boeger, *Oklahoma Oasis*, 141.

Ibid., 90.

Boeger, *Oklahoma Oasis*, 91.

The early comfort stations and community houses are discussed in very great detail, more than required here, in Files 620-15 and 620-20, Box 50, National Archives, Fort Worth.
Wray and Roberts, “Ethnohistory of Associated Park Use,” chapter entitled “Early Landscape Design,” n.p. Wray cites a report by Goodwin and Hull, 1922, presumably located in the CNRA archives. We were unable to view this document.

Boeger, Oklahoma Oasis, 140.

Boeger, Oklahoma Oasis, 91.

Ibid.

Boeger, Oklahoma Oasis, 91.

Chapter 4: The CCC Years, 1933–1940

BACKGROUND

The Civilian Conservation Corps and NPS designers in Platt, 1933

Throughout the 1910s and 1920s, construction in the park had been limited by staff and funding; this situation changed drastically in the 1930s. Platt National Park was an almost immediate beneficiary of money and manpower pumped into civil construction under Franklin Delano Roosevelt’s New Deal. Within weeks of the federal authorization of the Civilian Conservation Corps (CCC) program on April 5, 1933 a CCC camp had been authorized for Platt National Park. By the end of May, 169 young men enrollees of CCC Camp 808 had set up residence in tents in the southeastern corner of the park. Superintendent Branch also hired twenty-five “local experienced men.” These were local stonemasons, carpenters, plumbers and other tradesmen who would teach and supervise the crews as they commenced a series of projects described under the title of “Emergency Conservation Work” (ECW).

The first ECW projects in the park were simple, non-technical tasks “due to the newness of the program, the lack of adequate developed plans for operation, the shortage of materials and equipment at the outset, and the inexperience and physical condition of the men.” These projects included reshaping road shoulders and cleaning up the entire park, especially its boundaries. But within months, the crews were implementing complex construction projects designed by NPS architects, engineers, and landscape architects. Like the CCC boys, many of these design professionals were recruited especially for the New Deal projects. The design staff for Platt included engineer Ira Stinson (later replaced by Sam Whittelsey) and landscape architects Charles A. Richey, Jr., Walter D. Popham, and Jerome C. Miller. Forestry work, of which there was much at Platt, was supervised by Donald Stauffer.

It appears that the landscape architects, working under Thomas Vint and the San Francisco Branch of Plans and Design, did much of the aesthetic design work and master planning for the park. NPS engineers, working under the NPS Branch of Engineering, provided the more technical design work for bridges and roads. This crediting is based on CCC report authorship and initials and “drawn by” and “designed by” attributions noted on drawings. However, the contributions of others, especially the local experienced men, crew foremen, and supervisors, to the finished projects cannot be underestimated. These men included the Camp Superintendent W. L. Scott, Sr. (later his son W. L. Scott, Jr. took over the job) and landscape foremen Edmund B. Walkowiak and George Merrill. Their input on the designs is clear from the fact that as-built conditions often vary slightly from the original design drawings; in addition, some projects had minimal construction documentation, indicating that many design decisions had to have been made in the field, based on observation and site conditions.

Also important to the organization of work was Superintendent William Branch, who remained at the Park throughout the Depression and into World War II. Branch consulted with the designers on most projects and was also instrumental in securing additional park projects, staffing and funding through the Public Works Administration (PWA) and Civil Works Administration.

The two landscape architects associated with Platt for most of the CCC era are Richey and Miller, who replaced Popham in 1934 when he moved to Yellowstone. In the early years of the program, Richey was an NPS “Resident Landscape Architect,” traveling to and working on parks throughout region, while Miller and Popham were designated “ECW Landscape Architects” and were stationed primarily at Platt. Miller was also the park’s procurement officer. By the late 1930s, both had been promoted. Richey moved up higher in the NPS regional office, and Miller was promoted to Resident and then Associate Landscape Architect. By the end of the 1930s, Platt was just one of the parks Miller was working on, though he remained in Sulphur until the early 1940s.

Miller’s daughter Ann Baugh recalls that her father and Charles Richey remained lifelong friends after their time working at Platt. It is possible that they knew each other prior to working for the NPS, since both were graduates of the Iowa State University Landscape Architecture Department. There seems to have been
a strong tie between Platt and Iowa State; Popham had been an instructor in the program, and landscape foreman Edmund Walkowiak was also a student in the program at one point, though it is not known for sure if he graduated. Walkowiak worked as landscape foreman in the park until at least 1939.\(^7\)

The designers working on Platt had their hands full. Richey noted

> Until the [CCC] camp was instituted at Platt, there had been little detailed study of the design problems of the park. The Master Plan prepared by the San Francisco office was of the utmost value in giving a general organization of the work, but in general, due to a lack of field study and the absence of detailed topographical information, few plans were available.\(^8\)

The earliest park master plan, a “general plan” produced by Superintendent Branch in conjunction with the Branch of Plans and Design in San Francisco, seems to date to 1932. This document has not been located as part of this research effort; however, descriptions indicate that it did not have extensive drawings associated with it.\(^9\) As a result, in the first year, the landscape staff struggled to keep planning and design ahead of construction. They often supervised projects in the field during the day and drafted plans in the office at night. By December 1934, a set of approved master plan drawings had been completed.\(^10\) Master plan drawings were then annually (or almost annually) updated for the next two decades. Various master plan drawings for Platt dating to 1937, 1940, and 1942 are on file at CNRA and reflect both changes made by the CCC construction and plans for future construction.

DRAWING 2: OVERALL PLATT NATIONAL PARK PLAN, 1940

The following narrative addresses landscape design and development in Platt National Park between the years 1933 and 1940, based on information from the previous chapter. Paralleling the organization of Chapter 3, overall park landscapes—water, trail, and road systems—are addressed first, followed by smaller areas within the larger park. Each smaller landscape is depicted on a period plan showing the extant conditions in the park at the end of the 1933-1940 period. The first of these, Drawing 2, depicts all 848 acres of the park, while the rest, Drawings 3 through 11, encompass sub-areas of Drawing 2 and show a much greater level of detail. Often one drawing depicts more than one landscape.

The drawings were constructed using base data from the 1984 aerial topographic survey. This information was then overlaid on the 1940 aerial photograph and corrected to match 1940s conditions. A variety of topographic plans dating to the period, as well as design drawings, master plans and utility plans were also used as underlays when appropriate to provide additional detail. Other photograph and written evidence was also incorporated into the drawings and into the narrative. However, documentation for the different areas within the park varies greatly, so the development of some landscapes may be described more completely than others.

Labels on Drawings 2 through 11 reflect 1940 naming and numbering conventions; some of these names later changed. Subsequent period and existing conditions plans will label elements according to their period or contemporary names.

Hydrology: Rock and Travertine Creeks

As described in the previous chapter, by 1933, the creeks were no longer used for water supply or sewage disposal. Things further improved in the fall of 1937, when construction was begun on a new sewage treatment plant to replace the 1913 Imhoff plant.\(^11\) As a result, work undertaken by the CCC on Rock and Travertine Creeks primarily enhanced their scenic beauty and recreational potential.

From a scenic standpoint, new and better settings were designed for experiencing the creeks. This work included the stone spring enclosure at Buffalo Spring, the two dams and lily ponds at Antelope Spring and the picnic areas at these locations and at Travertine Island. These rustic features (described in greater detail below) not only enhanced the use of the park’s water resources but also brought the appearance of park features in line with other National Parks in quality and design.
Chapter 4: The CCC Years, 1933-1940

The NPS designers also enhanced the recreational use of the park by redesigning the swimming holes along Travertine Creek. This was done through the construction of five dams along the Creek, including one at Central Campground, two across from Cold Springs Camp at Garfield Falls, one at Bear Falls, and the lower dam at Little Niagara Falls. One of the falls at Bear Falls and the upper dam at Little Niagara appear to have been natural or naturalized features, based on their appearance (close topographic lines) in the plans. However, a recent inspection has shown evidence of concrete construction on the upper Niagara dam. It is of course possible that additional dams beyond those shown in the plans were constructed.

The plans for the five dams, done jointly by the engineers and the landscape architects, simply show proposed locations and a typical cross section (Figure 4-1). The cross-section depicts a low wall, from one to seven feet high, constructed of irregular stones, battered 2:12 on the upstream side and 1:1 on the downstream side. The width of the dam at the top was to vary between two and one-half and five feet, with the top course of stones slightly overhanging the upstream side of the dam. The most remarkable aspect of the design was a two- by three-foot steel-gated concrete sluiceway located in the middle of each dam, likely built to allow for the regulation of water flow and level and for the clean out of materials caught behind the dam. The unique aspect of the dams’ design was that, when completed, they were almost impossible to distinguish from other natural falls along the creek (Figure 4-2). They were, and remain, an incredible example of the intersection of nature and artifice in NPS Rustic design of the pre-World War II period.

The dam plans were completed and approved as a project for construction in the fifth enrollment period. However, the project was held over at least until the next period, October 1935 to March 1936. It is not certain exactly...
when construction was begun and completed, because no records documenting the construction of the project have as yet been found. The lack of documentation is disappointing, since the construction process would have been difficult, because the dams were located in the middle of the stream channel. Were small coffer dams constructed and flow diverted around the construction sites? Or, and perhaps this is more likely, were the dams simply constructed during one of the many times that Buffalo and Antelope Springs had ceased flowing during the CCC period?

The 1930s were a droughty period and the flow in Travertine Creek from Buffalo and Antelope Springs was irregular. According to Boeger, the flow stopped in August 1934 and restarted in 1936, only to dry up again in September 1937. They flowed temporarily from February to November of 1938 and then stayed dry until July 1940. Thus it seems possible that the dams might have been conveniently constructed sometime between September 1937 and February 1938.

Sewer Systems

Reports from Miller and Richey in the 1930s do not provide detailed information about the mechanical drainage and sewer systems. In the summer of 1934, the old main sewer line through the Hillside and Pavilion Springs area was replaced, using iron pipe to replace worn clay tile. A new sewer line was constructed to connect the Utility Area to the main, also in 1934. In the late 1930s, sewer line was run as far as Buffalo Springs to connect the new comfort stations there and at Travertine Islands.

Road System

Prior to 1933, the road system in the park consisted of an east-west route (Travertine and Rock Creeks) crossed by a north-south route (Buckhorn Road) with a few spurs located off these main roads. This was drastically changed during the CCC years, when a perimeter loop road encompassing the entire park was constructed. It utilized much of the old east-west route, but connected the two ends with additional road running along the southern boundary of the park. The perimeter road integrally changed the experience of the park. It opened up previously inaccessible areas, reduced congestion by eliminating dead ends, and provided an experience wherein the park landscape could be viewed as a whole.

Landscape architects Richey and Popham considered the existing circulation system “a problem” and described the “rearrangement of the Park road system” as one of the “major plans” to be undertaken. Once they had a new road design, they felt that “the general plan of the park came into being.” This emphasis on establishing a comprehensive circulation system makes sense, given their training in traditional park design. The use of curvilinear circuit drives around the properties as a formal design principle dates to at least the 18th century and the
country park estate landscapes of Capability Brown. The concept was then adapted to public park design in the work of Olmsted and Vaux at Central and Prospect Parks in New York and thence to park design in the National Parks. The fact that it had never been used at Platt prior to 1930 is revealing, indicating that up until that time, Platt had never really been viewed as a landscape park in the tradition of U. S. park planning, or worthy of well-known park planning principles. Rather, park planning had primarily focused on providing basic access to individual springs or campgrounds. The use of the perimeter road as a design device signaled that Platt was finally being taken seriously by the designers of the NPS and was truly becoming a park landscape.

Although a plan for the perimeter road was complete by early 1934, construction of the road continued through most of the CCC years. Road work began unobtrusively with the reconstruction of the causeway at Black Sulphur Springs. The old bridge, seen in Figure 3-12, had no openings for water to flow beneath it and was therefore always flooded. Automobiles would frequently slip off it, particularly in times of higher water. When the bridge began to be undermined in the rainy winter of 1932-33, a replacement bridge was planned.

Construction on the causeway began on September 14, 1933 and was completed November 16, 1933. The construction of the new bridge required filling the undermined areas and replacing the retaining wall on the east end of the upstream side of the bridge, as well as pouring a new concrete floor atop the old bridge (Figure 4-3). Although the original plan did not call for it, three openings were cut in the old bridge to allow water to flow underneath the bridge. A new walkway was constructed on the upstream side of the bridge, wider than the old; and a stone guardrail was added on both sides of the bridge.

Repairs on existing infrastructure continued in November 1933 with the widening of the existing Rock Creek and Travertine Drives to accommodate increased traffic. The narrow width of the original road caused frequent problems (Figure 4-4). In order to widen the road, existing culverts needed to be extended to greater than the width of the new road. Most of the twenty-seven culverts were pipe culverts and were widened with corrugated iron pipe; others were concrete box culverts and were simply extended. In all cases, concrete headwalls were replaced by masonry stone headwalls. Stone was quarried locally and hauled by the CCC boys. The work extended from just east of Bromide Springs to just west of Antelope Springs and was finished by March 1934. This construction presumably included the first Panther Falls box culvert over Travertine Creek and the Sycamore Falls crossing.

Other improvements to existing roads during the first period included building 230 spaces for parking cars “wherever possible along the existing road system” to “effectively control the former haphazard parking.” Some of these areas were outlined with the standard wood guardrail of eight-inch square rails mounted on ten-inch square posts used during the first two years of construction work. Later, the guardrail would change to a boulder guard rail.

New construction began shortly thereafter, under a three-part PWA project. The first phase included the widening of Rock Creek Drive west of Walnut Grove, work which required removing an extant wall along the banks of the creek to the south and rock on the bluff to the
Chapter 4: The CCC Years, 1933–1940

The work was arduous; it was done with pick and shovel to prevent damaging the nearby sewer line. The second part of the PWA project was the construction of the northern part of the loop road from Sycamore Falls to Antelope Springs. This alignment was staked by the Engineering Department in August 1933 and looped around Travertine Island through the Limestone Creek (known then as “Nigger Run”) ravine. Richey and Popham noted the section “open[ed] up some of the choicest sections of the entire park.”\(^\text{21}\) In constructing the road, CCC crews moved hundreds of cubic yards of rock and earth, altering the course of Limestone Creek “to afford better flood run off.”\(^\text{22}\) The work was begun by the CCC and finished as part of the Public Works project.

The third part of the PWA project was the construction of the southern portion of the loop road from Antelope Springs to Horner’s Bluff (Figures 4-6 and 4-7). It is believed this section of construction also included the construction of the Buffalo Spring box culvert, a large bridge-like concrete box faced with limestone masonry. The road construction demanded significant dynamite blasting, since much of the road followed a bluff of solid rock. The drawings for this portion of the road provide typical roadway cross sections, showing two opposing travel lanes nine feet wide, shoulders three feet wide, typical side slopes of 2:1, superelevated curves and three inches of gravel surfacing (Figure 4-8).

The Antelope Springs to Horner’s Bluff alignment curved around Buffalo Spring and connected with the old road at Horner’s Bluff. Here, Ed Walkowiak supervised a separate CCC project to widen 225 feet of the existing road below the bluff. Widening was required since the old road was only wide enough for one vehicle and worse, was being undermined by Travertine Creek flowing below it.\(^\text{23}\) Once again, dynamite was used to blast away the base of the rocky bluff. Walkowiak’s crew (Figure 4-9) built a road 20 feet wide, plus 3 feet of gutter, a lower slope protected by rip-rap and safe from further erosion and an upper embankment cut on a 1 to 1 slope from which all loose rock was removed (it now is almost solid rock) and which is to be planted with nature as a guide.

Another major change in the perimeter road undertaken in the fall of 1933 was its realignment through the Bromide area. A new twenty-foot wide alignment was located away from the Creek, to run parallel to the town grid and intersect axially with 12\(^{\text{th}}\) Street near the park boundary.\(^\text{1}\) Two pull-off parking areas were provided near the 12\(^{\text{th}}\) Street intersection, and a loop road for accessing the Bromide Pavilion was also constructed. The new alignment, “by its direct simplicity offer[ed] a marked and pleasing contrast to the former complex system.”\(^\text{24}\) One thousand two hundred and sixty-nine feet of...
wooden guardrail were installed along the new section of the perimeter road and loop road.25

Meanwhile, plans were being developed for new perimeter road construction. In the late fall of 1933, drawings for the stretch from Robber’s Roost to the south entrance near the Veteran’s Hospital were completed by the Office of the Chief Engineer in San Francisco. Drawings for the section connecting Robber’s Roost to the Bromide area followed in the spring of 1934. These sets of plans used a horizontal alignment of circular curves connected by straight tangents, and showed vertical alignments with grades ranging from 0.75\% to 8.25\%. Sixteen drainage structures—pipe culverts and stone box culverts—were located along the entire stretch between Rock Creek and the South entrance. These carried water from streams or slopes under the road.

Construction on the “Bromide Hill Road” began as a PWA project in early spring. By the fall of 1934, CCC crews had taken over the finish work, grading and planting slopes, ditches and approaches to culverts (Figure 4-10). Richey and Miller noted that the finish work was important in merging the road and landscape:

![Figure 4-9. Laying rip-rap wall at Horner’s Bluff, circa 1934.](image)

The work is blending the road into the surrounding landscape in a very desirable way, and is lending a park-like appearance to a rigid high-speed highway. The slopes do not follow a uniform grade but are in all instances possible the extension of the natural slope immediately above or below. The ditches and slopes are being planted to Bermuda and prairie grass as the finished grade is completed.26

![Figure 4-10. Fine grading and planting along Perimeter Road near Bromide Hill, circa 1934.](image)

Other work undertaken in 1934 included clean-up and finish grading at both the Limestone Creek and Travertine Creek Bridges. The Limestone Creek Bridge (also known as the “Nigger Run” Bridge) was a concrete box culvert, its deck span supported by steel I-beams affixed to limestone-veneered concrete abutments (Figure 4-11). Begun in the early part of 1934, it was a somewhat problematic project that had not been constructed entirely according to approved plans. In July 1934, Richey recommended that it be converted to an ECW project, so that CCC boys could implement corrections, including rebuilding the handrail and extending the abutments.27 The Travertine Creek Bridge, located near Flower Park on Highway 177, was a PWA project, similarly finished with ECW monies by CCC boys in the summer of 1934.28 This bridge replaced a former Y-shaped causeway at the same location.29 The new structure was constructed of reinforced concrete, and was thirty-eight feet wide, including two four-foot wide walkways on both sides of the bridge (Figure 4-12).30 Begun on December 20, 1933, it opened for traffic.
on April 20, 1934, though the CCC boys continued to improve its surrounds that summer.

The summer of 1934 also saw the widening of the Bear Falls parking area along the road. This included protecting trees and shrubs. In late 1934 and early 1935, additional work was undertaken on the new section from Horner’s Bluff to Buffalo Spring; this seems to have been rough grading to finish the road surface for travel.31 In January 1935, minor alignment changes between Sycamore Falls and Horner’s Bluff were also proposed.32

The last link in the perimeter road was the section between the south entrance on Highway 177 (S. H. 18) and Sycamore Falls. Drawings for this section were approved in late 1936, and the alignment was staked in February 1937.33 Construction proceeded through the summer when CCC enrollments declined and completion was therefore delayed until the fall.34

A final structure was built along the road. In May 1937, a contract was awarded for the construction of the Rock Creek Causeway just west of the Bromide area.35 The project also involved the realignment of the perimeter road approach to the causeway, and the closure of the 14th Street entrance. Progress on the causeway was slow, in part because it was determined that footings needed to be two feet deeper than planned, requiring more materials that rapidly consumed the project budget. As a result, CCC crews were recruited to finish the bridge’s rip-rapping.36 The causeway was complete by November, but according to Miller, was only “of mediocre quality,” with additional work required to combat stream bank erosion.37 In 1939, curbing and riprap was installed around the two approaches of the causeway, probably to better handle drainage coming off of the perimeter road at Bromide Hill.38

Once the road was completed, its surfacing became a point of debate between the park and the Landscape Division of the Branch of Plans and Design. According to Boeger, the park believed the dust generated by the gravel surface was a nuisance for visitors, and in September 1937, despite protests from the landscape architects, had W.L. Scott pave the stretch from Sycamore Falls to Cold Springs Campground.39 In 1938 and 1939, three sets of drawings entitled “Park Roads Betterment, Section A, B, and C” were completed. Sections A and B show the roads to be resurfaced with three inches of gravel, while section C shows roads surfaced in two inches of rock asphalt over three inches of gravel. It appears, based on Boeger’s account, that the whole system was paved in asphalt, since the Landscape Division allotted $25,000 for pavement.40 Thus, the entire perimeter road was paved in cold rolled asphalt by 1940, and according to Superintendent Branch, “marked the successful consumation [sic] of plans which 10 years ago appeared to be only impossible dreams.”41

However, maintenance continued to be an issue. In 1937, Miller’s comment that “the setting of boulder guards . . . is now in progress over most of the park road system” seems to indicate that worn wooden guardrails were replaced by the end of the 1930s.42 Another problem were the rock...
slides along the road’s steeper bluffs. In 1938, heavy rains in February and March caused rock slides along Buffalo Springs, Horner’s Bluff and west of Walnut Grove. Miller “proposed that retaining walls built of large conglomerate rock layed [sic] up in cement” be constructed at the slides, because they would “remove a major maintenance problem.”

Trail System

As they had with the park road system, the NPS landscape architects deemed the park’s trail system to be “antiquated and totally inadequate” and proposed a new comprehensive trail system to “serve all sections of the park.” The plans for the new system specified that trails be constructed 4.5 feet wide, with “careful attention to drainage and appearance and gradient.” It seems that most trails within the system were constructed of “a clay gravel base with fine aggregate crushed rock top.”

A significant portion of the trail work was done in 1933, during the first and second enrollment periods. A short trail between Black Sulphur Springs and Davis Avenue was constructed to connect the town and the park. A more significant 7,200 feet of trail were constructed between Pavilion Springs and Bromide. This trail was more or less located along the route of the old “Bromide Trail” along Rock Creek, but Richey and Popham seem to have realigned it slightly to “give the best landscape effect.” The trail work here included the construction of “bridges and observation posts, and heavy protective masonry walls where necessary.” The uphill section between the Bromide spring house and Robber’s Roost was completely rebuilt, with an old, “flimsy flights of concrete steps” replaced by a long, stone-walled ramp. However, the reconstruction did not include an extension to the top of Bromide Hill; this was not built until 1935.

Cliffside Trail was also reconstructed at this time. Richey and Miller describe the work as a “new and particularly interesting trail about 6800 feet in length,” running from Bromide to Black Sulphur Spring. Though a trail had existed here as early as 1908, it seems this route had fallen out of use or in disrepair sometime after 1920. Lending credence to this idea is the fact that the route of Cliffside Trail to Black Sulphur Spring does not appear on the 1933 Map of the Park (NP-PLA-4948). The revised trail traversed the lake formed by the Buffalo Pasture dam.

In 1933 and 1934, another section of trail was constructed between Pavilion Springs and extending to “the causeway above Horner’s Bluff.” Here, the trail was intended to run along the old Travertine Drive, once the southern loop of the perimeter road was finished. When that section was completed around January 1935, the whole trail between Pavilion and Buffalo Springs was 13,000 feet (over two miles) long. Superintendent Branch noted that the trail ran “across high country which affords a pleasing view of the town and a portion of the south part of the park (Figure 4-13).” A short spur and set of stone steps were constructed near the intersection of Travertine Drive and Highway 177 so that visitors could access this trail from Central Campground and Flower Park. Along its full length, the trail crossed “several attractive small streams” and low water crossings were located at some of these.

Three footbridges were also proposed for construction here during the fifth enrollment period. Trail footbridges on all the trails were designed of logs atop stone masonry abutments “to give a sturdy appearance.” In the spring of 1934, trail bridges were constructed—in error—of peeled creosoted logs; Richey was disappointed, since the material was “no doubt more permanent but not so harmonious with the landscape as the rougher logs with the bard on would have been.” Figure 4-14 is one of these bridges after completion. In other places stepping stone crossings were constructed along the trail (Figure 4-15). A rustic stone and log bridge was slated for construction as the main entrance to Buffalo Springs Trail opposite the Cold Springs Campground (Figure 4-17), but was never constructed.

Also completed at the beginning of 1935 was an extension of the Cliffside Trail which led to Black Sulphur
Spring and thence to Pavilion Springs. The extension of this trail was located along the old Sulphur Bromide Lane which ran east-west along the southern boundary of the Buffalo Pasture to Buckhorn Road. Richey and Miller described the trail as “follow[ing] the boundary fence of the Buffalo Pasture for most of its distance, giving many views into the pasture between clumps of trees and shrubs.”

The summer of 1935 saw the completion of the rest of the CCC-built trail system. The Bromide Hill Trail was finally connected to the top of Bromide Hill via construction of a short spur “built on an easy grade following the contour of the hill.” Also completed were the trails around Buffalo and Antelope Springs. These trails were “built over the old loop road around the springs” and construction included obliterating the former roads. On one of these trails looping around Buffalo Springs to the southwest, CCC crews constructed a stone footbridge, to replace a culvert in the old loop road. The new bridge was built over a heavy gauge corrugated iron arch bolted to a concrete foundation, with stone masonry walls one and one-half feet thick. A particularly elegant aspect of the bridge was its curved alignment as it passed over the bed of Spring Creek. Figure 4-16 shows the bridge under construction prior to its completion sometime after September 1935. A smaller stone-arched footbridge with similar stonework was also constructed on the Bromide Trail, just east of Pavilion Springs (Figure 4-18). A park newsletter written in February 1936 noted that in addition to the two stone bridges, a total of eight wooden bridges were constructed along the trail system at a cost of $200.00 each. Also inventoried were a total of twenty-two swales constructed along the trails. No locations were given for any of these features, although it was noted that most of the bridges were located between Pavilion Springs and Bromide Springs.

By early 1936, then, most of the park’s trail system was intact. Maintenance began even before the system was completed. In the summer of 1935, the whole system was overhauled with an eye toward repairing drainage problems, since heavy spring rains washed out hillside trails.

DRAWING 3: BROMIDE AREA PERIOD PLAN, 1940

Just before the arrival of the CCC in Sulphur, improvements to the Bromide area began with the construction of two new comfort stations in the area. These two buildings were intended to replace two existing men’s and women’s comfort stations located in the middle of the campground. It is not clear when these old two stations were originally constructed (these were possibly the ones constructed in 1922), but they were “too small, poorly lighted and located too near the main road.”
Figure 4-17. "Foot Bridge," Drawing NP-PLA-5041, 1935. This bridge was proposed for crossing at Cold Springs Camp to connect to the trail to Buffalo Springs.

Figure 4-19 shows one of the two identical structures, which had hipped roofs and porch-like entry ways. The new structures were larger than the old ones, and were concrete stucco on metal lath, with two by four framing and cedar shingle roofs. Each had a men's and women's side and was equipped with frost-proof toilets, wash basins, and electric lights. The appropriation for the work, originally $1900, was reduced to $1530, much to
Superintendent Branch’s dismay. As a result, the stations were built on force account, with donated labor by rangers and employees. Construction began on February 1, 1933 and took some time, being finished almost a year later in March, 1934.

In May of 1933 the CCC set up camp in Sulphur. The work undertaken at the Bromide area in the initial two enrollment periods focused on reorganization of the area’s usage and circulation. According to Charles Richey and Walter Popham the area was:

- completely revised, and organized to provide separate areas for camping and a small “park” area with grass, shade and flowers for visitors to sit in.
- The road system was first revised, throwing the boulevard back much farther from the stream to discourage traffic here.
- A large amount of guard rail was installed for protection.
- A new entrance from 12th street was made, and new trees and planting

Figure 4-19. New concrete stucco comfort station at Bromide Springs, 1932.

Figure 4-20. “Bromide Area,” Drawing NP-P-4979, June 1934. This drawing shows the new road alignment through Bromide Springs. The two comfort stations in the middle of the area were constructed in 1932. The others, to the edges, were older structures.
The specifics of this work included obliterating 600 feet of existing camp roads and constructing 2500 feet of new campground roads. New campground roads were designed for use by campers only, and were not intended to function as thoroughfares. Major camp roads were twelve feet wide, minor ones ten feet wide. Specifics on surfacing were not provided in the CCC reports of the work.

As noted above, the perimeter road through Bromide was also reconstructed at this time, along the alignment that exists today. Figure 4-20, a plan dating to 1934, clearly illustrates the changes wrought to the area, including the new perimeter road sections and guardrail, the two new comfort stations and the two older comfort stations. Two curious aspects of this plan are the inaccurate shape of the Bromide Pavilion and the fact that the campground roads in the eastern part of the site are not shown, perhaps because eliminating camping in Bromide was part of the 1933 Master Plan goal. Nor are the concrete walks and sulfur stream shown on the 1930 survey. It is surmised that these two features were obliterated at this time for the construction of the new campground roads. Little is known about precise locations and species for the tree and flower plantings mentioned by Richey and Miller since they appear on no plans of the area. One might guess, however, that the “small ‘park’” with flowers might have been located in the western portion of the site, nearer to the Bromide spring house. Other work undertaken by the CCC in the Bromide area included trail work, as described above.

The third enrollment period of the CCC camp (April 1 to September 30, 1934) saw a continuation or completion of earlier work. Work items included the extension of the Bromide Hill trail, and two old roads were removed and one parking area was doubled in size. It’s not entirely clear whether these were brand new projects or simply the completion of the work previously described in park reports. Trees were also trimmed and finish grading and sodding were done in parts of the landscape.

In September and October 1934 drawings for a new park entrance were completed for the Bromide area. Implementation of these plans began in November 1934 and continued, with some breaks, through the 4th and 5th enrollment periods, into September 1935. The entrance design was a collection of piers, low walls and walkways focused on a large, circular pool with a single, 30-foot fountain jet located at the terminus of 12th Street (Figure 4-21). The jet was fed by an artesian sulfur water well located on property outside of the park; this well is indicated on drawings as either the “Bathhouse Well” or the “Jack Diamond Well.”
Six stone piers located at the intersection of 12th Street and Lindsay Avenue at the park’s boundary were the first to be constructed (Figure 4-22). The composition consisted of two taller piers flanking 12th Street; on the other side of each pier was a sidewalk and another, smaller pier. Like the rest of the entrance, the piers were constructed of what the landscape architects called “native brown limestone.” Black iron art deco lettering of “Platt National Park” was affixed to the large pier (on the right side only or both) as it was built up. This set of entrance piers was completed by March 1935.

Work on the rest of the entrance began in April 1935 as part of the fifth CCC enrollment period. From the piers, two flagstone walks flanking 12th Street led to the park’s perimeter road, where a stone curb and low walls embracing the intersection were constructed. Across the road, a broad paved flagstone court surrounded the circular pool and was enclosed with a low, semicircular seat wall on the south side (Figure 4-23). Two L-shaped walls connected the semi-circular walls to the edge of the street, forming the boundaries of the flagstone court; these L-shaped walls also featured two drinking fountains, which were fed by the same artesian well as the fountain jet.

In the plan view of the project (Figure 4-24) a large tree shades the plaza, and this tree figures prominently in early photographs of the project (Figure 4-25). These photographs also show the grass joints between the gray and brown flagstones as well as the craftsmanship engendered in the stone cutting and masonry. The surrounds were graded and sodded once the construction was over. The landscape architects were pleased with the effect of the work, stating that “[t]he entrance feature has become one of the main attractions in the Bromide area,” and “[t]he single-jet fountain, rising thirty feet in the air, has given life to the entire surroundings. It can be seen for approximately eight block[s] north on 12th Street.”

Other work besides the entrance took place in 1934 and early 1935. Cliffside Trail was extended past Sulphur-Bromide Spring across the prairie upland. The construction of this trail extension utilized—and thereby eliminated—a good portion of the old Sulphur Bromide Lane, which at one time had been a thoroughfare through the park. After meeting Buckhorn Road in the middle of the park, the trail paralleled this road north toward the Administration Building and Pavilion Springs. The completion of this portion of trail created a large pedestrian loop connecting Bromide and Pavilion Springs around the western half of the park.

In late 1934, work was begun on a project described as the Bromide Pavilion retaining wall. This project seems to have been part of a new pavilion to be located just east of the existing spring house. Plans for this project had been drawn up in 1930 or 1931 about the same time the new wood-railed retaining wall (Figures 3-35 and 3-36) had
been built between the spring house and the Iron Bridge. This pavilion was to be centrally located on a large terrace created against the slope of Bromide Hill and connected to the rest of the Bromide area by a new bridge. The iron bridge was to be replaced because, being “of steel, it does not harmonize with the park’s general design; and because it does not properly relate to future constructions at the Bromide Springs area.”

Excavation for the retaining wall project seems to have been the first step in implementing this new pavilion. However, work on the project was briefly “abandoned” in late 1934, due to a “recent order in regards to ECW enrollees performing skilled labor.” It was then re-initiated in January of 1935, when footings for the wall were poured. However, it does not appear that the project was continued after that date, though it is unclear from known documentation when and why the project was halted for good. At any rate, within a year a completely different plan would be proposed for a new pavilion located on the north side of Rock Creek.

1934 and early 1935 also saw a significant amount of work undertaken on the vegetation in the Bromide area. In 1934, more large trees were trimmed as part of the “tree surgery” work throughout the park. In the winter of 1934-1935, the slope of Bromide Hill, from the Creek to the ridgeline, was planted with native red cedar. It was believed that planting red cedar would “restore” the “natural growth condition” of the area:

At one time the Bromide Hill had been clothed with natural growth of Cedar intermingled with other tree varieties. An attempt has been made to restore this recent tree growth condition by planting three thousand Cedar seedlings on the hillside. This hillside work was rather difficult and it is expected survivals will be rather low in percentage. However, each plant was placed in a pocket of good soil [compost] and well watered.

The 3,000 trees set out equaled the number set out in the previous winter (1933-34), when only 20% of the plantings survived.

In early 1935, a driveway to the Bromide caretaker’s house (by this time known as Residence #1) was constructed, followed by the construction of a garage in the summer. The garage was “inexpensive and serviceable,” built of rough sawed yellow pine and was “covered on the exterior with twelve inch rough sheeting, and stained a nut brown.” The driveway work was meant to be a stopgap solution to improving the building. Richey and Popham had felt the house’s location in the middle of a public area was somewhat problematic, noting that “[t]he revision of the Bromide Area will necessitate a complete re-study of the surroundings of this residence.” By 1937, plans were afoot to move the house and garage to the Residence group near Pavilion Springs. These plans were reiterated in the 1940 Master Plan, but were never implemented.

Activity in the Bromide area, however, primarily continued to focus on development for visitor use. In the summer of 1935, access to Robber’s Roost was improved. In June, trail construction on a “spur connecting the existing Bromide Hill trail with the top of Bromide Hill . . . built on an easy grade following the contour of the hill.” A plan was drawn up and approved for a parking area at the top of the hill (Figure 4-26). The parking area and its associated walkways and retaining walls
were constructed in December 1935, but only loosely conformed to the proposed plan.76

In December 1935 and January 1936 plans were also finalized for a new pavilion on the north bank of Rock Creek. In preparation for this work, a full survey of the Bromide area was undertaken. This useful plan shows the completed 12th Street entrance, the four wood frame and stucco comfort stations, and guard-rail lined camp roads (Figure 4-27). The survey also provides good documentation of the large trees that dotted the area. A faint outline of the proposed new pavilion is also seen on the survey.

The new pavilion was perhaps the most elaborate composition of landscape and structure proposed for Platt thus far (Figure 4-28). This plan shows the pavilion situated in on a flagstone terrace overlooking Rock Creek to the south. Trees within the grass-jointed flagstone terrace shade the structure, which contains an office, tanks for water storage, and large stone seats that also held the water fountains for dispensing bromide, sulphur, and medicine waters. Below the stone terrace is an open grassy area embraced by two semi-circular wood benches attached to the terrace’s retaining wall; in the center of the grassy area is a rectangular, concrete pool with a central water jet. A large cottonwood tree is shown shading the pool.

Construction on the structure began in the spring of 1936. The building was a large, open-air stone structure constructed of stone quarried in nearby Dougherty. The stone is variously described on drawings as sandstone or red limestone, though it is classified as limestone today.77 Large, boulder-like stones formed the corners of the building, giving it an impression of being rooted in the landscape; elsewhere, smaller stones composed the pier-like walls of the building, laid with mortar joints raked an average of two inches deep. The building’s roof was framed in rough-sawn, four- by six- by six-inch lumber, with a pitch of 2:1 and a shake surface. Near the western end of the structure, a special elevated, concrete tank system of six three- by two- by six-feet containers stored the mineral waters piped to the building from the three springs to the southwest and the Bathhouse well from the northeast. The center of the building was occupied by a linear stone fountain with built-in seats that dispensed the bromide, medicine and sulphur waters. A small information booth was located opposite the water storage area.

The building was situated atop a grass-jointed flagstone terrace, which in turn was surrounded by low stone walls. To the north, the terrace met the surrounding park area more or less at grade. To the south, steps led down to a grassy lawn court, where a rectangular stone and concrete pool was set into the ground. The pool, twelve by twenty-eight feet, was fed by the bathhouse well and was four feet deep, though its depth varied six inches from end to end to aid in drainage and maintenance. The pool’s walls and floor were designed to be eight-inch-thick reinforced concrete while the pool’s coping, at grade, was flagstone two feet-four inches wide. Enclosing this so-called “lily pond” was a wood and stone bench which lined the terrace wall and ended with two graceful semi-circular ends embracing the pond.

A comparison of the original plans, historic photographs, and existing conditions reveals that numerous modifications were made to the pavilion as it was constructed. This was a rather standard procedure for construction in the park as site-specific conditions such as grades and trees were encountered. The pavilion was shifted slightly to the northeast, and the size and proportions of the terrace and building were changed. The location of the water storage tanks and office were also switched from the eastern end of the building to the western end; known documentation does not indicate why.
Figure 4-27. “Topographical Map, Bromide Springs Area,” Drawing NP-PLA-5036, 1936.

Figure 4-28. Portion of “Spring Development, Bromide Pavilion Springs,” Drawing NP-PLA-3048B, drawn December 17, 1935.
Chapter 4: The CCC Years, 1933–1940

Though the pavilion itself was complete by August 1936, some of its other elements required additional time. Construction of the semi-circular seats did not begin until September, when materials finally arrived. The pumps from the old pavilion were moved to a “new underground utility room”—presumably the underground pump house located on the north side of the creek—in October, and the building was finally opened to the public in November when the mineral waters began to flow. Terrace flagpoles, wooden signs for mineral water analyses, and paper cup containers and disposals, however, were still on the drawing board and were not completed until July of 1937. The old spring house was torn down in 1937. Following the completion of the building, both the one-gallon limit on water collection and the “keeper of the springs” or watchman position were discontinued.

The new pavilion was the focal point of the whole Bromide area. Figure 4-29 provides an excellent overview of the completed pavilion and its context, including the iron bridge and the mown grassy area around the lily pond, shaded on the west by the large cottonwood. Two other smaller trees, no longer extant, were apparently planted to shade the eastern side of the pool and bench. Also interesting in this view are the evergreens planted around the backs of both sides of the wooden bench, which were presumably meant to grow up and enclose the area encompassed by the benches. Also notable are the grass-jointed terrace paving and the trees growing out of the terrace on the building’s west side. Figure 4-31 shows a more detailed view of the area, including the laminated nature of the wood bench, its boulder supports, as well as details of the building masonry. Both of these images are early views, taken before July 1937 when the flagpoles were added to the terrace as seen in Figure 4-30. The new pavilion proved popular with the public and the area became a focal point for group activities. In July of 1937, a temporary wooden stage was constructed somewhere in the Bromide area for community entertainment and in the summer of 1938, weekly Wednesday night programs were instituted.

Meanwhile, a few more projects were implemented. In May 1937, a contract was awarded for the construction of the Rock Creek Causeway just west of the Bromide area. In January 1938, work began on a new comfort station to replace one of those constructed in 1933-34. Modeled after the rustic style comfort stations in Cold Springs Campground, the new station was located just south of the 12th Street fountain. Plans for the comfort station were completed in February of 1937. Construction was completed around June 1938 (Figure 4-32). Sometime between 1940 and 1942 an interpretive sign was installed...
on the south side of Rock Creek, near the springs (Figure 4-33).

The similarities of material, form, and style between the new station and the Bromide pavilion, as well as the other structures in the park clearly signified the development of a larger design concept for both the Bromide area and Platt National Park. This overall design aesthetic was summarized in the 1940 Master Plan drawing for the Bromide Area. This ambitious plan first proposed the removal of all camping from the area and the construction of two additional buildings, a second, rustic-style comfort station on the site of the caretaker’s residence and a proposed picnic shelter. The plan also proposed all other structures—those not constructed of stone masonry—be removed. These included the iron bridge and the community house. Campground roads were to be obliterated and replaced by curvilinear walkways meandering through the area, with two low-water crossings at the eastern end of the area and at the location of the steel bridge. Unfortunately, few of these aspirations would be fully realized, as will be revealed in the next chapter.

DRAWING 4: WALNUT GROVE PERIOD PLAN, 1940

Major change came to the Walnut Grove area in 1933, when CCC Camp 808 moved to this location. Walnut Grove was a good site for the CCC camp because it was close to both the town of Sulphur and the core area of the park. Previously, the camp had been located near the southeastern edge of the park, near the Veteran’s Hospital (Figure 4-34). Due to problems with flies from a nearby dairy, the camp was moved just south of town and west of Black Sulphur Springs.

Though the original camp was an assemblage of tents (Figure 4-35), the new camp featured simple, wooden buildings (Figure 4-36). The camp was built in October 1933, and the CCC men moved into it on November 5, 1933. As shown in an aerial view, (Figure 4-37), the buildings were arranged in a linear quadrangle, oriented east-west along the road to Bromide Springs. The camp facilities included:

- a headquarters building, a day room with ping pong tables, and a little canteen where you could buy cigarettes, gum and candy; in the middle of the camp was a shop building, and educational and supply buildings. On the west end there were two barracks on the north side, the latrine in the middle, and on the far end was the mess hall. There were three more barracks located on the south side and a flagpole in the parade ground.

There was also a coal-house located west of the quadrangle. Also to the west of the camp were four stone fireplaces. The precise date of and reason for their construction has not been identified. Some care was also taken in designing the grounds, especially with regards to the plantings:

In order to improve the appearance of the camp, a limited amount of planting was installed, due care being taken to locate trees so that when the camp was demolished the planting would be in harmony with the park.
By 1939, CCC construction within the park was dropping off, and in March 1940, orders were received from Washington to close the camp. It is unclear exactly how long it took to dismantle the camp. It is certain, however, from the statement above and from the 1940 Master Plan drawings, that the CCC camp was never intended to be a permanent fixture within the park. The 1940 Master Plan, while it indicates the location of the camp, does not show any of the camp structures. Instead, the whole area is shown as predominantly open, with canopy trees scattered throughout.
Chapter 4: The CCC Years, 1933–1940

DRAWING 5: FLOWER PARK PERIOD PLAN, 1940

Black Sulphur Springs

With a functional and relatively new pavilion, the early CCC work in Black Sulphur Springs focused on access and parking issues. Circulation patterns in the park had developed in a rather haphazard manner, and Black Sulphur Springs was likely no exception, and work focused on correcting road problems.

The first project to be undertaken in the area was the reconstruction of the Black Sulphur Springs causeway (see Road Systems, above). Then, to better accommodate parking, a new turnaround and parking area were implemented. The plan for this area was drawn by Charles Richey (Figure 4-38). It reorganized the area with an oval parking area for ten cars and a new flagstone walk to the pavilion. The drawing also shows a gravel walk leading to the causeway, as well as a guard-rail-lined parking area across the street. A picnic area is proposed just south of this parking area. Extensive tree and shrub plantings complementing existing large oaks and walnuts complete the plan, creating a shady setting for the little temple-like structure. In particular, three large American elms were proposed to form a triangle around the pavilion and dwarf sumac and wild rose were proposed to enclose, frame and screen the parking area and turnaround.

Work began in the fall of 1933. The area was graded, the driveway, turnaround, and curb were laid in, and flagstone paths were constructed from the parking lot to the pavilion and bridge. Planting was also undertaken, but it is difficult to say how many of the trees low shrubs depicted on the plan were implemented, since few appear in subsequent photographs. The parking area waited for construction until September 1935. The parking area across the street was apparently not fully or formally implemented, though it appears in a dashed line on a later topographic survey. It is also not clear if the area to the south was fully developed as a picnic area at this time.

Figure 4-38. Plan for “Development at Black Sulphur Spring,” 1933. Drawing number is illegible; dated July 22, 1933.
Rock Creek flowing behind and around the pavilion was also “cleaned-up,” which involved clearing trees from the creek bed to prevent congestion during high water. Willows were also removed from the creek bed behind the pavilion and “a new channel [was] opened.” It is not clear exactly how much, if any earth moving this “opening” entailed or how much it affected the hydrology of the creek, but it seems likely that the topography of the area was altered. Richey and Popham approved the results, noting that “no other area in the park has been so thoroughly revised and now shows greater improvement.” At the same time, a 2,000-foot-long trail connecting the area to the Davis Avenue bridge in West Sulphur was constructed. It is assumed that this trail, like others in the park, was four and one-half feet wide and constructed of compacted gravel.

It appears little more thought or effort went into developing Black Sulphur Springs for the next two years.

The 1936 topographical survey of the Flower Park area (Figure 4-55) shows the implemented driveway, parking area and flagstone walks, but no significant changes. The only new features shown on the plan are two fireplaces located northwest of the pavilion and a hydraulic ram. It is not known when the fireplaces were constructed or removed, but they were likely part of a picnic area to the northwest. On the 1940 aerial photograph, this appears as a large, grassy area with limited tree canopy.

The hydraulic ram was installed sometime between 1933 and 1935, and may have been installed to either improve water supply at the fountain or possibly, to facilitate the reorganization of the area. Near the end of 1937, construction of a new pavilion was proposed. Jerome Miller described the proposed changes to Black Sulphur Springs in a monthly report to Chief Architect Thomas Vint:
It is proposed that the Black Sulphur Pavilion be moved to the south of the Park drive opposite the present location. The old structure will be torn down and the parking area and walks obliterated. Relocation is possible because the spring flow is now equipped with a hydraulic ram and the water can be forced to any nearby location. This change seems desirable due to the non-conformity of the present structure with all other developed park architecture. The present structure is conspicuous and the site is necessarily restricted. It is planned that the new structure be set into the hillside south of the park road with ample space around it for proper use, and with adequate planting and screening for proper subordination of the structure.

These proposed changes were more completely fleshed out in November 1938 in a set of plans, shown here as Figure 4-39. Set into a low hill, the proposed pavilion was something more like the Hillside Springs pavilion, though less refined and with stonework reminiscent of the buttressed walls of the Bromide Springs and Pavilion Springs structures. The new design, with its strong horizontality, would have clearly brought Black Sulphur Springs up to the NPS rustic design standards illustrated in the rest of the park. Although approved in early 1939, the design was not immediately built, and oddly did not appear in the park’s master plan drawings until 1942.

Flower Park

Flower Park was one of the areas first addressed by the CCC, with design changes mostly complete by 1937. In the first enrollment period, work included some topographic surveying of the area and “ornamental planting,” though it is not known how extensive these activities were. The first major project in Flower Park was the construction of a new comfort station. Authorized in August 1933, the new building was meant to replace the two “unsightly,” “inadequate,” and inconveniently located comfort stations built more than 15 years earlier.

The new station was one of the first structures in the park built in (what would later be called) the NPS Rustic Style. It was designed by the Branch of Plans and Design as a small, almost squat building, with a low roof and horizontal lines to tie it into the surrounding landscape. It was sited “in a side hill excavation where its architecture would blend with the natural features of its location.” It was also constructed of local materials, including a yellow-tan limestone (then called sandstone) quarried from nearby Dougherty, just twelve miles away.

Excavation for the building began December 21, 1933 and construction began on February 1, 1934. The process was not easy for the CCC crews, most of whom had never done this type of work before (Figure 4-40). Unlike the other rustic structures in the park, each stone in the comfort station was smoothly faced (or “dressed”) by hand, giving the building a refined, almost elegant, appearance. Above the stone walls, rough-sawn beams and rafters supported a hip-end gable roof covered in wood shingles. The building was approximately thirty-two by twenty-two feet and was completed on June 15, 1934. The finished building nestled into the hillside and vegetation behind it (Figure 4-41). Interestingly, this view shows a few small trees planted in the front of the
building. Also prominent are the roof’s exposed rafters and the building’s hipped gable end.

As the comfort station was completed, other changes were occurring. The park landscape architects noted that Flower Park was “congested” and “the most used area in the park” and had “suffered a great deal of abuse in the past.”

They designed a plan for the whole area sometime in late 1933 or early 1934. The park was intended to serve as a mediating space between the “citified” qualities of Sulphur and the more naturalized landscape of the park:

Notwithstanding the fact that Flower Park has sometimes been regarded as a sort of spacious front yard to Sulphur, the area is none the less a part of a National Park, controlled by National Park policies.
However, in recognition of the contiguity and intimacy existing between Flower Park and Sulphur, the National Park Service is endeavoring to develop the area in conformity to National Park standards, while hoping that it will specially please the people of Sulphur. To accomplish this objective the present design for the area is somewhat citified though harmonizing with the more normal development elsewhere in Platt. In other words, Flower Park presented if not a challenge, then a change, for the designers, since it required fitting the NPS Rustic Style ideas to a more urban site, rather than a wilderness site. In some ways, the very existence of Flower Park highlighted the fact that Platt was something of an anomaly in the overall system of National Parks. Yet the rustic style still held sway, as evidenced by the fact that the flagpoles were removed from Lincoln Bridge. Tradition has it this was done to reduce vandalism and to match the Rustic design of park.

The overall plan for Flower Park was broken down into a series of smaller projects. One of the earliest developed, in April 1934, was the plan for the Main Entrance to the park along Highway 18. The final design for the entry, located on the south side of Davis Avenue, was a not-quite-symmetrical composition of piers and curved walls, framing Highway 18 (Figure 4-42 and 43). A special feature in the center of both curved walls was a small fountain in a recessed arch bubbling into a semicircular basin located at grade. Water to these fountains was piped in from a sulphur water well nearby. Iron lettering of the park’s name was affixed to the main pier on the right and the composition was finished with extensive plantings. Low shrubs and small trees were placed in the walls’ foregrounds; behind them, larger trees and red cedars provided a leafy backdrop. The area, described as a “garden wall entrance treatment” was complete by September 1934 (Figure 4-44). The project also included installing curb and gutter around the four corners of the intersection and roadway drainage. Catch basins were installed in the gutters and storm water was directed in an open ditch 600 feet down both sides of the road to Travertine Bridge.

Flower Park’s old circulation system was also redesigned. Work included demolishing old roads and the “rigid and inappropriate” concrete walks running through the park. Constructed in their place was “a network of trails, nearly a mile long, five feet wide, curbed with rough stone, and covered with gravel... conveniently connecting all the parts with its three entrances.” Besides the Main Entrance, there were entries at Vendome, at Lincoln Bridge, and at Central Campground. The paths, ran on graceful, curvilinear alignments (Figure 4-44), and utilized broad, curving, dry-laid limestone steps to navigate the slopes on the ridge (Figure 4-45) between Travertine Creek and the town to the north. No specific construction documentation of the trails has been found. The paths were more or less completed in the fall of 1934, though some work apparently continued until September 1935.

Another project was the construction of a large parking lot in the northwest corner of the park adjacent to the Vendome Plunge Pool (Figure 4-46). The parking area was intended to “service Flower Park” and Vendome and was designed to accommodate 130 cars. The design was a standard rectangular parking lot, 160 feet by 248 feet, with three interior parking bays, with three islands...
with grass and trees. A six-inch tall limestone curb was installed around the islands and parking lot and the whole was paved in gravel. This rather pedestrian parking lot design had one unusual feature: Running beneath the parking lot, on the line of the middle island, was a “siphon” or pipe for the Vendome stream, which then bubbled up on the opposite side of the parking area.

The Vendome stream, previously a ditch, was redesigned to create “the most distinctive attraction of the area,” the “artificial creek” with two wading pools located along its length. The stream was given a new, more meandering course through the park and emptied into Travertine Creek where it created a waterfall (Figure 4-47). A park newsletter provided a compelling description of the proposed design:

The pools are irregular in outline—one, more or less bean-shaped, and each with an average length approximating 110 feet, and an average width approximating 45 feet. One pool is located about 250 feet east of the Vendome area, while the other is about 150 feet north of Lincoln Bridge.

A typical cross section through the pools will show that their maximum depth of water will be about 2 feet, with a gradual decrease in this depth as the bank is approached. The first inch of the foundation’s depth is fine gravel; the next two inches, rough gravel; and below this, impervious clay. The arrangement of shrubs with the existing trees at certain places around the pools, sloping banks will give a naturalist effect, while the placement of rocks here and there will further contribute to the same desired effect. These rocks will also afford seats for those who wish to dangle their feet in the sulphurous water either for its cooling, exhilarating or therapeutic value.
Chapter 4: The CCC Years, 1933–1940

While the pools will primarily be for children, it is expected that people of all ages will enjoy them, with the winding creek supplying an abundance of everchanging and sparkling water from the Vendome before it finally plunges five feet into Travertine creek just north of Lincoln bridge forming a fascinating water-fall.\(^{109}\)

Work began on the streams and pools during the fourth CCC enrollment period (October 1, 1934–March 31, 1935) and they were completed during the fifth period (April 1, 1935–September 30, 1935). The lower pool near Lincoln Bridge was situated to reflect the Flower Park comfort station in its serene, glassy surface (Figure 4-48). Yet the design of the stream evoked other moods as well. A series of five small waterfalls were constructed down the length of the stream, and although no record has been located to confirm it, their varied forms seem to have been engineered to present different effects of sound and movement, thereby enticing visitor interaction with the water. The largest of the dams (seen in Figure 4-48) was a low waterfall bubbling into the lower pool, the large stones on its sides placed to provide seats next to the rushing water. Playful footbridges were also designed to cross the stream, and included a low water crossing (Figure 4-49) and a log bridge just above Vendome Falls (Figure 4-50). A more elaborate stone arch bridge (Figure 4-51) was located along one of the foot trails in the park, over a swale, which drained run-off from heavy storms into the Vendome stream.

Finish work in the park included fine grading, sodding with Bermuda grass, and planting trees and shrubs.\(^{110}\) By September 1935, the recreational features in Flower Park were all complete, and the landscape architects noted that the “area... should require no further work except planting at a future date.”\(^{111}\) It appears that planting did continue off and on in the area at least until 1937.\(^{112}\) This made sense, given that it was considered essential to the park’s design: “In fact, without having a proper distribution of suitable plants within its area,” the designers felt “the most essential park characteristic would be missing.”\(^{113}\) Some of this was provided by the large oaks, ash, and elm which dotted the park and which had been “rejuvenated by surgical attention;” but other plantings were required to screen out the adjacent city and provide color and enclosure throughout the park.

The following paragraphs summarize the approach to planting in Flower Park:

All shrubs and flower beds cluttering the center of Flower Park have been removed to create an open center, which with the border planting will effect a pleasing unity for the entire area. At least a thousand shrubs have been planted and several thousand more will be planted along the borders to make an interesting enframement of color, form, and texture. Also more than 50 red cedars have been planted to add further interest to the enframement.

In addition to woody plants, herbaceous [sic] ones will be planted in large quantities. Indeed, as a beginning, ten quarts of wild flower seeds, all collected in Platt National Park, will be sown in the Flower Park Area. However, these seeds will be sown where you would expect to find them—around the borders and among the rock and other nooks where the pedestrian will be delighted to see them. Hence the name “Flower Park” will retain its propriety, because of its association with a multitude of native flowers happily situated in a popular area.\(^{114}\)

Unfortunately, no planting plans or records of these plantings have been located to confirm the specific locations and types of plantings. Photographs (Figure 4-44) do show some of these plantings which included a large number of shrub beds along the upper trail in Flower Park.

Although most of the development of Flower Park improved the recreational aspects of the park, the largest and lengthiest project (and probably in the park, with the exception of the construction of the perimeter road) was one more typical of 1930s “conservation” work. A stone...
revetment wall was constructed along the southwestern boundary of the park, along the curving length of Rock Creek. The wall was built to prevent “the extraordinary erosion” that often occurred at the junction of Rock and Travertine Creeks in high water. Floodwater erosion had taken out “some of the park’s finest trees” in 1933, and it was hoped the wall would reclaim several acres of land in Flower Park. The project began in the summer of 1933, and over the first eighteen months brush, logs, trees, and 75,000 cubic yards of sediment were cleared from the channel between Davis Avenue and Black Sulphur Springs. This work was followed by the construction of a 900-foot-long wall of conglomerate boulders, some weighing five to ten tons. The stones were initially mined from within the park, but when supplies ran out, they were collected along Highway 22 near the Oklahoma School for the Deaf. According to Boeger, in some places, car bodies were used in place of stones. Approximately 120 tons of rock and fill were placed each day.

Though much of the work was mechanized, it was still labor intensive, requiring more than 2200 person days. A tractor and derrick were used to load the rock and trucks hauled it, but the individual stones were wrestled into place with the use of two gin poles equipped with heavy winches. Figure 4-52 shows the wall under construction. Smaller rocks, gravel and clay were used as backfill around the large stones, and heavy hog wire was placed between each horizontal layer of stones (Figure 4-53). “Waterproof clay” was used between the joints. The wall was typically “about ten feet thick at the base; five feet thick at the top; twelve feet high, with one to one and one-half feet slope toward the creek.” Stone placement was finished by January 1935, but the topsoil for plantings had yet to be spread. When completed, the whole was planted, presumably with the planned “dense willow and low shrub” planting, though this has not yet been confirmed. The whole project was complete in March 1935, by which time “several high waters . . . passed over

Figure 4-52. Placement of rip-rap using winches at the Flower Park revetment wall, 1934.

Figure 4-53. Detail of revetment wall construction, 1935. Note comfort station in left hand side of photograph.
the wall with no ill effect.” The resulting wall created a sinuous shape in the landscape (Figure 4-54).

The other major engineering project near Flower Park was the construction of the Travertine Bridge, described above (see Road System). With the exception of ongoing planting and tree maintenance, little more work was done in Flower Park during the CCC years as other areas received more attention. It is possible that the design was simply, in the minds of the designers, essentially complete and capable of meeting its goals of being a mediating space between town and park. The only indication of possible future change was the development of a topographical survey of the area in 1936; this was probably done in preparation for the upcoming 1937 Master Plan.

The topographic survey (Figure 4-55) provides a relatively detailed record of the appearance of the park following the CCC changes of 1933-35, though details of the area, such as the nature, composition, and extent of shrub and wildflower plantings remain obscure. Yet together with contemporary historic photos, the survey provides a sense of the park as a relatively open, yet shady, space with meandering paths and dotted with trees. The bank of Rock Creek is a smooth curve with a regular slope. Most surprising to modern eyes, perhaps, is the open quality of the ridge behind the comfort station, without the blanket of shrub undergrowth that covers it today. In sum, the area presents itself as a perfectly nice urban park.

As a result, perhaps, the changes for Flower Park proposed in the 1937 Master Plan might simply be described as refinements of this park environment. This plan, and the subsequent 1940 and 1942 Master Plans, essentially depict realigned paths and a re-configured stream. The stream is shown as longer and more irregular. In contrast, the intent of the proposed new paths seems to be to smooth out their geometries, replacing the broken-backed curves and odd little wiggles shown on the 1936 survey with sweeping and circular arcs that elegantly intersect. The relationship of Lincoln Bridge to the comfort station is shown as a definite, denied axis in plan, made more perceptible by the enlargement of the lower wading pool, which allows the building to be viewed over the center of the pool. The curious aspect of these proposals is that, from an implementation standpoint, they would require significant demolition, effort, and funding yet there would be little perceptible change to the experience of the park. This may be why, in the coming decades, none of these changes were implemented.

Figure 4-54. Completed revetment wall in Flower Park, 1935.

Figure 4-56. Superintendent’s Residence. Superintendent’s Residence.

CCC work in the Buffalo Pasture began with the completion of the grounds of the Superintendent’s Residence. Although the site, located high atop a knoll in the Buffalo Pasture had excellent views of the park, it was also, in the middle of an open prairie, quite exposed. As part of a desire to render the residence “less conspicuous,” and more “in harmony” with the rest of the park, a planting plan was designed for the area. This plan (Figure 4-56) was quite elaborate and included foundation plantings and masses of shrubs and small trees located around the driveway entrance. Implementation of the plan began with grading the lawn and seeding it.
Figure 4-55. “Topographical Map, Flower Park Area” Drawing NP-PLA5033, 1935.

Figure 4-56. Portion of “Planting and Development Plan for Superintendent’s Residence,” Drawing NP-PLA-3006, 1933.
with Bermuda grass. Next, a garage for the residence was constructed, along with a driveway edged with stone (Figure 4-57). A turnaround was provided at the front of the house. A picket fence enclosing a square lawn and an arbor or grape trellis near the northwest corner were also built.

In the fall of 1933, several large cedar trees and a hedge were planted around the back of the property. These plantings helped enclose the back lawn as well as screen the residence from Bromide Sulphur Lane located northwest of the house (today this lane is the Buffalo Pasture Trail) (Figure 4-58). During the winter, four large elms were transplanted to the area as were some redbuds, hawthorns, native shrubs and other ornamental plantings. The completed grounds are shown in Figure 4-59. Clearly visible are three of the four elms, masses of shrubs to the front of the house, the picket fence, and the grape arbor. Another vertical wood structure (possibly a swing set) appears in the backyard, and there appears to be a row of young shrubs planted along the western edge of Buckhorn Road in the foreground. The landscape architects commented that residence’s “change in appearance from a bleak barren hill-top to an attractively landscaped home is most marked, and attracts much favorable comment.”

Based on a comparison of the plan and historic photographs of the completed landscape, it appears the plan was executed in spirit, if not in detail, since shrub massings and tree placements between the two do not correlate. The lack of correlation may also be due to the fact that some of the plants did not survive and were replaced, perhaps in different locations, in 1935. It is also unclear whether or not some features on the plan were actually implemented. However, a flagstone walk from the garage to the house and a small patio were constructed.

By the spring of 1934, the Superintendent’s Residence was the only park housing left in the uplands. The employee residence in the Buffalo Pasture (Residence #2 on Drawing 1) was moved to a new site northeast
of the Utility Area and its accompanying outbuildings demolished. This was part of a park-wide campaign to make employee housing, usually buildings built prior to the park’s existence, less noticeable.

Buffalo Pasture

Another significant project undertaken in the first years of the CCC camp was the relocation of the old Buffalo and Elk Paddocks to new a new pasture in the upland prairie area. It was one of the pivotal ideas in the design of the park, and the designers noted that once this “problem” had been solved, “the general plan of the park came into being.” The Buffalo had previously been penned just east of Pavilion Springs. This area was arguably the heart of the park as the center of the original town and containing one of the key springs the park was created to protect. From a purely functional standpoint, removing the pasture from this area simply gave Pavilion Springs the proper space and “breathing room” space for development as one of the jewels in the park’s crown of springs. But the move was more than that. The removal of the Buffalo from a central to a peripheral location signaled a fundamental shift in park attitude and management. Platt National Park would no longer highlight imported amusements, however pleasing to the public or apt they were to the park’s history; rather, the park’s organization and landscape design would affirm the idea that the natural landscape itself was the park experience. In other words, although Platt’s scenery might not be as grand as that of Yellowstone or Yosemite, it could still be developed in a manner in keeping with the rest of the NPS system. In a sense, the work of the CCC throughout the park made Platt fall in line with its sister parks, making Platt a national park not just in name but also in design.

The Buffalo were relocated to about seventy-five acres just south of the administration building and extending to the former Sulphur-Bromide Lane. The CCC crews built a fence around the area. It was a “durable fence, built of 6 inch steel oil well casing with adequate corner posts, all set in concrete and on this 52 inches of woven wire and 4 strands of barbed wire.” Within the fenced area, to provide water for the buffalo, the CCC crews also constructed a dam in a ravine in the southwest portion of the pasture. Completed in November 1933, the dam was 200 feet long, 70 feet wide at the base and 20 feet high of earth construction and was heavily jetted after construction. The water side is faced with rock and the back side planted. A cliffside trail traverses this lake and is being separated by a Ha Ha wall of stone, with a trench outside deep enough to confine the animals.

The planting technique used on the back of the dam was a slope stabilization method. Small bundles of brush were tied together and staked in horizontal rows three feet apart; between the rows, the crews planted suckering plants that would spread rapidly. The plants used on the dam were “of a particularly thorny nature,” and included buckbrush (*Symphoriocarpos orbiculatus*), honeysuckle (*Lonicera* species), ground rose (probably *Rosa multiflora*, which was advocated for use in soil erosion by the Soil Conservation Service in the 1930s) and catbrier (*Smilax glauca*). Overall, 7,000 plants were set out on the dam. By the time the project was completed, the dam was full of water and the pond covered about three acres. Six bison and the sole remaining elk were moved to the new pasture in November 1933. The elk seems to have died in 1934, leaving the whole area for the bison.

In September 1934, six new young buffalo cows were obtained from Wichita Mountains Wildlife preserve, bringing the total to eleven. In December 1934, a 2,800-pound bull was culled from the herd. By 1939 the park had twenty-one buffalo, though the area was estimated to be able to support only eight animals. Clearly, the animals were doing well in the area. Figure 4-61 shows
the bison grazing in their new pasture. The photograph is a rather remarkable image, showing the open, range-like quality of the prairie, with its tall grass and minimal tree growth. Also seen is the fence around the pasture, as is the Superintendent's Residence in the far distance.

Work was also undertaken on the golf course, located across Buckhorn Road from the new Buffalo Pasture. By this time, the golf course seems to have become something of an institution in the park, regardless of the fact that it was an unusual feature for a national park. During the first two enrollment periods the CCC crews repaired the existing water hazard. This involved cleaning it out and building “a new 11 ft. earthen dam with a clay core wall, overlaid with a surfacing of rock.”

Golf course greens were also re-sanded by the CCC boys. In September 1934, Jerome Miller assigned landscape foreman George Merrill to research golf and golf courses and then apply the information collected to redesigning the existing course. Merrill undertook the job with enthusiasm, reading voraciously and playing the game with local club members. Under Miller and Richey’s supervision, he drew up a series of preliminary alternatives for a new nine- or eighteen-hole course. Unfortunately, the plans were abandoned, since six months later, the Regional Office ordered the golf course closed. It is not precisely clear when the course was demolished, but it does not appear on the 1937 “Platt National Park Base Map (NP-PLA-5051).”

Meanwhile, the other major effort in the area involved road work, both the obliteration of old roads and construction of new roads. Sulphur Bromide Lane was eliminated and converted into an extension of the Cliffside Trail running around the eastern side of the new Buffalo Pasture. Gilsonite Road was also eliminated in the southernmost part of the park. This demolition work was finished by the end of 1934, and three more old roads were obliterated along the southern boundary of the park in 1935. However, local residents continued to use these old roads, and the park began to realize that a park boundary fence would be the only solution to the problem.

In 1936 Buckhorn Road (State Highway 18) was realigned and resurfaced with asphalt. A previous project, in November 1930, had resurfaced the northern portion of Buckhorn Road, from Davis Avenue to just beyond the Administration Building in cold rolled asphalt as a joint project between the park and the state. A more drastic realignment of the whole road began in 1934. The northern portion of this realignment involved rerouting the road to the west of Pavilion Springs. This portion of the alignment seems to have been readily agreed upon, as it appears on drawings, and may have been completed, as early as 1934. The southern portion appears to have been more contentious, probably because it changed access between the northern and southern parts of Sulphur. The south alignment eventually agreed upon removed the access at Fairland Ave and the Veteran’s Hospital; instead, it ran in a southeastern direction past the Superintendent’s Resident in a straight alignment through the “notch” in the southern boundary of the park. Work began around September 1936 and was completed by November. Once the road was completed, work resumed on construction of entry piers at the new entrance. This project had been dropped in the summer of 1935 because of the uncertainty about the road’s new alignment. The south portal was designed as a set of massive, paired limestone piers (Figure 4-62 and Figure 11-61). They were completed in 1939.
Planting in the upland area was another important aspect of CCC crew work, but specific locations of plantings in the area are rarely given in the various reports of the era. One specific instance in the winter of 1934-35 was the planting of old alfalfa field. Located along the trail between Bromide and Pavilion Springs, the field was “planted to oak and walnut, seed for which was collected in the park.” It is not clear from this statement whether seed or seedlings were set out.

The three larger springs—Black Sulphur (or Sulphide), Sulphur-Bromide, and Wilson (also known as Sulphur Asphalt Spring)—located in the southern part of the park are also not described in detail in most of the CCC reports available. In 1934 the removal of “the present unattractive pavilion” at Black Sulphide Springs and its replacement with a picnic area was recommended. A topographic survey of this area showing a spring house and footbridge in a ravine was drawn up in 1938, perhaps in preparation for this work, but design and construction were apparently never undertaken. Structures for any of these springs are not discernible on the 1940 aerial photograph. Never as important as Bromide or Pavilion Springs within the park, these three springs seem to have been further de-emphasized during the CCC planning for the park. This may have been due to waning interest on the part of the public or due to waning flow on the part of the springs; it is difficult to tell.

Thus, by 1936, it appears that the vast majority of improvements to the Buffalo Pasture and Upland Prairie area had been completed, and the work of CCC crews was predominantly focused elsewhere. Drawing 6 gives a good idea of the appearance and physical qualities of the area at the end of the period of significance. More detailed information about the vegetation in the Buffalo Pasture and the Prairie Uplands is provided in Chapter 10.

Employee Residence Group

One of the first areas addressed was the employee residence area. As seen on the 1933 plan of the park, six employee residences were spread throughout the park when the CCC arrived. As described in their respective sections, there was one house in Bromide Springs and one located in the soon-to-be-Buffalo Pasture in the uplands off Sulphur Bromide Lane. There were also the two residences just south of Pavilion Springs, one of which was the former Superintendent’s Residence. There were an additional two residences further west, one located west of the early Buffalo Paddock, south of Central Campground, and one located near the first Negro Camp, north of today’s Panther Falls picnic area. While their scattered deployment perhaps helped “properly police” the area, it did not conform to NPS design standards, which stated that “[t]oo widespread scattering of quarters to achieve maximum supervision can result in unwarrantable modification of the far reaches of the park.” Furthermore, the existing residences were “ill-suited architecturally to park usage, and...also poorly located for park purposes.”

As a result, the designers proposed two actions. The first was to clean up the existing residences, and “render them less conspicuous.” This would include removing all outbuildings except for a garage and woodshed; limiting employee gardens; and preventing employees from keeping animals like cows and chickens, the latter proving “an unpopular but necessary procedure.” The second action was to propose that any new housing be built next to the existing residences near Pavilion Springs, creating an “employee residence group.” A topographic survey to
aid in planning the new group was completed during the first enrollment period.151

The initial work in the summer of 1933 focused on the two residences near Pavilion Springs. Two “landscaping plans” were drawn up for these areas (Figure 4-63 and 4-64). Residence 3, the former Superintendent’s residence, was re-landscaped to correct drainage and access problems; work included moving cedar trees to the roadway to provide screening, grading a new driveway and creating a stone-walled terrace to the south (Figure 4-65). It appears that the barn, chicken shed and shed around this building were retained for a while, though they disappeared by 1940. Residence 4 (today’s Building 2), located further north, was rebuilt in the summer of 1933 by the PWA, “constituting a major improvement in park housing.”152 The structural details of the rebuilding were not recorded. Outside, a stone wall in the front of the house and rock outcroppings near the south were removed, and the area was regraded “to give a more pleasing contour.” It appears that the extant stone table, flagstone patio and small concrete pond located about 100 feet northeast of the residence were also constructed at this time, since they appear on the landscape plan for this area.153 “Ornamental plantings” were also added to both residences during this first summer.154 In the summer and fall of 1934, two garages were constructed for Residences 3 and 4. The one-car garages, stained dark brown, were wood frame structures with wide pine siding and had a “wood and coal compartment incorporated in the rear.”155 Driveways to the residences and concrete walkways were also completed.156

Other work was undertaken at then-numbered Residence 2 (now Building 6), which had been moved from the new Buffalo Pasture and relocated into the Maintenance Area (see below). The building was repaired, re-sided with a rough-sawn wood siding and stained brown in the summer of 1934.157 A planting plan for this residence was completed in January of 1935, but the plan is no longer part of park files and it is unclear if it was ever implemented.158 A driveway for this residence, along with
Chapter 4: The CCC Years, 1933–1940

one for Residence 1 at Bromide Springs were constructed in the winter of 1935; these were followed by garages for both buildings built that summer. The two “inexpensive and serviceable” garages were built of rough-sawed yellow pine and were “covered on the exterior with twelve inch rough sheeting, and stained a nut brown.”

Less is known about the work done on the other residences. As noted earlier, the Bromide Springs residence was rebuilt in the 1920s and a garage and driveway added in 1933-35. Less was apparently done at Residences 5 and 6, located further west. Russian mulberry (Morus alba) trees were removed at Residences 5 and 6 during the first enrollment period. In the fall of 1934, the barn at Residence 5 south of Central Campground was torn down. Improvements at Residence 5 continued and in January 1935 its two chimneys were repaired, bringing the building up to code. Yet Residence 5 and 6 seem to have been of questionable construction, since in the summer of 1935, the designers scratched plans to build their garages, deciding instead to move and rebuild the residences at a later date.

Sometime after 1935, plans for the residences became less of a priority, and little information has been located regarding changes between 1935 and 1940. The 1940 Master Plan indicates that Residences 5 and 6 were intended to be moved to the residence group, and that an additional three new residences were planned to be built in the grouping. However, these actions were never undertaken. The 1940 aerial photograph shows both Residence 5 and 6 located in their original settings.

Maintenance Area

The second major project begun by the CCC was the construction of the Maintenance Area in November of 1933. Completed by the beginning of 1935, this project seems to have been one of the largest, yet most rapidly completed, probably because of its convenience and utility for future work. It replaced the existing Utility Area, which was torn down in late 1934. The location of this first Utility Area is not known.

The new “Industrial Area” or “Utility Area”, as it was also known, was designed as three buildings built in a quadrangle with all buildings facing an open courtyard 100 feet by 90 feet. The area was built on the back side of Hillside Spring hill, and the flat courtyard was terraced into the hillside. A low limestone rubble retaining wall, two feet high and eighteen inches thick, accommodated the cut and fill for the quadrangle and connected the three buildings, further enclosing the utilitarian compound. The low wall was topped by five-foot-high chain link fence with three strands of barbed wire at the very top. A gateway was located on the open, east side of the quadrangle. Limestone piers, three feet square and nine feet tall and similar to those at the park entrances, marked the twelve-foot wide entrance in the wall (Figure 4-66). The road leading past the park office dead-ended at the courtyard; a small parking area for about six cars was located outside the courtyard along the south side of the entry road.

The buildings in the compound consisted of a truck shed or garage on the north, a mule and hay barn on the west, and a maintenance office on the south. The buildings (Figure 4-67 and 4-68) were designed to be in keeping...
with NPS rustic design, and were constructed of creosote-oil stained wood and limestone masonry. The office, built mostly of limestone, was fifty by thirty feet, and housed the construction superintendent, tool storage and a combined office and drafting room for the landscape architects, engineers and foresters. The garage, sixty feet by twenty-five feet, was the repair shed for the park’s nine trucks, and sometimes a carpentry and machine shop. The garage’s end walls were limestone, but the side walls were stained wood. In contrast to the truck shed and the office—low, one-story buildings—the mule barn, sixty by thirty feet, was a two story building with the lower story accessed from the lower grade to the rear. Though the basement foundation was constructed of limestone masonry, the upper story was wood framed with vertical board and batten siding. It primarily stored horse, bison, mule, and elk food, and sometimes construction materials. The initial construction of the entire maintenance area cost a total of $440.00 in materials and 1,224 man-days.

Although the compound appears small on the park’s 1937 and 1940 Master Plan drawings, the maintenance area actually encompassed a much larger zone. To the east and north was Residence #2, which was relocated there in 1934 to provide a resident to police the area during off hours. The residence and its garage are shown in Figure 4-69. To the west, a network of dirt or gravel roads and parking areas spilled out on the surrounding hillside behind the mule barn. Labeled on some drawings as the “Maintenance Yard,” this area beyond the quadrangle contained a number of additional buildings, including an earth-sheltered building that stored explosives (Figure 4-70), and at least two large sheds. The largest of these sheds (Figure 4-71), was a long, three-bay shed apparently used for equipment and vehicle storage. Materials were also stockpiled in the area. To the north of the mule barn and truck shed was another area that on the 1940 aerial photograph appears to be fenced. It is possible, but not known for sure, that this was the mule pasture, since an area adjacent to the Utility Area was graded and fenced.
for mules in August 1934. Finally, there was also a temporary blacksmith shop, though its location is not known. Overall, these varied features seem to have accreted in the area over the years after the quadrangle’s completion; there is little known documentation of these additions.

Administration Building and Hillside Springs

Located just east of the Maintenance Area, the Administration Building (also known as the Leeper House, the park office or the Superintendent’s Office) and Hillside Springs were slowly transformed during the mid 1930s. Design work and plans seem to have been completed by the spring of 1934 during the third enrollment period. Construction was delayed, a bit, until the state approved the realignment of Buckhorn Road (then State Highway 18) from the east to the west side of Pavilion Springs.

The first element completed was the U-shaped parking area at Hillside Springs, begun in August and completed by December of 1934. The parking area was designed to hold twenty-two cars for both the spring and the administration building up slope, and a stone staircase approximately 120 feet long was constructed from the southwest corner of the parking area up to the park office (Figures 4-72 and 4-73). The parking lot was paved with a gravel surface and delineated with stone curbs. Planting around the parking lot was an important part of the design, and included many cedars. The cedars (Figure 4-52) were intended to screen the parking area and provide vertical interest and enclosure in the otherwise open landscape. Many of these trees are extant today.

In the early spring of 1935 the CCC removed the old pavilion structure at Hillside. The new spring was designed as a retaining wall inserted into the hillside (Figure 4-74). In the central portion of the wall was a pool situated in an arched grotto. The water, supplied from a concrete holding tank behind the wall, bubbled into the pool from two round bubblers and drained from the pool in a runoff across a flagstone terrace to the slope below. Two curving walls on either side of the grotto wall embraced the terrace, creating a private, enclosed area around the pool. Visitors could collect water in bottles or dip it up in cups, from the bubblers or pool. Access was provided by a flight of stone steps, which led down from the parking lot located above the grade of the enclosed terrace.

Landscape foreman Ed Walkowiak supervised the construction and the project was completed in June 1935. The neatly faced blocks of yellow limestone and the curves of the walls were similar to those of the main entrance and the Bromide fountain constructed more or less simultaneously. Much of the stonework at Hillside was done by a crew of foreman in three weeks in February and March when the CCC boys were quarantined during an outbreak of spinal meningitis. Some of the planting around Hillside Springs was also completed by the foremen during this time.

Meanwhile, work was proceeding at the Administration Building, where an addition was constructed on the building’s west end. The addition provided space for a museum, a washroom, and a filing room and an opportunity to reorganize the existing office. Work began on November 23, 1934. The addition was thirty-two by forty-three feet and was constructed of a gray-blue
limestone. According to Superintendent Branch, “a very successful attempt was made to duplicate the masonry of the existing structure which was of the rubble type by using rock (a gray-blue limestone) from the quarry where the original rock was obtained.” In addition, the old building was repointed to match the new. The CCC masons also made a concerted effort to replicate the arched windows of the existing building in the new addition, with the exception of a bay window installed on the north side of the addition. The entire building was shingled, new stone steps were installed to access the verandah on the north, and the main entrance to the building was moved from the east end to the south. Based on historic photographs, a few trees and foundation plantings were planted around the building (Figure 4-75). Sometime before 1940, a small stone-lined parking area just southwest of the building was installed along the access road.

Pavilion Springs

Pavilion Springs was the last element completed in the central core of the park. Designs for the area and a new pavilion were produced as early as late 1934, when master plan drawings of the area were completed. About a year later, more detailed plans were sent to the San Francisco office for study. However, work on the pavilion did not begin until the summer of 1936, and then proved beset with problems. The first were seen as Big Tom was re-plumbed:

Considerable difficulty has been encountered in uncovering the old underground facilities at Pavilion Springs Pavilion. A good many old water lines, drain lines, walls, and floors were found in the course of the excavation. The old inverted funnel over the main flow of the spring is of concrete and may be left in place and used as a form for a more substantial one. The old funnel is leaking badly and does not cover the entire area of the spring. This underground work will take more time than was anticipated, and probably delay completion of the structure to sometime in November.

By September, a new funnel was installed and a layer of clay four feet thick had been packed over everything to stop any leaks. Thus constricted, the outflow of the spring increased by fifty percent. A large elegant stone fountain replaced the concrete fountain pictured on the building plans. The sub-floor and footings for the pavilion were poured. By the winter, however, there were new problems: freezing weather halted the masonry work and then the stone proved difficult to work with, causing further delay. In May of 1936, Miller wrote:
Pavilion Springs Pavilion is still far from completion. The fault seems to lie in the character of the stone obtained for the structure. A great deal of hand cutting is necessary before putting the stone in the structure. However, the finished result should be satisfactory. This sand-conglomerate cap rock will not be used in further structures if any other type of stone can be found available.

A parking area was laid out in June and July, (Figure 4-76). The pavilion was finally finished and opened to the public on August 22, 1937. Although Miller deemed the building “generally satisfactory,” it was still a fine example of NPS rustic architecture (Figure 4-77). The building was low to the ground, emphasizing horizontal lines; the yellow pine used for structural members was rough sawn and hard hewn, for a pioneer look; and the locally quarried stone married the buildings to its surroundings in color and texture. The building’s stonework specifications for exemplify typical NPS Rustic architecture standards:

Stonework shall have a rough natural character, using weathered surfaces on the outside. Stones shall be as large as possible, and this is to be emphasized where the stonework projects from the ground. Sizes of stones shall decrease toward the top of the walls. The buttress proportions shall be untrimmed and have the appearance of natural ledge outcropping. The buttresses alongside the steps shall also be of sandstone. The inner surfaces may be both weathered and trimmed surfaces.

The sizes of the stone shall be as directed by the Superintendent. Lay all stonework in full beds of mortar, placing the major axis horizontal. Jointing in the sandstone may vary from 1” to 2-1/2 inches, averaging one inch in width. The joints shall be raked to a depth of about 1-1/4 inches.

The thick buttressing of the pavilion walls blended into surrounding rock outcroppings, giving the structure the appearance of having grown out of the ground. The last element added to the building was the analysis sign. This was added in 1938. Little information has been located on the design of the footpath and underpass at State Highway 18.
Chapter 4: The CCC Years, 1933–1940

1940 Overview

By the end of 1937 all of the major elements within the central core of the park were complete landscape compositions. Yet by the end of the period, the sites were also integrated, in part due to the consistent architectural themes utilized in each area. Perhaps more important, however, were the pedestrian and vehicular circulation routes that fundamentally linked the areas together. These included the main spine of Highway 18 running through the area, the shared entry road for Pavilion Springs and Residences 3 and 4, and the shared drive for the Administration Building, the Utility Area, and Residence 2. The Administration Building and Hillside Springs also shared a common parking lot. The 1940 Master Plan indicates that all of these vehicular routes were paved in asphalt by 1940.

Pedestrian trails and steps also linked all the areas. A stepping stone path led from the Residence Group across Highway 18 to the Administration Area. The Buffalo Pasture Trail paralleling Buckhorn Road linked the Administration Building to Flower Park. Also important was the underpass under State Highway 18 connecting Pavilion Springs to Hillside Spring and to the Cliffside Trail.

Unfortunately, little information has been located documenting the construction of this underpass. Although a six- by seven- by thirty-two- foot concrete box culvert appears on the 1936 plan for the Pavilion Springs parking lot, no detail about its design as a utilitarian yet elegant combined stream channel and foot path are shown. The 1940 Master Plan, however, depicts the extant path and steps running from the north end of the pavilion down to the underpass to connect with the paths on the other side of Buckhorn Road.

DRAWING 8: CENTRAL CAMPGROUND PERIOD PLAN, 1940

By 1933, more than 60,000 people were camping in the park each year and the campgrounds were an immediate focus for CCC improvements. Between May 1933 and April 1934, Central Campground seems to have been “cleaned up” and reorganized. The area was graded, and 2,835 feet of new camp roads were constructed. These were either ten or twelve feet wide (minor and major roads, respectively) and efforts were made to adapt roads to vegetation and topography as was also done at Bromide and Cold Springs campgrounds. Some new shade trees were also installed in the campground.

In December of 1934 a topographic plan of the campground was completed, and this drawing presumably shows the improvements that were undertaken in the summer and fall of 1933 (Figure 4-78). The layout of the area shows two campground loops accessed from the west off of a single road from Highway 18. Each oval-shaped loop is bisected by a central road. Two comfort stations, one for men and one for women, are shown along the road connecting the loops. The plan shows numerous trees and some patches of shrubs scattered across the southern part of the area, along the creek banks, yet shows the northern, uphill part of the campground site as predominantly open upland. A number of culverts are also shown along the campground roads to accommodate drainage across the site into the creek. Finally, Travertine Creek is shown as an open stream, without the dam that would later be constructed near the campground.

Significantly, the plan shows no specific pull-in or pull-through campsites defined in an organized pattern as was typical of most campgrounds being designed in the NPS at this time. It appears that the topographic survey might have been the first step toward a more defined development of the campground that was never implemented.

In early 1935, Richey and Miller wrote that a “preliminary plan for the development of Central Campground was worked out, but never approved, due to the question of its desirability as a future campground.”

Even though its desirability as a campground was questioned, its use as such continued, only without the benefit of a more defined campground plan. By September 1936, it had been decided that the area would become a campground for African-Americans, replacing the previous “Negro area” at Panther Falls. Jerome Miller described the work as follows:

Completion of this area will fulfill a definite need for sufficient space to allow colored people to camp, picnic and swim in one special area set aside for that purpose.

The present Negro area, available only for
Although the dam at Panther falls was not removed as Miller predicted, the dam added along Travertine Creek immediately south of the east campground loop provided a swimming area for African-Americans. The exact construction date of this dam is not known, but it occurred sometime after 1935, likely when the other dams on the Travertine were constructed. It is unclear whether this occurred before or after the comfort station was completed.

Figure 4-78. Portion of “Topographical Map, Central Campground Area,” Drawing NP-PLA-4998, December 1934.

It is also not fully clear if the entire area, or just the eastern loop, was intended for the “Negro Camp.” By September 1936, a new entrance road to the eastern loop was under construction. This new entrance accessed the eastern loop of the campground, and entered from the perimeter road just after it crossed Travertine Creek, at a point south of the campground. This was the designated entrance to the “Negro area,” yet it does not seem to have replaced the western entrance off Highway 18 at this time. The new entry road was complete by February 20, 1937. Signs designating the area as “Colored People Only” were located in the campground and near the pools along the creek, but the exact locations of these signs are not known.
Chapter 4: The CCC Years, 1933–1940

In the summer of 1937, construction was started on a “Negro area” comfort station. It was located on the northeast side of the eastern campground loop road, and was designed as a replica of the NPS Rustic style Cold Springs comfort stations, with heavy stone walls, wooden beams and rafters and wood shake roof. Footings were complete and stonework was underway by August and the entire building was complete by November. Documentation of the building – and indeed the whole campground is sparse, perhaps indicating that the area was considered less important because of its users.

Once the comfort station was complete, little else occurred in the campground during the CCC years. Between 1937 and 1940, numerous plans were made for Central Campground, but none of them were implemented. Mostly, these plans included retaining the eastern camping loop as an African-American campground while converting the western loop to a picnic or day use area. In the 1940 Master Plan, for example, the western loop is depicted as reduced in diameter, with additional foot trails and a new parking area located along the perimeter road south of the western loop.

DRAWING 9: COLD SPRINGS CAMPGROUND PERIOD PLAN, 1940

By 1933, Cold Springs Campground was considered “the most abused of all the camp areas” and during the first two CCC enrollment periods work seems to have focused mostly on bringing the area up to some basic standard of “appearance and utility.” Existing trees were pruned, some new plantings were added, the area was graded and drained, and new roads were installed. About a half mile of roads (2,607 feet) were constructed; this was comparable to the amount constructed in the other two campgrounds. New campground roads were designed for use by campers only, and were adapted to topography and vegetation. Major camp roads were twelve feet wide, minor ones ten feet wide. Specifics on surfacing or orientation of campsites are not described in CCC reports for this phase of the work.

Guardrail installation was also a significant portion of the 1933 work and more was installed in Cold Springs—1320 feet—than anywhere else in the park. Most, if not all, of it seems to have been installed along Travertine Drive outside the campground and parking areas. The guardrail was constructed in twelve-foot sections of eight-inch by eight-inch rail, set eighteen inches above the ground on ten-inch by ten-inch posts.

During the summer of 1934 (the third enrollment period) work on the campground primarily consisted of tree trimming. In August, after the summer camping season, the campground was closed, pending construction and over the fall and winter, a topographic plan and preliminary designs for a reorganized campground were worked out. A final plan was completed by March 1935 and sent to San Francisco for approval. Detailed plans for lighting fixtures and stone-enclosed wood and garbage containers (Figure 4-80) were completed and approved later that summer. Little is known about the design of the light fixtures and they were likely never installed.
Chapter 4: The CCC Years, 1933–1940

The reconstruction of the campground began in April 1935 with the staking of roads, parking spurs, and water and sewer lines and later, fireplace, table, and tent locations. In August, roads and parking spurs were constructed with a four-inch-thick gravel base and a one-inch-thick surface course of “fine gravel.” The roads were twelve feet wide and created a one-way loop system, oblong in shape and about 1300 feet long. A central road bisected the loop, and carried traffic into the campground; it met the outer roads of the loop handled traffic leaving the campground. At about the halfway point of the central road, two small spurs provided access to the outer exit roads in the middle of the campground. A total of sixty-six parking spurs were built. Most were thirty feet long, but ten were built 36 feet long, to accommodate “extremely large trailers.” The locations of the longer spurs are not shown on any known drawing. In fact, drawings of the campground show sixty-two spurs, rather than the sixty-six constructed, and the drawn sites are located in different places than those occurring to the field. It would thus appear that the field crews accommodated the site conditions and therefore as-built conditions varied from what was shown on the drawings. Apparently, field changes never made it back to the drawing board when future drawings of the area were made.

While the roads were being built, work was also proceeding on the two comfort stations designed for the campground. Construction of the first (in the western half of the campground) was started on July 19, 1935 and construction of the second (in the eastern half of the campground) began on August 17, 1935; by September 30 they were both substantially complete. The two buildings were approximately thirty-two by twenty-eight feet and were constructed of limestone (though it is often called sandstone in historic documents). The masonry walls were buttressed with stones decreasing in size as the walls reached the hip-end gable roofs with their exposed beams and rafter tails. Individual stones were randomly-sized, further emphasizing the buildings’ irregular, chunky profile. Their entry ways were wrapped by similar walls that provided privacy, and both buildings faced south, catching the warmth of the sun. Historic photographs show the roofs with twenty-four-inch wood shingles, with seven and one-half inches to the weather and every fifth row doubled.

The comfort stations were more subdued in color and much more massive and heavier in appearance than, for example, the comfort station at Flower Park. As Miller and Richey described them, the buildings set a new standard for both design and construction of features in the park:

The construction of these buildings has been a departure from any previous masonry done in the park. The material used is a rough, dark gray and brown sandstone. The units are large and irregular in shape, the largest individual stone weighing approximately six tons. The appearance is much more natural in effect than the yellow-brown limestone previously used, and blends more inconspicuously into the landscape.

The buildings were exemplary NPS Rustic architecture, and were eventually featured in the “manual” of NPS design, Park and Recreation Structures by Albert H. Good (Figure 4-81). And, in fact, in 1937 Thomas Vint recommended that the comfort stations be used as a model for the design of toilet facilities in a campground in Acadia National Park in Maine.

Upon completion of the comfort stations, Richey and Jerome Miller wrote “the two comfort stations in the Cold Springs Campground are fine examples of ‘Rustic’ architecture and without doubt are the most picturesque buildings in the park.” However, the campground’s next building, the checking station, rivaled the comfort stations for that title (Figure 4-82). The drawings for the small building were begun in the summer or fall of 1935, and were completed and approved in the spring.
Chapter 4: The CCC Years, 1933–1940

of 1936. However, construction does not appear to have begun until a year later, with the building more or less complete in March, 1938. The small NPS Rustic building, approximately twenty-seven by twenty-one feet, was constructed of materials similar to those of the two comfort stations: Large boulder masonry formed the walls and rough sawn timbers were used to frame the gable roof. The design called for the roof to be surfaced with thirty-inch wood shakes laid nine and one-half inches to the weather on a 12:7 pitch. However, historic photos show that the reveal was somewhat less—closer to six and one-half inches to the weather. The building also sported a stone fireplace and chimney, and window shutters with leather hinges. Constructed after the comfort stations, it apparently exceeded the picturesque nature of even the Cold Springs comfort stations: A landscape architect reported that “[t]he appearance of this structure is unusually pleasing.”

The smaller features in the campground were designed to complement the larger structures in creating a rustic campground scene. Most of these were constructed in the summer of 1935. These included ten of the rectangular stone trash can containers that were also equipped with water hydrants for visitor use. Fireplaces were also constructed, one for each campsite (Figure 4-83). “[U]nintrusive yet serviceable,” these were lined with firebrick and it was noted that “with proper planting, they will fit very well in the campsites.” A picnic table of rough sawed dimension lumber was also designed for the campsites (Figure 4-84). The picnic table was promoted as model in Park and Recreation Structures, where it was described as “substantially braced and . . . [with] a center of gravity so low that it could only be overturned by intent and much effort.” It was also lauded for its “sanitary” table top, which was constructed with a two-inch gap between boards so that crumbs would fall through. A total of 114 tables were built, including 66 for the campground and 48 for elsewhere in the park. Finally, in keeping with the rustic scene, large conglomerate or sandstone boulders were installed “as protection rail” along the campground roads and spurs once they were finished. Two new parking areas, either inside or outside the camp, were also lined with these rocks, which each weighed “upwards of a ton.”

By March 1938, Miller was hurrying to finish the campground—particularly signs—for opening that summer, noting that it “is important that priority be given to completion of all details in Cold Springs campground so that the area will be ready for use when the season opens.” The campground had been closed for two years for all the construction. However, continuing drought in early 1938 (Buffalo and Antelope Springs had dried up in September 1937) conspired to postpone the opening for another year. This “extra” year of no use, combined with the silviculture program supervised by Forester Donald Stauffer probably allowed existing vegetation to recuperate from previous heavy use and from the trauma of construction. New plantings were
also likely able to properly establish themselves with the extra time and care. The campground finally opened for use in 1940, after four years of closure.

Nursery

Located just west of Cold Springs Campground and south, across Travertine Creek, from Residence 6, was the park's nursery. Previously the site of a simple barn, in 1933, the area, which was relatively level, was established as a plant nursery. By the end of the first year of CCC enrollment, the nursery had 2,303 plants, most of which had been dug in the park. Descriptions of the nursery indicate that seeds and bulbs of persimmon, bois d'arc and two plants called “Spanish larkspur (Gilia),” and “Oamassia” were collected in the park and were perhaps started or stored in the nursery. It’s not clear what the latter two plants in the list are; these seem to be common names no longer in use. In the fall of 1934, the barn at the nursery was torn down, and by March of 1935, the area of the nursery had doubled in size. In the fall of 1935, the nursery contained 3,500 lined-out shrubs as well as 10,000 cedar seedlings started from seed that spring. In addition to plants, the nursery also contained a compost heap, built during the third enrollment period.

The compost heap was about 400 cubic yards in size—enough space to store and process 7,000 pounds of cotton bolls received from a local cotton gin. Another area was demarcated for storing and burning brush collected in the park.

Thus, in 1940, when the CCC left Platt, Cold Springs Campground was still quite new, with presumably little wear from visitor use. No other known changes were made to the area following completion of the Checking Station. The 1940 Master Plan of the area shows only the replacement of the community house by a proposed ranger residence (Figure 4-85).

Drawing 10: Travertine Island & Little Niagara Falls Period Plan, 1940

When the CCC camp began work at Platt, improvements to Travertine Island seems to have been one of the first projects undertaken by the crews, as part of park-wide
Chapter 4: The CCC Years, 1933–1940

work to control the impact picnicking had on the landscape. Park designers wrote that:

Picnicking constitutes one of the major attractions of Platt Park, and continues during every month of the year….Formerly, indiscriminate picnicking has been permitted all over the park, but one of the major tasks of the present program is to provide certain definite places for picnicking, and to develop them for the maximum of convenience and attractiveness to the public, in this way hoping to lessen the present abuses of certain areas by picnic groups.227

Landscape Foreman George Merrill was put in charge of developing the “major picnic spot” at Travertine Island.228 According to Merrill, the area was “one of the most interesting spots in the park….with presence of the most magnificent trees within the park; with a natural topography exceedingly fascinating for its travertine formations.”229 Unfortunately, the work does not seem to have been recorded in as much detail as work in other parts of the park. As with Buffalo Springs, design drawings were either never done because of the fast-track nature of the work or were lost over time, since they have not been found. Richey and Popham wrote one short paragraph describing the specifics of the design:

A number of minor areas have been developed for small parties. In some of these stone tables and seats, with near-by fireplaces, have been developed. In addition to these, Mr. Merrill has developed one area for large parties with a large table and seat, a smaller table nearby for children, and a fireplace. Attractive paths have been developed throughout the area. This development promises to be unusually popular with the park visitors. Because of the limited area available for parking cars, Travertine Island will be closed to automobile traffic and a parking area developed nearby at Little Niagara Falls. In his work here, Mr. Merrill has tried to take advantage of the Natural Travertine stone formations which characterize this area.230

Figure 4-86. “Topographic Map, Travertine Island Area,” Drawing NP-PLA-5038, 1936.
These features are shown in greater detail on a topographic survey (NP-PLA-5038) dating to 1936 (Figure 4-86). Though the survey post-dates plans made in 1935 for alterations that eventually created the extant swimming pool at Little Niagara, the 1936 drawing still shows the area prior to these changes.

Three distinct areas of activity appear on the 1936 survey. The area described by Richey and Miller, above, as being for “large parties” is shown as a curved, oblong area, ringed by a stone seatwall. Access is shown from the northern parking via steps and stepping stones across the creek. Within the walled area are two tables, one large and one small (Figure 4-87), as well as a barbecue fireplace with an adjacent wood storage area and “counter top” built into the nearby wall (Figure 4-88). A number of trees were located within the walled area and provided overhead canopy and shade (Figure 4-87). A small circular table appears in other historic photos (Figure 4-89), but is not shown on the 1936 survey.

Merrill wrote a rather detailed description of the large picnic area and its uses, noting that it might supply seats for an audience of three hundred people or more, whether this audience were enjoying a musical, a lecture, or some general entertainment. We feel however, that the main use of this area will be for large picnic lunches. The large paddle-shaped table will accommodate at least twenty-five people, whom we may conceive to be the officials or other dignitaries of some organization such as that of the American Legion. The bean-shaped table was designed primarily for the children who might be holding their own party, or who might be along with their parents in a general picnic party. The oven and wood-box-table combination are adequate to the obvious uses for which they are intended.\(^{231}\)

The second area is shown on the 1936 survey just north of the parking area, at the intersection of four paths. Here a central table is shown surrounded by three seats. No photographic records of these features survive, but they were likely made of stone to match the other features in the area. The third area on the survey is shown just northwest of the southern parking area along the perimeter road. Two stone tables are shown located in an area delineated by large boulders to the north (along the side that faced the creek) and by a steep bank along the south side. There is also a symbol indicating a fire pit or barbecue similar to that shown for the large picnic area. Only one historic photograph of the area is known to exist and shows one of the tables was backed by the bank of conglomerate stone (Figure 4-90). This area was sometimes known as the “End of the World” or “Lost Cave Falls” picnic area. The origins of these names are unclear, and neither is listed in the park’s list of “Place Names Recommended for approval or Abandonment,” compiled for the Department of the Interior in 1937. Perhaps they come from the area’s somewhat remote location. Lost Cave Falls is a particularly curious name, given that both Lost Falls and Cave Island Falls are located further south on the 1909 map and 1931 maps.

Merrill noted that “the topography…suggested the three subdivisions of the area which we have effected. While the three subdivisions are intimately connected, each
affords a certain degree of privacy from the others and each may serve a special use.232

The 1936 survey shows numerous other features as well. “Nigger Run” Bridge is located to the northeast; it was constructed as part of the perimeter drive (see Road System, above) over what is now known as Limestone Creek. The little tributary’s name was changed in 1937, when it was deemed inappropriate by NPS officials.233 The construction of the bridge, which was completed in 1934, required changing the channel of the creek.234 In September 1935 a small parking area for six vehicles was designed and constructed just east of the bridge, in preparation for the construction of a new picnic area there.235

Also installed at Travertine Island and Little Niagara in 1933 and 1934 were 144 feet of wooden guardrail. The same as that installed elsewhere in the park, the guard rail was designed as twelve-foot-long, eight- by eight-inch square rails mounted eighteen inches above grade on ten-by ten-inch square posts.236 And a year later, in 1935, not one, but two picnic area parking lots were constructed, one north and one south of the island:

The area on the south was built parallel to the park road, with accommodations for twelve cars. The area to the north was constructed about 70 feet from the perimeter road and connected with it by a sixteen foot entrance road. This parking area accommodates twenty cars.237

The two parking areas are also shown on the 1936 survey (Figure 4-86) in their respective locations and defined by boulder guardrails. Wandering paths lead from the picnic areas down steps made of huge stone blocks and across the creek channels on large stepping stones to the island. Based on extant remains, these paths were between two and four feet wide, with stone edging in at least some locations. It is not known of what the one bridge in the area, no longer extant (and shown in the lower right-hand corner of the drawing), was made. Two comfort stations, surrounded by paths, are shown on the island. It is not known when these comfort stations were built, but it is likely they were simple stucco buildings like those in Flower Park and Central and Bromide Campgrounds, and built sometime in the 1920s. They do not appear in the 1915 building inventory conducted by Superintendent Sneed. Another notable set of features on the island are a series of electric poles, indicating that the picnic areas, or at least the comfort stations, were probably illuminated for night use as were Bromide Springs and Flower Park.

Though little more additional graphic or textual documentation of CCC design and construction work undertaken at Travertine Island and Little Niagara dating after 1936 has been located, additional changes were made to the area. The first changes were likely the alterations to the swimming area at Little Niagara just to the west of the south parking area. A plan (Figure 4-91) to create a swimming hole in this location was completed and approved during the fifth enrollment period. The project installed a curved stone dam in Travertine Creek, just east of the tip of Travertine Island, creating a deep pool below Little Niagara Falls. Construction likely occurred in the 1937 or 1938, the years for which there is less documentation of work.
Chapter 4: The CCC Years, 1933–1940

The rustic-style comfort station built on the island was also begun in 1938 or 1939. This comfort station replaced the two shown on the 1936 survey and was designed to be similar to the comfort stations built in Cold Springs Campground. Also added around this time was the large interpretive sign describing the creation of “Travertine Rock.” The sign was made in a typical NPS rustic style, a large plank sign with carved letters, mounted between large logs of varying heights.

The 1940 Master Plan drawing of the area does not provide much additional information about either existing conditions at the end of the CCC era or proposed future changes. Completed at the overall park scale, the plan simply shows the existing parking lots, roads, creeks and trails, without showing any detail of the picnic areas. Thus it is difficult to tell if these were intended for removal, or just not shown because of the scale of the drawing.

DRAwING 11: BUFFALO AND ANTELOPE SPRINGS PERIOD PLAN, 1940

Buffalo Springs

If little had been done to alter the natural setting of Antelope and Buffalo Springs under early NPS guidance, the 1930s marked a significant change. In just months after Camp 808 arrived at Platt, major work on the area was underway. Though most intense in the first and second enrollment periods, the re-working of the entire area of Antelope and Buffalo Springs proceeded through the 3rd, 4th and 5th periods of enrollment.

Edmund Walkowiak was put in charge of the work at Buffalo Springs in 1933 and 1934. He began by noting the area’s “deplorable condition” and inventorying the site’s numerous problems. These included uncontrolled parking; erosion along the creek banks; the pergola,
“whose design and construction was quite foreign to National Park Service standards”; fires and fire pits places strewn willy-nilly about the area; and simply the area’s “unwholesome picture” created by disorganization, overuse, and overgrown and dead and dying vegetation.239

Walkowiak remedied all of these, and other, problems, through projects described in perhaps the most detailed report of any work done in the park.240 Work began by clearing overgrown and dead vegetation and removing the old pergola. Trees were cleared from the creek and in some places were used as reinforcing “web-work” in the newly straightened and sculpted creek channel. Small dams were installed to improve water flow and reduce erosion and large rocks were also placed at sharp channel corners to help prevent bank scouring. Overall, the creek work helped to prevent flooding and overflow and added 2,500 square feet of usable land to the springs area.

Once the creek was under control, work focused on controlling automobiles. This was basically accomplished by separating vehicles and pedestrians and defining use areas. A survey completed after 1934 (Figure 4-92), indicates that three major areas were defined: a parking area, a picnic area and an area around the springs. The first of these, the parking area, was located on the north side of the existing road that looped around Buffalo Springs. The 22-car parking area was sited on a slab of solid rock that had to be dynamited to create a level surface.241 The area was retained against its northern back slope with a low stone wall that also added an appearance of “permanence.”

On the south side of the road, across from the parking area was a loading and unloading area for the picnic area. The road, parking and unloading areas were all filled about two feet above existing grade, and as a result, a stone retaining wall was built to accommodate the grade change and separate vehicular traffic from the picnic area. The retaining wall (Figure 4-93), was eighteen inches thick, and varied in height on the picnic side from fifteen to forty inches. The wall extended southeast along the
road to meet an old concrete road culvert, which was reconstructed with new native-stone veneered walls two feet higher than the old to accommodate the raised road grade. The new culvert was constructed with cast-in-place concrete lintels above the opening; these were later bush-hammered and stained buff in color.

At the picnic area, a five-foot, four-inch wide opening was constructed in the wall in the center of the loading area. Steps with six-inch risers and sixteen-inch treads led from the wall opening to the picnic area below. The picnic area and the adjacent spring area were also filled fifteen to eighteen inches, primarily to raise them above flood level. Graded areas were sown to grass. The picnic area was mostly cleared, but some large trees were left for shade. A large barbecue pit (Figure 4-94) was the central feature of the area. Constructed of brick, lined with firebrick, and veneered with native stone, it was large, with inner dimensions of two and one-half by two and one-half by ten feet. Seats of solid native stone, sixteen inches high and eighteen inches wide were constructed around the barbecue. A large stone picnic table (Figure 4-95) similar to those at Travertine Island was also built in 1934, and traditional wooden picnic tables were also liberally sited around. Three additional stone fireplaces and another stone picnic table were planned to be built later, these were completed in the summer of 1934. The 1934 survey (Figure 4-92) shows what appear to be a total of three stone tables, two large stoves, and an additional symbol likely indicating additional tables.

The picnic area was connected to the spring area by steep steps and a set of stepping stones. The stone stairs were four feet wide and were located on both sides of the creek bank. Large, fifteen-inch-high stones flanked the steps, and were meant to act as both seat and railing. On each side of the creek, the lowest two steps were set in concrete (eighteen inches deep) while the others were simply set on clay and had mortar joints. Four large stepping stones bridged the creek, and a flagstone walk led between the top of the creek bank and the Buffalo Springs pool (Figure 4-96).

Figure 4-93. Retaining wall at Buffalo Spring parking area, circa 1933.

Figure 4-94. Barbecue pit located in picnic area near Buffalo Spring, circa 1935.

Figure 4-95. Large stone table at Buffalo Spring, circa 1934; note barbecue to the left.

Figure 4-96. Steps and stepping stones at Buffalo Spring, no date. Note bridge in background.
The design and construction of the circular enclosure and stone walls at Buffalo Springs area was the most complex of all the work done in the area. Little is known about the inspiration for the design; Walkowiak only notes that it was done to “give that natural Springs a fine setting and to make the water [? Word unclear due to typeover] more appetizing and sanitary.” It is not known if he or any of the other landscape architects were influenced (or even knew of) Superintendent Ferris’ 1921 design for a circular enclosure for Buffalo Springs (Figure 3-77!). At any rate, work began by excavating a hole forty-seven feet in diameter and three feet deep. The process “revealed a gravel and fine sand subsoil which necessitated a change in the plans of construction from ordinary wall footings to a ring of concrete reinforced by steel resting on piles as a base for the stone upper structure.” A pile driver was built on site to drive the white pine piles. The construction process, including driving the piles and pouring the concrete ring and walls, appears arduous in historic photographs (Figures 4-97 and 4-98). The stone used in the masonry was a native yellow-brown limestone with large flat flagstones creating the walkways. The outer seat wall was broken in two places to provide access via stone steps flanked by low stone piers.

The result of the work was succinctly described by Richey and Popham as

A native stone basin surrounded by a six-ft. walk, with a stone seat back of it. The new basin is 25 ft. in diameter, with the wall resting on a concrete slab 8 inches thick, which in turn rests on 32 8” x 8” wooden piles driven 9 ft. into the sand to solid rock. The water of this Spring bubbles up into the basin through white sand and spill out over a natural stone spillway, with a series of small pools, eventually reaching Travertine Creek.

The finished area was smoothly graded (Figure 4-99). A panoramic view of the area (Figure 4-100) gives an idea of the grade changes and the overall landscape composition, as well as the skilled masonry at the spillway leading to the creek.

Just southwest of the spring enclosure, along “Spring Creek,” which fed into Travertine Creek, four dams were constructed. These were built to
Chapter 4: The CCC Years, 1933–1940

Remarkably, the design simultaneously addressed sensorial issues as well as hydraulic engineering issues.

Planting was another element added to Buffalo Springs. Walkowiak reported that a total of 142 trees were planted in the area. Shade or canopy trees included red oak, American elm, winged elm, hackberry, and red haw (likely *Crataegus crus-galli* or *C. mollis*), ranging from one-half inch to four inches in diameter. These were “promiscuously planted,” except for eleven large balled and burlapped trees that were planted in “special locations.” Flowering trees—flowering dogwood, wild plum (likely *Prunus angustifolia*), and redbud—were also planted in special locations. One thousand forty shrubs were planted “in masses as screens or borders” and included chapperal, dogwood euonymous, bush plum, redbud and sumac. Species were not indicated, and “chapperal” seems to be a common term no longer used for a specific shrub, since its current meaning is general shrub land. Thirty-seven evergreens were also planted. These were “all nursery stock, planted en-masse or as specimens” and included pfitzer junipers, American holly, magnolia, and jasmine. While many of these plantings were ornamental, given the open nature of the area seen in historic photographs (Figure 4-100), it also seems likely that one of the goals of planting was to provide enclosure and shade.

The competent execution and high craftsmanship of the work at Buffalo Springs seems to have been almost surprising to the designers and received much praise. Richey and Popham commented that the entire Buffalo Springs area was “in all respects a very beautiful piece of work and constitutes a splendid tribute to the skill of Mr. Walkowiak in directing the untrained CCC boys, none of whom had done any stone work before.” Walkowiak himself noted that the work “resulted in a number of stone structures of definitely horizontal lines, to me very pleasing and in all instances permanent.” Walkowiak’s emphasis on the design’s horizontality is likely a reference to the NPS rustic design guidelines which stated that “[a]s a rule park structures are less conspicuous and more readily subordinated to their settings when horizontal lines predominate and the silhouette is low.” The spring enclosure surely fit this description.

Other minor work at Buffalo Springs in the first year of the CCC included topographic surveying and installing...
152 feet of guard rail. Where the guardrail was located is unclear; however, it does not seem to have lasted very long, since it does not appear on later surveys. No descriptions of the construction of the stone picnic tables and fire pits seen in historic photographs have been located.

Though completed rapidly, the detailed design of Buffalo Spring was also envisioned as part of a larger plan for the Antelope and Buffalo Springs area. Part of this larger vision was the revision of the roads in the area as part of the plan for Platt’s perimeter road, described above. Another part were the foot trails around the springs. When the old loop roads around the springs were obliterated in 1935 they were re-configured as part of the trail system for the whole area, also described above.

Antelope Springs

Work on Antelope Springs was begun during the third enrollment period, on August 21, 1934, in part because of low water levels; Buffalo and Antelope Springs had ceased flowing that month. Prior to construction two springs flowed from the base of a hill into a culvert underneath the old loop road (Figure 4-92). Although no specific design plans for the area have been located, the approach taken at Antelope Springs was clearly different from that at Buffalo Springs. No structures were designed for the area; instead the stream was simply re-configured to create a natural-appearing site. It was, in a sense, a reconstruction of nature, yet a nature improved to be more scenic and more beautiful than the original. According to a CCC mason Frank Beaver who worked

Figure 4-102. Falls flowing from Antelope Springs, with springs in background, circa 1937.

on Pavilion Springs and Bromide Springs Pavilion, soil and rock was removed from the front of Antelope Springs to reveal the fresh water spring emerging from the solid rock formation below (Figure 4-101). The flow was used to create two “lily ponds” by constructing a water fall and then two gravity dams, in sequence, along the stream emerging from the spring (Figure 4-102). Water flowed from one tranquil pond thus created into the next. Trails looped around the two ponds, with stepping stones crossings created at the waterfall at the top of the upper stream pool and the dam between the two (Figure 4-103). A comparison of Figure 4-101 with Figure 3-76 shows the extent of the changes made to the area by the CCC designers and crews.

Although the paths from Buffalo Springs provided pedestrian access to Antelope Springs, another access point was provided from the perimeter road to the north. Two parking areas were constructed along the perimeter road, and a set of steps and a path led down the slope to
Antelope Springs. Though the date of construction of these features is unknown, it is possible these elements would have been completed with the construction of the perimeter road in this area, by the end of 1935. Little or no work seems to have been done in 1936. The mid-1930s were droughty years and the two springs stopped flowing for August and part of September in 1936. They dried up again in September 1937, and though they flowed again in February, they stopped yet again in November 1938. This time they would remain dry for 20 months, until July 1940.

Despite the drought, and the corresponding lessening of visitors, a comfort station was built northwest of the picnic area in 1939, replacing two pit toilets. Sewer and water lines were extended out to the station via Little Niagara and Travertine Island, where a similar station was also being constructed. Though little documentation of these two comfort stations has been located, based on their appearance, they were modeled on, if not replicas of, the Cold Springs comfort stations. Though delayed in construction, they were planned as early as 1935, since drawings for the sewer line extensions were completed in January 1936. Once the Buffalo Springs comfort station was built, a new parking lot, just to the north of it, was added.

After 1938, work on the area around the two springs appears to have ceased, though in 1939, Miller recommended that a redesign of the Buffalo Spring picnic area be prepared “in order to better organize the facilities and to properly protect vegetation now being damaged by excessive use.” The 1940 Master Plan drawings and outline of development propose little change to any of the features, with the exception of “general planting and landscape work” and a picnic area between Antelope Springs and its up slope parking area. Though little is known about this picnic area, stone steps were constructed between Antelope Springs and the parking lot.

CONCLUSION

The work completed by the CCC in Platt National Park in the 1930s was truly remarkable. The designers and crews recast the entire park, both in terms of its physical construction and in terms of the way it would be experienced. In many ways, the CCC era brought a uniformity to the landscape that had not existed previously. This was embodied in the use of a consistent, NPS Rustic style throughout the park, in all the buildings and structures; and in the similarity of materials—local stone and wood—utilized from Bromide Springs in the west to Buffalo Springs in the east. The experiences within the park were also homogenized: gone were the golf course and the riotous flower beds, and the exotic animals were removed from the center of the park. In their place was a more consistent landscape of trails, stone buildings, and swimming holes, which emphasized the physical experiences of swimming, hiking, and camping in a natural setting. In a similar way, the perimeter road regularized the experience of the park by providing access to all parts on a sinuous winding road. Interpretive signs describing the natural features were also added to the park, in contrast, perhaps to the commercial billboards which once existed in Bromide Springs. In short, where previously a local health resort had existed in 1900, by 1940 there was now a National Park, albeit wrought on a much less grand scale than the famous western parks. Platt had been brought into the National Park System, and in the coming decades, would struggle to maintain that status.
Notes to Chapter 4

5 Steely, “National Historic Landmark Nomination,” 42.
6 Ann Baugh, telephone conversation with Heidi Hohmann, 13 August 2002.
7 Jerome Miller, “Field Report, Plans and Design Division, Platt National Park, July 2-3, 1939” (brief typewritten report). CNRA Archives. Walkowiak is mentioned in this report as discussing fieldwork with Miller. Walkowiak attended Iowa State in the early 1930s, as demonstrated by his completion of projects in the landscape architecture department's Horizons magazine. However, Wray and Roberts, “Ethnohistory of Associated Park Use,” indicates that Walkowiak attended the University of Michigan.
9 H. A. Kneinkamp, “Report to Chief Landscape Architect through the Superintendent of Platt National Park,” 17 October 1932 (short, typewritten memorandum). File 620–Buildings, National Archives, Fort Worth. Under a heading of “Master Plan” Kneinkamp says he reviewed the “general plan” with Superintendent Branch and made notations in pencil. He also noted that the “five year outline” was re-edited and recommended “making the park plan at a larger scale, so that the details will be readable and exact.”
11 Boeger, Oklahoma Oasis, 149.
12 Ken Ruhnke and Heidi Hohmann, Field examination, August 2002. The idea that the upper dam was also constructed may make sense, if one considers that it was constructed prior to 1933, perhaps as part of the town’s removal of the water reservoir. As noted in Chapter 3, the original location of Little Niagara Falls (shown on the 1909 Map of Platt National Park) is not at its present location.
13 Ken Ruhnke indicates that only four of the five dams have clean-outs: lower Bear Falls, lower Garfield Falls, Lower Niagara, and the falls at Central. Panther Falls, constructed earlier, also has a clean-out.
16 Ibid.
19 William E. Branch, “Construction Report on Widen Culverts and Rebuild bridge abutments, existing roads, Account FP 125.8, NIR 1933-35” (typewritten report, with annotated map, no date), n.p. CNRA Archives.
21 Ibid., 19.
1 The construction of this road, which was completed by June 1934, conflicts somewhat with information on a park-wide culvert widening project begun in November 1933 and lasting until March of 1934. This project, under Account FP 125.8 NIR 1933-35, indicates that a culvert on the old Bromide Road following the curve of Rock Creek was extended 9 inches on both sides of the road. However, this road would have been obliterated during the changes to the Bromide area. It is possible that the old road, with the newly widened culvert, was converted to a camp road when the new perimeter road was built.
25 Ibid., 21.
28 Jerome C. Miller, “Report to the Chief Architect through the Superintendent of Platt National Park: July 26 – August 26, 1934” (short typewritten report, 27 August 1934), n.p. CNRA Archives.
Chapter 4: The CCC Years, 1933–1940

37 Jerome C. Miller, “Monthly Narrative Report to the Chief Architect through the Superintendent of Platt National Park, August 21 to November 20, 1937” (short typewritten report), 2. CNRA Archives.
38 Miller, “Field Report, Plans and Design Division, Platt National Park, July 2-3, 1939.” See also “Park Roads—Betterment, Section C,” Drawing NP-PLA-5310 (Division of Engineering, Regional Office, 1939) for curbing plans. CNRA Archives.
39 Boeger, Oklahoma Oasis, 150.
40 Ibid., 150-51.
60 Ibid., 19-20.
61 Ibid., 6-7.
64 Ibid., 7.
The intent for another rustic style comfort station is tied to the removal of the caretaker’s cottage, as described in Miller, “Monthly Narrative Report to Chief Architect . . . April 1 to May 30, 1937.”

Miller hopes “that the caretaker’s house may be moved from Bromide to the residence group during the next period. This will allow the second and last new comfort station to be built on the site of the residence. The present undesirable latrines will be razed as soon as they are replaced.”

The authors have been unable to find a source indicating when the flagpoles were removed.

Richey and Miller, “Report to the Chief Architect . . . April 1–September 30 1934,” 8 (see photo caption).

William Branch to the Director, 19 September 1936. CNRA Archives. In the letter, Branch describes the asphalt component of the springs: “There are asphalt deposits in the vicinity of the spring and the mineral content of the spring water appears to be more or less sulphur and asphalt compounds.”

Ibid., 15.

Ibid.

Ibid., 8.

Ibid., 15-16.

Ibid., 16.

Ibid., 21.

Ibid., 6-7.

These two pages indicate moving date; National Park Service, Draft “Buffalo Management Plan,” June 1991 (draft typescript), 1-2. This latter document indicates the number of bison in the herd at that time. It should be noted that Boeger says the moving date was in August 1934.

Boeger, Oklahoma Oasis, 135.

George M. Merrill, “Report for September 1934 of George M. Merrill, Landscape Foreman to J. C. Miller, Resident Chief Landscape Architect,” 1 October 1934 (typewritten report), n.p. CNRA Archives.

Boeger, Oklahoma Oasis, 133.

Chapter 4: The CCC Years, 1933–1940

166 Miller, “Report to the Chief Architect . . . July 26–August 26, 1934.”
169 Ibid., 8.
170 Richey and Miller, “Report to the Chief Architect . . . April 1, 1935–September 30, 1935,” 13. This report also says that “two drinking fountains were designed into the wall,” but these fountains were apparently not constructed.
172 Ibid., 1; Richey and Miller, “Report to the Chief Architect . . . October 1, 1934–March 31, 1935,” 2.
179 “Pavilion Springs Development” Drawing NP-PLA-3050A (Branch of Plans and Design, 1936).
184 Ibid.
185 “Topographical Map, Central Campground” Drawing NP-PLA-4998 (Office of the Chief Engineer, 1934).
188 Miller, “September Report.”
189 Miller, “Monthly Narrative Report, July 21 to August 20, 1937.”
193 Ibid., 20.
194 “Utilities Layout, Cold Springs Campground” Drawing NP-PLA-5028 (Office of the Chief Engineer, 1937). This plan, dating to 1937, shows more than 2000 feet of guardrail lining the road and parking areas next to Travertine Creek.
197 Boeger, Oklahoma Oasis, 140.
201 Ibid.
202 Ibid., 3.
203 Ibid., 3.
204 Master Plan drawings of Cold Springs Campground, NP-PLA-3049B (1940) and NP-PLA-3049D (1950) both show 62 campsites, but the 1940 aerial photograph combined with existing conditions data support the written accounts of number of campsites staked.
205 It is perhaps worth noting that Wray attributes the campground design to E. P. Meinecke. Meinecke was a plant pathologist hired by the NPS in 1926, and eventually developed a campground planning system, that, by the 1930s, was commonly in use throughout the Park Service. The authors have found no direct evidence to show that Meinecke was specifically involved in the design of Cold Springs; rather, it seems likely that the campground was simply designed according to his well-known methods. See Wray, “Ethnohistory of Associated Park Use,” chapter entitled “Voice of the 808th,” n.p. Wray cites a 1936 report by Branch as her reference to Meinecke. See also McClelland, Presenting Nature, 161-166 for more information on Meinecke.
207 “Title,” Drawing NP-PLA-5037 (office, date).
211 Richey and Miller, “Report to the Chief Architect . . . April 1, 1935–September 30, 1935,” 2. See also “Title,” Drawing NP-PLA-3047A (office, date)

Good, Park and Recreation Structures, Part I—Administrative and Basic Service Facilities, 11.

Note: Wray and Roberts contradict this quote, saying that Walkowiak was in charge. Wray and Roberts, “Ethnohistory of Associated Park Use,” chapter entitled “Voice of the 808th,” n.p. This document refers to a construction report the authors have not seen, dated 1 October 1934 to 31 March 1935.

This description is also found in Wray and Roberts, “Ethnohistory of Associated Park Use,” in an untitled portion, and presumably comes from the cited construction report dated 1 October 1934 to 31 March 1935.

These descriptions are also found in Wray and Roberts, “Ethnohistory of Associated Park Use,” in an untitled portion of the draft and presumably come from the cited construction report dated 1 October 1934 to 31 March 1935.

William E. Branch to the Director, National Park Service (Arno Cammerer), 30 July 1937. Branch noted that “a new name given to the feature would be acceptable locally. . . . In fact, it appears no one with whom I have talked likes the designation Nigger Run.” There is quite a bit of correspondence on the pejorative nature and impropriety of the creek’s name. The Board on Geographical Names brought the issue of all such inappropriate names throughout the park system to the attention of the NPS after the National Association for the Advancement of Colored People (NAACP) wrote a letter to the Secretary of the Interior protesting such names on a USGS quadrangle map in Illinois.

Boeger, Oklahoma Oasis, 149; Miller, “Field Report, Plans and Design Division, Platt National Park, July 2-3, 1939.”

Boeger says February 1938, but in the field report, Miller says that the location for the comfort station was being “checked” in July 1939.

Ibid. The information in the following paragraphs on Buffalo Springs in 1933 and 34 comes from this document unless otherwise noted.

Good, Park and Recreation Structures, Part I—Administrative and Basic Service Facilities, 7.

Miller, “Report to the Chief Architect . . . July 26–August 26, 1934.”

Boeger, Oklahoma Oasis, 146-147.

Boeger, Oklahoma Oasis, 147-148.

Chapter 5: Maintenance and Change, 1940–2003

BACKGROUND

Overall Park Development, 1940-2000

In March 1940, Company 808 of the CCC was reassigned to Rocky Mountain National Park, and the camp was closed by the end of June. The loss of the CCC camp sounded a death knell for the rapid pace of design and change that had occurred during the 1930s. It also severely reduced maintenance, for by the end of their tenure, the CCC crews were conducting what might have been considered park maintenance tasks, such as watering trees and cleaning campgrounds.¹ The last major planning effort of the pre-war era was the 1942 Master Plan, which was drawn up by Jerome Miller. Both Miller and Richey left the service shortly thereafter.²

The 1942 Master Plan provides a comprehensive, if general, statement of the existing conditions of the park and a few suggestions for development. These suggestions included a comprehensive signage plan, and minor additions and subtractions of campground or picnic area features. Litle of this appears to have been accomplished, with the possible exception of the implementation of a comprehensive signage plan. By 1945, all old metal signs had been removed and replaced with carved wooden signs, including location and road and direction signs (Figure 5-1).³

In general, the 1940s and early 1950s were a period of reduced maintenance and funding, because of the federal government’s financial and resource commitments to World War II. However, park usage remained relatively high. Throughout the decades, visitors were encouraged to come to the park by such events as the annual “Redbud Pilgrimage” in March during which visitors flocked to see the spring bloom.⁴

In 1950, the first post-war Master Plan was proposed. Though it proposed changes within individual park areas, it retained the overall appearance, uses, and organization of the park. This was probably a good thing, as the park struggled to recapture maintenance conditions lost during the lean war years. When the park’s second major flood occurred on May 12, 1953, Superintendent Perry Brown wrote that the flood occurred “at an unfortunate time, because the entire area from Black Sulphur to Bromide…had extensive maintenance work done on it the past two years, and we had just completed filling up all the badly eroded places and covered it with surplus Bermuda grass from road shoulders.”⁵ Other problems in the mid- to late 1950s included the wholesale replacement of about 150 picnic tables throughout the park and an elm bark beetle infestation that caused the death of many trees.⁶,⁷ On the positive side, an interpretation program was begun in 1956, following the transformation of the Bromide Community House into the Museum in the late 1940s. Interpretive goals would be a major force in planning during throughout the 1960s.

Mission 66 planning for the park was begun in the spring of 1955, as part of the service-wide directive to improve the National Park System in a decade-long development program. In July, Superintendent William Supernaugh drafted the park’s prospectus for the program. In it, he identified six major problem areas for the park. These included State Highway 18 bisecting the park; a lack of
comfort stations and parking for picnic areas; a lack of camping areas; inadequate facilities for interpretation; and the need for a tree preservation and hazard tree removal program. Other inadequacies that he cited were the park's poor water system, lack of a trash disposal area, and small ranger staff. His “wish list” for the park emphasized his desires for a new public use building, centralized in the park; an emphasis on geology in future interpretation; realignment of severely curved portions of the perimeter road; and new comfort stations.\(^8\)

The prospectus was well-received in the regional office,\(^9\) but in February 1956, Washington rejected it, notifying Platt of their decision “to not embark upon an expansion or construction program at Platt as part of the MISSION 66 program.”\(^{10} \)

The reasons given were general:

> We must consider that every area is not susceptible of indefinite expansion and development....

They were also specific:

> In the case of Platt, no other area in the National Park System received such a complete “face-lifting” from the emergency work programs of the 1930’s....A golf course was eliminated. Decadent spring houses and other public facilities were replaced.

Roads were improved, and walls, fences, and gateways of good design and permanent materials were installed....

And they were also, to the citizens of Sulphur and the State of Oklahoma, frankly, heretical:

> [T]urning the area [Platt] over to the State of Oklahoma ... should be the ultimate objective.\(^{11}\)

Superintendent William Branch, who had returned to Platt not three months earlier, was outraged at what this meant for both the prospects of both the park and his own career.\(^{12}\) He began a letter-writing campaign to senators and the regional office, to get Washington to reverse their decision, on the basis of Platt's high visitation (1,136,586 visitors in 1955) and need for new facilities.\(^{13}\) By April, Washington relented, and Platt was folded back into the program. Platt's final prospectus included a new visitor center, rehabilitation of the administration building, new employee housing, and minor road realignments.

The first Mission 66 Master Plan, produced in 1958, reflected some of these ideas (Figure 5-2).\(^{14}\) A new Visitor Center and associated ninety-car parking lot was proposed near the Administration Building. Road
realignments were proposed at the Sycamore Falls and Black Sulphur Springs Crossings, and additional parking was proposed at the Buffalo Pasture and along the roadside. Otherwise, the plan was similar to the earlier Master Plans, a more or less status quo proposal. The only thing unusual about the plan was a proposed new Bromide Campground, to be located along Rock Creek, opposite Walnut Grove. This was an odd idea, given that the Regional Office had told the park that the Mission 66 prospectus should have “no expansion of camping … not even under ‘Major Improvements after 1966.’” This campground was never implemented.

Almost no action was taken under the 1958 Mission 66 Master Plan. This may have been heel-dragging on the part of Washington, because of their continuing interest in transferring Platt to Oklahoma. Small things were taken care of. A sign inventory and plan was carried out in 1963. About 130 directional and locational signs existed in the park, and the plan was intended to reduce stylistic variations and to replace those signs that had succumbed to dry rot and vandalism. But by 1965, park management was piqued over a lack of new projects; visitation had continued to rise, yet no new facilities to accommodate visitors had been built. Superintendent Steel begged the regional office to authorize some sort of construction:

During the MISSION 66 era, Platt National Park has been a park where antiquity has flourished undisturbed No pox of new development has disturbed the tranquility of the park. The amberine and picturesque details of CCC construction reign in supremacy.

Your office and indeed this office, have been candidly amazed at the ever increasing arrival of millions of visitors …. Visitation for 1966 is expected to be 1,500,000.

Our modest 1966 Fiscal Year Construction Program, we hope, will usher in a dynamic cycle of improvement in construction activities.

His frustration was compounded by the fact that bold new ideas for rearranging the park had been presented in the 1965 and 1966 Master Plans.

In the preface to these plans, which bear a good deal of resemblance to each other, planning team noted that
“prior to this study, virtually no master planning work had been accomplished for this park in the past 20 years.”18 This was true, and the Master Plan of 1965 (Figure 5-3) took a good look at the overall characteristics of the park, charting both resources and use patterns. The planners concluded that

The type of use has changed over the years from primarily those seeking the health benefits of the cold mineral waters to a family use reflecting the nationwide trend to outdoor recreation.19

In addition, the planners noted that the creation of the nearby Arbuckle Recreation also influenced the plan, noting that their directives had to

Consider the feasibility of making the park an integral part of the Arbuckle Reservoir Recreation Area, if it is added to the system. None of the proposals in this master plan would conflict with such a consolidation and the impact of visitor use on the park might be lessened.20

Perhaps as a result of these factors, the plans proposed a large change in the overall conceptualization and use of the park. The landscape was broken down into two types of lands: “General Outdoor Recreation” and “Natural Environment.” General Outdoor Recreation land totaled 168 acres, and included the Rock Creek Campground, Bromide Picnic Area, an enlarged Flower Park (which included the former Central Campground), Hillside and Pavilion Springs, the Maintenance and Administration Areas, and Cold Springs Picnic Ground (which was converted to a picnic area). These areas were intended for visitor day use, primarily picnicking. A goal of the plan was to “reduce excessive visitor load” by the “phase out [of] overnight use within the lands originally set aside as the park.”21 Camping, it was believed, could be handled in Rock Creek campground, the Veteran’s Lake area, and the Arbuckle Recreation Area. The rest of the Platt’s 740-odd acres would then be devoted to the park’s “primary activities” of “picnicking, hiking, wading, bicycling, use of the mineral springs and pools, nature study and photography, and pleasure driving.” Separating day and long term usage was important because “[i]ncreasing demand for both types of facilities, if allowed to continue...would continually degrade the basic park values to a point where the conflict of visitor activities would deny everyone the opportunity to appreciate the purpose for which the park was established.”22 In other words, between 1965 and 1969, the park landscape was reconceptualized as a gradient, with the west side of the park supporting human activities and the east side of the park sustaining natural processes. While human needs might be accommodated in the western part of the park, the eastern part of the park would be a natural environment, where nature would not be impacted by humans, but rather would only be interpreted by humans.

However, prior to this point, interpretation in the park had been minimal, with the Bromide Museum and one self-guiding nature trail near Buffalo Springs providing the major interpretive opportunities.23 And, of course, the interpretive story of the park was not immediately obvious. Interpreters noted that while in some large parks, “the visitor’s first question is likely to be ‘What shall I see first?’. His first question here is usually ‘Is there anything to see?’”24 Park planners determined that a vehicle for interpreting the area would be required, and as a result the proposed visitor center evolved into a nature center. This idea was also generated and strongly supported by the establishment of a comprehensive interpretive program for the park in the mid 1960s, so much so, that it is difficult to tell whether interpretive goals or development goals were the driving force behind the proposal for the building. In 1965, the park’s first interpretive prospectus was developed, concurrently with plans for the new nature center. It took a little while to determine the appropriate scope of the project. At first, the 1965 Master Plan proposed that two nature centers would be required, one at the old museum in Bromide, which would be reconfigured, and another, larger center at the opposite end of the park. Two locations were identified for the large nature center. The first site was on Travertine Island and the second site was further east, near the narrowest gap between the north and south perimeter roads.25 Eventually, the second site was deemed best and the idea for an expanded museum in Bromide was dropped.

The financial incentive for getting the new building constructed by the NPS proved to be the Arbuckle National Recreation Area, which pushed forward the late 1960s building program at Platt. The Lake of the Arbuckles was a half-million dollar reservoir project proposed to improve the economy and recreational opportunities of south central Oklahoma. Originally proposed by the Bureau of Reclamation, it was whole-
heartedly supported by Oklahoma’s seasoned senate and congressional delegation, who saw it as a way to revitalize south-central Oklahoma with jobs and recreational opportunities. In 1965, the NPS agreed to manage the Arbuckle Reservoir as a National Recreation Area, utilizing facilities and staff at Platt to support its management, and the bill for the reservoir was authorized.

The effect on Platt was remarkable. The interpretive prospectus noted that

The Arbuckle Reservoir is being built…and will be administered by the National Park Service….At the same time, the attitude of the Service has changed—there is now agreement that the [Platt National] park is a park, that it has a place in the National Park System, that it has natural values that are significant and interpretable, and that the Service has an obligation to let the area live up to its full potential.

Shortly after the passage of the bill, a contract was awarded for the design of the Nature Center. Other Mission 66 building projects, including the expansion of the Rock Creek Campground and new comfort stations for Platt’s picnic areas almost immediately followed (these are detailed below). In 1966, Platt was also the recipient of a Job Corps Camp, clearly as a result of the Arbuckle project. The Job Corps participants, in addition to building the five-arch bridge in Bromide and other structures, dug new sewer lines and planted trees at Platt, in addition to work at the new Arbuckle campgrounds and picnic areas.

In 1968, a master plan was developed for a joint Platt-Aruckle National Recreation Area, but it was not until 1976 that the two parks were officially joined as Chickasaw National Recreation Area. At this time, Platt National Park was designated as the Travertine District within the larger National Recreation Area.

During the 1970s, the district was integrated into the overall CNRA park management. No major changes were undertaken in the former Platt National Park following the improvements of the Mission 66 campaign. In 1979, the Vendome Well property and in 1983, the Veteran’s Lake area, both adjacent to the district, were acquired by the recreation area. Veteran’s Lake was acquired through a land swap for a small area of the park which was located north of Highway 7. In 1998, the district was renamed the Platt District, to reflect its former history as a separate national park. Although maintenance records following the 1970s have not been extensively reviewed for this project, it appears that work focused on retaining existing features in good condition.

INDIVIDUAL AREA DEVELOPMENT, 1940-2003

The following narrative addresses landscape design and development in Platt National Park between the years 1940 and 2003, in the manner of the previous chapters. The information provided in this chapter was drawn primarily from research in the park files located at the National Archives in Fort Worth, Texas, as well as from photographs, reports, and other information located at CNRA.

In 1960, a group of beavers plagued the park, felling trees up to two feet in diameter along Travertine and Rock Creek. The beavers especially preferred willow and cottonwood that had been planted along rip-rap stabilized creek banks.
Throughout the period from 1960-2000, little mention of the creeks is made in park reports, outside of general references to flooding, clearing trees or debris from the channels, or stabilizing portions of creek banks. The preferred method of bank stabilization was usually constructing rubble stone or rip-rap masonry walls, sometimes interplanted with cottonwood or willow. Individual construction projects along both creeks are described under the individual landscapes, below.

Road System

Throughout the early 1940s the park struggled to protect the road system from “erosion and disintegration” but “due to lack of personnel and funds only most important and urgent work could be done.” This included small asphalt patches and shoulder work. In April 1942, a major rock slide along Rock Creek just east of the Bromide area undermined the road bed to within 3 feet of the pavement. Superintendent Branch ordered 100 truck loads of boulders, waste asphalt and clay brought in to fill the hole, but the problem continued for the next few years. In late 1945 and 1946, the creek channel was permanently moved to protect the road. Eight thousand cubic yards of rock and dirt were used to riprap the new creek banks, which were further stabilized with an approximated 25,000 willow plantings. The concrete abutments of the steel arch bridge, demolished in 1943, were “shot down” and used as binding material in the construction of the new bank.

In the fall of 1943, the perimeter road was fully repaved with eight tons of asphalt, and by July of 1945, the road system was still considered to be in good condition. In the late 1940s, new paving and improvements on Buckhorn Road (now U.S. 18) outside the park, served to increase the speeds of vehicles entering the park at the south and main entrances. To improve safety and alleviate congestion, Superintendent Miller recommended that two overpasses be constructed in these locations. However, these were never implemented.

The 1953 flood damaged the road, primarily between Lincoln Bridge and Rock Creek Campground, part of which was cracked and broken and had to be removed. In 1955, a small stretch of road was realigned over Travertine Creek near the Central Campground entrance. A new box culvert was built over the creek, and the entrance to Central Campground was also realigned.

In 1962, Superintendent Johnwill Faris oversaw a “restoration” of sorts of the road shoulders. According to Faris, the road prism had been changed in the late 1940s or early 1950s, when steep roadside slopes and deep ditches had been created. He described the CCC conditions:

[In the latter days of the CCC, our road shoulders gave way into a more or less sodded long or flat “U” and rock barriers were placed rather frequently along the road side of this U to prevent cars from sliding or driving into the borrow pit.

He then went on to describe the change that had occurred over twenty-odd years:

Later, it seems, one of our Superintendents favored a sharp slope off our pavement into the borrow pit and a blade was used, cutting such slope. Obviously, the dirt was thrown along the bottom and between the rock barriers. This actually formed a sharp trench sloping away from the road shoulder, but allowing, too, a runoff at the end of the slope and slightly below the former sodded bottom. Time has held leaves, etc., along the outside edge of the sharp slope and the former sodded drain and between the rocks until now we have the former drain separate and dry due to the steeper slope bladed drain.

Faris then proposed the road be restored to something closer to its original state (Figure 5-4). The regional office concurred, suggesting only that “on the sections where barrier stones have been placed that if the fills do not exceed four feet, they should not be replaced.” If stones were removed, it’s likely they were re-used elsewhere in the park, possibly at Cold Spring Campground, where boulders were being used to define camping sites. Additional boulders were also collected from outside the

Figure 5-4. Typical perimeter road section, 1963. See note 41 for source information.
park, with crews dispatched to local farms to collect and haul boulders away.41

Some structural repairs were also undertaken along the road. In 1955, the road was realigned over Travertine Creek near Central Campground and Panther Falls, and a new box culvert was constructed. In 1969, the Black Sulphur Springs Causeway was almost completely reconstructed, and a sidewalk was added to the upstream side of the bridge.42 In 1969, a new box culvert was constructed just above Little Niagara.

The Little Niagara box culvert was, of course, part of the obliteration and realignment of the perimeter road for the creation of the Travertine Nature Center. The new alignment was a one way loop created by cutting the original road off at the Nature Center, and joining the two cut-off ends with a new, short segment of road that simply wrapped around Travertine Island. The construction of the one-way loop also required the construction of two traffic islands, one where the one-way segment rejoined the two way segment just above Sycamore Falls and one on the south side of the falls to reinforce the one-way flow.

There were doubtless road repaving projects throughout the 1970s and 1980s, but little detailed information on these projects was reviewed. In 2000, the Federal Highways Administration (FHwA) began a comprehensive road resurfacing project for the Platt District, and the work was done over the summers of 2001 and 2002. In addition to milling the old and applying a new surface, the project included new guardrail in some locations to improve safety (such as at Pavilion Springs) and new curbs (such as at Bromide Hill) to correct drainage problems. The surface was raised slightly, and shoulders were regraded and reseeded to return smoothly existing slideslope grades.

Trail System

Reduced maintenance during the war years also affected the trail system. By the summer of 1943, Superintendent Branch reported that

Most of the six miles of trails constructed by the CCC is practically impassable due to erosion, disintegration, and heavy weed growth. It has not been physically possible for the small park force to protect the trails, except the much used trail to the top of Bromide Hill and even this is in very bad shape.43

However, by the following fiscal year, five miles of foot trails had been cleared and drainage repairs had been accomplished on the Bromide Hill trail. Branch felt this was a major achievement, given the reduction in force.44

In July 1945 Regional Chief of Planning Harvey Cornell toured the park and suggested that a focal point or lookout point be constructed at the top of the Bromide Hill trail. He suggested that “a typical overlook terrace with an informal stone retaining wall” be built to provide an objective from both the parking area and the trail below.45 It’s doubtful the idea was implemented, since the extant, undersized concrete steps and railing at the overlook lack a sense of design organization. The date of construction of these features has not been determined.

The Bromide Trail was rebuilt in 1952.46 In May 1953, a half-mile of trails, mostly on the south side of Rock Creek, were damaged by the flood. Three trail bridges were washed out. It’s likely that the log designs of the CCC were replaced with simpler “plank crossings” since these were described as “standard type trail bridge[s]” by the mid 1960s.47

In 1961, the trails at Buffalo and Antelope Springs were cleared and resurfaced with “troy gravel,” a “mixture of disintegrated granite and joint clay, which is a fine surfacing material.”48 Troy gravel rapidly became a preferred surface throughout the park, for both trails and parking lots. In 1962 similar trail rehabilitation occurred at Little Niagara. That same summer, a trial was run on a product called “Gulf Sani-Soil-Set” to see if it would work as a trail binder. It was applied to trails at Buffalo and Antelope Springs, at Bromide Hill, and at the bison overlook, as a way of seeing its efficacy on different surfaces such as troy gravel, limestone, and soil. It was determined that the product was better at dust control than surface binding, and maintenance resolved to use troy gravel for trail surfaces.49

In the late 1960s, the three interpretive trails at Buffalo and Antelope Springs were formalized as part of the trail system, even though they’d been used for about ten years, since the early years of the Interpretation division. Their surfaces were intended to be “as natural as possible,” in contrast to the troy gravel used elsewhere in the Buffalo-Antelope Springs area.50
In 1984, a new trail was built between the Veteran’s Hospital and Pavilion Springs. An unnamed, and probably informal trail (it was originally a firebreak) between the hospital and Headquarters had existed since the late 1940s. The trail appears on aerial photographs from 1949, 1956, and 1969, running on a line from Fairland Avenue to Highway 177 and then following that road to headquarters. The new Veteran’s trail built in 1984 ran along a new alignment, across the prairie uplands and former golf course to Pavilion Springs. The alignment more or less followed the Veteran’s Hospital sewer line, which was also reconstructed that year. In 1991, the Bromide Hill Trail was rehabilitated, with work focusing on correcting drainage with stone swales constructed along the trail.

Bromide Area

The 1942 Master Plan proposed a number of changes for the Bromide Area. These included a new picnic pavilion and associated trails, and the removal of camping from the area entirely. Also proposed was a new, low water crossing at the east end of the park, to replace the Iron Bridge and the old, circa 1930 low water crossing, both of which were proposed for removal.

The only one of these actions realized in the 1940s was the removal of the Iron Bridge, which was dismantled by the Ardmore Salvage Company in 1943. The bridge was cut into three-foot lengths and given to the National Salvage Program and yielded twenty-five tons of scrap metal for the war effort. The demise of the bridge was greeted with pleasure by former ECW landscape architect Charles Richey, who, as Acting Director of Region Three, wrote Superintendent Branch:

We were extremely pleased to have your report on the progress of the salvage of the old “Bromide” steel arch bridge. Ever since my first trip to Platt in 1933 I have been looking forward to the time when this blight on the landscape could be put to some useful purpose. Even though it has taken almost nine years to get this bridge removed, it does show that eventually undesirable structures can be removed from our national park and monument areas.

We will all be pleased to receive a picture of the Bromide cliff area with the old structure removed and the abutments obliterated.

A fair amount of work went into repairs on the pavilion’s water supply in the 1940s. The pipes from the springs, which were located on the south side of the creek, were not located underground. Rather, they ran across the bottom of Rock Creek and were susceptible to being washed away in high water. This had happened as early as February 1938, and was repeated in 1945, despite repairs to the piping in 1944 that had necessitated the removal and relaying of much of the pavilion terrace flagstone. Finally, in 1947 and 1948, the pipes were relaid underneath the creek bed and anchored to the concrete low-water footbridge between Bromide Spring and Medicine Spring. It appears that a supply line from Bromide Spring #2 was eliminated at this time or shortly thereafter. Another change to the water supply was the installation of bubblers in lieu of faucets inside the pavilion (Figure 5-5). The bubblers were wasteful of the mineral water, but eliminated the need for paper cups. Other features inside the pavilion at this time included signs, lights, and mineral water storage containers. The bubblers were installed in 1941 and were a sign that the demand for mineral water had begun to decline. Also in 1941, city water was piped into the pavilion for the first time. Later, the bubblers were replaced by water fountains with spring-loaded valves.

Other minor changes in keeping with reduced staff and funding included the removal of twelve large trees from Bromide Area in 1941. In early 1943, the remaining wood frame and stucco comfort stations dating to...
the 1920s and 1930s were removed, “in line with the approved Master Plan to change the Bromide Camp area into a picnic area.” However, the area continued to serve as a campground, and a crowded one at that. As late as 1949, Superintendent Miller complained that the tents in Bromide were “pitched so closely together that the tent ropes actually cross!” Congestion was not relieved until the completion of the Rock Creek Campground. Even then, despite the 1950 Master Plan’s recommendation that camping be prohibited in Bromide, the area continued to serve as “overflow camping” throughout the 1950s. As late as 1961, the rangers’ annual forestry report noted that overflow camping in Bromide was “extremely hard on picnic sites.” On July 4, 1965, a peak visitation day, camping in Bromide was again recorded (Figure 5-6). Such use probably continued until the Rock Creek Campground addition was completed in 1967.

The year 1944 saw the repainting of the interior of the pavilion (presumably the caretaker/office room) and the flagpole. A July 1945 inspection of the park led to a comment about the thick growth of small trees and shrubs that had sprung up along the creek bank between the pavilion and the creek. Also in 1945, the park bought the community house from the city. It was renovated in 1947 into a museum that opened to the public in 1948.

By 1950, most of the guard rail in the area had been removed, replaced by large conglomerate boulders, which were set along the roads about five feet apart. In 1954, an NPS emblem was mounted at the 12th Street entrance. The sign seems to have been revised again in 1963 resulting in a curious hanging sign located on the Bromide Piers (Figure 5-7).

In 1958, the first of the Mission 66 plans for the Bromide Area were proposed and primarily consisted of reorganizing the picnic area. The 1958 Master Plan advocated for the previously proposed picnic shelter and comfort station, as well as a new “Lecture Circle” for interpretive programs to be built in the western part of the area. In contrast, the 1965 and 66 plans scrapped plans for new buildings, proposing instead to realign the perimeter road through the area. Vehicular access from 12th Street would be eliminated and new parking lots were variously proposed on the sites of the former 12th Street axis, Bromide residence, and Bromide museum.

These ambitious plans were not implemented. Instead, minor changes continued. In the spring of 1962, Superintendent Faris realized that the Bromide Fountain was fed by the Jack Diamond Well, outside the park boundary (Figure 5-8). The well was investigated and
Chapter 5: Maintenance and Change, 1940–2003

Also in 1962, the Bromide Pavilion water supply was again overhauled. Work included extending the catch basins on Medicine and Bromide Springs above ground level with approved overlap lids made of stainless steel, putting new thermoplastic lines from the springs to the pump pit to the storage basins, renovation of the pump pit (repainting, rewiring), renovation of storage basins in Bromide Pavilion (renewing plumbing to the storage reservoirs and the replacement with approved overlapping type stainless steel lid.66

Shortly thereafter, the original Bromide Spring catchment in the middle of Rock Creek was demolished with a jackhammer, and replaced with the extant concrete block pump house.69 The pump house was six by eight feet and was constructed of cinder block with a reinforced concrete floor and a six inch concrete roof, and two storage tanks were also constructed.70 By 1968, a chlorination system had also been installed for both Bromide and Medicine Springs.71

Minor changes continued in the 1960s and 70s. In 1962, standing grills for use by picnickers were installed throughout the area.72 In 1965, ten picnic tables were added.73 In 1964, the porch on the museum was enclosed, and a new visitor entrance from the side street was added.74 In 1967, the Arbuckle Job Corps built an arched stone bridge across Rock Creek in the eastern part of the area.75 The bridge replaced a jerry-rigged wooden low water crossing, which had existed in that location for some time (Figure 5-9). The bridge's construction was difficult since heavy rainfall washed it out three times over the course of the spring and summer.76 The bridge was constructed of concrete with a white and grey limestone veneer. Approximately sixty feet long and six feet wide, it had five corrugated galvanized steel openings, each ten feet wide.77 The bridge also had four twenty-eight-foot-long wing walls, and a concrete approach on each end. It originally had a pipe railing, but this was broken off in its first flood.

In 1971, the existing parking areas at Bromide were paved, and a new sanitary dump station was installed along the western loop, near the old caretaker’s house.78 The steps from the dump station area leading to the causeway were also constructed sometime in the 1970s, by maintenance worker Lawrence Howell.

More work was undertaken on Bromide and Mineral Springs in the early 1970s, when the two springs began going dry at “unpredictable intervals.” In 1973,
Chapter 5: Maintenance and Change, 1940–2003

Maintenance Supervisor Dick Stansberry determined that water was no longer issuing from the bottom of the two wells, but from the hillside. A planned rehabilitation included lowering the intake pipe at Bromide Spring and drilling exploratory holes at Medicine Spring. However, it appears that by April there was little success, and re-drilling one or both wells was attempted. However, Stansberry noted that “not a trace of water” was seen in seventy feet of drilling. However, Harold Lannom (a former maintenance mechanic) recalls that poor water quality was the problem, not quantity problems, that led to the closing of the well or wells. At any rate, in 1973 mineral water stopped flowing in the Bromide Pavilion.

More recently, additional maintenance work has occurred in the Bromide area. In December 2000, a new wood shake roof duplicating the original was installed on the Bromide Pavilion. Lead abatement was completed on the Bromide Ranger Station and the Travertine Ranger Station in the summer of 2002. The Bromide Ranger Station received a new roof in 1998 and the Travertine Ranger Station was reroofed with wood shingles, matching the original, in 2003.

Walnut Grove

After the CCC camp was cleared in 1941, little formal documentation of Walnut Grove seems to have occurred. The 1950 Master Plan simply shows the old tennis court on the site and the 1958 Master Plan shows only vegetation covering the site. A 1962 road and trail plan shows the graded road for the old CCC camp still extant, as well as four parking areas along the north side of the road and one on the south side. This indicates that the area was likely well-used as a picnic area by this time.

In 1964, the area was briefly reconsidered as a location for the Arbuckle Job Corps Camp to begin in 1966, but Regional Director Daniel Beard quashed that idea, noting “I would not like to reoccupy the old CCC site in Platt National Park that is now growing up nicely.” By 1966, the area had a nice balance of both open and shaded turf (Figure 5-10).

The 1966 Master Plan further confirms the area’s use for picnicking, since it indicates that twelve picnic tables existed on the site at the time of the drawing, and proposes adding three more. Interestingly, it’s not clear when the area was formally designated as “Walnut Grove.” The name first appears as a label on master plan drawings in 1965 and 1966.

The 1966 Master Plan also proposed a comfort station for Walnut Grove in the western half of the site. This comfort station was built in 1966, along with two others at Little Niagara Falls and Black Sulphur Springs. Constructed of concrete block on a concrete slab, with an asbestos shingle roof, the building was a simple, “form follows function” structure, not unlike the stucco comfort stations built in the 1920s. A small nose-in parking lot, separated from the perimeter road, was proposed in front of the comfort station, but it appears this was not built as planned. Instead, it seems that the comfort station was simply located near an existing parking area in somewhat wooded surroundings (Figure 5-11). Also notable in the photograph are the large travertine boulders lining the parking area in the foreground.

In June of 1967, eighty-three new picnic tables, thirty-nine new fireplaces and thirty-two “refuse” units (either
double or single trash cans) were installed at Walnut Grove,\(^{86}\) the jump from twelve to eighty-three indicating, perhaps, an expanded use of the area.

Sometime between 1940 and 1960, a large Osage orange in Walnut Grove became known as the Monkey Tree, and became a favored climbing tree for local children. When exactly this occurred is not clear, but photographs documenting its use as such appear in the late 1950s and early 1960s (Figure 5-12).

In 1989, a new sewer line was installed across Walnut Grove, and in 1997, new concrete walks were added to link the parking and comfort station and provide ADA access.

Black Sulphur Springs

Though plans for the new Black Sulphur Springs pavilion and an associated five-car parking area across the road from the extant neoclassical structure were approved in 1939, its construction remained an elusive goal throughout the 1940s.\(^{87}\) The new pavilion appeared on the 1942 and the 1950 Master Plans, and the old pavilion was replaced by a comfort station on the 1950 plan.

By the 1958 Master Plan, however, a new pavilion had been abandoned as a development idea, and the existing pavilion continued its existence in the landscape (Figure 5-13).

Perhaps the flood of 1953 influenced the decision to abandon the new construction. This flood severely damaged the area. Water in Travertine and Rock Creeks rose to a level “just under the lip on the bowl of the drinking fountain,” and when the water receded, sand covered a third of the west side of the Black Sulphur Springs causeway and extended in a wide swath for 125 yards south of the structure.\(^{88}\) Major regrading of the area was undertaken in the summer to restore the sandy beach between Rock Creek and the old pavilion (Figure 5-14).

In 1961, the park entrance at Tishomingo Avenue was closed, despite protests from the neighbors.\(^{89}\) Trees were planted along the boundary the following year, to provide a greater separation between town and park.\(^{90}\) By the early 1960s, then, the area west of the pavilion was well-established as a contained and popular picnic area.\(^{91}\) The 1965 and 1966 Master Plans confirm this use, and further proposed that a comfort station be built somewhere in this area.\(^{92}\) This Mission 66 comfort station (Figure 5-15) was built in 1966, though it was located in a slightly different site than shown on the original construction plan.\(^{93}\) It was built of concrete block and matched the others at Walnut Grove and Little Niagara.
Falls. The new comfort station may have precipitated installing fifty four new picnic tables, nineteen fireplaces, and eighteen refuse units in the area in 1967, a year when most picnic areas seem to have received new fixtures. As of 1960, the sandy area was established as one of the most popular swimming areas in the park (Figure 5-16). Tradition has it that the area was regularly cleared of excess sand deposited on the beach after heavy rainfalls.

In 1969, the Black Sulphur Springs Causeway was reconstructed, and a path leading from the pavilion down to the causeway was extended and widened, and constructed out of flagstone. Meanwhile, the area’s namesake spring was replumbed a number of times. In 1954, the pump supplying the spring was cleaned out, perhaps because of contamination after the flood. In 1962 the spring’s “pit” (presumably the pump) was proposed to be rebuilt. By 1968, an ultra-violet light had been installed in the waterlines of the spring to disinfect the water; this may have been later replaced by a chlorinating system. The pavilion’s fountain basin was filled with concrete, though it’s not clear exactly when this happened. A circa 1960 brochure about Platt featured a child drinking from the basin (Figure 5-17). In 1966, the concrete block pump house for supplying the fountain was constructed and perhaps changes to the basin were made at this time. Or perhaps the basin was filled in 1971, when five person days were spent replacing the chlorinator, installing a new frost-proof hydrant for visitor use, as well as a new cover and manhole over the cistern.

In 1997, an ADA-accessible concrete walk was added from the parking area to the comfort station.

Flower Park

Changes proposed for Flower Park in the 1942 and 1950 Master Plans were trivial, mostly slight path realignments and alterations to the course of Vendome stream. Based on extant conditions, none of these were ever implemented. Instead, the park landscape matured, trees growing larger and cedars on the hill north of the park growing denser. When the park was inspected by the regional chief of planning in 1945, the only major comments he made was that the empty Vendome bathhouse was something of an eyesore. He also commented that “Lincoln Bridge is . . . an interesting landmark but perhaps could be considerably improved in appearance by eliminating all of the superfluous masonry construction.” Luckily, this latter advice was never taken. Maintenance continued in the park albeit at a reduced level compared to the CCC years. In the winter...
of 1945, the wading pools were cleaned of “accumulated scum.” In 1950, Rock Creek Campground opened, and overflow camping was eliminated from Flower Park.

The 1960s saw a raft of new proposals for Flower Park. These included both a picnic shelter combined with an outdoor seating area for evening interpretive programs proposed in 1965 and 1966 and a full-blown visitor center and parking lot located along State Highway 18, proposed in 1965 (Figure 5-18). Either of these plans was to be facilitated by the expansion of picnicking into Central Campground. In fact, the 1966 Master Plan proposed reuniting the whole area under the name Flower Park, an idea strangely recalling the 1900s, when the whole area was known as Central Park. By late 1965, the idea for the visitor was moved to the eastern part of the park and eventually evolved into the Travertine Nature Center.

With the visitor center moved out of the area, changes proved relatively minor. Paths began to shift based on changing drainage patterns and visitor desire lines. By 1969, a volunteer path along the northern edge of the Vendome stream and wading pool between the parking lot and the comfort station was well established, replacing the one across the small stone arch footbridge. In 1962, beavers became a problem in Flower Park, gnawing on trees.

In the 1970s, the main entrance to the park was significantly changed after a series of vehicle collisions with the entry piers. The piers had already been hung with a variety of NPS emblem signs, one in 1954 (Figure 5-19) and one in 1963 (Figure 5-20). In 1971, a large truck crashed into the east entry pier, damaging a hanging wooden arrowhead that had been added as part of the 1963 signage. Two years later, in February 1973, a second truck did even more damage, destroying the entire eastern pier and its attached curved wall. Instead
of rebuilding, the structure, park management chose to remove the curved wall on both sides and reconfigure the entry pier composition to its extant appearance.

In 1974, a small stone and log footbridge near Lincoln Bridge was replaced by the extant stone masonry arch footbridge. This small bridge was constructed by park maintenance worker and mason Lawrence Howell. In 1976 four flagpoles which had been removed from the Lincoln Bridge were replaced, although the new flagpoles were shorter than the original poles (Figure 5-21). Sometime between 1976 and the present, the light posts were also removed from the Lincoln Bridge.

Perhaps the greatest change occurred to the Flower Park pools, which were filled and reduced in size, the upper pool by about a third (5500 square feet to 3850 square feet) and the lower pool by about half (8300 square feet to 3975 square feet). This occurred sometime after 1969, when they are last seen their original size on aerial photographs. A record of this work and the reasons for undertaking it are elusive. Former employee Fuzz Kennedy recalls helping to fill in the lower pool in the late 1980s, to make it easier to clean out. It is also possible the work may have been done as part of the Flower Park sewer reconstruction undertaken sometime around 1984. Recent excavations in Flower Park in the summer of 2003 as part of the rehabilitation of the trail system have revealed loss of stone curbing and significant changes in the vertical and horizontal alignments of the paths along the sewer excavation alignment. In general, over time, many of the Flower Park trails shifted in response to changes in drainage and visitor habits. Similarly, the stone curbing along the trails was either lost or buried under new trail surfacing.

Another change which occurred at an unknown time was the modification of the Flower Park comfort station roofline, from hip on gable ends to simple gable ends. This possibly occurred in 1954, 1968, or 1981, years when renovations were undertaken on other comfort stations, but it is difficult to know for sure.

In 1984, the Vendome well inflow box at the Flower Park parking lot overflowed twice, and it was believed that the original line, constructed in the 1930s, was now clogged with travertine rock. In January 1986, the old line was dug up and it was found to be plugged with rocks and soft drink bottles. A new PVC line was installed, and the work recorded by the crew on a drawing (Figure 5-22). In 1998, the Vendome well was completely overhauled following the drilling of a new well about twenty feet west of the original well enclosure. The new well had a stainless steel casing to resist corrosion, and the water was
piped to the center of the historic concrete enclosure. This original enclosure was modified, including the replacement of a portion of the concrete bottom, replastering of the inside walls and replacement of the capstone. Other new plumbing was installed, including a stainless steel drinking fountain and jug filler. Portions of the surrounding walkway were also replaced. Work was completed May 5, 1998.

Buffalo Pasture and Prairie Upland

In 1940, the Buffalo Pasture could only be described as overgrazed, ravaged by a peak herd of twenty-one head. Superintendent Branch described the pasture as “literally skinned in places with even the grass roots being eaten.” In June of 1941, the herd had been culled to eight head, and Branch reported that the pasture had “apparently completely recovered with little evidence to indicate it’s [sic] former condition.” The pasture was reported in good condition in 1946 and in 1952, when it was described as being “covered with a lush growth of native grasses,” and no changes were proposed for the pasture and upland in the 1950 Master Plan. By 1955, however, a new problem—woody vegetative growth—was evident:

The motivation behind this complaint was less concern about loss of native grasses, and more a concern about enabling visitors to see bison. No action seems to have been taken, and woody plant growth continued in the pasture (Figure 5-23). The bison were clearly popular, however, and in 1956, an interpretive sign was proposed for the overlook and was constructed by 1959. The overlook area deteriorated (Figure 5-24) and the 1958 Master Plan recommended expanding the Buffalo Pasture parking area to accommodate ten cars. The area was expanded in 1963, when the extant stone wall was built along the parking area’s western side.
Buffalo pasture fence was inventoried and revealed to comprise 5910 feet of woven wire fence, five feet high, with four strands of barbed wire on the top, correlating with 1930s descriptions of the fence’s construction. Over time, a single lane access road eventually evolved in the buffalo pasture to allow access to the area. The area also became a location for stockpiling excess construction materials such as stone.

In 1961, State Highway 18 (soon to be renamed Highway 177) was striped for the first time. That same year, the park entrance at the Veteran’s Hospital, on Fairland Avenue, was closed. The closure, combined with the closure of the Tishomingo Avenue entrance, evoked fruitless protests from local citizens. In 1963, a new wooden sign was erected atop the piers at the park’s south entrance (Figure 5-24). This sign matched those at the Bromide and Flower Park created at the same time.

Greater changes to the area were proposed in the 1966 Master Plan. This document proposed obliterating Highway 177 between the south entrance and the Maintenance Area and Headquarters entry road. Highway 177 was to be rerouted, either along the eastern boundary at the Veteran’s Hospital and through the park at Panther Falls (on an overpass!) or around the park east of Antelope and Buffalo Springs. Visitors would enter the park at the south entrance, then proceed either east or west upon reaching the perimeter road. Once again, neither of these proposals was implemented; both would have been hugely expensive. Meanwhile, vegetation continued to enclose open grassland in both the Bison Pasture and the Prairie Uplands, as seen in a comparison of aerial photographs of the area dating to 1940 and 1999 (Figures 5-26 and 5-27).

In the fall of 2002, a temporary electric fence was added within the pasture, to exclude buffalo from half of the pasture and to allow grasses in this area to regenerate. This proved relatively successful, and now the entire pasture is available to the bison. In the spring of 2003 horses temporarily located in the pasture were removed.

Superintendent’s Residence

Changes at the Superintendent’s Residence are somewhat difficult to track. Like the rest of the private, residential landscapes within the park, the area was never well-recorded. The building was significantly remodeled in
Figure 5-26. Aerial photograph of the Buffalo Pasture, 1940.

Figure 5-27. Aerial photograph of the Buffalo Pasture, 1999.
1952 and 1953. Over time the foundation plantings grew up, creating a pleasant household scene (Figures 5-28 and 5-29). The garage building (Figure 5-30 and 5-31) was also part of the overall setting. The 1958 Master Plan proposed removing Building 44—the summerhouse—from the Superintendent's Residence (Figure 5-32). This small building had been built at the maintenance area, then remodeled as a children's playhouse and moved the Superintendent's Residence.

The 1965 and 66 Master Plans proposed the complete removal of the Superintendent's Residence and the garage building (by this time known as the laundry/garage). This was presumably part of the process of moving all park administration outside of the park, a goal never realized. Maintenance on the building continued. The summerhouse was eventually removed, and a flagstone patio built between the house and the garage. A concrete picnic table similar to those in Rock Creek was added to the back yard, probably around 1950. In 1976 the exterior was painted and in 1977, central heat and air were installed. In 1981 Andersen windows were installed and the exterior painted again. In 2001, the building was repainted to match its original colors, with cream stucco, white fascia, soffits, and rafter ends, and brown gable end siding.

Over time, the grounds lost many of the original ornamental plantings, particularly deciduous and evergreen foundation plantings around the house. A few large trees have also been retained in the area.
Employee Residence Group

In the years following 1940, the number of residences within the park boundary began to decline. On November 11, 1950, Residence #3, the original Superintendent's quarter, burned down, taking its garage with it. Three other residences remained in the park. One of these was located near Panther Falls (Figure 5-33), and after 1950, this residence was renamed Residence #3. A second one was located between Central and Cold Springs Campgrounds (Residence #5) (Figure 5-35). In the 1940 and 1942 Master Plans (Figure 5-34), these two buildings were proposed to be moved south of Pavilion Springs, next to the third residence, Residence #4 (today's Building 2). However, by the 1950 Master Plan, the idea of moving the two houses had been abandoned. Instead, the 1950 Master Plan proposed building four new residences near Residence #4. This reduced to five the number of proposed residences that were to create an "employee group" of housing in the park.

Residence #5 (Figure 5-35) was repaired in 1954, and both it and the "new" Residence #3 (Figure 5-33) can be seen on a 1956 aerial photograph. They disappear from drawings after 1960 and most definitely do not appear on a 1969 aerial photograph. Thus, it can be concluded that they were removed from the park sometime between 1956 and 1969. On the 1958 Master Plan, only Residence #4 (today's Building 2) was depicted as an employee residence.

The 1965 and 1966 Master Plans recommended that all residences in the park—by this time only the Superintendent's Residence, Residence #4 (today's Building 2), and the employee residence at Bromide Springs—be removed. As noted earlier, this recommendation was never undertaken.

Since the late 1960s, significant change has not occurred at Residence #4 (or Building 2 as it is known today). Utilities in the building were upgraded in 1978 and 1987. The carport in front of the residence's original
garage was added in 1984. In 1994, the residence was re-roofed with wood shingles. In 2000, the building’s lead was abated, and the stucco was repainted to match its original cream color. The trim was repainted to match its original brown.

Maintenance Area

A functional landscape, the maintenance area has not been recorded to the degree that other parts of the landscape. Hence change since the 1940s is not easy to document. In January 1946, the park’s mules were retired, and the mule pasture was abandoned. This may have eventually led to the renovation of the mule barn and warehouse (Figure 5-37) in 1956, when new floors were laid and walls were sealed. At some point, the loading dock was also lengthened. An overhead door was added to this structure in 1978. The maintenance shop (Figure 5-38) had heating and cooling renovations in 1967 and 1987. Little information has been located on changes to the crew room.

In 1965, the Master Plan recommended that the Maintenance Area be relocated outside the park, while the 1966 Master Plan recommended that the Maintenance Area be retained in its location as a joint facility for both Platt National Park and the Arbuckle Recreation Area.

New buildings were added throughout the 1970s and 1980s. In 1977, the Water Testing Laboratory was constructed. It may have been around this time that the perimeter fence and the entry piers were removed. In 1987, a number of buildings were listed for the first time in the property records of CNRA. It is not clear whether they were all constructed in 1987, or simply recorded in that year. These included Building 126 (the carpentry shop, transferred to the NPS from the Fish and Wildlife Service (USFWS)); Building 127 (a storage building, also transferred from USFWS); Building 128 (a steel storage shed); Building 129 (another steel storage shed); and Building 134 (underground paint storage).

The carport at Building 6 was added in 1984, and Building 6 was reroofed in 1994. The archives building was added to the Maintenance Area in 1996.

Administration Building

Changes at the Administration Building (or Leeper House) are not very well documented. Foundation plantings around the building have come and gone over the years; Figure 5-39 depicts the Administration Building and its surrounds in a more manicured appearance, circa 1960.

Plans for the building over the year have varied. The 1965 Master Plan recommended that administrative functions be relocated outside the park, while the 1966 Master Plan recommended that the Administration Building be retained as a joint headquarters for both Platt and the Arbuckle Recreation Area. In the summer of 2002, park headquarters were moved to downtown Sulphur, and the Leeper House was vacated, in preparation for its future use as a training center.
Hillside Springs

As far as can be told, little planning or changes to Hillside Springs was recommended in the 1940s and 1950s. Located in a semi-secluded locale, with a distinct function, the fountain probably required little beyond maintenance (Figure 5-40). In 1961, however, bacterial contamination was reported at Hillside Springs. In December, dye was placed in the area’s sewers to determine the source of the contamination, though the results of this test have not been located. In 1962, additional tests were made and water samples were sent to Oklahoma State University, which determined the water was still contaminated. As a result, signs indicating the contaminated water and prohibiting its use were mounted above the circular pool (Figure 5-41).

That November, cleaning and renovation of the structure began and continued through February 1963. The area behind the wall was cleared of vegetation, excavated, a new spring tank constructed, and the area was backfilled and eventually replanted with cedar (Figure 5-42). The new tank was a concrete cistern with nine-inch thick walls (Figure 5-43). It appears that a central fountain jet was also introduced in the fountain at this time.

Despite the rehabilitation, contamination continued, and a new casing and a new cover were installed in December 1964. These actions still did not take care of the problem and the “contaminated water” signs were replaced with a single one that said “Water Unsafe for Drinking.” In 1967 researchers from the Robert S. Kerr Water Research Center of the Federal Water Pollution Control Administration in Ada, Oklahoma produced a study describing the nature of the contamination. After sampling the spring from the bubbler in the center of the fountain during both a dry period and a wet period (after a rainfall), the researchers determined that there was slight
bacterial contamination from soil origins. During the dry period, coliform counts were non-fecal bacteria; during wet periods, both fecal coliform and fecal streptococci from bird and mammal species were present. The source of the contamination was sought, but could not be found. The study recommended that the spring was “excellent for a potential potable source” of water, but only with “some treatment” similar to the chlorination systems used at Bromide and Medicine Springs.

It appears that the park did not take the advice of the scientists, since there is no evidence of a chlorination system being installed. Furthermore, Hillside Springs is conspicuously absent on a 1971 summary of total annual time spent on maintaining the mineral springs, perhaps indicating that Hillside was no longer maintained as a potable water source. Little other information on the spring has been located for the years between 1970 and 2000.

Pavilion Springs

The almost complete dearth of information during this period for Pavilion Springs seems to indicate that little change also occurred at Pavilion Springs, especially in the 1950s. The area was badly flooded in 1953 (Figure 5-44). In 1965, the drainage of the seven springs underneath the building was altered a bit. A one-hundred foot ditch eighteen inches wide and twenty-four inches deep was dug along the south end and west side of the pavilion. Two lines of four-inch drain tile was laid side-by-side in the ditch, which was then filled with one-inch paving stone. The new drainage way emptied into the spillway and trail passageway under Highway 177 and thence to Rock Creek. Maintenance on the spring in 1971 consisted of cleaning and replacing drain line and took a total of five person days over the course of the year. In 2000, the roof was replaced with a new shake roof duplicating the original.

Former Elk Pasture

This area south of Flower Park and northwest of Pavilion Springs proved to be a locus of activity in the post-CCC years. Once the idea of relocating the Black Sulphur Springs pavilion to this area was abandoned in the mid-1940s, this area became a picnic area. By 1953, maps show a graded entry and loop road accessing it. In 1956, following the creation of the park's interpretation division, plans were made to locate a "lecture circle" in the far west side of the area. This small amphitheater was built in the summer of 1956. It was a simple affair of eleven rows of wood plank benches constructed atop concrete bases, located on each side of a central walkway (Figure 5-45). It seated approximately 150 people and
had an eight by eight foot projection screen of painted wood in front of the benches.133 The amphitheater opened for use in September.134

The 1958 Master Plan, however, showed this structure as to be removed and replaced by a proposed new picnic shelter and audiovisual site in Flower Park. But this new visitor amenity was never built, so the amphitheater lasted until around 1961. After this time, the area south of Flower Park reverted to a simple picnic area. In 1998 a square, ranger information station was added near the perimeter road. This structure, though still present, ceased being used in 2000.

Central Campground

As early as 1940, park master plans advocated removing the western loop of the campground and converting this area into a picnic ground, while retaining the eastern loop as a segregated campground. This idea persisted in the 1950 Master Plan, which shows a single western loop labeled “Negro Area” on the plan, despite the fact that in 1946 or 1948, segregation signs had been removed from the campground.135 It was not until 1957 that the practice of segregating campgrounds was fully eliminated.

In the summers of 1957 and 1958, camping was restricted at Central to overflow camping only.136 Yet there still seems to have been a significant amount of campers (Figure 5-46). In his annual forestry report in 1957, Superintendent William Branch wrote:

\begin{quote}
Bromide and old Central Campground have been closed to every day camping for a number of years and are making progress toward recovery of vegetation, but due to their forced use as overflow areas much too often, even their progress is necessarily slowed.137
\end{quote}

The 1958 Master Plan continued to propose the area as a single loop campground, though it renamed the whole area “Central Park Campground.” The plan also proposed paving the camp’s loop road. In 1959, a property inventory listed the campground as having twenty-one sites, twenty-one wooden tables, two rock fireplaces and twenty-one underground garbage cans. Figure 5-47 is a view of the western loop from Central Park in 1963.

The Master Plans of 1965 and 1966 superseded the 1958 plan. These plans proposed converting the entire campground into a picnic area, again retaining only the western loop as vehicular circulation. Despite the proposed changes, existing condition maps and aerial

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure545}
\caption{Amphitheater in area south of Flower Park, 1956.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure546}
\caption{Car and tent camping in Central Campground, circa 1960.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure547}
\caption{Western loop of Central Campground, view from Flower Park, 1963.}
\end{figure}
photographs from 1956 and 1969 reveal that the campground's circulation patterns and use remained unchanged from their 1940s conditions. The only change seen is a realignment of the entry road to accommodate a change in the perimeter road across Travertine Creek. This road project, which occurred in 1955, included construction of a new concrete bridge with large boulder headwalls. The campground's eastern entry road alignment was changed fourteen years later in 1969.

In 1987, the Denver Service Center or the Regional Office completed a new design layout converting the campground into 15 group sites. The plan was implemented with contract labor. The roads bisecting the two loops were obliterated at this time, and pull-in and back-in parking areas were located along loops. New grills, numbered posts for campsites and bollards along road and parking areas were also installed. In 1993, the organization of the group camp was refined slightly by park staff. The density of the campsite was reduced by removing five sites and the numbered posts were moved to new locations to reflect the organizational changes. Further work cleaned up the site. A dead tree and a hollow tree were removed. Topsoil was added to a few sites and they were reseeded. Large boulders were added between the western loop and U.S. Highway 177 to discourage pedestrians from walking along the former pathway to Flower Park. The old grills and concrete pads were removed from sites and twenty new grills (two per site) were added to the campground. Picnic tables were also redistributed.

In 1996, the banks of Travertine Creek in the campground began to badly erode along the perimeter road. A conglomerate rock wall was necessarily constructed to retain and stabilize the bank. The resulting wall was 170 feet long and eight feet high.

In 2000, the sites were renumbered to continue the numbering system from Cold Spring Campground, to facilitate payment through the Cold Spring automatic payment center. Bollards were also removed from the campground in 2000. In 2002, the Central comfort station underwent lead abatement and received a new, wood shake roof duplicating its historic roof.

Cold Springs Campground

Perhaps because it underwent such major reorganization in the 1930s, fewer changes were planned for Cold Springs in the 1942 and 1950 Master Plans. The 1950 Master Plan, for example, shows the community house replaced as a proposed staff residence, in hopes of providing a bit more supervision for the campground.

The only recorded change in the first twenty years was the construction of two “experimental” picnic tables, one twenty foot long and one thirty foot long, in 1954. Each table was designed as “table-bench combination,” and their construction seems to have been a park staff initiative rather than a project from the regional office designers. It’s unclear if these were replacements for existing tables. No mention of large tables is found in the known CCC records, though a large, thirty-six-foot long table was built in Cold Springs in 1912.

The major change wrought during the 1950s was to the campground vegetation. The campground was well-used (Figure 5-48). In fact, it was probably overused, and the trees and shrubs suffered. In 1955, just five years after the opening of Rock Creek campground, which should have provided some relief for overused campgrounds, Chief Ranger Dickenson noted:

Although Cold Springs Campground has been closed during the fall and winter months for the past few years, it is making very little natural recovery due to the intense summer use. Tree mortality is serious in this area, and water erosion is removing annually increasing amounts of topsoil....If another campground could be established,
it would be possible to rotate the usage of campgrounds every two or three years, eliminating much of the damaging overuse now in evidence.140

Similar complaints about vegetation damage were reiterated in the next few years. In 1957, Superintendent Branch reported that over 300 trees, some up to 80 feet tall and over 2 feet in diameter, needed major pruning or removal.141 To relieve the pressure, the 1958 Master proposed adding a third comfort station and expanding the campground slightly to the east, but neither of these proposals were implemented. In 1959, the campground was inventoried to have twenty two underground garbage cans and sixty-four sites, each with a table and a rock fireplace.

A first stab at campground improvement occurred in 1961, when trees were planted in all of the campgrounds and ten signs were placed at planting locations to notify the public.142 In Cold Springs, Osage orange seeds were collected for planting between the campground and the perimeter road.143 The loop road in the campground was also resurfaced with Troy Gravel.144 In March of 1963, a more comprehensive treatment was undertaken in Cold Springs. The sites were overhauled; they were regraded and stones separating the parking areas from the campsites were either installed for the first time or rearranged (Figure 5-49 and Figure 5-50).145

In 1967, a campfire or “lecture” circle was constructed at Cold Springs.146 It consisted of plank seats on ten by ten-inch timbered pillars, organized around a stone-lined fire pit. Similar to one built at Rock Creek Campground at the same time, it held about fifty people (see Figure 5-71, below).147 Both circles were built in response to the proposed new Nature Center in the eastern part of the park, and were intended to “serve jointly as areas for informal programs during the winter months, as assembly points for speaking to organized camping groups and others, and as gathering places for campers who wish to join in fellowship about the evening campfire.”148

The Master Plans of 1965 and 1966 both proposed converting the campground into a picnic area, but once again, this did not happen. In the summer of 1970, the community house was converted to an Arts and Crafts center, featuring Native American crafts.149 In 1986, the community house became a resource management office, a use which continued until 2000. In 2003, the building became an exercise and weightlifting room for NPS staff and local police and fire personnel.

In 1998, an automated fee station was added to the campground near the entry, and in 2002, the comfort stations underwent lead abatement and received new wood shingle roofs, constructed to match their historic appearance.

\textbf{Travertine Island and Little Niagara Falls}

There is little documentation of Travertine Island and Little Niagara Falls in the years following 1940. In July of 1945, a team of park planners took a rather dim view of the CCC work on the island, which had been praised
by NPS designers just a few years early. Harvey Cornell, Regional Chief of Planning wrote that

“[t]he massive and unattractive stone tables, seats and fireplaces in the group picnic site should be removed, leaving only the bordering masonry wall. Standard tables and fireplaces should be introduced. The existing development does not harmonize with the surroundings.”

These ideas seem odd, given that ten years prior, the picnic area (Figure 5-51) was completed to rave reviews. However, Cornell’s thoughts did not become a reality, and few changes of any sort were proposed for the area in any of the master plans of the 1940s and 1950s.

But change came rapidly in the 1960s. In 1962, maintenance began taking out part of the Travertine Island stone wall. Exactly why and where this took place is not clear, but the rock was “disposed of.” In 1962, the “broken and disintegrated stepping stones” between the Island and the parking area to the north were removed. It was replaced with “a plank crossing similar to the majority of our trail bridges.” The reason for the replacement was as follows: “Many lunches, picnic baskets, etc., are carried over this trail and the replacement of these stones with a standard type trail bridge is needed.” Work on the demolition and bridge construction began in May 1962.

Use of the pool and picnic areas was high. In 1966 a new comfort station (Figure 5-52) was constructed west of the Little Niagara Falls swimming hole to better accommodate the picnickers and bathers. The comfort station matched those at the other newer picnic areas, Black Sulphur Springs and Walnut Grove. In 1967, Little Niagara was inventoried with almost as many picnic tables as anywhere in the park: forty-four picnic tables, nineteen fireplaces, and fourteen refuse units.

With the planned construction of the Nature Center, even more change was at hand. In 1965 a site near the parking lot on Travertine Island was the proposed site for the new building, but this was shortly thereafter revised to the current site, slightly further east. The whole area was surveyed prior to construction, providing a good record of the area before it was changed (Figure 5-53). As a result of the new building, two new parking lots were constructed along the south bank of Little Niagara Falls and the perimeter road was rerouted as a one-way loop around Travertine Island beginning at Sycamore Falls. The new parking area at Little Niagara branched off from the one-way loop road (Figure 5-54). The parking areas were paved in asphalt and edged with stone that matched the new Nature Center. The stone, a little redder and darker than the native stone specified by the CCC designers, was quarried in Arkansas. It was probably around this time that some of the small table and seating areas around Little Niagara were lost, leaving only the large picnic area and the stone table at Lost Cave Falls.

The 1970s were characterized by maintenance to counteract years of heavy use. Maintenance worker and mason Lawrence Howell recalls installing boulders along edge of Little Niagara in 1970 to stabilize the shoulders. He also recalls creating channels on the top of the lower Niagara dam, to allow the water to run through, not over the dam, preventing slippery, mossy growth on the top of the dam. Howell also remembers
repairing the masonry on the Limestone Creek Bridge, and in 1974 installing a small culvert structure just off the northern corner of the Little Niagara parking area.

In the late 1970s, repairs were made to the stone picnic tables. Concrete was used to parge the smaller picnic table on Travertine Island in 1975 and in 1982 Howell repaired the square picnic table at Lost Cave Falls and its surrounding little patio. He also repaired the narrow staircase leading to the area, replacing travertine stones with more readily available limestone. In 1976, Howell also repaired the bridge between the northern parking area and Travertine Island.

In 1997, a new concrete walkway was installed between the Little Niagara parking area and the Mission 66 comfort station.

Buffalo and Antelope Springs

As at Little Niagara and Travertine Island, little change was proposed for Antelope and Buffalo Springs in the 1940s and 1950s. The 1942 Master Plan only recommended removing the two large fire pits at Buffalo Spring; nothing was suggested for Antelope Springs. Recorded maintenance for the 1940s included removing vegetation from the two pools below Antelope Springs in 1945. According to Boeger, the large barbecue pits at Buffalo Springs were dismantled after World War II.

The 1950s were plagued by drought, and Buffalo and Antelope Springs and Travertine Creek dried up for varied lengths of time in 1953, 1954, 1955, and 1959. In 1955, the town, worried about the impact of the dry creek on park (and town) visitation, drilled a special well adjacent to the park in hopes of pumping water from this well to Travertine Creek. The technique was not particularly successful in creating the park's...
usual flowing waters and deep swimming holes. Water returned in December of 1959, but the springs dried up again in 1963. The water was so low, that fish that had congregated below Antelope Springs were netted (Figure 5-55).

By the mid 1960s, there seems to have been some discontent with the nature of the Buffalo and Antelope Springs area. Interestingly, unlike other areas of the park, few picnic tables were either inventoried or recorded in the far eastern part of the park. Only three picnic tables were recorded for Antelope Springs in 1965.

In 1964, Superintendent Paul Steel wrote the Regional Director for some design assistance in altering the Buffalo Springs area:

> For some time we have been toying with the idea of restoring Buffalo Springs to a more natural setting. Discussions during the Master Plan review on February 7, and a chat with Jerry Miller later in the day, leads us to believe your office is in accord.

> As a beginning, we would propose to remove two or more courses of native stone, leaving only enough wall to continue water flow over the existing lip to the stream bed. Sod would be stripped and saved to be replaced after proper sloping of the ground to the new wall level. Eventually the entire wall would be removed and a complete revertment to a more natural condition could be accomplished.

The approval from Jerry Miller, one of the NPS designers at Platt during the CCC years, to obliterate his own work aside, the park's desire for a more “natural setting” may be indicative of a burgeoning service-wide interest in conservation of natural resources, a direct contrast to the more development-minded proposals of the decades between the world wars. Or, it may simply have been the park’s desire to participate in, and receive funding for, changes under the Mission 66 initiative. At any rate, these desires culminated in the construction of the Travertine Nature Center within the Buffalo Springs area.

Although the Mission 66 prospectus for the park, begun in 1955, had always proposed the construction of a “Visitor Use” building in the park, the idea for a nature center in the park arose at least as early as 1963, when Superintendent Steel sent a query to the National Capital Region about the Rock Creek Nature Center, the only other nature center besides Platt’s, in the National Park System. Steel said the park was “considering the possibility of a visitor center at Platt along the lines of your Rock Creek Nature Center” and asked for plans, layouts, and other information.

When, in 1965, the Western Office of Design and Construction produced a drawing for a Visitor Center in Flower Park, Steel had a ready counterproposal to turn the building into a Nature Center.

> While the plan is most interesting and certainly as envisioned, would provide a fine Nature Center for Flower Park, we think that the Travertine Island site offers a great deal of opportunity for architectural ingenuity and feel that a compatible design to the Travertine Island site could afford an excellent opportunity for an architect to utilize some of the more modern approaches to interpretive endeavor.

The end of 1965, a plan had been made to develop a nature center within the park, and in 1966 the entry to the Buffalo and Antelope Springs was chosen as the best location for it. In February 1967, drawings for the new Travertine Nature Center were completed. The building was designed by the Houston architectural firm of McKee and Kamrath, and was styled after the work of Frank Lloyd Wright. The building was bridge-like. Long and low, with horizontal lines, it was built over Travertine Creek, displaying Steel’s hoped-for architectural ingenuity (Figure 5-56).

In 1968, the Buffalo-Antelope Springs loop of perimeter road was closed at the site of the Nature Center in preparation for construction of the new building. The
rest of the perimeter road (the portion around Antelope and Buffalo Springs) was obliterated, with an intent of retaining it as pedestrian, bicycle, and NPS vehicle access, though this was not realized. A new segment of road was built to connect the two “loose ends,” creating a shorter loop that merely wrapped around Travertine Island. The new loop was configured as a one-way route, beginning just beyond Sycamore Falls. The original Buffalo Springs Trail leading up the middle of the area became the major access to Buffalo and Antelope Springs, and was a pedestrian-only route. The trail was surfaced in troy gravel and connected to three loops of nature trail, which were an expansion of nature trails that rangers had begun to develop in the early 1960s.

The park’s first “Interpretive Prospectus,” written in 1965, described the overall goal of the new construction as “the conversion of the eastern portion of the Park to a natural environment and nature study area.” As part of this conversion—part of the creation of an experiential landscape continuum of human impact and recreation in the western and nature interpretation in the eastern part of the park—the picnic areas and parking lots previously associated with Buffalo and Antelope Springs were demolished. Portions of these had already been removed after World War II, and after 1969, only the Buffalo Spring enclosure and comfort station were retained.

The creation of the nature center was aligned with increasing interest throughout the NPS in environmental education, and in the late 1960s, a program to identify “Environmental Study Areas” within the park system was established. An Environmental Study Area (ESA) was defined as “a land, or land and water area, whose natural, historic or man-nature characteristics are effectively combined with an organized study program to provide an understanding of the total environment and the individual’s relationship to it.” The program’s goal was to establish facilities and services for use by organized educational groups. Even before the building was completed, the park applied to have the Buffalo and Antelope Springs area listed as an Environmental Study Area, submitting an inventory form for 138 acres east of the Nature Center in June, 1968. By February, Platt was identified by national program managers as “one of the Service’s finest opportunities for the ESA approach with associated adult environmental interpretation,” able to educate children during the school year and adults during the summer.

The Travertine Nature Center, with a large new parking lot constructed on its east side, was dedicated on September 20, 1969. Some changes were made even after the dedication. Flooding problems required riprap to be placed on both sides of the creek on the upstream side of the Nature Center. In June 1969, a planting plan for the area was completed, and eleven redbuds were planted around the front of the building. The rest of the plantings were groundcovers for the areas around the building and parking lots, and included 5,850 myrtle (Vinca minor), 3,275 Japanese honeysuckle plants, and 2,000 scouring rushes (Equisetum hyemale). The latter, the only native groundcover, was harvested at Guy Sandy and planted along the creek and under the building. In 1970, three kiosk-like interpretive signs were constructed of stone matching that in the nature center parking area and were erected along the new trail system (Figure 5-57). In 1971, the small retaining wall along Travertine Creek immediately northwest of the Nature Center was built under the direction of Lawrence Howell.
Maintenance also continued, but to a lesser extent than previously, and primarily on the waterways and extant structures. In 1971, six person days were spent cleaning the channels and ponds at Buffalo and Antelope Springs of debris. In contrast, activities such as mowing and pruning were restricted in the new Environmental Study Area. As a result, the released landscape grew up. This was particularly noticeable at Antelope Springs (Figure 5-58 and Figure 5-59), but also true at Buffalo Springs (Figure 5-60). The park-like qualities of these areas receded into the background of the natural landscape.

Small changes continued, primarily to stream crossings, which, after forty years, were beginning to deteriorate. The stepping stones at the lowest Antelope Springs crossing had already been replaced by a large stone slab, reputedly the table top of a former stone picnic table, sometime before 1971. Lawrence Howell recalls replacing the middle crossing at Antelope Springs in 1976, removing a set of stepping stones. In 1977, he constructed the plank bridge located on the return trail between Buffalo Springs and the lowest Antelope Springs crossing. The bridge was constructed, he says, because the stepping stones, located underneath the bridge, were slippery, and it was deemed easier to build the bridge than constantly clean the stones. In 1979, Howell constructed wing walls and the pipe rail bridge at Buffalo Spring, where there used to be stairs and stepping stones. As part of this work, he repaired the flagstone path to Buffalo Springs, and in 1981 constructed a new flagstone path between Buffalo Springs and the curved arch bridge. He also recalls doing masonry repairs on the stone arch bridge itself, using dirt and soil to age the new mortar so that repairs would not be so noticeable. The mortar he used was three parts creek sand to one part grey cement.

By 1940, the park realized a need for additional camping areas to serve large numbers of summer visitors and had located what they deemed to be an appropriate site: 63.75 acres of land located just west of the Bromide and Bromide Hill. The property had “a fine growth of deciduous trees consisting of oak, elm, hackberry sycamore, ash” and was removed from “bustle of the town… yet within easy walking distance.” In 1941, a
Department of the Interior Appropriations Act included funds to appropriate this land, known as the Giles Estate. That same year, however, the heirs of the original property owners decided not to sell the lands based on prevailing real estate prices. As a result, condemnation proceedings began, and on January 28, 1942 the park took possession of the tract. The acquisition brought the park’s total acreage to 911.97 acres. On April 15, 1943, the park acquired full jurisdiction over the property and, because of boundary disputes, it was resurveyed shortly thereafter.

Although a complete plan for the campground was drawn by Jerome Miller in November 1942 and approved in February 1943, the wartime economy diverted funding from the NPS and the design became one of the many “Plans on the Shelf” awaiting the end of the war. In fiscal year 1950, $51,000 was allotted for the campground and the layout plan of the campground was reapproved in September 1949. Construction began in October with sewer and water line staking and work on 1.1 miles of asphalt roads and 62 campsites proceeded into the winter of 1950. The overall layout was designed as a series of six concentric one-way loops located between Rock Creek and the perimeter road. The sites were mostly designed as pull-through sites, and each had a fire pit, picnic table, and underground garbage can. Water and electrical hook-ups were also planned for each site, but these were never implemented.

In February 1950 a dispute between the park and the regional office arose over the details of the campground, including the need for the proposed checking station and the design of campsite markers, water hydrants, and overhead lights. The regional office noted that the design of these latter features required “excessive use of posts and timbers,” perhaps demonstrating an NPS-wide shift away from the pre-war “Rustic” style toward the cleaner, Modern style of design shortly to be promulgated by Mission 66 designers. Though the overhead light design was eventually maintained, a new campsite marker design used a simple pipe support and a new hydrant design eliminated the original’s wood post support. Work was delayed slightly due to the outbreak of the Korean War, but by June of 1950, two comfort stations of “tile construction” were underway in the campground. Located on the second and fifth loops in the middle of the campground, the buildings were simply designed buildings (Figure 5-62). A band of more ornamental brick located underneath their wood-framed shingle roofs emphasized the horizontal line of the buildings. Built in a more Modern style, these buildings were something of a departure from the heavy stone construction of the Cold Springs comfort stations, but the overall scale, size, shape and hip-on-gable roofs mimicked the lines of the older structures. A set of narrow pedestrian paths along the curving axis of the loops linked the comfort stations to the road system.

The picnic tables and fire pits at each site also reflected a new design sensibility. Instead of the old wooden picnic tables, Regional Landscape Architect Harvey...
Cornell proposed using a concrete picnic table, similar to ones he had seen in state parks in Texas. Cornell felt the design not only met NPS objectives of “cleanliness, safety, and low cost maintenance,” but also demonstrated “the importance of stability” since “all unnecessary embellishment in design was eliminated with the dimensions of the structural members held to a minimum to reduce the conspicuousness of the structure as a whole.” Though specified to be constructed in lengths of six, eight, and ten feet, it appears that only the six and eight foot tables were constructed (Figure 5-63, Figure 5-64 and Figure 5-65). More than forty were built by June 1950. The fire pits were also built of poured concrete (Figure 5-66), not in rustic limestone masonry as had been the case fifteen years earlier at Cold Springs Campground. Each site was also equipped with an underground garbage can. A small checking station was also constructed near the front of the campground in 1950 (Figure 5-67). A sign was also built at the entrance, but was reworked in 1954 (Figure 5-61).

The campground opened for use in the summer of 1951. The new sites were initially more vegetated than the hard-used, compacted earth sites in Cold Springs (Figure 5-68). Park use continued to rise through the 1950s, and by 1962, summer attendance saw an average of 70,000 visitors per week. The Bromide Springs area was continually called into use as an overflow campground, stressing the facilities and vegetation in the area. As a result of demand, and because of plans to eliminate campgrounds elsewhere in the park, Rock Creek was enlarged in the mid 1960s.

Approval for the project was received in April 1964, and drawings for the work were completed in October 1965. The plans, considered part of the service-wide Mission 66 program, added two more concentric loops to the southern end of the existing loop (Figure 5-69). Another independent loop, attached to the major section of the campground via a short spur, was proposed on a hillier section of the original Giles tract, known as Chigger.
Chapter 5: Maintenance and Change, 1940–2003

Hill. The two new concentric loops were predominantly pull through sites, but the Chigger Hill loop was a combination of pull through, pull in and back in sites as it accommodated the steeper topography. A total of 47 new sites were added, each with a moveable picnic table and fireplace. Five double trash can holders were installed in the new section, along with sixteen single can holders. A comfort station (Figure 5-70) was constructed at the top of the hill. The campground addition was completed in 1967.

A campfire or “lecture circle” was also constructed at Rock Creek, at the same time as and identical to the one at Cold Springs. It was a half circle of plank seats on ten by ten-inch pillars around a stone-lined fire pit (Figure 5-71). Its location within the overall campground is not known.

Changes in Rock Creek Campground following 1967 appear to have been minimal. New metal directional signs were added. The checking station, surveyed on site in 1981, was later moved to Guy Sandy.
Conclusion

The years between 1940 and 2003 are interesting because during this time the park changed in some fundamental ways, yet surprisingly retained many characteristics in the face of that change. The park’s sense of its role as a place, and its position in the park system both changed greatly. Between 1940 and 2000, Platt changed from a park focused on its mineral waters to just one small portion of a regional, active recreational landscape. Within this context, planners began to view Platt as a day use area, with a strong interpretive focus, rather than a longer term destination park. They were certainly successful in providing the park with a strong interpretive mission and message through the nature center, its construction riding on an interest in the environment and ecology that would be sustained culturally through the next center. On the other hand, the efforts to make the park strictly a day-use area seems somewhat misguided, since the strong traditions of visitor use would eventually outweigh the desires of bureaucrats and planners in Washington and Denver and even interpretive staff in the park itself.

Given these shifting ideas about what Platt should be, and what it became, it’s surprising that its physical—and now historic—resources built in the 1930s remained intact without greater change than was experienced. While the loss of the Buffalo Springs surroundings and the perimeter road seem, on one hand, a huge change in the park’s design, it was motivated by positive forces trying to improve Platt’s visitor service, environmental education, growth and status in the NPS system. With this in mind, it’s perhaps surprising that not more of the CCC development was eliminated. However, it’s likely that the recreational pressure that Platt experienced in the mid 1960s was, in fact, relieved by the creation of the Arbuckle area, so that development focused on creating new landscapes there instead of revising older landscapes at Platt.

Regardless of the reasons, the Platt District today remains in condition very similar to the way it was at the end of the Mission 66 era in 1969. These conditions, and the park’s resulting high integrity, are detailed in the following two chapters.

Figure 5-71. Lecture circle at Rock Creek Campground, 1967.
Notes to Chapter 5

2 Ann Baugh, telephone conversation with Heidi Hohmann, 13 August 2002. Miller returned to the NPS after the war and even consulted on later Platts projects in the 1950s and 60s (see below). Miller ended his career in the Southwest Regional Office in the 1970s.
5 Perry E. Brown to the Regional Director, Region Three, 25 May 1953. CNRA Archives.
6 Hugh M. Miller, Memorandum to the Director, 14 February 1955. File D-46, National Archives, Fort Worth.
8 William Supernau, Memorandum to the Director, 13 July 1955. File A-98, National Archives, Fort Worth.
10 E. T. Scoyen (Acting Director), Memorandum to Regional Director, Region Three (Hugh Miller), 4 April 1956. CNRA Archives.
11 Ibid.
12 William Branch (Superintendent), Memorandum to Regional Director, Region Three (Hugh Miller), 13 March 1956. File A-98, National Archives, Fort Worth. Branch said he was “at wits end” with the decision, which he learned about in a 20 February 1956 memorandum from the Mission 66 Chairman. He also felt regretful (and perhaps deceived by the NPS) about his decision to return to Platt, noting “I would not have desired to come here, had I known there would be no program of expansion. This is a fine place to live…but I would much prefer to be at an area with a program of development and expansion than at one with apparently no prospects.”
13 E. T. Scoyen (Acting Director) to Robert Kerr (U.S. Senator) 4 April 1956; E. T. Scoyen (Associate Director) Memorandum to the Regional Director, Region Three (Hugh Miller) 20 April 1956; Harthorn Bill (Acting Regional Director), Memorandum to the Director, 5 April 1956. All in File A-98, National Archives, Fort Worth.
15 Regional Director, Memorandum to Superintendent, Platt, 31 May 1956. File A-98, National Archives, Fort Worth.
16 Superintendent, Platt National Park, Memorandum to the Director, 21 January 1963. File K-1819, National Archives, Fort Worth. The number of 130 comes from the Fixed Property Record card file, CNRA Central Files. Only four large interpretive signs existed in the park—one each at Bromide, the Buffalo Pasture, Antelope Springs, and Travertine Island. It seems the one at the Buffalo Pasture was created after the 1962–1963 sign plan.
17 Donald M. Spalding. Memorandum to the Regional Director, Southwest Region, 5 August 1965. File D-22, National Archives, Fort Worth.
19 Ibid., 8.
20 Ibid., 4.
21 Ibid., 8.
22 Ibid.
23 George Robinson, “Interpretive Prospectus for Platt National Park and Arbuckle Recreation Area” (typewritten report, approved 6 August 1965), 17. CNRA Archives. Copy provided by park staff.
24 Ibid., 12.
26 Robinson, “Interpretive Prospectus,” 2.
28 Daniel Beard (Regional Director), Memorandum to Superintendent, Platt National Park, 2 December 1964. CNRA Archives.
29 “Priority List, First Year Project Job Corps Camps,” no date. File D22, National Archives, Fort Worth. Tree planting projects are indicated on the Fixed Property Record card file in the CNRA Central Files.
30 Platt National Park Staff Conference Minutes, 8 September 1954. File A4031, National Archives, Fort Worth.
31 Lonnie Shaffer (Chief Ranger) Memorandum to Regional Director, Region Three, 10 January 1961. CNRA Archives.
33 Ibid.
34 Fixed Property Record (Form 10-559), card file. CNRA Central Files.
60 Johnwill Faris, Superintendent, Memorandum to the Regional Director, 2 October 1961. CNRA Archives.
62 Cornell, Memorandum for the Regional Director, 17 July 1945.
63 Boeger, Oklahoma Oasis, page 164.
64 “Utility Layout: Bromide Area, Part of the Master Plan,” Drawing NP-PLA-5306-B, March 1950. This plan appears to be the first drawing indicating locations of rock guard rail in the Bromide area. Boulder guardrail had, however, been used along the Bromide Hill stretch of the perimeter road as early as 1935. See Richey and Miller, “Report to the Chief Architect,” 30 September 1935, 10.
65 Platt National Park Staff Conference Minutes, 27 October 1954. File A4031, National Archives, Fort Worth.
66 Perry Brown to the Regional Director, Region Three, 25 May 1953. CNRA Archives.
67 Johnwill Faris to the Regional Director, 21 April 1962. CNRA Central Files.
69 CNRA photograph archive, negatives 237 and 234.
70 Fixed Property Record (Form 10-559), file card. CNRA Central Files.
72 CNRA photograph archive, negative 268.
73 Fixed Property Record (Form 10-559), file card, CNRA Central Files.
74 Boeger, Oklahoma Oasis, 184.
75 CNRA photograph archive, negative 735.
76 Acting Regional Director, Memorandum to Chief WODC, 6 July 1967. File D-22, National Archives, Fort Worth.
77 “Rock Creek Foot Bridge,” Drawing 107/41,001 (Environmental Planning and Design, Western Service Center, April 1968). CNRA Archives.
78 CNRA photograph archive, negatives 2361, 935, and 936.
79 Supervisory Hydraulic Engineer, Southwest Region, Memorandum to Superintendent, Platt National Park, 31 February 1973. CNRA Archives.
81 Ken Ruhnke, comment provided in December 2002 draft review.
82 Boeger, Oklahoma Oasis, 199.

Boeger, Oklahoma Oasis, 160.

Paul M. Steel (Superintendent), Memorandum to Chief, WODC, Southwest Region, 18 December 1965. File D3142, National Archives, Fort Worth.

Minutes of Staff Meeting, Platt National Park, 15 November 1962. File A4031, National Archives, Fort Worth.

CNRA Archives, photograph files, negative 2361.

Ibid.

Superintendent, Memorandum to Regional Director, Region Three, 22 September 1954. File K1815-N, National Archives, Fort Worth.
Chapter 5: Maintenance and Change, 1940–2003

158 Platt National Park Staff Conference Minutes, 11 August 1954. File A4031, National Archives, Fort Worth.
159 CNRA Archives, photograph files, negative 64(pla). This circa 1954 photograph shows the long picnic tables being stained, with a caption “new picnic tables.”
160 Russell Dickenson (Chief Ranger), Memorandum to the Regional Director, Region Three, 6 January 1955. File Y-2619, National Archives, Fort Worth.
161 W. E. Branch, Memorandum to the Regional Director, 6 March 1957. File Y1815, National Archives, Fort Worth.
162 Lonnie Shaffer (Chief Ranger), Memorandum to the Regional Director, Region Three, 15 January 1963. File Y-2619, National Archives, Fort Worth.
163 Fixed Property Record, Form 10-559, card file. CNRA Central Files.
165 CNRA Archives, photograph files, negatives 1021 and 1010.
166 Johnwill Faris, Memorandum to Regional Director, Region Three, 17 April 1962. File Y-2619, National Archives, Fort Worth.
167 Minutes of Staff Meeting, Platt National Park, 10 May 1962. File A4031, National Archives, Fort Worth.
168 In addition to Figures 5-49 and 5-50, see negative number 2037 and others in the CNRA Archives.
169 CNRA Archives, photograph files, negative 798.
170 Fixed Property Record, Form 10-559, card file. CNRA Central Files.
172 CNRA Archives, photograph files, negatives 1021 and 1010.
173 Lonnie Shaffer (Chief Ranger), Memorandum to Regional Director, Region Three, 1 July 1945.
175 Johnwill Faris, Memorandum to Regional Director, Region Three, 17 April 1962. File D30, National Archives, Fort Worth.
176 Minutes of Staff Meeting, Platt National Park, 10 May 1962. File A4031, National Archives, Fort Worth.
177 Lawrence Howell, field walk with Ken Ruhnke and Heidi Hohmann, November 2002.
178 Ibid.
179 Cornell, Memorandum for the Regional Director, 17 July 1945.
180 Minutes of Staff Meeting, Platt National Park, 3 May 1962. File A4031, National Archives, Fort Worth.
181 Johnwill Faris, Memorandum to Regional Director, Region Three, 17 April 1962. File D30, National Archives, Fort Worth.
182 Minutes of Staff Meeting, Platt National Park, 10 May 1962. File A4031, National Archives, Fort Worth.
183 Lawrence Howell, field walk with Ken Ruhnke and Heidi Hohmann, November 2002.
184 Ibid.
185 Cornell, Memorandum for the Regional Director, 17 July 1945.
186 Boeger, Oklahoma Oasis, 160.
187 Platt National Park Staff Conference Minutes, 25 August 1954. File A4031, National Archives, Fort Worth. See Boeger, Oklahoma Oasis, for a summary of droughts.
188 Fixed Property Record (Form 10-559), card file for Campground Equipment. CNRA Central Files.
189 Paul M. Steel, Memorandum to the Regional Director, Southwest Region, 1 April 1964. File D46, National Archives, Fort Worth.
191 Paul M. Steel, Memorandum to Chief WODC, Southwest 16 August 1965. File D3415, National Archives, Fort Worth.
192 Jack E. Stark (Superintendent), Memorandum to the Regional Director, Southwest Region, 9 April 1968. File D-30, National Archives, Fort Worth.
195 William Brown (Regional Environmental Education Coordinator), Memorandum to the Chief, Office of Environmental Education, 13 February 1965, 5. CNRA Nature Center Files.
197 Howell, field walk with Ken Ruhnke and Heidi Hohmann, November, 2002.
202 J. H. Conn, Engineer to the Regional Engineer, 18 October 1949. File 621, Rock Creek General, National Archives, Fort Worth; Thomas Miller. “Superintendent’s Annual Report, Platt National Park, Fiscal Year 1950” (typewritten report), 3. Although Miller says sixty-two sites in his report, the drawing for the campground, NP-PLA-2029B, shows fifty-nine. It’s believed that sixty-two were built.
203 Regional Landscape Architect (Harvey H. Cornell) to the Director, 22 March 1950. File 621, Rock Creek General, National Archives, Fort Worth.
205 Ibid.
206 Harvey Cornell to Superintendent (Thomas Miller), 21 October 1949. File 621, Rock Creek General, National Archives, Fort Worth.
207 Regional Chief of Planning and Construction (Harvey Cornell), Letter to the Director, 16 June 1950. File 621, Rock Creek General, National Archives, Fort Worth.
208 CNRA Archives, photograph files, negatives 972 and 973.
209 Fixed Property Record (Form 10-559), card file on Campgrounds. CNRA Central Files.
210 Platt National Park Staff Conference Minutes, 24 November 1954, File A4031, National Archives, Fort Worth.
211 Boeger, Oklahoma Oasis, 83.
212 Fixed Property Record (Form 10-559), card file. CNRA Central Files.
213 Fixed Property Record, (Form 10-559), card file. CNRA Central Files.
Chapter 6: Existing Conditions

INTRODUCTION

Today, more than sixty years after the CCC left Platt National Park, the Platt District is a designed landscape that retains much of its intended character and uses. Nestled within a larger, mostly wooded landscape, the former park’s streams, swimming holes, campgrounds, and picnic areas still retain the feeling of a cool oasis set in the broad, dry prairies of South Central Oklahoma.

Existing conditions of the Platt District were recorded in a set of digital plans, completed in AutoCAD. Topographic base data for these plans was provided by the 1984 aerial survey, which was digitized in AutoCAD from twenty-four by thirty-six inch sheets specifically for this project. Additional baseline information was derived from overlaying this survey data on aerial photographs from 1969 and 1999. Fieldwork to check and refine this data was then conducted, primarily in the summers of 2001 and 2002, although ISU students surveyed campgrounds and did plant counts in the falls of 2001 and 2002.

The resulting set of existing conditions plans record the Platt District’s character-defining features. They are printed at varying scales to fit an eleven by seventeen-inch format for inclusion in this document. The set begins with an overall district plan (Drawing 14). This plan depicts the spatial organization, circulation systems and water features of the entire district. Detail plans (Drawings 15-24) then delineate in more detail significant individual areas within the Platt District. Features captured on these drawings include overall layout and spatial organization, topography (at a ten-foot contour interval), circulation (paths and walks), water features (fountains, dams, and pools), structures (buildings, walls), small scale features, and vegetation (woodland edges, designed plantings). This chapter primarily deals with the designed, or planted, vegetation of the Platt District. The existing conditions of the “natural” vegetation—the balance of vegetation along creeks, banks, and uplands—is considered in greater detail in Chapter 10, the district vegetation management plan.

The text below, which generally follows the organization laid out in previous chapters, describes the existing conditions and features depicted in the drawings in narrative form. In general, descriptions focus on describing the character-defining aspects of the features and assessing current feature conditions, rather than providing detailed construction information such as shingle sizes, number of steps, etc. Such detailed description is noted in the history chapters. It should be noted that if a generic feature type (e.g., “views and vistas” “small scale features”) is not listed under a landscape, then that feature is not present in that landscape. Photographs accompanying the text are intended to further capture 2002 conditions, though a few photographs were taken in 2004. Photographs in this chapter were taken by the authors, with the exception of those dating to 2004; these were taken by Ken Ruhnke.

A link between this chapter and the following analysis chapter are a set of matrices, which appear in the analysis chapter. These matrices summarize each component landscape’s features by noting feature condition and status as contributing and non-contributing to National Register significance.

DRAWING 14: OVERALL EXISTING CONDITIONS PLAN

Travertine and Rock Creeks

Travertine and Rock Creeks flow through the district from east to west and are a major component of the overall district landscape.

Use
The two creeks today are places for swimming, wading as well as for appreciating nature and scenic beauty. No swimming is allowed in Travertine Creek upstream from the Nature Center. Because of recreational bathing use, bacteria monitoring in the creeks was begun in 2001. The areas where counts are taken include most popular swimming areas.
Spatial Organization
Travertine and Rock Creeks are the backbone around which all of the district's developed features are structured. The two creeks form a line running east-west through the district and all but a few features (notably the Superintendent’s Residence and Employee Residence 2) are organized along this line. The two creeks essentially determine the organization of the district, since all features respond to their original location.

Topography
The overall elevation drop from the source of Travertine Creek at Buffalo Springs at about elevation 1080 to where Rock Creek exits from the park at about elevation 910 is about 170 feet. Stream banks along the creek are generally steep, if not vertical, and erosion and undercutting of banks is a problem throughout the entire water course. Erosion due to compaction by visitor use at dams and low water crossings is particularly notable and problematic.

Vegetation
The creek banks are generally lushly vegetated (Figure 6-1 and Figure 6-2), due to the proximity to water. Vegetation is dominated by water-loving woody and herbaceous vegetation such as horsetail, poison ivy, greenbrier and honeysuckle. Sycamore and ash are common stream-side trees.

Structures/Water Features/Small-scale features
Located along the entire water course are a series of waterfalls, which might, depending on one's perspective, be considered structures or water features. As noted in the history chapters, some of these falls are natural rock outcroppings and travertine formations while others are...
constructed, being either enhancements of existing falls or completely new, engineered features.

Just downstream from the arched stone footbridge near Buffalo Springs are three small stone dams spaced approximately ten feet apart. These seem to be related to the Buffalo Spring enclosure and are described in greater detail in a following section.

The two dams and swimming area at Little Niagara Falls are constructed features. As the centerpiece of that recreational landscape, these falls are described below with the rest of that landscape's features. Between Little Niagara and Sycamore Crossing, however, are a series of shallow, natural falls. These are also popular with bathers.

Near Cold Springs Campground there are four boulder dams, two each at Bear Falls (Figure 6-3) and Garfield Falls (Figure 6-4). These four dams and their two swimming holes are some of the most heavily used in the park and their surrounds show significant compaction and bank erosion.

The Panther Falls dam and swimming hole, located between Cold Springs and Central Campground, is the oldest in the park (Figure 6-5). This five-foot high, curved concrete wall is in good condition, though the adjacent picnic area is heavily used, with compacted bare soil instead of turf. The south bank of the swimming hole is very steep and swimmers often jump from a ledge into the pool below.

Adjacent to the east loop in Central Campground is the Central Campground dam (Figure 6-6). A shallow swimming hole is located above this dam. Though the approach down to this dam is heavily compacted, the area is less impacted from visitor use than are other swimming areas. A second falls is located downstream from the first; also used for swimming, this dam does not appear to have been constructed.

There are no additional constructed dams along Travertine Creek downstream from Central Campground. However, other significant bathing areas include falls along the creek between Travertine Bridge (Highway 177) and the beach below Black Sulphur Springs at the confluence of Travertine and Rock Creeks (Figure 6-7). This area receives silt and sand from normal and flood water conditions along rock creek and bathers have been observed here the past two summers. Bacterial counts are consistently higher here than at other monitored sites. The source of bacteria is unknown though it could likely originate somewhere along Rock Creek as it passes through the city of Sulphur.
There are no specific designated or designed areas for swimming along Rock Creek, although wading and swimming are permitted and often seen.

Perimeter Road

Though it accesses all elements within the district, the perimeter road is also a separate landscape. Though constructed in pieces, it was designed as a whole, linear landscape with its own character-defining features. The perimeter road is 6.32 miles long.

Use

The perimeter road is the primary vehicular access within the district, linking all individual elements and defining developed areas.

Spatial Organization

The perimeter road circumscribes the park, following and, in some areas even crossing, the park’s boundary. The only place it does not follow the boundary is in the Buffalo and Antelope Spring area, making these areas accessible only by foot. The road functions as something of a spine off of which component landscapes are accessed; these are located both within and outside the area circumscribed by the road. The northern half of the road more or less follows the east-west line of Travertine and Rock Creeks through the district. The southern half responds to the boundary line and topography.

Topography

The curvilinear alignment of the perimeter road corresponds directly to both overall and local topography. This is particularly evident in steep areas such as Bromide Hill, where the road follows the contours as it wraps around the hill and passes the Townsite Overlook. The road was originally designed to have a maximum grade of 8.25 percent; however some stretches, such as near Bromide Hill, are a bit steeper. The road’s maximum radius is approximately 2,450 feet and its minimum radius approximately 69 feet. In fitting the roadway to the landscape, road side slopes are graded back to smoothly blend with existing grades at a slope no less than 2:1. The roadway is generally sheet-drained, though curbing and swales have been installed along the east side of the road on Bromide Hill and along the approaches to the Rock Creek causeway to prevent side slope erosion and undermining. Curbing has also been installed for similar reasons at the north intersection with Highway 177 at Flower Park.

Vegetation

While there are no designed plantings per se associated with the perimeter road, areas of general vegetative character may be defined along its length. Between Highway 177 at north entrance and Rock Creek Causeway, the overall character is either park-like (open lawn with canopy trees, usually on the north side) or densely wooded creek bank (trees with dense overstory, usually on the south side). In the park areas, both individual trees and understory vegetation commonly come directly up to the edge of the shoulder, or within six to ten feet of the pavement edge, and often less in some areas, particularly where parking lots parallel the roadway (Figure 6-8).

Between Rock Creek Causeway and Sycamore Crossing, conditions are generally dense forest on either side of the road. Because of the hilly nature of the area, road edge
and forest is generally separated by a grassy drainage swale about six to ten feet wide. An enclosed canopy or “tunnel” of vegetation is located over the curving stretch of road between the Townsite Overlook and the Buffalo Pasture (Figure 6-9). Between Highway 177 and Sycamore Crossing, though trees do not consistently overhang the road, dense vegetation on the roadside blocks any views more than ten to thirty feet outside of the road corridor. A dark, shady enclosed stretch of road is located just before Sycamore Crossing.

The one-way section around Travertine Island is more varied than other areas, with a combination of open and enclosed vegetative qualities (Figure 6-10). Less vegetation along the roadside generally corresponds with views to developed areas. However, the parking areas at Little Niagara and north of Travertine Island are well-screened by vegetation. Vegetation between the latter parking lot and Sycamore Crossing is generally low understory and taller trees, though native grasses feature prominently on roadside slopes here.

Between Sycamore Crossing and Highway 177 at Flower Park, the vegetation is primarily forest-like, though with less dense understory than on the southern portion of the perimeter road. Though located close to the road, trees are well-limbed up and views to the creek and into the two campgrounds are provided between the top of the understory and the bottom of the canopy.

Circulation

The perimeter road is two-way, except for the loop around Travertine Island, which is one-way, beginning and ending at the Sycamore Falls Crossing. Triangular, curbed directional islands are located at either side of the crossing to clarify the transitions between one-way and two-way roads. The road’s surface is asphalt; the surface was milled and repaved in the summer of 2001, slightly raising its elevation above grade. Shoulders were regraded to meet the new elevation. The road is generally twenty feet wide, with shoulders generally three to five feet wide. In addition to formalized parking areas, parking along the perimeter road is provided in pull-off parking areas. These are nearly all asphalt-paved and are located as shown on Drawing 14. There are five varied-size pull-offs on the north side of the road and one on the south side at Walnut Grove. There are two pull-offs at Bromide, one on each side of 12th Street and one at the Townsite Overlook on the back of Bromide Hill. One pull-off is located on the north side of Travertine Island (in addition to the two picnic area lots). Five pull-offs are provided on the south side of the road at Cold Springs to access the falls; these include one larger lot to the east which is separated from the road by vegetation. Opposite this parking area, the shoulder was widened to allow vehicles turn around.

In general, grassy shoulders in this area are widened and compacted due to high traffic and occasional overflow parking. Two additional parking pull-offs are located along the road, one at Panther Falls and one overlooking Central Campground. Another widened shoulder was added opposite the Panther Falls parking to stabilize it for parallel parking.

Buildings and Structures

A series of perimeter road bridges and box culverts are the primary structures along the perimeter road.
The Black Sulphur Springs Causeway crosses Rock Creek just west of Flower Park (Figure 6-11). Floods since 1950 repeatedly damaged the causeway, and it was reconstructed and widened with a pedestrian walkway constructed on the deck’s north side. As a result of these changes, it is a non-contributing structure. Channel hydrology continues to impact the structure’s foundation, which shows signs of erosion and undermining.

West of the Bromide area is Rock Creek Causeway, located along the perimeter road (Figure 6-12). Some wear has occurred on the bridge, in particular, on the curbing. Its essential design and coursed stone piers remains the same, though periodic flooding has prompted minor reconstruction.

A small bridge crosses Travertine Creek in front of the Nature Center. A large concrete box culvert structure, this Nature Center Bridge has stone wing walls and head walls, a concrete deck and barrier stones on both sides. The stones used matches that used on the Nature Center parking area curbing.

Limestone Creek Bridge is located on the perimeter road just east of the turnout to the Travertine Island parking area. The bridge is constructed atop concrete T-beams and the bridge’s masonry abutments are characterized by narrow courses. The bridge is in good condition.

A one-way vehicular crossing occurs at Sycamore Falls, at the eastern edge of the component landscape (Figure 6-13). The crossing is a concrete dam topped by a flat concrete deck. A segmented stone curb lines the deck’s downstream side and a continuous concrete curb lines the upstream side.

The Panther Falls box culvert is located along the perimeter road and provides vehicular passage over Travertine Creek. This structure has been altered from its original condition and is a non-contributing feature.

Small-scale features
Perhaps the most ubiquitous feature in the park, perimeter road culverts are located along the full length of the roadway and carry drainage underneath the roadway. These culverts date to a variety of periods and most have stone masonry headwalls. The park’s list of classified structures has a comprehensive listing of road culverts.

Trail System
The Platt District’s trail system is extensive and provides different types of trail and walking experiences. Trails are primarily used for walking, although bicycles are permitted on all district trails except for those in the Environmental Study Area (the trails to and around Buffalo and Antelope Springs) and the Bromide Hill Trail. The trails are generally organized to access those areas of the district not accessed by vehicular roads, and vegetation and topography along each trail varies based on its location. In general, trails are surfaced with granite fines and are approximately 5 feet wide, though this varies considerably from trail to trail. Small features along the trails such as retaining walls, drainage curbs, culvert headwalls and bridge abutments are generally made of native stone.

The following text describes the longer trails that connect major features within the park. Trails which are contained within an individual landscape are, for the purposes of this report, considered as circulation under that
landscape's description. It is also worth noting that trail names have changed over the years, and the list below makes use of current nomenclature.

Bromide Hill Trail (Trail #1)
This trail runs from the base of Bromide Mountain south of Rock Creek up toward and then switching back to the Overlook at Bromide Hill. The trail is short—0.54 miles—but steep. It is the most engineered of all trails in the park, with stone elements such as the retaining walls at the bottom of the trail along the creek. A log and stone pier railing is located atop the lowest wall, and a large, arched bridge culvert is located on the slope, about midway up. Twelve retaining wall drains are located in the steep walls of the trail. The retaining walls are in surprisingly good condition given their age and steep location (Figure 6-15). Stone swales with drainage culverts are located along the cliff side of the trail; major work was undertaken on these in 1990 (Figure 6-14). This work is clearly new construction, lacking the finesse of earlier masonry, particularly in the mortar work. On its steepest slopes the trail is narrower than other places, averaging about 4 feet wide, particularly where there are stone swales. Surface washouts and gullies are noticeable on the steepest slopes as well. While some excellent views of Bromide Springs are afforded from this trail, in general vegetation has grown up and now blocks views from the trail into the surrounding landscape. While the vegetation near the bottom of the trail is dense and mesic, the vegetation at the top is short and bushy, adapting to the xeric qualities and poor shallow soils of the hilltop.

Rock Creek Trail (Trail #2).
This 1.1-mile trail branches off from the Bromide Hill Trail and follows the Creek to Pavilion Springs, and thence to the picnic area at the former Elk Paddock and on to Flower Park. This trail was sometimes known as the Pavilion Springs Trail or Cliffside Trail. The trail moves through forest whose sparse understory is dominated by herbaceous species such as Canadian wild rye. The trail's small scale features include three wood plank bridges on historic abutments that cross small gullies and intermittent streams. These bridges are made of treated lumber bolted to steel I-beams. The beams are usually located atop stone masonry abutments. The bridges do not have railings. A stone footbridge (also known as the Keystone Arch Bridge) is located along this trail just west of the Highway 177 Underpass. This bridge crosses the outflow stream from Hillside Springs. This small feature is in good condition, though the stream channel is filled with vegetation.

The trail continues east toward Pavilion Springs and turns north when it reaches Highway 177, where it joins Trail #3. It crosses the stream flowing from Pavilion Springs with a set of stepping stones to lead north toward the picnic area at the former Elk Paddock and to Flower Park. Alternatively, visitors can access Pavilion Springs via the Highway 177 Underpass.

Buffalo Pasture Trail (Trail #3)
This 1.1-mile trail branches off the Rock Creek Trail (#2) to head south and east around the Buffalo Pasture. The Buffalo Pasture fence is a constant visual feature along most of the trail. The trail initially traverses dry forest as it passes the Buffalo Pasture dam and pond. The terrain is rugged, with many small drainage ravines associated with culverts or crossed on 3 wood plank bridges located atop historic stone abutments. On the south and east sides of the pasture the trail moves diagonally across the prairie...
upland toward Highway 177, passing through terrain dominated by cedar, deciduous trees, and native prairie grasses.

The trail then heads north paralleling Highway 177, past the Bison viewing area to the Headquarters Building and Hillside Spring. Beyond Hillside Spring it meets Trail #2 and heads toward Flower Park.

Pavilion Springs Spur Trail (Trail #5)

This short, 0.5-mile trail leads from Pavilion Springs to meet Trail #4 along Travertine Creek. The trail begins off the northern edge of the Pavilion Springs parking area and heads east across a plank and pipe rail bridge and up a set of stone masonry steps with boulder cheek walls. The steps are in good condition, though the crushed granite surfacing between longer steps tends to wash out. The trail leads through oak woodland to meet Trail #4. An extension of Trail #5 to the southeast runs to meet the perimeter road. Without a specific destination, this trail is not particularly well-used.

Travertine Creek Trail (Trail #4)

The trail has also been known as the Antelope and Buffalo Springs Trail. At 2.13 miles, this is the longest trail within the district, running from Travertine Bridge near Flower Park to Buffalo Spring. The trail begins at a set of curving stone masonry steps at the southeast corner of the intersection of the perimeter road and Highway 177. The steps are in good condition, though the crushed and compacted granite surfacing between longer steps tends to wash out. The trail runs east, more or less following the course of Travertine Creek. There is one major pipe rail and plank bridge on a large historic stone abutment over a deep gully. Excellent views of the creek are provided, especially near Cold Springs where swimmers can be seen at Panther Falls, Lost Falls, and Garfield Falls. A stepping stone crossing connects the trail to the entrance at Cold Springs Campground. The stones of this crossing have moved over time, however, and it is not an easy set of stones to cross. A low masonry wall with three steps on the south side of the creek is preventing the trail from eroding into the creek, but the whole crossing area is suffering from severe erosion. Removals of large trees from the 2000-2001 ice storm damage also seem to have impacted the area, further destabilizing soil and increasing erosion.

The trail continues east to Sycamore Crossing, where it splits along two alignments as it heads to the Nature Center. One alignment runs to Little Niagara then on to the north side of the Nature Center parking area. The other alignment runs due east through low woods to the south bay of the parking area. The two alignments join at the Nature Center, where the trail crosses the creek and heads east to Antelope Springs and thence to Buffalo Springs. The interpretive loop trails #14 (Prairie Loop Trail), #15 (Tall Oaks Trail), and #16 (Dry Creek Trail) intersect with the Travertine Creek Trail in the Environmental Study area and Trail #9 is comprised of a short stretch leading back to Antelope Springs from Buffalo Springs. These are described in greater detail under Buffalo and Antelope Springs.

Veteran’s Trail (Trail #21)

Veteran’s Trail runs from Pavilion Springs past Employee Residence #2 to the Veteran’s Center. The trail is 1.20 miles long and leads past acres of cedar and prairie grass as it traverses the prairie uplands. The trail follows the realignment of the town sewer line and as a result, manholes are a common feature along the trail. Three benches are also located along the trail. The trail crosses the perimeter road and then emerges through a small gap in the boundary fence at the Veteran’s Center.

Bromide Springs and Bromide Hill

Bromide Springs and Bromide Hill are located in the western part of the Platt District along the park’s perimeter road between Rock Creek Campground and Walnut Grove. The area is bounded to the north by Lindsay Avenue. The perimeter road forms area’s western and southern boundary, while Rock Creek establishes the eastern boundary. The area is divided into a large level picnic area on the north side of Rock Creek and a steep hill, where the Bromide Hill overlook and parking area are located, on the south side of the creek. The whole area is approximately fifty nine acres, with Bromide Springs containing approximately twenty-eight acres and Bromide Hill, thirty-one acres.

Uses

Today, the area is primarily used for passive recreation such as walking, hiking, and picnicking. The traditional
use of the Bromide Springs Pavilion for collecting and drinking mineral water was lost with the loss of active wells. Today, the pavilion is sometimes used as a backdrop for music performances or, unauthorized, as a site for group picnics during rainy weather. Viewing the town of Sulphur is a popular activity on Bromide Hill, and this area is also sometimes used by local teens as an evening hangout. Local children sometimes wade in the circular pool of the 12th Street fountain.

Spatial Organization
The most significant designed aspect of spatial organization is the area’s axial relationship with the town of Sulphur. The 12th Street Fountain is located on axis with 12th Street, forming a grand entrance to the area and to the whole former park.

In general, the area is divided into two major spaces: Bromide Hill, defined by topography and the creek; and the level terrace on which the picnic area is located. The picnic area is further subdivided into zones by vehicular roads.

Topography
Drawing 15 shows the area’s topography, including the level floodplain terrace and the steep (almost vertical) escarpment of Bromide Hill rising almost 160 feet above Rock Creek. The elevations across the area range from 916 feet at Rock Creek near Bromide Pavilion to 1070 feet at the Bromide Hill overlook to 1073 feet at the summit of Bromide Hill (Figure 6-16). The design of the area appears to have generally taken advantage of natural topography rather than creating new topographical features.

Vegetation
The vegetation in the area correlates with topographic conditions. The steeply sloped areas along Rock Creek and Bromide Hill contain naturalized vegetation with both over and understory vegetation. These vegetative communities are described in greater detail in Chapter 10. The flat terrace at the base of the hill is today mostly mature shade trees in lawn, providing a more maintained or park-like setting, rather than a “natural” or forest-like setting. The designed nature of these plantings is most strongly expressed at the 12th Street fountain, where soapberry trees are located more or less symmetrically around the enclosing walls of the fountain plaza. Two perennial beds containing iris and day lily are also located near the Bromide Springs Pavilion.

In November 2001, Iowa State University (ISU) students conducted a rudimentary tree inventory of the shade trees in the level area of Bromide Springs. The area was divided into ten plots corresponding to areas on the 1936 survey of Bromide Springs (NP-PLA-5036), and groups of students counted and identified trees with diameters of more than eighteen inches standing in open lawn. All areas were counted twice, and numbers for each plot averaged and then compared to counts for the same plot as indicated on the 1936 survey. Although the methodology was crude, the inventory gives an idea of trends occurring in the campground, as seen in Table 6-1. The tree counts revealed that today there are approximately 742 major shade trees in the area, in

<table>
<thead>
<tr>
<th>Species</th>
<th>Number 1936</th>
<th>Percent 1936</th>
<th>Number 2001</th>
<th>Percent 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>oak</td>
<td>516</td>
<td>67%</td>
<td>209</td>
<td>28%</td>
</tr>
<tr>
<td>elm</td>
<td>93</td>
<td>12%</td>
<td>182</td>
<td>25%</td>
</tr>
<tr>
<td>hackberry (hk)</td>
<td>32</td>
<td>4%</td>
<td>178</td>
<td>24%</td>
</tr>
<tr>
<td>catalpa</td>
<td>1</td>
<td>0%</td>
<td>38</td>
<td>5%</td>
</tr>
<tr>
<td>cedar</td>
<td>34</td>
<td>4%</td>
<td>37</td>
<td>5%</td>
</tr>
<tr>
<td>ash (a)</td>
<td>16</td>
<td>2%</td>
<td>22</td>
<td>3%</td>
</tr>
<tr>
<td>chinaberry/ soapberry</td>
<td>18</td>
<td>18%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>osage orange</td>
<td>7</td>
<td>1%</td>
<td>12</td>
<td>2%</td>
</tr>
<tr>
<td>chittamwood</td>
<td>10</td>
<td>1%</td>
<td>8</td>
<td>1%</td>
</tr>
<tr>
<td>bitternut hickory</td>
<td>0</td>
<td>0%</td>
<td>8</td>
<td>1%</td>
</tr>
<tr>
<td>walnut</td>
<td>17</td>
<td>2%</td>
<td>7</td>
<td>1%</td>
</tr>
<tr>
<td>sycamore</td>
<td>1</td>
<td>0%</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>mulberry</td>
<td>1</td>
<td>0%</td>
<td>4</td>
<td>1%</td>
</tr>
<tr>
<td>plum</td>
<td>1</td>
<td>0%</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>pecan</td>
<td>1</td>
<td>0%</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>cottonwood</td>
<td>1</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>boxelder</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>redbud</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>black locust</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>unknown</td>
<td>1</td>
<td>0%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>bj</td>
<td>27</td>
<td>4%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>ck</td>
<td>1</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>pa</td>
<td>7</td>
<td>1%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Persimmon (p)</td>
<td>4</td>
<td>1%</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 6-1. Tree counts in the Bromide area, from the 1936 survey and 2001 field work.
comparison to 768 located on the survey in 1936. This indicates only a slight decline in numbers over the years. More interesting, in contrast, is the information gleaned about the composition of tree species in the area. Tree composition has been drastically altered. Today the overall composition of the three major species is approximately 28% oak, 25% elm, and 24% hackberry. In 1936 these percentages were approximately 67% oak, 12% elm, and 4% hackberry. Thus, there has been a shift over time away from mature oak toward colonization species. This is not surprising, if one considers that the area was originally more savanna-like, with grass and oak species predominating. Today, however, with fire suppression combined with aging of mature oak, colonization species such as hackberry are better able to seed themselves and thrive.

The loss of oak will likely continue if replacement of oak species does not occur. Many of the mature trees—many of which are oaks—within the picnic area are showing signs of age and stress from the 2000 ice storm. Though major tree work was undertaken in the months following the storm, some trees are in poor condition and need additional pruning and structural work.

Circulation

The vehicular circulation system in Bromide Springs is composed of two asphalt loop roads accessed from the district’s perimeter road. Twelfth Street, terminating at the fountain, is another, more formal access to the area. The west loop provides access to the trailer dumping station, Bromide Ranger Station, and Bromide Springs Pavilion (Figure 6-17). The southern part of the loop widens to provide parking near the pavilion. The wider eastern loop circumscribes most of the area between the perimeter road and the creek and has a second roadway that accesses the Travertine Ranger Station and the comfort station. Parking is provided along the loop road and at two small lots in front of the two buildings. Roadways and park areas are separated by large boulders, as shown in

![Figure 6-17. Typical vehicular circulation at Bromide Springs.](image)

![Figure 6-18. Bromide Hill Parking Area, 2004. Note historic stone walls.](image)
Chapter 6: Existing Conditions

Drawing 15. Vehicular access to Bromide Hill is provided by the perimeter road and a small oval parking area at the top of the hill (Figure 6-18).

Pedestrian circulation in the picnic area is an informal network of gravel paths connecting major features. The more “engineered” Bromide Hill Trail (Trail #1) links the pavilion with the Bromide Hill overlook. A short network of gravel trails also leads up steps from the Bromide Hill parking area to the overlook; this route is not ADA accessible. Pedestrian links are provided from this area to both Rock Creek and Buffalo Pasture Trails (#2 and #3). A more informal trail leads from the top of Bromide Hill to Rock Creek Campground; and a short maintained trail provides access from the Rock Creek Causeway near Rock Creek Campground to the pedestrian low water crossing at the base of Bromide Hill.

Buildings and Structures

The buildings at Bromide Springs represent several architectural styles from different National Park Service eras. There are five extant historic buildings in the area.

The Bromide Springs comfort station, located south of the 12th Street fountain, is in relatively good condition but its roof has been altered. Alterations include the conversion of the roof line to a simple gable (Figure 6-19).

Bromide Springs Pavilion (1938), located along the banks of Rock Creek, is in relatively good condition, though missing some features (Figure 6-20). These include its mineral springs, wells and its original semi-circular wood bench. However, at least six stone piers for the bench are extant along the lower wall of the Pavilion Terrace and in the woods adjacent to the Pavilion. Trees located in the terrace show signs of stress and their loss appears likely in the future. The west wall terrace has a small gap, possibly
where a tree once stood, though no photos of this wall from the period of significance have been located. A new wood shake roof, duplicating the original, was added to the building in 1998.

Located in the eastern portion of the picnic area, the Travertine Ranger Station (presently used as Resource Management Office) is a wood frame building with a concrete foundation and a small porch on its south side (Figure 6-21). Lead abatement was underway on building in the summer of 2002. Today it is painted NPS brown and is used as ranger offices.

The Bromide Ranger Station, located west of the pavilion, is of wood frame construction with a limestone-faced foundation (Figure 6-22). It has been altered and its current windows are non-historic.

The Bromide Ranger Station Garage is a simple building in fair condition located behind the ranger station. It is in need of lead abatement. The Bromide Ranger Station Carport, a non-historic structure, consists of a wood shingled roof supported by wood posts and is in good condition. It is similar to the other carports at park residences. A winch is currently installed in this structure.

Water Features

Two designed water features are important elements in the area.

The large, circular 12th Street fountain (Figure 6-23) is constructed of limestone masonry, and has seen some changes over the years. The plaza's flagstone paving today has mortar joints; weeds growing in joints are killed with herbicide. A concrete coping sometime replaced flagstone coping around half of the pool. The pool’s shower head-like central jet is currently supplied by a city water line and does not have the same volume, pressure, and form created by the original artesian supply from the Jack Diamond well. Drinking fountains located at the ends of the fountain’s encircling walls are also no longer extant. Though its condition is generally good, the fountain could benefit from increased maintenance, including more regular sweeping, pool cleaning, and masonry repair.

The rectangular Bromide Pavilion Lily Pond (Figure 6-24), in fair condition, has recently been filled with sand to reduce its depth to about two feet. A concrete curb has also been added around the lily pond itself. A reconstructed fountain, a central jet spurting from the center of the pool is fed by city water on a line connected to the 12th Street fountain. A leak in the pool drains it at the approximate rate of water flowing into the pool, keeping the water level constant. The pool is filled with water lilies, planted in pots.

Small-scale Features

Numerous small-scale features contribute to the character of Bromide Springs and Bromide Hill.

The two sets of large and small Bromide Entry Piers, constructed of limestone, are located at the intersection of Lindsay Ave and 12th Street. Their condition appears to be good, though original lettering on the large piers is gone. A new standard NPS entry sign, a brown reflective “highway” sign mounted on a new limestone masonry base now identifies the district.
The stone curbs and flagstone walk along 12th Street are also extant and serve to define and enhance the stylistic unity of the entry as it leads to the 12th Street Fountain. Culverts to facilitate roadway drainage are associated with these features and are located at the intersection of 12th Street with the perimeter road. The condition of all these features is generally good, though curbing is fracturing in some locations.

Other small scale features in the level picnic area include a fiberglass embedded graphic interpretive sign and small sign (Figure 6-25), both located just west of the pavilion. Spigots, upright grills, and metal tube and wood plank picnic tables dot the entire area. A wooden guardrail constructed of square posts with plank rails is located between the Travertine Ranger Station and its associated parking area. Boulder guardrail lines most of the roads and parking areas, as seen on the existing conditions plan. Garbage containers in the area are all rectangular, animal-proof receptacles. The condition of all these small elements is good.

The Bromide Hill Trail (#1) is connected to the Bromide Springs area by the Bromide Pedestrian Causeway (Figure 6-26) located at the base of Bromide Hill. This three-foot-wide crossing is concrete and is accessed via a set of stone masonry steps leading from the parking area near the RV dumping station. The steps are non-historic. Though the causeway appears to be in good condition, erosion is beginning to undermine the stone steps and carve a diagonal channel down the adjacent bank.

Two spring enclosures, each approximately three feet square, flush with grade, and capped with metal lids, are located along the Bromide Hill Trail. One of the spring enclosures is elevated on a slope above the trail, and may be the former Iron Spring. Located nearby the springs, and more prominent in the landscape, is a concrete block pump house, constructed to replace earlier pumping facilities. All these features are remnants of the pipe systems that supplied mineral waters to the pavilion. Another underground pump house once used to supply water to Bromide Springs Pavilion, is located in the grassy verge between the dumping station parking area and Rock Creek. The RV dumping station is located in the western loop of Bromide Springs, just southwest of the Bromide Ranger Station. This feature is non-contributing.

Also located along the creek-side portion of Bromide Hill Trail is an interpretive sign describing the area’s “Ancient Rivers and Mountains.” The sign is a replacement of a typical historic interpretive sign and is missing its log anchoring ends. The wooden panel is roughly 46 inches by 76 inches and its text is incised white letters.

Further up Rock Creek is the Arbuckle Job Corps bridge, an arched white limestone masonry structure with concrete ramps and wing walls. Located in the eastern part of the picnic area, the bridge links the Bromide picnic area with Rock Creek Trail (#2) on its way to Pavilion Spring. The bridge is a non-contributing feature in good condition.

Wrapping around the Bromide Hill, the perimeter road leads to the Bromide Hill Parking area. A small culvert with a stone headwall is located in the island between the parking area and its entry drive. The Bromide Hill steps and retaining wall line and define the northern edge of the parking area and defines the upper edge of the parking area. Near the conglomerate boulder wall’s center, a set of limestone masonry steps with boulder cheek
walls leads visitors to end portion of Bromide Hill Trail. A second set of steps leading to Bromide Hill Trail are located just to the east. Constructed in the 1980s, these additional steps are a non-contributing feature of the component landscape. Other small scale features in the area include a somewhat dilapidated railing and concrete steps at the overlook’s edge.

Views and Vistas

The view from the Bromide Hill Overlook is probably the most important viewshed in the park, providing a wide vista over the park and the town of Sulphur into the distance.

DRAWING 16: WALNUT GROVE

Walnut Grove

Walnut Grove is located in the western half of the Platt District, just west of Black Sulphur Springs. It is an open, grassy, partially shaded picnic area of about twenty-five acres, bounded on the north and west by a wooded hillside that leads up to residential Sulphur. On the south side, the area is bounded by the perimeter road and Rock Creek.

Uses

The shady areas of Walnut Grove are mostly used for picnicking (Figure 6-27); recreational activities such as volleyball, softball, frisbee, and horseshoes often occur in the larger open areas. The area is used by small and large groups.

Spatial Organization

Walnut Grove is essentially a linear open space, defined by topography and the park’s fence line. Elements within the area do not have strong designed, formal relationships; rather, functional elements such as parking areas and the comfort station are organized parallel to the perimeter road, with the parking areas serving as something of a threshold along the length of the space.

Topography

Walnut Grove is a moderately flat floodplain terrace located just above Rock Creek. Elevation change across the whole site is approximately 60 feet, from 930 feet of elevation at the creek to 991 feet at the top of the hill at the boundary between park and town. Slopes bounding the open area to the north and slopes between Rock Creek and the perimeter road are quite steep. The maximum slope on the hill to the north is about 30%. Vegetative cover is good, so slope erosion is not a problem, except in small zones along the creek where visitors access the stream for swimming.

Vegetation

A strong forest edge to the north helps spatially define Walnut Grove. In the balance of the area, the character of the vegetation is primarily mature trees scattered over open, mown lawn. As shown in Drawing 16, the trees provide an enclosing canopy over much of the area, balanced with smaller zones open to the sun and sky. Trees, often located in islands of understory vegetation, are also located close along the perimeter road and lining the parking areas. Three trees are located in grass islands within the asphalt parking areas lining the road. Dominant tree species in the lawns include hackberry, black walnut, Osage orange and oak. Turf species
include native grasses such as buffalo grass, gramas, and little bluestem in sunny areas, though Bermuda grass dominates. Shady areas under trees along the perimeter road and near the comfort station also contain Canadian wild rye, known for its shade tolerance.

The contorted Osage orange known as the “Monkey Tree,” with its low-hanging branches (Figure 6-28), continues to be a popular climbing spot for children. The tree is something of a local landmark for Sulphur children and residents.

Circulation

Formal circulation within Walnut Grove is confined to a recently constructed concrete sidewalk (Figure 6-29) leading from the comfort station to adjacent parking areas along the perimeter road. Visitors otherwise freely move across the lawns from parking areas. There are six narrow asphalt parking lots on the northern side of the perimeter road and one on its south. These parking areas are defined by barrier stones. Vehicular congestion in these lots can be a problem on busy weekends. As indicated in Drawing 16, the old CCC camp road remains as a graded trace in the northeastern portion of the picnic area.

Structures

The only structure on the site is a modern comfort station, built in 1966. However, east of the Monkey Tree, the foundation patterns (grading) of the CCC-era coal-house and tennis courts can be seen.

Small-scale Features

Extant historic small-scale features at Walnut Grove are four stone fireplaces located near the area’s western edge (Figure 6-30). Believed to date from the CCC camp, the fireplaces are similar to those originally designed for Cold Springs Campground and remaining in the environmental study area surrounding Buffalo and Antelope Springs. Other small-scale features within the area include the boulder guardrail, spigots, standard metal tube and plank picnic tables, rectangular raccoon-proof garbage cans mounted on concrete slabs, and upright grills. A fiberglass embedded graphic interpretive sign is also located in the middle of the area, near the roadside.

Black Sulphur Springs

Black Sulphur Springs is located in the central portion of the Platt District, just west of the confluence of Travertine and Rock Creeks. A shaded picnic area of about 8 acres, the area is bounded by the perimeter road to the south, the two creeks to the east and north, and the park boundary at Tishomingo Avenue to the west.

Uses

The shady western portion of Black Sulphur Spring is used for picnicking (Figure 6-31), while the eastern portion, near the pavilion and creeks is used as a wading and swimming area. In recent years, with the silting in of Rock Creek, visitor bathing in this area has declined due to shallow water and bacterial contamination. A hydrant fed by a pressure tank pump allows visitors to collect Black Sulphur Springs water for drinking.
Spatial Organization.
Black Sulphur Springs is basically organized into two spaces - the picnic area to the west and the spring area and beach to the east. Another, smaller picnic area is located south of the perimeter road. The asphalted entry and parking area, defined by curbs, is a transitional space dividing the two larger spaces.

Topography
The topography throughout the picnic and parking areas to the west is essentially level. To the east, the Black Sulphur Spring Pavilion is situated atop a slight hill or rise which then slopes at about 6% gently down to Rock Creek.

Vegetation
Little extant formally designed vegetation seems to be retained throughout the area. A character-defining aspect of the vegetation is the high percentage of canopy over most of the western picnic area. A shrubby redbud may be a remnant of a more extensive island planting, though this is not documented. A cluster of trees around the Black Sulphur Springs Pavilion may also be considered character-defining. These trees, which provide cooling, dappled shade around the pavilion, are seen in historic photographs; the large Osage orange behind the pavilion is clearly seen in many. However, some of the trees in close proximity to the pavilion are large enough to potentially damage the structure. Two clusters of cedars located near the pavilion appear to date from the 1930s, based on age and size.

Circulation
Vehicular circulation features in the area include two parking areas. The first is the formal asphalt parking area with stone curbs that accesses the pavilion (Figure 6-33). The second is located west of the first and primarily provides access to the comfort station. Vehicles access the picnic area on a gravel loop road that leads off the pavilion parking lot.

Formalized pedestrian circulation includes the flagstone walk that lines the east side of the pavilion parking lot and connects to the pavilion and the sidewalk along the north edge of Black Sulphur Causeway. The flagstone walk and curbing is in relatively good condition. A new concrete walk leads from the parking area west of the comfort station. An old road trace north of the comfort station is used today as a trail and leads from Tishomingo Avenue outside the park through a gap in the park fence to the picnic area.

Structures
Black Sulphur Spring Pavilion (Figure 6-32) is the only historic structure in the area. The pavilion is in fair condition, as the building’s stucco finish likely needs protection and lead abatement. The structure’s metal tile roof has also deteriorated. The pavilion’s central fountain has been filled with concrete and its water supply turned off.

Near the picnic area to the west is a modern comfort station. Built in 1966, it is in good condition and is considered a non-contributing structure.
Small-scale Features
A few small scale features are found in the area, and most are recent features. These include water spigots, standard park picnic tables, and grills. A fiberglass-embedded interpretive sign and two wooden signs identifying the spring are located near the pavilion. A hydrant allows visitors to collect water from Black Sulphur Spring. Boulder guardrail lines the comfort station parking lot and most of the north side of the perimeter road running past the area. A concrete block pump house is located north of the pavilion, near the woodland edge. The pump house houses the casing over the spring, the pump, a chlorininator and the pressure tank.

Flower Park
Flower Park (Figure 6-34) is a central element of the Platt District, located on the edge of downtown Sulphur. The park is bounded by Broadway Avenue on the north, by Highway 177 on the east, by Travertine Creek on the south and by Rock Creek on the west. It is a rolling park landscape, higher and more densely vegetated to the north and lower and covered with scattered trees to the south. The park comprises about twenty acres.

Uses
The area today is primarily used for traditional passive park recreation, including walking, wading and picnicking. There is a regular cadre of year round walkers who use the park on a daily basis, often in the mornings or at lunchtime. In the warm months, waders and bathers use the Vendome stream and bathing pools, and some visitors still apply mud from the stream and pools to their skin. Other regular visitors simply park in the parking lot in order to collect jugs of sulphur water at the nearby Vendome well.

On weekends or special occasions the park is a site for community festivals or performances. Between 1996 and 2001 a candlelight parade occurred in the park in December. With its close proximity to Sulphur’s downtown, Flower Park maintains high community visibility and is something of a gateway to the balance of the Platt District, especially for local visitors. This function should become even more important when the new Visitor Center, located west of the Vendome well is completed.

Spatial Organization
Topography divides Flower Park into two primary spaces: the upper hillside along the town boundary to the north and a lower, level terrace above the two creeks. The upper hillside is densely vegetated with a few narrow walking paths, while the lower terrace is an open, gently undulating lawn with scattered tree canopy providing both shade and sun.

Topography
The topography of the Flower Park might be generally characterized as rolling. Steeper slopes (up to 3:1) are located on both the hillside to the north and along the banks of both creeks. The steepest “bank” along Rock Creek is actually the stone revetment wall constructed by the CCC in the 1930s. Now completely naturalized with vegetation, it is difficult to distinguish as built construction.

Overall, almost 70 feet of elevation change separates Rock Creek from the hilltop along Broadway Avenue.
Elevations climb from approximately 928 feet at Rock Creek at Black Sulphur Spring to about 950 feet at the Vendome stream, and to 992 feet at the top of the hillside near Broadway.

Designed vegetation

Most of Flower Park is covered with shade trees in open lawn (Figure 6-35). Tree canopy is dense enough to provide a pattern of almost half sun and shade over lawn, paths, and water features throughout the day. Trees in this area include black walnut, hackberry, oak species, sycamore and elm species. Many of these trees are quite old, and some of the largest may be correlated with individual trees appearing on the 1936 survey (NP-PLA-5033) of the area.

In November of 2002, ISU students counted the number and species of trees in Flower Park. The area was divided into plots, and groups of students counted and identified trees with diameters of more than eighteen inches standing in open lawn. All areas were counted twice, and numbers for each plot averaged and then compared to counts for the same plot as indicated on the 1936 survey. Data for Flower Park is shown in Table 6-2. While the overall number of shade trees in the measured areas has decreased only by about 10%, species composition has changed quite significantly. In 1936, more than half of the shade trees were oak species; today, only 25% of the trees are oak. Hackberry seem to have replaced most of the oak, since in 1936 hackberry made up only 5% of the trees while today they make up 37%.

In general, tree condition is good, but some structural pruning is required on numerous trees in the area. Beaver have recently begun chewing the bark on the hackberry in the park, and these trees, many already wounded, are currently protected with metal screening.

The northern hillside behind the comfort station is much more densely vegetated, and is dominated by red cedar.
and some Ashe juniper. A few sunny patches on the slopes in this area also contain native grasses, including little bluestem. The banks along the creeks are also densely vegetated, but with deciduous trees and shrubs including young oaks, poison ivy, rough leaf dogwood, greenbrier, etcetera.

Other character-defining vegetation includes trees located in the islands of the Vendome parking lot. One large oak dating to the historic period also currently exists in the corner of the southernmost parking bay.

Circulation

The most important circulation system in Flower Park is the network of compacted gravel paths (Figure 6-36) that cover the entire site and shown on Drawing 17. The path system is accessed at the Vendome parking lot, Lincoln Bridge, and the main entrance at Broadway and Highway 177. Much of this network exists along the original alignments depicted in the 1936 survey of the area. However, some sections have widened and/or shifted over the years, apparently a result of accommodating drainage pattern changes. This is noticeable, for example, at the base of the hill in the northeastern part of the park. In some areas concrete pads have been constructed over areas subject to path erosion during large storm events. In most areas, paths blend seamlessly into turf. However, in a few areas, original stone curb edging, spaced four feet apart, may be seen within an existing path cross section. While it is presumed much of this curbing has been lost, a good deal may remain *in situ*, having been buried over time. Two sets of stone steps traverse the hill behind the comfort station. These steps are in fair condition, their treads deteriorating due to erosion of their gravel surfaces. The steps both lead to a pathway which terminates at the Vendome parking lot, and stone edging is very apparent along this path segment. Only one original pathway in the whole park has been lost, replaced by a new pathway along the northern edge of the upper wading pool.
Vehicular circulation in Flower Park is limited to the Vendome parking lot (Figure 6-37), which accommodates about 100 cars, which is more than adequate for regular visitors. However, the lot will be slightly redesigned as part of the new Visitor Center project and may provide less parking area. The parking lot is currently accessed from a boulder-lined entry off Broadway Avenue. The lot’s asphalt surfacing is deteriorated and its stone curbing is failing in a few, though not many, locations.

Another small parking area is located south of Lincoln Bridge, just off the perimeter road. This parking area accommodates about six vehicles oriented nose-in and is lined with boulders.

Structures

Three historic structures are extant in Flower Park. The Flower Park comfort station (Figure 6-38) is located at the base of the southwest slope of the hillside in Flower Park. The building is in relatively good condition though the original hip-on-gable roofline has been altered to a simple gable. The Gothic-Revival style Lincoln Bridge (Figure 6-39) is still an elegant entry feature to Flower Park and is in good condition despite its age. The bridge retains four flagpoles installed in 1976, replacing those removed in the 1930s. The Main Entrance, in contrast, has seen more change. The gateway's original, semicircular stone walls and two large piers were damaged and removed in the 1970s. Today only a pair of low piers and walls flank both sides of Highway 177.

Further down Highway 177 is the Travertine Bridge, a major piece of park engineering. Regularly reviewed by state highway engineers, the bridge is in good condition, although some efflorescence is visible underneath the bridge.

Water Feature

The central feature of Flower Park is the Vendome stream, dams and wading pools. Created by the Vendome Well, the stream travels under the Vendome parking lot and emerges just east of the parking area to flow through Flower Park to cascade into Travertine Creek. Today the stream is in fair condition. Stream and pool edges are somewhat eroded due to foot traffic, water action, and the use of weed whackers along the banks. Some of the six dams along the stream are slowly being undermined. Algae bloom is something of an unattractive nuisance in the upper wading pool (Figure 6-40). Both pools are smaller than originally constructed, having been filled in (Figure 6-41).
siphons. A reunion post is located along Highway 177 on the south side of Travertine Creek. Signage includes a fiberglass embedded graphic interpretive sign on the north side of Lincoln Bridge and a brown NPS “highway” entry sign on a masonry base near the main entrance pier on the east side of Highway 177.

Views and Vistas
The view of the Flower Park comfort station over the lower wading pool from Lincoln Bridge is an important designed viewshed within the park. Significant aspects of the view are the framing trees and vegetation, the view of the falls in the middle ground, and the reflection of the structure in the calm waters of the pool in the foreground.

BUFFALO PASTURE

This drawing depicts three major areas: the Buffalo Pasture, the Superintendent's Residence, and a large open natural area. The Buffalo Pasture and Superintendent's Residence are located on the west side of Highway 177, while the natural open area lies mainly to the east of the highway.

Buffalo Pasture
The Buffalo Pasture is irregular in shape and covers approximately 80 acres (Figure 6-42). It is bounded by the park Headquarters, Pavilion Springs and Maintenance area to the north, the floodplain terrace of Rock Creek to the west and the Superintendent's house to the south. Although bison were nearly extinct by the mid-1800s, bison have been displayed continuously by the park since the 1920s. The herd has been located in this pasture since 1934.

Use
The area is a pasture for bison, which are a viewing attraction for visitors. Two trails encircle the pasture's perimeter.

Spatial Organization
The space is an open pasture delineated by a fence line. In the 1930s, the area's size and shape were primarily determined by adjacent uses, particularly the locations of the maintenance area to the north and Bromide-Sulphur Lane (now the alignment of the Buffalo Pasture Trail (#3)) to the south. The pond is located in the western end of the pasture and a viewing area is located on the eastern edge along the highway.

Topography
The pasture is rolling terrain, with slopes generally facing northwest and ravines draining toward Rock Creek.

Vegetation
The Buffalo Pasture is composed of naturalized vegetation, including woody deciduous and evergreen species as well as native prairie grasses. Red cedar is a dominant species in the area, particularly along the southern edge of the pasture. Much of the red cedar was planted in the 1930s and has matured and expanded
its range since then. Dense vegetation around the pasture’s perimeter provides a strong sense of enclosure and exclusion from the pasture. Vegetation conditions, including species composition and character, are described in greater detail in Chapter 10.

Circulation

There is minimal circulation within the Buffalo Pasture, though access trails for bison care and management are evident on the plan. Major access into the pasture is provided from the maintenance area. The Buffalo Pasture Trail (#3) follows over half of the pasture’s perimeter fence line to the south and west. Visitor access is provided in a parking area for viewing the buffalo (Figure 6-43). This parking area is located off Highway 177, just south of the curve in the road.

Buildings and Structures

The only structure in the pasture is the buffalo pond dam which creates a pond of approximately 0.58 acres, depending on precipitation. The earthen structure is 200 feet in length, heavily vegetated and has a stone and concrete spillway. It is in fair condition.

Small-scale Features

The Buffalo Pasture Fence was originally built in 1934, but was replaced with a seven-foot high fence, according to the 1940 Development Plan. This is apparently the fence that exists today, except for a few segments, such as along the west side of the pasture which has been replaced with new woven and barbed wire. The Bison Management Plan gives the length of the fence as 8,623 feet (1.63 miles). The fence was originally painted brown, and later silver and brown again. The posts are generally structurally sound, since they are filled with concrete. However, some are rusted through and others are pitted and peeling. Some posts will need to be replaced in the future.

Superintendent’s Residence

The Superintendent’s residence is located just west of and adjacent to Highway 177, in a small open area of about three acres on one of the highest points in the park, at an elevation of 1050 feet.

Use

The area has been used for park staff housing since 1933. The house is currently unoccupied.

Spatial Organization

The area is organized as a typical residential cluster with the house oriented parallel to the highway and the garage oriented perpendicular to the house, creating a rectangular yard. Trees and shrubs define this yard which is located in a small clearing surrounded by dense woody vegetation.

Topography

The residence is located on a high and relatively level hilltop. A drainage swale runs along Highway 177.

Vegetation

The Superintendent’s residence is an open residential lawn surrounded by dense woody vegetation which has grown up since 1940. A row of dense cedar, about 400 feet long, screens the open area from the highway. Four evergreens line the driveway, a mature cedar hedge defines
the edge of the yard to the south, and mature trees and foundation plantings dot the rectangular yard behind the house and garage. A bed of iris is also located south of the house (Figure 6-45).

Circulation
The residence is accessed by an asphalt driveway about 200 feet long (Figure 6-44). Some of the original stone edging is still extant along this drive. A flagstone sidewalk runs from the drive to the front door, and concrete stepping-stones on the west and south sides of the garage run to the house’s back door. An informal trail runs between the Buffalo Pasture and the Superintendent’s residence. This trail is not visible on the 1940 aerial, and therefore is probably not historic.

Buildings and Structures
The Superintendent’s Residence has undergone some modifications since its construction in 1933. It is a wood frame building with an exterior red brick chimney in a decorative brick course pattern. The exterior is a cream stucco finish, as repainted in 2001 based on paint analysis. The building has multiple gable roof ends of horizontal ship lap siding, painted brown. Fascia, soffits, and rafter tails were recently painted white, again based on an examination of old paint and historic photographs. The concrete windowsills are also painted white. Today the building has approximately 1,700 square feet of floor space. Despite changes the extant building is considered a contributing structure.

The garage is west of the house and is a rectangular wood frame building. It has a red brick chimney with a decorative course pattern and is cream-colored stucco with painted concrete windowsills. The building’s gable ends have horizontal, ship lap siding, painted NPS brown. The roof has wood shingles and exposed rafter ends. The building is extant and contributing.

Small-scale Features
Numerous features are located in the landscape. A rectangular flagstone patio is located on the southeast corner of the building. A flagstone paved area between the garage and house is enclosed by a chain link fence. A concrete picnic table is located in the back yard. A martin house and a basketball hoop are located on tall poles along the front drive. A mailbox is located on the drive near the highway.

Views
Due to vegetation growth, there are no significant views from the Superintendent’s Residence into the district.

Prairie Uplands
The Superintendent’s Residence is embedded in the Prairie Uplands. The Uplands cover about 300 acres in the south central portion of the District. Though the Buffalo Pasture might, in terms of topography and vegetation, be considered part of the uplands, for functional reasons, the two areas are separated here. Thus, the prairie uplands are bounded by the Buffalo Pasture, Residence #2, and Travertine Creek to the north and east, by the park boundary to the south, and Bromide Hill to the west. With few structures or use areas, it is predominantly a naturalized landscape crisscrossed by trails and bisected by Highway 177 (Figure 6-46). The area east of 177 in particular has been released as a naturalized area since the removal of the nine-hole golf course in 1937.

Use
There is no specific use of the prairie upland area; it is generally considered part of the park’s “natural environment.”

Topography
Topographic contours shown on Drawing 18 reveal the area to be moderately rolling terrain with generally north-facing slopes. Ravines also generally drain north, to Travertine Creek east of Highway 177 and to Rock Creek west of the highway. Elevations vary from 970 feet near Cold Springs at Travertine Creek to the peak of Mount
Airy at an elevation of 1047 feet. The park’s perimeter road swings around the lower elevations of Mount Airy, which is the second highest point in the eastern section of the Platt District. The hillside knoll where the Superintendent’s residence is located is slightly higher, at elevation 1050 feet.

Vegetation
The Prairie Uplands are a mixture of open mixed grasslands, a xeric oak savanna community, and naturalized red cedar plantings. Details of the species composition and condition are provided in Chapter 10. In general, fire suppression within the District has encouraged dense growth of both evergreen and deciduous woody vegetation. As a result, the landscape is visually opaque with an enclosed feeling.

On the edge of the upland area, along Travertine Creek’s south bank, a few large white pine are remnant trees from and indicate the location of the CCC nursery.

Circulation
The major road in the Uplands is Highway 177 (Buckhorn Road), which bisects the area on a northwest-southeast line. Highway 177 is a busy route with a posted speed limit ranging from twenty-five miles per hour (in the north end of the district) to thirty-five miles per hour (at the south end of the district). The road accesses downtown Sulphur and links Tecumseh and Ardmore to the north and south. The road forms something of a barrier between the two parts of the prairie upland. There is one access road off Buckhorn Road, which leads to the Superintendent’s residence, about midway between Headquarters and the park’s south entry. In 2001, portions of Highway 177 were reconstructed and resurfaced with new asphalt. Although the alignment stayed basically the same, the process raised the pavement level slightly in a few areas requiring some shoulder regrading. The other major road through the area is the perimeter road, which follows the topography as it traverses the southernmost edge of the district in a circuitous route. This was described earlier in the chapter. A pull-off parking area is located at the Townsite Overlook, where visitors can view the Buffalo Pasture from above.

Buildings and Structures
There are no major structures within the Prairie Uplands.

Small-scale Features
A pair of large pier structures are located just within the park boundary flanking both sides of Highway 177. Set back approximately twelve feet from the road edge, the piers are constructed of native limestone and have a massive base that steps up to eight feet at their tallest point. The south side of the pier on the east side of the highway currently has a brown NPS highway sign identifying CNRA.

There are few other historic features located within the Prairie Uplands. Culverts and bridges associated with trail construction are described above under Trails. Approximately three wood and metal benches and a number of sewer line manholes are located along the length of Veteran’s Trail.

Views and Vistas
The Bison Overlook, looking into the Buffalo Pasture is an important viewpoint in the district. The Townsite Overlook is an important vista overlooking the Buffalo Pasture and the rolling landscape of the Platt District extending to the northeast. Other viewing “windows” along the Perimeter Road offer park visitors glimpses of the rolling hills and geologic features of the Upland Prairie. However, cedar trees that have grown up along the edges of both the perimeter road, Highway 177, and along trails now block views through and to the landscape. This condition has been enhanced by fire suppression in the park. Particularly striking is the fact that open views to the east across the former golf course and to the west across the Buffalo Pasture are practically non-existent today, because of woody vegetation, both deciduous and evergreen that has covered large open areas and draws.
PAVILION SPRINGS, HILLSIDE SPRINGS, HEADQUARTERS, AND MAINTENANCE (DRAWING 19)

Pavilion Springs

Pavilion Springs, also located in the central portion of the Platt District, is oriented over the spring formerly known as Big Tom. The area is a low glen bounded by its entry road to the south, Highway 177 to the west, and by sloping topography enclosing the area to the east and north.

Uses

The area is primarily used as a place to drink and collect mineral water. The parking lot also seems to serve as a trail head for various trails that meet in the central core area.

Spatial Organization

Spatial organization in the area is largely functional, with the pavilion located at the pre-existing spring and the parking area located east of and above the pavilion on a level terrace.

Topography

The area is topographically configured as a shallow oval bowl, stepping down east to west from hillside to parking area to pavilion to underpass (Figure 6-47). The building’s location below the grade of the parking area secludes and encloses it. On the west side of the bowl, the highway side slope forms a strong vertical and engineered edge enclosing the space. The low spot of the area is the underpass under the highway. Drainage swales carry water off the hillsides to the east around the north side of the parking area to drain through the underpass and eventually into Rock Creek.

Vegetation

Vegetation in this area is largely naturalized and as such is described further in Chapter 10. A lawn shaded by mature trees immediately south of the pavilion and west of the parking area surrounds the pavilion with a landscape quality that might be described as “managed wilderness.” However, this area was greatly affected during the ice storm of 2000, and many trees here were lost or damaged. Particularly noticeable are the large stumps indicating lost trees at the base of the pavilion to the north and east. While the loss of such trees may ultimately benefit long term maintenance of the structure, their loss has adversely impacted the quality and appearance of the whole landscape.
Circulation

Vehicular access to the area is accommodated via the area’s entry road and parking area, which accommodates about 25 cars. Visitors access the pavilion from the northeast corner parking area on a short gravel path, then down a set of steps to the pavilion via a wide flagstone path. This route is not ADA accessible. From the north side of the building, another path leads down a set of stone masonry steps to a pedestrian pass-through underneath the Highway (Figure 6-48). This underpass is about 8 feet tall and 6 feet wide and paved in flagstone. On the west side of the underpass is an area where multiple trails converge, including the Rock Creek Trail (#2) to the Bromide area and the Buffalo Pasture Trail (#3), which also accesses Hillside Springs and the old park Headquarters.

Buildings and Structures

The Pavilion Springs Pavilion is roughly thirty by fifty feet with a sub-floor and wall footings constructed as monolithic slab of concrete. The Pavilion has a hipped roofed with the wood-shake shingles (Figure 6-49); this was done in December 2000. The focal point of the open pavilion is the large oval boulder from which water of the “Big Tom” spring flows into a small rectangular pool below. A low stone bench lines each interior wall.

Small-scale Features

The steps from the Pavilion Springs parking area are constructed of limestone and have boulder cheek walls. It is not known when the metal railing up the middle of these steps was installed. Steps on the north side of the building were constructed as part of Pavilion Springs and blend into the rock outcroppings of the area.

Former Elk Paddock Picnic Area

Located just south of Flower Park and Lincoln Bridge across the perimeter road and just west of Pavilion Springs and Highway 177 is a small picnic area that was the former location of the Elk Paddock during the park’s early years. Separated from Hillside Spring by a small stream and from Black Sulphur Spring by Rock Creek, the area is clearly a distinct space. It is characterized by
its level topography and its park-like vegetation of trees in turf. Circulation is primarily a looping road providing access to picnic areas. A short pedestrian pathway leads from the loop road toward the east side of the Highway 177 underpass and to Rock Creek Trail (#2). Though no major structures are located here, there are a number of small-scale features, including a small wood-frame information booth (no longer used), picnic tables, water spigots, and boulder guard rail. This is a popular area to park and access the Buffalo Pasture trails for a 2-mile walk.

Hillside Springs

Some 400 feet southwest of Pavilion Springs is Hillside Springs. Located immediately adjacent to Highway 177, the area is comprised of a parking lot and small stone spring enclosure. The entire area encompasses only about two acres.

Uses

Hillside Spring is a primarily a scenic spot for contemplation, since the water there is contaminated and is not potable due to high bacteria levels. The parking area provides some overflow parking for the old Headquarters building and for visitors hiking the Buffalo Pasture trail.

Spatial Organization

Hillside Spring is divided into a parking area and a spring enclosure, separated from each other by a grade change of about 6 feet. Cedar vegetation also encloses both the parking area and the spring. Twenty feet of vertical grade change covered by dense vegetation separates Hillside

Vegetation

Vegetation at Hillside Spring is characterized by dense cedar plantings. Cedars line Highway 177 on both sides of the parking area, and also enclose the slopes above and below the spring enclosure's retaining wall. Cedars also buffer the area visually from the former Headquarters building up slope. Though planted by the CCC, these plantings appear fully naturalized, and are mature or beginning to decline. Understory is limited and many of the cedars have lost the vegetation on their lower branches due to the shade created by the density of the plantings. As a result, the vegetation, while dense, appears ragged and patchy, with dead and downed trees interspersed among the living. The appearance of this vegetation is particularly unappealing immediately behind the spring wall (Figure 6-51).

Circulation

A horseshoe-shaped parking area (Figure 6-52) provides vehicular access to the spring. A central island with two trees is located in the middle of the area, which accommodates about twenty-five cars. The parking area is delineated by a low stone curb to the west and north and a retaining wall to the south. A decomposed and compacted granite walkway around the lot connects to a staircase to Headquarters to the south and to Pavilion Spring on its north. Another set of steps leads down to Hillside Spring. This route is not ADA accessible.

Buildings and Structures

Hillside Spring is designed as a retaining wall, behind which is a concrete tank with metal lid where spring water is collected. It is then dispensed into a circular basin set into the central portion of the wall, which overflows into a runnel. The runnel (Figure 6-53) runs across
a flagstone patio and drains into a naturalized stream below. The structure is in fair condition. Seepage behind the northwestern wall is something of an issue, and flow through and around the masonry wall is great enough to make the western half of the seat wall and patio area consistently wet. A thick coating of moss and algae grows in these wet conditions. Bubblers filling the basin appear to be partially clogged. Because the spring's water contains bacteria, a large warning sign is posted above the basin. A fair amount of duff covers the terrace and should be removed. Some masonry damage is evident on the wall and should be repaired before it deteriorates further. A vertical pipe is located at the north end of the terrace; though water flows out of it, its relationship to the spring is not known.

Small scale features
Stone steps (Figure 6-54) lead from the parking area to the spring. These masonry steps are lined with boulders. A second flight of steps to the former Headquarters are much longer and combine masonry steps with longer treads with eroding gravel surfaces. These steps are also lined with boulders. Stone curb and granite fine walkways line the parking area and a stone retaining wall holds back the slope on the southern side of the parking area.

Headquarters
The old Headquarters area consists of features located in a small clearing around the park’s former Administration Building. The area is located on the slope above Hillside Spring and is bounded by Highway 177 on the east and the maintenance area entrance road to the south and west. The area is only about 3 acres.

Uses
The former Administration Building (also known as the Leeper House) will be used for a training center and for the Southern Plains Inventorying Monitoring Network once funding is secured. Park administrative functions moved from this building to downtown Sulphur in summer 2002.

Spatial Organization
The area is simply organized with the Leeper House located in the center of a small open area.

Topography
The area is a north-facing slope of about 10 percent.
Vegetation
Vegetation in the area is of two major characters. Behind the building to the north is dense cedar vegetation which separates the area from Hillside Spring below. At the base of the building and in front, is a variety of foundation and decorative plantings, including trees and shrubs. Some of these plantings are redbud, which are known to have historically provided significant spring bloom, greater than that seen today. A few of these plants may be historic, but in general, these plantings are rather haphazardly arranged around the building. An iris bed is located just east of the building.

Circulation
An entry road turns northwest off of Highway 177 to access the area. A small parking lot lines the entry road (Figure 6-55) in front of the Leeper House and accommodates about twelve cars. Three narrow asphalt pathways run from the parking area to the building entry; the longest of these is ramp-like and is probably wheelchair accesible. The Buffalo Pasture Trail (#3) runs past the former Administration Building to the east, and provides a link to Hillside Spring down the slope.

Structures and Buildings
The former Administration or Headquarters Building (Figure 6-56) is a stone building with a wooden porch wrapping around its north and east sides. Remodeled in 1934, it retains most of its features from that time. Administration functions were removed from the building in 2001 and it will be rehabilitated for use as a training center.

Maintenance Area (Utility Area)
The Maintenance Area (Figure 6-58) is located west of the former Administration Building, and, like that structure, is situated on the back side of the Buffalo Pasture Hill. The area is bounded by the Buffalo Pasture to the south and by dense forest edge to the north, though the area is perceivable through the woods from Rock Creek Trail (#2). However, fences around the Maintenance Area clearly delineate it as a service zone. The area has expanded over time and today covers about seven acres.

Use
As originally intended, the area houses maintenance staff, offices, vehicles, and materials. However, the area today serves the maintenance needs of the almost 10,000-acre CNRA, whereas it was originally designed to serve the 900-acre Platt National Park. Today the area also houses a few horses for ranger use and a small archives building, both unrelated to maintenance functions.

Spatial Organization
The extant historic buildings of the Maintenance Area are arranged in a tight quadrangle in the center of today’s utility area. New buildings added near the quadrangle have generally followed its orthogonal organization. Over the years, the area has expanded to the west in a somewhat sprawling manner.
Chapter 6: Existing Conditions

Topography
The maintenance area’s location on the north slope of the highest hill in the district’s center, ensures its visual screening from visitor activities. Slopes in the area lessen to the west and these more level areas better accommodate materials storage.

Vegetation
Vegetation is not a particularly significant feature in this utilitarian area. A dense forest edge serves to define the area. Vegetation near the entry area and the archives building provides some shade for parking. There are some remnant residential plantings of trees and perennial flowers around Building 6, dating to its former use as employee housing.

Circulation
Due to its utilitarian functions, defined circulation patterns in the Maintenance Area are primarily vehicular. Having developed in a somewhat unplanned manner over time, the vehicular patterns are a little less regular, clear, and convenient than they might be. A major issue is the lack of organized employee parking, which currently occurs along the entry road in the front of the quadrangle and Building 6 and along the road to the archive building. This causes some congestion and poor visibility in this area. The quadrangle itself is something of a bottleneck, as all vehicles entering and exiting the yard behind the quadrangle must move through this open space and then ply a rather narrow and sloping asphalt roadway at its south corner near the mule barn. This is clearly not an optimal situation. Roads in the yard west of the quadrangle are gravel surfaced and form a number of loops accessing storage buildings and materials. A secondary circulation pattern is located near Building 6, shingle roof with lapped wood gable ends, and a loading dock on the front side.

The maintenance office or crew room (Building 37) (Figure 6-59) is located on the south side of the quadrangle and is constructed of rubble masonry with wood-framed windows and doors and a wood shingle roof with wood gables.

The maintenance shop or truck shed (Building 38) (Figure 6-60) is located on the north side of the quadrangle and has board and batten siding, a stone foundation, and a wood shingle roof with lapped wood gable ends. The building is predominantly intact.

Surrounding these three original buildings are the area’s limestone retaining walls with chain link fence. The walls and fences were constructed around the Maintenance area to secure the space, and the area is gated although stone piers at the front entrance were removed. The fence has been reconfigured slightly and portions of the wall have been removed. Three low terrace walls constructed southwest of the quadrangle to store equipment are also extant and being used. A non-historic fire cache is located just west of the three terraces.

Located at the southeast corner of the original quadrangle are the Ranger’s Office and a former material testing laboratory. The Ranger’s Office, located outside the original quad wall, is a frame building on cinder blocks and was originally a barbershop moved from the Vendome property. The lab is being used to store chain saws and weed eaters and is scheduled to be excessed.

Residence 6 (Figure 6-61) was built in 1902 and moved to its current location in 1931. The structure is located...
just outside the compound entry and is currently used as a natural resources office. A wood frame building with an entry porch, Residence 6 is covered in wide, horizontal pine siding and has a shingled roof. A carport added to the building is a non-contributing building feature. The residence's garage (Building 11) was built at the same time and is similar to garages at Residence 2 and the Bromide Ranger Station. It is a wood frame building, with a shingled gable roof and wide pine siding stained NPS brown. Located west of the garage and adjacent to the maintenance shop is the climate-controlled archives building, a twenty-five by eighteen-foot metal building constructed on a concrete pad.

In the maintenance yard to the west are numerous storage buildings (Figure 6-62). Only one of these is historic: the earth-sheltered powder magazine. This concrete rubble masonry building was used as a storage building for explosives during the CCC era and later served as a chemical storage area. It is no longer in use. There are numerous other metal and wood buildings. These include 3 storage buildings and a tank fueling station just west of the warehouse. Further west is Building 128, housing a metal/welding shop and wood and mechanical supplies. Building 126 is a wood shop. Buildings 127 and 129 are storage buildings. On the south side of the maintenance area are horse stalls and a small hay shed; these are just west of the historic powder magazine and a second, non-historic underground storage area.

Small-scale features
Small-scale features include the tank filling station and a drainage culvert with stone head walls located northwest of the powder magazine.

Employee Residence 2

Once part of a larger group of park housing, Employee Residence 2 (Figure 6-63) today is its own small residential landscape located southeast of Pavilion Springs. About two acres in size, it is essentially bounded by its embracing entry driveway to the west and south. To the east and north, it is bounded by a forest edge and the topography of the slight hill on which it sits.

Uses
The area is currently used as park housing.

Spatial Organization
This landscape might be considered a “cluster arrangement” with the house and garage orthogonally oriented to create an open front yard. The area—a clearing in the woods—is spatially enclosed by a dense forest edge.
Topography
The house sits on a slight hill and a small garden seating area is located down slope to the north east.

Designed Vegetation.
Remnants of garden plantings (mostly iris) are located along the house foundation and the chain-link fence in the front yard. Two trees are located in the driveway turnaround and a line of trees runs along the side of the garage and carport. One larger specimen tree is located in the front yard, near the carport. A dense forest edge surrounds the yard.

Circulation
There is long asphalt drive which accesses Highway 177 off the entrance to the Pavilion Springs parking area. Flagstone walkways run along the west side of the carport and garage and lead to a small flagstone patio on the southeast corner of the house as well as around the house to the back door. An informal stone footpath leads down the hill to the small stone seating area.

Structures
Residence #2, one of two pre-CCC-era residences surviving today, is a gable-roofed, one-story residence thirty-two by thirty-five feet and is of wood frame construction. Remodeled by the CCC in 1935, today the building is finished with cream-painted stucco, a wood shingle roof and wood gable ends, stained traditional NPS brown.

The garage (Building #9) located near Residence #2 is a wood frame structure covered with wide horizontal pine siding. Constructed on a concrete base, it is stained NPS brown and has a shingle roof. A fair degree of debris is located behind the structure. A framed carport was recently added to the garage and is a non-contributing feature.

Small-scale Features
A small stone table, flagstone patio, benches and pond (Figure 6-64) are located about 100 hundred feet northeast of the house on the slope of the hill. The stone tabletop is five feet in diameter and has four curved benches; the pond is about five feet long and is filled with stagnant rainwater.

A chain link fence defines an enclosed area in front of the house. Other small scale features in the front yard include a fire hose receptacle and fire hydrant.

Three dams from the old golf course that existed within the park in the 1920s and 30s are located south of Residence #2. These structures vary in size. One is approximately 20 feet across and 3 feet high, while the other two are slightly larger, though their centers have been washed out. They have been impacted by neglect, erosion and siltation.

CENTRAL CAMPGROUND (DRAWING 20)

Central Campground
As its name indicates, Central Campground is located in the middle of the Platt District. The campground is about fifteen acres of open and wooded terrain. Ten group campsites are located in the area. The area is bounded to the north by Broadway Avenue and to the east by Wapanucka Avenue and the campground entry road. The south and west edges are bounded by the perimeter road Highway 177, respectively.

Uses
The campground is today used exclusively for camping by groups larger than ten people. Advance site reservations are required.

Spatial Organization
Central Campground is composed of two oval spaces defined and linked by the vehicular circulation system. This spatial organization is reinforced functionally, since
campsites are (with two exceptions) located within the encircling roadways (Figure 6-65 and Figure 6-66). The narrow, linear entry road corridor might also be considered another, separate spatial zone within the landscape defined by function and vegetative enclosure.

Topography

The campground is located on moderate to flat slopes above Travertine Creek. The slopes generally rise toward the northeast, with the hillside north of the campground and comfort station at a slope of about fifteen percent. Overall elevation change across the site is about 40 feet, from an elevation of 950 feet at the stream bank edges to 994 feet near the top of the hill south of Broadway Avenue. Two major swales or intermittent streams handle much of the drainage off the hillside; these are located between the two loops and at the intersection of the entry road with the east loop road. Culverts located under these roads channel stormwater. The area between Highway 177 and the west loop also serves as something of a drainage way with a culvert structure, though the slopes here are much flatter.

The area’s steepest slopes are located directly along the creek banks, where they become almost vertical in some locations. Bank erosion from foot traffic from above and stream scouring from below is a problem in some locations, and large dry laid walls have been located at two bends in the creek near the western camping loop. These two walls appear on the existing conditions plan.

Vegetation

Central Campground is generally characterized by dense native and naturalized vegetation, which is described in greater detail in Chapter 10. In the areas circumscribed by the loop roads, however, vegetation is somewhat more managed, with shade trees in turf. In November 2002, the shade trees in these areas were inventoried by ISU students, using methods similar to those described for Bromide Springs and Flower Park. The drawing used for comparison was the 1934 topographic survey of the campground (NP-PLA-4998), which locates major trees. Only the areas within the loops were counted for comparison, since the other areas did not have clear boundaries for comparing the tree counts from the 1936 survey with existing conditions.

Interestingly, unlike Bromide Springs or Flower Park, the overall number of trees in the circumscribed areas has increased over time. However, the same trend in species composition is seen, with a decrease in oak from 52% to 43%, and an increase in other species. Tree count data is seen in Table 6-3.

However, the trees in these camping areas are not in the best condition, having clearly been impacted by soil compaction over the years and storms of recent years. This is particularly evident in the west loop, where a lack of shade and numerous stumps attest to recent tree losses. Cedars along the north and east boundaries provide some buffer from the adjacent residential area, but in some places the road and houses beyond the campground are quite evident.

Circulation

The major vehicular circulation pattern in Central Campground Area is the dumbbell-shaped asphalt roadway where two one-way campground loops are connected by a short two-way road. Parking is provided in diagonal nose-in bays located on both sides of the
Camp drives. Boulders are used along the roadways to prevent parking in areas other than these asphalted bays.

Campground access occurs on a winding little access road that intersects the perimeter road at a point located southeast of the campground, just north of Panther Falls. When floodwaters are high enough to cut off the perimeter road, emergency access is sometimes provided at the park’s original entrance off Highway 177. Boulders along this route can be moved to access the campground.

Pedestrian circulation in campground primarily links the area with other sites. One trail leads north from the western loop north across the wooded hillside to downtown Sulphur, terminating at the main entry piers. Another trail runs along the old entry road to meet Highway 177 and thence south to Travertine Bridge. A third trail leads off the entry road east to the park boundary and to residential Sulphur to the east.

Buildings and Structures

The only major structure in the component landscape is the Central Campground comfort station (Figure 6-67), which is similar to the comfort stations in Cold Springs campground and displays the same roof change as the other comfort stations in the district. Located at the northwest “corner” of the eastern loop, the structure is built into the slope behind it. The setting in front of the building is somewhat compromised, since asphalt paving meets the building edges. A “No Parking” sign is therefore prominently placed in front of the building.

The building underwent lead abatement and received a new shingle roof in 2002-2003.

Two dams, described above under the creek system, were built in Travertine Creek adjacent to the campground.

Small-scale Features

Small-scale features are primarily road and drainage elements. Two Central Campground box culverts are located along the campground roads. One is located on the entry road at the intersection with the eastern loop road, while the second is located on the road between the two loops. Both have been slightly altered.

Other small culvert features are located along the western edge of the campground. One is a small masonry culvert situated along the pedestrian trail leading to Sulphur while an other is the culvert west of the campground loop. There is also a stone culvert outlet near the creek. Other small-scale features include the boulder guard rail and numbered bollards both situated along campground roads. The bollards indicate camp sites. Circular metal cooking grills, picnic tables, and lantern hooks are provided for each campsite, and water spigots are distributed within both campground loops. A roofed campground information sign is also located at the entry to the east loop.

Table 6-3. Tree counts in Central Campground, from 1936 survey and 2002 field work.

<table>
<thead>
<tr>
<th>Species</th>
<th>Numbers 1934</th>
<th>Percent 1934</th>
<th>Numbers 2002</th>
<th>Percent 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>oak</td>
<td>39</td>
<td>52%</td>
<td>57</td>
<td>43%</td>
</tr>
<tr>
<td>sugarberry</td>
<td>21</td>
<td>28%</td>
<td>25</td>
<td>19%</td>
</tr>
<tr>
<td>unknown</td>
<td>7</td>
<td>9%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>elm</td>
<td>3</td>
<td>4%</td>
<td>25</td>
<td>19%</td>
</tr>
<tr>
<td>persimmon</td>
<td>3</td>
<td>4%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>green ash</td>
<td>1</td>
<td>1%</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>walnut</td>
<td>1</td>
<td>1%</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>butternut hickory</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>black hickory</td>
<td>0</td>
<td>0%</td>
<td>7</td>
<td>5%</td>
</tr>
<tr>
<td>eastern red cedar</td>
<td>0</td>
<td>0%</td>
<td>7</td>
<td>5%</td>
</tr>
<tr>
<td>gum bumelia</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>mulberry</td>
<td>0</td>
<td>0%</td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>pecan</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Totals</td>
<td>75</td>
<td>100%</td>
<td>132</td>
<td>100%</td>
</tr>
</tbody>
</table>

![Figure 6-67. Central Campground comfort station, 2001.](image-url)
COLD SPRINGS CAMPGROUND (DRAWING 21)

Cold Springs Campground

Cold Springs Campground is located in the eastern portion of the Platt District, along the banks of Travertine Creek. A wooded area of approximately twenty acres, it is bounded on the south by the perimeter road and the creek and to the north by the park fence.

Uses

The campground is used for camping and campsites available on a first-come, first-served basis. Two large sites accommodate larger groups (Figure 6-68), with reservations taken for groups larger than ten individuals. Family reunions often occur at this campground.

Spatial Organization

Cold Springs Campground is an oblong-shaped area, defined by a perimeter road. The area is subdivided into two linear, banana-shaped areas by a central road leading into the campground. Midway along the central road, two spurs lead to both sides of the perimeter loop, dividing the banana-shaped areas into two halves. Thus, the campground is divided into four major spaces. The two spaces to the east are served by one comfort station, and the two spaces to the west are served by a second comfort station, which, from a functional standpoint divides the area into two zones, east and west. Sixty-five campsites are located along the three roadways, generally alternating entrances to the left and right. Campsites are more or less circular and are separated from the driveways by boulders. This organization of camping areas subscribes to principles of campground design set out in the classic NPS handbook, Park and Recreation Structures. At the campground entrance is a more open space containing two group sites and a parking area serving the host site, community building, and checking station (Figure 6-69).

Topography

The campground is relatively level, with a slight rise toward the northeast. The flatness of the area causes some drainage problems in heavy storms. A drainage swale (almost a ditch) runs along the back of the campground, between the northern row of sites and the park boundary. This swale catches surface drainage from the south-facing slope north of the campground and directs it around the campground to the west and east.

Vegetation

The vegetation in the campground is predominantly native overstory trees, including oaks and hackberry. Cedar is common along the northern edge of the campground, likely as a result of 1930s boundary plantings. The overstory is only in fair condition, and many mature trees were lost or damaged by the 2000 ice storm. Understory vegetation is reduced compared to other parts of the district, mostly because of the heavy visitor use the area receives. Foot traffic between campsites is heavy and small shrubs and forbs are quickly trampled. This reduces privacy between sites and in some areas, campsites are clearly visible from the perimeter road due to lack of vegetative screening. Shrubby vegetation tends to be denser around the campground perimeters, where foot traffic is less.
Circulation
Cold Springs Campground is accessed from the park’s perimeter road at the western edge of the camp. Vehicular circulation in the campground is one-way, with automobiles entering the central road, and turning left or right at the end or midway down the campground to access the outer roads which head back to the entrance. Where the three roads meet at the entrance can be congested during peak usage, since this area also contains the busy group sites, host site, a parking lot, payment station and checking station.

Roadways are asphalt. Site spurs are gravel. Campsites have pull-in/back-out spurs, with a parking area at the end of the spur. Fifty-six of these spurs are thirty feet long, while ten were made longer (thirty-six feet) to accommodate longer trailers. Roads and parking spurs are approximately twelve feet wide.

Pedestrians also use the roadways. Numerous footpaths running perpendicular to the roads connect campers to the comfort stations; some of these paths were designed, but many more are informal “desire lines.” Similar footpaths also have been created leading from the campground across the perimeter road to the swimming areas along Travertine Creek. Across the road at the campground entrance is a stepping-stone crossing over the creek connecting the campground to Travertine Creek Trail (#4).

Buildings and Structures
As campers enter the campground, the community house is the dominant visual feature of the entry area. Roughly forty-five by thirty-three feet, it is a brown, wood frame structure with a long porch along one side. It currently houses the Resource Management Office but will become a staff exercise room in 2003.

The two comfort stations (#29, in the western half of the campground and #30, in the eastern half) are excellent examples of rustic NPS park architecture (Figure 6-70). Changes to their exteriors include a change from a hipped gable to a simple gable roof.

The Checking Station is similar in design and construction to the two comfort stations and is also in good condition. The building is currently empty.

Four dams with associated swimming holes are located in Travertine Creek across the road from Cold Springs Campground at Garfield, and Bear Falls. These are described above as part of the creek system.

Small-scale Features
Extant small scale historic features include nine stone-walled containers (Figure 6-71) that hold garbage cans. The enclosures are approximately three feet high, four-sided, square to rectangular in shape, with an opening in the wall facing the road. In the original design, a water faucet was attached to the front face of each enclosure; today only one of the structures has a functioning hydrant attached. Other hydrants are located throughout the camp to supply water for campers.

The original campsite furnishings are no by and large though a few remnant elements remain on a campsite or two. Today each site contains a standard metal and wood plank picnic table, a circular grill, and a lantern hanger. The large group site also contains two large concrete and wood plank picnic tables. Boulders are used to separate
campsites from parking areas and elsewhere, as shown in Drawing 21, to limit vehicular intrusions.

TRAVERTINE ISLAND AND LITTLE NIAGARA FALLS (DRAWING 22)

Travertine Island and Little Niagara Falls are located in the northeastern portion of the Platt District. The two areas cover approximately twenty-two acres of wooded land through which Limestone and Travertine Creeks flow. The area contains numerous stone outcroppings, travertine formations, and natural and designed waterfalls that make a delightful recreational landscape.

Use
The area is used for picnicking and swimming.

Spatial Organization
Travertine Island and Little Niagara Falls are organized around the confluence of Limestone and Travertine Creeks and the island they create. Three major picnic and swimming areas—Little Niagara Falls (Figure 6-72), the Travertine Island picnic area (Figure 6-73), and the Lost Cave Falls picnic area (Figure 6-74) - are clustered within and around the central island area, while two major parking areas are located on the periphery. All of the elements are circumscribed by the one-way portion of the perimeter road as it was reconfigured in the 1960s.

Topography
The two creeks carve meandering channels through the area’s relatively level topography. There are some areas with greater topographic variation, particularly where there are outcroppings of travertine rock. Overall, the elevation falls from the east to west, from 1030 feet to 1015 feet, the drop providing the rushing streams and falls popular with visitors. It should be noted that the eastern district’s natural high point of Mount Airy (1042 feet) is located just to the southwest of this area.

Vegetation
Vegetation at Travertine Island and Little Niagara Falls is mostly released native vegetation and is quite dense. There is no obviously “designed” vegetation in the area. Shade from tall trees is a characteristic aspect of the area’s vegetation; and the tall trees in the Travertine Island picnic area are particularly important. Indeed, many of
the park's largest trees are located in the area, though far fewer than existed prior to the ice storm of 2000, when numerous large trees were lost. This is particularly true around the Travertine Island Comfort Station, which has lost its wooded setting and feels rather denuded, despite rapidly regenerating understory. Better quality understory and overstory vegetation is located around the northern parking area, which retains a more wooded feeling.

Circulation

Vehicular circulation is clearly defined by the district’s perimeter road, which is one-way around Travertine Island and Little Niagara Falls. Two main parking areas are provided: one large complex of two lots to the south and one smaller lot to the north. A third parking area for about six cars is located west of the Limestone Creek Bridge and serves a small picnic area along the perimeter road.

Pedestrian circulation in the area is a looping network of gravel paths that link the parking lots, picnic areas, comfort stations and Little Niagara Falls in a circuit. A new concrete path was constructed between the Little Niagara parking area and the Mission 66 comfort station. Paths cross the two creeks via stone stepping-stones or plank and pipe railing bridges (see below).

Buildings and Structures

There are only two major buildings at Travertine Island and Little Niagara Falls. The first of these is the Travertine Island comfort station (Figure 6-75). This is an NPS Rustic comfort station similar to those at Cold Springs Campground and is in relatively good condition. It was re-roofed and lead abated in 2003. The second structure is the Mission 66 comfort station. Located close to the Little Niagara Falls parking area, the building is in relatively good condition. This building is easily flooded and silted when Travertine Creek leaves its banks during high water events.

Water Features

Little Niagara Falls is composed of two dams which create a large and popular swimming area. Despite heavy use, the area is in relatively good condition, though the stream bank edges are highly compacted around the southern edge of the pool area.

Small-scale Features

Numerous small-scale features are scattered throughout Travertine Island and Little Niagara Falls, providing a human scale and interest.

Narrow steps to the Lost Cave Falls picnic area are located along a path between the Little Niagara parking area and the picnic area. The steps are about twelve inches wide and lined by travertine stones. A small stone bridge is also located on this path. At the picnic area, there is a stone picnic table and benches on a flagstone patio. Modern, movable picnic tables and standing grills are also scattered around this lower complex.

On the west side of Travertine Island there is also a stone-enclosed picnic area about forty-five by ninety feet. There is a stone seatwall embracing the area, two stone tables with stone benches and an adjacent “counter” or food preparation area. Garbage cans are located near the enclosure’s entrance. In general, the masonry on all these features is in need of repair. Stones are spalling and mortar is cracking. Some elements are missing. For example the food preparation counter’s storage area for
firewood has been filled in. Remnants of a third circular stone table and stools are extant but not complete. Stone and travertine steps leading from the enclosure down to the stream environment are badly deteriorated and overgrown with vegetation. Another circular stone bench is located on the end of Travertine Island near the lower Niagara Falls dam and across from the modern comfort station. This stone seat is also in poor condition, cracked and covered with underbrush.

Across the path from the large stone picnic area is an extant interpretive sign describing travertine formations (Figure 6-76). The rectangular sign, roughly forty-six by seventy-six inches, is constructed of three-inch thick planks and twelve-inch diameter logs. The sign's text is incised lettering, painted white on the brown-painted sign. The sign is in poor condition.

Low-water crossings are located in the area. One set of stepping stones is located behind the Travertine Island Comfort Station. The path to these stones is no longer extant. A second low-water crossing is located over Travertine Creek between the Travertine Island Comfort Station and the Lost Cave Falls picnic area. A stone bridge crossing is located just to the northwest end of Little Niagara Falls.

There are sundry other small scale features. Two bridges constructed of metal tube railing and planks are located on Travertine Island, one crossing each of the two creeks. The one between the northern parking lot and the island sit on revised abutments of a former stair and stepping stone low water crossing (Figure 6-77). Picnic tables and standing grills are located in the three picnic areas. There are two large masonry drainage swales, one at the west end of the Little Niagara parking area and one just east of the Mission 66 comfort station. There is a low half-log safety sign across from the lower dam at Little Niagara Falls. A small water treatment shed, no longer used, is located near the park boundary north of the Travertine Island parking area.

BUFFALO AND ANTELOPE SPRINGS
(DRAWING 23)

The landscape of Antelope Spring, Buffalo Spring, and the Nature Center is located on the far eastern portion of the Platt District. Travertine Creek originates in this area, flowing east from its source at Buffalo and Antelope Springs. The area, designated since 1969 as an “Environmental Study Area” (ESA), is comprised of approximately 142 acres of woodland. The park fence defines the area’s boundaries on the north, south and east and the park perimeter road defines the boundary on the west.

Uses
The area today is primarily used for walking, contemplation, interpretation, and nature study. Picnicking and swimming and wading in Travertine Creek are not permitted east of the Nature Center because of its designation as a study area.

Spatial Organization
The landscape is a large wooded space, with three major elements—the two springs and the nature center.
building—situated along a linear trail (#4) that runs the length of the space. Because of the dense nature of the area’s vegetation and a consistent canopy, none of these elements has a strong spatial component, but are rather destination points within the larger space. Since its designation as a study area, the whole area might be considered as a “natural” space, while the rest of the park might be considered to be “developed” space. This is, however, something of a conceptual, rather than a physical, conception of space.

Topography
The topography in this landscape is perhaps more varied than in other parts of the district. Landforms vary from stream banks dotted with conglomerate and Travertine rock outcroppings to small draws carrying intermittent streams to the high ridgeline south of Travertine Creek. The overall elevation of the area falls from east to west, with Antelope and Buffalo Springs at 1080 feet, and the elevation of Travertine Nature Center is 1,044 feet. Elevations of 1,158 feet at the boundary line south of Buffalo Spring area and 1,154 feet at the northeast corner of the park are some of the highest points within the Platt District.

Vegetation
The landscape of Antelope Spring, Buffalo Spring, and the Nature Center is predominantly native and released vegetation, with post oak and chinkapin oak some of the dominant tree species in the area. In general, the area is characterized by dense canopy and thick understory vegetation, though the ice storm of 2000 damaged many trees and created sunny openings. Evidence of any designed vegetation is no longer extant. Vegetation is described in greater detail in Chapter 10.

Circulation
Vehicular circulation consists of perimeter road access to the Nature Center, where there is a large, double-bayed parking area. The parking lot is asphalt-paved, and has asphalt walks and stone curb edging. Parking islands have trees.

Asphalt paths lead from the parking area to a flagstone plaza and walkways in front of the Nature Center. From there, a Trail #4 continues east along Travertine Creek to Buffalo and Antelope Springs, where it loops around these two features (the southern part of the loop is known as Trail #9). This main trail has a clay gravel base with fine aggregate crushed rock topping and is about eight feet wide (Figure 6-78). Three short interpretive loops branch off the Trail #4. These trails are narrow, single-file footpaths. The interpretive trails are located to access different types of ecosystems, as revealed by their names of “Prairie Loop Trail” (#14), “Tall Oaks Trail” (#15), and “Dry Creek Trail” (#16).

Buildings and Structures
The Buffalo Springs Comfort Station (Figure 6-79) is the major NPS Rustic style structure in the area and is a replica of those built at Cold Springs Campground. The building is not currently used and is boarded up. Vegetation has grown up close to the building and could begin to impact the building’s condition. Lead abatement and re-roofing of the building was completed in 2003.

The Travertine Nature Center (Figure 6-80) was completed in 1970, and was loosely based on design principles of Frank Lloyd Wright as is evident from its appearance. The building constructed over Travertine
Creek and contains a museum, auditorium, rest rooms, and staff offices. An integrated terrace, seatwall and bridge are part of the building’s northwest façade. The building is in good condition.

Two vehicular bridges, the Buffalo Springs Road Bridge and Box Culvert are no longer used, but remain from the original alignment of the perimeter road and a parking lot road, respectively. Both bridges were veneered with native stone in keeping with NPS Rustic design principles. Both are visible to visitors; the bridge is visible from the Buffalo Springs enclosure and the road box culvert can be seen from trails. The two bridges are in fair condition, since they are not used and no longer maintained. Trees growing within the prism of both former roads threaten the bridges’ integrity.

A stone arched bridge is located along the pedestrian trail (Trail #9) east of the Buffalo Springs water feature. The bridge is a heavy gauge corrugated steel vault bolted to a concrete base with a native stone veneer. A flagstone walkway and granite and gravel trail connects the bridge to Buffalo Springs. The bridge’s foundation is showing some undercutting by the stream that flows beneath it.

Water Features

The Buffalo Spring Enclosure (Figure 6-81) is a circular feature of walls, seats, steps and paving enclosing the spring and releasing it through a spillway into Travertine Creek. Constructed of native stone, the structure is in good condition, though there is some minor masonry damage and evidence of water captured behind the walls.

The tall Travertine stone outcropping from which Antelope Springs (Figure 6-82) emerges does not appear to be designed, but oral histories recount some moving of loose sediment and stones to create the current feature. The equally natural-appearing two lily pools below the spring, however, are completely designed to provide contrasts of falls and reflective water. Three crossing points are provided at the pools. A stone crossing at the top of the first pool may originally have been stepping stones and the middle wood bridge appears to have been built over an extant stone crossing. The stone bridge below the second (downstream) pond is “new” and it is speculated that the stone was originally part of a picnic table from the Buffalo Springs picnic area. A large stone USGS water gauge enclosure is located next to the spring area. In 2003 new monitoring equipment was housed in the stone enclosure and a solar panel and transmitter dish were mounted in nearby trees.

Just downstream from the arched stone footbridge near Buffalo Springs are three small stone dams spaced approximately forty feet apart. Although four may have been built (see Chapter 4, page 117), it appears only three are evident. As a design element in a landscape setting, these dams acted as grade stabilization structures to prevent stream bank erosion, to prevent erosion from undercutting the arched stone footbridge, and to prevent springs from breaking out in the creek bed. They may also have been intended to add additional water sounds to the area. Each dam (eighteen to forty inches in height) is built of rock and stone and stretches from bank edge to bank edge. All three are in poor condition and need some reconstruction and reconnection to banks.

Along the length of Travertine Creek are numerous boulder edges and rock dams implemented by NPS designers and CCC work crews stabilize the creek banks.
and halt or prevent erosion. Many of these walls are extant today, but are almost invisible as they’ve become naturalized, covered with vegetation, moss, and travertine deposits.

Small-scale Features

Many of the small scale features in the area are remnant features constructed prior to the Travertine Nature Center. Four original stone fire pits are located near the intersection of the Trail #4 with the Tall Oaks Interpretive Trail. A few more are located elsewhere in the area. In fair condition, the stone features not easily located since they are buried in underbrush. As shown in Drawing 23, there are a total of seven abandoned perimeter road culverts within this component landscape, located on both the south and north portions of the perimeter road. A set of stairs to the former parking lot at Antelope have been abandoned; these are located on the slope just north of Antelope Springs.

Three more sets of stepping stones (in addition to the one at Antelope Springs described above) crossing Travertine Creek are located in the area. Two have been covered with bridges while one is still extant without a bridge over it (Figure 6-83).

Numerous sign types also exist in the area. There are two half-log signs, one for Buffalo and one for Antelope Springs. These signs are roughly 15 by 43 inches, with incised, white letters and are mounted on two ten to twelve inch log posts. Based on the appearance and lettering of the two signs, the Antelope Springs appears to be older than the Buffalo Springs sign. Other types of signs include three roofed trail signs with large stone masonry bases dating to the construction of the Nature Center. These are located between the Nature Center and the eastern most pond of Antelope Springs at the intersections of Trail #4 and Trail #9. A third style of sign is a low plant identification interpretive sign placed along the edge of the area’s trails.

ROCK CREEK CAMPGROUND (DRAWING 24)

Rock Creek Campground, approximately sixty-seven acres in size, is the Platt District’s largest campground. It is located on the western edge of the Platt District and bounded on the east by the park’s perimeter road. The campground is bordered on the west and north by Rock Creek.

Use

The campground is used for camping and the 106 campsites available on a first-come, first served basis. Pull-through sites in this campground are more appropriate for, and can accommodate small and medium-size RVs (Figure 6-84). Sites do not have water and electrical hookups.

Spatial Organization

Rock Creek Campground is divided into two major areas: the southern portion of the campground, which is organized as one unit, with roads which form eight looping concentric circulation circles. With a few exceptions, these campsites are all pull-through campsites located on alternating sides along the roadways. The second area is known as “Chigger Hill” and is located to the south. This separate spur of sites is arranged as a loop of sites, located on a slope around a central comfort station. The spatial organization of each campsite in both areas is similar. Each campsite has a more-or-less circular arrangement of small scale elements and boulders separate vehicular access from the camping area. Chigger Hill has mix of back-in, pull-in and pull-through parking.

Topography

Rock Creek Campground is a moderately level terrace tucked into the curve of Rock Creek. Slopes generally rise to the southeast, with the high point of the area located on the top of Chigger Hill. Elevations vary from 920 feet at Rock Creek Causeway to over 980 on Chigger Hill. Some erosion is evident on roads in the steeper, southern
portion of the campground. Drainage is generally to the northwest and into Rock Creek.

Vegetation
Overtly designed plantings are not apparent in Rock Creek Campground. The area is generally characterized by a canopy of native overstory trees, particularly on the flat level terrace near the creek. Understory shrub cover is relatively dense, provides some privacy between sites, and shows less visitor impact than in the other campgrounds. The Chigger Hill area, in contrast, has a different, more open vegetative character, with clumps of cedars interspersed with native grasses and little deciduous overstory canopy.

Circulation
Circulation in the northern portion of Rock Creek Campground is a one-way, clockwise vehicular movement through a network of eight concentric circular roads orienting from the camp’s entry. Campsites are organized along these looping circles in an alternating pattern of pull-through driveways. All roads are asphalt and the camping areas are separated from the vehicle parking areas by large stone boulders.

A short two-way spur road off the southeast corner of the main campground circulation leads to a single, one-way circular loop road leading to additional campsites. Sites in this loop are both pull-in and pull-through sites, in part to accommodate the area’s steeper topography.

Pedestrian circulation runs through Rock Creek Campground on a central line linking the comfort stations. Other informal paths and walkways mainly connect campsites to the comfort stations. Paths are approximately three feet wide and are surfaced with granite fines. In addition, new concrete walkways have been constructed at each of the campground’s comfort stations.

Buildings and Structures
Two 1950s Comfort Stations are located in the center of the campground along the second and fifth rings of campsites. They are constructed of block and concrete masonry and are in good condition. One Mission 66 comfort station is located in the Chigger Hill area and is constructed of concrete block and wood, similar to others built at the same time. This comfort station is in good condition.

Small-scale Features
The campground’s original entrance sign is located in a traffic island at the camp’s entry. The sign is approximately 71 inches long and 43 inches high and is constructed of three-inch horizontal, redwood planks, four large, massive vertical logs with smaller diameter top and bottom logs. The incised, white letters are routed; “Rock Creek Campground” is ten inches high, and “Entrance” is four inches high.

Near the entrance is the host site and the self-pay fee station installed in 1998. Each campsite contains a circular steel fire ring, picnic table, lantern hook, and boulders to separate tents and vehicles. Some of the picnic tables are poured concrete picnic tables.

Culvert headwalls constructed of dry-laid natural limestone blocks (Figure 6-86) are found along the outlet areas close to Rock Creek. An open diversion ditch (Figure 6-87) is located along the eastern edge of the
Cultural Landscape Report for the Platt Historic District - Chickasaw National Recreation Area

...campground to intercept and control water runoff from the hill side and to allow for the natural runoff within the campground.

MANAGEMENT AND MAINTENANCE

Current management and maintenance in the district occurs as part of the management of the entire Chickasaw National Recreation Area, under the supervision of the Facility Manager. Any management issues that interface with natural resources may also involve the Chief of Resource Management.

Within the maintenance division, there are also two Maintenance Foremen (roads and trails/buildings and utilities) and a Landscape Architect in supervisory positions. According to the park organizational chart, staff positions under these individuals total about twelve permanent staff, plus eight seasonal maintenance positions. Of the twelve permanent positions, six are more specialized staff positions, including a masonry worker, mechanic, electrical worker, lead equipment operator and two water treatment plant operators. Maintenance currently includes visitor maintenance and building, utility, trail, campground, and road upkeep, and other tasks. Two major areas of maintenance within the district are trail maintenance and mowing.

"Policies, Guidelines and Standards for Trail Maintenance" are currently in draft form. These guidelines indicate that, with the exception of the three interpretive loops in the environmental study area, the numbered trails within the district are considered “front country” trails, and their maintenance includes mitigating trail erosion, hardening and replacing surfacing, construction of water bars, removing hazards, and clearing vegetation adjacent to and above the trail. A goal of trail maintenance is to protect natural processes and cultural resources to the fullest extent possible without compromising visitor safety.

Mowing within the CNRA occurs between May and October on an as-needed basis, with mowing often ceasing in July and August due to hot, dry weather. Mowing is scheduled on a prioritized mowing cycle, which includes the Platt District. In general, high-visitor-use district landscapes, such as Vendome and Flower Park are at the top of the cycle, with more primitive areas of the CNRA, such as Guy Sandy West, at the end of the cycle. Most district landscapes occur within the first half of the prioritized list. In addition, certain areas may be mowed one week or a few days prior to special events, such as an arts and crafts festival or Easter egg hunt in Flower Park. Grass is generally mowed to about two and one-half inches, and mower widths require six-foot, six-inch clearance. In addition to mowing, to prevent weedy growth roundup is applied around small scale features and on terraces approximately twice per year.

In recent years, maintenance has also focused on historic structure repair, and numerous buildings within the district have been re-roofed and lead abated in the past five years. Additional information on building and structure condition is provided in Chapter 7.
Chapter 7: Analysis of Character-defining Features and Integrity

INTRODUCTION

Organized similarly to all previous chapters, this chapter presents an analysis of change in the district over time, through a comparison of historic character with existing character. Historic character may be defined as the appearance and feeling of the landscape presented at the end of the period of significance. Based on the Secretary of the Interior’s Guidelines for the Treatment of Cultural Landscapes, character-defining features—the qualities of the landscape conveyed by its materials, features, spaces and finishes—are the means through which historic character is expressed.

Thus, to define the character of the landscape at the end of the period of significance, the following text inventories the features known to be present in the landscape from 1933-1940 for each landscape site, in categories delineated by the Guidelines for the Treatment of Cultural Landscapes. These include spatial organization, topography, vegetation, circulation, buildings and structures, water features, and small-scale features.

The following inventory distills the historic information provided Chapter 4: The CCC Years, 1933-1940 into a description of historic character for each individual landscape in the district. This distillation is followed by a section entitled “summary of change” which describes landscape change that has occurred between the period of significance and the present day. The summary of change is based on a comparison of the textual and graphic information provided in Chapter 4: The CCC Years and Chapter 6: Existing Conditions.

Further analysis occurs at the feature level and is provided as a set of matrices, one for each landscape. These matrices are organized around the categories of “character-defining landscape features” described in the Guidelines for the Treatment of Cultural Landscapes. Specific features, both historic and non-historic, are identified within these categories. Historic features are those that have been identified by the Oklahoma State Historic Preservation Office (SHPO) as contributing to the significance of the district. Contributing status has been determined as part of the ongoing List of Classified Structures (LCS) effort taking place in the district. Features listed as “Not Yet Determined” (abbreviated NYD in the matrices) have not yet been approved as contributing by the SHPO. Non-historic features are included in the matrices because their presence can detract from historic character and because their management must be considered as part of the preservation treatments outlined later in this document.

In each matrix, the condition of each feature is also described, as good, fair, or poor. These conditions are made based on the authors' fieldwork, consultation with park staff, and consideration of prior LCS condition assessments. Condition is usually qualified by comments in a final column of the matrix. These comments generally highlight negative change, deterioration, or other problems to be considered in treatment.

Together, the explication of historic character, the summary of change, and the assessment of feature condition comprise the basis for an analysis of integrity. This analysis is important because historic significance resides in districts, sites, buildings, and objects that possess integrity and which meet at least one of the National Register Criteria. According to the National Register’s Bulletin 16, integrity is represented in seven qualities: location, design, setting, materials, workmanship, feeling, and association. These qualities are assessed for each landscape and summarized in a short table. A description of overall integrity based on the quality assessments is also stated at the end of each section.

While the landscapes assessed in this chapter are individual resources, they are also, and perhaps more importantly, contributing resources within the larger historic district, itself a historic landscape. Therefore, at the end of the chapter we summarize the proceeding analyses and examine the integrity of the Platt Historic District as a whole. This in turn is the basis for considering the overall treatment philosophy for the district, as described in Chapter 8.
This chapter concludes with a statement of the district’s significance and period of significance based on National Register criteria.

TRAVERTINE & ROCK CREEKS

Historic Character

In 1940, Travertine and Rock Creeks were the central spines along which the entire Platt National Park was structured. The flow of the creeks followed the general topography of the park, with the high point at Buffalo Springs and the low point where Rock Creek exits the park. Creek banks were generally steep, with some erosion and undercutting of banks occurring along both stream courses, particularly during high water. In some areas, dry-laid stone walls were constructed to stabilize the stream banks. Vegetation within the stream corridors was generally more lush, native riparian vegetation. Numerous small-scale features were located along Travertine Creek and its tributaries, including the two dams and swimming hole at Little Niagara falls; four dams and two swimming holes at Bear Falls and Garfield Falls; a dam and swimming hole at Panther Falls; and a dam and swimming hole at Central Campground.

The confluence of Rock and Travertine Creeks created a sandy beach and popular bathing area immediately north of the Black Sulphur Springs causeway. Rock Creek was primarily a scenic area running through the western part of the park. In 1940, its northeastern bank had been recently stabilized and had minimal vegetation growing on it.

Summary of Change

Of all the features of the park, the natural features of Travertine and Rock Creeks have perhaps changed the least over the years. No major changes in their natural stream course, vegetation, or topography have been recorded since 1940. Some additional stone walls have been laid along the stream courses to prevent erosion, including some near Central Campground. However, these recent constructions have been carefully implemented to blend in with historic work and are difficult to distinguish as recent additions. Siltation has also been a problem in some areas. This has most notably occurred at the confluence of Travertine and Rock Creeks, at the beach below Black Sulphur Springs. However, this has been a pattern of deposition and erosion since the early history of the park during both normal flow conditions and flood conditions.

The streams’ original constructed features—dams and swimming holes—similarly exhibit little change. Travertine formations have, of course, built up on features and then worn away over time. In addition, some changes are, for instance, evident in the masonry and travertine rocks around the pool edges at Little Niagara Falls, but these are very minor and evident only to the informed eye.

Water quality may also have changed over time, but since this has not been monitored consistently over the past 60 years, this is difficult to determine. Recent bacterial monitoring indicates higher counts at some locations especially during low summer low flows, but due to a lack of previous monitoring it is unknown whether or not these counts are consistent with historic levels.

Overall Integrity Evaluation

Based on the analysis of the seven qualities of integrity summarized in the following chart, integrity for the creek system is high.

PERIMETER ROAD

Historic Character

The construction of the perimeter road spanned almost an entire decade, beginning in 1933 and ending with the paving of the road with asphalt in 1940. When completed, the perimeter road embodied typical NPS principles of road design: Its alignment followed the topography of the land, it coordinated horizontal and vertical alignment to achieve a graceful appearance, tight curvatures encouraged leisurely, lower-speed travel, and cut and fill side slopes were rounded to blend the road into the surrounding landscape.

From a standpoint of spatial organization, the perimeter road encompassed and provided access to the entire
Feature Condition Analysis: Travertine and Rock Creeks

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall topography</td>
<td>Supporting</td>
<td>Good</td>
<td>Little change; localized change & issues only.</td>
</tr>
<tr>
<td>Spatial Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creek “layout”</td>
<td>Supporting</td>
<td>Good</td>
<td>Little change; localized change & issues only.</td>
</tr>
<tr>
<td>Water Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travertine Creek storm drain</td>
<td>Yes</td>
<td>Good</td>
<td>Appears to be in good condition. Should establish clean-out schedule.</td>
</tr>
<tr>
<td>Central Campground dam</td>
<td>Yes</td>
<td>Good</td>
<td>Dam in good condition. Currently has build-up of twigs behind; should establish clean-out schedule. Travertine build-up on dam varies.</td>
</tr>
<tr>
<td>Panther Falls dam and pool</td>
<td>Yes</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Bear Falls upper and lower dams</td>
<td>Yes</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Garfield Falls -Upper and lower dams</td>
<td>Yes</td>
<td>Good</td>
<td>Dams in good condition. Establish clean-out schedule.</td>
</tr>
</tbody>
</table>

Integrity Analysis: Travertine and Rock Creeks

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>X</td>
<td></td>
<td></td>
<td>No change in location.</td>
</tr>
<tr>
<td>Design</td>
<td>X</td>
<td></td>
<td></td>
<td>Designed features along natural streams extant.</td>
</tr>
<tr>
<td>Setting</td>
<td>X</td>
<td></td>
<td></td>
<td>Park setting for stream exhibits only minor alterations.</td>
</tr>
<tr>
<td>Materials</td>
<td>X</td>
<td></td>
<td></td>
<td>Material integrity high.</td>
</tr>
<tr>
<td>Workmanship</td>
<td>X</td>
<td></td>
<td></td>
<td>Original workmanship of designed features evident and retained.</td>
</tr>
<tr>
<td>Feeling</td>
<td>X</td>
<td></td>
<td></td>
<td>Feeling of streams much like historic.</td>
</tr>
<tr>
<td>Association</td>
<td>X</td>
<td></td>
<td></td>
<td>Courses retain associations.</td>
</tr>
<tr>
<td>Overall Integrity</td>
<td>X</td>
<td></td>
<td></td>
<td>Overall, area has high integrity</td>
</tr>
</tbody>
</table>

The park landscape and all its features, from Bromide Hill to Buffalo Springs. The road followed the course of Rock and Travertine Creek through the northern portion of the park and aligned itself more or less with the park boundary through the park's southern half. This also created a scenic contrast, with the road moving through both the wooded stream valleys as well as winding through the prairie uplands. In the uplands, the road was designed to follow the contours, and its windy path reflected the area's rolling and dissected topography. The maximum grade on the road was about 8% (around Bromide Hill), and the road utilized horizontal and vertical circular curves connected with straight tangents. The upland sections between Bromide Hill and Buffalo Springs covered the most varied topography; as a result, they had the most curves, in addition to scenic views over the town and hills below.

Side slopes were graded back to blend with the surrounding topography, and these slopes were covered with prairie grass or Bermuda grass. In some places, however, such as along Horner's Bluff, side slopes were steeper, up to 2:1 and were sometimes blasted stone outcroppings or stone retaining walls instead of grassy slopes.

There are no specific planting plans for the park roadway; however, it appears that vegetation was intended to come up close to the edge of the road, as was again a typical principle in NPS roadway design.1 Similarly, viewsheds were likely meant to be maintained from the road corridor. In contrast, in some areas, as seen on aerial photographs, such as along the park's southern boundary, cedars were planted as screening along the road where it approached the park boundary.

Structures along the perimeter road were numerous and varied and usually served to carry the road over Rock and Travertine Creeks as well as smaller streams and drainage ways. These included major crossings over Rock Creek at Black Sulphur Springs and just west of Bromide. Crossings over Travertine Creek included Sycamore Crossing and the Panther Falls Box Culvert. Limestone Creek Bridge was another significant structure along the perimeter road, and crossed a medium-sized stream just north of Travertine Island.

Small-scale features along the road primarily included culverts of various types. Some were rock faced. These
culverts were generally situated to carry drainage under the road. In general, the road was designed to utilize sheet drainage, swales, and culverts to drain water away from the road surface.

Boulder guardrail was also installed along much of the roadway in 1937, replacing wooden guardrail, and by 1940, this seems to have been the park standard. However, exact locations of boulders are not known. Small parking areas or pull-offs were also common along the road; two were located on the north and south sides of the loop around Buffalo and Antelope Springs. Another was located just east of Bromide Hill, overlooking the former town site area. Three well-used pull-offs were also located on the south side of the road as it passed north of Travertine Creek at Bear and Garfield Falls.

Summary of Change

The perimeter road has undergone a significant amount of change since 1940. Chief among these changes was the removal of the section of the road around Buffalo...
and Antelope Springs. This segment of road, about one and three-quarters mile long, was abandoned in 1969 when the Nature Center was constructed. The road was completely removed, and traces of the road may only be seen in the grading and in areas of lesser vegetative growth with patches of asphalt and compacted soil. The road prism is largely intact along the segment north of Travertine Creek, while the road prism is mostly missing along the segment south of Travertine Creek. This change completely altered the access to and experience of Buffalo and Antelope Springs, making these areas pedestrian experiences only.

To allow the road to still function as a loop, a length of roadway circumnavigating Travertine Island was constructed to replace the portions removed. This new loop incorporated a small bridge across Travertine Creek in front of the Nature Center. In 1969, the new loop end, beginning and ending at Sycamore Crossing, was made into a one-way segment.

With the exception of these changes, much of the rest of the road is extant, though small portions along the Creek channels have been reconstructed after flood events. Changes to the road as it passes through the uplands have been even less common. Major structures such as the Rock Creek causeway, Limestone Creek bridge, and low-water crossing at Sycamore Falls are extant and unchanged. Other structures, such as the Black Sulphur Springs causeway and the Panther Falls box culvert have been reconstructed and modified. New pull-offs were added at Panther Falls and on the north side of the road near Central Campground and the Travertine Creek bridge and the pull-offs at Bear and Garfield Falls have been enlarged and formalized over the years. Boulder barrier still lines many areas of the roadway, and in some areas, seems to have been increased over time. New boulders often sit atop the grade rather than being buried.

Throughout the years the perimeter road has been resurfaced a number of times. In the summers of 2001 and 2002, much of the perimeter road was milled, repaved, and re-striped. The surfacing is now in excellent condition. As part of this work, new curbs were added in some locations (such as at the base of Bromide Hill) and the one-way loop was widened slightly. Overall, the vertical alignment of the road is somewhat higher (more so in some locations), due to deposition of new pavement over time.

Overall Integrity Evaluation

Based on the analysis of the seven qualities of integrity summarized in the following chart, integrity for the road system is moderately high.

TRAIL SYSTEM

Historic Character

By 1940, a network of trails had been established across the entire Platt National Park. The trail system was organized spatially as an east-west spine running from Buffalo and Antelope Springs to the Bromide Area, with a series of smaller trails connecting to this spine as linear or looped offshoots. In 1940, the main east west spine consisted of the Bromide-Pavilion Springs Trail, running approximately 1.4 miles from Bromide to Pavilion Springs, and the Travertine Creek Trail, running approximately 2.5 miles from Pavilion Springs to Buffalo Springs. Spurs connecting to the spine on the western side of the park included a short jog off the Bromide-Pavilion Springs Trail to the top of Bromide Hill plus an extension, again connecting to the Bromide Pavilion Springs trail, around the southern side of the Buffalo Pasture to Buckhorn Road (State Highway 177) and then north again to Pavilion Spring. On the eastern side of the park, a very short stretch of trail connected the southern end of the Travertine Creek Bridge to the Travertine Creek Trail just east of Pavilion Springs. By 1940, an informal, unnamed trail leading southeast from Pavilion Springs along Buckhorn Road to the Veteran’s Hospital was also in existence. This pathway appears clearly on the 1940 aerial photograph, although it has not been located on maps or in documents dating to this time period. The trails covered varied, rolling topography, and in response often followed the contours of slopes around hills rather than crossing the slopes perpendicularly.

The main spine and its spur trails were also connected to a series of pedestrian paths and trails which were situated in each smaller landscape composition within the larger park. Some of these “subsystems,” such as those in Flower Park were formalized and constructed in a manner similar to the greater trails system, while others were not. These smaller trail “subsystems” are described within their relevant component landscapes (below).
Though running through different parts of the park, the trails generally used a similar design vocabulary. For the most part, the trails were four and one-half feet wide, with a gravel base and crushed gravel top course. Small-scale features along the trail system included eight wooden footbridges across drainage swales and...
Chapter 7: Analysis of Character-Defining Features and Integrity and Statement of Significance

streams. These were constructed with stone abutments, log structural members, and plank decking. A stone arch bridge or culvert was also located along the trail between Bromide and Pavilion Springs (a second was constructed at Buffalo Springs, along the loop trail there; this is inventoried in that section, below). In other places, simple pipe culverts carried drainage under the trails. A total of twenty-two swales were constructed along the trails to carry drainage as well; records of the lengths, locations and design of these have not been located.

Special features were located along the spur up Bromide Hill; these were necessary to accommodate the grade and handle drainage moving rapidly down steep slopes. These included a large, switch-backed stone retaining wall; a tall stone arched bridge culvert, and stone swales along the trail.

Summary of Change

Since 1940, little change has occurred in the overall structure of the trail system, and it still exists as an east-west spine along the creek valleys, with looping offshoots. One major addition was made to the system: a trail traversing the Prairie Upland to the Veteran’s Hospital. This trail alignment was located along the construction of a new sewer alignment between the southeastern corner of Sulphur and the rest of the town.

Maintenance proved difficult on the system, with surface erosion common in heavy rains. As a result, trail surfaces have been replaced with new materials numerous times and are currently a pinkish to gray crushed granite material. Areas where cross-trail erosion is significant or persistent usually have been “hardened” with an impervious surface such as concrete, asphalt, or flagstone pavers. Most trails have remained about the same width as they were historically. However, the Travertine Creek Trail between the Nature Center and Buffalo Springs was realigned slightly after the construction of the Nature Center, and this trail is now significantly wider—by about three to four feet—than the original four and one-half feet.

Most change in the trail system has occurred at the level of small-scale features. No wood log and plank bridges exist anymore, though their stone abutments remain and are generally topped today with wooden plank bridge decks atop I-beam supports. Many of these decks do not have railings. Other changes have occurred to masonry features along the Bromide Hill spur. Stone swales were added on this trail in 1991. These were designed to utilize existing inlets; on the lower 100 to 200 feet of the 10% grade portion of the trail, new inlets with PVC drains and stone headwalls were added. Over time, minor changes to the retaining walls have been made as well.

Overall Integrity Evaluation

Based on the assessment of the seven aspects of integrity, below, overall integrity for the trail system is high. Though some losses of features have occurred, most features of the original design and construction have been retained. As a result, all aspects of integrity are judged to be high, with only minor demerits for change or loss. Thus, overall integrity for the system is high.

BROMIDE

Historic Character

In 1940, the Bromide area was one of the park’s important camping areas, as well as a key location for collecting and drinking mineral water. Historically, topography divided the Bromide area into two main areas: a large, level picnic and campground area and a steep hill. The steep hill provided a locale for the steep, switchbacked Bromide Hill Trail, which led to the Bromide Hill Overlook at the summit. Other features of Bromide Hill historically included a comma-shaped parking area off the perimeter road and a network of trails. Historic photographs reveal general character information about the hill and trail: the passage was narrow and vegetated with a combination of scrub and canopy trees. The trail itself was compacted gravel and fines, with a sophisticated stone swale drainage system located on the uphill side of the pathway. However, even in 1940 the path and swale system was somewhat unstable, as evidenced by reports of trail wash-outs. Views from the path back to the Bromide Pavilion were important from along the trail as well as from the summit.

The level, crescent-shaped picnic area on the terrace below Bromide Hill was historically defined by Lindsay Avenue to the north and Rock Creek to the south.
<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall area topography</td>
<td>Supporting</td>
<td>Good</td>
<td>Little, if any, change to area topography.</td>
</tr>
<tr>
<td>Spatial Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall area</td>
<td>Supporting</td>
<td>Good</td>
<td>Extant organization similar to historic.</td>
</tr>
<tr>
<td>Circulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicular routes within area</td>
<td>Supporting</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Bromide Hill parking</td>
<td>NYD</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Bromide Springs Trails</td>
<td>Yes</td>
<td>Good</td>
<td>Casual, compacted soil trails on flood plain. In relatively good condition; trails shift and have shifted over time.</td>
</tr>
<tr>
<td>Designed Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canopy over lawn</td>
<td>Supporting</td>
<td>Fair</td>
<td>Some tree loss over time; replantings needed.</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide comfort station</td>
<td>Yes</td>
<td>Good</td>
<td>Lead abatement and reroofing completed 2003.</td>
</tr>
<tr>
<td>Bromide Springs pavilion</td>
<td>Yes</td>
<td>Good</td>
<td>Issues include decline of trees in patio; loss of mineral water; ADA access; flagpoles; missing wooden bench.</td>
</tr>
<tr>
<td>Travertine ranger station</td>
<td>Yes</td>
<td>Good</td>
<td>Lead abatement and reroofing completed 2003.</td>
</tr>
<tr>
<td>Bromide ranger station</td>
<td>Yes</td>
<td>Good</td>
<td>Lead abatement completed 2002. Window fenestration not original. Fence around house not historic.</td>
</tr>
<tr>
<td>Garage</td>
<td>Yes</td>
<td>Fair</td>
<td>LCS determination of condition; examine in field. Needs lead abatement.</td>
</tr>
<tr>
<td>Bromide ranger station carport</td>
<td>No</td>
<td>Good</td>
<td>Non-historic structure, but in very good condition.</td>
</tr>
<tr>
<td>Water Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12th Street Fountain, including terrace and seat walls</td>
<td>Yes</td>
<td>Fair</td>
<td>Terrace mortar joints not original and need maintenance. Missing original jet element; chlorination issues per use. Missing water fountains; wall masonry needs maintenance to prevent future loss.</td>
</tr>
<tr>
<td>Bromide Springs pavilion lily pond</td>
<td>Yes</td>
<td>Fair</td>
<td>Pool leakage is major concern. Filled with sand to reduce depth. Connected to city water, not mineral spring as historic. Missing accurate flagstone edge.</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide entrance piers</td>
<td>Yes</td>
<td>Fair</td>
<td>Some masonry joints need repair. Missing original lettering.</td>
</tr>
<tr>
<td>Bromide entrance curbs and flagstone walk</td>
<td>Yes</td>
<td>Fair</td>
<td>Significantly repaired in 1960s. Some cracking and spalling in mortar.</td>
</tr>
<tr>
<td>Parking Drainage Inlets (3)</td>
<td>No</td>
<td>Fair</td>
<td>Located near dump station; need clean-out, repair.</td>
</tr>
<tr>
<td>Bromide entrance road culvert(s) is this the 12th/pr culverts</td>
<td>Yes</td>
<td>Fair</td>
<td>Erosion has exposed headwall.</td>
</tr>
<tr>
<td>Steps at Bromide Hill parking</td>
<td>Yes</td>
<td>Good</td>
<td>No major condition issues.</td>
</tr>
<tr>
<td>Culvert at Bromide Hill Parking</td>
<td>Yes</td>
<td>Fair</td>
<td>LCS determination of condition; examine in field.</td>
</tr>
<tr>
<td>Spring enclosures (2)</td>
<td>NYD</td>
<td>Fair</td>
<td>Lids should be examined in field for deterioration.</td>
</tr>
<tr>
<td>Pump House and pump</td>
<td>NYD</td>
<td>Good</td>
<td>Not historic; could be removed.</td>
</tr>
<tr>
<td>Bromide pedestrian causeway</td>
<td>NYD</td>
<td>Good</td>
<td>No major condition issues; should be cleaned out after floods.</td>
</tr>
<tr>
<td>Bromide Springs 3 Part Box Culvert</td>
<td>NYD</td>
<td>Good</td>
<td>Headwalls should be checked for stability.</td>
</tr>
<tr>
<td>Stone Pedestals for Wood Bench</td>
<td>NYD</td>
<td>Fair</td>
<td>Seem to be intact in woods; one or two missing. Original connection to wood bench not clear.</td>
</tr>
<tr>
<td>Travertine Ranger Station Wood Rail & Post Fence</td>
<td>No</td>
<td>Good</td>
<td>Not historic, and should be removed from LCS.</td>
</tr>
<tr>
<td>Travertine Ranger Station wooden Flagpole</td>
<td>NYD</td>
<td>Fair</td>
<td>Needs painting.</td>
</tr>
<tr>
<td>East steps at Bromide Hill</td>
<td>No</td>
<td>Good</td>
<td>Non-historic.</td>
</tr>
<tr>
<td>RV Dumping station</td>
<td>No</td>
<td>Good</td>
<td>Relatively new feature.</td>
</tr>
<tr>
<td>Modern Sign at 12th Street entrance</td>
<td>No</td>
<td>Good</td>
<td>No issues.</td>
</tr>
<tr>
<td>Job Corps Bridge</td>
<td>No</td>
<td>Good</td>
<td>No hand railing; steep ascent may be ADA access problem.</td>
</tr>
<tr>
<td>Hydrants</td>
<td>No</td>
<td>Good</td>
<td>Water spigots, varied kinds.</td>
</tr>
<tr>
<td>Grills</td>
<td>No</td>
<td>Good</td>
<td>Upright grills.</td>
</tr>
<tr>
<td>Picnic Tables</td>
<td>No</td>
<td>Good</td>
<td>Pipe tube and plank.</td>
</tr>
<tr>
<td>Trash cans (2 types)</td>
<td>No</td>
<td>Good</td>
<td>Animal-proof and traditional-lidded cans.</td>
</tr>
<tr>
<td>Boulder guardrail</td>
<td>Yes</td>
<td>Good</td>
<td>Boulders on top of grade (not embedded) are not original.</td>
</tr>
<tr>
<td>Views and Vistas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vista from Bromide Hill</td>
<td>Supporting</td>
<td>Good</td>
<td>View remains unobstructed.</td>
</tr>
</tbody>
</table>
Chapter 7: Analysis of Character-Defining Features and Integrity and Statement of Significance

Integrity Analysis: Bromide Area

<table>
<thead>
<tr>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Site and structures in original locations.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>All original design elements retained; minor change.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Minimal change with construction of Rock Creek Camp.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>All original materials retained.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Retains much original craftsmanship, though some replacement work along Cliffside Trail.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Park-like feeling retained.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Some minor loss of association due to loss of mineral water at pavilion.</td>
</tr>
</tbody>
</table>

Overall Integrity

X
Overall, area has high integrity

Spatially, the terrace was enclosed by the steep topography of Bromide Hill sweeping around the picnic area’s southern side. From a standpoint of spatial organization, the picnic area was subdivided by the circulation routes into approximately 5 functional areas: two picnic and camping areas to the north of the perimeter road; two more in the eastern part of the area south of the perimeter road; a recreational zone around the Bromide Pavilion; and a residential area around the Caretaker’s Residence (also known as Residence #1 at that time). The vegetation of the entire picnic and camping area was characterized by a layer of canopy trees, predominantly oaks, which shaded the level terrace. A combination of turf and compacted earth comprised the ground plane; the amount of turf to compacted earth probably depended on the amount of camping occurring during each year in the campground area.

The three loops of vehicular circulation routes through the area were gravel, with the exception of the perimeter road, which by 1940 was asphalt. It is not clear whether or not boulders lined the vehicular routes by 1940. Footpaths, primarily located around the Bromide Pavilion, were compacted earth or gravel. Buildings and structures included the Caretaker’s Residence (and its 1930s garage), the Bromide Community House, and the Iron Bridge, all important structures dating to the park’s early years. The Bromide Pavilion, the Bromide Comfort Station, and Rock Creek Causeway, were CCC additions to the setting. In addition, two primitive comfort stations were located north of the perimeter road; these accommodated campers who used the area until the 1950s. Water features included the area’s three springs (Bromide, Chloride and Medicine Springs) and associated pumping facilities; the Bromide fountain and associated plaza and walls; and the Bromide Pavilion lily pond. Other small-scale features included the 12th Street entrance piers, walkways, and curbing; and the pedestrian causeway over Rock Creek.

Summary of Change

The Bromide Springs and Bromide Hill area has not changed appreciably over the years since the end of the period of significance in either function or appearance. Most significant change occurred by 1969, and included the loss of the two primitive comfort stations north of the perimeter road and the loss of the Iron Bridge. Since 1969, little significant change has occurred. All major designed elements and structures are extant, including the Bromide Springs Pavilion, Comfort Station, Bromide Hill Overlook, Bromide Hill Trail, and elements of the 12th Street Fountain and Entry. Major landscape features such as the open lawns, natural water course of Rock Creek, and dramatic topography of Bromide Hill are very much like their historic conditions, based on historic photographs. Minor changes over time have included the widening and asphalting of roadways to accommodate increased vehicular use and loss of trees and plantings due to age and natural conditions. As noted in Chapter 6, although the number of trees in the area has been reduced only slightly, the species composition in the area has shifted away from oak, toward colonization species such as hackberry.

Mostly change has occurred via the loss or change in small-scale features. The stone swales and walls along Bromide Hill Trail have been repaired and revised a number of times in an effort to confront erosion problems. Lost features include the wood and stone bench around the Pavilion Lily Pond. New features include the RV dumping station, job corps bridge, and a number of new footpaths, as seen in a visual comparison.
of the 1940 and existing conditions plans for the areas (Drawings 3 and 15). Other additions include picnic tables, hydrants, grills, and trash cans. These changes are relatively minor.

The area’s water features have perhaps changed the most, if not visually, then functionally. Mineral water springs no longer supply the Bromide Pavilion, which now dispenses only city water. This loss is significant because it indicates a major change in use of the area.

Overall Integrity Evaluation

Based on the assessment of the seven aspects of integrity, below, overall integrity for the Bromide Springs and Bromide Hill area would appear to be high. Essential features area retained and visible, and most, if not all of the aspects of integrity are judged to be high. Only slight modifications to the wooded park-like setting of Bromide Springs and Bromide Hill have occurred.

WALNUT GROVE

Historic Character

During the district’s period of significance (1933-1940), Walnut Grove evolved from an open field into a bustling CCC camp. When CCC Camp 808 left the site at the end of the period of significance, the temporary camp facilities were removed, and it began its planned evolution into a picnic area, as described in the 1942 Master Plan. Though there is little photographic documentation of the area dating to the years immediately following the disbandment of the CCC camp, the evolution from camp to picnic area does not appear to have effected major change on the site. Rather, it seems to have mainly required the removal of the buildings and the reinstitution of turf throughout the area. This idea is confirmed by aerial photographs from the 1950s taken after the removal of the CCC structures. These photographs show Walnut Grove as a large, linear, open area, dotted with trees and bounded by a wooded hillside to the north and the perimeter road and the sloping banks of Rock Creek to the south.

The topography of the area was comprised of moderately flat floodplain terrace located above Rock Creek. From a standpoint of spatial organization, the space was subdivided into three zones: an open picnic area to the west, the former tennis courts, delineated by their level grading in the middle, and the former CCC camp to the east, now regenerating to more park-like vegetation. This vegetation was primarily canopy trees, which presumably included black walnut trees, as well as the “monkey tree,” which, according to oral histories, was extant at the end of the period of significance. Turf comprised much of the ground plane throughout the area, though at the end of the period, it was probably rather sparse in locations of former footpaths and vehicle routes. Besides these former routes, other circulation features were absent, with the exception of the perimeter road. Once the CCC structures were removed, no buildings remained in the area, and the only small-scale features that remained were the four fireplaces at the base of the hillside in the far western part of the area and a culvert with a stone headwall at the pedestrian entrance from the parking area along the Perimeter Road.

Summary of Change

Although the features of the CCC camp are interesting and important, particularly from an interpretive standpoint, from a landscape design and preservation standpoint, the conditions and features at the end of the period of significance are those important for evaluation and preservation. In 1940, the area’s intended transformation to a picnic ground had only begun. As a result, it seems likely that Walnut Grove today probably is somewhat more “manicured” than it was at the end of the period of significance. It is also reasonable to believe that Walnut Grove exists much as it did at the end of the period of significance, with little change in either function or overall design. In part this is due to the design’s intrinsic simplicity: it is a level area dotted with canopy trees. These major landscape features date to 1940 and remain extant. In particular, vegetation patterns do not appear to have changed significantly since 1933, although a recent ice storm (2001) damaged many trees. The one significant specimen tree—the Monkey Tree—is still extant, as are the area’s only small scale features—four stone fireplaces dating to the CCC era and the culvert and stone head wall.

Additions and changes have likewise been minor. The greatest of these was the addition of a comfort station which was added in the 1960s. While this building does
Feature Condition Analysis: Walnut Grove

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td>Natural, existing</td>
<td>Yes</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shows little change over time.</td>
</tr>
<tr>
<td>Spatial Organization</td>
<td>Open, informal arrangement</td>
<td>Yes</td>
<td>Good</td>
</tr>
<tr>
<td>Circulation</td>
<td>Sidewalk</td>
<td>No</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Appears glaring bright white in landscape.</td>
</tr>
<tr>
<td>Designed Vegetation</td>
<td>Canopy trees in lawn</td>
<td>Yes</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Some tree damage, but ratio of open to closed canopy is good.</td>
</tr>
<tr>
<td></td>
<td>Monkey Tree</td>
<td>Yes</td>
<td>Fair</td>
</tr>
<tr>
<td>Structures</td>
<td>Comfort station</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td>Fireplaces (4)</td>
<td>Yes</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conditions of fireplaces varies somewhat, but all need repair. Chains attaching grills to fireplaces are loose or detached. Some damaged stone masonry, and internal firebricks missing in some locations.</td>
</tr>
<tr>
<td></td>
<td>Culvert & headwall</td>
<td>NYD</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Historic and should be added to LCS.</td>
</tr>
<tr>
<td></td>
<td>Hydrants</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type varies.</td>
</tr>
<tr>
<td></td>
<td>Picnic tables</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard brown pipe and plank bridges in good condition.</td>
</tr>
<tr>
<td></td>
<td>Grills</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upright grills.</td>
</tr>
<tr>
<td></td>
<td>Garbage cans</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Both raccoon-proof and traditional lidded cans.</td>
</tr>
<tr>
<td></td>
<td>Wayside Exhibit</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typical NPS fiberglass embedded graphic sign.</td>
</tr>
</tbody>
</table>

Integrity Analysis: Walnut Grove

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>X</td>
<td></td>
<td></td>
<td>Original location is retained.</td>
</tr>
<tr>
<td>Design</td>
<td>X</td>
<td></td>
<td></td>
<td>Greatest change from 1940 is addition of comfort station.</td>
</tr>
<tr>
<td>Setting</td>
<td>X</td>
<td></td>
<td></td>
<td>Context of town to the north has been retained.</td>
</tr>
<tr>
<td>Materials</td>
<td>X</td>
<td></td>
<td></td>
<td>Mostly grass and canopy trees; these are unchanged.</td>
</tr>
<tr>
<td>Workmanship</td>
<td>X</td>
<td></td>
<td></td>
<td>Not significant aspect for this component landscape.</td>
</tr>
<tr>
<td>Feeling</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains pastoral feeling.</td>
</tr>
<tr>
<td>Association</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains association with NPS park design and as site of CCC camp through interpretive signage, local knowledge and oral tradition.</td>
</tr>
<tr>
<td>Overall Integrity</td>
<td>X</td>
<td></td>
<td></td>
<td>Overall, area has high integrity.</td>
</tr>
</tbody>
</table>

not contribute to the landscape’s current significance and actually detracts from the 1940s design, the building may itself at a later date be determined significant as part of a layer of Mission 66 design within the park. Picnic tables, grills, water hydrants, and trash cans have also been added and replaced over the years. Other changes have included the addition of barrier stones, the paving and reconfiguration of parking areas along the north side of the perimeter road, the addition of concrete paths to the comfort station, and increased understory growth in the hillside to the north and under groups of trees in the picnic areas. But these are all relatively minor changes, not affecting the overall use, appearance, design, or setting of the area. Topography, circulation, and vegetation patterns remain essentially unchanged.

Overall Integrity Evaluation

Overall, Walnut Grove has high integrity, because of its high integrity in all seven aspects.
BLACK SULPHUR SPRINGS

Historic Character

As the only pavilion area not completely reconstructed by the CCC, in 1940 Black Sulphur Springs was perhaps something of an anomaly within Platt National Park. Centrally located in the park just west of the confluence of Rock and Travertine Creeks, the area was bounded by Rock Creek to the north and east, the perimeter road to the south, and the park boundary at Tishomingo Avenue to the west. Near the park boundary, the topography was essentially level, while to the east the topography rose before gently sloping down as a sandy beach leading to Rock Creek. The area was spatially organized into three major zones, including the open picnic area to the west, the spring and beach zone (including the parking lot) to the east and a large picnic area, with two entrances, to the south. The perimeter road was the major vehicular circulation feature running through the area, and included the Black Sulphur Springs Causeway crossing Rock Creek. A gravel parking area was also located at the Black Sulphur Pavilion, and gravel loops provided access to the picnic areas to the south and west. Important aspects of the CCC-constructed main parking area included its stone curbs, the flagstone walk along the parking area's eastern edge and the axial flagstone path leading from the parking lot to the pavilion. Trails led from the area to Tishomingo Ave and from Walnut Grove to the pavilion.

In general, the vegetation of the area was historically characterized by clusters of trees, predominantly oaks, walnuts, elms and cedars set in turf. A composition of plantings was designed for the area around the pavilion, including horizontal junipers at the intersection of the flagstone walks, groups of cedars on the crest of the hill around the pavilion, and “foundation” plantings of small trees at the pavilion corners. A few plantings were also located in the island of the parking area, though these do not appear to have successfully thrived.

The area's major structure was the neoclassical Black Sulphur Springs Pavilion, located on the topographic high point of the area. Constructed in the late 1920s, the structure had a metal tile roof, concrete and stucco walls, and contained a concrete fountain and basin dispensing sulphur water. No important small scale features are recorded for the period of significance, but likely included picnic tables and spigots in the western part of the area.

Summary of Change

Overall, the landscape character of the Black Sulphur Springs area today appears much as it did historically. The area's major landscape features—such as the natural watercourse of Rock Creek, the area's overall topography, and its shady tree canopy—are extant and exist much like their historic conditions. Similarly, all major designed elements and structures are extant; these include the Black Sulphur Springs Pavilion, the parking area, and flagstone walkways.

However, some minor changes in the details of the area's landscape character have also occurred since the 1940s. Some of the original plantings around the pavilion did not thrive in the early years, and what remains today appear to be volunteer trees clustered around the corners of the pavilion. A large bois d’arc and a cluster of cedars do remain and appear to date from the 1930s, but the cedars appear leggy and likely do not provide the sense of spatial enclosure they may have originally.

The 1960s saw the major additions to the area: the Mission 66 comfort station and its associated parking area. Concrete pathways were recently poured between the comfort station and the parking area. Other additions have included the concrete block spring house and the addition of or minor changes to small scale features such as an interpretive signs picnic tables, grills, water pump and water spigots. The Black Sulphur Springs causeway was rebuilt and widened with a pedestrian walkway on its north side. Today the causeway and its flanking stone walls are being undermined by Rock Creek. This structure needs repairs and perhaps some channel alterations to better direct water to all three box culverts and to arrest its deterioration.

Over time, losses to the area also occurred. The pavilion lost its mineral water supply when the basin was filled in with concrete and the water supply was redirected to a new hydrant, erected just northwest of the pavilion to dispense the spring’s mineral water; because the water is piped from this spring to the pump, the water is now chlorinated. More recently, the sandy beach below the pavilion has lost its use as bathing area; the area is less often dredged of its sand deposits, making the swimming area at the base of the hill shallower and less appealing for bathing. In addition, a recently implemented monitoring program has detected increased bacterial
Feature Condition Analysis: Black Sulphur Springs

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generally level; slopes down to</td>
<td>Supporting</td>
<td>Good</td>
<td>Little change exhibited over time; some siltation at bottom of beach area.</td>
</tr>
<tr>
<td>beach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three zone area</td>
<td>Supporting</td>
<td>Good</td>
<td>Little change over time.</td>
</tr>
<tr>
<td>Circulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavilion parking area</td>
<td>Yes</td>
<td>Good</td>
<td>Asphalt surface worn.</td>
</tr>
<tr>
<td>Stone path & curbs</td>
<td>Yes</td>
<td>Good</td>
<td>Some wear.</td>
</tr>
<tr>
<td>Comfort station parking area</td>
<td>No</td>
<td>Good</td>
<td>Some wear on surface.</td>
</tr>
<tr>
<td>Designed Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trees at pavilion</td>
<td>Supporting</td>
<td>Fair</td>
<td>Crowded; no precise historic data/design for replacement.</td>
</tr>
<tr>
<td>Canopy at picnic area</td>
<td>Supporting</td>
<td>Good</td>
<td>Overall character significant.</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Sulphur Spring pavilion</td>
<td>Yes</td>
<td>Fair</td>
<td>Fountain basin filled in with concrete; metal roof deteriorating; needs lead</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>abatement. Mineral water not dispensed.</td>
</tr>
<tr>
<td>Mission 66 Comfort Station</td>
<td>No</td>
<td>Good</td>
<td>Needs lead abatement and reroofing.</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand pump</td>
<td>No</td>
<td>Good</td>
<td>Water currently chlorinated.</td>
</tr>
<tr>
<td>Pump house</td>
<td>No</td>
<td>Good</td>
<td>No significant issues.</td>
</tr>
<tr>
<td>Interpretive sign</td>
<td>No</td>
<td>Good</td>
<td>Typical NPS fiberglass embedded graphic sign.</td>
</tr>
<tr>
<td>Boulder guardrail</td>
<td>No</td>
<td>Good</td>
<td>Embedded depth varies.</td>
</tr>
<tr>
<td>Hydrants</td>
<td>No</td>
<td>Good</td>
<td>Style varies.</td>
</tr>
<tr>
<td>Picnic tables</td>
<td>No</td>
<td>Good</td>
<td>Pipe and plank.</td>
</tr>
<tr>
<td>Grills</td>
<td>No</td>
<td>Good</td>
<td>Upright grills.</td>
</tr>
<tr>
<td>Garbage cans</td>
<td>No</td>
<td>Good</td>
<td>Traditional lidded trash cans.</td>
</tr>
<tr>
<td>Concrete walk</td>
<td>No</td>
<td>Good</td>
<td>At comfort station; bright white color.</td>
</tr>
</tbody>
</table>

Integrity Analysis: Black Sulphur Springs

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>X</td>
<td></td>
<td></td>
<td>Original location is retained.</td>
</tr>
<tr>
<td>Design</td>
<td>X</td>
<td></td>
<td></td>
<td>Overall layout is retained; addition of comfort station detracts somewhat.</td>
</tr>
<tr>
<td>Setting</td>
<td>X</td>
<td></td>
<td></td>
<td>No major changes to surrounding area.</td>
</tr>
<tr>
<td>Materials</td>
<td>X</td>
<td></td>
<td></td>
<td>Original materials retained; some deterioration to pavilion’s metal roof.</td>
</tr>
<tr>
<td>Workmanship</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains most original finishes.</td>
</tr>
<tr>
<td>Feeling</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains original recreational uses and accompanying feelings.</td>
</tr>
<tr>
<td>Association</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains original associations.</td>
</tr>
<tr>
<td>Overall Integrity</td>
<td>X</td>
<td></td>
<td></td>
<td>Overall, area has high integrity.</td>
</tr>
</tbody>
</table>

counts at this swimming area at certain times of the year. Users are alerted to these higher levels, but swimming is not prohibited.

Overall Integrity Evaluation

Based on the above assessment of the seven aspects of integrity, overall integrity for the Black Sulphur Springs area would appear to be high. Essential features are retained and visible, and all of the aspects of integrity are high.

FLOWER PARK

Historic Character

In 1940, Flower Park was a well-used and popular area in Platt National Park. Located close to the city of Sulphur, the area offered a variety of recreational experiences, including swimming, wading, walking, picnicking and drinking mineral water. The area was defined by Highway 7 or Broadway (formerly Davis) Avenue on the north, State Highway 18 (now US 177) on the east, by
Travertine Creek and the perimeter road on the south, and by Rock Creek on the west.

The park’s natural topography divided it into two main areas: a relatively steep hillside along the Broadway Ave sloped to the south, becoming large, level terrace above Rock and Travertine Creeks. A set of paths with two long stone staircases wound down from the town into the park and to Vendome to the west. The terrace at the base of the hillside was a rolling lawn crossed by network of gravel paths. Canopy trees—predominantly oaks, elms, and walnuts—scattered across the lawn comprised the major vegetation feature of the park. The hillside, however, was densely planted with cedars in the 1930s, and by 1940 these were becoming an important visual, if not enclosing feature of the landscape. The lower slopes of the hillside, adjacent to the park’s open lawn, were also initially planted with native wildflowers; it is not known how long these plantings maintained themselves, however.

Vehicular circulation in the Flower Park was limited to the rectangular Vendome parking lot and a small parking area located next to Lincoln Bridge. Pedestrian circulation was provided by a network of compacted gravel paths with stone curb edging, with entrances at the Vendome parking lot, Lincoln Bridge, Central Campground and the main entrance at Broadway Avenue and State Highway 18 (now Highway 177).

In 1940, buildings and structures in Flower Park included the comfort station, Lincoln Bridge, and the Main Entrance. Immediately adjacent to the parking lot was the Vendome dance hall and its associated features, including the Plunge Pool and Vendome Well. Vendome Well was the source of the park’s major water feature, the Vendome Stream. Vendome Stream ran from Vendome Well, underneath the parking lot, surfacing in Flower Park, where it meandered with two large wading pools and a series of falls through the park’s verdant lawns, emptying into Travertine Creek just upstream from Lincoln Bridge. Small-scale features in Flower Park included a small stone arch bridge crossing a swale, and a small wooden bridge and stepping stones across the stream.

Summary of Change

Today Flower Park is still one of the most-used areas of the district and change has been minimal. All major designed elements and structures are extant, including the Flower Park Comfort Station, and the Vendome Parking Area. Major landscape features such as the open lawns, natural water courses of Travertine and Rock Creeks, and topography are also much like their historic conditions, based on historic photographs. In general, the park-like character of Flower Park, is still strongly retained.

However, like many other areas of the district, minor changes have occurred over time. The semi-circular portions of the main entry gates were lost to traffic accidents in the 1970s. Other changes include the widening and slight re-alignment of some of the pathways as well as the loss of stone curbing along the path edges. In some places, it appears that curb is extant below layers of gravel where the paths have been widened to accommodate two walkers walking side-by-side. Alignment changes appear to be due to changes in drainage, with path surfaces hardened with concrete or relocated slightly to allow water to flow across or over the paths.

Vegetation changes have also occurred; cedars on the hillside have grown up, making this area a dense forest rather than cedar clumps interplanted with wildflowers, lawn, prairie grasses, and forbs. Vegetation on the Rock Creek revetment wall has also grown dense and thick, making it a wooded bank, rather than a naked slope, as it was in the years after its construction. Canopy trees are generally retained in the lawn areas, though today there are more hackberries and fewer oaks than there were historically (as described in Chapter 6). Similar modest change has occurred to the stream features in Flower Park. Though the Vendome stream is still a central feature, the forms of the pools have been altered significantly and their size reduced by about half. The creek’s stone edging and stone dams are showing some signs of deterioration, with the creek flow beginning to undermine stones in both these elements.

Picnic tables are now scattered about in some areas, and other small-scale features have been lost or have deteriorated over time. Steps on the hillsides are crumbling in some locations, showing erosion problems. A small wooden bridge over the Vendome Stream near Lincoln Bridge was replaced by a stone bridge.

The planned new Visitor Center on the former Vendome property will also affect Flower Park in terms of setting. In many ways, this is a positive change, since it will be
Feature Condition Analysis: Flower Park

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td>Supporting</td>
<td>Good</td>
<td>Little change over time seen.</td>
</tr>
<tr>
<td>Spatial Organization</td>
<td>Supporting</td>
<td>Good</td>
<td>Little change over time.</td>
</tr>
<tr>
<td>Overall park organization</td>
<td>Supporting</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Flower Park parking and access road</td>
<td>Yes</td>
<td>Good</td>
<td>Will be repaved and access changed during Visitor Center construction.</td>
</tr>
<tr>
<td>Designed Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canopy trees & lawn</td>
<td>Supporting</td>
<td>Good</td>
<td>Some losses over time, including oaks and wildflowers.</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Park Comfort Station</td>
<td>Yes</td>
<td>Good</td>
<td>No major issues.</td>
</tr>
<tr>
<td>Lincoln Bridge</td>
<td>Yes</td>
<td>Fair</td>
<td>Missing a few stones top of crenelated walls.</td>
</tr>
<tr>
<td>Main Entrance piers and walks</td>
<td>Yes</td>
<td>Good</td>
<td>Condition is OK, but structure is missing portions of original wall; also</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>missing original metal lettering. These lower integrity.</td>
</tr>
<tr>
<td>Bridge at Travertine Creek and Highway 177</td>
<td>Yes</td>
<td>Good</td>
<td>Efflorescence evident on underside of bridge.</td>
</tr>
<tr>
<td>Water Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Park pools & Vendome Stream and falls</td>
<td>Yes</td>
<td>CLR- Fair</td>
<td>Pool size much reduced from original, lowering integrity; dams and bank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stones along stream being undermined; wear along creek edges.</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Park trails, steps and curbs</td>
<td>NYD</td>
<td>CLR- Poor</td>
<td>Trails widened and changed slightly in alignment over time; missing or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>buried stone curbing; Rehabilitation begun in summer 2003.</td>
</tr>
<tr>
<td>Flower Park abandoned trail bridge</td>
<td>Yes</td>
<td>Good</td>
<td>Bridge in good condition; trail rehabilitation during 2003 reestablished</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>missing trail associated with the bridge.</td>
</tr>
<tr>
<td>East steps of Upper Trail in Flower Park</td>
<td>Yes</td>
<td>Good</td>
<td>Rehabilitation during 2003, replaced aggregate.</td>
</tr>
<tr>
<td>West steps of Upper Trail in Flower Park</td>
<td>Yes</td>
<td>Good</td>
<td>Generally solid and good. Rehabilitation during 2003, replaced aggregate.</td>
</tr>
<tr>
<td>Stepping stones across stream</td>
<td>Yes</td>
<td>Good</td>
<td>Should be added to LCS.</td>
</tr>
<tr>
<td>Reunion post</td>
<td>No</td>
<td>Good</td>
<td>Non-historic.</td>
</tr>
<tr>
<td>Garbage cans</td>
<td>No</td>
<td>Good</td>
<td>Traditional lidded cans.</td>
</tr>
<tr>
<td>Picnic tables</td>
<td>No</td>
<td>Good</td>
<td>Typical pipe and plank tables.</td>
</tr>
<tr>
<td>Stone footbridge</td>
<td>No</td>
<td>Good</td>
<td>Non-matching stone, different character.</td>
</tr>
<tr>
<td>Interpretive sign</td>
<td>No</td>
<td>Good</td>
<td>NPS aluminum base, with fiberglass embedded graphic.</td>
</tr>
</tbody>
</table>

Integrity Analysis: Flower Park

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>X</td>
<td></td>
<td></td>
<td>Original location retained.</td>
</tr>
<tr>
<td>Design</td>
<td>X</td>
<td></td>
<td></td>
<td>Overall layout and structures retained from historic period.</td>
</tr>
<tr>
<td>Setting</td>
<td>X</td>
<td></td>
<td></td>
<td>No major change to surrounding area or downtown.</td>
</tr>
<tr>
<td>Materials</td>
<td>X</td>
<td></td>
<td></td>
<td>Most original materials retained; minor change; loss of mineral water in fountain.</td>
</tr>
<tr>
<td>Workmanship</td>
<td>X</td>
<td></td>
<td></td>
<td>Loss of some feature details, e.g., path curbing.</td>
</tr>
<tr>
<td>Feeling</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains original recreational uses and feeling associated with a leisure landscape.</td>
</tr>
<tr>
<td>Association</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains original associations w/ NPS design and park activities.</td>
</tr>
<tr>
<td>Overall Integrity</td>
<td>X</td>
<td></td>
<td></td>
<td>Overall, area has high integrity.</td>
</tr>
</tbody>
</table>

located near the site of the former plunge pool and dance hall, returning a public use to the area west of the Flower Park/Vendome parking area. As part of the project, the parking area will be milled, repaved and the inverted crown drainage patterns reinstated and the Broadway Avenue entrance will be changed. In balance, the changes probably do not constitute a major loss in historic character within Flower Park or the overall Platt District.
Overall Integrity Evaluation

Based on the above assessment of the seven aspects of integrity, overall integrity for Flower Park would appear to be high. Essential features are retained and visible, and most, if not all of the aspects of integrity are judged to be high.

BUFFALO PASTURE

Historic Character

In 1940 the Buffalo Pasture area was an irregularly-shaped, open pasture for bison. The pasture was bounded by the Administration Area and Rock Creek Floodplain to the north, the trail along the former Bromide-Sulphur Lane to the south and the Rock Creek floodplain terrace to the west. Delineated by a fence line, the space was largely open terrain with gently rolling topography consisting mostly of northwest facing slopes. A pond providing water for buffalo was located within the western portion of the pasture; along the eastern edge, just off State Highway 18, visitors could access an overlook for viewing the bison. Wooded ravines in the Buffalo Pasture were used as a dump location for CCC crews discarding of park trash; these may be considered archeological sites today.

The area’s vegetation probably provided its greatest definition of character; in 1940, the pasture was an open prairie with a small percentage of tree cover primarily in the drainage ravines. The tree cover, mostly planted in 1930 by the CCC was red cedar and was organized as clumps planted along the southern fence line. Circulation systems within the area were minimal, primarily crude trails accessing the interior for bison care and management. Vehicular access on State Highway 18 was provided only to the bison overlook, where a small parking area was located. Pedestrian circulation included the trail around the south and east edge of the pasture to Pavilion Springs. The only structure in the area was the dam and its spillway which created the bison pond. Small-scale features included the fence around the pasture.

Summary of Change

The function of the Buffalo Pasture has not changed appreciably since the period of significance and its size and shape reflect its historic conditions. Similarly, its overall topography and its few designed features and structures—the pond, dam, and fence—are extant. A minor change has been the enlargement and formalization of the visitor overlook along the state highway.

The most significant change over time has been the change to the vegetation patterns in the area. Once a wide open area with significant views across the park, today the pasture is densely packed with woody vegetation. The trees and shrubs change the area visually and give it a strong sense of enclosure. The thickness of the cedar trees and their relatively low height and dense branching gives the landscape a high degree of visual density and other woody species contribute to the closed landscape. This enclosure is a huge change from the open historic character. The remaining grassland also shows changes, with an increase in exotic species possibly imported in non-native hay. Horses were added to the pasture but have been removed to a temporary paddock immediately north-west of stable. The bison herd was down to two cows and a bull during 2003, perhaps the lowest number since the herd was established. During 2003, two female calves from Wichita Mountain Wildlife Refuge were added to the herd, bringing herd to five.

Overall Integrity Evaluation

Changes in vegetation significantly impinge on the area’s integrity in terms of feeling and materials. However, high integrity of location, setting, and association (the bison and pasture are very important to the local community) serve to mitigate the impact of the vegetative change, and the Buffalo Pasture retains integrity that is moderately high. In addition, the changes in vegetation are potentially reversible with forest clearing. Alternatively, the growth of cedar might be considered to be part of a natural process of succession, depending on whether management goals emphasize natural vegetative resources or the cultural resource of the pasture.
Chapter 7: Analysis of Character-Defining Features and Integrity and Statement of Significance

SUPERINTENDENT’S RESIDENCE

Historic Character

Located within the Buffalo Pasture, on one of the highest points in the park, the Superintendent’s Residence was, in 1940, a highly visible feature in the park landscape and had commanding view of large areas in the park. The area was located just west of State Highway 18, in the middle of an open prairie, on topography consisting of a relatively flat hilltop. Spatially organized as a residential cluster, the house and garage structures were oriented perpendicularly to each other, creating two sides of a rectangular yard that was further enclosed by a picket fence. Although there is a 1930s plan for the area, this plan was not fully implemented, and documentation of the residence’s landscape is not detailed and is limited to a few photographs. However, it is known that the vegetation within and around the yard was characterized by an open lawn, a hedge enclosing the back of property, with more ornamental trees and shrubs located near the fence lines. Foundation plantings were located around the house and grapes grew on an arbor located near the garage. Vehicular circulation included two entry driveway loops, one on the south to the area’s back and a second one on the north leading to the front of property. Pedestrian circulation consisted of flagstone paths around the house. Small-scale features consisted of a flagstone patio between the garage and house and one at south side of house off the master bedroom, the picket fence and the grape arbor.

Summary of Change

It’s clear that some change has occurred since the period of significance, though the general appearance, topography and function of the area are much like their historic conditions. All major designed elements and structures are extant, including the residence, garage, flagstone patios, and entry driveway. The residence has
undergone some minor exterior changes, such as window replacements, removal of upper gable end windows, addition of planters, addition of second patio, and interior renovations. Though currently unoccupied, the building has mostly been used for staff housing since 1933. At one time it also housed offices for the park staff.

The change in historic character that has occurred since the period of significance is relatively minor. The second, southern entry drive has been eliminated, though this does not appear to have been intended as a permanent feature anyway. Small-scale features have also been lost; these include the picket fence and grape arbor. Other small-scale features have been added; these include a chain link fence, a concrete picnic table similar to those built at Rock Creek Campground, a martin house, and a basketball hoop. Although the northern drive once featured a turnaround with a center island, today the entire expanse is paved.

The most substantial change to the area is due to vegetation growth over time. Once located atop an open hillside with views to the north and east, the residence now surrounded by dense woody vegetation on the west and by cedars and other woody species on the highway side. This vegetation strongly encloses the house, making it feel secluded and hidden, a character that did not exist historically.
Chapter 7: Analysis of Character-Defining Features and Integrity and Statement of Significance

Overall Integrity Evaluation

The integrity of the Superintendent’s Residence is moderately high. Integrity is lowered due to changes in materials, particularly vegetation, that affect setting and feeling. However, with vegetative clearing, some of these changes may be reversible, leading to a slightly higher level of integrity than otherwise implied.

PRAIRIE UPLANDS

Historic Character

Located in the south-central part of the park, mostly on the east side of State Highway 18, the prairie upland was, until 1937, the site of nine-hole golf course. The area was bounded by the park’s boundary and the veteran’s hospital to the south, the Buffalo Pasture to the west, and Travertine Creek and the employee residence area on the north and east. Historically, the topography of the area was constituted of gently rolling terrain with north-facing slopes. The vegetation of the area was a combination of open mixed grassland and oak savanna with small percentage of tree cover. Vehicular circulation included State Highway 18, which crossed the area from south to the north, the perimeter road that crossed the southernmost edge of the park and the short entry driveway to the nursery. Pedestrian circulation was provided via trails. The first “trail” was a fire break running north-south along the east side of the highway, and there was also a segment of the longer trail along the Travertine Creek. Small-scale features included the pair of native stone entry piers located just within the south park boundary and the three dams south of the former golf course.
Summary of Change

In terms of use and function, the Prairie Upland area has not changed appreciably since the period of significance. All major designed elements and structures are extant. Major landscape features such as the topography are much like their historic conditions. Yet significant change over time has occurred to the vegetation patterns in the area. Once an open area, the vegetation cover—both evergreen and deciduous woody vegetation—has now significantly increased within the uplands, making the landscape visually dense and spatially enclosed. Other minor changes have included the loss of the trail along the highway and some modifications to State Highway 18 (now Highway 177) and the addition of Veteran’s Trail.

Overall Integrity Evaluation

As demonstrated in the chart below, the area has medium-high integrity, due in part to changes in materials and feeling.
PAVILION SPRINGS

Historic Character

Located in the center of the park, bounded by State Highway 18 (now Highway 177) on the west, the entry road to the south, sloping topography to the east, and the perimeter road to the north, Pavilion Springs was a key location for drinking and collecting mineral water. Its overall design was simple and uncluttered. Topographically, the area was a shallow oval depression in the landscape with the steep, almost vertical slopes of the adjacent highway creating a strongly enclosing edge on the west. Canopy trees, the site’s major vegetation feature, provided a sense of ceiling overhead.

Within this shallow bowl was the area’s focal point and only building, the Pavilion Springs Pavilion, built over the area’s major water feature, the Big Tom spring. To the south and east of this structure, were the entry road and oval parking lot, their sinuous curves moving with the bowl-shaped topography, as was typical of NPS circulation design. Small-scale features included the Pavilion Springs Underpass, steps from the parking area and on the north side of the pavilion, a stone check dam north of the pavilion, a half log identification sign (no longer extant, but seen in historic photographs) and boulder barrier around parking area.

Summary of Change

Very minor change has occurred to this area since 1940, and primarily includes the loss of canopy trees. A few large trees located at the base of the pavilion have been lost; these losses alter the building’s sense of enclosure within the landscape as well as its immediate appearance. Addition of boulder guardrail here also occurred. Otherwise all major buildings and features remain intact. A recent road project impacted the setting somewhat, with the construction of new curbs and guardrail along Highway 177 immediately adjacent to the landscape.

Overall Integrity Evaluation

Based on the high integrity of all seven aspects, overall integrity for Pavilion Springs is high.

HILLSIDE SPRINGS

Historic Character

In 1940, Hillside Springs was a quiet space, secluded from its surroundings by topography and vegetation. Hillside Springs was spatially organized into two zones: a parking area and grotto-like spring landscape. The two zones were separated by topography, with a relatively steep slope buffering the spring area from the parking lot and highway above. The vegetation of the area was fairly open around both spring and parking area, though cedar plantings were planted around the spring and parking area, screening them from view and providing a sense of enclosure within the open upland landscape of 1940.

Circulation in the area was uncomplicated, and included the U-shaped parking and pedestrian stairways leading down to the spring and up to the Administration Building. A flagstone walkway led around the parking lot, connecting both sets of stairs and merging into the trail between the Buffalo Pasture and Pavilion Springs.

The retaining wall and patio of the spring enclosure comprised the only structure in the landscape. The wall hid a concrete water tank from which water bubbled into a centrally-placed, semi-circular pool and thence to a runnel bisecting the patio. Small scale-features included a low stone retaining wall along the southern edge of the parking area in addition to the aforementioned stone steps and flagstone walkway and curb around the parking lot.

Summary of Change

The only landscape feature at Hillside Springs which has significantly changed since 1940 is the vegetation. The clusters of cedars have now grown up into a dense, forest-like mass, further excluding an already intimate landscape composition. This change, however, appears to be part of the intended design, since the enclosure is the result of tree planting which occurred in the 1930s.

Yet as the cedars now reach and surpass maturity, their lower branches are beginning to die back, lending a rather gloomy feeling to the enclosed spring area.

In contrast, most other features remain substantially the same. All built elements (such as steps, walls, and
Chapter 7: Analysis of Character-Defining Features and Integrity and Statement of Significance

pools) appear to be quite similar to the way they existed at the end of the period of significance, despite repairs to the spring’s retaining wall structure undertaken in the 1950s and 1960s. However, some lack of maintenance is apparent in the masonry walls, and there is significant seepage from behind the western portion of the retaining wall. Low flow in the bubblers at the spring may indicate clogged water lines. The lid on the spring container behind the enclosure wall is rusting through. A major addition is a sign directly above the central pool warning visitors that the water is not potable.

Overall Integrity Evaluation

Based on the analysis of the seven aspects of integrity, below, Hillside Springs has high integrity.

Feature Condition Analysis: Hillside Springs

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steep north-facing slope</td>
<td>Supporting</td>
<td>Good</td>
<td>No significant change over time.</td>
</tr>
<tr>
<td>Spatial Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationships between elements</td>
<td>Supporting</td>
<td>Good</td>
<td>Basic design layout remains same, no change over time.</td>
</tr>
<tr>
<td>Circulation</td>
<td></td>
<td></td>
<td>See additional information under trails.</td>
</tr>
<tr>
<td>Hillside Springs parking area</td>
<td>Yes</td>
<td>Good</td>
<td>Island missing trees.</td>
</tr>
<tr>
<td>Designed Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cedar grove around spring</td>
<td>Supporting</td>
<td>Fair</td>
<td>Overgrown; could be thinned and/or replanted.</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillside Springs walls, floor,</td>
<td>Yes</td>
<td>Fair</td>
<td>Wall masonry beginning to spall; seepage behind west wall;</td>
</tr>
<tr>
<td>container and spring</td>
<td></td>
<td></td>
<td>bubblers clogged and water flow uneven. Spring enclosure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lid rusted through.</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillside Springs steps</td>
<td>Yes</td>
<td>Good</td>
<td>Good condition.</td>
</tr>
<tr>
<td>Hillside Springs Parking Lot</td>
<td>NYD</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Drain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garbage can</td>
<td>No</td>
<td>Good</td>
<td>Traditional lidded can.</td>
</tr>
<tr>
<td>Interpretive Sign</td>
<td>No</td>
<td>Good</td>
<td>Fiberglass embedded graphic sign.</td>
</tr>
</tbody>
</table>

Integrity Analysis: Hillside Springs

<table>
<thead>
<tr>
<th>Location</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>X</td>
<td></td>
<td></td>
<td>Fully intact; no elements missing.</td>
</tr>
<tr>
<td>Setting</td>
<td>X</td>
<td></td>
<td></td>
<td>Lowered slightly due to vegetative growth.</td>
</tr>
<tr>
<td>Materials</td>
<td>X</td>
<td></td>
<td></td>
<td>Original materials primarily extant; some</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>changes in vegetation; some deterioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>through damage by seepage.</td>
</tr>
<tr>
<td>Workmanship</td>
<td>X</td>
<td></td>
<td></td>
<td>Some loss due to material deterioration,</td>
</tr>
<tr>
<td>Feeling</td>
<td>X</td>
<td></td>
<td></td>
<td>placement of sign.</td>
</tr>
<tr>
<td>Association</td>
<td>X</td>
<td></td>
<td></td>
<td>Some loss of feeling due to increased shade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and vegetative cover.</td>
</tr>
<tr>
<td>Overall Integrity</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains associations with mineral water</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>history.</td>
</tr>
</tbody>
</table>

Overall, area has high integrity.

HEADQUARTERS

Historic Character

In 1940, the Headquarters area was a small zone spatially organized around the area’s only structure, the Administration Building (former Leeper House), which served as the park’s main office and museum. The relatively small area was bounded by State Highway 18 (now Highway 177) to the east, the Hillside Springs area to the north, and the area’s entry road to the south and west. A largely open area with few trees, the area’s topography sloped gently, with the building located on a level high point. Vehicular circulation included the entry road turning northwest off State Highway 18 and a small parking area in front of the building. Pedestrian circulation included a portion of the trail leading from Hillside Springs to the Buffalo Pasture, and a pedestrian
Chapter 7: Analysis of Character-Defining Features and Integrity and Statement of Significance

Summary of Change

Changes to the Headquarters area have been relatively minor, with the most important change occurring in vegetative growth: the building, which once stood atop an open rise, overlooking much of the park, is now surrounded by a dense grove of cedar trees. Though an open area of mowed grass surrounds the building, it has a quite enclosed feeling, in contrast to the 1940 conditions. However, given that the vegetation around the building was planted by CCC crews, the resulting enclosure is likely what was desired by the NPS designers. In contrast, foundation plantings at the base of the building seem to have changed or been lost over time, since the current plantings do not match those seen in historic photographs.

footpath between the Administration Building and Employee Residence #3 (no longer extant) located on the other side of Highway 18. The latter path was largely constructed as stepping-stones. Another short walkway ran from the parking area to the building entrance on the southwest façade. The vegetation of the area included a grove of cedars planted on the north-facing slope above Hillside Springs as well as foundation and decorative plantings around the building. Though no detailed planting plans for these plantings are known to exist, historic photographs reveal that foundation plantings included flowering trees such as redbud, low shrubs and groundcovers and several iris beds scattered in the lawn. Small-scale features included a set of terrace-like steps situated in the grade on the northeast side of the building.
Other minor changes include asphalt paving on the entry road and parking area in front of the Administration Building. The parking area is now larger, and it appears that the boulders along the parking area were also added after the period of significance. New asphalt circulation paths and stone edging to the building have also been added to the building to the front. These changes to parking and pedestrian paths were implemented when building access switched from the north to the south side of the building.

Overall Integrity Evaluation

Overall integrity for the Headquarters area is high, since there has been very little significant change or losses of fabric within the area. By 2002 the CNRA administrative offices were moved out of the Administrative Building. Future plans indicate the building will become a learning center.

MAINTENANCE AREA

Historic Character

In 1940, the Maintenance Area was an enclosed, and almost hidden utilitarian area for park maintenance offices, activities, and equipment. Located west of the Headquarters Areas, it was bounded by the Buffalo Pasture to the south and west and the former mule pasture and Pavilion Springs trail to the north. The major features of the area were its three main structures, spatially organized into a tight square or “quad” bounded by a fence and low limestone walls. The three main buildings in the quad were the mule barn, maintenance office, and the maintenance shop or truck shed. Other buildings included the explosives magazine and two additional sheds located west of the quad and Residence #6 (known previously, in 1940, as #2) and its garage, located just to the northeast.

The area’s topography sloped gently upward to the northeast, screening from the rest of the populated areas of the park. Behind the quadrant of buildings, at the rear of the mule barn, the area sloped down to the west. The change in grade provided an at-grade basement access for the mule barn, and behind the quad, the slope was further retained by a large limestone retaining wall running perpendicular to the quad’s back edge. Three low terraces with limestone walls running parallel to the quad were used to store equipment and materials.

Due to the Maintenance Area’s utilitarian function, circulation was essentially vehicular, consisting of an asphalt entry road and paved quad and several casual gravel loops in the yard to the west of the quad. A small driveway accessed Residence #6 (previously, in 1940, #2) off the main entry road. Designed vegetation was limited, and was restricted to a few trees scattered throughout the yard to the west and foundation plantings around Residence #6 (previously, in 1940, #2). Small-scale features included the fence and wall surrounding the quad, and piers at the quad’s entrance.

Summary of Change

In some ways, the Maintenance Area exists much as it did historically. The area is still the heart of the park’s maintenance activities, and the three main buildings of the quad are extant and well-used by park staff. There has been some loss of trees at the entry to the quad. However, the overall footprint of the Maintenance Area is much larger today, with most of the expansion occurring to the west of the quad, on the site of the former mule pasture. This expansion was necessary first to accommodate increased functions when the area began to serve the Arbuckle Recreation Area’s needs as well as those of Platt National Park; more space has been needed to house more and larger size vehicles and more stockpiled materials. Spatially, the result has been the construction of additional, looped gravel roadways to the west of the original quad to access more maintenance buildings (both temporary and permanent) and larger stockpiles of materials. Other building additions have included the archives storage building to the north. Overall, today there are now approximately 27 buildings associated with the maintenance area; in 1940 there were only 10. And, of course, some buildings have new functions, since some of the original functions (such as housing park mules or explosives) are no longer relevant. In general, the area is probably busier, more used, and more cluttered with materials, temporary and permanent buildings than it was historically.

Other, but notable changes are the alteration of the perimeter wall around the quad and the loss of stone columns flanking the entry to the courtyard. The
Feature Condition Analysis: Maintenance Area

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural, existing</td>
<td>Supporting</td>
<td>Good</td>
<td>Minor change over time.</td>
</tr>
<tr>
<td>Spatial Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrangle and yard to west</td>
<td>Supporting</td>
<td>Good</td>
<td>Yard is slightly larger than historical, but basic relationship retained.</td>
</tr>
<tr>
<td>Circulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry road and open quad and roads in yard</td>
<td>Supporting</td>
<td>Good</td>
<td>Main entry and quad retained as original; some new routes and parking expanded in front of the quad.</td>
</tr>
<tr>
<td>Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trees at entry</td>
<td>Supporting</td>
<td>Fair</td>
<td>Loss of trees at entry and parking areas.</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mule barn/ warehouse/ office</td>
<td>Yes</td>
<td>Fair</td>
<td>Modern garage door, dock modified, needs lead abatement – missing original; reroofing completed 2003.</td>
</tr>
<tr>
<td>Maintenance office/ crew room</td>
<td>Yes</td>
<td>Fair</td>
<td>Garage doors, new windows, new doors and windows added to north face, wood shop, needs lead abatement. Reroofed 2003.</td>
</tr>
<tr>
<td>Truck shed/ maintenance shop</td>
<td>Yes</td>
<td>Fair</td>
<td>Needs lead abatement, has rotted beam at gable end; reroofing completed 2003.</td>
</tr>
<tr>
<td>Maintenance compound walls</td>
<td>Yes</td>
<td>Good</td>
<td>In good shape, except for missing piers and portions deleted for new buildings; can be replaced in-kind.</td>
</tr>
<tr>
<td>Explosives magazine</td>
<td>Yes</td>
<td>Good</td>
<td>Shows good structural integrity.</td>
</tr>
<tr>
<td>Residence #6</td>
<td>Yes</td>
<td>Fair</td>
<td>Porch enclosed, windows added, needs lead abatement; reroofing completed 1998.</td>
</tr>
<tr>
<td>Carport addition at Residence #6</td>
<td>No</td>
<td>Good</td>
<td>Little deterioration to recent structure.</td>
</tr>
<tr>
<td>Garage # 11</td>
<td>Yes</td>
<td>Fair</td>
<td>Needs lead abatement, new wood roof, replacement of missing windows and repair of others.</td>
</tr>
<tr>
<td>Museum Collection Building</td>
<td>No</td>
<td>Good</td>
<td>New building on concrete slab.</td>
</tr>
<tr>
<td>Other maintenance buildings/structures</td>
<td>No</td>
<td>Varies</td>
<td>Numerous new metal structures and stockpiles in yard west of quadrangle.</td>
</tr>
<tr>
<td>Vehicle Wash</td>
<td>No</td>
<td>Good</td>
<td>Concrete slab, catch basin and 8' x 8' building foundation constructed 2003. Building will be constructed in 2004 and sided with cement board and roofed with wood shingles to match character of crew room and warehouse.</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank filing station</td>
<td>No</td>
<td>Good</td>
<td>Must be retained in current location.</td>
</tr>
</tbody>
</table>

Integrity Analysis: Maintenance Area

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>X</td>
<td></td>
<td></td>
<td>Remains in original location.</td>
</tr>
<tr>
<td>Design</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains most of original features of the design; some minor losses.</td>
</tr>
<tr>
<td>Setting</td>
<td>X</td>
<td></td>
<td></td>
<td>Increased use and expansion has changed setting somewhat.</td>
</tr>
<tr>
<td>Materials</td>
<td>X</td>
<td></td>
<td></td>
<td>Original materials on extant structures intact.</td>
</tr>
<tr>
<td>Workmanship</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains original workmanship.</td>
</tr>
<tr>
<td>Feeling</td>
<td>X</td>
<td></td>
<td></td>
<td>Perhaps some loss of feeling with increased use and loss of some functions, such as mules, but this is minor.</td>
</tr>
<tr>
<td>Association</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains associations with park maintenance functions.</td>
</tr>
<tr>
<td>Overall Integrity</td>
<td>X</td>
<td></td>
<td></td>
<td>Overall, area has high integrity.</td>
</tr>
</tbody>
</table>

columns were removed to accommodate larger park equipment.

Overall Integrity Evaluation

As shown through the descriptions of the seven aspects of integrity, overall integrity for the Maintenance Area is high.
golf course could be seen in the distance. At Residence #2 (then #4) small scale features included flagstone walkways and a small flagstone patio around the house and a small garden area to its north. The small garden was located downhill and east of the house and contained a small stone pond or basin, a stone table and four curved benches. Topography was generally level with local variations. Circulation included a long driveway leading from Pavilion Springs to the residences; each residence had a driveway with a turnaround loop. Stepping stone paths were located at each residence, too. At Residence #2 (then #4) the pedestrian path led to the small garden; at Residence #3, the path led across State Highway 18 to Headquarters.

Feature Condition Analysis: Employee Residence

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td>Supporting</td>
<td>Good</td>
<td>No significant change or condition issues.</td>
</tr>
<tr>
<td>Spatial Organization</td>
<td>Supporting</td>
<td>Good</td>
<td>No significant change or condition issues.</td>
</tr>
<tr>
<td>Circulation</td>
<td>Supporting</td>
<td>Good</td>
<td>No significant change or condition issues.</td>
</tr>
<tr>
<td>Designed Vegetation</td>
<td>Supporting</td>
<td>Fair</td>
<td>Some losses; historic documentation of original not extensive, however.</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residence #2</td>
<td>Yes</td>
<td>Good</td>
<td>Window do not match historic; Lead abatement and painting completed in 2000; reroofed in 1998.</td>
</tr>
<tr>
<td>Garage 9</td>
<td>Yes</td>
<td>Fair</td>
<td>Needs lead abatement, reroofing and painting.</td>
</tr>
<tr>
<td>Carport</td>
<td>No</td>
<td>Good</td>
<td>No condition issues.</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone patio and path at Residence #2</td>
<td>Yes</td>
<td>Good</td>
<td>Flagstone is in good condition; no spalling or mortar problems.</td>
</tr>
<tr>
<td>Table, bench, pond and steps at Residence #2</td>
<td>Yes</td>
<td>Fair</td>
<td>Setting is deteriorated; masonry deteriorating somewhat; suffering from lack of maintenance/use.</td>
</tr>
<tr>
<td>Fire Hydrant</td>
<td>Good</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Integrity Analysis: Employee Residence

<table>
<thead>
<tr>
<th>Location</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Residence #2 retains original location.</td>
</tr>
<tr>
<td>Design</td>
<td>X</td>
<td></td>
<td></td>
<td>Some change to driveway, exterior appearance of house, additions lower integrity of design somewhat.</td>
</tr>
<tr>
<td>Setting</td>
<td>X</td>
<td></td>
<td></td>
<td>Loss of Employee Residence #3 greatly alters feeling.</td>
</tr>
<tr>
<td>Materials</td>
<td>X</td>
<td></td>
<td></td>
<td>Original materials retained; some changes to house exterior and to surrounding vegetation.</td>
</tr>
<tr>
<td>Workmanship</td>
<td>X</td>
<td></td>
<td></td>
<td>Workmanship, to extent it exists, is retained in structures.</td>
</tr>
<tr>
<td>Feeling</td>
<td>X</td>
<td></td>
<td></td>
<td>Feeling is probably more secluded than at end of period of significance.</td>
</tr>
<tr>
<td>Association</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains associations to NPS design, and function as housing.</td>
</tr>
</tbody>
</table>

| Overall Integrity | X | | | Overall, area has medium integrity. |

EMPLOYEE RESIDENCE

Historic Character

In 1940, the area around Employee Residence #2 (previously known in 1940 as Residence #4) was a much larger area was used for housing park staff. The area’s spatial organization featured two clusters of residential structures, one at Employee Residence #2 (then Residence #4) and another around what was then known as Employee Residence #3 (no longer extant). Both clusters contained a garage and driveway and an open area around each house. At Residence #3, small-scale features included a low retaining wall and a terrace overlooking the former golf course to the south. Three small stone dams from the
Summary of Change

Overall the larger area around Employee Residence #2 has changed greatly since the period of significance. Most important is the loss of the residential cluster at Employee Residence #3, which burned in 1946. The remaining small-scale features around that residence have been lost in the intervening years, though traces of a culvert with stone headwalls of the former drive and the stepping stone path remain near the Administration Building, and the three golf course dams are also still extant, though now engulfed by cedar and deciduous forest. In general, growth of cedar and deciduous trees has greatly altered views to south toward former golf course and former open upland. The loss of Employee Residence #3 changed the area from a residential grouping to a lone house in a secluded area; this is a significant change.

In contrast, the immediate area around Employee Residence #2 has itself retained much of its historic appearance and function. All major designed elements and structures are extant, including the residence, garage, entry driveway, flagstone walkways and small-scale features such as stone table, benches and pond. Major landscape features such as the open lawns and rolling topography of the area are also very much like their historic conditions. Minor changes over time have included the alteration of the entry driveway’s shape, the addition of the carport and chain link fence, and significant growth of surrounding forest. However, these changes are not visible to the general public and do not significantly affect the integrity of the overall landscape.

Overall Integrity Evaluation

Due to major change in the setting of Employee Residence #2, through the loss of former Employee Residence #3, integrity here is somewhat lower than for other areas within the park. Though features within the immediate setting of the residence retain high integrity, overall integrity for the larger area is reduced to medium.

CENTRAL CAMPGROUND

Historic Character

By 1940, Central Campground was known as the “Negro Campground” and was a large and well-used camping area within Platt National Park. The campground was bounded by State Highway 18 (now Highway 177) on the west, Travertine Creek on the south, and Wapanucka Avenue on the east and north. A picnic area loosely associated with the campground was located just east of the campground at Panther Falls.

The character of the campground was informally natural; unlike Cold Springs Campground, there were no defined camping sites. Rather, the campground was organized spatially into two main camping areas, one to the east and one to the west, located on a patch of sloping topography just above Travertine Creek. Steeper slopes existed to the south, along the creek bank and to the north, where the park boundary abutted the town. The vegetation of the area in 1940 can be characterized as an open upland with numerous clumps of trees and shrubs located across the area. Cedar clumps were naturally located on the drier slopes above the campground, and these were enhanced by CCC plantings, which by 1940 were beginning to grow up. Oaks and elms were dotted across the two camping loops, providing shade. A pair of spectacle-shaped gravel loops comprised the area’s main circulation feature. The loops were accessed from their ends, from both Highway 18 (now Highway 177) to the west and the perimeter road to the east, and the loops were bisected by a slightly less defined central road, providing access to camping space within the loop. One footpath led through the western part of the area.

Buildings and structures within the area included the Central Campground comfort station and Employee Residence #5. The latter was located outside the campground proper. A stone dam and swimming hole were located at the east loop and another at Panther Falls. These are described above under Travertine Creek. Other significant small-scale features included two box culverts carrying streams under the loop roads. Picnic tables and fire pits or grills were likely located within the grounds, but the appearance and locations of these are not well-documented.
Summary of Change

Major character-defining landscape features such as the topography, natural water course of Travertine Creek, stream-bank and upland vegetation and overall circulation pattern exist at Central Campground as they did historically. However, the campground has changed somewhat since the period of significance, primarily in its function and use. First, the campground is not segregated. Also, in contrast to 1940, the campground is used for group camping (over 10 people), whereas previously it had been used for individual camping. In 2004, an experiment limiting the size of groups will be undertaken at all the Central campsites.

The shift from individual to group camping has resulted in minor changes in the campground’s form. Today, parking areas for groups of vehicles are defined along the perimeter loops, and groups of picnic tables and grills are used to define specific camping sites, each numbered with a bollard. Other changes include changes to the campground entrances and greatly increased vegetation growth, especially cedars, along the campground’s northern boundary, as observed in aerial photographs.

Feature Condition Analysis: Central Campground

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td>Good</td>
<td></td>
<td>Little or no change over time.</td>
</tr>
<tr>
<td>Level floodplain</td>
<td>Supporting</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Spatial Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Campground design</td>
<td>Yes</td>
<td>Good</td>
<td>Small amount of change, but double loop retained.</td>
</tr>
<tr>
<td>Circulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campground roads, perimeter road,</td>
<td>Supporting</td>
<td>Good</td>
<td>Repaved and slightly reorganized to meet needs of group camping.</td>
</tr>
<tr>
<td>footpaths and trails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designed Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canopy over camping area</td>
<td>Supporting</td>
<td>Fair</td>
<td>Losses over time, now less shady.</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comfort station</td>
<td>Yes</td>
<td>Good</td>
<td>Lead abatement and reroofing completed 2003.</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Campground road box culvert</td>
<td>Yes</td>
<td>Fair</td>
<td>Examine in field.</td>
</tr>
<tr>
<td>Road box culvert</td>
<td>Yes</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Panther Falls box culvert</td>
<td>No</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Camping information sign</td>
<td>No</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Bollards</td>
<td>No</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Boulder barrier</td>
<td>Yes</td>
<td>Good</td>
<td>Some old, some deployed in new areas; depth varies.</td>
</tr>
<tr>
<td>Hydrants</td>
<td>NA</td>
<td>Good</td>
<td>Style varies.</td>
</tr>
<tr>
<td>Picnic tables</td>
<td>NA</td>
<td>Good</td>
<td>Standard park plank and tube table.</td>
</tr>
<tr>
<td>Circular Grills</td>
<td>NA</td>
<td>Good</td>
<td>In good condition.</td>
</tr>
<tr>
<td>Garbage cans</td>
<td>NA</td>
<td>Good</td>
<td>Traditional lidded cans.</td>
</tr>
<tr>
<td>Lantern hangers</td>
<td>NA</td>
<td>Good</td>
<td></td>
</tr>
</tbody>
</table>

Integrity Analysis: Central Campground

<table>
<thead>
<tr>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td>Campground is in original location.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retains original overall circulation pattern, though some elements lost or altered.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Setting within the park remains largely unchanged; perhaps some increased traffic along western edge on US 177.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Largely the same as historic.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Some loss due to change and reconstruction of roads and bridges.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Increased traffic along US 177.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Some loss due because area is no longer associated with local African American groups/families, though community memories of this era remain.</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Overall, area has moderately high integrity.</td>
</tr>
</tbody>
</table>
In contrast, the central camping areas appear to have lost some canopy tree cover, although numbers of trees, as described in Chapter 6, have actually increased. This loss of canopy may be due to the loss of large-headed oak trees. New small-scale features such as circular grills, picnic tables, bollards, and a culvert with stone head walls (located on a footpath leading north to town) have also been added to the landscape.

However, much, if not most, of the original CCC-era design elements still remain. These include the extant comfort station; the overall circulation pattern and layout; and associated structures such as culverts. Similarly, historic small scale features, such as the recreational dams along Travertine (described earlier under Water Systems) are also extant. In general, integrity of the landscape appears to be quite high, though perhaps not quite as high as other areas within the district.

Overall Integrity Evaluation

Because the seven aspects of integrity are all medium to high, overall integrity for the campground is high.

COLD SPRINGS CAMPGROUND

Historic Character

In 1940, Cold Springs Campground was a newly opened campground, designed according to the newest principles of campground design. The area was bounded by Travertine Creek to the south and park’s boundary to the north. Spatially, the oblong-shaped area was divided by the road system into four smaller, elongated zones. The topography of the area was relatively level, dead flat in some areas, though slopes gently rose to the northwest. The vegetation of the campground included mostly native overstory trees such as oaks and hackberries and new cedar plantations along the park’s boundary line with the town. Vehicular circulation consisted of twelve-foot wide gravel roads that created a one-way loop system and 66 parking spurs and associated campsites. Pedestrian circulation included the two beaten-earth pathways between campsites that provided access to the comfort stations. Buildings and structures included the Community House, Checking Station and two comfort stations. Water features consisted of the stepping stones at Cold Springs Crossing and the four recreational dams at Garfield and Bear Falls constructed along Travertine Creek. Other small-scale features included ten rectangular stone enclosures for firewood and trash cans, stone fireplaces with metal grates and picnic tables. Remnants, mainly large pine trees, of a small nursery were located across Travertine Creek from the campgrounds; by 1940, however, with the departure of the CCC camp, this feature would soon meld into the vegetation of the stream bank.

Summary of Change

The overall appearance and function of Cold Springs Campground have been retained over time. All structures are extant, including the community house, checking station and comfort stations. Similarly, the overall layout of sites has never been changed, and though the campground roads have been paved in asphalt, they retain their original alignments. Likewise, the topography and the campground’s relationship to the perimeter road and the creek remain as they did in 1940.

Change in the area has been relatively minor. In the 1950s, individual campsites were regraded and generally overhauled; it is likely that the boulders along roads and demarcating campsites were added at the same time. Small-scale features at campsites have changed; the stone fireplaces were removed and are now circular grills. Lantern hangers have also been installed at campsites and one of the trash-can enclosures has been lost. Two campsites near the entrance to the campground have become group sites (no 64 and 65), and large concrete picnic tables were built at these sites probably sometime after the period of significance. Over time pathways through the campground have widened and have increased in number. Culverts and drainage ways have also clogged over time, creating drainage and erosion problems in the campground as water concentrates across some sites. Within the campground there has also been some loss of vegetation cover, particularly understory plants. Some of these changes are due to heavy use and the increasing size of vehicles accessing campsites and increasing number and size of tents.

Steel tube gates were added to allow closure of the campground from late fall to spring. A fee station which accepts payment in cash or credit card was added near the entrance in the 1990s.
Overall Integrity Evaluation

Based on the assessment, below of the seven aspects of integrity, overall integrity for the Cold Springs Campground area is high, despite some minor losses.

TRAVERTINE ISLAND AND LITTLE NIAGARA FALLS

Historic Character

Travertine Island and Little Niagara Falls is a complex area containing many distinctive landscape features. Documentation of the area to the period of significance is fairly good, though the years of 1936 to 1937, when much of the area seems to have been constructed, and
By 1940 Travertine Island and Little Niagara Falls were a popular recreation area, organized around the confluence of Limestone Creek (Formerly known as “Nigger Run”) and Travertine Creeks. The Little Niagara swimming area and two major picnic areas—one on Travertine Island and one at Lost Cave Falls—were clustered around the central island created by the creeks, while two parking areas were located on the periphery. The whole area was bounded by the perimeter road to the south and north. The area’s topography of the area was generally level, with slopes gently declining from east to west. In contrast, localized dramatic topographic changes—mostly large outcroppings of travertine rock—occurred along the creek banks where the mineral water flow from the springs has formed Travertine and also carved its channel. The vegetation of the area, mostly native species, was comprised of a layer of tall trees providing shade and a dense layer of understory shrubs. The vegetation enhanced the sense of enclosure provided by the recessed creek bed.

The area’s vehicular circulation system was the two-way perimeter road encircling the island. The road accessed two parking areas—a large, almost circular lot north of Travertine Island and a smaller one to just south of Little Niagara Falls. Pedestrian circulation included a network of informal gravel paths that linked the parking areas, picnic areas, comfort station and Little Niagara Falls swimming area. The major structures of the area were the Travertine Island Comfort Station and the perimeter road bridge crossing Limestone Creek. The lower and upper dams of Little Niagara Falls, the major water features of the area, were the focal point of activity within the landscape. Small-scale features included narrow steps and a small stone bridge leading to the stone picnic table and benches at the Lost Cave Falls picnic area. On Travertine Island, small-scale features included the large, stone-enclosed picnic area, a small circular stone table and seats with oval stone table with stone benches, a kidney shaped stone table with stone benches and a barbecue, a log-and-plank interpretive sign and three low-water crossings constructed of steps and stepping stones.

Summary of Change

Unlike other areas of the park, Travertine Island and Little Niagara Falls seem to have undergone a bit more change, though based on historic documentation, in some cases this is difficult to judge. Elements which remain extant and in good condition include Travertine Island Comfort Station, the Limestone Creek Bridge, topographic features and water features. Particularly important and in good condition are the Little Niagara dams and Travertine Creek (the latter described above). Similarly, most small-scale features are extant, but exhibit some loss in form and materials. These include the picnic areas, both of which have deteriorated and lost stone structures; the low-water crossings, which exist in various degrees of disrepair under I-beam pipe-and-plank bridges; and the small circular stone table and benches, which are no longer distinguishable as a designed feature.

Other changes are broader scale landscape concerns. For example, the secluded setting of the area was much changed when the Nature Center and its associated parking area was built. The picnic area south of Little Niagara also grew in size at this time. The second Mission 66 parking area and the Mission 66 Comfort Station further altered the feeling of the area, making it perhaps less secluded and more popularly used. In general, the presence of the automobile in the landscape increased and was perhaps further heightened by the truncation of the perimeter road and the creation of the one-way route around the island. Although not well-documented historically, vegetation patterns also seem to have changed over the years. The major change seems to be a reduction of mature trees and a loss of understory shrubs. The former is due in part to natural processes and aging and the latter due to heavy foot traffic; a recent ice storm, during which many mature trees on the island were lost or severely damaged also contributed to vegetation changes.

In a similar fashion, the network of informal paths throughout the area also seems to have changed somewhat. Due to a paucity of historic documentation, it is hard to tell whether these changes occurred during, or after, the period of significance. However, based on field conditions, some path changes seem to have occurred in response to the construction of new features in the 1960s. In general, the park’s Mission 66 years had a strong effect on the eastern end of the district.
Feature Condition Analysis: Travertine Island and Little Niagara Falls

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td></td>
<td></td>
<td>No major condition issues; some bank erosion.</td>
</tr>
<tr>
<td>Varied creek banks and travertine outcroppings</td>
<td>Supporting</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Spatial Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall layout</td>
<td>Supporting</td>
<td>Fair</td>
<td>Some losses, but lack of historical documentation to confirm.</td>
</tr>
<tr>
<td>Circulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travertine Island parking area north</td>
<td>Needs more info</td>
<td>Good</td>
<td>Boulder barrier embedded deeply may indicate numerous layers of paving.</td>
</tr>
<tr>
<td>Travertine Island trails</td>
<td>Yes</td>
<td>Good</td>
<td>Well-used, compacted, no major erosion.</td>
</tr>
<tr>
<td>Mission 66 parking lot</td>
<td>No</td>
<td>Good</td>
<td>No major condition issues.</td>
</tr>
<tr>
<td>Sidewalks at Mission 66 comfort station</td>
<td>No</td>
<td>Good</td>
<td>Very bright white in landscape; could be toned down visually.</td>
</tr>
<tr>
<td>Designed Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canopy trees</td>
<td>Supporting</td>
<td>Fair</td>
<td>Numerous losses have opened canopy.</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comfort Station</td>
<td>Yes</td>
<td>Fair</td>
<td>Lead abatement completed June 2003; has new wood roof.</td>
</tr>
<tr>
<td>Mission 66 comfort station</td>
<td>No</td>
<td>Fair</td>
<td>Interiors a little beat up due to flooding, heavy use. Needs lead abatement and reroofing.</td>
</tr>
<tr>
<td>Water Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Niagara Falls Upper and Lower dams</td>
<td>Yes</td>
<td>Good</td>
<td>Exhibits some wear and changes in masonry, particularly in travertine stone pool edges; stone wears more rapidly than mortar.</td>
</tr>
<tr>
<td>Little Niagara Falls Lower Dam</td>
<td>NYD</td>
<td>Good</td>
<td>No major issues.</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travertine Island picnic area</td>
<td>Yes</td>
<td>Fair</td>
<td>Masonry damage and damage to later repairs; is altered from historic condition; minimal historic documentation; missing elements.</td>
</tr>
<tr>
<td>Low water crossing to Lost Cave Falls picnic area</td>
<td>Yes</td>
<td>Fair</td>
<td>LCS indicates condition as poor. Examine further in field.</td>
</tr>
<tr>
<td>Lost Cave Falls picnic area</td>
<td>Yes</td>
<td>Good</td>
<td>Stone bench for table rehabilitated circa 1996.</td>
</tr>
<tr>
<td>Stone bench at Travertine Island</td>
<td>NYD</td>
<td>Poor</td>
<td>Little remains of original feature.</td>
</tr>
<tr>
<td>Steps to Lost Cave picnic area</td>
<td>Yes</td>
<td>Good</td>
<td>No major issues, other than very narrow steps.</td>
</tr>
<tr>
<td>Travertine Island sign</td>
<td>Yes</td>
<td>Fair</td>
<td>Log ends rotted and repaired with caulk; should be replaced in kind.</td>
</tr>
<tr>
<td>I-beam, plank and pipe tubing bridges (2)</td>
<td>No</td>
<td>Good</td>
<td>Appearance not in keeping with historic. One atop non-historic abutment; other, near TI parking area, on altered remains of stairs.</td>
</tr>
<tr>
<td>Picnic tables</td>
<td>No</td>
<td>Good</td>
<td>Standard park plank and tube table.</td>
</tr>
<tr>
<td>Standing grills</td>
<td>No</td>
<td>Good</td>
<td>Standard park grill style.</td>
</tr>
<tr>
<td>Masonry swale at new comfort station</td>
<td>No</td>
<td>Good</td>
<td>Constructed by L. Howell; end of swale is being undercut.</td>
</tr>
<tr>
<td>Masonry swale at Lost Cave Falls</td>
<td>No</td>
<td>Good</td>
<td>Constructed by L. Howell; no major issues.</td>
</tr>
<tr>
<td>Low half-log safety sign</td>
<td>No</td>
<td>Good</td>
<td>Park sign in keeping w/ other historic signs; does not appear to be historic, however.</td>
</tr>
<tr>
<td>Chlorinator building</td>
<td>No</td>
<td>Good</td>
<td>Feature near park boundary, north of perimeter road.</td>
</tr>
</tbody>
</table>

Integrity Analysis: Travertine Island and Little Niagara Falls

<table>
<thead>
<tr>
<th>Location</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>Retained in its original location.</td>
</tr>
<tr>
<td>Design</td>
<td>X</td>
<td></td>
<td></td>
<td>Losses of stone crossings, stepping stones, picnic area features reduce integrity of design, trail segments added.</td>
</tr>
<tr>
<td>Setting</td>
<td>X</td>
<td></td>
<td></td>
<td>Setting altered by 1960s parking area, proximity of Nature Center, new comfort station.</td>
</tr>
<tr>
<td>Materials</td>
<td>X</td>
<td></td>
<td></td>
<td>Some loss of historic materials, new additions of non-compatible materials in structures and small scale features; comfort station added.</td>
</tr>
<tr>
<td>Workmanship</td>
<td>X</td>
<td></td>
<td></td>
<td>Deterioration of stone work over time has decreased integrity of this aspect.</td>
</tr>
<tr>
<td>Feeling</td>
<td>X</td>
<td></td>
<td></td>
<td>New parking areas, road change have likely led to loss of isolated feeling.</td>
</tr>
<tr>
<td>Association</td>
<td>X</td>
<td></td>
<td></td>
<td>Retains associations, especially for local community</td>
</tr>
</tbody>
</table>

| Overall Integrity | X | Overall, area has medium integrity. |
In contrast to the number of elements which have deteriorated or been lost over time, it is important to note that the area’s use has been very constant over the years. The type of use—swimming, picnicking, and other recreation—has remained the same as they were historically. With increased parking after 1969, numbers of users likely increased.

Overall Integrity Evaluation

Based on the assessment of the seven aspects of integrity, below, overall integrity for the Travertine Island and Little Niagara Falls area would appear to be moderately high or medium. Essential features are retained and visible, and many, though not all, of the aspects of integrity are judged to be high.

BUFFALO AND ANTELOPE SPRINGS

Historic Character

As the source of Travertine Creek in 1940, Buffalo and Antelope Springs were then, as now, a focal point in the Platt landscape. A recreational landscape, the area was defined by the perimeter road and park’s boundary and was organized along the banks of Travertine Creek, with two major picnic areas clustered around the two spring areas.

The topography of the area was somewhat more diverse than other parts of the park. Landforms varied from steep stream banks, to the high ridgeline south of Travertine Creek to the relatively level floodplain terrace. The area’s vegetation included a dense tree canopy, as seen on historic aerial photographs. Understory conditions are less well understood, but may have varied from prairie on the uplands to dense shrubs along the creek banks. Around Buffalo Springs, detailed plantings were installed, indicating a design intent of enclosed space. Though the species of these plantings are known (they included shade trees such as red oak, winged elm, hackberry, and red haw (Crataegus species); flowering trees such as dogwood, wild plum, and redbud; and shrubs such as euonymous and sumac; their actual locations are unknown.

Vehicular circulation was provided by the two-way perimeter road and a driveway loop to the Buffalo Springs picnic area. It also included a formalized parking lot for twenty-two cars located just north of Buffalo Springs and a small parking area along the perimeter road north of the Antelope Springs picnic area. Pedestrian circulation consisted of the trail along the Travertine Creek (described above) as well as a looped network of footpaths around Buffalo and Antelope Springs that linked the picnic areas, comfort station, the pools below Antelope Springs, and the parking lots. The area’s buildings and structures were typical CCC architecture, well-integrated into the landscape and included the Buffalo Springs Comfort Station, the perimeter road bridge and box culvert, and the radial stone arch pedestrian bridge (three bridges total). Two water features—the Buffalo Spring enclosure and the outcropping from which Antelope Springs sprang—were of primary importance in the landscape. Other water features included the three dams and large lily pond below Antelope Springs as well as the three check dams west of Buffalo Springs. A large barbecue fireplace and two stone picnic tables at the Buffalo Springs picnic area were important small-scale features. Other masonry features included additional small stone fireplaces, stone steps to the Buffalo Springs picnic area, stepping stones over Travertine Creek, and a set of stairs to the Antelope Springs parking area. Wood plank picnic tables and wood benches are also seen in some historic photographs.

Summary of Change

The Antelope and Buffalo Springs and Nature Center area has exhibited a significant amount of change since the end of the period of significance. Most of this change was the result of Mission 66-era planning and construction, which led to the addition of the Nature Center and its parking area in 1969. This building changed not only the appearance of the area but also its function and use, since the Nature Center also heralded the designation of the entire area as an Environmental Study Area (ESA) a few years later. This designation changed the landscape from a recreational landscape to one focusing on nature study and in part appears to have been the impetus for the removal of most of the features designed for human use from the landscape.

The most significant of the 1960s removals was the obliteration of the perimeter road around the springs and its associated parking areas. This change completely altered the circulation patterns within the landscape,
Feature Condition Analysis: Buffalo and Antelope Springs

<table>
<thead>
<tr>
<th>Description</th>
<th>Contributing Status</th>
<th>Condition</th>
<th>Comments/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolling topography with travertine outcroppings and stream course</td>
<td>Supporting</td>
<td>Good</td>
<td>No major condition issues; some bank erosion.</td>
</tr>
<tr>
<td>Spatial Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing layout of trails and features</td>
<td>Supporting</td>
<td>Good</td>
<td>Loss of perimeter road alters layout; some minor trail reorganization.</td>
</tr>
<tr>
<td>Antelope Springs area</td>
<td>Supporting</td>
<td>Good</td>
<td>Existing organization of spring at spring head has no major changes or conditions.</td>
</tr>
<tr>
<td>Circulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trails</td>
<td>Supporting</td>
<td>Good</td>
<td>See trail matrix, above.</td>
</tr>
<tr>
<td>Buffalo Springs Trail #9</td>
<td>Yes</td>
<td>Fair</td>
<td>Some realignment of trail and widening over time, caused to some extent by cleanup of 2000 ice storm.</td>
</tr>
<tr>
<td>Parking area at Nature Center</td>
<td>No</td>
<td>Good</td>
<td>Asphalt walkway needs replacement; ADA ramps also needed.</td>
</tr>
<tr>
<td>Designed Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forested area; some designed plantings at Buffalo Springs</td>
<td>Supporting</td>
<td>Poor</td>
<td>Loss of designed plantings at Buffalo Springs; forest damaged by recent ice storms. Especially noticeable around the Buffalo Springs enclosure.</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffalo Springs comfort station</td>
<td>Yes</td>
<td>Fair</td>
<td>Not in use; interiors need to be renovated. Significant amounts of woody vegetation surround structure, posing fire hazard. Lead abatement completed summer 2003 and wood roof replaced 2003.</td>
</tr>
<tr>
<td>Buffalo Springs Road Bridge #1</td>
<td>Yes</td>
<td>Poor</td>
<td>Abandoned; trees growing on bridge deck; efflorescence obvious.</td>
</tr>
<tr>
<td>Buffalo Springs Arched Trail Bridge</td>
<td>Yes</td>
<td>Good</td>
<td>Channel under bridge should be cleared of tree debris.</td>
</tr>
<tr>
<td>Buffalo Springs road box culvert</td>
<td>NYD</td>
<td>Fair</td>
<td>Abandoned and not used; in deep vegetation.</td>
</tr>
<tr>
<td>Travertine Nature Center</td>
<td>No</td>
<td>Good</td>
<td>Roof leaks; cantilevered hip ends are sagging was originally wood shales. Check historic trim color. Need to study bypass channel to prevent flooding.</td>
</tr>
<tr>
<td>Water Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffalo Springs enclosure</td>
<td>Yes</td>
<td>Good</td>
<td>Some new paving around original structure indicates revised circulation after 1940; some seepage from behind wall; graffiti; tree trunk close to wall may begin to impact structure.</td>
</tr>
<tr>
<td>Small dams (3) near Buffalo Springs</td>
<td>Yes</td>
<td>Poor</td>
<td>These dams are being undermined and their side banks eroded. Lower dam has toppled; spring located at middle dam. Change in drainage patterns around them is evident; further investigation needed.</td>
</tr>
<tr>
<td>Small-Scale Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone Fireplaces</td>
<td>Yes</td>
<td>Fair</td>
<td>Nine in dense vegetation; not being used.</td>
</tr>
<tr>
<td>Stone steps to the abandoned parking lot</td>
<td>Yes</td>
<td>Poor</td>
<td>Overgrown, loose stones, stones missing over drainage.</td>
</tr>
<tr>
<td>Culvert (5) on abandoned Perimeter Road</td>
<td>NYD</td>
<td>Fair</td>
<td>Road no longer present; some blockage and deterioration.</td>
</tr>
<tr>
<td>Buffalo Springs low-water crossing</td>
<td>Yes</td>
<td>Poor</td>
<td>Stones should be retained and maintained under all bridges.</td>
</tr>
<tr>
<td>Antelope Springs low-water crossing</td>
<td>Yes</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Low-water trail crossing</td>
<td>Yes</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Low-water crossing and stone steps</td>
<td>Yes</td>
<td>Fair</td>
<td>Houses new USGS gauge.</td>
</tr>
<tr>
<td>Gauge Box</td>
<td>Yes</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Rock Falls</td>
<td>Yes</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Trail culvert</td>
<td>Yes</td>
<td>Good</td>
<td>No major issues.</td>
</tr>
<tr>
<td>Antelope Springs Historic Sign</td>
<td>NYD</td>
<td>Good</td>
<td>Sign has moved a number of times; see historic photos; used to be closer to rocky hillside.</td>
</tr>
<tr>
<td>Antelope Springs Lower Falls</td>
<td>NYD</td>
<td>Good</td>
<td>Some seepage underneath falls and stone slab bridge; old rusty sluice gate probably leaking; stone slab cracked February 2004.</td>
</tr>
<tr>
<td>Antelope Springs Middle Falls</td>
<td>NYD</td>
<td>Good</td>
<td>Undermining where tree was cut down, immediate repair needed; compliance completed to repair in 2004.</td>
</tr>
<tr>
<td>Bank Stabilizations near Buffalo Springs & Trail # 4</td>
<td>NYD</td>
<td>Good</td>
<td>No major issues.</td>
</tr>
<tr>
<td>Roofed Interpretive Signs</td>
<td>No</td>
<td>Good</td>
<td>Date to circa 1969. Content could be reviewed and improved.</td>
</tr>
<tr>
<td>Plant interpretive signs</td>
<td>No</td>
<td>Poor</td>
<td>Posts are rotting, some signs missing and in disrepair.</td>
</tr>
<tr>
<td>Benches</td>
<td>No</td>
<td>Good</td>
<td>Pipe and planks; not particularly attractive.</td>
</tr>
<tr>
<td>Metal pipe, steel, and wood plank bridge</td>
<td>No</td>
<td>Good</td>
<td>Located on abutment that was once historic stairs. Not in keeping with historic appearance.</td>
</tr>
<tr>
<td>New gauge with solar panel and antennae in tree near gauge box</td>
<td>No</td>
<td>Good</td>
<td>White components noticeable; paint grey or brown if possible.</td>
</tr>
</tbody>
</table>
Springs. New interpretive signs, some dating to 1969, others more recent, were also installed in the area. Embankment walls along the creek have been shored up. Plank bridges were added along the trails in some places. At Buffalo Springs, a plank bridge replaced steps and stepping stones crossing the creeks. Elsewhere along the trails bridges simply cover existing low water or stepping stone crossings. In still other locations, stepping stone crossings have simply been lost and replaced by wooden bridges. Details of existing features are summarized in the matrix of structures listed below.

Finally worth mentioning are vegetative changes in the landscape. These are somewhat difficult to document, but aerial photographs indicate an increase in forest cover. The appearance of the current landscape also seems to reflect a condition of release, in which little human management is evident. Younger, understory vegetation has become quite dense, while mature overstory vegetation has declined, with the exception of red cedar vegetation along the park boundaries, planted by the CCC in the 1930s and now maturing. Much of the overstory decline occurred in recent years, with the loss of mature trees in an ice storm in 2000. The conditions today are perhaps a change from the conditions of 1940, when the landscape may still have been exhibiting characteristics of a fire-influenced landscape. Since the mid 1930s, however, fire has been suppressed in the landscape, a fact evident throughout the park by the increase in woody vegetation. These issues are detailed in greater detail in Chapter 10 of this report.

Of course, features have also been added to the landscape. These include some flagstone walks around Buffalo Springs. New interpretive signs, some dating to 1969, others more recent, were also installed in the area. Embankment walls along the creek have been shored up. Plank bridges were added along the trails in some places. At Buffalo Springs, a plank bridge replaced steps and stepping stones crossing the creeks. Elsewhere along the trails bridges simply cover existing low water or stepping stone crossings. In still other locations, stepping stone crossings have simply been lost and replaced by wooden bridges. Details of existing features are summarized in the matrix of structures listed below.

Finally worth mentioning are vegetative changes in the landscape. These are somewhat difficult to document, but aerial photographs indicate an increase in forest cover. The appearance of the current landscape also seems to reflect a condition of release, in which little human management is evident. Younger, understory vegetation has become quite dense, while mature overstory vegetation has declined, with the exception of red cedar vegetation along the park boundaries, planted by the CCC in the 1930s and now maturing. Much of the overstory decline occurred in recent years, with the loss of mature trees in an ice storm in 2000. The conditions today are perhaps a change from the conditions of 1940, when the landscape may still have been exhibiting characteristics of a fire-influenced landscape. Since the mid 1930s, however, fire has been suppressed in the landscape, a fact evident throughout the park by the increase in woody vegetation. These issues are detailed in greater detail in Chapter 10 of this report.

Of course, features have also been added to the landscape. These include some flagstone walks around Buffalo Springs. New interpretive signs, some dating to 1969, others more recent, were also installed in the area. Embankment walls along the creek have been shored up. Plank bridges were added along the trails in some places. At Buffalo Springs, a plank bridge replaced steps and stepping stones crossing the creeks. Elsewhere along the trails bridges simply cover existing low water or stepping stone crossings. In still other locations, stepping stone crossings have simply been lost and replaced by wooden bridges. Details of existing features are summarized in the matrix of structures listed below.

Finally worth mentioning are vegetative changes in the landscape. These are somewhat difficult to document, but aerial photographs indicate an increase in forest cover. The appearance of the current landscape also seems to reflect a condition of release, in which little human management is evident. Younger, understory vegetation has become quite dense, while mature overstory vegetation has declined, with the exception of red cedar vegetation along the park boundaries, planted by the CCC in the 1930s and now maturing. Much of the overstory decline occurred in recent years, with the loss of mature trees in an ice storm in 2000. The conditions today are perhaps a change from the conditions of 1940, when the landscape may still have been exhibiting characteristics of a fire-influenced landscape. Since the mid 1930s, however, fire has been suppressed in the landscape, a fact evident throughout the park by the increase in woody vegetation. These issues are detailed in greater detail in Chapter 10 of this report.

Of course, features have also been added to the landscape. These include some flagstone walks around Buffalo Springs. New interpretive signs, some dating to 1969, others more recent, were also installed in the area. Embankment walls along the creek have been shored up. Plank bridges were added along the trails in some places. At Buffalo Springs, a plank bridge replaced steps and stepping stones crossing the creeks. Elsewhere along the trails bridges simply cover existing low water or stepping stone crossings. In still other locations, stepping stone crossings have simply been lost and replaced by wooden bridges. Details of existing features are summarized in the matrix of structures listed below.

Finally worth mentioning are vegetative changes in the landscape. These are somewhat difficult to document, but aerial photographs indicate an increase in forest cover. The appearance of the current landscape also seems to reflect a condition of release, in which little human management is evident. Younger, understory vegetation has become quite dense, while mature overstory vegetation has declined, with the exception of red cedar vegetation along the park boundaries, planted by the CCC in the 1930s and now maturing. Much of the overstory decline occurred in recent years, with the loss of mature trees in an ice storm in 2000. The conditions today are perhaps a change from the conditions of 1940, when the landscape may still have been exhibiting characteristics of a fire-influenced landscape. Since the mid 1930s, however, fire has been suppressed in the landscape, a fact evident throughout the park by the increase in woody vegetation. These issues are detailed in greater detail in Chapter 10 of this report.
Overall Integrity Evaluation

As shown in the chart below, the overall integrity of the Antelope and Buffalo Springs and Nature Center area is clearly medium, with some aspects of integrity quite high and other, significant aspects quite low. The numerous modifications to this designed environment that occurred after 1960 is the primary reason for this lowered rating. Though integrity of location, setting and materials are quite high, integrity of design, workmanship, and association have all been reduced, and contribute to lowered overall integrity. While some changes (such as increased vegetation) are reversible, others are not.

It should be noted that the 1960s changes to the landscape may contribute to later periods of significance not yet evaluated, such as the Mission 66 era currently undergoing a National Historic Landmarks theme study. If the Platt District were in the future determined to be significant for its association with the Mission 66 era of design, due to elements created within the park during this time period, then the changes made to the Antelope and Buffalo Springs and Nature Center area during this period could be considered to contribute to the integrity of this additional potential period of significance.

However, it should be noted that it is most likely that the district’s primary significance accrues from its status as an NPS Rustic landscape from the 1930s. The CCC-era landscape is a canvas of great scope and extent into which a few Mission 66 elements (three minor, architecturally undistinguished structures (the comfort stations) two parking areas, and one major structure (the Nature Center)) were inserted. The overall extent and integrity of the entire CCC landscape, both as a planning idea and as a physical construct would appear to far outweigh Mission 66 changes to that landscape in overall significance. The focus of this integrity evaluation on the CCC period of significance is therefore appropriate.

ROCK CREEK CAMPGROUND

Historic Character

Completed in 1951, Rock Creek Campground was not built during the period of significance. However, the idea for a campground at its location dates back to at least 1940, and a plan by the same designers of most of the rest of the park was approved in 1943. As a result, the design and construction of the campground was very much in keeping with NPS Rustic design during the “between-the-wars” years. At just over fifty years old, the landscape just recently became eligible for the National Register, and contributes to the significance of the rest of the district.

In 1951 the campground was an immediately well-used park feature, since once it opened, camping in the Bromide area was restricted to overflow camping. The campground’s character was simple, functional and perhaps its outstanding aspect was its wooded character. The whole area was almost uniformly covered with a forest of native species. The forested area was situated on level topography, a flat terrace above Rock Creek, which bounded the campground’s western and northern edges; to the south the area was defined by the park boundary and to the west, Bromide Hill and the perimeter road.

The campground’s circulation system defined the camping area proper; it was organized as six concentric one-way loops with 59 pull-through campsites located on alternating sides of each roadway. A pedestrian pathway system ran up the middle of the campground, connecting the two block and tile comfort stations, which were the only structures on the site. Small-scale features on each site included six-ten-, and eight-foot long concrete picnic tables, and low concrete grills. Scattered throughout the site were water hydrants and, possibly, metal pipe campsite markers and overhead light fixtures. These latter two features are described in construction reports, but have not been seen in park photographs.

Summary of Change

Within fifteen years of its completion, Rock Creek Campground was expanded to the south of the original site. The expansion increased the size of the campground to its current 102 campsites. Part of the Mission 66 construction in the park, the expansion included the addition of two more concentric roads with campsites and one larger loop of campsites on a topographic rise known as Chigger Hill. To serve the new sites, a new comfort station was also built within the loop on the hill.

The new site differed from the old in that the sites on the hillside loop included pull-in or back-in as well as pull-through sites and in that the area itself was less wooded and more open, covered with prairie grass. Concrete picnic tables were also not built on the new campsites and it appears that some of the original concrete picnic tables have been lost over time.
The original Rock Creek Campground was largely unaffected by the Mission 66 addition. Even today both the “new” and “old” sections have changed little from when they were completed. All major designed elements and structures including overall layout and spatial organization, vegetation, topography, and circulation patterns are extant. Minor changes have, of course, occurred. A campground host site and a fee kiosk are located near the campground entrance. New grills and lantern hangers have been built on most sites. Of the varied size concrete picnic tables, only the six-foot long ones remain today. Many of these tables are beginning to crack and spall. Pedestrian pathways between sites and the comfort stations have also increased and widened over the years, and understory vegetation has diminished over the years, also the result of increased and sustained amounts of foot traffic. Roadways have been asphalted and have also widened over time, in part because of heavy use and the increasing size of recreation vehicles accessing campsites.

Overall Integrity Evaluation

Judged to the date of its completion (1951) Rock Creek Campground has high integrity, as demonstrated by its retaining high integrity in all seven aspects that define integrity.
DISTRICT-WIDE INTEGRITY ANALYSIS

Historic Character

As revealed in the text above, in 1940, Platt National Park was complete in terms of its overall design and construction. Though vegetation may not have been mature, most major features that had been planned were in place and completed, and the resulting park reflected NPS design principles that “protected significant natural features and harmonized roads, trails, and buildings with the natural scenery.” In addition, the park showed its own individual character in the creation of spaces bordering the nearby town of Sulphur which, more refined than standard NPS “rustic” design, reflected ideals of 19th century park and recreation design.

Platt National Park was spatially organized as a series of individual experiences or spaces associated with and ordered upon the area’s hydrology systems, both surface and ground water. Because of the close relationship between the area’s hydrology and the area’s topography, individual landscape spaces were generally associated with key topographic features, including flood planes, creek valleys and topographic high points. Spaces were further organized and physically linked by the park’s circulation systems of the perimeter road, which encircled the park’s full area, and the trail system, which was a more linear network with a strong east-west spine. Numerous buildings and structures—primarily spring pavilions and comfort stations constructed to enhance the visitor’s experience—were organized within each landscape space, yet all were defined by their architectural consistency, lending a unity to the entire park landscape. Lending a similar sense of stylistic unity were small-scale features such as picnic tables, boulder guard rails, and stone fireplaces, all built of natural materials that blended into the landscape in a seamless way. A final unifying factor within the landscape were the water features within each individual landscape. Though ranging from spring enclosures to swimming holes to waterfalls to fountains, each feature expressed and celebrated the district’s ultimate raison d’être—the area’s unique spring waters.

Summary of Change

As revealed in the sections above, change within the district has not been insignificant. Changes have included the loss of features, vegetative growth, and the construction of new structures in the landscape. These changes primarily date to the 1960s, and were implemented under the Mission 66 program.

However, closer examination of the information above also shows that change has primarily occurred at the feature level, in the condition of individual features. Integrity of individual landscapes has been lowered by the loss of detail within the landscape, with change and loss occurring at the scale of building materials and workmanship. Yet viewed from a broader perspective, the overall configuration of the district has remained remarkably constant, with little change or loss of integrity occurring at the levels of design, layout, setting and organization. It is important and significant to note that all of the original component landscapes present in 1940 remain substantially intact today. While some, such as the Buffalo and Antelope Springs area have seen greater changes, others, such as Walnut Grove or Pavilion Springs have seen virtually no change over the years. It is this sum total of change that should be considered when assessing the overall integrity of the district (Table 7-1).

<table>
<thead>
<tr>
<th>Contributing Resources/Sites</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creek System</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perimeter Road</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trail System</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walnut Grove</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Sulphur Springs</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower Park</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Campground</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavilion Springs</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hillside Springs</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Area</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employee Residence</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Buffalo Pasture</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Superintendent’s Residence</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Prairie Uplands</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Springs Campground</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Travertine Island & Little Niagara</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Buffalo & Antelope Springs</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Rock Creek Campground</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 7-1. Summary of Site Integrity, showing integrity differences between component landscapes.
Conclusion: District Integrity

The component landscapes described above retain varying degrees of integrity, though none have low or diminished integrity. In particular, all sites distinctly retain qualities of integrity relating to location, design, setting, and association; it is only in workmanship and materials where integrity is likely to be diminished, as usually expressed in deterioration of masonry and loss of small scale features.

However, the individual landscapes must also be considered collectively, as contributing resources that together comprise the Platt District. When considering the overall integrity of the district as a whole of over 900 acres, it is apparent that the district has retained an extremely high and broadly distributed integrity from the years of the CCC program, 1933-1940. The following analysis of district integrity is drawn from the draft National Historic Landmark nomination by James W. Steely, as is the statement of significance, below.¹

Location: The reservation’s 1902-1906 boundaries and the 1932-1940 master plan’s physical delineations of overall park and individual landscape sites are quite evident and continue to function as originally intended.

Design: The 1932 master plan, constantly updated through and after 1940 and incorporating a number of significant pre-1932 constructed resources, created an NPS Rustic architectural and naturalistic landscape that is \textit{sui generis}—in its own category—according to former NPS landscape historian Ethan Carr. This design is almost completely intact and evident today.

Setting: The Platt District presents a physical environment that, though its initial master plan development is approaching 70 years of age, remains an inspired blend of the natural and the man-made, and that is profoundly striking to visitors who enter the park from any of its formal gateways.

Materials: The prescribed NPS Rustic use of materials native to the immediate vicinity—a practice simultaneously economical during both the park’s early decades and especially during New Deal CCC work of the Great Depression—accounts for much of the Platt District’s evident and continuing physical durability through stone, wood, water and countless species of plants.

Workmanship: The handcraft prescription of CCC work, combined with its enrollees’ apprenticeships under skilled craftsmen hired from the community, resulted in notable and nationally recognized (through contemporaneous NPS publications) NPS Rustic architectural and landscape designs and details, retained in all extant structures and features.

Feeling: The Platt today evokes a near-total atmosphere of a product of the Great Depression’s New Deal programs and National Park Service holistic design standards, in addition to the distinctive odors from its signature mineral springs, from virtually every position, angle and vista throughout the park.

Association: The Platt District’s naturalistic landscapes and NPS Rustic buildings provide, and steadfastly maintain, a direct link for staff and visitors to its Period of Significance; certainly its signature associated personalities of Thomas Vint, Jerome Miller, and William Branch, as well as its honor roll of CCC-era designers and artisans, would today readily recognize the national park they so painstakingly created between 1932 and 1940.

STATEMENT OF SIGNIFICANCE

The present Platt District of Chickasaw National Recreation Area (CNRA) is exceptionally significant in the nation’s history for at least three outstanding and well-documented characteristics documented in this report. First, the geological formations of the Arbuckle Uplift in present Oklahoma create multiple cold water springs attracting seekers of water for refreshment, recreational, medicinal, and other cultural purposes from prehistoric times through the landscape’s most recent century of designation as one of America’s first national parks. Second, the political history of Platt National Park, first reserved in 1902 and so named for 70 years after 1906, presents an extraordinary lesson in tribal, federal, territorial, state and community interactions, demonstrating the complexities of America’s western expansion and its democratic process through the governmental contract forged between states and the Union. And third, the recreation landscape at Platt is
formed by an outstanding collection of designs and developments representing national park philosophical evolution throughout the 20th century, especially and most effectively with a sweeping New Deal transformation of the park by the Civilian Conservation Corps between 1933 and 1940. The planned recreation landscape of Platt and the history of its origin are presently the most effectual bases of the district’s nomination to the National Register. Platt’s signature development during President Franklin Delano Roosevelt’s dramatic conservation and economic initiatives of the 1930s and 1940s presents the best comparative analysis to the established National Historic Landmark (NHL) theme studies of “Architecture in the Parks” (1986) and “National Park Service Landscape Architecture” (1998), and the National Register of Historic Places’ Historic Context “The Historic Landscape Design of the National Park Service, 1916 to 1942” (1995).

Platt National Park’s 1933-1940 New Deal project, a partnership of the National Park Service (NPS), the Civilian Conservation Corps (CCC) and the U.S. Army (Army), is one of the optimum and most encompassing such works in the national park system. The resulting cultural landscape is, according to NPS historical architect Catherine Colby, “representative of the finest CCC work in existence, in terms of rustic design, the number and variety of structures, and construction techniques and materials.” During the 1998 NHL theme study project “National Park Service Landscape Architecture,” landscape historian Ethan Carr confirmed that “the ‘Platt District’...is a unique and fascinating piece of CCC park development, which possesses wonderful integrity. The site work and landscape structures are elaborate, of very high quality, and I do not believe there is another CCC historic district exactly like it anywhere.” Further, Carr’s NHL research on the personalities behind the NPS/CCC cooperative episode confirms strong associations of the pantheon of early NPS designers/ administrators Thomas Vint and Herbert Maier with the general program and specific results at Platt between 1932 and 1940. Through their brilliance and attentions, Platt is the only national park rebuilt entirely from boundary to boundary during this decade of profound attention to the system, when powerful restraints otherwise governed virtually all other improvements in all larger national parks.

Therefore, the Platt District (so named in 1998) of Chickasaw National Recreation Area (so designated, including former Platt National Park, in 1976) meets National Register Criterion A for its century-long association with the American park movement. The Platt District also meets National Register Criterion C as a significant, distinctive and exceptional example of American landscape architecture, specifically as a premier example of the National Park Service collaboration with the Civilian Conservation Corps in the New Deal era in the 1930s and 1940s. In summary of these criteria as they describe Platt National Park, its extended New Deal episode elevated this property to national magnificence, a condition retaining high integrity and still quite evident after almost three-quarters of a century of diligent maintenance and very few alterations.

Other themes of state and national significance for the Platt District may be determined with the completion of additional contexts and theme studies. For example, a National Historic Theme study on Mission 66 landscapes in the NPS is currently underway and the park’s 1969 Nature Center and comfort stations and associated parking areas and vehicular circulation routes may be determined to be significant within this context. However, at this time, the extent of the landscape resources dating to the 1930s and 1940s would indicate the primary significance of the landscape accrues from its New Deal design and construction.

Period of Significance

The Period of Significance for the Platt Historic District extends from the 1932 development of the first master plan for Platt National Park to the end of CCC activities at the park in 1940. Additional periods and dates might convey other themes of singular national significance through the complex layers of Platt National Park history, but the primary period of significance relies upon the most visible and physical characteristics of the park’s historic designed landscape of 1932 through 1940.
Notes to Chapter 7

4 Ibid., 34.

5 Ethan Carr, personal communication (e-mail) with James W. Steely, 4 April 2001.
Chapter 8: Treatment Philosophy for the Platt Historic District

BACKGROUND

The basic goals of any preservation treatment plan are to retain historic character and features; to mitigate negative change and deterioration where possible; to prevent future negative change, and to address the range of management issues affecting the property. In other words, preservation treatment is “not conducted in a vacuum,” and must consider a property’s financial resources, management capabilities, and proposed uses as well as its integrity, significance, and level of historic documentation.

The Platt Historic District is also guided by the National Park Service’s long-standing traditions and philosophies regarding the stewardship of natural and cultural resources. Generally speaking, these include the National Park Service Organic Act of 1916, which requires the National Park Service to “conserve the scenery and the natural and historic objects and the wildlife therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoyment of future generations.” Such ideas are, of course, outlined in “NPS 28: Cultural Resource Management” and the Secretary of the Interior’s Standards for the Treatment of Historic Properties and the Guidelines for the Treatment of Cultural Landscapes.

More specifically, the management of the Platt District is also guided by the park’s 1902 enabling legislation, which specifically calls for the “proper utilization and control” of the area’s springs and creeks. More recent management documents include the “General Management Plan, Chickasaw National Recreation Area” (1980), the “Draft Statement for Management” (1990) and the “Amendment to the General Management Plan” (1994). In addition, a new General Management Plan was begun in 2002, and it is hoped that the recommendations of this report will be incorporated into that document.

TREATMENT ALTERNATIVES

The Secretary of the Interior has specified standards for four approaches to the treatment of historic properties. These approaches represent a continuum of allowable change and impact. Preservation concentrates on the maintenance and repair of existing historic materials and the retention of a property’s form as it has evolved over time. Rehabilitation acknowledges the need to meet continuing or changing uses through alterations or new additions while retaining a property’s historic character. Restoration is undertaken to depict a property at a particular period of time in its history, while removing evidence of other periods. Reconstruction recreates vanished or non-surviving properties, usually for interpretive purposes.

In selecting a preservation treatment for a landscape, one of these four treatments is usually selected as a “primary” treatment for the property as a whole. This primary, or property-wide, treatment provides a broad philosophical framework within which treatment decisions for individual features may be made. Treatment of individual features must be consistent with the overall treatment for the district, but they may not necessarily be the same. For example, a landscape undergoing restoration may contain a building undergoing rehabilitation, so that while its façade retains a restoration period appearance, the interior is rehabilitated for a new use. Within a treatment plan for the Platt District, then, individual sites or component landscapes might be slated for different treatments based on their individual condition and integrity, as long as they are consistent with the overall district treatment.

IMPLICATIONS OF TREATMENTS FOR THE PLATT DISTRICT

Preservation

Preservation is an appropriate treatment when features, materials, and spaces are intact, and depiction at a distinct period or time is not appropriate. Preservation generally maintains, stabilizes, protects, and repairs fabric and features, though limited replacement of features is permitted.
Because of its overall high integrity and numerous extant features, preservation would be an appropriate treatment for the Platt District. Indeed, maintenance and repair of landscape features has been the management approach within the park for many years. A preservation treatment would focus on retaining all elements from the district’s lengthy history, including those from the Mission 66 years and later, expressing the district’s evolution over time. Existing features would be retained and repaired, but new features would generally not be added, except for limited and sensitive upgrading of systems to meet code requirements. However, such upgrading could include changes to plumbing, sewers, electrical systems, and to pedestrian routes to provide universal access to park features.

Within the overall district, individual sites or component landscapes exhibit varied integrity and feature retention. As a result, treatments for these individual landscapes or for features within them might be more or less restrictive than the overall district.

Rehabilitation

This treatment makes possible a compatible new use through repairs and additions, yet preserves fabric and features that convey historic significance and value. Features may be replaced or repaired in a compatible way or as an accurate restoration; additions and alterations must be undertaken so that they are compatible yet clearly distinguished as new construction.

Rehabilitation would be an appropriate treatment for the Platt District in the face of any impending change. Such change might include major improvements required for new infrastructure as outlined in the park’s management documents or for providing ADA access to the larger area of the district. Rehabilitation may be particularly appropriate for specific areas of the district and less appropriate for other areas where change is neither necessary nor anticipated. For example, the provision of ADA access to important experiences in the district is an issue relevant for most of the component landscapes in the district, though the impacts of providing such access varies from landscape to landscape and from feature to feature.

Restoration

A restoration treatment is based on substantial documentary evidence and returns a landscape to its appearance and condition at a specific point in time. Restoration should be undertaken only when a design or historical significance outweighs the loss of material from other time periods. Care must also be taken not to create a sense of false history by restoring features that never existed together historically.

Although substantial historic documentation of the Platt District exists for most time periods, the feasibility of Restoration as a treatment for the Platt District would mostly depend on the choice of a specific date for restoration. The obvious choice would be 1940, or the end of the period of significance. However, restoring the landscape to this date would require the removal of important extant features such as Rock Creek Campground, Travertine Nature Center, and Mission 66 comfort stations. In addition, restoring portions of the landscape, such as Buffalo and Antelope Springs, to 1940, would be costly and difficult, given the level of removals that occurred in the 1960s. Thus, restoration of the entire district to 1940 seems unfeasible and is not recommended. However, restoration of individual features or elements within the district to their appearance and condition in 1940 may be appropriate and recommended.

Another choice would be to select a later date for restoration, such as 1969, the end to the Mission 66 changes in the landscape. At this time, all current features were in place. While restoration to this date would appear to be possible, documentation of the precise conditions of 1969 is somewhat less than for the period of significance. In addition, the choice of such a restoration date would require the reconstruction of non-extant and non-significant features dating to that period, such as the wood amphitheater located in the former Elk Pasture area. Furthermore, the 1969 period is not yet considered historic, due to the 50-year rule. Thus restoration of the entire district to a later date, such as 1969, is not recommended.

Reconstruction

This treatment is appropriate only for lost or non-surviving properties. Because the Platt District is an
extant landscape with high integrity, reconstruction of the district is not a relevant treatment.

PROPOSED OVERALL TREATMENT

A proposed treatment plan for the Platt District is shown in Figure 8-1. Given the high integrity of the district, the desire to depict the continuing evolution of the property over time, and the need to retain the district's extant historic fabric, the overall proposed treatment for the district is Preservation. However, due to a need to effect moderate infrastructural and ecological change within the wider district, the plan proposes a Rehabilitation treatment for a number of the individual component landscapes within the district.

Aspects of a rehabilitation treatment are in particular necessary to provide for infrastructural upgrading. The recent perimeter road project might be considered a good example of a district-wide rehabilitation project, as a project that involved the roadway's repair, the replacement of its surface in-kind, and the limited upgrading of some elements such as curbs and guide rails to meet current highway standards for safety and drainage. Rehabilitation is also important in allowing ADA access to many of the district's important and currently inaccessible experiences, including significant overlooks and opportunities to engage the district's mineral springs by touching, drinking, and seeing water. Finally, as described in the Vegetation Management Plan (Chapter 10) treatment of the park's cover vegetation might also be best considered a rehabilitation treatment. Since much of the cedar forest present today is the direct result of the designer's actions, removal of this forest may not technically be considered restoration. However, its removal is necessary to provide for fire protection, improved pasturage for bison, reduced plant invasion, and for restoring views and viewsheds. Thus, it might be best considered rehabilitation for improved, if not new, usage.

Clearly, such rehabilitation is not necessary in many areas of the park. Because of the park's significance and integrity, preservation—the retention of historic features and fabric—is considered the appropriate "philosophy" when considering the district as a whole. Yet balancing the idea of limited but necessary change within a context of overall preservation is still an important and necessary goal of the proposed treatment. In general, the overall concept of district treatment might be considered as an initial or preliminary Rehabilitation treatment of specific areas, followed by a long-term or continuing policy of Preservation of the district as a whole.

![Figure 8-1. Preservation treatment philosophy for the Platt Historic District.](image-url)
ORGANIZATION OF TREATMENT PLAN

Perhaps the most remarkable aspect of the Platt District is that, as large and complex as it is, it has over more than 60 years, retained an incredibly high level of integrity. This is due in part to the high quality of the original, "built-for-the-ages" construction, and the restraint shown by later managers in adding minimal and compatible new elements to the park's original design. High integrity is also in no small part due to consistent, dedicated, and meticulous effort by park staff in maintaining, repairing, and stewarding the landscape.

The Treatment Plan that follows in the next two chapters is largely intended to uphold this tradition of quality construction, restraint, and consistent maintenance. As a result, it is formatted into two sections. Chapter 9 proposes a set of district-wide management guidelines. These guidelines are intended to capture and formalize existing cultural landscape management practices as well as outline new and recommended management practices that address issues described in meetings or communications with park staff. Guidelines will address issues that are common to the entire district, such as the consistent appearance of small-scale features such as garbage cans or footbridges or the care, repair and preservation of historic masonry. Chapter 10 takes a closer look at guidelines for the management of a key district feature, vegetation. Finally, Chapter 11 provides an individualized treatment plan for each of the district's component landscapes. These plans include an overall description of the treatment strategy for the entire component landscape, followed by a series of specific projects addressing issues and features.
Chapter 9: District-wide Design and Management Guidelines

INTRODUCTION

As noted earlier, Chickasaw National Recreation Area has a strong tradition of park maintenance and land stewardship. However, as the Platt District has been acknowledged as a cultural landscape, an awareness of needing to manage and maintain the district as both a cultural resource and as a well-utilized public recreation area has developed. The purpose of this chapter is to provide a consistent set of management practices that will allow the district to be efficiently maintained over time while preserving historic character and features.

The guidelines presented in this chapter address district-wide issues; issues specific to component landscapes are addressed as projects in the following chapter. The guidelines within this chapter are meant to capture and formalize existing cultural landscape management practices, as well as outline new and recommended management practices. Many district-specific maintenance and management practices have been implemented in the district since the 1940s, and these are recorded here to provide continuity with future management. New management concerns have also arisen, often in response to changes in the park or the surrounding community, and new strategies are needed to prevent loss of historic character. These issues, identified in meetings or communications with park staff, are also addressed here in the district-wide guidelines.

The guidelines include brief texts describing techniques, issues, and schedules plus “typical” design sections or plans, if appropriate. The district-wide guidelines are intended to cover issues that are common to all landscapes, such as the consistent appearance of small-scale features such as garbage cans or footbridges or the care, repair, and preservation of historic masonry. Implementation of some guidelines may be simple and begin immediately. Others may be more difficult, require staff training or alteration of existing features and will need to be phased in slowly.

In contrast to this chapter, which addresses broad management issues, Chapter 11 addresses individual projects. However, there are cross references between chapters and the two chapters are intended to be considered together, along with Chapter 10, which addresses vegetation management.

SMALL-SCALE FEATURES

A number of small-scale features are utilized throughout the district. To provide a consistent appearance, these features should be the same in each area, and should be designed to be in keeping with the district’s historic character. The following are recommendations for altering, replacing, or adding features. It is clear that such replacements will not be implemented immediately; rather the guidelines are provided so that elements may be updated over time, as they reach the end of their useful life span. In this way, a unified district appearance in site furnishings might be achieved slowly and incrementally as a part of regular replacements.

Most of these site furnishings are non-historic features, installed after the period of significance, or are infrastructure. Thus, the design of these features, as based on the Secretary of the Interior’s Standards, should be compatible with the historic setting, yet clearly distinguishable as new or non-historic construction.
Hydrants

A variety of hydrant styles (Figures 9-1 and 9-2) currently exist in the district. With the exception of the hydrants at the base of the rectangular stone trash and wood enclosures at Cold Springs Campground, most hydrants do not appear to be historic, and instead date to recent times. The current designs are functional, but wood supports are beginning to rot, and grey water drainage is often a problem at the base of heavily used hydrants.

New hydrants of the same design should be installed throughout the district, as existing hydrants are replaced due to failure or upgraded. The new hydrant design should be functional and inconspicuous and clearly distinguishable as new construction.

A suggested hydrant design, already being used in other parts of CNRA, is shown in Figure 9-3. This hydrant has a concrete base and a French drain, and is constructed with an ADA accessible self-closing faucet. The concrete base should be stained or darkened to make the hydrants visually unobtrusive. Hydrants which receive limited use (e.g., those not located in campgrounds or high use picnic areas) or in areas with positive drainage might eliminate or reduce the French drain portion of the design.
Picnic Tables

During the period of significance, picnic tables were generally of wood frame construction (see Figure 4-84). Some areas also had stone or concrete picnic tables (see Figures 4-90 and 5-65). The picnic table currently used throughout the park is a two-inch pipe frame with wood tops and seats that are stained with a brown (color “Spicewood”) solid-body stain by Sherwin Williams (Figure 9-4). This picnic table is functional and appropriate and its use should be continued.

As picnic tables are replaced, however, it is suggested that at least twenty-five percent of tables have ends extended twenty-seven inches, to accommodate wheelchair access. An eight-foot long table with such an extended end (Figure 9-5) is currently used in the district because they are accessible, yet still easily moved. Although an accessible picnic area is recommended (see below) for each major picnic area, locating a number of accessible picnic tables throughout the park at undesignated sites may also help increase access.

Current locations of picnic tables are noted in Chapter 6 and recorded in the feature tables in Chapter 7. Tables should remain in all these locations. Picnic tables are currently movable, allowing visitors to reconfigure tables, to accommodate large groups and access shady areas. In some locations, this reduces wear on turf surfaces though in other locations it exacerbates it. Although moveable tables increase the potential for certain types of vandalism, fixing picnic tables in designated locations is not recommended, in part due to park tradition and current visitor expectations.

Figure 9-4. Standard picnic tables currently used in the district.

Figure 9-5. Accessible picnic table with extended end, as used throughout the district.
Benches

Benches do not seem to have been a major historic feature in the Platt District. During the CCC era, NPS designers generally tried to incorporate benches into site structures near springs. Although historic photos show wooden benches in Flower Park and at Buffalo and Antelope Springs, the design of benches—and their presence in the landscape—appears to be a hold-over from the pre-CCC era (See Figures 3-50 and 4-93). By 1940, most historic photos no longer show benches in district landscapes.

Today, a few benches exist in the park, along Veteran’s Trail and Buffalo-Antelope Springs Trail (Figure 9-6). These benches are neither attractive nor in keeping with the park’s historic appearance. However, they are useful in increasing the accessibility of these trails. According to ADA guidelines, accessible trails (those with slopes five percent or less) should provide seating every two hundred feet. Although fully accessible trails are not possible in much of the district due to steep slopes, providing benches along trails in some locations will increase accessibility.

If benches are added or replaced in the district, it is recommended that the bench design be consistent throughout the district. A single bench design should probably be used in all locations. The design of the bench should be clearly distinguished as new construction, through material or style, to avoid the impression that new benches are historic. Benches might be purchased from vendors or might be constructed from local materials.

Figure 9-6. Typical bench used in the district. This one is located at Antelope Springs.

Figure 9-7. To project a consistent image, one bench design should be used throughout the district. This simple wood bench (a style available from many vendors) is one design alternative.

Figure 9-8. A custom-designed bench is a second alternative for the single district-wide bench design. This simple log bench might easily be constructed in house.

Figure 9-9. Another alternative for a custom-designed bench for the district. One bench design should be utilized throughout the district.
materials. Natural materials such as wood and stone may be preferable to plastic or metal, to be in keeping with the rustic nature of the rest of the district's structures and features. Different alternatives for the design are provided in Figures 9-7, 9-8 and 9-9; any single one of these options would work, or another design could be developed.

Vehicle Gates

Vehicle gates are located at Cold Springs, Rock Creek, and Central Campgrounds to close off portions of the campgrounds or the whole campground during the off season. These metal gates (Figure 9-10) are typically unattractive. When they deteriorate, they should be replaced with a gate more compatible with the district's historic setting. A gate (Figure 9-11) currently used at the Point Campground is a good model, and may be used singly or in pairs, depending on the width of the access route. The gates in all locations should be consistent with each other.

Charcoal Cooking Grills

The district's historic grills—stone masonry fire pits with metal grills (originally located at Cold Springs Campground, Walnut Grove, and Buffalo and Antelope Springs) and concrete grills (originally located at Rock Creek Campground)—are by-and-large no longer extant for use in the park. Replacing these historic structures is not recommended. Instead, use of the current two styles of grills—a pedestal grill and a combined metal grill and fire ring on a concrete slab (Figure 9-12)—should be utilized throughout the district. Both models of these grills currently being used in the park are ADA-compliant. To provide a consistent district appearance, upright grills should be used at all picnic areas and the circular metal grill and fire ring used at campgrounds.
Trash receptacles

Little is known about the appearance of trash receptacles during the period of significance, but it is likely these were in-ground trash cans. During the 1940s and 1950s, both Cold Springs Campground and Rock Creek Campground had in-ground trash receptacles, and there are a few of these remaining in the district today, such as one near the Employee Residence (Building 2).

Today, there are two main types of trash receptacles in the district: brown, round thirty-gallon lidded cans, often mounted in pairs on low, metal pole structures (Figure 9-13), and rectangular raccoon-proof cans bolted to a concrete pad (Figure 9-14). The round cans have been in use since the 1960s or 1970s, while the raccoon-proof receptacles date to the 1990s. While neither receptacle is attractive, the raccoon-proof bins are more obtrusive, in part because they are large and their shape is somewhat atypical. However, other raccoon-proof receptacles on the market are equally unattractive.

As a result, introducing a new type of receptacle is not recommended, as it would simply add more visual clutter to the landscape. Rather it is proposed that existing models be maintained. The need to add more raccoon-proof receptacles in the district, however, seems likely. To reduce their visual impact, a number of actions are recommended. First, they should be restricted to the current size (paired thirty-gallon bag holders) and should not be increased to the larger, sixty-gallon paired fixtures. Second, they should be painted a consistent color throughout the district. Third, when mounted on a concrete pad, these pads should be colorized or stained to make them less obtrusive in the landscape. Finally, an ADA-accessible model, one with doors that open horizontally (rather than vertically) should be considered, especially in ADA-accessible picnic areas or camping areas (Figure 9-15).
Boulder Roadside Barrier

In most parts of the park, boulders delineate roads and parking areas and separate vehicles from pedestrians or natural areas. Much of this “boulder guardrail” (as it was then known) was installed in the 1930s and its use is clearly a character-defining feature of the Platt Historic District. However, original boulder locations were not documented in a detailed manner during the initial period of placement, although we do know that they were installed “along park roads.” Locations included the edges of the roads and parking areas of Bromide Springs and Travertine Island and Little Niagara Falls, as well as along roads and spurs in Cold Springs Campground. Since 1940, boulders have been installed in many more areas of the park and so it can be difficult to distinguish “historic” from “non-historic” boulders. Usually, more recently placed boulders are those placed simply at grade (Figure 9-16). Historic boulders were usually embedded in the soil with about one-third of the boulder below grade (Figure 9-17), and sometimes were placed on a concrete pad.

It is recommended that existing boulder barrier be retained. Existing boulders that are embedded below grade should be retained in place. Where individual boulders within a barrier are not embedded, they should be embedded with at least one-third of their height placed below grade. A concrete pad placed below a boulder may help fix it, particularly if it is a smaller boulder.

Installing extensive lengths of new boulder barrier is not recommended, as it was clearly not the design intent that all roads in the district be lined with stones! However, there may be times or locations that demand a new vehicle barrier. In these cases, new boulders should be installed as they were historically, with at least one-third of their mass below grade. Installed boulders should be a minimum of eighteen inches and a maximum of twenty-four inches high (Figure 9-17). New boulders should be situated no less than four feet and no more than seven feet apart (edge to edge). While the seven-foot upper limit will allow mowers to move around boulders, facilitating maintenance, there is some question whether this will create enough of a barrier to deter vehicle drivers. To enhance the psychological perception of the barrier, it is suggested that the largest (tallest) stones possible be used when the seven-foot upper limit is reached (Figure 9-17).

Figure 9-16. Boulder roadside barrier. Notice that recently installed boulders are placed at grade, and not embedded in the soil.

Figure 9-17. Section showing boulder roadside barrier installation. Approximately one-third of each boulder should be placed below grade.

Smaller distances between boulders are appropriate where vehicles are moving very slowly or in campgrounds where boulders define campsites. However, in areas where stones are three feet or less apart, removals may be considered, especially if stones are placed at grade rather than buried. However, widespread removal of historic boulders is not recommended. While mowing between closely-spaced boulders can be difficult, it may be more appropriate to reduce mowing intervals around the boulders while maintaining the rest of the lawn at a higher level.
Signs

Historically, the Platt District had a unique set of designed place-name, directional, and informational or interpretive signs. These signs, in place by the early 1940s, helped define the character of the area. Today, however, a multitude of sign types exist within the district. Re-defining a set of consistent signs, based on the historic signs, would do much to help regain and unify the district’s character. The following sign types are proposed:

Half-log place name sign (Figure 9-18):
This sign type, used to identify a place or location, should be based on the extant sign at Antelope Springs and similar signs at other locations (usually springs) seen in historic photographs. These signs are documented in historic photographs and are known to have existed at Pavilion Springs, the Bromide Pavilion, Black Sulphur Springs, Hillside Springs, and Antelope Springs. New half-log signs should be used to identify significant sites or structures within the district. They should not be used to identify larger landscapes such as campgrounds or large areas (such as the Buffalo Pasture).

Half-log trail sign (Figure 9-19):
Constructed of two to four small half logs on narrow double posts, these signs historically showed destinations. Current trail signs vary in style, including some using simple planks in place of the historic half logs. New mileage and destination signs should be designed to match the historic sign, and should be used to replace existing signs as they deteriorate.

District Gateways (Figure 9-20):
Stone piers located at each of the district’s three main entrances originally had metal lettering. Based on historic drawings and photographs, metal letters dating to the period significance should be refabricated and replaced on the piers, to provide a strengthened sense of the area as a historic district. The recommended text for the piers is “Platt Historic District” is the suggested text. Each set of piers is addressed in Chapter 11 as a separate treatment project.
Historic Interpretive Signs (Figures 9-21 and 9-22):
The two remaining historic interpretive signs should be retained and replaced in kind. The one at Travertine Island is rapidly deteriorating and the one at Bromide is an inaccurate restoration. These signs are highlighted in Chapter 11 as individual projects. The mineral water composition signs at the Bromide and Pavilion Springs pavilions are also historic interpretive signs, and these should also be retained and preserved.

Other non-historic signs exist within the district and include:

- Highway road signs on rusted metal posts;
- Standard NPS directional and identity signs “brown” signs on rusted metal posts;
- New wayfinding signs as part of the Visitor Center project on wood posts;
- NPS interpretive waysides: fiberglass embedded graphic on the anodized frame; and
- Campground information bulletin boards. The hanging bulletin board on historic comfort stations should be removed, since these never existed historically.

Locations of these signs are determined by regulation (highway signs) and the CNRA sign committee. In general, these signs should be kept to a minimum, to help reduce non-historic visual clutter within the historic district.
Chapter 9: District-wide Design and Management Guidelines

Trail Bridges

Historically, trail bridges were constructed of massive timbers, located atop stone abutments (Figure 9-23; see also Figures 4-14 and 4-17). Today, the trail bridges are more simply constructed. A pair of steel I-beams span the historic abutments and a wood plank deck sits atop the I-beams. Hand-railings, if present, are usually pipe railings (Figure 9-24). On some trails, such as the Buffalo Pasture Trails, bridges do not have railings. Although there are quite a few bridges along the district’s trail system, these purely functional, low-profile structures do little to enhance the character of either the trails or the district.

Recreating the historic bridges is not recommended, since little documentation of them has been found. However, the bridges could and should reinforce the district’s historic character. As they wear out, the existing, non-historic structures should be replaced with a consistent bridge design that is clearly contemporary, but more in keeping with the original historic form and massing of the original structures and with the historic character of the district. Such a design might have wood timber railings, such as supplied by a vendor (Figure 9-25), or it might be a custom design using the historic bridges as inspiration.

MAINTENANCE GUIDELINES

Concrete Paving

Periodically, new concrete is poured in the district, to replace curbs, provide ADA access, construct pads for trash receptacles, etcetera. Concrete, while a convenient and inexpensive material, was not widely used in the park’s original construction. The use of concrete should therefore be limited in the district. When it is used, a bright white color should be avoided, since it both visually highlights new construction (undesirable in a historic area) and is overly bright and reflective in the summer. During construction, new concrete should be darkened by the use of a dark sand and/or a colorant in the concrete mix. Recently poured concrete that is overly white should be darkened using an oxidizer. Another alternative is a concrete acid stain which reacts with the surface to form an integrally colored surface (www.acidstain.com). Locations where new concrete
should be stained include Walnut Grove, Black Sulphur Springs, Little Niagara Falls and Travertine Island, and Rock Creek Campground. New curbing on Highway 177 might also be stained to reduce its visual impact.

Flagstone

Flagstone terraces, including those at the 12th Street Fountain, Hillside Springs, and the Bromide Pavilion should be swept and cleared of debris once or twice per year. Weeds growing in mortared or dry laid flagstone should be pulled or sprayed with Round-Up®. It might be possible to have these areas policed for debris by park VIPs or by a local group that “adopts” a space.

Drains, Culverts and Associated Drainageways

Backed-up water can wreak havoc in the landscape. Culverts throughout the district should be cleaned on an annual basis, with approximately one to two weeks scheduled for each year. Culverts include those within individual landscapes as well as those at historic structures, such as the trench drain at Bromide Pavilion. Culverts along roads and trails should also be cleaned. Debris should also be removed from drainageways immediately up and downstream from culverts.

Masonry Repair

The Platt Historic District has a significant amount of varied historic masonry, ranging from the detailed ashlar masonry of the 12th Street Fountain to the dry laid boulders preventing erosion along Travertine Creek. Much of this masonry, particularly on smaller, out-of-the-way structures such as culverts and retaining walls, is beginning to deteriorate. Signs of deterioration include cracking and spalling stones, destabilization, deteriorating masonry joints, and efflorescence. If such deterioration is not arrested now, larger repair and replacement projects will be needed later.

Many—but not all—historic masonry projects are listed in Chapter 11; those listed are generally major problems that threaten structural stability. Closer inspection of structures will no doubt reveal additional problems.

Technical expertise or training is required for much of the repair work. While experts might be hired, it may be more efficient to develop expertise within the CNRA staff. This might be accomplished through individualized training off-site or through on-site workshops with partners such as the Historic Preservation Training Center.

Projects might be implemented by a staff person dedicated to masonry repair, or through an annually scheduled period during which a select number of prioritized projects are chosen for implementation. Either way, it is imperative that work be begun soon and be implemented on a regular basis. In addition, an annual inspection of masonry should also be implemented, to identify continuing deterioration and emergency repair needs. This might most conveniently be done during the off-season, November to February.

While each masonry project is different, some general guidelines apply. Repair should focus on replacing elements in-kind, using original stones when possible. If stones fall off a structure, they should be saved and replaced in their original locations. Non-original replacement stones should match the missing or surrounding stones in stone type, size, color, composition, and texture as closely as possible. If possible, replacement stones should come from the original quarry or source. For dry-laid rubble walls, such as those along creek banks, construction should match the original in terms of course number, stone size and batter. The work recently completed along Travertine Creek in Central Campground is exemplary.

Matching historic mortar joints is also important. When repointing, the size, color, and profile of new joints should match the old as closely as possible. In some cases, it may be necessary to match a historic mortar exactly; in these cases, it may be possible to consult historic documents for mortar specifications. In other cases, samples of extant mortar can be sent out for laboratory analysis.

Utilities

In general, utility infrastructure should be made less visible (Figure 9-26). Phone and electrical boxes should be painted brown to blend in with surroundings, provided that the utility companies will permit this. The satellite dish at the Headquarters and Administration area should also be painted brown (see Project AH4 in
Chapter 11. And although utility poles were part of the historic setting and are seen in historic photographs, utility lines should be undergrounded as desired or possible, to reduce the effects of storm damage and conflicts with trees.

PERIMETER ROAD

Cross-Section Guideline

Encompassing the entire district, the perimeter road presents a specific historic character to visitors. This character must be maintained. The 2001-2002 FHWA Perimeter Road project implemented some changes, but most were minimal and included new surfacing, new curbs to manage drainage in some locations, and new alignments in a few locations. In a few areas, the road was slightly widened to better accommodate RV traffic. Following this work, additional changes to the road prism are not recommended.

The rest of the road corridor, including shoulders and roadside vegetation, should be managed to maintain an historic appearance, as shown in Figure 9-27, a typical road cross section. Shoulders should be native grass, mowed and maintained at five feet wide. Existing drainage swales or ditches paralleling roadsides should be approximately two feet deep, smoothly graded in the landscape and planted with native vegetation.

Vegetation should be allowed to grow close to the road edge, with a vertical clearance of fourteen feet as existed historically. In some places, such as near Cold Spring Campground, trees grow within a few feet of the roadway. While planting trees in such locations is not recommended today, these trees are historic and should be retained.

The tunnel-like quality of trees arching over the road on the south side of the perimeter road near Bromide Hill, along Rock Creek near Walnut Grove, and at other locations, should also be maintained (Figure 9-28). However, to reduce fire hazard in these areas, red cedar located in the understory along these stretches should be eliminated. Overhead road canopies may be thinned, but a quality of dappled shade on the road surface should be maintained.
Shoulder Maintenance

Visitor parking along the roadside is causing shoulder erosion problems in high visitor use areas, such as along the perimeter road at Panther Falls, at Cold Springs Campground, Bear Falls, and Garfield Falls, and at Walnut Grove. Paving the parking pull-offs (and slightly widening the asphalt between Sycamore Crossing and Bear Falls) as part of the 2001-2002 FHWA perimeter road project has helped better define parking areas. Additional shoulder paving, however, is not recommended. Rather, grassy road shoulders that are sometimes parked on should be constructed with stabilized soil (a 50-50 mix of gravel and soil), compacted, and reseeded with a roadside grass mixture during the off season. The stabilized soil should reduce compaction and allow a better growth of grass.

The stabilized soil mixture may also be used in other areas where shoulder retention is a problem. In addition, shoulder failure sometimes occurs at perimeter road culverts. These areas should be shored up with boulders placed below grade, in line with existing culverts, and the shoulder filled with stabilized soil and reseeded. Culvert headwall locations should also be marked with reflectors, to aid visitors in staying on the pavement in these areas, particularly at night. Placing additional boulder barrier along roads to restrict parking is not recommended.

Parking Areas

Parking pulls offs along the perimeter road have always been a part of the district landscape. As noted in Chapter 3, in the 1930s, 230 parking spaces defined by wood, and later, boulder guard rail, were designed along the road. At the end of the period of significance, pull-offs (as opposed to designed parking lots) were located in the following configuration: One at the Bromide Hill town site overlook; one at Walnut Grove; one at Lincoln Bridge; one at Central Campground; two at Bear Falls; one at the Limestone Creek Bridge and picnic area; and one at Antelope Springs. Today, there are a few more, including two along the perimeter road in Bromide Springs; seven at Walnut Grove; one at Lincoln Bridge; one at Central Campground; three between Cold Springs Crossing and Garfield Falls; two at Bear Falls; and one east of Limestone Creek Bridge at the picnic area and one about 500 feet west of Limestone Creek. These areas are mostly paved and lined with boulder barrier. These areas should be maintained as is. Tree and understory vegetation around the parking areas should be maintained to provide shade and to reduce the visual impact of parking within the historic district (Figures 9-29 and 9-30).

TRAILS

Trail Surfaces

Trail surfaces are currently composed of decomposed granite. Trial and error has revealed that 5/8"-minus crusher run granite seems to have enough fines to compact well and remain firm. However, throughout the district, migration of trail surfaces, particularly on steep slopes and after heavy rain, continues to be a problem. An applied surface treatment to help bind the surfaces together could be a potential solution. Treatments which can be sprayed on to bind surfaces include rosin-
Chapter 9: District-wide Design and Management Guidelines

Pitch-based surface treatments such as Resinpave® and RoadOyl® and Soil Sement®. There is evidence this type of binder was used in the 1960s (see Chapter 5), and that these binders were more effective at reducing dust than binding the surface.

An alternative surface treatment would be to use one of the polymer or plant-based stabilizers currently on the market. These so-called “organic” or “natural” products, are non-toxic to the environment and are blended with crushed granite and water and rolled or compacted to create a hard surface. Their advantages include ease of construction, low cost, and a color and texture that blends into the surrounding environment. A potential disadvantage of these products is their relative newness and an associated lack of contractor knowledge of their installation.

Construction with these stabilizers usually involves placement of three inches of crushed granite and stabilizer mix on a prepared sub-grade, thorough watering of the applied mixture, and rolling with a two- to four-ton drum roller to ninety-five percent compaction. However, a stabilized surface may also be created by tilling existing trails to a depth of three to four inches, thoroughly blending the stabilizer into the tilled material, and then watering and rolling. Testing of granite aggregate to ensure a proper ratio of aggregate to stabilizer is recommended. These are relatively new products, and their recorded life span so far is up to twelve to fifteen years in dry climates, with some patching or rewatering and compaction required. Suppliers of a plant-based product include Stabilizer Solutions, Inc. (205 S. 28th St., Phoenix, AZ 85034/1-800-336-2468/ www.stabilizersolutions.com). This manufacturer has done work for other NPS units. Polypavement is a similar product, but is polymer-based (P.O. Box 36339, Los Angeles, California 90036/ (323) 954-2240/ www.polypavement.com).

Both of these manufacturers recommend sending soil or aggregate samples to determine whether or not the proposed soil substrate and gradient is appropriate for their product and to determine best application methods.

Hardened Drainage Crossings

Concentrated drainage flows cause continual erosion in localized areas along most paths paved with compacted decomposed granite or gravel. Over time, many of these have been “hardened” using asphalt or flagstone (Figure 9-31) to prevent tripping hazards and eliminate continual surface repair. This is an appropriate treatment. However, the construction of these drainageways should be made more consistent throughout the district. We recommend that all such areas carrying cross drainage should be paved with flagstone. If flagstone is dry laid, joints should be as tight as possible, ¼” to ⅜”. Where appropriate, flagstone may also be set in mortar with mortar joints (Figure 9-32). The flagstone surfaces should be kept as smooth as possible and the pavement ends should meet the existing trail at grade. An overall smooth and even transition with the trail is necessary, since pavement changes are a major part of reduced trail accessibility. Flagstone areas should be large enough to fully carry drainage, to prevent undermining at pavement edges and to help maintain smooth transitions.
ADA ACCESSIBILITY

Much of the Platt District is not fully accessible, and improving this access is important. The district should provide a range of experiences that are fully accessible, from camping to picnicking. Accessible water experiences are particularly important, given that water is the basis for the park's existence. Yet access goals must be balanced with historic preservation goals, to ensure that access alterations are sensitively made and do not lower the district's historic integrity or significance. In general, it is recommended that park management provide the highest feasible level of access with the lowest level of impact on the integrity of the Platt District historic resources.

In June 1997 the Regulatory Negotiation Committee on Accessibility Guidelines for Outdoor Developed Areas was established to create new design guidelines for accessible trails, campsites and picnic areas. The work on final design regulations is in progress; and the recommendations below are designed to meet the intent of the new regulations. Recommendations for improving access to specific areas are provided in Chapter 11 and in general, these are areas where changes to historic fabric will be minimal. District-wide accessibility concerns are addressed below. Visitors should also be informed of the degree of accessibility of various areas: for example, the steepness of trails or potential barriers along trails. This information could be provided at the visitor center and nature center and at trail heads. Where access alterations may significantly impact or irrevocably destroy a character-defining feature, it may be necessary to provide partial or limited access and provide an alternative way of experiencing that feature—for example, through videos.

ADA Trail Access

Under the new proposed guidelines, accessible trails must meet the flowing technical provisions:

- Clear tread width: 36-inch minimum.
- Tread Obstacles: 2-inch high maximum.
- Cross slope: 5% maximum.
- Running slope meets one or more of the following:
 - 5% or less for any distance.
 - up to 8.33% for 200 feet maximum; resting intervals (with room for benches and wheelchairs) no more than 200 feet apart.
 - up to 10% for 30 feet maximum; resting intervals 30 feet.
 - up to 12.55% for 10 feet maximum; resting intervals 10 feet.
- No more than 30% of the trail length may exceed a running slope of 8.33%.
- Passing Space: provided at least every 1000 feet where trail width is less than 60 inches.
- Signs: shall be provided indicating the length of the accessible trail segment.

Figure 9-33. Proposed accessible trail segments of Buffalo Antelope Springs Trail (top) and Veteran's Trail (bottom).

Altogether, the Platt District has close to ten miles of trails, and many of these miles are inaccessible by the above standards, due to very stairways, steep slopes or unbridged water crossings. In general, overall access should be improved by providing smooth surfaces, ramps, hand railings, resting areas as possible and appropriate, but the entire trail system cannot be made fully accessible. However, full access could be provided on certain trails. These trails, which include Flower Park (where trails are currently being rehabilitated); the Buffalo Antelope Springs trail; and portions of Veteran's Trail might also be made accessible, with some grading to eliminate localized areas with slopes over 5% (Figure 9-33).
ADA Accessible Picnic Areas

The numerous picnic areas located through the park are furnished with picnic tables, grills, water sources and trash containers. The moveable nature of these elements makes the picnic areas partially accessible, since visitors can move features to suit their needs. None of them, however, are specifically designated to fully accommodate people with special needs, since accessible picnic areas must be located close to an accessible rest room, on a hardened, accessible surface with an accessible walk to the area (Figures 9-34 and 9-35). To meet accessibility guidelines, at least two fully accessible picnic areas are recommended at Walnut Grove and Black Sulphur Springs. Others might be provided at Bromide Springs and Flower Park, though they may be more intrusive in the historic setting in these two areas. Accessible picnic areas could be located in close proximity to an accessible route, parking lot and a modern comfort station. Decomposed granite trails, hardened with a stabilizer, could provide the required clear, firm and stable surfacing, which cannot exceed a 5% slope in any direction. These areas could be supplied with appropriate picnic tables, trash containers, grills or fire rings and with an accessible water source.

ADA Camping Areas

The proposed access guidelines for camping facilities require that about three percent of the total number of campsites in a campground should be accessible, with an accessible parking space, tent space, water source and site furniture. Each campsite must also have an accessible path to sanitary facilities.

The three campgrounds in the Platt District have accessible comfort stations but do not have designated accessible sites. It is recommended that seven accessible individual campsites be provided at Rock Creek Campground and four individual accessible campsites be built at Cold Springs. As described in Chapter 11, these are located in close proximity to the comfort stations, and, like the picnic areas described above, will require hardened trail surfacing to and from the comfort stations. This could be done using decomposed granite, with a stabilizer, to create a hard surface that is less visually intrusive than white concrete.

One accessible group site could also be located at Central Campground, although access to the comfort station will be difficult to achieve, given the steep slope in front of it. Therefore this is not recommended in Chapter 11.

All accessible campsites should include an accessible vehicle parking space, tent pad and living camping spaces with picnic tables, grills, fire rings, lantern hangers and other camping utilities.

Spring and Water Access

All existing pavilions and structures should be accessible to the highest feasible level. In situations where complying with accessibility guidelines “would cause substantial harm to cultural, historic or significant natural features” alternative methods of achieving opportunity of equal experience can be used. As described in Chapter 11 projects, full or limited access can be provided at the
Bromide Pavilion and the Black Sulphur Springs Pavilion; at Vendome and at Pavilion Springs and at Buffalo and Antelope Springs. Access at Hillside Spring; however, will be difficult to achieve without substantial changes, given its steep surroundings; a video or alternative experience of this spring should be provided at the Visitor Center.

Access to Rock and Travertine Creek to experience the streams, dams, waterfalls and wading ponds will also be difficult to achieve because of their steep banks. As an alternative, the Vendome Stream in Flower Park is recommended to provide accessible contact with water because of its close proximity to an accessible parking lot, small elevation changes, and accessible path network. However, even the stream at Flower Park will not be fully accessible, since it is not recommended to construct new hardened pathways to the stream banks.

CREEKS, DAMS, AND POOLS

Swings

Trees should be cut back around all swimming pool edges to discourage the construction of swings. Lower branches (below fifteen to twenty feet) should be removed from trees. Trees that lean or arch over swimming areas should also be removed.

Dam Maintenance

The dams and swimming holes along Travertine Creek should ideally be cleaned out annually or after heavy flooding to flush silt and remove twig debris. This will help water flow and improve the depth of the pools for swimming. It appears that traditionally, this work was done by hand, and the constructed dams have culverts that may be opened to flush silt and debris. The use of heavy equipment for this work is not recommended, unless the edges of the pools can be protected from collapse and compaction.

Pool and Stream Edges

Soil compaction and erosion caused by foot traffic are issues at most high-use stream and pool edges in the district, including Flower Park, Little Niagara Falls, Panther Falls, etc. There is probably little that can be done to change this, short of restricting access. However, the issue can be managed to some degree by replacing sand at “beach” areas such as Little Niagara and Panther Falls. Where stones have shifted, these should be replaced and stabilized soil (a mix of gravel and soil) should be used to backfill around them. Stabilized soil may also aid in maintaining grassier banks along Vendome Stream in Flower Park. When this area’s banks are eventually repaired, stabilized soil should be used where bank edges are to be reseeded.

Bank Erosion and Undercutting

Bank erosion and undercutting is occurring in locations along both Travertine and Rock Creeks. Such conditions are exacerbated by high water and flooding, as evidenced by bank scouring in more wooded areas of the district. Foot traffic is another problem eroding banks in high-use areas, such as Little Niagara Falls or Panther Falls. In Flower Park, mud bathers can also contribute to bank subsidence when they reach under stones to collect sulfurous mud.

Where conditions are severe, stone revetment walls may be constructed. These dry-laid walls are in keeping with the historic means of preventing erosion, and there are excellent historic examples of such construction along the upper portions of Travertine Creek in the Environmental Study Area. More recent examples of revetment walls include those constructed along Travertine Creek in Central Campground (Figure 9-36). These walls, only a few years old, appear almost indistinguishable from historic stone work.

In general, new stone revetment walls should be constructed of large boulders, graduated in size from base to top, and with a 2:12 batter or a batter matching walls in adjacent areas. Vegetation such as Virginia creeper or catbriar may be placed in pockets of soil between stones to encourage revegetation of the walls to effect a natural appearance.

Alternatively, more modern bioengineering or stream bank stabilization techniques might be used where heavy armor ing is not desired or along stretches where stony outcroppings are not indigenous. Bioengineering techniques may be less labor intensive and more cost effective, particularly if plant material could be
subject, without adding new interpretive features in the historic landscape.

Bioengineering uses plant scions or bundles of fascines of fast-growing woody vegetation to create a vegetated slope resistant to water erosion. A good resource for such techniques is the manual *Stream Corridor Restoration: Principles, Processes, and Practices*, produced by the Federal Interagency Stream Restoration Working Group in 1998.

INTERPRETATION

Interpretation within the district should include cultural resource information as well as natural resource information. While the interpretation of natural resources, including the area’s wildlife, vegetation, and geology has been emphasized since the early 1960s, cultural history interpreted in the district has also included the story of the park’s origins and its early Native American use.

As we enter the twenty-first century, and gain distance from the history of the Great Depression, the story of the CCC and the creation of the park becomes more interesting to visitors interested in history. One way to address the park’s 20th century resources is to create a self-guiding map and tour highlighting cultural resources, similar to those often used for nature study, for the entire district. This could be made available to visitors at the new Visitor Center and the Nature Center, and would be a relatively inexpensive way to gauge interest in the

Figure 9-36. Recently constructed wall at Central Campground is an excellent example of new construction matching historic construction.
Chapter 10: Vegetation Change and Management

INTRODUCTION

This chapter addresses the vegetation in the Platt District from the standpoint of the overall district. While distinct areas of the park retain their own designed vegetative character, it is also important to view the designed landscape in the context of larger ecosystem concerns and plant communities.

The chapter begins with a history of the area's vegetation, which charts both change in the composition and management of the district's vegetation and change in scientific understanding or perception of that vegetation. This is followed by an analysis of change in the district, which leads to a proposed approach to vegetation management. In addition to historic concerns, existing management conditions are also described and taken into account for proposed vegetation management actions.

HISTORY OF THE PLATT DISTRICT'S VEGETATION

Regional Vegetation Context, to 1902

Early information about the native vegetation of the area now known as the Platt District is limited. Most early written sources focus on the area that is now Oklahoma, and even these sources are sparse. According to Bruner, in his 1931 article “The vegetation of Oklahoma,” documentation “on the vegetation of Oklahoma secured by early explorers and traders is meager.” However, most of these early sources, such as Josiah Gregg’s “Commerce of the Prairies” (1844), depict the area as the “fringe of the great prairies” and as a continuous brushy strip composed of blackjack oak, post oak, hickory, and elm.

An 1853 report by Captain R. B. Marcy contains five drawings, which seem to be the first views of the larger region and an 1856 article by Bigelow gives a short, but high-quality narrative on the area's vegetation, including a long list of trees and shrubs. Bigelow described the state as “being in nearly its whole breath a beautiful and fertile country” and considered “most beautiful and picturesque” the areas where woodland alternated with prairies that were arranged so as to “give them the appearance of vast cultivated fields formed on a scale of great magnitude stretching away in every direction as far as the eye can reach.” Another early report by Fitch describes the distribution of the woodlands throughout the Indian Territory, with brief, but informative descriptions of the timber in each township, determined from surveyors' notes. Fitch's report also includes a map showing the distribution of vegetation in any part of Oklahoma. Other early Oklahoma studies include Butler (1878) and Holzinger (1892) lists of the state species, the Carleton report (1892) on distribution of the vegetation in the state and the Shannon list (1913) of native and introduced species of trees and shrubs of Oklahoma. In general, most of these studies recognized that prairie fires were the main factor in keeping prairies free from trees and even at this early date pioneers had observed the spread of forests into various grassland areas that were protected from fire.

Geographically, the Platt District lies within the Arbuckle Mountains, and documentation of this specific area is also limited. The first general study of the flora of Arbuckle Mountains was in a form of a brief checklist developed in 1908 by Gage. He focused on the portion of Arbuckle Mountains comprised of six townships: 1 South, Range 1 East, 2 East, and 3 East; and 2 South, Range 1 East, Range 2 East, and 3 East. The flora along the Washita River, Rock Creek and Falls Creek was described as “varied and luxuriant” due to rich humus content and an abundant water supply. Gage also listed some of the most common tree species such as elms, oaks, pecans, maples, ash, cottonwoods, walnuts and willows found along the stream banks.

The Gage (1909) plant collection and the studies conducted by G. W. Stevens from 1911 to 1913 represent most of the early documents available. Unfortunately, these collections and other valuable specimens and data on Arbuckle plants were lost when the herbarium of the University of Oklahoma was twice destroyed by fire.
Other studies about the flora, fauna and ecology that embrace information on Arbuckle Mountains date to the 1930s and include “Vegetation of Oklahoma” by Bruner (1931), “Notes on some Plants of Oklahoma” by Palmer (1934) and “The biotic districts of Oklahoma” by Blair and Hubbell (1938). Bruner’s study describes the Arbuckle area as having steep, rocky hills, where “[t]he slopes and valleys are mostly forest-covered but grasses predominate on the upland.” He considers the region to be located within the Oak–Hickory savannah, a name applied to the broad transition zone between the deciduous forest and the true prairie associations.

According to Bruner, this vegetation region crosses the central part of the state in a generally north-south direction.

In contrast, Palmer compares the flora of the Arbuckle Mountains with that of the Edwards Plateau of Texas. Blair and Hubbell in “The biotic districts of Oklahoma” noted that the Arbuckle Mountains were similar to the Osage Savanna district, a biotic region of sandstone hills covered by a dry scrubby forest mostly composed of blackjack oak, post oak, and black hickory as well as grassland communities most closely related to the

Figure 10-1. Top: Portions of the 1871 Township No. 1 South, Range 3 East and Township No. 1 North Range 3 East plat maps. Bottom: Same portions, annotated based on the surveyor’s notes (Oval indicates approximate location of the Platt District).
grasslands of the mixed-grass Plains district. Blair and Hubbell also note that the Arbuckle Mountains contained more mesic ravine forest, containing spotted oak, redbud, juneberry, and winged elm.

Platt District Vegetation, 1871–1902

Documentation of the historic vegetation of the Platt District prior to park development is even more limited than floristic studies of Oklahoma. The major evidence of historic vegetation from times prior to the park’s designation comes from the 1871 and 1897 surveyors’ notes and plat maps for Murray County conducted by the General Land Office (GLO). Lands in the Chickasaw Indian Nation near Fort Arbuckle in what is now Murray County were some of the first surveyed in Oklahoma. The area now known as the Platt District is primarily depicted within Sections 1, 2, 3 of the maps for Township No. 1 South Range 3 East (Figures 10-1 and 10-2), though a small portion of it also appears in Sections 34 and 35 of Township No. 1 North Range 3 East. These plat maps indicate streams, cultivated fields, orchards, both grazed and ungrazed areas of grassland.
Chapter 10: Vegetation Change and Management

and woodland vegetation. Unfortunately, they do not give indication of vegetation density and structure. Also, in the authors’ opinion, the accuracy of surveyors’ notes and plat maps is questionable. This is most evident on the 1871 plat map, where most streams were drawn with a wavy line and some smaller streams were not marked or marked differently in comparison to 1897 map.

The portion of the 1871 plat map corresponding to the area of the current Platt District (Figure 10-1) shows Rock Creek running east and west, with several smaller tributaries branching off to the north. In general, the stream valleys are shown as wooded with the balance of the area depicted as grassland. The choice of graphic representation—in which trees are rendered (as grey “cloud” shapes) but prairie is not (but simply left blank, or white)—may indicate that surveyors were less concerned about mapping grassland, as it had little commercial or aesthetic value, than they were about mapping timber. The more careful denotation of woodland may indicate its importance as fuel and building material as well as a perception of prairie as being “open” or empty space. The map’s accompanying surveyors’ notes describe the district’s timber as predominantly “first rate,” with post oak as the dominant species. More specifically, woodlands in the eastern part of the district were composed of oaks, elms and sycamores, while the western part contained “good oaks.” Field notes also indicate that the district’s upland areas were occupied either by “rolling prairie” or “first-rate prairie.” Though there are records of some early Chickasaw and Euro-American homesteads in the area, the only evidence of human settlement marked on the 1871 plat map is the road from Fort Arbuckle to Boggy Depot.

The second set of the GLO plat maps and notes from 1897 (Figure 10-2) appear to be more accurate and detailed than the 1871 survey. For instance, the 1897 map shows additional streams not indicated on the 1871 map. Interestingly, the 1897 plat map indicates that the area of the current Platt District was much more open than in 1871. Hoagland states that these grassland openings may have been the result of land clearing. While, this might be true for the larger area of Murray County, this conclusion may not be appropriate for the area of the Platt District. The 1897 map shows the area with little human activity, except for a few cultivated fields, roads and the small rural development of Sulphur Springs.

In general, the 1897 map is consistent with the 1871 map. The upland areas, again rendered as white space, were covered by native prairie, described variously by surveyors in their notes as “rocky,” “rolling,” or “second rate” prairie. Woodlands again appear to be limited to the stream corridors and their branches and were described as containing red, post and black oaks, and elms, hickories and ashes. The 1897 GLO survey notes describe the woodlands as “scattering,” “good,” and “open.” These notes are consistent with a 1900 description in a report entitled “Woodland of Indian Territory” by Fitch, which describes the timber characteristics of all townships in Indian Territory. The report includes a brief description of woodland in township No. 1 South, Range 3 East, the area of the Platt District: “One-third of the township is well timbered with oak, elm, and hickory. Along the streams is found an abundant growth of walnut, sycamore, ash, and pecan timber, which is of little value commercially.”

A collection of early photographs of Sulphur taken by Joseph Swords in the 1890s, held by the Oklahoma Historical Society, also provides clues to the nature of the area’s early vegetation. In many cases the photographs portray an open landscape as background for small log cabins or frame houses snapped in the foreground. One such example is a picture (Figure 10-3) depicting the office of the U. S. Townsite Survey set in an open, treeless landscape. Another image, taken just above Antelope Springs in the current district, reveals the fairly open scenery of what appears to be grassland with a few scattered trees and shrubs among it (Figure 3-75).
A third photograph (Figure 3-53) of a more developed part of the town portrays a similarly open landscape with deciduous trees scattered among the houses. One interpretation of these images is that given the extent of the open landscape in the photographs, the houses were built in areas where open grassland uplands were spotted with groups of isolated shrubs and trees. This would imply the presence of a savanna landscape prior to town construction. However, it is also possible, but seems less likely, that these photographs represent a landscape that has been completely denuded by human logging.

The Swords photographs also depict a different type of vegetation located along the streams. It appears the areas along Rock and Travertine Creeks were surrounded by a dense young forest with a thick understory layer of shrubs and vines. A good representation of this dense forest is captured in pictures of Travertine Creek (Figure 10-4) and Panther Falls (Figure 10-5).

In summary, the graphic and verbal descriptions of the pre-park landscape appear to indicate that the early, and perhaps pre-European, settlement vegetation of the area was a combination of wooded ravines and upland savanna landscape.

Platt District Vegetation Conditions, 1902–1932

With the reservation of the park in 1902, buildings were removed, and the creation of a park environment was begun. The earliest appearance of the park is documented in a 1902 report, written by Special Inspector Frank C. Churchill, describing the initial reconnaissance of the park's land. The report notes that "high land which is in the general level of the Arbuckle Mountains is a prairie" and that "the forest is confined to the immediate valleys of Sulphur and Rock Creek and the lower stretches of their tributary branches." These ravine woodlands are further depicted as "a dense jungle of young forest" comprised of "more than twenty kinds of [trees] common to this latitude" and "numerous shrubs and vines." Churchill also describes larger trees standing on the uplands near the valleys, a description which might designate the presence of a savanna type of landscape.

In his report Churchill also emphasizes the importance of "the preservation of the forest and the beauty of the landscape" indicating the high aesthetic and cultural values associated with trees. The report also noted that due to "protection from fire, the forest is rapidly spreading, and that without a doubt it can be made to extend over any part of the prairie land by care and protection." Such descriptions appear to indicate a desire to increase an existing small amount of timber preferentially over larger extent of prairie.
In addition to the park’s natural areas along streams, the new reservation included most of the existing town of Sulphur. Clearly, the initial location of the town site within the reservation limits affected the original character of the park’s vegetation, though documentation of this is limited. Presumably, at the time of designation, some platted house sites were denuded of any vegetation cover, while others were designated as agricultural fields or pastures. Also, it is presumed that a number of ornamental exotics currently located in the park—such as irises, lilacs, and roses—date to the settlement period, as these plants were commonly planted around settlers’ houses.

Written documentation from 1902–1932 (primarily Superintendents’ Reports) reveal that what vegetation management occurred did indeed focus on protecting the existing forest and the beauty of landscape. A 1908 description of the park indicates that out of the park’s 848 acres woodland constituted 200 acres and grassland 500 acres, and that dominant woodland species at the time included: oak, elm, hickory, black walnut, persimmon, hackberry, box elder, willow, redbud, cottonwood, sycamore, plum, ash, acacia, pecan, linden, bois d’arc, red cedar, black locust, honey locust, mulberry, wild cherry, black haw, red haw and dogwood. Thirteen Though grassland clearly constituted the dominant vegetation cover, there is no accompanying description of grassland communities, their character or distribution in the park. Thus it is not known whether these grasslands were native prairies or cleared grazing lands. However, reports referred to some of these areas as “denuded portions of the Park” that could be “reforested without further efforts” due to natural reforestation process. Fourteen During the early stage of the park’s development, other cover types included agriculture, with several acres of oats, corn and alfalfa and pastureland planted at various locations within the park’s boundary. These areas were former agricultural fields, abandoned since the establishment of the park and overgrown with weeds of the most noxious and unsightly character.

Between 1908 and 1909 one of the first protective plantings was established. To prevent erosion Bermuda sod plantings were implemented at West Central Park (now Flower Park), Bromide Springs and along creeks banks. Sixteen Also, in the spring of 1909 several hundred willow stacks were set along exposed portion of the creek banks to stabilize eroded slopes.

In 1909 some of the first ornamental plantings were also implemented. At Superintendent Greene’s initiative, flower beds were established at various locations in the Park: three at Bromide Springs, two near the Odneal Hotel and one near the Lincoln Bridge (Figure 3-50). These beds were circular enclosures about twelve feet in diameter, made of conglomerate rock, and filled with rich earth. Some shade and ornamental trees were also planted, although due to unfavorable climatic conditions fifty percent did not survive. Seventeen

More effort seems to have been placed in reforestation. Following recommendations made by Forester Rogers in a 1908 or 1909 report entitled “Planting Plan” the first reforestation plantings were implemented in the spring of 1909. The Rogers report, although it has not been located in park files, seems to have been the first recommendation to plant red cedars in the park. As a result, oaks, walnuts, elms, maples and cedars and other forest trees were planted in the yard of the Superintendent’s residence and other unspecified locations in the park. Eighteen

However, reforestation plantings were difficult to implement due to vandalism in the park and required “extraordinary efforts and precaution to protect young evergreens planted.” Nineteen In spite of all difficulties, in 1909 Superintendent Greene gladly reported that, due to fencing of the park and exclusion of livestock, natural reforestation had occurred, primarily on the lands that were plowed and seeded to Bermuda grass. He hoped that if this natural growth of oak, walnut, ash and elm sprouts could be protected, “the denuded portions of the Park will be reforested without further efforts.” He also stated: “Fire and livestock are the enemies that must be guarded against,” strongly advocating profound fire suppression within the park. Twenty Such statements would seem to indicate that from the early years of the park establishment reforestation efforts were considered as the most preferable vegetation management alternative. It seems also that the idea of planting evergreens, namely red cedars, originates from this period.

Other than reforestation, management was primarily limited to fire suppression and exclusion of livestock from the park. Twenty-one Other maintenance practices were very limited, consisting of mowing weeds, eliminating poison ivy and limb trimming. Since some of the workers did not have required skills and knowledge, even these simple practices caused adverse effects. A lack of adequate parking facilities resulted in cars compacting soil and
damaging both newly planted and mature. By the 1930s, prior to the CCC, the vegetation of Platt National Park was in poor condition, with much of the park “overgrown with weeds, vines, brush and trees, some of which were dead and dying, presenting a very untidy and overgrown appearance.”

Platt District Vegetation Conditions, 1933–1940

In contrast to earlier periods, between 1933 and 1940 a distinct vegetation management approach was established for the Platt District. In general, the goal of the CCC efforts overall was to preserve natural resources and enhance visitors’ experience. As Richey described, it was an attempt “to strike a balance between the preservation of natural features and the accommodations of the visitor.”

In other words, natural park conditions had to be carefully modified to better serve new uses and provide easy access for the park's explorers. Within this goal, the CCC considered vegetation management “one of the first and most important tasks of the whole program,” and in May 1933, soon after their arrival, the CCC started an extensive forestry program addressing “the care and protection of the existing trees.” The program had two major objectives: “first, the protection and rejuvenation of the existing vegetation insofar as possible” and second “to replenish and re-establish the deforested areas.”

Within these objectives, projects included fire prevention, general cleanup, forest stand improvement, insect pest control, nursery work, and erosion control. Reports described also other landscape work such as sodding, mowing and tree surgery. Vegetation projects were often done in winter, mostly between November and March. In Oklahoma's climate, work was often impossible in summer or spring due to heat and drought conditions. Therefore, the CCC took advantage of mild winter months to implement most of the planting projects.

A rather specialized project took place during the spring and summer of 1935. Mr. Merrill, landscape foreman, collected plant material in the park with the intent of creating a herbarium collection. According to Richey and Miller, this herbarium collection contained many varieties of flowers not previously known to exist in the park and “should be of great value.” In 1935 and 1936, 600 species of plants of this CCC herbarium collection were identified by Harvard University's Arnold Arboretum, as reported in the 1942 Development Outline. This specimen list does not include information about the locations from which the plants were collected. Therefore its use is somewhat limited for this study. This botanical collection is stored at CNRA (Civilian Conservation Corps Herbarium List).

To prevent repetition with earlier history chapters outlining the sequence of CCC design and construction, here we have classified the CCC landscape work into several categories. This classification defines the design intent of the planting programs of 1933–1940, as described in park documents and as built and existing conditions. In addition to plant maintenance work, there were five general types of plantings established by the CCC: reforestation plantings, ornamental plantings, nursery plantings, boundary plantings and protective plantings.

Reforestation Plantings

Reforestation plantings were the top priority among other CCC landscape works. The intention of this extensive planting program was to restore the park to its “original conditions” and to “strengthen the design.” As described in previous sections, the exact “original conditions” of the district are difficult to define today, and the CCC staff never strictly defined their vision of the park’s original vegetation. However, based on the CCC planting objectives and widely spread reforestation actions, it appears that managers believed that the park used to be considerably more wooded than it was in the early 1930s. It is also possible that the CCC idea of reforestation was simply a continuation of Superintendent Greene's vision from 1909, since no written or photographic records support the fact that the park was originally primarily wooded.

The CCC began to implement a reforestation program with initial reforestation plantings beginning in the fall of 1933. About 4,000 small evergreens, including 1,000 Austrian Pine, 1,000 short-leaf pine, 2,000 red cedar, were planted “in groups over the park at places designated by the Landscape Architects.” The CCC also planted deciduous trees and shrubs. For instance, Richey mentioned that dogwoods were “planted in a good soil.” Other species and the exact locations of these plantings are not specified in the reports. We know, however, that in 1934 a total number of 489 eastern red cedars and 30 other large trees of mixed varieties were moved to the park (Figure 10-6).
Due to long-lasting drought, reforestation plantings were discontinued in spring of 1934. Nonetheless, despite the unfavorable weather conditions, 3,000 shrubs, probably dogwoods, were planted during the 3rd enrollment period. A few months later, during the 4th enrollment period, at the request of park designers, extensive reforestation plantings were carried on. Most of these plantings were implemented during the winter of 1934/35. For example, in January of 1935 approximately 300 red cedars and over 1,000 shrubs were planted. In 1935 Superintendent Branch reported on the plantings of native trees and shrubs, including 200 red cedars and 2,000 shrubs, under the supervision of Forester Stauffer. Again, no locations for these plantings are provided.

CCC work also included reforestation of “several areas which were formerly used for cultivation and which were denuded of tree and shrub growth.” For instance, the large area formerly used as an alfalfa field on the Lincoln Bridge-Bromide Trail was planted to native oak and walnut trees in accordance as nearly as possible with natural distribution of this species elsewhere in the park. To implement this planting, seeds were collected in the park. Also an attempt was made to restore a “natural growth of Cedar intermingled with other tree varieties” at Bromide Hill, by planting 3,000 red cedar seedlings on the hillside between Rock Creek and ridge. This project also included plantings of 21,800 Osage orange and 1,400 persimmon seeds in several barren areas at unknown locations in the park.

These reports show that park managers made a great effort to implement reforestation plantings using native species. In most cases, tree seedlings and seeds were gathered in the park. Some common plants such as red cedar were acquired at low cost from nearby farmers. However, the reasons for selecting red cedar as a main species planted in the park by CCC are difficult to discern. Even though red cedar is a native to the region it was not common in the park originally. Use of red cedar appears to have been dictated by low purchase price and wide availability.

Ornamental Plantings

As opposed to reforestation plantings, ornamental plantings in the Platt District were not established to restore the park to its “original conditions,” but rather to improve these conditions. The goal of these plantings was to enhance the most significant park areas and “bring them in harmony with the general plan.” The designers’ intent was not necessarily to imitate the natural landscape, but rather to make it visually appealing. These plantings were established to generate an appropriate setting for the rustic pavilions, spring enclosures and park residences with the consideration of the visitors’ experience. Therefore, in addition to common trees such
as oak, elms and walnuts, more ornamental, flowering shrubs such as redbud, magnolia, jasmine and euonymous were planted. Furthermore, to generate a desirable setting extensive lawn areas were established at the most prominent park locations.

Ornamental plantings were implemented at the Employee Residences, Flower Park, Buffalo Springs, Bromide Springs and the temporary CCC Camp at Walnut Grove. Most of the plants were dug within the park and some were purchased from nearby nurseries. The landscape architects emphasized the use of native species. However, as noted above, ornamental horticultural plantings had been a long-standing tradition in the park since the early 1900s. For that reason, in 1936, Superintendent Branch wrote to the NPS director for clarification of regulations regarding planting exotics “such as petunias, verbenas, cosmos, marigolds and bulbs such as tulips, dahlias, gladiolus and cannas at employee residences.”

He further noted:

> It may be remembered that formerly there were beds of plants and shrubs planted and kept up in what is now the flower park. These have been done away with but it is the desire of the employees to have flowers around their quarters and none of the varieties planted spread or become a nuisance.

Chief landscape architect Thomas Vint was sympathetic to these concerns responding:

> Branch has gone a long way toward eliminating exotics in his park—I think we could well approve his permitting employees to have their own flower beds—inconspicuously placed and forbidding only such varieties as may escape. This is in line with the practice at Yellowstone-Glacier-Grand Canyon.

Favorable conditions between October 1934 and April 1935 (4th enrollment period) led to the implementation of a large planting program in the high-use areas of the park. Branch noted that “[p]lanting operations were confined to areas accessible to watering and with apparent suitable environment for growth. These areas being mostly the highly congested and important areas of the park.” Approximately 600 large trees were planted, including red cedar, oak, elm, hackberry, chittamwood and walnut. Also, about 25,000 shrubs such as dogwood, chaparral, sumac, redbud, coralberry, black haw, wild rose and euonymous shrubs. These plantings were implemented at the following locations: Flower Park (including the revetment wall and main entrance); the parking area at Hillside Springs; the maintenance area; at residences one, two, three, four and seven; and many other undefined areas. Photographs (Figures 10-7 and 10-8), depict the CCC crews planting large cedars at the north main entrance and results of planting evergreens at the Hillside Springs parking area.

Ornamental plantings were established in other park locations as well. An extensive plan was developed at Buffalo Springs (Figure 4-99) under the direction of Landscape Foreman Walkowiak. Although no planting plan for this area has been located, it is clear these plantings were intended to be ornamental, as Walkowiak noted they were “planted according to the effect desired.” In total the CCC planted 142 trees in this area including red oak, American elm, winged elm, and red haw; eleven of these were large trees, balled and burlapped and planted in “special locations.” Flowering natives such as dogwood, wild plum, redbud and hackberry were planted also planted in “special locations” such as around the Buffalo Springs enclosure, to enhance the appearance of the rustic structures. Finally, 1,040 shrubs were planted “in masses as screens or borders.” These included chaparral, dogwood, euonymous, bush plum, redbud and sumac.

Non-native species were not commonly used by the park designers. Because park designers did not want to use exotic species, most trees and shrubs used in ornamental plantings appear to have been “native collected stock.” However, some ornamental evergreens including Pfitzer.
junipers, American holly, magnolia, and jasmine from the nursery stock were planted around Buffalo Springs. Also, non-native grasses were introduced in the park to create lawn areas. For example, between April and September of 1935 “all highly congested areas” were “carefully planted with Bermuda grass.” In general, 27 acres of “sod” cut mostly from outside of the park was planted by September 1935. Bermuda sod plantings were established at Flower Park and Bromide Area as well as at Central Campground, Black Sulphur Springs, and around employee residences.

The NPS ornamental plantings in Platt District represent a significant part of the overall design. This combination of native trees, flowering shrubs and lawns was quite unusual with the typology of national park landscapes. Many areas in the Platt District, especially Bromide and Flower Park, resembled typical urban parks rather than “natural” national park landscapes. Such areas were in many aspects more similar to picturesque gardens and 19th century urban park design and constituted the core of the Platt District, in a contrast with the less prominent, though more natural, native Oklahoma landscape.

Nursery Plantings

In 1933, between Central and Cold Springs Campgrounds on the south side of Travertine Creek, a nursery was established “to provide plants for future ornamental plantings.” The nursery, seen in Figure 10-9 contained 2,303 plants in 1934. Most of these plants were harvested from the park and a few others were from commercial nurseries. In addition, under the direction of the landscape architects, bulbs and seeds of “Spanish Larkspur” and “Oamassia” were collected in the park for use in ornamental plantings. It is unclear exactly which species these plants were, since these names appear to be no longer commonly used. Native seed plantings were also done for other woody and herbaceous species.

By March 1935 the area of the nursery was doubled in size. “Practically all suitable stock was moved out of the nursery and planted in various parts of the park area and a large number of plants placed in the nursery for next years [sic] planting.” During spring and summer of 1935 the general maintenance of the nursery area was continued. In the spring and summer of 1935, approximately 3,500 shrubs and 10,000 cedar seeds were planted for use in later plantings, giving an indication of the extent of the plantings in the park. The nursery continued to be used until the CCC left the park in 1940. Some remaining trees are still there.

Boundary Plantings

Boundary plantings are usually implemented to delineate a property line or to establish limits of a design. They are
also used as a screening to provide privacy, separate areas of different use, and hide unattractive views. In the case of the Platt District boundary plantings were established to separate the park from the town of Sulphur, exclude livestock and screen unsightly farm buildings. Figure 10-10 shows CCC enrollees planting these wide bands of plantings circa 1934.

In 1934, boundary plantings ranging from 6 to 20 feet wide were “installed around approximately one-third of the park boundary to definitely mark the enclosure and to shut out undesirable views.” To implement this project, 69,890 plants, mostly native trees and shrubs, were dug in the park. As seen in the 1940 aerial photograph, these plantings were established at Bromide, Central Campground and Cold Springs Campground, many of them using red cedars, which appear as dark spots on the aerial photos (Figure 10-11). Boundary plantings can also be seen along boundaries screening views from the perimeter road.

Protective Plantings

Within the conservation-minded CCC, protection of both soil and woodland seems to have been a priority, not surprisingly in a state famous as part of the Depression-era Dust Bowl. Consequently, protective plantings were implemented by CCC in the Platt District was to control erosion and prevent fire from damaging both the forests and the town of Sulphur.

During the 4th enrollment period about 3,000 red cedar seedlings were planted at the Bromide Hill between Rock Creek and the ridge. Richey and Miller (1935) believed that this area should be revegetated due to “the need for the for a permanent growth to protect soil, the existence of several large existing cedars; and the fact that at one time this whole area was covered with large cedars.”

Similar plantings were implemented during the previous winter (1933/34), but because of steep and rocky soil, the survival rate was only 20%. In the 1935 plantings crew laborers set each plant in a pocket of a good soil, composted and watered.

Erosion control plantings occurred on newly built earthen structures such as the Flower Park revetment wall and the Buffalo Pasture dam. Erosion control plantings on these landforms included a technique called “brushing,” where small bundles of brush were tied together and staked to the slopes in horizontal rows three feet apart. In between the rows, rapidly spreading species such as buck brush, honeysuckle, ground rose, and cat brier were used. This technique was used on the back of Buffalo Pasture dam, where 7,000 plants, some “of particularly thorny nature” were placed. Along the Flower Park revetment wall a dense willow and low shrub planting was planted using a similar technique. In 1935 the entire 900-foot length of the wall was planted and the slopes above it were sown with Bermuda grass.

The designers thought that grass fires were dangerous, difficult to control and “very detrimental to the natural growth in the park.” They believed that fires were easier to manage in woodland areas. Therefore, tree plantings were established to divide the broad grassland areas. The most common species used in such plantings was red cedar. Also, to reduce fire hazards in the park, grass was cut in and near most congested areas and around trees and shrubs. Finally, in its design, the perimeter road was also intended to act as a fire break, preventing spreading of town fires into the park.

The documentation of protective plantings within the park was somewhat limited, and it may be that more were implemented in other unspecified locations in addition to the more prominent areas described above. Protective plantings are difficult to distinguish from reforestation plantings and boundary plantings in aerial photographs because red cedars were commonly used in both types of plantings. It is also possible that plantings were considered to have dual purposes, for example, groupings of red cedars acting as both boundary and erosion control plantings.

Maintenance Actions

In 1933, the vegetation of the Platt District was in poor condition due to a lack of maintenance during the park’s early establishment. Trees had been injured by ground fires and “unrestricted drivers.” In addition, visitor activity caused soil compaction and serious damage to vegetation in some areas. As described by Walkowiak in the early 1930s “despite the natural beauty of Platt National Park, it was quite evident [...] that many fine areas had been totally neglected and too many terribly mistreated” leaving “a lot of room for improvement and repair.” To “improve the general conditions of park vegetation,” tree conservation and protection work performed by the CCC crew included tree surgery, pruning, filling the cavities of large trees, thinning and fertilizing. Many dead limbs were removed, and low hanging branches were raised to 9 feet. During the 3rd
enrollment period approximately 7,000 trees along roads and trails were trimmed. All roads were given a 14-foot clearance, bridle paths a 10-foot clearance and trails a 7-foot clearance. Tree trimming was also done in Cold Springs, Bromide campgrounds and in Buffalo and Antelope Springs picnic areas. In winter, extensive thinning of existing timber stands was carried out. Dead, diseased, crooked or misshaped trees were removed. In general, the density of the vegetation was reduced “to allow the trees more light and air,” although certain “tangles” were left as “bird sanctuaries.”

Creek clean-up was performed. Trees that obstructed creeks were removed from the streams to allow better water flow. In particular Rock Creek between East and West Sulphur was cleaned up and the “former tangled underbrush” was taken out. Existing trees, especially large oaks, were fertilized with 8-5-5 fertilizer applied by drilling holes around the trees. In summer some insect control was carried out. Web worms from walnut and persimmon trees were burned and red ant colonies destroyed. Also, all trees in view from public areas infected with tent caterpillars were sprayed to kill the worms. Finally, poison ivy was eradicated along the roads, trails and in camp and picnic areas.

Vegetation maintenance including pruning and trimming was also carried out during the 4th enrollment period. According to Branch (1935) about 1,500 trees were treated under the supervision of the park Forester Gerry Stauffer. Some areas were also fertilized with mix of soil and 5,000 pounds of cotton bolls. In the summer of 1935 tree maintenance continued, and work included removing dead trees that failed due to extreme drought of 1934. CCC crews also watered newly planted trees and shrubs, so that only about one percent of trees and five percent of shrubs planted during the 4th enrollment period were lost.

Such maintenance continued until 1940 as documented by CCC crew members in oral histories. In general, such maintenance actions performed by the CCC crews significantly improved vegetation conditions, and were beneficial to the overall health, safety and aesthetic qualities of the park.

1937 Vegetation Survey

By 1937, the CCC design intent was generally implemented with a majority of plantings established and most maintenance actions completed. In addition, in 1937 a comprehensive “Vegetation Type Survey” was undertaken in the summer of 1937 by N.E. Dole, Junior Forester. Dole’s survey and its accompanying map (Figure 10-12. 1937 Vegetation Survey.):
Chapter 10: Vegetation Change and Management

10-12) provide a snapshot view of the vegetation near the end of the period of significance:

The stream bottoms are marked by a heavy woodland growth composed of oaks, elms, hickories, and other hardwoods. Above the streams, on the flat or slightly rolling country of the Buffalo Pasture and the old golf course, a mixed grassland is the dominant cover. This is interspersed with types of woodland-grass, the woodland being made up largely of persimmon.

Dole also noticed that due to the small size of Platt National Park and its intensified development, the area “nearly resembles a city park than one of the larger parks that can be kept closer to natural conditions.” He also noted, that an effort was being made “to return much of the open area to what is probably very like its original condition by planting may seedlings of eastern red cedar.” According to Dole, the results of these plantings were “very gratifying, . . . although the young trees are still too small to be seen above the grass.”

Dole’s survey gives information on vegetation types and species composition with the specific description about the component landscapes’ vegetation. According to the report, in 1937, woodland generally consisted of American elm, post oak, red bud, winged elm, and sycamore. Other less significant tree species, appearing in the woodland to the extent of 20%, were pecan, black willow, bur oak, slippery elm, silver maple, and green ash. The most common understory species were redbud and Virginia creeper. The only evergreen found growing naturally in the park was red cedar. However, it appears that red cedar had a very limited range, since the only area reported to have mature cedars in the park historically was Bromide Hill. This location is confirmed by reports by both Branch and Miller that also describe large cedars on Bromide Hill. The presence of cedars on the hill probably encouraged NPS designers to replant them there.

At the time of vegetation survey of 1937 the upland areas were covered with “either open grassland, or a mixture of grassland and woodland.” Dole describes the grassland as “not made up purely of grass” but rather of “herbaceous character.” Some of the flowers and forbs described included broomweed, ragweed, goldenrod, and gayfeather. This description may indicate the presence of a dry xeric type of prairie.

Mixed woodland-grassland communities were “composed of grass, miscellaneous herbaceous species such as are found in the open grassland herbaceous type and persimmon.” (Figure 10-13). Dole felt these trees were at early stage of succession, since they “can hardly be called tree size at present, but barring fire, they should attain tree size soon.” Dole’s statement indicates the fire suppression executed in the park and the greater value park staff placed of woodlands over grassland communities. Also, Dole believed that the grasslands were the areas of high fire hazard. He based his conception on the events of 1936, when a grassland fire was uncontrollable until it hit the woodlands, where it was more easily managed. Furthermore, Dole anticipated that red cedar plantings implemented by the CCC would reduce future fire hazards “as the broad grassland areas become broken up.”

These statements indicate a lack of knowledge and understanding of ecological processes of prairie communities. It is apparent that by 1937 grasslands presented little economical and aesthetic values to the park. Park managers saw them as hazardous and unwanted. Therefore fire was suppressed and many reforestation actions were undertaken to replace prairie with woodland. This idea, commonly accepted in the 1930s, would result in the gradual decline and loss of prairie communities within the district.

Platt District Vegetative Conditions, 1940–1965

The demise of the CCC program in 1940 and reduced funding for national parks during World War II ushered
in years of benign neglect for the Platt District, both for built elements and vegetation. With the exception of spraying for insect pests, occasional pruning, and minimal tree planting, widespread vegetation management was uncommon following 1940.

During the 1950s, droughty seasons in 1953–1955 and 1959 increased forest susceptibility to insect pests, and elm bark beetle (Hylurgopinus rufipes), fall webworm (Hyphantria cunea), tent caterpillar (Malacosoma americanum), and, walnut caterpillar (Datana integerrim) were recognized as a threat to the park’s trees.68 Elm bark beetle caused the worst problems, and by 1954 many of the district elms were dead or dying. Fall webworm was also a problem during this period, attacking pecan, black walnut, persimmon, redbud and sycamore trees in Cold Springs Campground and areas along the perimeter road.69

As a result, in the late 1950s and early 1960s, insect control actions were common. Infected trees were removed or pruned to control infestations and chemical control was also widely used. For example, in 1955 “25% DDT emulsion was applied by a large mist blower along all roadsides and in all public use areas” 70, in 1957 “an infestation of bagworms in some junipers at the Superintendent’s residence was treated with DDT.”71 In 1954 about 850 trees infested with Dutch Elm disease were cut and burned, and in 1963 numerous areas were sprayed with Sevin (Naphthyl Methyl-carbonate).72

The dry years also made fire a constant concern in the district. Fire suppression was a priority management practice and to prevent fire “employees carefully cut grass at Park fences and near Park shrubbery and cedars.” 73 They also “met with the fire department once a month to coordinate fire control measures.” The firebreak in the Prairie Uplands, running along Buckhorn Road (now Highway 177), was regularly cleared and grass was cut in “high fire hazard areas.” Although other firebreaks existed, the precise locations of these are unknown, with the exception of a fire break constructed south of Rock Creek campground in 1953.74

Other management problems in the 1950s and 1960s included poison ivy, prevalent at Buffalo and Antelope Springs, the Cold Springs and Rock Creek Campgrounds, and Pavilion Springs. These areas were regularly checked and selectively sprayed with 2-4-5-T when necessary. In 1960, park managers received more complaints about poison ivy than any other one item.75

Beavers also caused headaches for park managers in the 1950s and 60s. They inhabited the length of the park, wreaking havoc on vegetation from Bromide to Little Niagara. In late 1960, beaver felled numerous trees, including cottonwoods and willows up to two feet in diameter, causing bank erosion. Other trees were simply marked.76

By the early 1960s, thoughts had returned to “reproduction,” perhaps as a reaction to losses caused by drought and pests. However, the planting campaign that took place between 1960 and 1963 was limited, focusing on high use areas such as campgrounds. Osage orange seeds were collected and planted near Cold Springs Campground in 1961.77 In 1962, 534 trees, mostly American elm, southern red oak, and Osage orange, were planted in high use areas, with 243 planted in Cold Springs Campground alone. Ten signs were put up in the campground to ask visitors help protect the new trees.78

Though management was reduced in the 1950s and 1960s, during this time the park was the focus of two vegetative studies, one on the area’s grassland communities (1959) and one on its forest ecotypes (1965). Like the 1937 survey, these two studies provide a snapshot of the park’s landscape at a particular point in time. Both studies considered the Platt District as a primarily natural landscape. The area was perceived as offering “unusually fine opportunities for the study of native vegetation because its natural features” were “protected from exploration and disturbance by man” and “one of the few areas in southern Oklahoma where plant communities have been protected for many years.”79

The 1959 grassland study (Figure 10-14) identified the Platt District as containing three natural grassland types: little bluestem, seep muhly and hairy grama. In 1959 the little bluestem (Andropogon scoparius) type was the largest of the three types present. It covered 64% of the natural grassland area (about 178 acres). It was most common on mesic upland sites, such as north-facing slopes, hilltops and other upland areas with fairly deep well-drained soils.80 This community most likely resembled the true prairie, which originally occurred in this region. Many of the grassland species recorded by Dale in 1959 were also listed by Bruner in his 1931 study of the vegetation of Oklahoma. The major difference from the native prairie
Chapter 10: Vegetation Change and Management

was determined to be the relatively greater percentage of weedy forbs, especially along the roads and fences, and on the area of former golf course. Although little bluestem grassland was scattered throughout the whole park, it occurred primarily along its southern boundary. Small patches of this community covered the areas south of Rock Creek Campground and north of Cold Springs Campground. The greatest percentage, however, was present in the area known now as Prairie Uplands, the site of former golf course.

The hairy grama (*Bouteloua hirsuta*) community was “the second largest of three grassland types and the most xeric.” It covered about 75 acres of the park area (26% of the natural grassland area) and occurred on dry hillsides with thin, poorly developed rocky soils. Although, it was mapped throughout the entire Platt District, it was more common in the eastern part of the park. The most dominant plants were mostly southwestern species of short grasses mixed with a relatively high percentage of weedy forbs.

The seep muhly (*Muhlenbergia reverchoni*) grassland was the smallest type of the three grassland types present in 1959. It covered approximately 39 acres (13% of the natural grassland). It generally occurred in small patches on old building sites cleared from forested areas and along sides of ravines where highly calcareous soils were present. It was also associated with “seeps” or wet places that were poorly drained for at least part of the growing season. In most cases this community occurred in the central and eastern part of the park. The largest spot of this type was mapped west from Travertine Island at most northern corner of the Platt District.

Generally, in 1959 native grassland communities covered about 292 acres (32%) of the entire area of Platt National Park. The remaining area was overgrown with forest, brush or disturbed grasslands. By that time many of the old building sites, dating to the original Sulphur townsite, were covered by native vegetation. However, these former residential sites were still distinguishable “by the presence of beds of iris, lilacs, roses and other exotics.” Some of these are still present today (2003), as iris beds are located in Central Campground, the Administration area, Bromide Springs and other areas.

The 1965 woodlands study, “Final report on the vegetation and microenvironments of Platt National Park,” similarly identified four principal forest types, including the short-lobed oak type, the post oak–winged elm type, the Texas oak–chinquapin oak type, and the American elm–southern hackberry type. According to Dale, the short-lobed oak community, found near the Bromide Hill, was the most xeric of all types of forest present in the park in 1965. It was characterized by small groups of short, scrubby trees usually not taller than 15 feet with open spaces between patches of trees. Dale described this type of forest as highly dense with no understory species within the shaded areas and with brushy xeric species within the open places. The post oak–winged elm type was the next most xeric forest present in the park. It covered the area located south of the perimeter road west of Highway 18 and an area east of the museum (now the Administration Building).
near the Buffalo Pasture. The Texas oak–chinquapin oak type was the third most xeric community studied. In 1965, this type was the most extensive forest community present in the park, being dependent on various environmental conditions either relatively xeric (hillsides) or quite mesic. The most mesic forest was the American elm–southern hackberry type, found along the streams. Representative areas he described included Travertine Island, south of the Flower Park, and an area southeast of the museum near Rock Creek.

The Dale 1965 study concluded that “the east end of the park is relatively mesic, and the west end is relatively xeric.” This relation was reflected by the vegetation occurrence throughout the park. However, there were also few exceptions, such as several areas in the west part of the park that were the most mesic of all communities studied. In additional Dale noted that woody species, mostly brush such as catbrier, sumac, persimmon, and skunkbush had begun to invade grassland areas. According to Dale, the increase in woody species was a result of “the cessation of prairie fires since the area has been protected.”

Both of Dale's studies considered the Platt District to be a “natural” landscape. However, the park was managed from its beginning and human actions were essential to its character. Furthermore, actions that in 1959 were considered beneficial to the grasslands, are known today to cause adverse effects. Although in the 1950s fire suppression and the elimination of grazing by livestock were common, today it is widely understood that natural disturbances, especially fires and grazing, are essential to the health, persistence and continued species diversity of the prairie ecosystem. Without regular burnings a prairie community does not regenerate and gradually changes toward woodland species. This degradation was observed merely six years after the 1959 study, when the slow invasion of woody vegetation into grassland was noted. Although this process was associated with fire suppression no comments were made on the potential loss of native grassland in the park.

Platt District Vegetation, 1965–2000

Between 1965 and 2000, it appears little major vegetative management was undertaken in the district, though this is a little difficult to tell due to the paucity of historic documentation found for this era. In the 1960s, some replanting of areas occurred under the aegis of the Job Corps programs, but in general, construction of new facilities for the Arbuckle Recreation Area seems to have taken priority over vegetation management within the smaller national park. In general, it appears that during the 1970s and 1980s a somewhat “hands-off” management approach was taken, with basic tree and forest maintenance undertaken as needed to protect visitor safety.

Vegetation studies during this time were also relatively uncommon. A popular history of the park, Platt National Park: Environment and Ecology was published in 1975 by Barker and Jameson, but was predominantly based on Dale’s 1959 and 1965 studies.

More recently, vegetation in the overall CNRA has been more studied. Between 1998 and 2003, three vegetative studies were performed by Bruce Hoagland of the University of Oklahoma. However, these studies focus on the vegetation conditions of the entire CNRA and contain only limited information relating specifically to the Platt District.

EXISTING VEGETATION CONDITIONS AND ANALYSIS OF CHANGE

This section of the document describes the existing conditions of the park’s vegetation and then analyzes changes in that condition since the period of significance. Existing condition descriptions are largely based on the Dale studies of 1959 and 1969, since existing plant communities and overall vegetation patterns are fairly similar to conditions in 1965. Information is also drawn from field surveys and from three vegetative studies on the CNRA performed by Hoagland in 1998–2000. In addition, a major source of information about the Platt District vegetation patterns and their change over time are aerial photographs from 1940, 1969, 1984 and 1999.

This section considers the park’s overall or district-wide vegetation first, then describes the park’s individual or component landscapes in greater detail. These descriptions generally expand the descriptions of vegetation provided in Chapter 6, especially with respect to individual areas’ species composition.
Existing District-wide Vegetation Conditions

Overall, the vegetation of the Platt District represents a variety of ecosystems such as prairie, oak savanna, woodland and designed vegetation—the latter condition being a “park” type of landscape. The district's vegetation patterns are representative of the transitional ecotone between the eastern deciduous forest and the western short-grass prairie. This transitional zone contains a rich mixture of grassland and woodland species such as yucca, sumac, prickly pear cactus, sycamore and oak.

Most vegetation communities of the Platt District are dominated by eastern red cedar. Extensive areas of the park are covered either by eastern red cedar forest or woodland and only small patches of declining grassland still exist south of the park's highest elevations. The most common red cedar vegetation type is post oak–red cedar (Quercus stellata–Juniperus virginiana) woodland, which covers about 274 acres of the Platt District. This woodland is open evergreen woodland where trees over 15 feet tall form a 25 to 60 percent canopy cover. This vegetation type extends almost entirely over the Prairie Uplands area, over most of the Buffalo Pasture and over a small patch east of Buffalo Springs.

The second most common red cedar type is eastern red cedar (Juniperus virginiana) woodland. It covers approximately 160 acres, mostly along the northern park boundary, around Rock Creek Campground, and along the southwestern district boundary. A third red cedar vegetation type identified by Hoagland (1998) is the post oak–red cedar (Quercus stellata–Juniperus virginiana) forest. There are two patches of this forest association, about 23 acres in extent, in the southern part of Buffalo and Antelope Springs. This forest type differs from the woodland type of the same name, in that trees over 15 feet tall provide an increased canopy cover of 61 to 100 percent. Representative plant species of this...
Existing Component Landscape Vegetation Conditions

Bromide and Bromide Hill

Vegetation in this area generally correlates with topographic conditions. The steeply sloped areas along Rock Creek and Bromide Hill contain naturalized vegetation, while the flat terrace at the base of the hill is covered with more maintained and planned vegetation of park-like character. In general, flora of this area is characteristic of the lowland forest association of the eastern deciduous forest. The principal forest type along
the Rock Creek adjacent to the park-like Bromide Springs is the American elm–southern hackberry type, which is typically located near streams.

Such species classification, however, does not take into consideration the designed landscape most typical to the area. Today, the flat terrace at the base of the hill is mostly a maintained, park-like setting of trees in turf rather than a “natural” or forest-like setting. Within the Bromide Springs area CCC ornamental plantings were implemented around the pavilion, and included red cedar planted around the semi-circular wood bench and additional tree plantings within the picnic area, though these were generally not documented. Mature shade trees set in the smooth turf are most representative of the CCC plantings. The designed nature of these plantings is most strongly expressed at the 12th Street fountain, where soapberry trees are located more or less symmetrically around the enclosing walls of the fountain plaza. Two perennial beds containing iris and day lily are also located near the Bromide Springs Pavilion and may be remnants CCC plantings or, more likely, even earlier flower plantings in the park.

Analysis of change (Figure 10-17)
Natural vegetation shows major change in terms of loss of grassland communities. This includes both a loss in the extent and area of grassland and a change in species composition due to invasion of woody species. In 1937 and 1959, areas on the top of Bromide Hill were classified as open herbaceous grassland (Dole 1937 map). Today, as evident on the Hoagland 1998 vegetation cover map, all grassland communities of Bromide Hill are overgrown with woodland species. Only a small patch of little bluestem grassland exists now, but it is in the late stage of succession, due to profound red cedar domination. The expansion of the red cedar in the area is most certainly a result of the CCC boundary plantings as well as a result of fire suppression in the park fire.

The designed, park-like setting of the Bromide Springs is retained today, though also not without some change and loss. Many mature trees within the picnic area show signs of age and stress from the 2000 ice storm. Though major tree work was undertaken in the months following the storm, some trees need additional pruning and structural work. As in natural areas, species composition has also changed over time. As described in Chapter 6, in general, there has been a shift over time away from mature oak toward colonization species.

Walnut Grove

Walnut Grove can be characterized as a wooded, moderately flat, floodplain terrace located just above Rock Creek. To the north of the terrace are steep, south-facing hillsides covered with dense deciduous forest. Today, Hoagland (1998) defines the Walnut Grove vegetation as Juniperus virginiana woodland and American elm–sugarberry (*Ulmus americana–Celtis leavigata*) forest typical of the Rock Creek terrace.

While natural vegetation is located on the area’s slopes, the level, open picnic area below represents a somewhat more managed type of vegetation, characterized by canopy trees in turf. Trees, often located in islands of understory vegetation, are also located close along the perimeter road and lining the parking areas. Dominant tree species in the lawns include hackberry, black walnut, Osage orange and oak. Turf species include native grasses such as buffalo grass, gramas, and little bluestem in sunny areas, though Bermuda grass dominates. Shady areas under trees along the perimeter road and near the comfort station also contain Canadian wild rye, known for its shade tolerance. The contorted Osage orange known as the “Monkey Tree,” with its low-hanging branches, continues to be a popular climbing spot for children. The tree is something of a local landmark for Sulphur children and residents.

Analysis of change (Figure 10-18)
Since 1940, the area’s naturalized vegetation shows some changes in species composition. In 1959 Dale classified only a small area of Walnut Grove along the
northern park boundary as natural grassland, mostly little bluestem. Most of Walnut Grove was shown in Dale’s 1965 study as the mesic American elm–southern hackberry community. Thus, over time, there has been a loss of naturalized grassland and increases in red cedar. Changes in the more managed area are difficult to chart, due to lack of documentation. In general, however, the overall character-defining aspect of the area as mature trees in open turf is clearly retained.

Black Sulphur Springs

Most of this area, located in the area around the Black Sulphur Springs pavilion and the picnic areas to the west and south is maintained and managed vegetation. Species on this floodplain terrace of Rock Creek are representative the American elm–sugarberry forest of the eastern deciduous forest and elms, oaks, walnuts and hackberries are the most common overstory species. From a physical and spatial standpoint, the vegetation might be characterized as shaded level turf or mature trees scattered over open lawn. A shrubby redbud may be a remnant of a more extensive parking lot island planting, though this is not documented. A cluster of trees around the Black Sulphur Springs Pavilion may also be considered character-defining. These trees, which provide cooling, dappled shade around the pavilion, are seen in historic photographs; the large Osage orange behind the pavilion is clearly seen in many. However, some of the trees in close proximity to the pavilion are large enough to potentially damage the structure. Two clusters of cedars located near the pavilion appear to date from the 1930s, based on age and size, and the fact that similar trees are seen on a 1937 topographic survey of the area. However, existing plantings to not seem to correlate significantly with planting designs proposed for the area.

Analysis of change (Figure 10-19)

Although plantings were designed for the area around the pavilion, precise implementation of these plans is not fully evident in photodocumentation of the area. Thus, specific changes in this area are difficult to determine. Species are consistent with those recorded in 1937 and in 1959 when Dale classified the Black Sulphur Springs area as disturbed grassland. Even though little extant formally designed vegetation appears to be retained throughout the area, the vegetation’s major character-defining aspect—turf shaded by trees—is clearly retained.

Flower Park

Most of Flower Park vegetation has a distinct park-like character, different from other, more natural areas of the Platt District. Only the slopes of Rock and Travertine Creek valley are covered with native deciduous lowland forest, classified by Hoagland in 1998 as American elm sugarberry forest. Vegetation above the stream valleys, on main Flower Park terrace is designed and consists of shade trees set in open lawn. Tree canopy is dense enough to provide a pattern of almost half sun and shade over lawn, paths, and water features throughout the day. Somewhat different in character is the vegetation on the northern hillside of Flower Park behind the comfort station. Densely wooded, the area is dominated by red cedar and some Ashe juniper that were planted here.
Central Campground

Central Campground is generally covered by dense native and naturalized vegetation with camping areas defined by a canopy of widely spaced specimen trees. As characterized by Hoagland in 1998, naturalized vegetation in this area is representative of American elm sugarberry forest along Travertine Creek and red cedar woodland (to the north and east).

In contrast, the northern knoll of Central Campground, historically open grassland (containing bluestem and hairy grama) is now overgrown with red cedar woodland. The dominant overstory species in this forest area are red cedar, blackjack oak and post oak. Characteristic forbs and grass species are ragweed, broomsedge bluestem, prairie threeawn and bearded skeletongrass. This woodland association occurs on the areas of old fields and prairies where fire has been suppressed. In this case red cedars were planted by the CCC in the 1930s as boundary plantings along the campground’s northern and eastern boundary. These plantings spread over time over the larger area and now cover significant extent of northern corner of Central Campground.

Camping areas within the campground, located mostly within the two loop roads are characterized by turf with shade trees. Over the years these trees have been impacted by soil compaction and recent ice storms. This is most evident in the west loop, where a lack of shade and numerous stumps attest to recent tree losses. In general, the existing condition of trees in the camping areas is rather poor.
Chapter 10: Vegetation Change and Management

Analysis of change (Figure 10-21)

As described above, the naturalized vegetation of the area is consistent with historic conditions. In 1937, when the area was surveyed by Dole, listed tree species included: southern hackberry, common persimmon, bitternut hickory, eastern cottonwood, blackjack oak, chinquapin oak, red oak, post oak, winged elm and American elm. These species are consistent with current species. Major change, however, has occurred within the northern part of the campground, where cedar forest now dominates. The growth of this forest is a result of expansion of red cedar boundary plantings that are clearly visible on the 1940 aerial photograph of the park. In the more managed areas of Central Campground restricted by the loop roads, vegetation has changed in yet another way. A shade tree inventory conducted in this area (see Chapter 6) in November 2002, shows that the overall number of trees in the circumscribed areas has increased over time. However, a change in species composition is seen. Oaks still dominate the area, but have decreased from 52% to 43%. An increase in other species such as elms, hickories and cedars was noted. Consequently, although the overall number of trees increased it appears that the shaded canopy area has decreased over time.

Pavilion Springs and Employee Residence

Vegetation in this area is largely naturalized. The vegetation located within the floodplain and on the lower hillsides consists of the predominately mesic community of the American elm–sugarberry forest. Near the Prairie Uplands to the south is the more xeric post oak–red cedar woodland.

Though no specific CCC planting plan has been located for Pavilion Springs, the area was likely altered by the planting of trees, shrubs, and turf grasses to create a more managed zone located just south of the pavilion and west of the parking area. This area is a lawn shaded with mature trees, which include elms, ash, hackberry and oaks. Individual specimens of cottonwood and bois d’arc also occur. A similarly domesticated zone was designed around the Employee Residence. Although a planting plan was created for this area, it does not seem to have been strictly followed. Today, the area surrounding the residence is primarily turf, with a few specimen trees in the lawn, and some iris around the residence.

Analysis of change (Figure 10-22)

The area’s current broad vegetative patterns generally reflect historic conditions. In 1965, Dale described the floodplain area as American elm–Southern hackberry forest and the area to the south as post oak–winged elm type. These are generally consistent with Hoagland’s findings in 1998, though it is apparent the southern portion of the area contains more red cedar than it did historically. A notable change is the loss of a grassland area east of the pavilion. In 1937 this area was mapped by Dole and was described as grassland of herbaceous character, a character confirmed by Dale in 1959. Dale’s map shows this area as containing little bluestem, hairy grama and seep muhly. These grassland species and area seems to have been lost today.
Chapter 10: Vegetation Change and Management

The managed landscape of trees and turf around the Pavilion has experienced minor change, primarily due to loss of canopy trees. Many trees here were lost or damaged during the ice storm of 2000. Particularly noticeable are the large stumps indicating lost trees at the base of the pavilion to the north and east. While the loss of such trees may ultimately benefit long-term maintenance of the structure, their loss has reduced shade and reduced the integration of building and landscape, adversely impacting the quality and appearance of the whole landscape. Similarly, at the Employee Residence, details of the original planting plan have been lost.

Former Elk Paddock Picnic Area

The vegetation of this area is mostly of park-like character with mature trees placed in turf. This more managed landscape is surrounded with natural forest consistent with American elm sugarberry forest.

Analysis of change (Figure 10-23)
The area’s naturalized is consistent with 1965 classifications of this area as American elm–sugarberry forest. While a lack of historic documentation of this area hinders precise assessment of change, the area’s current vegetative character of turf with canopy trees is similarly consistent with historic conditions.

Hillside Springs

Vegetation at Hillside Spring is dominated by dense red cedar woodland. Cedars line Highway 177 on both sides of the parking area, and also enclose the slopes above and below the spring enclosure’s retaining wall. Cedars also buffer the area visually from the former Headquarters building up slope. The cedar forest is composed of mature trees of similar age, with some in decline. Understory is limited and many of the cedars have lost their lower branches due to the shade created by the density of the plantings. As a result, the vegetation, while dense, appears ragged and patchy, with dead and downed trees interspersed among the living. The appearance of vegetation is particularly unappealing immediately behind the spring wall.

Analysis of change (Figure 10-24)
Historically, as captured on 1930s photographs, Hillside Springs was a more open landscape with both grassland and woody vegetation. Dole’s 1937 survey depicted the area as containing elms, ashes and cottonwoods. Dale’s 1959 survey also indicated a large patch of little bluestem type grassland covering the area north of Hillside Springs. Today, none of these conditions are extant and have been replaced by red–cedar woodland.

Existing conditions are likely the result of the CCC design intent was to alter this open condition and create a sense of enclosure. As a result, Hillside Springs is now less open and more enclosed than it was in the years immediately after the plantings were installed. Today,
though planted by the CCC, red cedar plantings appear fully naturalized.

Headquarters

Vegetation in this area is of two major characters: naturalized woodland and overgrown foundation plantings. The area north of the building is classified by Hoagland as post oak–red cedar woodland. Originating from CCC reforestation plantings, the red cedar woodland separates the Headquarters area from Hillside Springs below and its character is the same as described above for Hillside Springs.

The tree, shrub, and groundcover foundation plantings include redbud and periwinkle. A few of these plants may be historic, but in general, these plantings are rather haphazardly arranged around the building. An iris bed is located just east of the building.

Analysis of change (Figure 10-25)

As recorded by Dole in 1937, the Headquarters area was fairly open, with the area to the north, behind the building, covered with herbaceous grassland spotted with elms, cottonwoods and red buds. By 1959, Dale reclassified the area adjacent to the building as disturbed grassland with a small patch of native little bluestem type was mapped to the north, behind the building. This reclassification shows a gradual change in the area from grassland to red cedar forest, as a result of CCC plantings.

Foundation plantings today are overgrown and this character does not reflect historic conditions, when foundation plantings were meant to blend the base of the building with the ground plane. However, the species composition of these plantings is likely similar to what existed historically, since it is known that redbuds did exist in this location. Based on changes seen in historic photographs, foundation plantings have been revised at least once since 1940, and possibly more often. However, detailed planting plans for the area seem never to have been produced, so restoring exact historic conditions and character for these plantings will not be possible.

Maintenance Area (Utility Area)

The most current vegetation survey (Hoagland 1998) classifies the utility area as urban–disturbed. According to this study, the area to the north is covered with post oak–red cedar woodland and the American elm–sugarberry forest. This dense forest edge serves to define and screen the maintenance area from the rest of the park. There are also small areas of more managed vegetation character. For instance trees near the entry area and the archives building were planted to provide a shade for parking. There are also some remnant residential plantings of trees and perennial flowers around Building #6, dating to its former use as employee housing.

Analysis of change (Figure 10-26)

Vegetation is not a particularly significant feature in this utilitarian area. Historically, as recorded by Dole in 1937, the area was disturbed grassland of herbaceous character with addition of persimmon to the south in the area adjacent to Buffalo Pasture. To the north woodland species were common, including elm and hackberry. The current conditions are consistent, indicating only minor change has occurred in this area.
Buffalo Pasture

The Buffalo Pasture is composed of approximately 90 acres of naturalized vegetation, including woody deciduous and evergreen species as well as native prairie grasses. Hoagland's (1998) vegetation study identifies the large portion of the Buffalo Pasture as smooth sumac (*Rhus glabra*) shrubland, where smooth and shining sumacs are aggressive prairie invaders. To the north and west the area is enclosed by American elm–sugarberry forest dominating the Rock Creek banks. A significant portion of the area is occupied by post oak–red cedar woodland. The domination of red cedar is a result of the CCC reforestation efforts that occurred in this area. Much of the red cedar was planted in the 1930s and has matured and expanded its range since then. The vegetation around the pasture’s perimeter is dense and provides a strong sense of enclosure and exclusion from the pasture.

Analysis of change (Figure 10-27)

In general, fire suppression within the Platt District has encouraged dense growth of both evergreen and deciduous woody vegetation. This, combined with expansion of CCC red cedar plantations in the southern part of the pasture, has created a landscape more enclosed, more dominated by woody species, and less open than existed historically.

In 1937, when Dole surveyed the park’s vegetation, the Buffalo Pasture was predominantly open grassland of herbaceous character dominated by persimmon. Unfortunately, the Buffalo Pasture was not extensively considered by Dale’s vegetative study of 1959, so comparisons with later conditions are more difficult. Dale defined the grasslands of the area as disturbed and did no further description, mapping only the area south of the pasture. This area was described as dominated by little bluestem with small patches of hairy grama and seep muhly prairies. The 1965 study mapped similarly limited areas, and indicated that post oak–winged elm forest and Texas oak–chinquapin oak forest were the dominant communities. It is notable that red cedar was not surveyed in the area, indicating that the dominance of this species today is likely a great change.

Despite a lack of survey information about species composition change, aerial photographs clearly show a change in the spatial pattern of vegetation. As seen in Figure 10-27, the area has become significantly more enclosed and more wooded, with only small amounts of open pasture remaining. This constitutes a major change in the feeling and appearance of the pasture’s vegetation, as well as its utility for bison foraging.

Prairie Uplands and Superintendent’s Residence

The vegetation of the Prairie Uplands today is primarily classified as post oak–red cedar woodland, dominated almost exclusively by these two species. The 1998 Hoagland study also mapped a small patch of cross timbers (*Quercus stellata–Quercus marilandica*) forest in the south corner of the area. Although the Hoagland study mapped no grassland areas, there are small patches of little bluestem grassland interspersed within the predominantly red cedar forest. The Superintendent’s Residence is a large area of turf with ornamental trees and plantings located within the larger area, and is today something of an island of openness in the sea of red cedar. Also worth mentioning is that on the edge of the upland area, along Travertine Creek’s south bank a few large white pines are extant from the CCC nursery, indicating its historic location.

Analysis of change (Figure 10-28)

As with the Buffalo Pasture, change within the Prairie Uplands is predominantly due to CCC plantations of red cedar and fire suppression within the Platt District. The resulting landscape is visually opaque with an enclosed feeling.
When surveyed by Dole in 1937, the prairie uplands were dominated by open grassland of the herbaceous character. Only a small fraction of woody vegetation was present. These conditions were maintained at least through 1959, when Dale described the area as comprising most of the “natural grasslands” of the Platt District. Dale noted that the little bluestem type was the most common, although both hairy grama and seep muhly types also occurred in the area.

Today, most of this grassland has vanished, with the result that the current vegetation conditions of the Prairie Uplands are very different from the historic. The expansion of woody vegetation is a result of both the spreading of red cedars from original CCC reforestation and fire control plantings established in the area circa 1930. The growth of both evergreen and deciduous woody vegetation has been further encouraged by the suppression of fire within the district. As a consequence, dense woody vegetation has radically changed the appearance of this component landscape making it less open and more enclosed than it was during the period of significance.

Cold Springs Campground

The area around Cold Springs Campground is a moderately flat, heavily wooded floodplain of Travertine Creek. According to Hoagland’s 1998 vegetation study, the Cold Springs Campground is mostly covered by the American elm sugarberry forest which dominates the rest of the Travertine Creek floodplain. Red cedar woodland covers the area along the northern edge of the campground. This is most likely a result of 1930s boundary plantings. A small patch of cross timbers (Quercus stellata–Quercus marilandica) forest covers the most north-central corner.

There is little designed vegetation within the campground; rather native, naturalized vegetation serves to provide shade and separate campsites. Some understory vegetation provides screening between the campground and the perimeter road as well as screening between campsites. The overstory is in fair condition, however many mature trees were lost or damaged by the 2000 ice storm. Understory vegetation is reduced compared to other parts of the district, mostly because of the heavy visitor use the area receives. Foot traffic between campsites is heavy and small shrubs and forbs are quickly trampled. This reduces privacy between sites and in some areas, campsites are clearly visible from the perimeter road due to lack of vegetative screening. Shrubby vegetation tends to be denser around the campground perimeters, where foot traffic is less.

Analysis of change (Figure 10-29)

The vegetation at Cold Springs Campground is generally in keeping with historic conditions. Historic accounts of vegetation include a 1937 topographic maps and the 1937 Dole study. These surveys indicate common tree species included sycamore, elm, willow, oak, hackberry and walnut, all in keeping with the site’s classification as American elm–sugarberry forest. The Dole survey and the Dale study of 1959 also indicated that the northern part of the campground was covered with open grasslands.
of herbaceous character. This grassland has been mostly replaced today by the red cedar woodland. The growth of red cedar to the north is clearly the result, over time, of CCC boundary plantings.

Other changes in the area are a perceived loss of understory contributing to a lack of privacy between campsites. There is also a perceived decline in the health of mature trees. These changes are a result of storm damage, forest maturation and soil compaction due to intensive campground use. However, overall, the campground’s vegetative character—mature trees providing overhead canopy and shade and a sense of wooded enclosure—is strongly retained despite changes in the condition of individual trees.

Travertine Island and Little Niagara Falls

Travertine Island and Little Niagara Falls is a moderately flat, quite densely wooded floodplain terrace. Vegetation is characteristic of the lowland association of the eastern deciduous forest and includes elms, oaks, black walnut, and sugarberry. Hoagland’s 1998 study associates the area with the American elm sugarberry forest, the community that dominates the banks of Travertine and Limestone Creeks. Red cedar woodland is also present in the northeastern corner of the area and in a strip along the park’s south boundary, indicating 1930s CCC boundary plantings. To the south, a small area adjacent to the American elm–sugarberry forest is covered with Quercus texana–Fraxinus texensis forest.

In general, the Travertine Island and Little Niagara Falls area is mostly released native vegetation, with little obviously “designed” vegetation in the area. The most important aspect of the area’s vegetation is the shade provided from tall trees, and many of the Platt District largest trees are located in the area. A significant cluster of trees are located in and around the large stone picnic area on Travertine Island; all of the trees over 36 inches in diameter date to the period of significance.

Analysis of change (Figure 10-30)

The existing and historic vegetation conditions of the area seem to be very similar. Historic documents do not indicate that the Travertine Island and Little Niagara Falls area received CCC-era ornamental plantings, although some may likely have been installed around the stone tables. It also appears that a significant amount of species composition change has not occurred over time. A topographic survey from 1936 (NP-PLA-5038) indicates the area was covered mostly by oaks, elms and hackberries, though other species such as pecan, walnut, sycamore, cottonwood, box elder and red bud were also noted. These species are consistent with the 1937 Dole study of the area, as well as Dale’s 1959 and 1965 areas. Thus, species seem to have been consistent with those of American elm–sugarberry forest since the period of significance to the present day.

One minor change has been the loss of grassland patches mapped in 1959. These were recorded by Dale, and were large patches of hairy grama type grasslands, located to the north and west above the creek banks. These areas are no longer extant.

In recent years change has begun in the overstory. Many large trees have been lost in summer and winter storms throughout the area, reducing shade and giving the area a more open feeling. This is particularly true around the Travertine Island Comfort Station, which has lost its wooded setting and feels rather denuded, despite rapidly regenerating understory. Better quality understory and overstory vegetation is located around the island’s northern parking area, which retains a more wooded feeling.

Buffalo and Antelope Springs

The Antelope Springs, Buffalo Springs, and Nature Center area is a wooded stream valley between north-
south-facing ridges. The vegetation of this area, located along Travertine Creek is characteristic of the eastern deciduous forest, and includes elm, oak, black walnut, and sugarberry. Hoagland’s 1998 study describes this as American elm–sugarberry forest, typical of the rest of the eastern portion of the park. To the north red cedar woodland dominates and small areas of post oak–red cedar forest and *Quercus texana–Fraxinus texensis* forest are located along the southern boundary. A small patch of post oak–red cedar woodland and narrow strip of little bluestem–red cedar grassland are located along the eastern park boundary.

Vegetation is predominantly native and released. Evidence of any designed vegetation is no longer extant. In general, the area is characterized by dense canopy and thick understory vegetation.

Analysis of change (Figure 10-31)

It appears that vegetation conditions in 1937 were significantly more open than today. Based on the Dole survey of 1937, deciduous forest was confined almost exclusively to the Travertine Creek banks and areas above the stream were predominantly open, covered with herbaceous grassland, or a mixture of woodland and grassland vegetation. These prairie areas, as a result of fire suppression, were overgrown with shrub-size persimmon. This type of vegetation was most common along the most of the boundaries of the park in 1937. Conditions were somewhat similar in 1959, when Dale’s study depicted grassland communities along the north and south park boundary in the Antelope and Buffalo Springs area. Hairy grama type grasslands were the most common, although little bluestem and seep muhly types were also present. The only remnant of these grasslands today are small patches along the abandoned perimeter road and along the far eastern park boundary. In general, it appears much of the grassland has been replaced with red cedar–post oak woodland, which is typically located on former prairies where fire has been suppressed.

Overstory vegetation, however, seems to have changed little in species composition, since both the Dole and Dale studies of 1937 and 1959 describe the area in terms consistent with the existing elm–hackberry association. Larger changes may be seen in the character of the forest. In general, over time woodland vegetation in both understory and in canopy cover has significantly increased in the area. This is strongly evidenced by aerial photographs and by comparing extant conditions at Antelope Springs and its downstream pools with current
conditions. Only recently have summer and winter storms damaged trees, creating sunny openings.

Finally, there is no indication of the designed or ornamental vegetation around the Buffalo Springs enclosure, and this has presumably been lost. However, it is difficult to define the degree or nature of this change. Although vague verbal descriptions of this work exist, little as-built documentation of this vegetative character have been located.

Rock Creek Campground

Vegetation of Rock Creek Campground is typical to the lowland forest association of the eastern deciduous forest. The recent vegetation study by Hoagland (1998) confirms this and defines the area of the campground as the American elm sugarberry forest (Ulmus americana – Celtis leavigata). According to this survey areas adjacent to the campground are covered with red cedar woodland.

In general the campground is shaded by a canopy of native overstory trees, particularly on the flat level terrace near the Rock Creek. Tall, hardwood trees provide the enclosure and shelter from the sun. Understory shrub cover is relatively dense and shows less visitor impact than in the other park campgrounds. This vegetation layer serves as a screen between campsites, providing some sense of privacy. Different in character is vegetation in the in the newer section of campground on Chigger Hill. This area is significantly more open and has clumps of cedars interspersed with native grasses and little deciduous overstory canopy. No significant designed plantings are apparent. The exotic invasive species tree-of-heaven and mimosa have been identified in the campground.

Analysis of change (Figure 10-32)

Of all the park's component landscapes, Rock Creek Campground probably exhibits the least change. The area's vegetation was first recorded by Dale in 1959 and 1965. The 1959 survey mapped small little bluestem grassland patches to the south and disturbed grassland to the west. The 1965 survey described the site as Texas oak–chinquapin oak forest, containing oaks, elms, and ash. Although this is slightly different from the area's current classification as elm–sugarberry forest, it is certainly not inconsistent. Although still present, grasslands located near Chigger Hill are slowly being invaded by red cedar, as is common in fire-suppressed areas. However, at this time, grassland loss does not mark a significant change in the area. In general, the site was designed as and remains as a site with naturalized vegetation.

DISTRICT-WIDE ANALYSIS OF CHANGE

The major change in the overall Platt District vegetation patterns is the change in the relationship between grassland and woodland communities. As a result of fire suppression, and a “hands-off” vegetation management philosophy over the district’s past 50 years, wooded areas significantly increased in the park, diminishing the areas of natural grasslands. As a result, the historically open park landscape, once dominated by prairie, has become enclosed with woodland types.

In 1940, the district’s tree cover was limited, comprising only about 26 percent of entire park area (Figure 10-33). Woodlands were mostly restricted to the streams and ravines, while the remaining landscape was open. A gradual shift in vegetation types started shortly after 1940, when the results of CCC reforestation, ornamental
and protective planting efforts became apparent in the landscape. In the first years after the CCC plantings were established, tree growth was very rapid, with most of the woodland expansion occurring between the 1940s and 1960s. In 1949 tree cover had already increased by about 193 acres, occupying about 430 acres (47%) of the district area (Figure 10-34). By 1956 tree cover had increased another 36 acres to comprise 470 acres (51%) of the park (Figure 10-35). This analysis indicates that in less than two decades, the area of tree cover area doubled in size. By 1969 the relationships between grassland and woodland types shifted radically, so that tree cover comprised about 658 acres or more than 70% of the total park area (Figure 10-36). Today tree cover comprises about 740 acres (81%) of the park area (Figure 10-16).

A remarkable aspect of this increased tree cover (Figure 10-37) is that it has primarily been caused by a single species: eastern red cedar. As such, the cover change clearly does not represent an ecology of plant succession,
but rather of species invasion. The results of cedar encroachment are two-fold. First, the overall density of vegetation in the district has significantly increased, changing the district’s visual appearance and feeling. Low-branching evergreen trees, cedars create a thick, visually and physically impenetrable forest. Across the 900 acre district, these forests create a visually opaque landscape where views and vistas are blocked and visitors feel enclosed. Second, the increase in cedar cover types has significantly decreased the district’s biodiversity. Native prairies in particular have reduced ecological value due to loss of species, with native wildlife also impacted by loss of habitat and food sources. In general, most grassland types within the park are beginning to decline and will require active management if they are to be retained. Yet cedar has not just invaded grassland cover types; it has also invaded woodland communities. As a result, biodiversity has also declined in woodland communities.
as cedars restrict regeneration of shade-intolerant hardwoods. The risk and potential dangerous effects of wildfires within the district also increase in cedar-encroached areas, because of the volatility of red cedar as a wildfire fuel.

As a result, even though red cedar expansion has slowed down since the 1950s and 1960s, its adverse effects have become increasingly evident over time. As described above, the areas that have changed the most include the Prairie Uplands, the Buffalo Pasture, and Buffalo and Antelope Springs. In these areas, historically open grassland spotted with individual mature trees has been replaced with thick red cedar woodland. While there are still some small patches of native prairie remaining in these areas, as little remainders of the district’s historically most prominent vegetation type, if no vegetation management actions are taken in the future, these too will soon disappear.

Despite red cedar domination, the vegetation of the Platt District still retains its unique composition of both natural and designed vegetation. This combination of vegetation creates a diversity of feeling and experience in the park, ranging from those on an urban park to those of a wilderness area. The retention of this vegetative character over time is remarkable. However, active vegetation management actions would help to improve the ecological condition of native areas, recreating the historic ecological balance between the district’s grassland and woodland types as well as the aesthetic balance between natural and designed landscape types.

VEGETATION MANAGEMENT ISSUES

In addition to historic conditions, future management of the park’s vegetation must also take into account issues of vegetative health and growth as well as maintenance. The following issues have been identified as having potential impacts on ecological health of the park’s ecosystems.

Invasive, exotic, and nuisance plant species

Invasive or exotic species are plants which are transported to and then overcome otherwise intact, pre-existing native ecosystems. These species can rapidly overtake ecosystems and change both their appearance and function. In the Platt District there are two types of invasive species—those which are native to Oklahoma, such as red cedar and poison ivy, and those which are exotic, such as mimosa and tree-of-heaven. All of these species are rapidly growing, crowd out other plants, and are particularly problematic because they replace more desirable native species and reduce the overall biodiversity of the park. The major problematic species are described below.

Red cedar

Although it is a native to Oklahoma, eastern red cedar was not common in the park before it was widely planted by the CCC. During, the redesign of the park in the 1930s cedars were planted as screens, firebreaks, erosion prevention and for ornamental purposes. Such cedar plantings flourished, propagated themselves, and spread rapidly, in part due to decades of fire suppression.
in the park. As a result, these evergreens have gradually invaded all natural ecosystems of the district. While red cedar encroachment is most evident in the prairie areas, woodland communities have also experienced similar encroachment.

The invasion of junipers into native plant communities fundamentally changes the species composition, structure and overall habitat conditions of plant communities. Encroachment occurs as the trees shade out understory vegetation. The pre-existing species of plants and the animals that use them for food and habitat begin to decline and are eventually eliminated from the area. In particular, the production of grasses and forbs sharply declines as cedar trees increase in canopy cover and density. Thus, cedar expansion reduces biological diversity by reducing the number of living organisms, their functions, and interactions.

Within the Platt District, red cedar expansion has caused a number of problems. As described above, it has impinged on the aesthetics and appearance of the historic landscape. In general, park is more spatially enclosed, many of the historic views and vistas are blocked and integrity of areas such as Prairie Uplands is considerably diminished. In addition, it has also degraded both the quality and area of pasturage in the Buffalo Pasture, since forage production has sharply declined with to increasing shade and canopy cover. In addition, the increase of red cedar dominated vegetation types significantly contributes to the risk of wild fire. According to the Hazard Fuel Assessment document “this encroachment possesses a far greater concern in terms of fuel management, than increased down and dead fuel loads resulting from the ice storm damage.” The problem is most crucial along the urban interface, when red cedar can increase the risk of fire damage to private property by serving as ladder fuels to overstory deciduous trees and by serving as a volatile fuel source near homes. Finally, the red cedar expansion affects the park integrity.

Today, park managers are concerned with further encroachment of the red cedar and its potential effects on the district’s natural and cultural resources. However, at the same time, in some areas cedar trees are also recognized as historic fabric, planted by the CCC, and potentially important to the designed landscape.

Exotic invasive species

In addition to red cedar invasion, the Platt District contains a few non-native invasive plants. Non-native invasive species with noticeable and growing populations within the park include the following: Johnson grass; mimosa; tree-of-heaven; Japanese honeysuckle; and privet. Some of these plants, such as honeysuckle and privet were introduced by the CCC in the 1930s. The introduction of other species cannot be specified exactly. Some exotic species may have been planted by the residents of original Sulphur town, while other plants such as mimosa were possibly seeded by naive park visitors.

Today, the most abundant exotic species in the Platt District is Japanese honeysuckle. It is a fast-growing ground cover that invades all woodland types and disturbed areas. Japanese honeysuckle creates dense, continuous cover at the forest edge and over the forest floor, reducing the establishment and growth of native seedlings and herbs. Also, because honeysuckle significantly increases forest density, it consequently contributes to the wildfire risk, especially along the urban interface.

Another rapidly spreading plant is Johnson grass, a noxious, perennial weed native to the Mediterranean region. Johnson grass invades riverbank communities and disturbed sites, particularly fallow fields and forest edges, where it crowds out native species and slows succession. In the CNRA Johnson grass dominates areas that have been heavily disturbed in the past such as old fields. It occurs also within mixed grassland types where it reduces natural plant diversity. Within the district, its key locations of invasion are isolated roadside and trail areas and entrance to Rock Creek campground. Johnson grass has been monitored within the larger CNRA and has occasionally been sprayed with Roundup to reduce its spread.

The mimosa tree is found throughout the entire district, especially along roadsides and trails, but also within the campgrounds, picnic and woodland areas. The Buffalo and Antelope Springs area and Travertine Island are two places where it is quite apparent. Privet and tree-of-heaven are less commonly found. Privet is limited mostly to the floodplain forest and seep areas, and sometimes marks locations of former home sites since it was commonly used as a hedge and ornamental plant. Tree-of-heaven, though not listed in Hoagland’s 1998.
vegetation study, has been found in and around Rock Creek campground.

In general, the location, abundance, and aggressiveness of the district’s exotic species varies. In most cases they do not appear to present an immediate hazard to the district’s natural resources. Still, such species contribute to the reduction of native plant species and decrease biodiversity, and because of this, their presence should be monitored to determine rate of expansion. The following vines and shrubs should be monitored: Japanese honeysuckle, amur honeysuckle, and privet.

Poison ivy
Poison ivy is not an exotic plant, but it can be invasive and can be a nuisance, if not dangerous, to park visitors and employees. It has been always been a maintenance problem; in the 1900s, Superintendent Greene recommended cutting this plant because it was “very dangerous in a public park where great number of people are constantly passing among the trees during the tourists’ season.”

The district’s environment is favorable to poison ivy growth, as is typical of all moist, wooded areas in the region, and the plant occurs throughout the entire park. Growth is particularly luxuriant along creek banks, which creates a hazard at all swimming places in the park. Round-Up is occasionally sprayed in the areas of most intensive visitor use to reduce the plant’s presence. While control is possible, poison ivy will be impossible to completely eradicate.

Pests

Insects
In the past, insects such as the elm bark beetle (*Hylurgopinus rufipes*), fall webworm (*Hyphantria cunea*), tent caterpillar (*Malacosoma americanum*), and walnut caterpillar (*Datana integerrim*) have been a problem in the park’s vegetation. Today, however, pest insects do not appear to be a serious problem, despite individual tree deaths due to Dutch elm disease and occasional outbreaks of tent worms and bores. If necessary, infected trees may be removed. However, the park does monitor for some damaging insects. The USDA has set traps to monitor the CNRA for gypsy moths, but so far none have been detected.

Beaver
Beaver have been a problem in the Platt District since the 1960s, and periodically assert their presence in varied areas of the park. At the current time, beaver activity has been detected near Buffalo and Antelope Springs, Travertine Island, and Flower Park. Damage is most evident in Flower Park, where large trees, primarily hackberry, have been girdled by gnawing. Heavy gauge wire netting has been wrapped around the trunks to discourage beaver from chewing on their preferred species, and in 2002 beavers were trapped and removed from the Flower Park.

Wildfire concerns

As in any natural woodland environment, fire, whether started by natural causes such as lightning, or accidentally, by humans, is always a concern. While in recent decades the benefits of fire to forest ecology are becoming increasingly clear, the damage fire can cause to cultural resources within a park or private property outside a public landscape is also something land managers must also consider. This is particularly true in the Platt District, which contains both important cultural resources and whose boundary interfaces with a more or less urban or suburban area.

Over the years, the suppression of natural fires in the district has led to a large buildup of forest fuels. Hazardous fuel loads are result of long-term accumulation of dead or damaged trees in a woodland floor. In the Platt district, this accumulation is caused by natural factors such as ice storms, winds, diseases and aging. However, fuel loading has increased as vegetation has grown older, denser and less diverse than it was historically. In addition, the increase in the extent of woodland communities over the last 40 years makes fuel loading and fire management of greater concern over more of the park’s area.

Another source of concern in terms of fire management is the encroachment of red cedar in all vegetation types. A volatile softwood, Eastern red cedar can increase fire temperature and speed, increasing risk to firefighters. Cedar can also serve as a “ladder” fuel, spreading fire up its dense branches to overstory deciduous trees, sometimes even across firebreaks. Laddering is of special concern along the park’s urban interface, where dense red
cedar cover significantly increases the risk of fire damage to the private properties adjacent to the park.

Such fire management issues are also crucial today also because of the district’s dense vegetation and accompanying lack of firebreaks. A lack of fire breaks increases the risk of rapid wildfire movement throughout the park, impedes access for firefighters, creates more hazardous conditions and impairs fire control. In some cases fire breaks that existed previously (such as one along Highway 177 through the Prairie Uplands) are overgrown or no longer maintained. Other areas, such as along the park’s boundaries or along the abandoned perimeter road near Buffalo and Antelope Springs, were once open and have grown in, and would now benefit from the considered construction of firebreaks.

Turf management

Turf is the most common ground cover in the Platt District, and it is regularly mowed in high-use areas such as Flower Park or Bromide Springs. Mowing of the district is scheduled as part of the overall mowing of the entire CNRA. Mowing occurs between May and October on an as-needed basis, with mowing often ceasing in July and August due to hot, dry weather. Mowing is scheduled on a prioritized mowing cycle, with high-visitor-use district landscapes, such as Vendome and Flower Park at the top of the cycle, and the more primitive areas of the CNRA, such as Guy Sandy West, at the end of the cycle. Most district landscapes are mowed within the first half of the prioritized list. In addition, certain areas may be mowed one week or a few days prior to special events, such as an arts and crafts festival or Easter egg hunt in Flower Park and Bromide area. Along roadways, mowed edge varies to as little as two inches beyond road edge to more than 10 feet beyond edge. Selected areas are mowed to the invert of ditch lines to keep ditch lines from woody vegetation. Grass is generally mowed to about two and one-half inches, and mower widths require six-foot, six-inch clearance. In addition to mowing, to prevent weedy growth roundup is applied around small-scale features and on terraces approximately twice per year.

Due to climatic conditions such as long droughty periods and due to heavy visitor use, many turf areas are not in a good condition, with patches of bare ground and weeds. The problem is most obvious in areas of heavy foot traffic (around comfort stations, at Cold Springs Campground, Central Campground and Panther Falls), where bare, compacted soil is exposed and may erode. Another issue related to turf management is the time and effort required to mow between the boulder barrier lining parking areas and roadsides. In some areas, mowers are too large to fit between the aligned boulders, and areas are then mowed with weed whackers.

Tree maintenance

Over the years, tree cover has significantly increased in the Platt District, though most of this increase is due to red cedar expansion. According to Hoagland’s 1998 study red cedar woodlands or forest occupy about 90% of all vegetation types. At the same time, in some parts of the district deciduous forest is reaching maturity. As some of the large individuals in these forests begin to decline, or are lost due to drought conditions, aging, beaver damage, or disease, they are not necessarily being replaced by regeneration. In some areas, new trees are shaded out by cedar or are replaced by colonization species such as hackberries. This trend is particularly evident in the more park-like areas of the district.

Thus, protecting mature trees, to preserve their shade and aesthetic qualities, is a priority in many areas of the district. However, the ice storm of 2000 damaged many trees throughout the park, a fact particularly evident at Travertine Island and Little Niagara Falls and at Buffalo and Antelope Springs. Damage was also great at Bromide Springs, Central and Cold Springs Campgrounds, and Pavilion Springs. Though major tree work was undertaken in the months following the storm, some trees need additional pruning and structural work. In campgrounds, soil compaction is another issue affecting tree health.

Today, the tree maintenance in the Platt District primarily consists of trimming, pruning and removal. Vegetation is trimmed to maintain appropriate vertical clear areas along trails (8 feet), roads (14 feet) and campsites spur (14 feet). Red cedars are removed along roads and trails to facilitate these areas’ use as fire breaks. Cedars and other trees are also periodically removed from the bison pasture. Clearance for safety reasons is a priority. Diseased, weak and hazardous limbs and trees are regularly removed in all heavily used public areas. Although tree removal is carried out on a regular basis, staffing limitations make it difficult to keep up with demand and removals for
Enclosure and loss of viewsheds

Historically, the landscape of the Platt District was significantly more open. In 1940, tree cover consisted of only about 20% (approximately 240 acres) of the total park area. As a result, large vistas provided views both within the park and outside of the park. Some of the exterior views were undesirable and were screened with red cedar boundary plantings, but major vistas existed at the townsite overlook, along the Bromide Hill trail, and along Buckhorn Road and around the Buffalo Pasture.

Over time, the landscape has become more enclosed so that today forest covers almost 90% (approximately 740 acres) of the park area. While most exterior views from roads and trails have been successfully blocked by vegetation, at the same time, many viewsheds within the park have also been blocked by both evergreen and deciduous trees and understory. Fortunately, the most important viewshed in the park, form the Bromide Hill Overlook, is properly maintained and still remains, providing a wide vista over the park and the town of Sulphur. Other views, such as those from the Townsite Overlook or the viewing area into the Buffalo Pasture, are still extant, though partially blocked. For example, because of red cedar enclosure, visitors rarely have a chance to see the park’s buffalo herd.

On the other hand smaller viewing “windows” along the perimeter road, park trails and Highway 177 that used to offer park visitors broad views of the park rolling landscape are practically non-existent today, due to forest growth and eastern red cedar at edges and within forests. While precise locations of such smaller windows are difficult to ascertain from limited historic photographic documentation, a distinct sense of enclosure is present in the landscape today, as perceived along the southern part of the perimeter road and along the Bromide Hill and Buffalo Pasture trails.

TREATMENT PHILOSOPHY FOR VEGETATION

Defining the management for the vegetation of a cultural landscape requires considering both natural and cultural resource management issues. While treatment of small, designed vegetative features such as alleés, orchards, and foundation plantings is relatively straightforward, managing larger scale landscapes, which might function more as ecosystems and less as horticultural features, is more difficult, requiring consideration of natural resource management issues as well as cultural resource issues. Such is the case of the Platt District. On one hand the district’s vegetation is truly a natural resource with its dynamics, seasonal changes and dependence on natural factors. On the other hand, the vegetation was also designed to create certain scenery, modified to allow specific uses, and enhanced to evoke emotions and feelings. Thus, while the district is a cultural landscape, falling under the purview of “NPS 28: Cultural Resource Management” and the Secretary of the Interior’s Standards for the Treatment of Historic Properties and the Guidelines for the Treatment of Cultural Landscapes, its 900 acres of vegetation might equally well be managed as a natural resource, under “NPS 77: Natural Resources Management Guidelines.” As a result, vegetation management recommendations must consider the park from both a natural resource and a cultural resource perspective.

From a cultural resource standpoint, as described in Chapter 8, the overall treatment philosophy for the Platt District is Preservation. This treatment was proposed due to the high integrity of the district and need to retain the districts’ extant historic fabric. However, the use of a preservation treatment for the park’s vegetation is somewhat problematic. Retaining the current conditions, in which invasive cedar growth has compromised the ecological health of the landscape, reduced biodiversity, and increased fire risk, does not really address the park’s vegetation from a natural resource standpoint. In fact, preserving the extant vegetative conditions will perpetuate the on-going degradation of native plant communities in the district and, probably, to their eventual loss.

Therefore, Rehabilitation is proposed as a district-wide approach to vegetation management. The goals of this plan are to reinstate more ecologically healthy conditions.
by enhancing diverse native communities through management.

The proposed overall vegetation management plan is shown in Drawing 35, in the drawing set at the back of the report. This plan calls for the re-establishment of a more open landscape, in which conditions more closely recreate the historic balance between prairie and woodland. Areas recommended for grassland rehabilitation were identified using geographic information systems (GIS) analysis. The analyses were conducted using cover data based on aerial photographs (much of this cover data has been shown in this chapter’s previous figures). Analysis criteria were developed based on the historic vegetation research described previously in this chapter, preservation goals, and discussions about management goals and trade-offs with park managers. The resulting criteria indicated that the areas most suitable for grassland rehabilitation should be:

- located within the boundary of the Platt District, approximately 20 meters* (60 feet) from the boundary (buffer along the boundary to be retained as screening plantings).
- located outside of major streams and ravines (30 meter buffers around major streams and 20 meters around ravines to be retained as woodland).
- located outside of road management zone (5 meter buffer).
- located outside of developed areas (campgrounds, maintenance, picnic areas, etc.).
- located outside of areas historically covered with woodland.
- located on relatively level ground (because removal of wooded vegetation on steep slopes may cause erosion).
- located on sites that changed the least over time.
- have a soil type suitable for grassland rehabilitation.
- and, for educational purposes, areas for grassland rehabilitation should be located close to trails.

In general, these criteria reflect recommendations that woodland communities be retained along major streams and ravines, along boundaries as screening plantings, in areas of high soil erosion hazard, and in places where woodlands occurred historically. At the same time, areas where prairie existed in 1940 should be cleared of invasive red cedar and prairie grasses reintroduced, where possible and feasible. Approximately 214 acres was selected as suitable for grassland rehabilitation. These areas are primarily the Buffalo Pasture, Prairie Uplands, with some smaller areas near Buffalo and Antelope Springs, Travertine Island and Bromide Springs.

Other areas feasible for prairie restoration may be identified and implemented by park staff based on investigations of field conditions. It is important to note that clearing back to 1940s conditions is not the goal of these actions; that would be the goal of a Restoration treatment. The goal of this Rehabilitation treatment, in contrast, is the removal of invasive red cedar as a means to create healthier ecological conditions, which at the same time will create a landscape that is visually, physically, and spatially more similar to that which existed historically. In addition, vegetation management actions are proposed to address management concerns such as wildfire. Consequently, the plan, as shown in Drawing 35, also proposes thinning of vegetation along the urban interface and the creation of firebreaks within the district.

In the following text and the next chapter, management actions are described in greater detail and addressed at two levels: District-wide recommendations and treatment project level recommendations. District-wide recommendations provide general techniques and guidance for rehabilitating the district’s vegetation overall, addressing issues at the scale of 900 acres. These recommendations follow immediately. In contrast, treatment project recommendations are listed in Chapter 11. These describe projects for individual component landscapes more specifically, though at the same time incorporate district-wide recommendations and guidelines.

* Buffer distances are approximate and were used only to simplify the analysis process in the computer; these distances should not be considered as specific rehabilitation guidelines. Appropriate buffer distances will vary based on field conditions and should be carefully determined based on additional field reconnaissance.
DISTRICT-WIDE MANAGEMENT RECOMMENDATIONS

Recommendations for invasive species

Red cedar control

A literature review reveals the best management practice for removing red cedars is an integrated treatment combining natural ecological processes (i.e., fire) and human influenced (i.e., mechanical) practices. While fire alone is the most economical way to control young red cedars, it is not as effective when trees are large or when fuel loading in the forest is low. In areas where fuel loads are small (200 lbs/acre or less), only about 60% of the cedars 5 feet or smaller are killed. In addition “[t]rees over 6 feet are less effectively controlled with the fire under the normal fuel loading in Oklahoma. Killing trees over 10 feet tall requires very heavy fuel loads. Taller trees often are partially crown scorched in a fire.”

In the Platt District, where many trees are taller than 6 feet and where fuel loading is generally low due to reduced understory vegetation, a combination of mechanical removal and prescribed burning is recommended for treating dense red cedar woodlands.

In general, a long-term strategy for red cedar control within the district should consist of removing female and non-CCC cedars. In particular, groves of cedar should be thinned along the urban interface (However, in some places along the interface, where screening with deciduous trees and shrubs is not possible, it may be necessary to replant some cedars (more widely spaced, perhaps) when stands mature and die). In the interior of the district, where the CCC planted cedar as accents, screening, and winter color or for privacy, noise control, or other reasons, female cedars should be gradually replanted with male trees as trees die in these plantings.

The largest areas where red cedar should be controlled include the Buffalo Pasture, the Prairie Uplands, as well as Bromide Hill and around (north, east and south) Buffalo and Antelope Springs. Other small areas for removal include Hillside Springs and Headquarters. While specific recommendations for individual areas are described in more detail in Chapter 11, the following are some general recommendations for red cedar control.

First, chemical control is not recommended as it is expensive and known to be ineffective, particularly on large (over 6 feet) trees. Second, because large red cedar (over 6 feet) are less effectively controlled with the fire, mechanical removal will be necessary within the Platt District. In some areas, such as along the urban interface close to private homes, fire is potentially more dangerous and in these areas, cedar should clearly be removed mechanically. In some cases, cedar should be removed selectively to maintain screening or enclosure. In these locations it is important to preferentially eliminate the female trees when possible. Female trees produce a lot of seed, increasing cedar invasion, and therefore only males should be retained as a protective cover for wildlife, or as buffers along boundaries.

Depending on the situation, mechanical methods of removal may include mowing, chopping, shredding, tree pulling, shearing at the base, or sawing. On larger areas (such as the Buffalo Pasture or the Prairie Uplands) the suggested mechanical control method is sawing or cutting below bottom branch. Cedar trees cut below the bottom branch will kill the tree with no resprouting.

Park current mechanical removal practices include:

- **Chainsaw at or near ground** (any size trunk using staff or by contract).
- **Loping shears and handsaws** (usually 0-2” using volunteers).
- **Cutting blades on front of small four wheeler** (up to 4” using staff).
- **Scissors shear on front of bobcat** (up to 6” using staff).

While mechanical removal alone may be sufficient to control the cedar, fire might be used as a follow-up method. For example, a follow-up prescribed fire is recommended to reduce the debris on the area after cutting. In addition, fire could precede or follow mechanical cedar control as a means to promote grassland regeneration in addition to cedar and other woody species control.

Fire might also be used as a primary control method on young stands of cedar. The following are some general recommendations on the use of fire in managing...

Small individual trees could, if necessary, be treated with Grazon PC or Velpar. May and early June are the best times for application of these herbicides, and if possible they should be applied on dry soil just prior to a 1- or 2-inch rain.
cedar, provided here as a means for making broad management decisions. It should be noted that none of the recommendations contained in this report should be considered as a burn plan. Prior to undertaking any burn, a detailed plan indicating the burn’s extent, methods, personnel, and safety precautions should be developed, and the fire executed by individuals with proper training and experience in prescribed burning.

Burns should be carefully undertaken and monitored. Once an area containing cedars has been burned, and the trees thoroughly scorched, after 2 to 3 weeks any large remaining trees should be eliminated by mechanical removal or by individually reigniting trees by hand with a propane torch or similar device.

Following burn and cedar removal, grasses and herbaceous forbs will regenerate. According to Steve Burrough, Natural Resource Manager for CNRA, burns in the Guy Sandy area of the CNRA have shown good regeneration of native prairie species within one year of initial clearing. However, regeneration should be monitored. In areas where natural regeneration is weak, plant communities might be enhanced by planting individual plants as plugs. Or, complete prairie restoration with NRCS-produced seed from CNRA seed sources or seed collected locally should be considered in areas where natural regeneration is especially poor. To promote and maintain grassland vegetation, a spring mowing or prescribed burning regime might be implemented in initial years to inhibit cool season grasses and encourage warm season prairie grasses. Due to erosion concerns, late spring burns are recommended, as they minimize exposure to rain. Once established, a regular schedule of prescribed burns should be included in a CNRA ten-year burn plan and should be implemented to maintain prairie vegetation. While some sources say prairie burns should be conducted every 3–5 years to suppress woody species, more recent studies indicate that once every 7–10 years may be sufficient. The interval chosen for maintenance burning should be based on monitoring of local conditions as well as on staffing and budget considerations.

Exotic species control

Control of exotics is usually only feasible in small, highly-used areas where intensive control efforts are cost-effective. In addition, some species may be too difficult or expensive to eradicate without causing other environmental problems (such as through extensive herbicide application). For example, the total removal of Japanese honeysuckle, widespread within the Platt District, is not feasible (see below).

As a result, it is recommended that invasive exotic species should be maintained only in the developed areas such as campgrounds, picnic areas or prominent parts of the park such as Flower Park and Bromide Springs, or in areas where a species is becoming increasingly aggressive. Exotic species should also be removed along the urban interface where they contribute to the wildfire hazard. However, the status of all exotic invasive plants throughout the entire park should be monitored for change in their condition and status. Additional treatment information for individual species is provided below.

Johnson grass. Dense patches of Johnson grass can be controlled by spraying the foliage with a glyphosate herbicide during June, just prior to seed maturity. Care should be taken to avoid contacting non-target plants, since Roundup is a nonselective herbicide. In addition, repeated and close mowing, in accessible areas, can be used to kill Johnson grass seedlings. It prevents seed production, and reduces rhizome growth and regrowth of shoots.

Mimosa. Cutting is an initial control measure for the mimosa control. Cutting must be followed by either an herbicidal control and/or repeated cutting of re-sprouting shoots. Trees should be cut before they begin to flower to prevent seed production. Young seedlings can be effectively controlled by manual removal; they should be pulled after a rain when the soil is loose. It is important to remove the entire root since broken fragments may re-sprout. Chemical control (foliar application) with Roundup (glyphosate) or Triclopyr should be considered only for large thickets of mimosa seedlings where risk to other native species is minimal.

Tree-of-heaven. Tree-of-heaven cannot be completely controlled by herbicides, because their roots are so extensive that the chemical is not transported throughout the whole root system.

Cutting or mowing is recommended way to control tree-of-heaven. Treatment must be persistent, until the root system has run out of reserves and can no longer sprout. Cutting may be necessary every few weeks and the site must be monitored frequently until the trees have died.
Honeysuckle. Japanese and Amur honeysuckles are not tolerant of fire, and prescribed burning can be used to control it. Prescribed burning should be done in spring, when it will kill young seedlings and the tops of mature plants. Repeat fires are recommended for adequate control. Honeysuckle can also be effectively controlled by foliar applications of a glyphosate herbicide (20% Roundup or Rodeo), since it has such a great percentage of foliage compared to stems and roots. Herbicide should be applied in late summer, early fall, or the dormant season to be most effective.

Privet. Privet can be controlled by hand pulling of seedlings or by cutting stands and painting exposed stumps with a glyphosate herbicide. Before using herbicide, the NPS IPM coordinator should be contacted to ensure that an NPS approved herbicide is used.

Poison ivy control
Although toxic to people, poison ivy is native to Oklahoma and has considerable wildlife value as food for songbirds and small mammals. For this reason, the current management approach—control only in areas where the plant directly affects visitors—should be considered.

The best removal results are accomplished in the winter when the plants are dormant. Because poison ivy can be very persistent, in addition to manual removal, chemical control is recommended. The plants should be sprayed during late summer or early fall with a glyphosate herbicide or with Triclopyr. However, neither glyphosate nor Triclopyr will provide complete control from a single application, and repeat applications to treat re-growth may be necessary.

Recommendations for Pest Control

Insects affecting vegetation are currently not a major management issue, so current policies of monitoring and treatment as needed should simply continue.

Beavers—and their effects in the landscape—are difficult to eliminate, especially where trapping and killing are not permitted. Damage prevention is often the best approach. As the major issue in the district is tree damage, tree protection is recommended. Thiram is a commercial product known to repel beaver, but is recommended to protect individual or ornamental species in areas where other species provide alternative food sources. Therefore, barrier protection, as is currently used in Flower Park, is generally recommended to prevent beaver damage and should be continued in the district. Trees should be wrapped with galvanized metal fencing or chicken wire, at least 3 feet high. Roofing felt, secured with string or wire, is also recommended for tree protection by some agencies. The NPS coordinator may provide agency-specific information on beaver control.

Where flooding is an issue, “beaver pipes” can be installed across a dam or culvert to allow water to flow across a beaver-constructed barrier. Recommendations for constructing these features varies, and are available from the Oklahoma OWCD.

Recommendations for Wildfire Management

In 2001, following the December 2000 ice storm, a task force of fire management personnel from the Intermountain Region of the NPS visited CNRA and produced the "Hazard Fuels Assessment." Noting that wildfire has the potential to damage administrative and maintenance facilities and cultural and natural resources within the park and private property outside the park, this report makes recommendations to reduce the likelihood and potential dangers of wildfire. The following text seeks to support these recommendations by proposing ways to accomplish wildfire control goals while also considering the district's historic and cultural landscape. In general, the overall goals of vegetation management should be to help reduce wildfire, while at the same time protecting the park's overall cultural landscape and individual landscape features. In most cases, these goals are mutually compatible; in other areas, compromises will have to be made.

Hazardous fuel management
The “Hazard Fuels Assessment” recommends that hazardous fuel situations be identified, modified, and monitored over time throughout the Platt District. The reduction of red cedar forest through mechanical control and prescribed burns, to promote a more historic appearance and to improve ecological health, as described above, is fully compatible with hazardous fuel management goals. Thus, these projects should be undertaken in a synergistic manner.
Reducing hazardous fuels around historic structures is another issue where cultural resource protection goals and wildfire reduction goals mesh. As recommended, dead fuels within close proximity to historic structures or masonry features should be removed. In general, reduction of volunteer trees, shrubs and underbrush around historic structures is also an excellent idea from a cultural resources standpoint. However, the creation of an empty area completely devoid of live vegetation around structures should be avoided. While volunteer vegetation should be removed as per the “Assessment” guidelines, care should be taken to retain historic and designed vegetation around structures and landscape features. Foundation plantings of trees and shrubs were one way NPS designers sought to blend rustic structure with the landscape and extant designed plantings should be retained.

Urban interface

Portions of the Platt district’s boundary is an urban interface where the district’s woodlands abut private property, usually home or business sites. This area is of particular concern with regards to wildfire, since a woodland wildfire within the district could easily spread across the park boundary onto private lands, with potential loss of property or life. To reduce potential danger and liability, the “Hazard Fuels Assessment” recommends defining a buffer zone along the urban interface. Within this buffer zone, vegetation would be removed or significantly reduced, in effect creating a firebreak between the district and private lands. Locations of this buffer at the urban interface zone are shown in Drawing 35.

As noted in the “Assessment,” the buffer zone should be approximately 12 feet wide, depending on local conditions. In some places, the buffer might be easily instituted on the historically open boulevard right-of-way that surrounds portions of the district. In areas close to residences or privately-owned structures, most vegetation, and particularly red cedars, should be removed. In other areas, where fire spread may be less damaging, a low density of trees and fire fuels should be maintained. Thinning should focus on removing female red cedars, since they are seed sources. In addition, dense shrubs and exotic species such as honeysuckle should be cleared. Furthermore, all dead or diseased trees should be removed and damaged limbs trimmed. However, some habitat trees should be retained, to the degree possible when balancing historic character with safety.

The creation of this buffer zone through vegetation removal along the district boundaries would require removal of historic boundary screening plantings planted by the CCC during the period of significance. While removal of such historic fabric may seem problematic, as described above, the cedar plantings have become overgrown, have contributed to vegetative enclosure of the entire district landscape, and should be reduced. Therefore, it is proposed that historic boundary plantings, as identified in Drawing 35 should be retained, but should be significantly thinned as part of the urban interface buffer creation. Again, thinning should focus on removals of female cedar trees and those less than three inches, as well as dense stands of understory, and dead or diseased trees. Care should be taken to maintain some visual screening for privacy along boundaries where private homes or structures are within 200 feet or less of the park boundary. Happily, these locations are actually quite few within the district, primarily along the district’s northern boundaries, at Cold Springs Campground, Central Campground, Walnut Grove and Bromide Springs.

In addition, prior to any clearing along park boundaries, local residents should be contacted and consulted, to give them advance warning of the project and to advise them of wildfire hazards. Such public relations work can also encourage private property owners to protect their property on their own, by creating open lawn between the park boundary and their homes or structures, and by removing cedar trees or other vegetation in close proximity to their homes.

Firebreaks

The “Hazard Fuels Assessment” also proposes that new firebreaks be established. Firebreaks could easily be established in a manner in keeping with the park’s historic landscape, along old firebreaks or along formerly open areas within the park. Suggested areas for firebreaks are shown in Drawing 35. One firebreak is proposed along the western boundary of Rock Creek Campground. In addition, it is strongly suggested that a second firebreak be created by clearing vegetation from the abandoned portions of the perimeter road around Buffalo and Antelope Springs. A third and a fourth firebreak are proposed for the urban interfaces near Veteran’s Hospital and just north of Cold Springs Campground. Vegetation within the former road prism should be removed to create a corridor able to accommodate type 6 fire vehicles, approximately fifteen feet wide. This cleared corridor...
will create both a firebreak along the park boundary as well as emergency fire access. While major improvements to the surfacing of the road are not recommended, the cleared road prism might also be used as management access road as well. Other firebreaks should be established in conjunction with projects to open the park’s enclosed landscape and reduce red cedar woodland.

The “Hazard Fuels Assessment” also proposes that the extant perimeter road may also serve as a firebreak, and proposes clearing vegetation from and widening the road corridor. From a cultural landscape perspective, extensive clearing along the perimeter road may impinge on its character. In particular, clearing of overhead canopy in areas where trees create a tunnel effect along the road, is not recommended. A pattern of enclosure followed by open views is a character-defining aspect of the road, and creating a completely open, non-enclosed driving experience is not recommended. However, vegetative thinning could easily be accomplished on other parts of the roadway, and even in areas where canopy touches over the road, cedars and dense understory trees and shrubs could be cleared from along the roadside without deleterious effects. In sum, evergreen and dense vegetation may be cleared from along the roadside to enhance the road’s firebreak qualities, but large trees with overhead canopies should be retained.

Recommendations for Turf Management

Where possible, mowing regimes might be reduced to lessen the economic burden of this activity. One alternative is to mow less frequently; approximately once a month. This should be sufficient for most areas, especially those of less public usage. Another alternative for the areas where reduced mowing is desired is to replace turf areas with low maintenance native groundcover. Native grass areas of wild rye might, for instance, be established on slopes and in shaded areas where visitor use is low or Buffalo grass in open areas. Eliminating mown turf in areas such as Bromide Springs and Flower Park, however, is not feasible nor desired. Some specific recommendations for reducing mowing in component landscapes are described in Chapter 11.

In some areas, mown turf cover might be replaced by other species. This would be a valuable strategy particularly in areas, such as around Hillside Springs or the former Headquarters Building, where cedar woodland is to be removed or thinned. These areas could be seeded with a mixture of low growing grassland species including little bluestem, hairy grama and seep muhly, recreating historic conditions.

In other areas, where turf is shaded or difficult to maintain, woodland forb species might be useful replacements. Potential native woodland forb species include spiderwort, wild phlox, evening primrose. Potential shrub and vine species include coralberry and Virginia creeper.

Recommendations for Tree Maintenance

Tree maintenance should continue, and if possible, increased, perhaps during the late fall and winter, the best time to do such work and which happily coincides with decreased visitation. Although time- and budget-consuming, increased tree care would greatly benefit the park’s specimen trees and woodlands. The greatest need at this time is structural pruning of damaged, diseased or dead trees within the designed parts of the park. Additional efforts should focus on specimen trees significant to park design and history, such as the large cottonwood at the Bromide pavilion or the monkey tree in Walnut Grove. Removal of all dead and damaged trees in natural areas is neither feasible nor recommended, as they are natural part of the ecosystem and might be valuable for wildlife habitat and organic matter. However, in areas where intensive storm damage has created hazardous fuel accumulations, trees should be removed. Dead trees that indicate a serious insect or disease problems should be identified and eliminated. Trees in streams and creeks that pose a risk of log jams at low water crossing, bridges and near the Travertine Nature Center should also be monitored.

In addition, priority should be placed on monitoring trees surrounding campsites as they are often suffer from soil compaction. Compacted soils reduce the amount of oxygen and water that can reach the root zone of trees, adversely affecting their root systems and overall health. To mitigate the risk of tree failure layer of coarse woody mulch 2–4 inches thick should be spread around the root zones of these trees. Clearly defined paths should be established in these zones to direct the flow of park visitors. Further information on such projects is provided as part of individual vegetation projects in Chapter 11.
Finally, in areas where trees have been lost, replacement is recommended to retain character-defining aspects of canopy cover and enclosure. This is an issue in areas such as Bromide Springs, Flower Park, Black Sulphur Springs, Walnut Grove, Nature Center and Little Niagara, and other places where there are large lawns or open areas with scattered tree cover. While tree replacement projects for these areas are described in Chapter 11, it is worth emphasizing here that it is generally not recommended to replace specific, individual historic trees. In general, documentation is not detailed enough to support such actions. Although historic topographic surveys with tree locations exist for many of these areas, these surveys often depict their landscapes prior to CCC changes. Historic aerial photographs are not particularly useful in this regard either, because they show general tree cover patterns and do not accurately show locations of specific trees. In addition, the park has not collected detailed tree surveys for current tree locations, and obtaining such surveys would be expensive. Thus comparisons and determinations of missing, historic and existing trees, a prerequisite for individual tree replacement, are extremely difficult to make accurately.

A far better strategy is to consider replacing an area’s historic percent of canopy cover, an aspect of all of these component landscapes that has been identified as a character-defining feature. Canopy cover can be determined from aerial photographs, and in fact, period plans show the extent of canopy based on the 1940 aerial photograph. Thus, in-field comparisons, or comparisons to recent aerial photographs can be made and used as means for identifying locations for tree replacement. In-field conditions such as dips or stumps can also be used as a means for locating where replacement trees should be planted. In addition, when trees are lost in storms or due to aging, stumps should be ground and the location marked for a future tree re-location. As replacement trees are planted in various locations, as described in the Chapter below, it is worth considering collecting seeds or propagating plants from trees within the park as a way of preserving and promoting local genotypes. This will, obviously, require advance planning.

Recommendations for Vista Clearance and Management

As described above, as the park landscape has been enclosed by red cedar, views and viewsheds have certainly been lost, although only a few of these vistas can be definitively located, due to a lack of historic documentation. However, the loss of viewsheds is perceived in the monotony of the park landscape, particularly when viewed from the perimeter road. While some of these vistas should be recreated without specific effort as a result of the cedar removals within the Buffalo Pasture and Prairie Uplands, it is also recommended that a few key vistas be opened up intentionally to reinstate a more expansive park landscape. As shown in Figure 11-39, these include expanding the viewshed at the townsite overlook and creating a viewshed from Bromide Hill Trail. The presence of both of these viewsheds has been confirmed through historic photographs taken of these viewsheds.

While large areas of cedar will be removed from the Buffalo Pasture and other areas, this treatment is not recommended for recreation of vistas. In other words, “clear-cutting” is not recommended. Rather, vista clearing should be done carefully, in some locations on an individual tree-by-tree basis. On Bromide Hill Trail, for example, two individuals communicating remotely might be required, one at a higher elevation and viewpoint to determine which trees should be removed and one below, marking trees at their base. From an implementation standpoint, vista reestablishment requires both tree and understory vegetation removal as well as ongoing treatment of some sort (mowing, herbicide painting, periodic re-clearing) to prevent regrowth in the new vista.

Thus, the creation and maintenance of vistas for scenic and interpretive purposes is labor-intensive, as vegetation is continuously regenerating and growing in the cleared areas. Therefore, in the Platt District, viewshed reinstatement is recommended as a long term project, one to be undertaken after other, more crucial activities have been accomplished.

VEGETATION TREATMENT PROJECTS

This chapter has provided background and general guidelines for vegetation management. Specific vegetation treatment projects utilizing these guidelines are contained in Chapter 11.
Notes to Chapter 10

5. Ibid., 4.
13. A.R. Greene, Correspondence located in Superintendent Monthly Reports, 1908, 146.
15. A.R. Greene, Correspondence located in Superintendent Monthly Reports, 1908 page 303, 1909 322.
17. A.R. Greene, Correspondence located in Superintendent Monthly Reports, 1909, 325.
24. Ibid., 5.
30. Ibid., 7.
44. Ibid.
Chapter 10: Vegetation Change and Management

48 Richey and Miller, Report to the Chief Architect... April 1, 1935–September 30 1935,” 8.
50 Richey and Miller, Report to the Chief Architect... April 1, 1935–September 30 1935,” 4.
51 Ibid.
53 Richey and Miller, Report to the Chief Architect... April 1, 1935–September 30 1935,” 4.
54 Ibid.
55 Richey and Popham, “Report to the Chief Architect... May 16, 1935–April 1, 1934,” 8.
58 Richey and Miller, “Report to the Chief Architect... April 1–September 30 1934,” 5.
60 Ibid., 10.
61 Richey and Miller, “Report to the Chief Architect... April 1–September 30 1934,” 5.
68 Boeger, Oklahoma Oasis, 173.
73 Boeger, Oklahoma Oasis, 168.
74 Russell E. Dickenson, Chief Ranger, “Annual Forestry Report” (memorandum to the Regional Director, 8 January 1954), 2.
80 Ibid., 48.
81 Ibid., 50.
82 Ibid., 50.
83 Ibid., 52.
84 Ibid., 46.
85 Ibid., 47.
88 Ibid., 9.
89 Ibid.
91 Bruce W. Hoagland, Forrest L. Johnson, and Stephen Gray, “Vegetation Study of Chickasaw National Recreation Area, Oklahoma,” (report by the Oklahoma Natural Heritage Inventory, Oklahoma Biological Survey, and Department of Geography, University of Oklahoma, 1998), 94
92 Hoagland, Johnson and Gray, “Vegetation Study of Chickasaw National Recreation Area,” 95
93 Ibid., 16.
95 A. R. Greene, Correspondence located in Superintendent Monthly Reports, 1908, 498.
Chapter 11: Treatment Projects

INTRODUCTION

This second section of the Treatment Plan identifies treatments for each of the district’s component landscapes. Organized in the same order as the history and analysis chapters, each section begins with a brief description of an overall treatment strategy for the entire component landscape. As noted in Chapter 8, these treatments are consistent with the overall district-wide strategy, and may vary from landscape to landscape and feature to feature.

For each landscape, a series of specific treatment projects are then presented as a way to implement the landscape treatment. These projects may address specific repair, restoration or rehabilitation of individual features or may be longer-term, on-going maintenance concerns specific to that component landscape. In general, projects have been categorized into one of nine types for ease of categorization and prioritization:

1) Maintenance: Usually a relatively simple project, but may sometimes require special strength, equipment or skills. A schedule (periodic, annually) or a change in method may be indicated.

2) Repair and/or Replacement: This type of project will usually indicate failure or problems with an historic feature, often due to age. Repair and replacement may sometimes require technical skills such as carpentry.

3) Masonry Repair: The district contains a large amount of historic masonry, the repair of which requires some technical training and/or experience. More complex masonry repair might be accomplished as a partnership with the Historic Preservation Training Center.

4) Improvement: This is a project that changes the visual appearance or material of a feature, usually a non-historic feature.

5) New Construction: These are major projects, requiring significant financial commitment and with a potential impact on the historic landscape.

6) Vegetation Removal and/or Replacement: These projects might include cutting down trees, clearing understory and planting trees, shrubs, grasses, groundcovers.

7) Interpretation: This is a project that might best be accomplished through educating the public.

8) Investigation or Planning: These projects require significant physical investigation or significant further research to determine their desirability and feasibility.

9) Access: These are projects to make more of the district universally accessible.

A means of accomplishing each project is also indicated. Generally, projects are proposed to be implemented in one of three ways. The first is a contract project, implying that significant additional funding, design or planning, and contract labor will be required. The second is a staff initiative, indicating that a project could be implemented by knowledgeable permanent or seasonable staff given adequate funding and time beyond regularly scheduled activities. The third type of project is a partnership project, or one done in conjunction with another NPS unit, such as the Historic Preservation Training Center, or an outside organization.

The project descriptions generally state why the project should be undertaken, followed by more specific recommendations for undertaking each project. These recommendations are, unfortunately, somewhat general in nature. However, developing project specifications for one preservation project during the course of this CLR indicated that prior to beginning any preservation project, numerous discussions with park staff from varied divisions, with the State Historic Preservation Office, and with NPS regional staff were required prior to and during the development of any detailed specifications. Therefore, these projects are presented not as a “how-to” manual, but rather an overall road map of the tasks (and their potential problems or concerns) required for
the preservation of each landscape. Recommendations have photographs or drawings illustrating either problem conditions which need to be fixed or the desired appearance or outcome of a specific project. Often, the desired condition is illustrated with a historic photograph. All treatment projects for a given landscape are also indicated on Drawings 25 to 34, which together comprise the Treatment Plan.

Cost estimates for each project were calculated by the project team and were provided to the staff at CNRA as a separate document. These were “conceptual” cost estimates based on square foot costs of similar construction or identifiable unit costs of similar construction items. Such estimates, prepared without a fully defined scope of work, are meant to be guidelines for assessing future funding requirements, and their future use should take inflation into consideration.

BROMIDE SPRINGS AREA: REHABILITATION TREATMENT

The desired addition of a new picnic shelter, upgrading of the water systems to restore mineral water to the area, and minor changes for improved ADA access imply that rehabilitation (rather than preservation) is the treatment most appropriate for the Bromide area. The proposed projects are depicted on Drawing 25.

Project B1: Construct new picnic shelter

Type: New Construction
Implementation: Capital/Contract

Rationale: Demand for a picnic shelter for large gatherings and for use in rainy weather is high, despite the fact that no such facility exists in the district. As a result, picnickers often use the Bromide Pavilion for gatherings, moving picnic tables into the structure, blocking the water spigots. Providing a new facility for picnicking will allow the Bromide Pavilion to be used as it was historically.

Recommendations: The proposed new shelter must be compatible with old design, but clearly distinguishable as new construction. A suggested location for the picnic area is the eastern side of the Bromide area, near, but not on the area where a picnic shelter was proposed in the 1940 master plan. However, the Secretary of the Interior’s Standards do not recommend constructing features which were designed but never implemented. Therefore, it is recommended that a new picnic shelter be located slightly west of the 1940s proposed site, near a widened asphalt parking pull off (Figure 11-1). Another possible location for the shelter is Walnut Grove, as described in Project WG3 below.

Although a prefabricated picnic shelter might be less expensive, the construction of a picnic shelter within the Bromide Area will have a huge impact on the historic character of the area. As a result, a structure designed to be in keeping with the historic character is recommended, perhaps utilizing pre-fabricated components. Figure 11-2 shows two concept elevations for the shelter as an open air, wood and stone structure. Additional facilities such as grills and picnic tables should be located within and nearby the shelter. Lights and electrical service should also

Figure 11-1. Proposed location for Bromide Springs picnic pavilion.

Figure 11-2. Conceptual design for Bromide Springs picnic pavilion, using materials appropriate to historic period, yet design is clearly contemporary.
be included as part of the structure design, and the shelter should be fully ADA accessible with a hardened pathway leading to it. Once a new structure is built, the use of picnic tables in the historic pavilion should be prohibited.

Project B2: Remove concrete block pump house and pipe

Type: Improvement—Visual
Implementation: Staff

Rationale: The pump house (Figure 11-3) is no longer functioning and cannot be retrofitted to restore function. Since it detracts from its surroundings, does not date to the period of significance (1933–1940), and is not on the LCS, it may be removed. A pipe in Rock Creek just upstream from the low-water crossing is part of this structure and should be located and removed along with the structure.

Recommendations: This project should probably be done prior to and/or in conjunction with restoring water to the pavilion (Project B9, below), since its demolition may provide additional clues to the original plumbing of the pavilion. Removal should include capping off the wellhead to prevent contamination. Once the pumphouse has been removed, the area should be regraded and replanted with understory vegetation.

Project B3: Stabilize bank at causeway steps

Project Type: Vegetation Planting
Implementation: Staff

Rationale: A volunteer pathway near the steps to the low-water causeway (Figures 11-4 and 11-5) from the dump station parking area is forming a deep gully as water erodes the pathway.

Recommendations: The bank should be regraded to eliminate the pathway and gully and should be stabilized with new soil or stones, geotextile, bank-stabilizing vegetation of medium-high shrubs or a combination of all three. Snow or temporary fencing should be placed to prohibit foot traffic down the bank until vegetation has established itself. Since the causeway steps are not that well-constructed, another, but more costly approach...
would be to construct a new flight of steps along the pathway and remove the old steps.

Project B4: Replace “Ancient Rivers” sign

Project Type: Replacement
Implementation: Staff

Rationale: Existing sign (Figure 11-6) does not match historic sign, though text is historically accurate.

Recommendations: When existing sign fails, replace with a sign closely matching the historic sign, based on photographs and original plans (Figure 11-7 and Figure 9-22). However, if interpretive needs indicate a new text message is preferred, a new sign following current NPS signage guidelines should be instituted.

Project B5: Remove culvert at Resource Management Office (formerly the Travertine Ranger Station)

Project Type: Improvement
Implementation: Staff

Rationale: This culvert (Figure 11-8) is not historic and is no longer needed, since visitors no longer access building from the north.

Recommendations: Remove culvert and restore area to turf to match surroundings.

Project B6: Maintain Pavilion terrace

Project Type: Masonry Repair
Implementation: Partnership or Staff

Rationale: The terrace surrounding the pavilion has changed over the years. The two trees within the terrace are in poor condition (Figure 11-9).

Recommendations: French drains in terrace at entrance to pavilion should be cleaned on a regular basis. Mortar joints within the terrace, though not original, should be retained. Joints should be maintained by weed pulling or herbicide treatment, to prevent deterioration of the joints due to water infiltration. Stones at the gap in the wall at the northwest corner should be maintained, and cleared...
of weeds. If photographic documentation of a tree in this gap is located, a tree should be replanted in this location. However, the authors have been unable to confirm that a tree originally grew here.

The two extant trees located in the west end of the terrace were severely impacted by the 2000 ice storm and are in decline. These trees should be maintained as long as possible; additional pruning and/or fertilization may help to extend their lives. Replacing these trees will be difficult. The trees are mature and deep stump and root removal could potentially impact the entire terrace and paving. New trees will be significantly smaller in stature and will likely never attain the size of the original trees, which were mature at the time of construction. New trees will also have a minimal water supply due to the current impervious nature of the terrace. Thus, tree replacement in these locations will require extra care and pre-planning. When the trees die, their stumps should be removed in the least invasive manner possible. Roots and soil should be excavated and new soil added. Oak trees should be planted to match the original species, and replacement trees should be large caliper so they are more resistant to vandalism. Tree protection should be also provided until trees are mature. If new trees do not survive, then the locations may be filled in with mortared flagstone to match the existing pavement.

Project B7: Provide ADA access at terrace

Project Type: Access
Implementation: Staff

Rationale: The curb and steps at all of the terrace entrances prevent universal access to the terrace and drinking water.

Recommendations: Access cannot be provided at the east end, unless steps leading to the terrace are removed. Access should be provided on the west side of the terrace. Currently, the large extant stone at the edge of the terrace acts as a barrier rather than as a threshold. The area should be regraded to provide seamless transition between path and terrace. This area may require a small additions of compacted trail aggregate and minor regrading each year to remain accessible.

Project B8: Restore semi-circular bench at Pavilion

Project Type: New Construction
Implementation: Capital/Contract

Rationale: The semi-circular bench (Figures 11-10 and 11-11) is a missing part of the pavilion and an important lost landscape feature.

Recommendations: Replace the bench based on historic photos and historic plans (such as Figure 11-12), utilizing extant stone bases. Cedar or other rot-resistant laminated wood should be used to reconstruct the bench surface. Brown Trex® plastic lumber might be investigated as a bench material, but while durable, it may prove to be too
flexible, lacking tensile strength for the spans between stones. It may also present an unnatural appearance in the landscape. Care must be taken to preserve extant stones when refastening new bench surfaces; a mason skilled in historic work should be consulted. One or more bench support stones may be missing and should be replaced in kind. Clearing of the understory around benches will be required, although large trees should be retained so that existing shade may be utilized. New plantings will also be required to match historic conditions surrounding the benches.

Project B9: Restore mineral water to Pavilion

Project Type: Investigation/Repair and Replacement
Implementation: Capital/Contract with significant staff involvement

Rationale: The original, historic purpose of the Bromide Pavilion was to provide mineral water for drinking and health purposes. Today the building only dispenses city water (Figure 11-13), an aspect that diminishes the historic character of the setting.

Recommendations: This is a potentially complex and difficult project, one that must address the issues of water rights, aquifer water supply and drought in a region where water is an important resource. Significant research will be required. Because of the poor quality and flow of the existing wells, a new well will probably need to be located in or possibly outside the district. In the latter case, land may need to be purchased by a park friends group to procure access to the well. The type of water—bromide, medicine, or other mineral composition—may be important, particularly to local visitors, yet this may be difficult to control. A well will need to be drilled and depending on the location and flow of the well, water may need to be pumped to the pavilion and/or treated with chlorine.

Within the pavilion, the existing water supply tanks located on the second floor would need at a minimum to be rehabilitated. More likely, a pressure tank and treatment system will need to be located between the well and the pavilion. New plumbing under the building would also be required. Non-wasting spigots, perhaps on-demand, ADA-rated, spring-loaded drinking fountain spigots, should replace the existing spigots that flow continually.

Once water is reintroduced, a new mineral water composition sign should be introduced. It may be possible to erect a new composition sign, perhaps at or near the former dispensing window interpreting the old signs and indicating the new water’s composition.
Project B10: Rehabilitate Pavilion Lily Pond and surrounds

Project Type: Repair and Replacement
Implementation: Capital/Contract

Rationale: This rectangular basin (Figure 11-14) was repaired about 5 years ago and filled with sand to a shallow depth. The pond’s water system is connected to the 12th Street fountain, which is filled by city water. The pool has on-going leak so that it requires consistent refilling.

Recommendations: The Lily Pond should be reconstructed in concrete at its existing size and location, but at a new, shallower depth, with water stops utilized in its construction. As part of the reconstruction, the pool’s concrete curb should be replaced with a flagstone coping with grass joints to match the original. Once the leak is repaired, a recirculating water pump should be used to create the pool’s central water jet, with a flow and appearance matching those seen in historic photographs. A fountain timer might also be useful to regulate the jet and a float used to help resupply water lost to evaporation. New plumbing, drain, and electrical systems will therefore be required. Care should be taken during construction to protect the nearby cottonwood tree. Lily plants should continue to be grown in pots. The addition of small fish (a local species) would help naturally reduce algae growth in the pond. This project should be linked with the rehabilitation of the 12th Street fountain (see Project B12 below).

Project B11: Replace cottonwood at Lily Pond

Project Type: Vegetation Replacement
Implementation: Staff

Rationale: Though currently in good condition, the cottonwood (Figure 11-15) adjacent to the Lily Pond is beginning to move past maturity and into decline. Cottonwoods often do not live past 100 years and this tree, mature in the 1930s, is beginning to reach that age. As one of the tallest trees in the area, it is also potentially vulnerable to lightning strikes.

Recommendations: When this tree dies, it should be replaced in-kind with a native cottonwood. A large tree might be located elsewhere in the park and brought in with a tree spade, or a replacement tree could be grown or purchased.

Project B12: Rehabilitate 12th Street Fountain

Project Type: Repair and Replacement
Implementation: Capital/Contract

Rationale: During the period of significance, the 12th Street Fountain had a 30-foot artesian jet (Figure 11-16). Today the fountain is a delicate jet, run off of city water (Figure 11-17). Returning a central visual feature to the fountain, will restore the appearance and feeling of the entry.

Recommendations: Given water supply issues within the region, it is unlikely that an artesian well to supply a jet at the scale of the original will be practical to locate.
and drill, either within or without the park. The easiest way to recreate the water feature as it appears in historic photographs would be to install a mechanical fountain supplied by a re-circulating water pump to save water. This will require an electrical line and, most likely, new plumbing, and a timing system may be useful to regulate the jet and to replenish evaporation. For efficiency, this project should be linked with the repair of the lily pond (see above), since these two water features are currently linked. The rehabilitation should install two valves for the two water features; currently they both utilize the same valve and line. Depending on the status of the existing piping and requirements of a new jet, this project has the potential to be disruptive to the existing masonry paving and walls. Therefore, this work should also be coordinated with other water and masonry repair projects at the entire fountain area (see Project B13 below).

If the fountain and pool continue to be used by the children of local residents as an informal wading/swimming pool, then a chlorination system may also be required, if the park feels it impractical to enforce a no-wading policy.

Project B13: Restore drinking fountains at the 12th Street Fountain

Project Type: Repair and Replacement
Implementation: Capital/Contract

Rationale: Although stone pedestals remain, drinking fountains once located near the end piers of the semi-circular walls are no longer functioning (Figure 11-18).

Recommendations: Spigots should be replaced and if possible, existing piping, presumably still present within the structures, should be re-used, possibly after being slip-lined with nylon or polypropylene pipe (Figure 11-19). If lines are no longer functional, feasibility of replacing lines should be carefully assessed to ensure that pipe replacements do not irreversibly damage extant wall fabric. Like the 12th Street fountain, these drinking fountains should be connected to the city water supply, unless a mineral water well is available (see Project B9, above). This project should also be coordinated with the lily pond and 12th Street fountain rehabilitations.
Project B14: Replace non-historic coping at 12th Street Fountain

Project Type: Masonry Repair
Implementation: Partnership or Capital/Contract with other fountain project(s)

Rationale: The south side of the 12th Street Fountain basin has a non-historic concrete coping (Figure 11-20).

Recommendations: The concrete coping should be replaced by large, mortared flagstones matching those on the other half of the pool, as shown in historic photographs. Work might be triggered by or coordinated (if possible) with the rehabilitation of the fountain and plumbing or with other masonry repair projects in the area.

Project B15: Maintain flagstone at 12th Street Entry

Project Type: Maintenance
Implementation: Staff

Rationale: Flagstone paving and masonry are beginning to show wear at the 12th Street Fountain paved area (Figure 11-20) and on the entry walkways paralleling 12th Street.

Recommendations: Mortared flagstone joints should be repointed as necessary and kept free of weeds and grass by pulling or with an herbicide such as Round-up®. Flagstones which are loose or severely split should be replaced in-kind or repaired. The historic tree once located within the paved area around the fountain is not recommended for replacement.

Project B16: Replace lettering on entry piers

Project Type: Replacement
Implementation: Contract

Rationale: Entry piers once had cast iron lettering on their south elevations. This lettering was removed, and a new sign is located adjacent to the piers (Figure 11-21).

Recommendations: Lettering matching the historic lettering (Figures 4-22 and 9-20) could be replaced
Project B18: Replace Bromide Ranger Station doors & windows

Project Type: Long-term Replacement
Implementation: Contract

Rationale: Existing doors and windows do not match historic photographs and plans (Figure 11-22).

Recommendations: Future replacement doors and windows should match historic photographs and conditions in size, color, and appearance.

Project B19: Install grates on Bromide Hill Trail inlets

Project Type: Improvement
Implementation: Staff

Rationale: Current gutter inlets on Bromide Hill trail do not have grates and clog with debris (Figure 11-23) and as a result, stormwater backs up on and erodes trail surface.

Recommendations: Although it is unclear whether the original gutters had grates, lockable, self-flushing grates should be installed over inlets to aid in maintenance.

Project B20: Rehabilitate/Provide ADA access at Bromide Hill

Project Type: New Construction and Access
Implementation: Capital/Contract

Rationale: The view from Bromide Hill is a significant experience within the park and is not ADA accessible.

Recommendations: Grade a ramp or switch-backed trail to access paths on the hilltop that lead to the overlook. Although Figure 11-24 depicts a ramp on the northeast to help provide a visual identity for the district. “Platt Historic District” is suggested as lettering to complement existing NPS signs. Lettering should be returned to both sets of piers, as per the original conditions.
side of the parking area, it may be possible to locate on the northwest side instead. In either location, ramp construction may require a retaining wall, the design and appearance of which should be in keeping with the historic character of the area. A boulder retaining wall may be appropriate. The hilltop paths should be regraded as needed to ensure level access.

An accessible overlook area should also be constructed. This could be constructed as a widening in the trail, located just above the flat ledge currently used as a viewing platform for fully-abled people. A retaining wall will need to be constructed and shrubby vegetation between the trail and the flat ledge will need to be removed. The concrete steps (Figure 11-25) at the end of the trail could either be replaced or retained.

While the ramp from the parking lot to the hilltop might be easily graded by park staff, the construction of the overlook, may require more extensive design and engineering, given the rocky substrate and steep grades on the cliffside.

Project B21: Replant trees in Bromide Springs

Project Type: Vegetation Replacement
Implementation: Staff

Rationale: Trees have been lost from this area due to age and storm damage.

Recommendations: Trees should be replanted to maintain the area’s character-defining overhead canopy and balance of sun and shade on the ground plane. A lack of precise historic documentation prohibits the replacement of individual trees. Locations for new trees should be determined by in-field study, and should be planted in areas where the loss of trees has created a hole in the canopy cover and/or where stumps are located, or where a topographic depression indicates a former stump location. A comparison of aerial photographs from 1940 and 1999 will also be helpful in locating areas where canopy cover has decreased over time and trees should be planted in these areas. Trees may also be planted in close proximity to large trees in obvious decline. As described in Chapter 6, this area indicates a loss of slow-growing trees such as oak and hickory and an increase in hackberry. Therefore, species planted in this area should be primarily oaks.

Figure 11-24. Conceptual plan for ADA-accessible ramp to paths to Bromide Hill Overlook.

Figure 11-25. Existing concrete steps at the Bromide Hill overlook are inaccessible, and small overlook structure should be added up the trail to provide access to the view.

Project B22: Maintain small prairie area on top of Bromide Hill

Project Type: Vegetation Management
Implementation: Staff

Rationale: As shown on historic and existing conditions aerials, a small patch of extant grassland near the top of Bromide Hill appears to be a remnant prairie, perhaps undisturbed from pre-settlement times. It should be retained and may benefit from more active periodic management.

Recommendations: This small prairie patch should be surveyed to determine its current species composition and to determine if it is threatened by woody plant or red
cedar invasion. Cedar should be manually removed from the area. A prescribed burn might be implemented in the area on a periodic basis to help prevent woody incursion and encourage native prairie plants. Given the small extent of the area, care must be taken when burning to prevent wildfire.

WALNUT GROVE: PRESERVATION TREATMENT

Walnut Grove exhibits high integrity and treatment in this area focuses on retaining that integrity by preserving extant historic features and character. Therefore, preservation is an appropriate approach for this landscape. If a new picnic shelter is located here, rather than at Bromide Springs, then the treatment approach would better be defined as rehabilitation. Proposed projects are depicted on Drawing 26.

Project WG1: Preserve fire pits

Project Type: Masonry repair
Implementation: Staff or Partnership
Rationale: The fire pits’ masonry has deteriorated and some of their grills have been lost (Figures 11-26).

Recommendations: Masonry should be repaired, and internal firebricks should be replaced if structures show need. Firebrick should not extend less than three inches below stone faces. Smaller grills may not have enough space for firebricks (Figure 11-27). While fire pits at Cold Springs Campground were constructed with firebrick, no historic evidence of this exists for those at Walnut Grove. New steel grills should be fabricated to match remaining grills and should be cabled to the structures to prevent loss.

Project WG2: Preserve Monkey Tree

Project Type: Maintenance
Implementation: Staff

Rationale: Although play activity on the tree is potentially injurious to the tree, this use is traditional (Figure 11-28) and should be continued (Figure 11-29).

Recommendations: Retain dead branches for bouncing. Trim potentially hazardous branches. Periodically fertilize. If compaction around base of tree becomes severe, a mulch of hardwood chips two to four inches deep may be applied around the base of the tree.

Project WG3: Construct picnic shelter (alternate location from Bromide Springs)

Project Type: New Construction
Implementation: Capital/Contract

Rationale: District visitation and use indicates demand for a picnic shelter for large groups and rainy weather. Walnut Grove would be an appropriate location for the shelter, since it is already a designated picnic area.
and since a shelter here would not compete with extant historic structures, as would be the case in Bromide Springs.

Recommendations: If this site is chosen as a picnic shelter location, the shelter could be designed to recall (e.g., built in the same location, scale, and dimensions as) one of the former CCC camp buildings (Figure 11-30). As well as being a functional picnic shelter, such a structure could also help interpret the district’s CCC history.

Project WG4: Revise turf management

Project Type: Maintenance
Implementation: Staff

Rationale: Wild rye establishing itself in the foreground of Walnut Grove is somewhat inconsistent with the traditional mowed setting of the area, but is a low-maintenance native groundcover. A change in mowing patterns could recreate historic appearance, while retaining wild rye in the area (Figure 11-31).

Recommendations: Mow areas along the perimeter road, and reduce height of understory in clumps of trees located along the perimeter road. Concurrently, reduce mowing at edge of vegetated slope at the north and west sides of the area and establish and encourage wild rye in the understory.

Figure 11-28, Monkey Tree, historic photo, no date, circa 1950.
Figure 11-29, Monkey Tree, 2001. Note loss of bark and branches.
Figure 11-30, Plan and section of proposed alternate picnic pavilion.
Chapter 11: Treatment Projects

Project WG5: Replace trees within picnic area

Project Type: Vegetation Replacement
Implementation: Staff

Rationale: Trees have been lost from this area due to age and storm damage.

Recommendations: Trees should be replanted to maintain the area’s character-defining overhead canopy and balance of sun and shade on the ground plane.

(Figure 11-32). A lack of precise historic documentation prohibits the replacement of individual trees. Locations for new trees should be determined by in-field study, and should be planted in areas where the loss of trees has created a hole in the canopy cover and/or where stumps are located, or where a topographic depression indicates a former stump location. A general rule of thumb may be to plant trees in areas where canopy cover is less than thirty percent. Trees may also be planted in close proximity to large trees in obvious decline. However, the three major, central open areas should be retained without trees, to allow space for outdoor sports such as volleyball and frisbee. Although no data exists to show historic species composition circa 1940, other areas in the park show an increase in hackberry and a loss of oak trees. As a result, replacement trees should be oak and black walnut.

BLACK SULPHUR SPRINGS: PRESERVATION TREATMENT

A preservation treatment in Black Sulphur Springs is appropriate because the following projects primarily propose the repair and replacement of extant historic features. Many of the changes that have occurred at Black Sulphur Springs are reversible. For example, the beach along Rock Creek can be easily reestablished through more frequent sand removal and regrading. More difficult, however, will be confronting the changes in the pavilion: returning mineral water flow to the pavilion is perhaps the major preservation issue in the area. If this is accomplished, the original purpose of the pavilion will be restored, raising the integrity of the area. This and other proposed projects for the Black Sulphur Springs area are depicted on Drawing 27.

Project BSS1a: Preserve Black Sulphur Springs Pavilion

Project Type: Repair and Replacement
Implementation: Capital/Contract

Rationale: The pavilion should be repaired to prevent further change and deterioration.
Recommendations: Two major actions should be undertaken: First, the building’s stucco should be cleaned and lead should be abated on the wooden portions of the building. Repainting of the structure should reinstate the building’s original colors; paint analysis may be useful to determine this. Second, the metal shingle roof should be inspected by an historical architect to determine its specific condition, metal type, and preferred methods of repair and restoration (Figure 11-33). Metal roofs can be quite durable, and if rust is not too severe and leaking is not a problem, then washing, removing rust with a metal brush (sanding should not be undertaken if it will deteriorate the metal) and repainting with a rust resistant paint may be an acceptable treatment. Paint analysis may help determine the existing paint system and the roof’s original color; any new paint must be compatible with the old. Acrylic sealers are another possible treatment that might “buy time” for the existing roof.

If the roof’s condition is severely compromised, replacement in-kind may be necessary. The pavilion’s faux terra-cotta tile style may be possible to find as a modern reproduction. However, because of the limited number of styles and sizes of metal shingles commercially available today, an exact replacement would potentially require special fabrication. Suppliers of metal tile include the W. F. Norman Corporation, Millennium Tiles, and others. Replacement with a similar, but substitute metal shingle of a different size or scale should only be undertaken as a last resort. Work on the building may require the removal of some of the trees that have grown up around the structure (see Project BSS1b).

Project BSS1b: Rehabilitate Plantings

Project Type: Tree replacement

Implementation: Staff

Rationale: Pavilion treatment (see Project BSS1a) may trigger removals of trees and plantings.

Recommendations: If trees need to be removed, replacement plantings should focus on restoring deciduous species (elm, hackberry, and Osage orange) at the buildings’ four corners (Figure 11-34). However, current plantings do not conform to historic photographs or drawings, and it is not clear whether plantings shown on drawings were ever implemented as designed. As a result, new plantings should be designed in keeping with, but not duplicating historic plans (Figure 4-38) and should complement, but not impinge on, the historic structure. Such plantings would include specimen trees and possibly ornamental trees such as redbuds, but no low-growing foundation plantings such as shrubs or perennials.

Project BSS2: Rehabilitate Black Sulphur Springs Fountain

Project Type: Masonry Repair

Implementation: Staff, Partnership or Contract
Recommendations: Treatment of the fountain will depend to some degree on the condition of its infrastructure. If extant pipes can be replaced or slip-lined, then it may be possible to reuse all or portions of the existing fountain pedestal and basin. If not, the entire fountain may need to be reconstructed.

Ideally, the fountain would be restored with five mineral water jets supplying the central basin of the fountain (Figure 11-35). However, the four jets on the perimeter may be difficult to recreate and maintain. If originally installed (there is no photographic documentation of these jets), water lines for these jets were presumably cast into the original basin, and likely failed due to corrosion or clogging, perhaps caused by the mineral content of the water. Avoiding these conditions could also be difficult today. As a result, it may be easier to restore a single central jet within the basin rather than reinstate the four jets on the basin’s perimeter. If the fountain is intended to provide potable water, a chlorination system would also need to be installed, since the fountain will not connected directly to the spring. It may therefore be preferable to retain the spigot outside the pavilion and make the fountain basin a purely decorative feature. Finally, a timing or motion detection system to turn the flow on and off is recommended for the fountain to reduce water waste.

Recreating the fountain basin itself also poses some challenges (Figures 11-36 and 11-37). The original circular basin was filled in with concrete. This concrete might be chipped out of the basin, though the feasibility of this is not clear. Alternatively, the circular basin might be sawn off its pedestal and replaced with a new basin of the same size and dimensions, perhaps cast from the original. The new basin may then be attached to the extant pedestal and the joint sealed and made as unobtrusive as possible.

By replacing only the basin, more of the fountain’s original fabric will be retained. However, depending on the condition of the piping and the difficulty of matching materials, it may simply be easier to cast an entire new pedestal from the original and replace the entire pedestal, including water supply lines. In either case, the octagonal pool surrounding the pedestal should be retained in situ if at all possible.

Rationale: Loss of a functioning fountain dispensing mineral water compromises the pavilion’s integrity. The presence of water should be reinstated in the pavilion.
Project BSS3a: Stabilize causeway

Project Type: Masonry Repair
Implementation: Staff or Partnership with Historic Preservation Training Center

Rationale: Sand deposition above and below the causeway has altered creek flow, resulting in undercutting at the causeway base and along stone wall on south side of Rock Creek (Figure 11-38).

Recommendations: This project should be done in conjunction with Project BSS3b. The sand upstream of the bridge (Figure 11-39) and the sandbar downstream (Figure 11-40) should be removed to allow the creek to freely flow around the causeway foundations. Periodic cleaning of silt and sand deposition has been necessary in the past and will continue to be necessary in the future. The need for such cleaning has also been documented in a recent Federal Highways inspection report for the causeway.

These actions will also entail some vegetation removal on the sandbar on the downstream side of the causeway. A preliminary investigation of Oklahoma waterway permitting seems to indicate that a permit for dredging may not be required in small creeks. However, this should be confirmed and permitting requirements for work in the stream should be fully investigated prior to commencing work. Once sand is removed, the damage to the causeway foundations should be investigated and repaired as needed.

Project BSS3b: Reinstate beach area by cleaning Rock Creek channel

Project Type: Maintenance
Implementation: Staff

Rationale: Sand deposition in Rock Creek has eliminated traditional bathing/wading area below pavilion (Figure 11-39). This area was historically dredged to maintain the beach.

Recommendations: The hill below the pavilion should be regraded as needed and sand should be removed from the creek channel, to recreate conditions in historic photographs. Sand may be removed to the old Lewis place. Sand removal is also necessary to keep the sand bar...
Project BSS4: Provide ADA access to Pavilion

Project Type: Access/Long-term Repair
Implementation: Staff or Contract
Rationale: The experience of water is a key aspect of the park. Two low (approximately four-inch) curbs prohibit wheelchair access to the Black Sulphur Springs Pavilion (Figure 11-41).
Recommendations: A ramp on to the flagstone sidewalk may be easily provided at the northernmost end of the Black Sulphur Springs parking area. However, once on the sidewalk, a curb still acts as a barrier to the pavilion.

Adding new paths to the area is not recommended. Rather, when repair of the flagstone walk becomes necessary, the walk should be regraded as a low ramp. This is a long term solution, one which should be undertaken only after sulphur water is restored to the pavilion.

Project BSS5: Restore Trail to West Sulphur

Project Type: Repair/Replacement
Implementation: Staff
Rationale: As shown on the 1940 Period Plan for Black Sulphur Springs (Drawing 5 and Figure 11-42), a trail once existed along the southwestern bank of Rock Creek between West Sulphur and Black Sulphur Springs. Construction of the new Chamber of Commerce and the new CNRA visitor center may make this a useful link to reinstate.
Recommendations: Following the design guidelines in Chapter 9, the alignment of the old trail should be cleared and a new, compacted surface installed.

FLOWER PARK: PRESERVATION TREATMENT

Like Black Sulphur Springs, Flower Park retains high integrity. A preservation treatment will help retain this integrity by allowing the repair of features and the replacement of deteriorated historic fabric.

Work has already begun on the preservation of Flower Park with the rehabilitation of the Flower Park trails in the Summer of 2003 (Figure 11-43). Phase 1 of this project was completed in September 2003, and Phase 2 is slated to begin in the Summer of 2004. In addition, plans for the new Visitor Center near the Vendome Well call for the rehabilitation of Vendome/ Flower Park parking lot, including repaving and repair of historic stone curbing. These projects are in the line with the proposed treatment projects below. All proposed treatment projects are depicted on Drawing 27.
Project FP0: Rehabilitate Flower Park Trail System

Project Type: Access and Repair/Replacement
Implementation: Staff

Rationale: Flower Park is a high-use area of the park and trails have widened and shifted over the years. New material has been added, covering the original stone edging, which is believed to be intact but buried.

Recommendations: The paths should be rehabilitated to improve function and access, while retaining and recapturing historic appearance. Existing paths should be excavated to reveal extant stone edging, which has been buried over the years. Stone edging should be exposed and then re-laid as necessary to stabilize and repair it (Figure 11-43). Damaged stones shall be replaced in kind. The trails should be widened to 6 feet, accommodate two people walking side-by-side and to allow two wheelchairs traveling in opposing directions to pass each other. This should be done by retaining the upper edge of each trail segment in its original location, and moving the lower edge to accommodate the new width. Minor alterations in trail alignment at the ends of trail segments may be made to allow the widened trail to meet extant bridges or features. Edging and path should meet surroundings at grade and, based on historic photographs, care should be taken not to sink it below grade or project it above grade.

With trail rehabilitation, surrounding grades may need to be altered from their existing conditions and returned as close as possible to historic conditions to provide positive drainage across turf areas and path areas. This may require the reestablishment of former swales, revision of existing swales and/or removal of underbrush along the base of the Flower Park hill. Trail surfacing should duplicate historic conditions with compacted crushed granite.

Additional project specifications were developed in the Spring of 2003, in conjunction with the Oklahoma State Historic Preservation Office. These specification should be followed in the Summer 2004 project.

Project FP1: Restore Vendome stream edges, pools, and dams

Project Type: Repair and Replacement
Implementation: Staff

Figure 11-43. Rehabilitation of trails in Flower Park, Summer 2003. Work included excavating the extant trail, comparing its alignments to those shown in historic documents, and regrading of surrounds to effect positive drainage. Future trail rehabilitation should follow the plans, specifications and techniques used in this project.

Figure 11-44. Flower Park stream, circa 1935. Original stream edge featured boulders interspersed with turf.

Figure 11-45. Stream and pool edges are being undercut in some locations and should be stabilized as needed. Edges should be carefully reinstated to match historic conditions (Figure 10-44).
Chapter 11: Treatment Projects

Rationale: The stone edges of the Vendome stream are deteriorating and in some places are being undercut by stream flow (Figures 11-44 and 11-45). The stream's pools have narrowed over time and no longer reflect their historic configurations (Figure 11-46).

Recommendations: The two wading pools should be enlarged and reconfigured to match their outline at the end of the period of significance. The pools’ perimeter configuration may be determined from the 1940 period plan (Drawing 5), which is derived from historic aerial photographs. Soil composition in the filled in areas may also help indicate the original extent of the pools. The new pools should be edged with boulders, consistent with the rest of the stream; recent site reconnaissance undertaken during the renewal of the park's trails has shown that some original boulder edges may still exist under soil placed when the pools were filled in.

The extant boulder stream edges and dams should be assessed for deterioration and rebuilt in-kind as needed to eliminate wash-outs and undercutting. Boulder stream edges and dams should be dry laid or mortared in place, as based on original construction methods and exhibited in existing conditions. The sole extant wood weir, which was constructed in 1940 to measure the flow of the Vendome well, should be reconstructed in kind as well, based on existing conditions and historical drawings in CNRA files (Figure 11-47). Banks should be reseeded in turf and protected from foot traffic for a period following construction. Future turf management should also avoid the over-use of weed whackers at the stream edges, to maintain cover and reduce erosion.

Bank restoration will be a large, complex project. The project could be done in phases: stream edges, the upper pool, and the lower pool could be restored in three consecutive summers, for example. It will also be important to photo-document in detail the entire stream prior to construction. Such documentation will be both a record of change and an aid in accurately rebuilding extant historic conditions.

Construction will also likely require diversion of the Vendome stream during construction. This will dry out and probably kill the algae and weeds currently growing in the bottom of the pools. Such divergence could also periodically be used to control vegetation growing in the pools, if desired.
Project FP2: Replace gate at parking lot

Project Type: Improvement
Implementation: Staff

Rationale: Existing gate is unsightly and restricts pedestrian movement.

Recommendation: If deemed necessary due to attempted vehicular access, the gate should be replaced as described in Chapter 9, or with an unobtrusive lockable or removable bollard compatible with historic setting.

Project FP3: Improve appearance of Flower Park along Broadway Avenue

Project Type: Improvement
Implementation: Staff

Rationale: The Flower Park frontage along Broadway Avenue is an important “front door” to the Platt District and should present a stronger, more managed appearance (Figure 11-49). This project should be coordinated with the local government’s proposed streetscape changes.

Recommendations: Once the street’s asphalt apron, guardrails, and electrical poles are removed or redesigned, the park boundary should be managed as a released natural area, perhaps with a mowed zone directly adjacent to the roadway. This is desirable east of the parking lot, but care should be taken along the north side of the parking lot to prevent opening undesirable views. Dense undergrowth should be thinned and dense overstory pruned to encourage growth of prairie grasses and forbs along the roadside.

Project FP4: Replace trees throughout Flower Park and Vendome parking lot

Project Type: Tree Replanting
Implementation: Staff

Rationale: Trees have been lost from this area due to age, storm damage, and beaver damage.

Recommendations: Trees should be replanted to maintain the area’s character-defining overhead canopy and balance of sun and shade on the ground plane. A lack of precise historic documentation prohibits the replacement of individual trees. Locations for new trees should be determined by in-field study, and should be planted in areas where the loss of trees has created a hole in the canopy cover and/or where stumps are located, or where a topographic depression indicates a former stump location. A comparison of aerial photographs from 1940 and 1999 will also be helpful in locating areas where canopy cover has decreased over time and trees should be planted in these areas. Trees may also be planted in close proximity to large trees in obvious decline. A rule of thumb might be to plant trees should in areas where canopy cover is less than twenty percent (Figure 11-50). As described in Chapter 6, an analysis of current conditions with the 1936 survey shows a general increase in hackberry and a loss of oak trees. As a result,
replacement trees should be primarily oak species and black walnut. Once new trees are established, future plantings should focus on replacing removed trees in kind.

Project FP5: Rehabilitate vegetation around paths and stairs on hillside north of the comfort station

Project Type: Vegetation Removal
Implementation: Staff
Rationale: Cedars are overgrown and in decline; and densely forested hillsides do not represent the historic conditions (Figures 11-51 and 11-52).

Recommendations: Cedar forest should be thinned to create sunny openings along the upper pathways and to create views to southern portion of Flower Park. Vegetative screening along Highway 7, however should be maintained. Thinning should focus on removals of dead, dying, or very mature cedars with lower dead branches. Female trees, which act as seed sources, should also be targeted for removal. Cedar removal should create large openings which should be further thinned of woody understory. The goal of understory removal should be to encourage growth of prairie grasses and flowering forbs. Small open areas can be mowed early in the spring to help manage and select for warm season grasses. Open areas or islands might also be entirely cleared of understory and planted with seed or plugs of prairie grasses and forbs to help further increase populations of preferred cover species.

Project FP6: Replace large concrete manhole and siphon covers

Project Type: Long-term Improvement
Implementation: Staff
Rationale: Large concrete pads are intrusive in green park environment (Figure 11-53).

Recommendations: When concrete pads deteriorate or new infrastructure is planned, manholes should be redesigned and placed at grade and covered with soil and turf. This treatment is very appropriate for manholes which are not accessed on a regularly scheduled basis, and
other manholes could be made less conspicuous through similar treatments.

Project FP7: Remove reunion posts

Project Type: Improvement
Implementation: Staff

Rationale: Posts (Figure 11-54) are not historic and notifications of reunion locations will be more conveniently handled at the new Visitor Center.

Recommendation: Remove two posts located at the intersection of the perimeter road and Highway 177.

Project FP8: Provide new light standards if park events continue to require nighttime lighting

Project Type: Improvement
Implementation: Staff or Contract

Rationale: Interpretive activities and civic events sometimes use park at night and existing lighting, may be insufficient. Current lighting is provided from a light standard southeast of Lincoln Bridge, on a standard utility fixture, with service provided via a utility pole near the comfort station (Figure 11-55).

Recommendations: New lighting, if deemed necessary, should be functional for events rather than ornamental. Because lighting was never a character-defining feature of the area, fixtures should be unobtrusive and kept to a minimum. Fixtures should also be clearly non-historic, yet compatible with the historic setting. Returning light fixtures to Lincoln Bridge is not recommended. If electrical fixtures are added or changed, the visually intrusive power pole located near the comfort station (Figure 11-55) should be relocated at the same time.

Project FP9: Develop guidelines for use of Flower Park for civic events

Project Type: Planning
Implementation: Staff

Rationale: Flower Park is a desirable location for civic events, but large crowds could negatively impact the landscape and/or increase maintenance through soil compaction, tree damage, litter, etc.

Recommendations: If Flower Park is consistently used for civic events, then guidelines for such use may be useful in reducing conflicts between preservation, maintenance, and use. For example, by determining preferred locations for vendors, food booths, performers and audience groups, it may be possible to then preservation efforts such as tree planting or pool enlargement with coordinate event needs (lighting, electrical supply).
Project FP10: Restore or rehabilitate main entrance piers

Project Type: Repair and Replacement/Planting
Implementation: Staff

Rationale: Although the main entrance was partially disassembled following a number of vehicular collisions (Figure), the existing gateway could be redesigned more in keeping with historic conditions.

Recommendations: While it might be possible to reconstruct the original gateway’s missing, semi-circular walls (Figures 4-42, 4-43, and 5-20), this may require a major reconfiguration to locate the walls and piers at a reasonable distance from the road’s curb line (Figure 11-56). Such a reconfiguration would, in turn, require a relocation of the entry’s associated pathways which connect with the rest of the Flower Park paths. If restoration is feasible, it should be done. If not, the remaining elements might be strengthened with additional ornamental plantings in keeping with the original.

Project BP1: Provide interpretive signage or “exhibit” about bison

Project Type: Interpretation
Implementation: Staff/Partnership

Rationale: The bison are a historic feature of the park and should be interpreted as such to the public.

Recommendations: The bison might be considered to be a “cultural resource” as they are part of the historic setting of the district. An interpretive sign explaining the history of the bison—how they came to the park in the 1910s and how they’ve been managed—as well as the natural history of the species in the area should be located near the bison overlook. The standard Harper Ferry’s double pedestal anodized aluminum frame sign should be used and positioned near the parking terrace.

Project BP2: Preserve bison overlook

Project Type: Masonry Repair
Implementation: Staff/Partnership

Rationale: Portion of the stone wall around the parking area are deteriorating (Figure 11-57).

Recommendations: Stone walls should be repaired to prevent erosion and further deterioration. Repair should follow district-wide masonry guidelines and match existing construction as closely as possible.
Project BP3: Remove stone stockpiles from visible portions of the Buffalo Pasture

Project Type: Improvement
Implementation: Staff

Rationale: Stone stockpiles intrude visually in historic setting.

Recommendations: Stones visible from the bison overlook and Highway 177 should be removed from view, and perhaps located in reorganized lower yard.

Project BP4: Preserve Buffalo Pasture dam and pond

Project Type: Masonry Repair
Implementation: Staff

Rationale: Spillway is currently being undercut (Figure 11-58).

Recommendations: The dam should be inspected and areas being undercut should be repaired.

Project BP5: Preserve Buffalo Pasture fence

Project Type: Repair and Replacement
Implementation: Staff

Rationale: Fence is aging and beginning to deteriorate. Though some areas are still sound, others are rusting and pitting.

Recommendations: Fence should be inspected and assessed for repair. Posts and wire mesh should be replaced in kind as necessary (Figure 11-59).

Project BP6: Reinstate lettering on South Entry piers

Project Type: Replacement/Signage
Implementation: Staff/Contract

Rationale: The historic piers at the south entry (Figure 11-60) look significantly different than they did during the period of significance (Figure 4-62). A new sign has

Figure 11-57. Stone wall at the Buffalo Pasture overlook needs relatively minor repairs.

Figure 11-58. The Buffalo Pasture dam is spalling, cracking and being undercut. Masonry repairs are needed.

Figure 11-59. Buffalo Pasture fence requires painting and minor repairs.
Chapter 11: Treatment Projects

Rationale: The invasion of red cedar into the formerly open grassland of the Buffalo Pasture is a result of fire suppression in the district. Cedar growth has shaded out forage plants and reduced the ability of the land to support the bison. If no action is taken, most preferred native grasses will continue to be gradually replaced by species better adapted to increased shade, soil compaction, and cooler temperatures. In general, the condition of the pasture will decline and the remaining grasslands will convert to additional red-cedar woodland.

Recommendations: Much of the Buffalo Pasture should be cleared of woody vegetation through a combination of prescribed burn and mechanical removal as described above. Cedar removal will improve pasturage for bison and open views from the perimeter road and the Buffalo Pasture Trail into the pasture. The extent of proposed clearance is shown on Figure 11-62, which can be used as a reference for management, though localized field conditions should also be taken into consideration. In general, clearance is proposed for the higher and flatter elevations of the pasture. Existing woodland should be maintained in the ravines, where woodlands were historically. Historic dump sites should also be maintained in woodland cover, to protect their potential archeological values. In zones adjacent to the woodlands, a transitional zone, providing protective cover for livestock and wildlife, should be created by selective mechanical removal of female red cedar trees.

Areas that have been cleared and burned may naturally return to grassland, depending on the seed bank retained in the soil. Revegetation might also be accomplished by prairie restoration, with the area reseeded with native grasses and mulched with prairie hay. Local experts should be contacted to determine the best seed mixes, prairie establishment techniques, and seeding times for the area. Seeds might be collected locally, perhaps from within the CNRA, or purchased from a regional supplier; efforts should be made to retain local species and genotypes, which will be better adapted to local conditions. The park currently contracts with NRCS plant material center, Knox City Texas, to provide seed grown from local genetic pool. According to county soil data, most of the Buffalo Pasture soils consist of the Rayford cobbly loam soil type. The rangeland for this soil is classified as shallow prairie. The plant community for this soil would fall into a category of a tall or mixed prairie, with an approximate species composition of 92% grasses, 5% forbs and 3% woody plants. Preferred plants

Recommendations: An entry setting reinforcing the historic character of the area might be created at the south entry. This could be done by returning the piers to their historic appearance (Figure 11-61). Strap iron lettering that matches the original (Figure 11-61) should be replaced on the piers, and the contemporary CNRA sign relocated to complement the piers. This will aid in identifying the area as the “Platt Historic District.”

Project BP7: Rehabilitate Buffalo Pasture

Vegetation

Project Type: Vegetation Removal and Replacement

Implementation: Staff
for livestock forage production include: little bluestem, Indian grass, big bluestem, switchgrass, sideoats grama, hairy grama, prairie scurf pea, black samson, perennial sunflower and skunk bush. Additional species might also include wild rye, tickclover, perennial lespedeza, ashy sunflower, clasping-leaved coneflower, purple coneflower, Indian blanket, dotted gayfeather, purple prairie clover, prairie coneflower, and black-eyed susan.

It will take a minimum of approximately 2-3 years to fully establish a prairie planting in formerly wooded areas. During this time, spring mowing or burning may be necessary to control cool season grasses; again, local experts should be contacted to determine the best management practices for the region. Once grassland has been established, ongoing management may include monitoring of the restored prairie and periodic prescribed burns to prevent re-invasion by woody species. In addition, a grazing management strategy should be developed to prevent overgrazing of the pasture and to ensure the continuing health of the bison herd.

SUPERINTENDENT’S RESIDENCE: PRESERVATION TREATMENT

The Superintendent’s residence landscape should be preserved. Restoring this area is not recommended, since historic documentation of as-built landscape conditions is limited. In addition, although the landscape is significant, it has no visitor use, so priority of treatment is relatively low. No significant elements will be reconstructed or restored; rather, existing features will be repaired and missing historic fabric replaced where appropriate. The treatment projects described below are depicted on Drawing 28.

Project SR1: Preserve Superintendent’s Residence and Garage

Project Type: Repair and Replacement

Implementation: Contract
Chapter 11: Treatment Projects

Rationale: Residence exhibits typical wear over time.

Recommendations: Chimney masonry should be repaired, building should be re-roofed, and other work undertaken as needed.

Project SR2: Replace windows and doors on residence and garage

Project Type: Long-term Replacement
Implementation: Staff

Rationale: Modern windows, doors, and other exterior features reduce historic appearance and feeling of area (Figure 11-63).

Recommendations: Future work on the building’s exterior should strive to recreate the building’s historic appearance (Figures 4-57, 4-59, 5-28, etc.). When window and door replacement becomes necessary over the long term, new windows and doors should be chosen to match the fenestration and appearance of the originals, to return the historic appearance of the building.

Project SR3: Preserve Superintendent’s Residence landscape

Project Type: Long-term Improvement
Implementation: Staff

Rationale: Historic conditions at the end of the period of significance are poorly documented, so landscape treatment should focus on preserving existing features.

Recommendations: Although a planting plan for the Superintendent’s residence exists (Figure 4-56), photographs of the completed area show that these plans were not fully implemented as designed. Documentation of the as-built landscape are, however, limited, making any sort of restoration impossible.

However, historic photographs indicate evidence of foundation plantings, now missing, around the house. Based on historic photographs, these should be reinstated to ground the house in its landscape. Other extant trees, shrubs and features should be preserved through pruning and fertilization. Weeds on the two flagstone patios should be removed by weeding or spraying; the masonry of these features should be repaired as needed. The historic stone curb around the driveway seems to be extant, though hidden by asphalt. This could be reinstated. In contrast, although historic photos from the 1930s show a driveway at the rear of the building, this driveway should not be reinstated as it was never intended to be permanent. Non-historic features such as the chain link fence (Figure 11-64) should be removed if feasible.
PRAIRIE UPLANDS: REHABILITATION TREATMENT

As described in Chapter 7, the Prairie Uplands demonstrate somewhat diminished integrity due to vegetative changes. To return this area to its historic condition, a significant level of vegetative rehabilitation—removing cedar and woody species and replanting prairie grasses and forbs—will be required. This level of activity moves the treatment for this area more toward an overall rehabilitation rather than simple preservation.

Project PU1: Rehabilitate Vegetation in Prairie Uplands

Project Type: Vegetation Removal and Replacement
Implementation: Staff

Rationale: Like the Buffalo Pasture, open grassland in the Upland Prairie has been taken over by invasive cedars, in part due to fire suppression in the district. Red cedar has enclosed open spaces, creating conditions which were not present during historic period (Figure 11-65).

Recommendations: Like the Buffalo Pasture, the Prairie Uplands should be cleared of woody vegetation through a combination of prescribed burn and manual removal. The uplands east of Highway 177 should be cleared of large areas of cedar, as shown in Figure 11-66. This figure shows woodlands maintained along the area's streams and ravines, and maintained in areas where woodlands existed historically, as determined from an analysis of the 1940 aerial photograph. In addition, some woodland should be maintained as a screen along the urban interface near Veteran's Hospital and area residences. However, woodland along the interface should be thinned, with female, over-mature and masses of young cedars (less than 3”, as described in the 2001 “Hazard Fuels Assessment”) removed from the area, as per urban interface guidelines listed above.

Areas that have been cleared and burned may naturally return to grassland, depending on the seed bank retained in the soil. Revegetation might also be accomplished by prairie restoration, with the area reseeded with native grasses and mulched with prairie hay. Local experts should be contacted to determine the best seed mixes, prairie establishment techniques, and seeding times for the area. Seeds might be collected locally, perhaps from within the CNRA, or grown by NRCS plant material center; efforts should be made to retain local species and genotypes, which will be better adapted to local conditions.

It will take a minimum of approximately 2-3 years to fully establish a prairie planting in formerly wooded areas. During this time, spring mowing or burning may be necessary to control cool season grasses; again, local experts should be contacted to determine the best management practices for the region. Once grassland has been established, ongoing management may include monitoring of the restored prairie and periodic prescribed burns to prevent re-invasion by woody species. Because of the smaller extent of grassland in this area, periodic burning might be replaced by periodic mowing as a means to discourage woody plants and cool-season exotic grasses.

Project PU2: Preserve former golf course dams

Project Type: Masonry Repair
Implementation: Staff

Rationale: These three structures pre-date the 1940s and are currently in relatively poor condition.

Recommendations: The upper two structures are in worse condition than the lower structure, although none originally exhibited high levels of workmanship. The remains of the dams should be retained and repaired according to district-wide masonry guidelines (Chapter 9). Positive drainage should be maintained around the
Projects proposed for Pavilion Springs include limited ADA access upgrading and repairs to plumbing for the spring. These projects are in keeping with a preservation treatment for the area, and are depicted on Drawing 29.

PAVILION SPRINGS: PRESERVATION TREATMENT

Project PS1: Provide ADA access to edge of building

Project Type: Access

Implementation: Staff

Rationale: Because of the sunken floor of the pavilion, providing ADA access to the Big Tom Spring would require major re-engineering of the building’s floor and entries, negatively impacting the historic structure. As an alternative, a graded ramp could be provided to the

Project PU3: Connect Veteran’s Trail with existing one-way trail to perimeter road to create loop trail

Project Type: Long-term Improvement

Implementation: Staff

Rationale: Trail extension could improve or extend visitor experience

Recommendations: Veteran’s Trail is a pleasant experience through prairie uplands and cedar groves. The experience could be extended by curving the trail around to meet an existing trail that dead-ends at the perimeter road. Alignment of this trail linkage is indicated on Drawing 28.

structure and vegetation around the dams should be cleared.

Figure 11-66. Proposed grassland rehabilitation for the Prairie Uplands area, to return area to more visually open historic and more ecologically healthy conditions. See Chapter 10 and Drawing 35 for additional information.
western edge of the building, providing wheelchair users with at least a visual experience of the spring.

Recommendations: A ramp-like path with a slope of five percent or less should be graded from the parking lot around the south side of the steps to the level area at the building’s south entrance (Figure 11-67). A gap in the boulders lining the edge of the parking lot may need to be created, but many of these are non-historic, placed at grade, and easy to move. The ramp should be aligned to clarify the pavilion’s connection to Veteran’s Trail to the south. The path should also be surfaced in compacted gravel fines to match other areas of the district and should be a minimum of three feet wide according to ADA access recommendations.

Project PS2: Replace or repair drain line on north side of pavilion

Project Type: Repair and Replacement
Implementation: Staff

Rationale: The drain line from the pavilion edge to the stone and step structure to the north is clogged, apparently by tree roots (Figure 11-68).

Recommendations: This line should be cleaned and, if necessary, replaced with PVC lines.

Project PS3: Rehabilitate area vegetation

Project Type: Replanting
Implementation: Staff

Rationale: Trees and other vegetation have been lost due to age, road repair, and storm damage. The landscape around the pavilion has lost some of its shaded quality.

Recommendations: A limited amount of tree replacement should occur throughout the area. Trees should be planted at extant stumps or wherever a large (40 feet wide) gap occurs in the overhead canopy. Replacement species should be oak, ash, and elm. Oak trees lost at the corners of the pavilion should be replaced in kind in locations as close to the originals as possible (Figure 11-69). It may be necessary to minimally grind extant stumps and delay replacement until decay allows new holes to be dug. Trees may also need to be offset from their original locations by two to four feet unless decay allows placement over old locations. Virginia creeper should also be re-established to grow on the guard rail along Highway 177 just west of the pavilion.

Project PS4: Preserve grade stabilization structure to the north of pavilion

Project Type: Maintenance
Implementation: Staff

Rationale: This structure, hidden in undergrowth, has been neglected over time, but may be helpful in directing and controlling run-off during storm events.
Recommendations: The swale leading to and from the structure should be cleared of vegetation and debris removed.

Project PS5: Remove information kiosk in former elk pasture and current picnic area south of Lincoln Bridge

Project Type: Improvement
Implementation: Staff

Rationale: This structure (Figure 11-70) does not date to the period of significance and is no longer used.

Recommendations: Remove structure and any foundation; return area to grass or gravel as appropriate.

Project PS6: Redirect water seepage at Highway 177 underpass, west and east walls

Project Type: Masonry repair
Implementation: Staff or Partnership with Historic Preservation Training Center/

Rationale: Water seeping through wall is damaging masonry and makes walking surface slippery (Figure 11-71).

Recommendations: Although it is impossible to staunch the flow of spring water, the structures in this area would benefit from channeling this moisture away from the wall. This might be accomplished by chiseling out key joints on and at the bottom of the wall to channel the water away. However, this must be carefully done, so as to not damage surrounding masonry.

HILLSIDE SPRINGS: PRESERVATION TREATMENT

No major changes are needed or proposed for Hillside Springs; hence, preservation is an appropriate treatment. Most of the projects proposed center around cleaning and repairing the exterior and the plumbing of the Hillside Springs enclosure. Water at this site is not potable due to bacterial contamination. Proposed repairs to the spring

Figure 11-69. Trees lost near the building, as demonstrated by this trunk, and trees in the open landscape immediately south of the pavilion should be replanted to retain the area’s shady setting.

Figure 11-70. No longer used, the non-historic information kiosk north of Pavilion Springs should be removed.

Figure 11-71. Seepage from springs behind underpass wall should be redirected via minor masonry repairs.
Algae growth is accelerated by the shade and continually damp conditions. Enlarging the drainage channels at the base of the wall may help water to more efficiently drain away. Clearing vegetation (see Project HS6) will also allow more sunlight to reach and dry out the area.

Project HS2: Repair bubblers and piping

Project Type: Repair and replacement
Implementation: Staff

Rationale: Algae, bacteria, and mineral accretion in the basin and runnel are unsightly and may be causing the decrease in bubbler flow and height that has occurred over the years (Figure 11-73).

Recommendations: Pipes leading to the bubblers should be reamed and cleaned out if possible; mineral and bacterial accretions may be clogging flow. The corrugated pipe located in the area located just north of the terrace should also be investigated to see if this outlet is in some way reducing bubbler flow. The current holding tank and piping should also be inspected and assessed. If pipes are in poor condition, they should either be slip-lined with nylon or polypropylene or replaced with PVC or stainless steel. Re-piping may require new connections to the spring’s holding tank or excavation behind the masonry wall. This project might be done in conjunction with Project HS3 below.
Project HS3: Repair or replace rusting metal lid of spring container

Project Type: Repair and replacement
Implementation: Staff

Rationale: Lid is rusting and in poor condition that could lead to contamination or debris entering spring and clogging pipes (Figure 11-74). It is not clear if the holes in the lid are contributing to bacterial contamination of the spring.

Recommendations: A new lid matching the old in size and shape should be fabricated. If possible, a less reactive material such as stainless steel should be used. A steel cover should be hidden from view by planting ground cover or prairie grasses in the area.

Project HS4: Replace signs

Project Type: Repair and replacement
Implementation: Staff

Rationale: Hillside Spring and “Water Unsafe for Drinking” signs did not exist during the period of significance.

Recommendations: The Hillside Springs sign should be replaced with a low post sign (Figure 11-75) duplicating the original sign. The unsafe water sign should be removed and replaced with a smaller sign with a similar warning message in a new location. The low location of the bubblers and lack of true drinking fountain also already discourage some visitors from drinking the water. Therefore, a new warning sign does not need to be so prominent. It might be located on the flat rim of the basin, or on the wall next to the arch.

Project HS5: Repair split stone on entry wall

Project Type: Masonry Repair
Implementation: Staff

Rationale: Split stone (Figure 11-76) should be fixed before it falls off and becomes damaged or lost.

Recommendations: Follow district-wide guidelines for masonry repair.
Project HS6: Rehabilitate area vegetation

Project Type: Vegetation removal and replacement
Implementation: Staff

Rationale: Historic photographs reveal this area was more open and sunny. Tree removal would help reduce shade and algae growth on the structures and would also make the spring more apparent to visitors.

Recommendations: This project should be coordinated with similar work around the Leeper House (see Project AH3). The dense cedar forest to the north, south and west of the spring should be thinned by mechanical means. Dead and dying vegetation, especially overly mature cedars, should be removed. A few younger cedars should be retained for regrowth and to maintain some enclosure in the area. If little regeneration of cedar is seen in the understory, additional male cedar may be replanted. Dead and dense vegetation immediately around the spring should also be removed, to recreate the more open, grassy surrounds around the structure, particularly to its south (Figure 4-74).

With the thinning of the forest, understory forbs and grasses should be enhanced by an increase of sunlight. This regrowth should be monitored and if necessary, enhanced by planting. Existing understory forbs and grasses might be interplanted with prairie plant plugs. Larger cleared areas might also be reseeded with a mixture of native grasses and forbs. Soils north of the Buffalo Pasture are of the Stephenville Darnell type, and as a result classified as sandy savannah. The area’s potential plant community is a tall or mixed prairie with an idealized composition of 87% grasses, 3% forbs and 10% woody plants. Preferred plants for this area include: big bluestem, little bluestem, Indian grass, switch grass, wild rye, tick clover, perennial lespedeza, and ashy sunflower. Fallen trees and dead vegetation should also be removed from the stream leading from the fountain. Water tolerant or marsh species might be planted in this area to improve the appearance of the understory and to reduce erosion.

Project HS7: Replace trees in parking island

Project Type: Vegetation Replacement
Implementation: Staff

Rationale: Trees historically were planted in the island for shade.

Recommendations: Based on historic photos, replace two trees in parking island (Figure 11-77). These trees appear to have been elms and should be replaced with either cedar elm or winged elm. Additional trees in this parking area will be particularly helpful if the lot is used to accommodate training center users.
EMPLOYEE RESIDENCE: PRESERVATION TREATMENT

As noted in Chapter 7, the integrity of the Employee Residence area is somewhat lower than in other areas of the district, due to structure losses that affect its setting. However, many of the features located immediately around the structure remain intact. A preservation treatment is proposed to retain these extant elements. All treatment projects are indicated on Drawing 29.

Project: ER1: Preserve stone seats and pond

Project Type: Masonry repair and Vegetation Removal
Implementation: Staff/Partnership

Rationale: Stone seats and pond have suffered from lack of maintenance over time (Figure 11-79).

Recommendations: This out-of-the-way area is easily forgotten during routine maintenance. Woody vegetation should be cleared from around area to create an open setting around the seats, table, and pond and vines cleared off the structures. Grass should be established around the features and then periodically mowed. The structures should be checked to ensure that their masonry is still in good condition and repointed as necessary. The pond, which collects rainwater, should periodically be drained and cleaned of algae.

Project ER2: Replace missing stepping stones

Project Type: Repair and replacement
Implementation: Staff

Rationale: Steps and stepping stones between the house and the seating area have been lost over time.

Recommendations: Steps should be replaced with stones that match extant stones in shape, color, material, size, and spacing. Missing stones might be buried under duff or moved slightly from their original locations, so the area should be searched prior to locating new stones.
Project ER3: Replace residence windows and doors

Project Type: Long-term replacement
Implementation: Staff or Contract

Rationale: Modern windows and doors reduce historic appearance and feeling of area.

Recommendations: Future work on the building exterior should strive to recreate the building’s historic appearance. When window replacement becomes necessary over the long term, new windows and doors should be chosen to match the fenestration and appearance of the originals, to return the historic appearance of the building.

ADMINISTRATION & HEADQUARTERS:
Preservation Treatment

Preservation is also an appropriate treatment for the Administration and Headquarters landscape. Although some change has occurred to the area, proposed alterations to the Leeper House for its conversion from offices to training center will provide opportunities to revise the landscape in a manner more in keeping with the conditions at the end of the period of significance. Individual feature treatments otherwise emphasize repair and replacement. Treatment projects for this area are also depicted on Drawing 29.

Project AH1: Rehabilitate parking, pedestrian access and ADA access at the Leeper House

Project Type: New Construction
Implementation: Contract, if part of Leeper House Rehabilitation

Rationale: No longer used as park headquarters, the Leeper House will become a training center, with altered needs for access and parking.

Recommendations: New uses of and alterations to the building will require changes to the surrounding access. In particular, pedestrian access on the south side of the Leeper House should be simplified and reconfigured. The current parking area along the maintenance area access road could be reduced in size by locating training center parking at the Hillside Springs parking area. In addition, removal of visitor parking from the access road area could reduce potential conflicts with maintenance vehicles. ADA access, however, would need to be retained from the existing parking area due to steep grades on the north side of the Leeper House. As a part of these changes, the steps from Hillside Springs to the Leeper House should also be stabilized (see Project AH2).

Project AH2: Repair steps from Hillside Springs

Project Type: Repair
Implementation: Staff

Rationale: Loss of granite fines on surface on steps requires periodic replacement, especially if steps receive increased use if parking is relocated to Hillside Springs (Figure 11-80).

Recommendations: These steps act as a drainage way during strong rainfall, and to prevent erosion, areas of decomposed granite between stone treads should be replenished and stabilized as per district-wide guidelines. However, in some areas, where erosion is severe and repetitive, it may be necessary to harden the surfaces by paving areas between treads with dry-laid flagstone. It may also be possible to redirect drainage around the steps in some areas by regrading. This project might be undertaken in conjunction with vegetation thinning as described in Project AH3. See guidelines in Chapter 9 for additional information on maintaining trail surfaces.
Project AH3: Rehabilitate vegetation around Leeper House

Project Type: Vegetation Removal
Implementation: Staff

Rationale: Cedars planted by the CCC crews in this area in the 1930s have reached maturity, are now in decline. The dense thickets these cedars have created around the building does not reflect historic conditions (Figure 11-81), which were more open and less enclosed.

Recommendations: The dense forest around the building should be thinned. Dead trees and overly mature trees should be removed. Some younger cedars should be retained to maintain a lesser degree of enclosure; these young cedars should be allowed to regrow. If no young cedars are present, male cedars could also be replanted.

With the thinning of the forest, understory forbs and grasses should be enhanced by an increase of sunlight. This regrowth should be monitored and if necessary, enhanced by replantings. Forbs and grasses might be reseeded in some areas or existing areas might be interplanted with prairie plant plugs. This project should be coordinated with similar vegetative rehabilitation in the Hillside Springs area (see description of Project HS6).

Project AH4: Camouflage satellite dish

Project Type: Improvement
Implementation: Staff

Rationale: The satellite dish is a modern intrusion into the area's historic setting (Figure 11-82)

Recommendations: Although this dish might be relocated sometime in the future, to reduce its visual impact now, the structure should be painted NPS brown, using water based Latex Paint only. In addition, it could be screened by planting or allowing woody vegetation to grow out around both sides, while retaining its central signal corridor.
Project AH5: Replace foundation plantings

Project Type: Vegetation Replanting
Implementation: Staff

Rationale: Plantings at the base of the building appear haphazard and overgrown (Figure 11-83).

Recommendations: Proposed new uses of the Leeper House will impact access and the landscape around the building, providing an opportunity for replanting foundation plantings and for providing shade on the building’s west side. Varied foundation plantings around the Leeper House are seen in historic photographs, but there is no good record of the appearance of such plantings at the end of the period of significance. Therefore, new plantings should be consistent with historic character and species seen in photographs, but should not duplicate any specific view or planting. Foundation plant species seen in historic photographs include iris, redbud, and honeysuckle.

In addition, if paths and parking areas are changed to make the building more ADA accessible, the construction activities (such as staging and pouring concrete) may affect the lawn surrounding the building. This may provide an opportunity to reconsider the use of lawn in this area. Existing turf might be replaced with a shortgrass prairie mix that would require less mowing and which would transition to the proposed vegetative changes at Hillside Springs. In fact, this overall project might be undertaken in conjunction with Projects AH3 and Project HS6.

MAINTENANCE AREA: PRESERVATION TREATMENT

Despite many changes - primarily new buildings - in the maintenance area, the central quad remains extant with high integrity. The projects proposed below reflect a treatment of preservation of existing buildings and elements. However, were the maintenance area to be relocated — a concept proposed in the General Management Plan of 1988 — then a treatment of rehabilitation to accommodate a new use for the area might need to be considered. Treatment projects for the Maintenance Area are depicted on Drawing 29.

Project M1: Preserve buildings and area with active uses

Project Type: Long term Maintenance
Implementation: Varies

Rationale: The central quadrangle is a unique set of buildings with high integrity and should be preserved.

Recommendations: The maintenance area, which services the entire 9,000-acre CNRA, exhibits far more, and more intensive use, than it did during the period of significance. As a result, there have been continuing plans for development of a new or revised maintenance area. Regardless of the strategy chosen, it is important to keep the extant historic maintenance structures in some use, since abandonment is usually a precursor to extensive deterioration and demolition for historic buildings. This should be avoided at all costs.

Project M2: Reconfigure area around removal of Building 108

Project Type: Masonry repair and Improvement
Implementation: Partnership/Staff

Rationale: Building 108 was a temporary, non-historic structure.

Recommendations: With the removal of Building 108, the gap in the historic wall around the maintenance quadrangle can be repaired, and the security fence replaced atop the fence, as was true historically. A gravel pad and picnic table located outside the wall and fence, on the former location of Building 108, next to the crew room, would be acceptable since it is not a permanent feature and as such would not negatively impact the historic setting.

Project M3: Regrade area around Residence 6 and associated garages

Project Type: Improvement
Implementation: Staff

Rationale: The area around Residence 6 exhibits poor drainage (Figure 11-84) and silt accumulates at the base of the buildings.
Chapter 11: Treatment Projects

Recommendations: Swales around the building should be reshaped (or created) to move water away from buildings and walkways. Existing vegetation should be preserved.

Project M4: Relocate horses

Project Type: Improvement
Implementation: Staff
Rationale: Horses were not part of the setting of the Maintenance area (though mules seem to have been located here until 1946).

Recommendations: Horses should be moved to a location outside, but nearby the district, if possible.

CENTRAL CAMPGROUND: PRESERVATION TREATMENT

As discussed in Chapter 7, Central Campground's integrity is moderately high. However, documentation of this area is somewhat limited and restoring this area to a specific date is not recommended. Rather, a preservation treatment is proposed to retain extant historic character and features and to recapture reversible character losses through feature repair and vegetation management. In addition, some minimal visual improvements, such as removal of extra signage, are also proposed. Due to steep slopes at critical points (for example, near the comfort station) major changes to improve ADA access are not recommended. Rather, the provision of an ADA-accessible camping experience should be provided at either Rock Creek or Cold Springs Campground. The projects listed below are highlighted on Drawing 30.

Project CC1: Remove “no parking” sign and hanging sign at comfort station

Project Type: Improvement
Implementation: Staff
Rationale: Traffic sign and hanging sign (Figure 11-85) did not exist historically.

Recommendations: Replace “no parking” sign with historic sign according to district-wide guidelines. Alternatively, boulders could be placed around base of structure to discourage parking right in front of building. The functions served by the hanging signs could be accommodated by the small kiosk at the entry of the campground.

Project CC2: Reinstate historic link between Central Campground and Flower Park

Project Type: Repair and Replacement
Implementation: Partnership with local highway commission
Rationale: Reinstating historic crossing will improve access to park and visitor center.

Recommendations: A trail crossing across Route 177 (Buckhorn Road) should be reinstated at its historic location midway between Broadway Avenue and the perimeter road. This crossing will connect Central Campground with the Flower Park path system and thence to the Visitor Center. The crossing should be indicated with curb cuts, pavement striping, and pedestrian signage and/or flashers as per state highway standards to promote safety and pedestrian visibility.

Figure 11-84. Drainage around Residence 6 should be improved by creating swales to drain water away from the building and its garage and carport.
Project CC3: Replace entry gate

Project Type: Improvement
Implementation: Staff

Rationale: Existing steel gate (Figure 11-86) is unsightly.

Recommendations: Replace with new gate as per district-wide guidelines.

Project CC4: Replant trees in camping areas

Project Type: Vegetation Replacement
Implementation: Staff

Rationale: Loss of trees due to age and weather has reduced shade in this campground (Figure 11-87).

Recommendations: Trees should be planted in the open areas encompassed by the park roads. Although overall numbers of trees have not decreased here, the area’s species composition has changed, and shade is lacking. New trees should primarily be oaks and redbuds, and they should be planted in areas between designated campsites to help develop sense of separation between sites. However, this will take some time to develop, since tree plantings might be considered a longer term “investment.” To facilitate growth, trees should be good-sized (minimum two-inch caliper) and should be protected after planting to prevent abuse by campers. A rustic wood structure or stakes and guy wires may help prevent soil compaction at tree bases and damage to young trunks. Adding more light hangers may help prevent new trees from damage by campers.

Understory growth should not be encouraged in the grassy areas of this campground, since this area consistently maintained a park-like quality historically.

Project CC5: Thin cedars along north edge of campground at urban interface

Project Type: Vegetation Removal
Implementation: Staff

Rationale: Cedars were planted during the period of significance as boundary screens, but have become dense thickets of vegetation. Though these plantings...
are historic, they may increase the risk of fire damage in urban areas and should be thinned.

Recommendations: Trees along the full northern edge of the campground should be thinned to reduce fire risk. Thinning should focus on removals of female cedar trees, overly mature trees with dead branches, and those less than three inches (see Chapter 10 for more information on fire risk reduction). In addition, dense stands of deciduous understory, and dead or diseased trees should also be removed. Care should be taken to maintain some visual screening for privacy along boundaries where private homes or structures are within 200 feet or less of the park boundary. However, privacy screening should be maintained in areas where campsites or homes directly abut the park boundary.

Project CC6: Replant trees in Panther Falls area

Project Type: Vegetation Replacement
Implementation: Staff

Rationale: Loss of trees due to age and weather has reduced shade in this picnic area (Figure 11-88).

Recommendations: Trees should be replanted to maintain the area’s character-defining overhead canopy and balance of sun and shade on the ground plane. A lack of precise historic documentation prohibits the replacement of individual trees. Therefore, locations for new trees should be determined by in-field study. Trees should be planted in areas where open canopy spans more than 30 feet and/or where stumps are located, or where a topographic depression indicates a former stump location. A comparison of aerial photographs from 1940 and 1999 will also be helpful in locating areas where canopy cover has decreased over time and trees should be planted in these areas. Trees may also be planted in close proximity to large trees in obvious decline. Trees should be good-sized (minimum two-inch caliper) and should be protected after planting to prevent abuse by visitors.

Project CC7: Repair edge of pool at Panther Falls

Project Type: Repair/Replacement
Implementation: Staff

Rationale: Edge of pool is eroding (Figure 11-89).

Recommendations: Edge of pool should be repaired in a manner similar to that recommended for Flower Park stream and pool edges, above. Additional fill of sand or silt, possibly from the Black Sulphur area, should be brought in to fortify eroding areas near the boulder edges. Boulders should be replaced as needed to form a more continuous edge.

Cold Springs Campground has high integrity, with most elements from the period of significance intact. Therefore, the treatment projects described below together comprise
an overall treatment of preservation, with an intent of retaining, repairing, and replacing all historic features in kind. Minor changes are proposed to improve campground drainage and promote accessible camping. These treatment projects are depicted on Drawing 31.

Project CS1: Provide New Use for Checking Station

Project Type: Investigation/Interpretation
Implementation: Staff

Rationale: The checking station is a wonderful example of CCC architecture that should be used and if possible made available to the public (Figure 11-90).

Recommendations: This building is in fairly good shape. Some minor regrading should be done to improve drainage away from building. A few shade trees should be replanted on the west side of the building, if they do not interfere with traffic. The hanging interpretive sign is not historic and should be removed. Currently used for storage, this building could become an office for the campground host with interpretive or other park information. Or, another use might be found for it.

Project CS2: Improve ADA access at comfort stations

Project Type: Access
Implementation: Staff

Rationale: Though signed as accessible, comfort stations still prevent some barriers to easy access.

Recommendations: Simple improvements can be done with sensitivity to the historic structure. Paving at the building entries should be repaired to make smooth, level approaches. Door hinges should be offset to increase door width to maximum and partitions and fixtures changed inside to meet ADA guidelines.

Project CS3: Identify, redesign and construct ADA-accessible campsites

Project Type: Access
Implementation: Staff

Rationale: All visitors should be accommodated in the Cold Springs Campground, one of the most popular camping sites in the park. Accessibility guidelines indicate that for every 50 to 75 campsites, 4 accessible campsites should be provided.

Recommendations: Proposed accessible campsites are recommended on relatively level sites located near the comfort stations (Figure 11-91). Alternatively, two sites may be located further from the rest rooms, along an accessible (less than five percent slope) route.

As discussed in Chapter 9, campsites should have a firm and stable surface (such as compacted granite fines) that can accommodate tent stakes. The site should slope no more than 1:50 in any direction, unless necessary for
culverts, some of which are almost buried, should be excavated where necessary, cleaned out and made functional. Drainage ways leading to these culverts are in many cases filled in with silt and/or compacted, since some currently serve as volunteer trails. These drainage ways should be restored as vegetated swales with shrubs, groundcovers, and mulch to facilitate infiltration. Recent research on “rain gardens” to manage stormwater in suburban areas may provide help on reconstructing these drainage ways appropriately. Revegetation, however, will be difficult, due to the high use of the campground. As a result, the project should probably be carefully timed with the camping season and done in sections over a number of years. Temporary barriers to change pedestrian patterns and habits may also be necessary, as may be closing sites during the camping season, to allow for plant growth. Visitor education will also be important in preventing the public from ignoring barriers and trampling plant. For example, any barriers should be accompanied by interpretive signage explaining why the work is being done.

Project CS5: Maintain swale to north of campground

Project Type: Annual Maintenance
Implementation: Staff
Rationale: The swale (Figure 11-93) and dam diversion should be periodically maintained to promote positive drainage.
Recommendations: Current practices of clearing this swale with a backhoe on a regular basis should be continued.

Project CS6: Reduce number of volunteer paths and improve privacy between sites

Project Type: Improvement, Planting
Implementation: Staff
Rationale: There are significantly more paths in the campground than existed historically; these paths compact soils and exacerbate drainage problems. They also reduce privacy between sites (Figure 11-94).
Recommendations: This project should be undertaken in conjunction with Project CS4. New paths have generally been created by visitors to link sites to each other and to the comfort stations. Eliminating all of these new paths will be impossible, and reductions should focus on the smallest, least-used paths and those which are located in drainage ways. These paths should be revegetated with shrubs and trees, as should areas where campsites are close together and have no visual boundaries. Temporary barriers and interpretive signs should be provided to retrain visitors and restrict their use of repaired areas.

Project CS7: Anchor boulders used to delineate sites

Project Type: Improvement
Implementation: Staff

Rationale: Boulders which are not anchored are moved by visitors to accommodate their vehicles and perceived needs.

Recommendations: See district-wide guidelines. Boulders between sites should be partially buried rather than simply placed at grade. Since they are probably about 700 to 1,000 boulders within the campsite, boulders in high use areas should be embedded first. The smallest stones should be replaced with larger stones, since burial will render the small ones ineffective.

Project CS8: Provide site markers with occupancy indicators

Project Type: Improvement
Implementation: Staff

Rationale: Existing site markers are difficult to see and do not have means of indicating whether site is occupied.

Recommendations: Historic markers were similar to extant bollard-like markers (Figure 11-95). Any new marker should be in keeping with the historic style, but should have a means of indicating occupancy. This might be a red metal flag attached to the back of the bollard. Like a mailbox flag, the bollard flag could be raised when the site is occupied or reserved. To reduce overcrowding on campsites, the two tent and ten-person limit per campsite currently in the Superintendent’s Compendium should be enforced.

Project CS9: Preserve wood and garbage can enclosures

Project Type: Repair
Implementation: Staff

Rationale: Wood and garbage can enclosures (Figure 11-96) are historic structures.

Recommendations: Although raccoon-proofing garbage is a high priority, locating the large, brown garbage cans within these enclosures is not recommended. Rather, continuing the use of standard garbage cans with lids is
preferred. It may be possible to use a strap or some other technique to keep lids on cans, though visitor use of such straps is admittedly not predictable.

Project CS10: Repair large concrete tables at group sites

Project Type: Repair and Replacement
Implementation: Staff

Rationale: Although the date of construction of these two tables, one 20 feet long, one 36 feet long, is unknown, they are popular structures and should be preserved.

Recommendations: The tables' large wood seats and surfaces are rotting and their concrete is deteriorating (Figure 11-97). Wood planks are three and one-half inches thick, and should be replaced in kind with large cedar timbers that might be locally milled. The surface finish should match the original. Deteriorating concrete should be patched, with care taken to match existing concrete as closely as possible.

Project CS11: Thin cedars along north edge of campground at urban interface

Project Type: Vegetation Removal
Implementation: Staff

Rationale: Cedars planted during the period of significance as boundary screens have become dense thickets. Though they are historic, they may increase the risk of fire damage in urban areas and should be thinned.

Recommendations: Trees along the full northern edge of the campground should be thinned to reduce fire risk. Thinning should focus on removals of female cedar trees, overly mature trees with dead branches, and those less than three inches. In addition, dense stands of deciduous understory, and dead or diseased trees should also be removed. Care should be taken to maintain some visual screening for privacy along boundaries where private homes or structures are within 200 feet or less of the park boundary. However, privacy screening should be maintained in areas where campsites or homes directly abut the park boundary.
Project CS12: Repair Cold Springs Crossing

Project Type: Masonry Repair and Construction
Implementation: Staff/Partnership

Rationale: Current stepping-stones and trail connection are incomplete and difficult to use (Figure 11-98).

Recommendations: Although no historic documentation of this crossing has been located, it is important in connecting Cold Springs Campground to the Buffalo and Antelope Springs Trail. Extant stones should be re-aligned and new stones placed to create a continuous, easily used stone trail. Extant stepping-stones in the Buffalo and Antelope Springs area should be used as models for construction of this crossing. Stones should be well-anchored, slightly raised above normal flows, and shaped and configured to allow flood water to flow around them.

Bank erosion on both ends of the stepping-stones is also a problem. A permanent set of stone steps on both sides of the creek should be constructed; these might either be a simple set of large, dry-laid boulders or a more extensive masonry structure in keeping with historic steps elsewhere in the district. Slopes around the steps should be re-vegetated with native bank vegetation.

Project CS13: Improve water hydrants

Project Type: Improvement
Implementation: Staff

Rationale: Hydrants flood during high use; gray water management should be improved.

Recommendations: See district-wide guidelines.

Little Niagara and Travertine Island is a difficult area from a preservation standpoint. It is one of the highest use areas of the district, and receives a significant amount of wear on its structures and ground plane. The area floods easily and lost numerous mature trees during the recent ice storm. However, it is also one of the sites with the poorest visual documentation, both at the level of the overall landscape and at the feature level. Thus, while it has a compelling history of use, its appearance historically cannot be well determined. Preservation is therefore an appropriate treatment for this area since it will keep conditions as they currently are, yet will allow for upgrades and improvements. Although it is tempting to restore missing historic structures in this area, in most cases this is not recommended, since a single or a pair of photographs is usually not sufficient to accurately recreate a feature.

The following preservation treatment projects are depicted on Drawing 32.

Project LN1: Preserve features at large stone picnic area

Project Type: Masonry Repair
Implementation: Staff or Partnership

Rationale: These important historic features, despite previous repairs, continue to deteriorate.

Recommendations: Although portions of this area have been lost, extant features should be restored (Figure 11-99). This will involve repointing the extant walls, and significantly repairing the tables and benches. Concrete parging, which has protected some of the original surfaces, should be removed and the original flagstone surfaces restored. In general, replacing missing features in this area is recommended only if sufficient documentation is located. Although a limited number
Recommendations: The life of this extant sign (Figure 9-21) should be extended as far as possible. Holes and rotted areas on the posts of this sign should be filled with epoxy. Detailed measurements of the sign should be recorded and detailed photographs documenting its construction should be taken to facilitate its exact replication at a later date. When the sign is eventually deconstructed, any pieces (such as hardware) that might be used as templates for its reconstruction, should be saved. Depending on its condition, it may be possible to re-use the sign panel in the reconstruction; at the very least it should be used as a template for replication.

Project LN3: Repair table and restore its missing benches at the “End of the World”

Project Type: Masonry Repair and New Construction
Implementation: Staff or Partnership

Rationale: Condition of cracked bench and spalling table will continue to worsen (Figure 11-100).

Recommendations: The masonry of the table should be repaired, with joints repointed and missing stones replaced. Although documentation is limited, the stone benches should be repaired to fully restore the table’s function.

Project LN4: Restore or preserve round stone table

Project Type: Masonry Repair and New Construction
Implementation: Staff or Partnership

Rationale: Table (Figure 11-101) is a historic structure, but is currently only partially intact.

Recommendations: If a number of photographs of this structure can be located, then it should be reconstructed, based on existing conditions and the photograph. The area should be searched to see if parts of the structure are buried in underbrush. Because of limited documentation, care should be taken to rebuild this feature at an appropriate size and scale. If no photographs can be located, the extant rubble should be preserved and periodically cleared of vegetation.

Figure 11-100. Table at the “End of the World” should be repointed and its cracked bench repaired.

Figure 11-101. Circular stone bench in 2004 (top) and 1993 (bottom). Repair of this feature may not be possible.

Project LN2: Preserve Travertine Island sign

Project Type: Repair and Replacement
Implementation: Staff

Rationale: Sign is still extant, but deteriorating.
Project LN5: Clear debris and silt near stone pedestrian bridges at the north side of Travertine Island

Project Type: Annual Maintenance
Implementation: Staff

Rationale: The area underneath the pedestrian bridges has silted in and is only minimally flowing.

Recommendations: The channel is silted in at its intersection with the main creek, and this area should be cleared using shovels or, if necessary, a backhoe, to restore water flow around the north side of the island. This channel should be checked and cleaned out annually or as needed.

Project LN6: Shore up flagstone swale east of Mission 66 comfort station

Project Type: Repair
Implementation: Staff

Rationale: Flagstone swale dating to the 1970s is being undercut by the creek.

Recommendations: This structure is not an historic structure, but performs an important function in collecting and diverting stormwater from different areas into the creek. Solutions to the undercutting may include the placement of large rip-rap stones at the eroding base of the structure. Alternatively, the structure may need to be shortened if the creek continues to widen. Clearing the channel around the north side of Travertine Island may also reduce undercutting by diverting some of the water volume back around the island and reducing flow at the base of the swale.

Project LN7: Replace pipe rail bridges

Project Type: Long-term improvement
Implementation: Staff

Rationale: As bridges (Figure 11-102) are replaced, they should be reconstructed to be more in keeping with the historic environment.

Project LN8: Add sand to beach at Little Niagara

Project Type: Maintenance
Implementation: Staff

Rationale: Soil is highly compacted in the Little Niagara beach and picnic area (Figure 11-103).

Recommendations: Compacted soils around Little Niagara Falls will be an ongoing problem and likely...
not something that can be changed. However, it may be possible to more regularly replenish sand, perhaps relocated from the Black Sulphur Springs area, to enhance the beach-like quality of the space. See district-wide guidelines for stabilized soil mix which might be used along creek banks.

Project LN9: Reduce mowing along paths to reduce path width

Project Type: On-going Maintenance
Implementation: Staff

Rationale: Paths at Travertine Island have become excessively wide over time (Figure 11-104).

Recommendations: Although Travertine Island is highly used, the width of paths in this area seems to be wider than necessary, lending the area a less “natural” feeling. Mowing on both sides of the paths could be reduced or eliminated to allow vegetation to regrow along the path margins. A maximum path width of six feet throughout the area should be sufficient to accommodate most uses.

Project LN10: Stain new concrete walk at Mission 66 comfort station

Project Type: Improvement
Implementation: Staff

Rationale: Bright white concrete walk contrasts with historic setting.

Recommendations: See district-wide guidelines for recommendations.

Project LN11: Replant trees at Travertine Island, Little Niagara Falls, and Lost Cave Falls

Project Type: Vegetation Replanting
Implementation: Staff

Rationale: Loss of trees due to age and ice storms has changed historic character and appearance.

Recommendations: Although there is limited documentation of this area’s vegetation historically, recent ice storms have significantly reduced the overhead canopy of this area. A tree-replanting effort should be undertaken on the island to return this sense of shade and enclosure. Approximately fifty trees should be planted throughout the area. Species should duplicate those common to the area, including sycamore and oak. Trees and shrubs should also be planted along the sidewalk along the parking area and in the triangular openings created during the construction of the walkway to the Mission 66 comfort station. These plantings might benefit from mulching and tree protection during their early years of establishment.

ANTELOPE AND BUFFALO SPRINGS: PRESERVATION TREATMENT

The Antelope and Buffalo Springs area was significantly changed during the Mission 66 years, and while the loss of some of the 1930s features is unfortunate, it is important to realize that the restoration or reinstating missing features is not appropriate under a district-wide preservation treatment. In addition, a preservation treatment does not treat a property to a particular date or period in time. Rather, the goal of the preservation treatment in this area is to prevent further loss by preserving, repairing, and if possible, restoring extant features. Any new elements should be created in a manner consistent with the historic setting. Drawing 33 depicts the following proposed treatment projects.
Project ABS1: Rehabilitate forest vegetation

Project Type: Vegetation Management
Implementation: Staff

Rationale: Over time, the forest area between the Nature Center and Buffalo and Antelope Springs has become increasingly enclosed. This is very apparent in comparisons of aerial photographs that span the latter years of the twentieth century. The increase in woodland is due to fire suppression and to the release of management in the area after it was designated an environmental study area. Today, conditions are more wooded and enclosed than historic conditions, though this is less due to cedar encroachment than in other areas of the park, and more due to increased deciduous understory growth.

Recommendations: Because of the relative lack of cedar encroachment except along the former perimeter road corridor and south boundary, no major vegetative clearing or prescribed burning is proposed for this area. Rather, mechanical control of cedar is proposed. Within the overall forest, prairie patches should be located and cedar trees removed, to create a more complex forest matrix. As shown in Figure 11-105, one larger area of prairie, located just west of Buffalo Springs, and bisected by the former perimeter road, will be the primary focus of this activity.

This and other prairie remnants are still extant, but are quite degraded. Such areas should be surveyed for extent, demarcated, and then mechanically cleared of all invasive cedars. Large deciduous canopy trees, especially oaks, should be retained. After cedar clearance, the area should be periodically spring mowed (or burned, if patches are large enough so fire can be contained) to promote the growth of native prairie grasses over cool season grasses. The improvement and enlargement of such prairie areas should improve use of the area for interpretation and for nature study and recreate a less dense forest.

Figure 11-105. Proposed vegetation management for the Antelope and Buffalo Springs area, focusing on cedar control with some grassland rehabilitation.

Project ABS2: Address multiple sign types

Project Type: Improvement
Implementation: Staff

Rationale: There are at least four types of signage throughout area, including plant interpretation; a single NPS standard interpretive sign, low half log signs, and roofed signs constructed at the same time as the Nature Center (Figure 11-106).

Recommendations: The historic half-log sign at Antelope Spring should be preserved, repaired, and painted as necessary, and the half log sign at Bromide retained and made more historically accurate when
Chapter 11: Treatment Projects

Recommendations: Vegetation along the former road alignment should be cleared to a width of fifteen feet, and could be maintained as native grasses. The road remnant could also serve as fire and management access for the rest of the area. If desired, the surface of the trace could be further improved and upgraded as part of the trail system over the long term. However, existing trail management is already extensive and the additional trail maintenance may not be warranted.

Project ABS3b: Thin vegetation along boundaries

Project Type: Vegetation Removal
Implementation: Staff

Rationale: Another concern in the area is the need for a buffer or firebreak along the urban interface along the district’s southern, eastern, and northern boundaries. Evidence of the CCC’s cedar boundary plantings is most evident along the district’s far eastern boundary, but vegetation is dense along the entire boundary in this area.

Recommendations: Vegetation along the northern, eastern and southern boundaries should be thinned to reduce fire risk. Thinning should focus on removals of female cedar trees, overly mature trees with dead branches, and those less than three inches. In addition, dense stands of deciduous understory, and dead or diseased trees should also be removed. Care should be taken to maintain some visual screening for privacy along boundaries where private homes or structures are within 200 feet or less of the park boundary.

Project ABS4: Even trail grades, maintain smooth surface, and install limited seating to create ADA-accessible experience

Project Type: Maintenance and Improvement
Implementation: Staff

Rationale: The trail between the Nature Center and Antelope Spring has very low grades and with minor modifications could be an ADA-accessible trail and nature experience.

Recommendations: The grades on this trail should be checked and graded out to below five percent. Rough or bumpy surfaces should be smoothed to allow safe and
easy wheelchair access (Figure 11-107). Benches—large stones might be appropriate in this area—with an open space for wheelchairs nearby might be installed along the way to aid less able people with resting spots. Two seating areas (a bench at Antelope Spring and a large rock along the trail) currently provide resting areas. Access should at least be provided to Antelope Spring. Access to Buffalo Spring could be possible if one of the bridges across the lily pond’s three falls were made ADA-accessible with an even, secure surface and handrails. Given its more hidden nature, the middle crossing may be the best place to construct an accessible crossing with a railing. To make a fully accessible trail, a transition between the granite-fine trail and the flagstones around the Buffalo Spring enclosure would also need to be instituted. Access to the lower level of Buffalo Spring is not recommended since it would require major modifications to the historic structure. See district-wide guidelines for additional recommendations on trail accessibility.

Project ABS5: Preserve stepping stone crossings throughout the area

Project Type: Maintenance
Implementation: Staff
Rationale: Stepping-stones (Figure 11-108) are historic structures and should be maintained.

Recommendations: The current practice of both bridging over stepping-stones to provide an accessible experience and retaining them in other places for a historic experience should be continued. Retaining and preserving stones under bridges is an appropriate preservation treatment.

Project ABS6: Replace pipe rail and plank bridges

Project Type: Long-term improvement
Implementation: Staff
Rationale: As bridges are replaced, they should be reconstructed to be more accessible and compatible with the historic environment.

Recommendations: These bridges include the wood plank bridge at Buffalo Springs and another wood plank bridge on the return trail between the stone arch bridge and Antelope Springs. See Project ABS4 for more information on accessibility concerns and the district-wide guidelines in Chapter 9 for bridge recommendations on bridge construction.

Project ABS7: Preserve USGS gauge box and reduce visual impact of new measurement tools

Project Type: Repair and Improvement
Implementation: Staff/Partnership with USGS
Rationale: This feature (Figure 11-109) dates to the historic period and should be maintained. New measurement tools, recently installed, are visually intrusive.
Chapter 11: Treatment Projects

Recommendations: New measurement equipment should be painted a dark color (black, brown or green) to reduce their visual impact. In addition, any future devices such as antennae, solar panels, and flow equipment should be carefully and sensitively installed to reduce impact on the overall historic scene of Antelope Spring. The historic gauge box should be inspected and any masonry problems repaired. The box’s current use as a place to locate measurement equipment should continue.

Project ABS8: Repair the uppermost dam/falls of Antelope Spring

Project Type: Masonry Repair
Implementation: Staff

Rationale: The loss of tree on northern end of dam has created a small breach that should be repaired (Figure 11-110).

Recommendations: A new stone or stones should be laid in around the remaining stump to prevent flow around the north side of the dam. Construction may be completed with stone, or it may be mortared by diverting water around the area until the mortar has cured. If the small breach is not repaired, the bank to the north will be undercut and the dam and crossing will be weakened.

Project ABS9: Replace stone bridge at lowest dam/falls of Antelope Spring

Project Type: Masonry Repair
Implementation: Staff/Partnership

Rationale: Bridge broke in February 2004 and should be replaced.

Recommendations: This stone bridge (Figure 11-111) was not part of the 1930s construction, and is reported to be the top of a stone table that once existed at Buffalo Springs. According to Lawrence Howell, who participated in moving the original slab, the bridge did not replace an existing crossing. The stone was heavy, and did not sit level in the landscape; it had cracked previously and its recent break was likely due to uneven loading and weak stone structure.

The bridge should be replaced, since preservation is the proposed treatment for this area and because there is little documentation of this area prior to the bridge’s construction. In addition, after forty odd years, visitors have come to expect a crossing in this area. A stone slab bridge or stepping stones are preferred replacements, and a large, 10-foot long slab is available in CNRA storage. If this large stone can be relocated to this area (no mean feat!), it would make a good replacement. A wooden bridge in this location would be overly visible and not in keeping with the historic conditions and is not recommended. It is recommended that any new bridge retain a low profile, while at the same time not blocking the flow of water, particularly during high water.

Figure 11-110. Lost tree at the uppermost dam at Antelope Springs has caused minor breach; this should be repaired.

Figure 11-111. Stone bridge at lowermost crossing should be reset and made level. A fully ADA-accessible bridge in this location is not recommended.

Recommendations: New measurement equipment should be painted a dark color (black, brown or green) to reduce their visual impact. In addition, any future devices such as antennae, solar panels, and flow equipment should be carefully and sensitively installed to reduce impact on the overall historic scene of Antelope Spring. The historic gauge box should be inspected and any masonry problems repaired. The box’s current use as a place to locate measurement equipment should continue.
Project ABS10: Investigate flow at lowest dam/falls at Antelope Springs

Project Type: Investigation
Implementation: Staff

Rationale: Water currently flows underneath the lowest dam and it is unclear if this is part of the original construction of the dam.

Recommendations: This project was undertaken as the CLR went to press. An investigation showed the presence of a box culvert/clean-out under this bridge. Major leakage was arrested.

Project ABS11: Rehabilitate Buffalo Springs Comfort Station

Project Type: Planning, Maintenance
Implementation: Staff

Rationale: Lack of use is detrimental to historic structures.

Recommendations: Rehabilitation of this structure (Figure 11-112) for some new use is strongly encouraged, since lack of use is generally a death knell for historic structures. As a first step, vegetation around the structure should be cleared to reduce fuel loading around it and reduce its potential destruction by fire. The interior should then be cleaned, vermin removed, holes sealed on exterior and the interiors repaired to the degree necessary. If reinstated as a comfort station, the condition of electric and water lines should be investigated. In addition, the sewer line should be slip-lined and a grinder installed.

Project ABS12: Rehabilitate vegetation around Buffalo Springs

Project Type: Replanting
Implementation: Staff

Rationale: Recent tree losses in this area have reduced the area's sense of seclusion and enclosure by canopy (Figure 11-113).

Recommendations: Although no historic planting plan for this area exists, plant lists show the vegetation was vertically layered with shrubs, small trees, and canopy trees. This sense of layering has been lost and should be reinstated. Weedy species should be removed and new vegetation encircling the spring enclosure should be planted. The area should be surveyed and a planting plan developed and implemented.

Project ABS13: Preserve extant road bridge and large box culverts

Project Type: Vegetation Removal
Implementation: Staff

Rationale: Trees growing in bridge decks are damaging the structures.
are now deteriorating quite badly, and should be repaired (Figure 11-114).

Recommendations: Vegetation should be cleared from the entire channel between the stone arch bridge and the three dams and beyond. The upper two dams should be stabilized and repaired as needed. The lower dam will require more extensive rebuilding. Springs located near the base of and at the north end of the middle dam may complicate the repair process somewhat.

ROCK CREEK: PRESERVATION TREATMENT

Preservation is an appropriate treatment for Rock Creek, requiring the retention of all existing features. In general, Rock Creek is in better condition than the other campgrounds, in part because of its younger age. Some limited upgrading of infrastructure for today’s larger recreational vehicles would be permitted under preservation, and is suggested below. These and other preservation treatment projects for Rock Creek are depicted on Drawing 34.

Project RC1: Investigate and repair drainage

Project Type: Repair and Improvement
Implementation: Staff

Rationale: Excessive water flow during storms is causing erosion along intermittent drainage ways, reducing campsite size.

Recommendations: Drainage problems in the campground occur primarily in the last consecutive loops before Chigger Hill, where storm water drains through a relatively level area at the base of that hill and where an intermittent stream channel drains off Bromide Hill into Rock Creek (Figure 11-115). As in Cold Springs Campground, there is probably no single solution to these drainage issues which should be using a number of management techniques. Existing drainage culverts should be excavated where necessary and cleaned out. Eroding drainage ways might be armored with stone in areas where velocities are particularly high, or alternatively, bioengineering techniques such as those originally used in the construction of the Rock Creek revetment wall in Flower Park might also be used. In
addition, the larger watershed should be examined. It may be possible, for example, to slow or retain storm water in the area between the perimeter road and the eastern campground perimeter road, reducing velocities in the areas where it flows between campsites.

Project RC2: Add water & electric hookups at selected RV sites

Project Type: Improvement
Implementation: Staff/Contract

Rationale: Hook-ups are a desired by many campground users.

Recommendations: Hook-ups, if provided, should be added to sites in a manner and in locations where they will be as unobtrusive as possible. Hookups should be installed on the outside sites, so that RV doors open onto campsite area instead of roadway (Figure 11-117). Water and electrical pedestals should be placed on the islands for driver side hookups.

Project RC3: Stain new concrete walk at comfort stations

Project Type: Improvement
Implementation: Staff

Rationale: Bright white concrete walk contrasts with historic setting.

Recommendations: See district-wide guidelines.

Project RC4: Identify, redesign and construct ADA-accessible campsites

Project Type: Access
Implementation: Staff

Rationale: All visitors should be accommodated in the Rock Creek Campground. Accessibility guidelines indicate that for every 100 to 150 campsites, 7 accessible campsites should be provided.

Recommendations: Proposed accessible campsites are recommended on relatively level sites located near the comfort stations (Figure 10-116). Alternatively, three sites may be located further from the rest rooms, along an accessible (less than five percent slope) route. Because of the steep grades in the Chigger Hill area, locating accessible campgrounds in this area is not recommended.

As discussed in Chapter 9, campsites should have a firm and stable surface (such as compacted granite fines) that can accommodate tent stakes. The site should slope no more than 1:50 in any direction, unless necessary for drainage, in which case a 1:33 slope is allowed. The site should have accessible tables, grills, and lantern hangers.
Project RC5: Repair concrete picnic tables

Project Type: Repair and Replacement
Implementation: Staff

Rationale: Concrete is spalling where rebar is too close to concrete edge (Figure 11-118).

Recommendations: Concrete tables should be repaired, either by patching small problems or replacing table members where necessary.

Project RC6: Replace entrance sign in-kind

Project Type: Repair and Replacement
Implementation: Staff

Rationale: Existing sign is deteriorating and should be replaced in the future.

Recommendations: Sign should be measured and historic documentation reviewed to replace sign in-kind.

Project RC7: Consider shower facilities

Project Type: Planning
Implementation: Staff

Rationale: Shower facilities are popular with visitors and could be an incentive for visitors to use the campground.

Recommendations: Although new structures would not be part of a preservation treatment, the addition of showers might be considered an infrastructural upgrade. Any such structure should be sited so that the existing layout, features, and internal viewsheds of the campground are impacted as little as possible. Other considerations for siting would include proximity to existing water and sewage lines.

Project RC8: Locate and remove exotic species

Project Type: Vegetation Removal
Implementation: Staff

Rationale: Tree-of-heaven and mimosa are particularly noticeable in the forest makeup of the Rock Creek area.

Recommendations: As described in greater detail above, mimosa may be controlled by a combination of cutting and application of an NPS approved herbicide. Repeated cutting is the recommended treatment for tree-of-heaven.

Project RC9: Thin vegetation at urban interface and/or create firebreak in western part of campground

Project Type: Vegetation Removal
Implementation: Staff

Rationale: Portions of Rock Creek Campground comprise part of the urban interface (other parts of the district boundary abut CNRA lands) and management of the campground’s western boundary should reflect fire management goals.

Recommendations: As these lands were not part of the park in the 1940s, there is no evidence of boundary screening plantings in this area, so vegetation thinning along the interface will not remove historic vegetation planted by the CCC. Thus vegetation along this interface should be thinned to reduce the risk of wildfire. However, care should be taken to preserve a privacy buffer between the campground and adjacent properties. Vegetation might be thinned directly along the boundary line, or a fire break located between Rock Creek and the park boundary might be another means of accomplishing the same goal. Either way, the firebreak should link with the rest of the CNRA urban interface (as distinguished from the district boundary).
BOOKS

RECENT PARK SERVICE REPORTS AND GUIDELINES

Sallee, Katherine. “A Cultural Landscape Inventory of the Platt District (Level I).” Report produced for CNRA, by the University of Texas at Arlington, 1997.

ARTICLES

This selected bibliography contains major and recent sources. More sources are provided in the notes at the end of each chapter.

RECENT UNPUBLISHED MATERIALS

HISTORIC UNPUBLISHED MATERIALS

REPOSITORIES AND ARCHIVES CONSULTED

Tulsa University Archives. Postcard Collection. Tulsa, Oklahoma.

Platt National Park Files, Record Group 79. National Archives and Records, Fort Worth, Texas.

CNRA ARCHIVES CONSULTED

Fixed Property Records (Form 10-559), file cards. CNRA Central Files.

Superintendents’ Reports.

Photographic Archives.

Travertine Nature Center Files.
Common plant names were used throughout the report to avoid repetition.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Latin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>American elm</td>
<td>Ulmus americana</td>
</tr>
<tr>
<td>American holly</td>
<td>Ilex opaca</td>
</tr>
<tr>
<td>Amur honeysuckle</td>
<td>Lonicera maackii</td>
</tr>
<tr>
<td>Arizona walnut</td>
<td>Juglans major</td>
</tr>
<tr>
<td>ashe juniper</td>
<td>Juniperus ashei</td>
</tr>
<tr>
<td>Austrian pine</td>
<td>Pinus nigra</td>
</tr>
<tr>
<td>bearded skeletongrass</td>
<td>Gymnopogon ambiguus</td>
</tr>
<tr>
<td>Bermuda grass</td>
<td>Cynodon dactylon</td>
</tr>
<tr>
<td>bitternut hickory</td>
<td>Carya cordiformis</td>
</tr>
<tr>
<td>black dalea</td>
<td>Dalea frutescens</td>
</tr>
<tr>
<td>black haw</td>
<td>Viburnum prunifolium</td>
</tr>
<tr>
<td>black hickory</td>
<td>Carya buckleyi</td>
</tr>
<tr>
<td>black walnut</td>
<td>Juglans nigra</td>
</tr>
<tr>
<td>black willow</td>
<td>Salix nigra</td>
</tr>
<tr>
<td>blackjack oak</td>
<td>Quercus marilandica</td>
</tr>
<tr>
<td>broomedge bluestem</td>
<td>Andropogon virginicus</td>
</tr>
<tr>
<td>broomweed</td>
<td>Gutierrezia dracunculoides</td>
</tr>
<tr>
<td>buck brush</td>
<td>Ceanothus cuneatus</td>
</tr>
<tr>
<td>buffalo grass</td>
<td>Buchloe dactyloides</td>
</tr>
<tr>
<td>bur oak</td>
<td>Quercus macrocarpa</td>
</tr>
<tr>
<td>Canadian wild rye</td>
<td>Elymus canadensis</td>
</tr>
<tr>
<td>cat brier</td>
<td>Smilax bona-nox</td>
</tr>
<tr>
<td>chaparral</td>
<td>Larrea tridentata</td>
</tr>
<tr>
<td>checker-bark juniper</td>
<td>Juniperus mexicana</td>
</tr>
<tr>
<td>chinquapin oak</td>
<td>Quercus muehlenbergii</td>
</tr>
<tr>
<td>chittamwood</td>
<td>Bumelia lanuginosa</td>
</tr>
<tr>
<td>coralberry</td>
<td>Symphoricarpus orbiculatus</td>
</tr>
<tr>
<td>desert Christmas cactus</td>
<td>Opuntia leptoaulis</td>
</tr>
<tr>
<td>desert olive</td>
<td>Forestiera pubescens</td>
</tr>
<tr>
<td>dogwood</td>
<td>Cornus spp.</td>
</tr>
<tr>
<td>eastern red cedar</td>
<td>Juniperus virginiana</td>
</tr>
<tr>
<td>euonymus</td>
<td>Euonymus spp.</td>
</tr>
<tr>
<td>evening primrose</td>
<td>Oenothera macrocarpa</td>
</tr>
<tr>
<td>gayfeather</td>
<td>Liatris acidota</td>
</tr>
<tr>
<td>goldenrod</td>
<td>Solidago spp.</td>
</tr>
<tr>
<td>gramas</td>
<td>Bouteloua spp.</td>
</tr>
<tr>
<td>green ash</td>
<td>Fraxinus pennsylvanica var. lanceolata</td>
</tr>
<tr>
<td>ground rose</td>
<td>Rosa spithamea</td>
</tr>
<tr>
<td>hackberry</td>
<td>Celtis occidentalis</td>
</tr>
<tr>
<td>hairy grama</td>
<td>Bouteloua hirsute</td>
</tr>
<tr>
<td>honeysuckle</td>
<td>Lonicera spp.</td>
</tr>
<tr>
<td>iris</td>
<td>Iris spp.</td>
</tr>
<tr>
<td>Japanese honeysuckle</td>
<td>Lonicera japonica</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Jasmine</td>
<td>Jasminum spp.</td>
</tr>
<tr>
<td>Johnson grass</td>
<td>Sorghum halepense</td>
</tr>
<tr>
<td>Juneberry</td>
<td>Amelanchier canadensis</td>
</tr>
<tr>
<td>Little bluestem</td>
<td>Andropogon scoparius</td>
</tr>
<tr>
<td>Magnolia</td>
<td>Magnolia spp.</td>
</tr>
<tr>
<td>Mimosa</td>
<td>Albizia julibrissin</td>
</tr>
<tr>
<td>Tree-of-heaven</td>
<td>Ailanthus altissima</td>
</tr>
<tr>
<td>Oklahoma redbud</td>
<td>Cercis reniformis</td>
</tr>
<tr>
<td>Osage orange</td>
<td>Maclura pomifera</td>
</tr>
<tr>
<td>Pecan</td>
<td>Hicoria pecan</td>
</tr>
<tr>
<td>Periwinkle</td>
<td>Vinca minor</td>
</tr>
<tr>
<td>Persimmon</td>
<td>Diospyros virginiana</td>
</tr>
<tr>
<td>Persimmon</td>
<td>Diospyros virginiana</td>
</tr>
<tr>
<td>Pfitzer junipers</td>
<td>Juniperus chinensis 'Pfitzeriana'</td>
</tr>
<tr>
<td>Poison ivy</td>
<td>Toxicodendron radicans</td>
</tr>
<tr>
<td>Poplar</td>
<td>Populus deltoides</td>
</tr>
<tr>
<td>Post oak</td>
<td>Quercus stellata</td>
</tr>
<tr>
<td>Prairie threeawn</td>
<td>Aristida oligantha</td>
</tr>
<tr>
<td>Privet</td>
<td>Ligustrum vulgare</td>
</tr>
<tr>
<td>Psoralea</td>
<td>Psoralea reverchonii</td>
</tr>
<tr>
<td>Ragweed</td>
<td>Ambrosia artemisiaepi var. elatior</td>
</tr>
<tr>
<td>Red oak</td>
<td>Quercus rubra</td>
</tr>
<tr>
<td>Redbud</td>
<td>Cercis canadensis</td>
</tr>
<tr>
<td>Seep muhly</td>
<td>Muhlenbergia reverchoni</td>
</tr>
<tr>
<td>Short-leaf pine</td>
<td>Pinus echinata</td>
</tr>
<tr>
<td>Short-lobed oak</td>
<td>Quercus breviloba</td>
</tr>
<tr>
<td>Shumard oak, spotted oak</td>
<td>Quercus texana, Quercus shumardii</td>
</tr>
<tr>
<td>Silver maple</td>
<td>Acer saccharinum</td>
</tr>
<tr>
<td>Skunkbush sumac</td>
<td>Rhus trilobata</td>
</tr>
<tr>
<td>Slippery elm</td>
<td>Ulmus fulva</td>
</tr>
<tr>
<td>Smooth sumac</td>
<td>Rhus glabra</td>
</tr>
<tr>
<td>Southern hackberry</td>
<td>Celtis laevigata</td>
</tr>
<tr>
<td>Spiderwort</td>
<td>Tradescantia oboensis</td>
</tr>
<tr>
<td>Smooth sumac</td>
<td>Rhus glabra</td>
</tr>
<tr>
<td>Shining sumac</td>
<td>Rhus copallina</td>
</tr>
<tr>
<td>Sweet pelotazo</td>
<td>Abutilon incanum</td>
</tr>
<tr>
<td>Sycamore</td>
<td>Platanus occidentalis</td>
</tr>
<tr>
<td>Texas ash</td>
<td>Fraxinus texensis</td>
</tr>
<tr>
<td>Texas mulberry</td>
<td>Morus microphylla</td>
</tr>
<tr>
<td>Texas redbud</td>
<td>Cercis canadensis var. texensis</td>
</tr>
<tr>
<td>Texas sophora</td>
<td>Sophora affinis</td>
</tr>
<tr>
<td>Texas yellow star</td>
<td>Lindheimera texana</td>
</tr>
<tr>
<td>Virginia creeper</td>
<td>Parthenocissus quinquifolia</td>
</tr>
<tr>
<td>White ash</td>
<td>Fraxinus americana</td>
</tr>
<tr>
<td>Wild blue phlox</td>
<td>Phlox divaricata</td>
</tr>
<tr>
<td>Prairie phlox</td>
<td>Phlox pilosa</td>
</tr>
<tr>
<td>Wild plum</td>
<td>Prunus domestica</td>
</tr>
<tr>
<td>Wild rose</td>
<td>Rosa woodsii</td>
</tr>
<tr>
<td>Willow</td>
<td>Salix spp.</td>
</tr>
<tr>
<td>Winged elm</td>
<td>Ulmus alata</td>
</tr>
<tr>
<td>Winged sumac</td>
<td>Rhus copallina</td>
</tr>
</tbody>
</table>
PLATT DISTRICT
Cultural Landscape Report

Drawing List

Figure 3-3. Map of Platt National Park. United States Department of the Interior, 1909
Drawing 1. 1933 PERIOD PLAN Platt National Park
Drawing 2. 1940 PERIOD PLAN Platt National Park
Drawing 3. 1940 PERIOD PLAN Bromide Springs and Bromide Hall
Drawing 4. 1940 PERIOD PLAN Walnut Grove
Drawing 5. 1940 PERIOD PLAN Flower Park
Drawing 6. 1940 PERIOD PLAN Buffalo Pasture & Prairie Uplands
Drawing 7. 1940 PERIOD PLAN Pavilion Springs/Hillside Springs/Headquarters and Maintenance Area
Drawing 8. 1940 PERIOD PLAN Central Campground
Drawing 9. 1940 PERIOD PLAN Cold Springs Campground
Drawing 10. 1940 PERIOD PLAN Little Niagara & Travertine Island
Drawing 11. 1940 PERIOD PLAN Antelope Springs & Buffalo Springs
Drawing 12. 1950 PERIOD PLAN Rock Creek
Drawing 13. 1969 PERIOD PLAN Platt National Park
Drawing 14. EXISTING CONDITIONS Platt District 2002
Drawing 15. EXISTING CONDITIONS 2002 Bromide Springs and Bromide Hall
Drawing 16. EXISTING CONDITIONS 2002 Walnut Grove
Drawing 17. EXISTING CONDITIONS 2002 Flower Park
Drawing 18. EXISTING CONDITIONS 2002 Buffalo Pasture & Prairie Uplands

Drawing 19. EXISTING CONDITIONS 2002 Pavilion Springs/Hillside Springs/Headquarters and Maintenance Area
Drawing 20. EXISTING CONDITIONS 2002 Central Campground
Drawing 21. EXISTING CONDITIONS 2002 Cold Springs Campground
Drawing 22. EXISTING CONDITIONS 2002 Little Niagara & Travertine Island
Drawing 23. EXISTING CONDITIONS 2002 Antelope Springs & Buffalo Springs
Drawing 24. EXISTING CONDITIONS 2002 Rock Creek
Drawing 25. TREATMENT PROJECTS Bromide Springs and Bromide Hall
Drawing 26. TREATMENT PROJECTS Walnut Grove
Drawing 27. TREATMENT PROJECTS Flower Park
Drawing 28. TREATMENT PROJECTS Buffalo Pasture & Prairie Uplands
Drawing 29. TREATMENT PROJECTS Pavilion Springs/Hillside Springs/Headquarters and Maintenance Area
Drawing 30. TREATMENT PROJECTS Central Campground
Drawing 31. TREATMENT PROJECTS Cold Springs Campground
Drawing 32. TREATMENT PROJECTS Little Niagara & Travertine Island
Drawing 33. TREATMENT PROJECTS Antelope Springs & Buffalo Springs
Drawing 34. TREATMENT PROJECTS Rock Creek
Drawing 35. Proposed Overall Vegetation Management Plan

Legend:
- 10' contour
- creek
- chain link fence
- stone wall
- building
- curb
- 40' comfort station
- entry piers
- road
- parking areas
- underpass
- bridge
- directional sign
- interpretive sign
- park entry sign
- reunions post
- electrical pole
- culvert
- drainage swale
- manhole
- hydrant
- water source
- telephone box
- gate
- trash can
- trash enclosure
- lantern hanger
- picnic table
- concrete picnic table
- campsite number
- bench
- flagstones
- fall/dam
- steps
- steps w/stone edge
- stepping stones
- information kiosk
- deciduous tree
- evergreen tree
- erosion
- woodline
- grass cover
- flower bed
- beach
CS11: THIN CEDARS AT URBAN INTERFACE

CS9: PRESERVE STONE ENCLOSURES (TYP)

CS5: MAINTAIN SWALE

CS13: IMPROVE HYDRANTS (TYP)

CS10: REPAIR LARGE GROUP TABLES

CS8: PROVIDE SITE MARKERS (TYP)

CS2: IMPROVE ADA ACCESS

CS12: REPAIR COLD SPRINGS CROSSING

CS1: PROVIDE NEW USE FOR CHECKING STATION

CS3: CONSTRUCT ACCESSIBLE CAMPSITES

CS6: REDUCE VOLUNTEER PATHS (TYP)

CS7 / DMG: ANCHOR SITE DELINEATING BOULDERS AS NECESSARY (TYP)

CS4: IMPROVE CAMPGROUND DRAINAGE

DMG: PERIODICALLY CLEAN-OUT DAMS (TYP)

DMG: REPLACE BRIDGE WITH NEW DESIGN (LONG TERM)

PLATT DISTRICT
Chickasaw National Recreation Area
Cultural Landscape Report
Iowa State University, Landscape Architecture Department
Date 8/20/03

TREATMENT PROJECTS
Cold Springs Campground
Drawing 21

Scale 1:205
PLATT DISTRICT
Chickasaw National Recreation Area
Cultural Landscape Report
Iowa State University, Landscape Architecture Department
Date 8/30/03

DMG/LN7: REPLACE BRIDGE WITH NEW DESIGN (LONG TERM)

LN2: PRESERVE SIGN, DOCUMENT, THEN REPLACE IN-KIND (LONG TERM)

LN1: PRESERVE STONE FEATURES

DMG/LN7: REPLACE BRIDGE WITH NEW DESIGN (LONG TERM)

LN6: MAINTAIN NON-HISTORIC SWALE

LN4: PRESERVE STONE TABLE

LN5: CLEAR CHANNEL

DMG/LN10: DARKEN CONCRETE WALKS

LN8: ADD SAND/SOIL TO "BEACH" AS NECESSARY; REPAIR STONE EDGES

LN3: REPAIR TABLES & BENCHES

LN9: REDUCE PATH WIDTH BY LESS MOWING

LN11: REPLANT TREES THROUGHOUT AREA
Proposed Overall Vegetation Management Plan

PLATT DISTRICT
Chickasaw National Recreation Area
Cultural Landscape Report
Iowa State University, Landscape Architecture Department
Date: 08/15/03

Legend
- proposed view to maintain
- proposed fire break
- proposed vegetation screen
- road corridor serving as a fire break
- historic boundary planting
- existing trail
- urban interface zone
- proposed grassland rehabilitation area
- Platt District boundary
- paved road
- existing building