Portsmouth Methodist Church
Portsmouth Village
Cape Lookout National Seashore

Historic Structure Report

December 2015

for

Cape Lookout National Seashore
Southeast Region, National Park Service

by

JOSEPH K. OPPERMANN–ARCHITECT, P.A.
539 N. Trade Street Winston-Salem, NC 27101
www.jkoa.net | office@jkoa.net | (336)721-1711
The historic structure report presented here exists in two formats. A traditional, printed version is available for study at the park, at the Southeast Regional Office of the NPS (SERO), and at a variety of other repositories. For more widespread access, the historic structure report also exists in digital format through the IRMA Portal, Integrated Resource Management Applications, including the NPS Data Store, accessed at <https://irma.nps.gov/App/Reference/Welcome>, a website of the National Park Service.

2015
Historic Structure Report
Portsmouth Methodist Church
Portsmouth Village
Cape Lookout National Seashore (CALO)

Portsmouth Methodist Church
LCS#: 012518
CALO ID#: 508

Cover image: Joseph K. Oppermann, 2013
Foreword

We are pleased to make available this Historic Structure Report, part of our ongoing effort to provide comprehensive documentation for the historic structures and cultural landscapes of National Park Service units in the Southeast Region. A number of individuals contributed to the successful completion of this work, but we would particularly like to thank the JKOA Project Team who authored the report.

The authors would like to thank the staff at Cape Lookout National Seashore who assisted with the project, especially Patrick Kenney, Superintendent; Jeri L. DeYoung, Chief of Resource Management, who provided helpful comments; and Karen L. Duggan, park ranger, who provided CALO photographs. Dr. Ali Miri, historical architect with the National Park Service’s Southeast Regional Office, also provided helpful comments as part of his technical review and project oversight. The authors extend special appreciation to the Friends of Portsmouth Island and the many volunteers and descendants who readily provided information and interviews. We hope that this study will prove valuable to park management in ongoing efforts to preserve the church and other Portsmouth buildings, and to everyone in understanding and interpreting these unique resources.

Dan Scheidt, Chief
Cultural Resources, Partnerships, and Science Division
Southeast Regional Office
2015
Table of Contents

Project Team .. iii

Management Summary ... 1

Administrative Data ... 9

Part I - Developmental History

A. Historical Background and Context .. 13

B. Chronology of Development and Use .. 25

C. Physical Description .. 53

 General Description ... 53

 Locale .. 53

 The Architecture .. 56

 Construction Characteristics .. 62

 Structural Systems .. 62

 Exterior Features .. 65

 Interior Features .. 70

 Character-Defining Features .. 83

 Summary of Concerns ... 85

Part II - Treatment & Use

A. Ultimate Treatment & Use ... 87

B. Requirements for Treatment .. 89

C. Recommendations for Treatment and Use .. 93

Bibliography ... 97

Appendix A

Documentation Drawings:
 Foundation Plan
 Floor Plan
 North and South Elevations
 East Elevation
 West Elevation
 Details

Appendix B

John Thompson’s 1981 Drawings, sheets 1-2
Project Team

National Park Service – Southeast Regional Office
Laurie Chestnut, Contracting Officer
Dr. Ali Miri, Historical Architect and Contracting Officer’s Technical Representative

National Park Service – Cape Lookout National Seashore
Patrick Kenney, Superintendent
Jeri L. DeYoung, Chief of Resource Management

Joseph K. Oppermann–Architect, P.A. (JKOA)
Joseph K. Oppermann, FAIA, Historical Architect
Langdon E. Oppermann, Architectural Historian
Rebecca L. McCormick, AIA
Christopher M. Woollard, Associate AIA
Management Summary

The purpose of this report is to document the development, use, and current condition of the Portsmouth Methodist Church in the Portsmouth Village Historic District at Cape Lookout National Seashore. The National Park Service (NPS) will use this report to inform and guide its stewardship of this historic structure.

The church is a key part of a group of historic structures that provide the iconic image of Portsmouth. With the church as the focal point, this concentration of residences, outbuildings, community buildings and cemeteries provides visitors a sense of the village in the early twentieth century when it was still a thriving community. Treatment and use of the church should be predicated on preserving its importance in that ensemble of buildings.

The present study first provides historical background and context for Portsmouth that is based on a series of studies, interviews, and reports developed by NPS since the 1970s. Portsmouth’s history has been well documented; this Historic Structure Report includes no additional archival research on the larger community, but does include additional research and historical documentation on the church and its changes over the years.

Determination of the physical evolution of the church is based primarily on early photographs, documentation previously gathered by NPS, and oral histories combined with building investigation and the dating of building fabric, a process sometimes called “building archaeology.”

The report is divided into two major segments, Part I: Developmental History and Part II: Treatment & Use. Part I is organized into three sections that address in sequence the historical background and context of Portsmouth; a chronology of development and use of the church specifically, including a timeline; and a physical description of the church’s exterior and interior. This last section includes an assessment of condition and a listing of character-defining features.

Part II presents the recommended “ultimate treatment and use,” explains requirements that guide the church’s treatment and use, and makes recommendations for implementation. A bibliography follows.

Appendix A contains scaled drawings of the existing building, including floor plan, exterior elevations, and selected details. Appendix B contains informative, though not-to-scale, NPS field drawings prepared in 1981.

Historical Overview

Established in 1753 by an act of the colonial legislature of North Carolina, Portsmouth is located on the south side of Ocracoke Inlet, which was the principal access into Pamlico Sound and North Carolina’s seaports until a storm opened competing Hatteras Inlet in 1846. The community flourished in the late eighteenth century and by 1800 was the largest on the Outer Banks with a population of between 200 and 250. Because Portsmouth was a center of maritime trade, the Federal government established a customs house there in 1806, a marine hospital in 1827, and a post office in 1840. The town reached its peak population in 1860 with more than 600 residents.

Evacuated during the Civil War, Portsmouth recovered neither its population nor its economic vitality, and the customs house was abolished in 1867. As the inlet shoaled up and the population declined, the number of houses in the town dwindled as well, falling from 109 in 1860, to 59 in 1870, and to 44 in 1880. Many buildings must have sat abandoned in the late nineteenth century, including the marine hospital, which burned in 1894. Of those that survived hurricanes and the generally harsh environment, most were dismantled or relocated as the village slowly contracted along with the local economy. After
1883, the shifting sands of the Outer Banks closed Ocracoke Inlet to shipping.

The village got a boost in 1894 when the U. S. Life-Saving Service built a station at Portsmouth. Over the next four decades, a number of Portsmouth residents found employment there, many as life-saving crewmen. Others made a livelihood in commercial fishing or catering to the wealthy sportsmen who frequented the Outer Banks to hunt and fish.

The island was regularly inundated by tidal surges accompanying tropical storms and hurricanes, which often caused more damage than the wind. In September 1913, for example, a relatively weak hurricane blew across Portsmouth, but the accompanying storm surge destroyed both the Primitive Baptist and Methodist churches, the only buildings of worship on the island. The community was still strong enough, however, to support construction of a new church.

In 1933, a strong hurricane hit the village with sustained winds of 100 mph and torrential rain that flooded most of the island and destroyed many houses. Many residents moved to the mainland.

In 1937, the Coast Guard Station (former Life-Saving Station) was closed, further diminishing the town’s vitality, until by 1940 only 42 permanent residents remained, and after another devastating hurricane in 1944, the number dwindled further. By the 1950s, Portsmouth had only fourteen year-round residents.

Several unused buildings were adapted for use by sport fishermen, especially after World War II, including the Coast Guard Station, which was declared surplus property in 1946 and used as a sportsmen’s clubhouse. The post office was discontinued in 1959, and by the time the Cape Lookout National Seashore was authorized in 1966, only a handful of permanent residents remained.

With the death of the village’s last surviving male resident in 1971, the two remaining residents moved to the mainland. Portsmouth Village became uninhabited, without permanent residents for the first time since the eighteenth century. A number of buildings continued to be occupied seasonally as private vacation residences through an NPS lease program that only recently ended. Other buildings, including the Methodist Church and Coast Guard Station, are open year-round to the public. In all but the coldest months Portsmouth Village is a popular destination for day-trippers arriving by small boat from Ocracoke.

Figure 1. The Portsmouth Methodist Church seem from the east. Tom and Lucy Gilgo House on left and Henry Pigott House on right in distance. (2013, JKOA)
The Church

The earliest reference to religious services being planned for Portsmouth Village appears in 1760 when John Tolson was appointed Anglican reader for the island by St. John’s Parish in Beaufort. The earliest record of a religious service actually occurring is from 1766 when the Reverend Alexander Stewart baptized twenty-seven children in the salt waters of the inlet.

Whether a building was dedicated specifically to religious services is not known. Henry Mouzon’s *An Accurate Map of North Carolina and South Carolina*, 1775 intriguingly depicts a building with a churchlike end-wall steeple. The 1806 survey map by Coles and Price depicts scattered houses (far too few for the number of residents), a windmill and a building labelled “academy,” but none suggesting a church building.

The first text record of a church building at Portsmouth is from 1828 identifying a “Methodist Protestant Church.” An 1840 deed confirms the presence of a church building of the Methodist Episcopal Church, though it is not clear whether it is the same building identified in 1828. Regardless, there is a continuous list of Methodist ministers serving the people of Portsmouth from 1828, when statewide reports began, through the remainder of the nineteenth century until a church building was destroyed by the Great Hurricane of 1899.

With financial assistance from the Methodist Conference, a new frame and weatherboard church was constructed in 1901, only to be destroyed in 1913 by another hurricane.

The keeper of the Life-Saving Station spearheaded the effort to build a new church, making his pleas well beyond Portsmouth. Construction of the current Methodist Church, the only church remaining on Portsmouth Island, may have begun as early as 1914. Construction was well underway in late 1915, and likely continued into 1916.

The completed church was a major improvement over its 1901 predecessor. Though larger, it is similar in overall form with a rectangular sanctuary covered by a simple front-gable roof with entrance through an attached multi-stage bell tower. It is constructed of the same basic building materials of wood frame and German siding with regularly placed windows. But the new church is a much more sophisticated expression of Gothic Revival church architecture. The church sits relatively high on red-orange brick piers. Tall lancet windows with clear novelty glass at every elevation flood the interior with softly dispersed light. Broad stairs lead to double doors under a double-lancet transom; above, the bell tower narrows, each stage with a wood-shingled apron roof, and is capped with a tall, eight-sided steeple sheathed with diamond-shaped wood shingles.

Inside, the walls and ceilings are laid in dramatic geometric patterns. The sanctuary is furnished with its original long, Eastlake style wooden pews.

The church has been and remains a focal point within the community and a beacon to those approaching from the waters off Portsmouth.

Regular church services were discontinued in 1956, but Portsmouth residents continued to maintain the building. In 1976, the Cape Lookout National Seashore was established. Among the buildings of Portsmouth Village included in the new park is the Methodist Church.

The park’s General Management Plan (GMP) of 1982-83 promotes the preservation of the exteriors of the historic buildings of the village in order to maintain the character of the community. The Long-Range Interpretive Plan of 2011 goes further, recommending five important buildings, including the church, remain open to the public as interpretive venues. Accordingly, the church is open year-round to the public. It is one of the most popular destinations and is the site of the Portsmouth Homecoming, a celebration held every other year that draws several hundred attendees, many of whom are descendants of Portsmouth Village residents.

Statement of Significance

The Portsmouth Historic District was listed in the National Register of Historic Places in 1978 for its significance to the state’s early maritime history and as the only remaining village on Core Banks. As the park’s Long-Range Interpretive Plan (2011) points out, “the park contains cultural resources rich in the maritime history of human-kind’s attempt to survive at the edge of the sea.”

The 1978 National Register nomination identifies thirty-one historic structures and sites that contribute to the district’s historic character, one of which is the Methodist Church. Unfortunately, several of the thirty-one were in ruins when the nomination was written, and others have since been lost to storms and decay. No eighteenth-century buildings remain, and only a handful of nineteenth-century buildings have survived into the twenty-first century.

The nomination identifies no period of significance; it was written before these were included in nominations. More recently, the Cultural Landscape Report (2007) has recommended a period of significance ending in 1971, when the island lost its last permanent residents. The authors of this report agree with that recommendation.

The Portsmouth Methodist Church is a major component of the historic identity of Portsmouth in the twentieth century. It is historically important for its role in the evolution of the community, not only as a place of worship, but as a center of community life.

The church is architecturally significant as an outstanding example of the Carpenter Gothic Style of architecture, a variation of Gothic Revival popularized in the United States in the 1840s. It is an iconic symbol of Portsmouth Village. The congregation’s continued care and maintenance through the decades, even as Portsmouth was in decline, illustrates the resilience of Portsmouth and its residents.

Methodology

The objectives of this Historic Structure Report (HSR), which complies with the guidelines at NPS-28 (Cultural Resource Management Guideline), are to research and prepare a comprehensive and scholarly assessment of the building’s history and fabric, to describe its existing physical conditions, and to recommend treatment for preservation.

The findings and recommendations made in this report rely on the combined research of primary and secondary sources, early photographs, oral histories, and the physical investigation of extant building fabric.

The Scope of Work prescribed by NPS for this HSR specifies “limited” historical research as defined by Director’s Order #28: Cultural Resources Management Guidelines. Nevertheless, additional research was necessary for an adequate understanding of the context and history of the church prior to park ownership. Information gathered from that period comes primarily from church records, park research, and careful study of historic photographs and oral histories.

The Scope of Work also specifies “limited” physical investigation of the building to determine its evolutionary history. However, given the lean archival information regarding construction and alterations, investigation of the building fabric was also a large component of the work. That investigation involved a close look at architectural features and details such as surviving framing materials and methods; the relationship of finish treatments; and the variety of siding, ghost marks, and nail types. Together these research efforts, both documentary and physical, provide a dual, coordinated approach to determining how the church was used and adapted over the progression of its history.

Figure 2. Investigations in church attic, 2013.
The firm of Joseph K. Oppermann –Architect, P.A. (JKOA), prepared this HSR. The team for the work was led by Joseph K. Oppermann, FAIA, historical architect and principal-in-charge; Rebecca L. McCormick, AIA and Christopher M. Woollard, Associate AIA, assisting architects; and Langdon Edmunds Oppermann, architectural historian. The team conducted the historical research and building investigation, documented the building with photography and measured drawings, and authored this HSR. This interdisciplinary approach improves understanding of the building’s history and present conditions, both necessary prerequisites for the development of appropriate treatment recommendations.

An initial multi-day visit to the site and the archives was made by the team in September 2013 with follow-up visits in April and October 2014. Measurements were compiled using manual measuring tape, carpenter ruler, digital cameras, and digital recorder, a Leica Disto laser distance meter. Photography was completed for the building’s exterior and its interior spaces. Detailed field drawings were made and used to create digitized AutoCAD drawings of floor plan and elevations. The initial digitized drawings were the base document on which final recordations and assessed conditions were made during the subsequent return trips.

During these subsequent trips, a standard assessment methodology was used for the condition survey of each exterior feature and each interior area, itemizing features and elements and correlating with research findings. Detail photography was conducted. Visual observation of surface conditions, supplemented by a 20-power magnification loupe and Protimeter BLD 2000 moisture meter, was the basis for assessing the physical condition of building materials. In accordance with the NPS Scope of Work, no building system components were tested, and no invasive methods of investigation were employed.

Unique to these field visits was the necessity of wearing hooded net suits while on Portsmouth Island. Present for most of the year, mosquitoes can be so thick at times that the tour boats cease operation. It is not uncommon for visitors and work crews to don mosquito suits while on the island.
Findings
The archival research and field investigations brought a better understanding of both the physical evolution of the church building over time and its current condition. These are discussed below.

The public has much affection for the church as a house of worship and as a symbol of the community. The affection extends to the entire village. It is noteworthy that long-time park personnel cannot recall a single instance of vandalism, a problem at some parks.

Building Evolution
Investigations indicate that salvaged building elements as well as new construction materials were incorporated into the erection of the new church in 1914-16. Most noticeable of the reused material is the large beam notched for previous framing, flipped and installed as the central girder for the first-floor framing. Other odd-sized framing elements visible in the attic suggest they too may be reused elements. From where this salvaged material was sourced is not known. Perhaps some were salvaged from the hurricane-wrecked 1901 church or other buildings damaged by the 1913 storm.

The current church retains a great many character-defining features of its original construction, both outside and within. Most repairs and replacements of material have occurred on the exterior. Fortunately, the repairs have generally been in-kind in both type of material and design appearance, thus maintaining the overall historic design. For example, the eroded brick piers were largely rebuilt in the late 1990s. German siding and trim have been selectively replaced on a number of occasions. Damaged window sash, window frames, and novelty glass have been repaired or replaced, including the transom. The wood shingle roofing has been replaced multiple times, most recently in 2015.

On the interior, the applied architectural elements are largely original as are the Eastlake style pews. There is a question as to whether the interior walls and ceilings were initially left unpainted, perhaps varnished, before being painted white as they have been for some time. The most notable changes, both minor, are added elements rather than modifications. Shortly after World War II, a surplus electrical generator was installed at the nearby Jesse Babb residence; on Sunday a cable was extended to the church to power the electrical ceiling fixtures for services. Later, after the generator failed, gas wall sconces were installed. Fixtures of both power systems remain.

Existing Conditions
Significant damage to the church was attributed to Hurricane Sandy of 2012, including a more pronounced lean of bell tower and sanctuary, open joints in siding and trim from racked wall framing, roof leaks, bent weathervane and broken siding shingles.

Repairs conducted in late 2014 addressed several of these conditions. These included the removal of the exterior German siding to pull the wall framing back into vertical alignment, repair of damaged framing, and installation of plywood sheets for additional lateral support. After repair, the siding was reinstalled. With wall realignment, the paired front doors no longer fit the doorway; the modern multi-panel doors were replaced in 2015 with reproduction historic doors.

Additional repairs in late 2015 included replacement of the wood shingle roofs of the sanctuary and tower, and patching of the decorative shingle siding of the bell tower. Less serious maintenance issues remain to be addressed, and repainting is a frequent necessity.

Recommendations for Treatment and Use
The Recommended Ultimate Treatment is the Preservation of the exterior to continue its prominent role in the district’s cultural landscape, and Preservation of the interior in its uncompromised historic state. The Recommended Ultimate Use, in keeping with its historic use, is for the church to remain a venue for community events both secular and religious, and open daily to all.

General Recommendations for Portsmouth Village
- Consult with Janet Cakir PhD, NPS
 SER Climate Change, Socioeconomics, and Adaptation Coordinator to guide management policies.
• Use results from the climate change study “Identify Cultural Resources Sites Affected by Sea-Level Rise at Cape Hatteras National Seashore” to guide management policies. This study is also applicable to Portsmouth Island.
• Prepare or update a Topographic Survey for the site.
• Prepare a Log of Flood Occurrences. Record at a minimum the dates of occurrences and approximate extent and severity (e.g. depth at specific locations). Correlate recordings with Topographic Survey. Maintain data so that they can be correlated with conditions such as tide, moon phase, etc.
• Evaluate site for flood avoidance potential including the introduction of dams and/or swales to divert or direct flooding waters.
• Evaluate each building, structure, and significant site feature for flood avoidance potential and/or enhancement potential for better withstanding the projected threatening events.
• Identify critical services (fresh water supply, waste disposal, energy sources, etc.), evaluate options, and develop a contingency plan for each.
• Strive to maintain for all buildings a sound structural system and a weather-tight exterior envelope, especially the roof.
• Use maintenance activities as opportunities to enhance the resistive capacities of the buildings and structures whenever feasible.
• Prepare minimum level of record documentation (overall view photographs and text descriptions) for all undocumented cultural resources in the community that are at risk; prepare more extensive documentation (including scaled record drawings with descriptions) for the more significant resources at risk.

General Recommendations
• Avoid use of ferrous-based fasteners in all construction and repairs.

The Site
Recommendations for Site
• Keep lawn grasses mowed and regularly remove volunteer plants and shrubs close to the church.
• Observe drainage patterns of the site during periods of significant rainfall and flooding; determine the feasibility of creating shallow swales to promote drainage away from the building.
• Monitor conditions beneath the church; be prepared to add fill to depressions
• Conduct regular inspections for evidence of termite activity and treat accordingly.
• Secure clearance from an archaeologist before commencing work that might require ground disturbance.

Structural Systems
Recommendations for Brick Piers and Entrance Steps
• Keep vegetation closely trimmed.
• Investigate conditions on a regular basis.
• Keep mortar joints pointed, bricks in sound condition.
• Inspect termite shields regularly.

Recommendations for Floor, Wall and Roof Framing
• Conduct regular inspections for the presence of wood-damaging plants and insects; treat accordingly.
• Conduct routine inspections, some preferably during rainstorms and after all tropical storms and flooding events, for evidence of water intrusion and instances of damage.
• Periodically review for evidence of deflection across planes of framing, framing members out of square or plumb, or heightened vibration in framing members.
• Avoid use of ferrous-based fasteners in all construction and repairs.

Church Exterior
Recommendations for Doors
• Ensure all hardware remains operable. Apply lubricant on a regular basis.
• Maintain sound paint finish at all exposed surfaces.
• Monitor condition and operation on a regular basis. Avoid use of ferrous-based fasteners in all construction and repairs.
• Conduct paint and finish analyses to document the sequence and types of historic paints and finishes.
Recommendations for Windows
- Ensure all sash are in working order; reglaze when necessary to keep a sound exterior surface.
- Maintain sound paint finish at all exposed surfaces.
- Monitor condition and operation on a regular basis.
- Avoid use of ferrous-based fasteners in all construction and repairs.
- Conduct paint and finish analyses to document the sequence and types of historic paints and finishes.

Recommendations for Roofing
- Routinely inspect for missing, damaged, displaced or loose shingles; replace or repair as necessary.
- Routinely inspect for leaks, especially at roof ridge and connection of bell tower to sanctuary, especially during rainstorms.
- Avoid use of ferrous-based fasteners in all construction and repairs.

Recommendations for Siding and Trim
- Monitor regularly for open joints, displaced or loose elements, or other evidence of movement; renail loose pieces.
- Monitor checking, splitting, and instances of rot and plan remedial actions accordingly.
- Avoid use of ferrous-based fasteners in all construction and repairs.
- Conduct paint and finish analyses to document the sequence and types of historic paints and finishes.

Interior Features
Recommendations
- Keep rooms broom-swept of dirt and other materials to facilitate inspections.
- Conduct paint and finish analyses to document the sequence and types of paints and finishes.
- An Historic Furnishings Plan (HFP) may be appropriate to substantiate the provenance of the furnishings thought to be original, especially the church pews.

Remedial Action by Priority

Highest Priority
Remedial actions of highest priority are those that address immediate threats to life and safety of persons, closely followed by immediate and serious threats to the building.
- Monitor existing cracks in cast-cement treads of front entrance steps.

High Priority
Remedial actions of high priority are those that address conditions that have a high potential for serious threat to persons or the building.
- Monitor deterioration of bricks and mortar of foundation piers.
- Monitor checking and splitting and scattered instances of rot in exterior siding and trim.

Medium Priority
Remedial actions of medium priority address conditions that have a medium potential for serious threat to persons or the building.
- Add sterile fill material beneath church and at roof dripline to promote positive drainage away from building.
- Monitor water table for evidence of rot.
- Monitor checks and gouges in siding and trim.
- Monitor pews for evidence of insect activity and treat accordingly.
Administrative Data

Locational Data

Building Name: Portsmouth Methodist Church
Location: Portsmouth Village, Cape Lookout National Seashore
County: Carteret County
State: North Carolina

Real Property Information

Acquisition Date: 1976

Numbering Information

CALO ID: 508
LCS ID: 012518

Size Information

Total Floor Area: 1,050 square feet ±
Roof Area: 2,000 square feet ±
Number of Stories: 1
Number of Rooms: 2
Number of Bathrooms: 0

Cultural Resource Data

Period of Significance: No period of significance included in the National Register nomination; it was written before these were included in nominations.

Proposed Treatment

Preservation of the exterior to continue its prominent role in the district’s cultural landscape, and Preservation of the interior in its uncompromised historic state.
Related NPS Studies

Life-Saving Station Logs, excerpted by Tommy Jones, NPS.

NPS files including drawings, maps, memos, images and administrative files.

I.A Historical Background and Context

“Just think, Portsmouth in 1815 or 150 years ago was the largest seaport in North Carolina and now there are just four people who live there year around. Oh! what changes have come about or taken place in 50 years in my lifetime and remembrance. What will happen in the next 50 years? God only knows.”

--Ben B. Salter, 1962

From the early days of the eighteenth century, North Carolina was dependent on ocean trade with other colonies and with the West Indies and Europe, exporting pine products—lumber, tar, pitch—and importing foods and manufactured goods. But access to its ports was not direct; the colony’s coastal geography made shipping difficult. With the single exception of Wilmington, North Carolina’s ports fronted not the ocean but the waters of Pamlico Sound, separated from ocean trade by the long stretch of the Outer Banks.

Several inlets spaced along the Banks allowed seagoing traffic to reach mainland ports, but by the 1730s most of these inlets were unusable as storms

Figure 4. Detail of the 1770 A Compleat Map of North-Carolina from an actual Survey by Capt’n Collet, Governor of Fort Johnston. Engraved by I. Bayly, London. The map shows Portsmouth just south of the winding channel of the inlet.
closed or shoaled them. Ocracoke Inlet remained navigable and was to become the principal ocean passage.³

In 1753, the colonial legislature of North Carolina established Portsmouth Village on the south side of that inlet. The town was a planned community, the act specifying “fifty acres of land on Core Banks, most convenient to the said harbour, adjoining the said Banks, for a town, by the name of Portsmouth, into lots of half an acre each, with convenient streets, as they may think requisite.”⁴ John Tolson bought the first lot in 1756. Buildings were to be substantial; purchasers were required to build a frame or brick house or warehouse, specified to be not less than twenty feet long by sixteen feet wide.⁵

Portsmouth quickly became the largest settlement on the Outer Banks, and was soon the largest English port south of Virginia.⁶ A 1770 Survey Map shows Portsmouth and Ocracoke Inlet with the essential outline of its twisting underwater channel (Fig. 4).

Ocracoke Inlet provided the principal access for shipping trade. However, the underwater geography of the inlet was precarious, with a sandbar at the inlet’s entrance and a shoal within. Because the waters were too shallow for large, heavy-laden ships to navigate, cargo was offloaded onto lighters, small boats suited to the shallow waters of the inlet, and taken to Portsmouth’s warehouses while the ships passed through the inlet.⁷

This practice, known as lightering, was the reason for Portsmouth’s establishment and for its success.

At Portsmouth were built the warehouses, wharves, and boats needed for the lightering business, as well as structures for its residents. The town was home to the many pilots and crew, mariners, channel markers and boat builders. Related businesses developed, in addition to those needed to support a growing population. Five years after Collet, Henry Mouzon’s 1775 map of the two Carolinas shows Portsmouth as a developed town with buildings delineated. The inlet is marked as a ship passage (Fig. 5).

Census data give a picture of the village, although the listings for Portsmouth are not precise and
result in differing interpretations. Nevertheless, the figures show the healthy growth of the settlement and the importance of slaves to the enterprise. The white population in 1800 was 165; slaves numbered 98. The total of 25 families gives an indication of the number of houses in the village. By 1810 the white population had increased to 226, the slave population to 121.

As expected, the census reveals that over eighty percent of workers engaged in some aspect of maritime activity. Portsmouth’s life depended on the inlet; residents made their living from trade through the passage, working as pilots, lighter captains, mariners, ship owners. Some were customs agents who sailed out to collect duties. Others had occupations necessary to support the town: teachers, merchants, doctors, and fisherman.

Supporting all were the slaves, whose labor kept the enterprise a success. Slaves were involved in most activities of the village. They loaded and unloaded cargo, but also operated a dolphin fishery and served the critical roles of pilots, who manned all types of vessels. David Cecelski reports, "At Portsmouth Island, slave crews piloted vessels through Ocracoke inlet, lightered their cargoes, and then guided them to distant seaports of the other side of Albemarle and Pamlico Sounds."

Portsmouth continued to grow, with almost 400 people by 1830. Two years earlier, Currituck Inlet farther north had closed, leaving all shipping dependent on Portsmouth’s help at Ocracoke Inlet. The community was robust; more than 1,400 vessels passed through the inlet in 1836-37. Recognizing Portsmouth’s importance to commerce, the federal government established a customs house there in 1806, and in 1827 provided for a marine hospital. A U.S. post office was established in 1840, and in 1842, Congress appropriated funds to buy land and build a new marine hospital, which when completed was the largest structure ever built in Portsmouth.

Portsmouth is considered today remote and isolated, but in the late eighteenth and early nineteenth centuries it was a bustling commercial center with direct contact with European and Atlantic trade and culture, far less isolated than most of North Carolina. In 1842 the U.S. House Committee on Commerce stated, “Ocracoke Inlet is the outlet for all commerce of the state of North Carolina, from the ports of Newbern [sic], Washington, Plymouth, Edenton, and Elizabeth City . . .more than two thirds of the exports of the State of North Carolina pass out to sea at this point.”

An event four years later would change the shipping industry in North Carolina. In 1846, a hurricane created an inlet at Hatteras, about twenty miles north of the Ocracoke Inlet. This was the undoing of Portsmouth. Where Ocracoke Inlet was tricky and required lightering, the new Hatteras Inlet was deep and navigable. By 1850, Portsmouth’s population reached 463—Hatteras had grown to 661.

Portsmouth depended on its lightering and piloting jobs. The 1850 census recorded 27 pilots, 37 mariners, 7 boat men, 3 fishermen, 5 merchants, 4 carpenters, 2 farmers, and a teacher with 77 students.

Portsmouth, with its facilities well established, grew in the next ten years to more than 600 and the census reported 109 dwellings. This was its peak, not only in population but in importance.

The growth of railroads also affected trade, not only at Portsmouth but on the ports facing the sound, as they strengthened easier north-south travel to the port of Wilmington over the east-west trade to the sound.

Portsmouth was still operating as a lightering port in 1860 when, during Edmund Ruffin’s visit, he explained,

"The village of Portsmouth owes its existence to the fact of its adjoining the nearest water of Pamlico sound, where vessels must anchor and wait for fair winds and tides to cross the shallow and dangerous bar of Ocracoke inlet—and
after passing outward, as usual but partly laden, to wait to receive the remainder of the cargo, carried across the bar by lighters.16

Ruffin also described the village:

The occupations of the whole resident population of Portsmouth are connected with the vessels which have to wait here. Pilots, and sailors, or owners of vessels, make up the greater number of the heads of families and adult males—and the remainder are the few, who as shopkeepers, &c., are necessary to minister to the wants of the others.17

Ruffin’s description then became a forecast:

If Ocracoke inlet should be closed by sand (which is no improbable event) the village of Portsmouth would disappear—or [like Nagshead] [sic] remain only for its other use, as a summer retreat for transient visitors, sought for health and sea-bathing.18

Ruffin’s forecast was timely. The shoals of Ocracoke Inlet were spreading into the inlet, no longer the easiest access to mainland ports. The steady withdrawal of shipping traffic continued and Portsmouth lost its strategic importance. Hatteras with its favored inlet surpassed Portsmouth.19

The Civil War brought changes to Portsmouth as it did throughout the South. Residents fled for the mainland as the Union Army advanced down the Outer Banks. Many chose not to return; among the former slaves and free blacks, only one family returned to the island. After the war, the town’s decline spiraled. By 1870, the number of houses fell from 109 to only 59, and then to 44 in 1880. By 1883, the inlet was no longer navigable for lightering. Many more left, or turned to fishing as occupation.

Other means of livelihood sustained the village. In 1894 the U.S. established a Life-Saving Station in Portsmouth that provided jobs for some residents as cooks, surfmen, or mechanics. Others worked for the several hunting clubs that opened nearby in the late nineteenth and early twentieth centuries. Wealthy northern sportsmen formed clubs near the flocks of water fowl that wintered on the warm waters of Pamlico Sound. One was the Pilentary Club, built by wealthy New Yorkers about ten miles from Portsmouth Village and among seven similar gun clubs in Carteret County. Despite its isolation, the elegant club was visited by prominent figures, including Franklin D. Roosevelt while he was Assistant Secretary of the Navy. The clubs provided jobs for both men and women as hunting guides, cooks, maids and laundresses.

Hurricanes were a constant threat to Portsmouth. The “Great Hurricane of August 1899” brought winds that reached 140 miles per hour at Hatteras.

17. Ibid.
18. Ibid.
before the anemometer blew away, and submerged Portsmouth and Ocracoke under ten feet of water in some places.20 The storm destroyed a Methodist church. Two churches were destroyed in a 1913 storm, though the community was still strong enough to support construction of a new Methodist Church in 1915-16. Many left Portsmouth after the devastation of another hurricane in 1933. The last general store closed its doors. The force of the hurricane opened a new inlet through the Core Banks south of Portsmouth, creating an island thereafter called Portsmouth Island. Until then, as seen on the old maps, Portsmouth had been a town at the north end of Core Banks, not its own island.21 Life on the island in the first half of the twentieth century was far different from its prosperous and bustling earlier years. Older methods of living and housekeeping were rarely updated. Cooking stoves were fueled with kerosene for decades after electricity was common elsewhere. Heat from the stoves dictated summer kitchens, outbuildings more typical of the nineteenth and early twentieth centuries. Refrigeration was not available, either from ice or fuel. Instead, small screened houses, known as dairy houses or milk houses but more akin to a small compartment, were used for short-term storage, sheltering the food from the sun while welcoming ocean breezes. Electricity from generators came late to Portsmouth, after World War II, and only to a few houses. Drinking water was not taken for granted. There was only one deep freshwater well on the island, and that eventually became brackish. Residents depended on rainwater collected from roofs into cisterns built adjacent to the houses. These were carefully designed and regularly cleaned. Special preparations were made before hurricanes to prevent infiltration of salt water.22 Years later Ada Roberts Styron visited the island and recalled aspects of life there.

21. The inlet later closed, then reopened. Today the sand between Portsmouth and the Core Banks is more often above water than below.
22. Delores Gaskins interview, April 26, 2014 Homecoming (Babb descendant).

"Usually two of our cows would come up from the range at night, to nourish their penned-up calves and supply us with milk, cream and butter. For them we drew brackish water from a shallow well. We drank rain water from our large juniper cistern. There was only one deep well of good, fresh drinking water on the island. It was on land Up-the-Banks."23 Essential to the island were provisions from Ocracoke across the inlet, and especially from the mainland. The mailboat Aleta served multiple functions. Officially the ferry to Ocracoke across the inlet, it also came out to the inlet to serve Portsmouth. In the 1930s, the Aleta made a round trip to the mainland every day, leaving Ocracoke at 6 am for Atlantic, then leaving the mainland at 1 pm for a stop at Cedar Island and a second stop at Portsmouth. A designated resident took a small boat over the shallow waters to meet the mailboat and pick up or deliver items. From the Aleta came mail, groceries and provisions from general stores in Atlantic. It also served as a passenger ferry.24 In 1937, the Coast Guard’s Life-Saving Station was closed, further diminishing the town’s vitality. The population by 1940 dropped to 42 people and continued its rapid decline. There were two students in the school when it closed in 1943 (Fig 12). Families still lived on the island, but their older children went to school off the island, probably in Ocracoke.25

A year later the Great Atlantic Hurricane of 1944 flooded Portsmouth and caused great damage to buildings, causing yet more residents to relocate to Ocracoke or to the mainland. Families with young children had no choice but to leave. 26 The Coast Guard reactivated the station during World War II, but in 1945 closed the station, taking more jobs from the island. The church was next; it ended services in 1956. Thereafter, a minister

26. By 1950 the youngest resident was 28; NPS exhibit at Portsmouth Visitor Center (Dixon-Salter House).

from the mainland visited congregants at their houses once a month. Finally, the mailboat made its last Portsmouth stop in the late 1950s and the Portsmouth Post Office closed in 1959. The former Life-Saving Station (Coast Guard) was used as a lodge by a hunting and fishing club. 27

In the 1950s while Portsmouth institutions were closing their doors, individuals began buying abandoned houses for use as summer cottages, and the State of North Carolina began purchasing land on Core Banks, including properties in Portsmouth Village, for the purpose of preserving the natural barrier islands.

When the Cape Lookout National Seashore was authorized in 1966, the State of North Carolina began acquiring buildings in Portsmouth for eventual transfer to the National Park Service. Most owners who used the properties seasonally sold outright, but the remaining residents were granted life estates allowing them to live in their houses until their deaths. The state transferred all

properties to the Park Service in 1976 when the National Seashore was established.\footnote{28. George J. Olszewski, “Historic Resource Study for History of Portsmouth Village,” typewritten draft, September 1970, p. 73.}

Although Portsmouth houses continued in seasonal use, in 1950 only fourteen residents remained, and only four were living year-round on the island in 1962. Soon there were three, a man and two women, all elderly. By the late 1960s, all spent their winters at Ocracoke or on the mainland but the majority of the year at Portsmouth.\footnote{29. Olszewski, "Historic Resource Study," pp. 70, 72.} In 1970 the man, Henry Pigott, became ill and moved to Ocracoke to live with a friend.\footnote{30. Rudy and Celestine Carter of Hampton, Virginia, interview, April 26, 2014 Homecoming. Pigott was Rudy Carter’s uncle.} After his death in 1971, the women agreed reluctantly to move to Beaufort. Those were the island’s last year-round residents. Marian Babb retained a lifetime right to her house and continued to return to Portsmouth in the summers.\footnote{31. Salsi and Eubanks, \textit{Crystal Coast}, p. 86.}

In the 1970s, the Park Service was juggling life estates, special use permits, and a court judgment for a 25-year lease.\footnote{32. Site map, “Special Use Permits,” showing categories of agreements, June 24, 1976.} It began a successful leasing program for several Portsmouth houses. The long-term agreements, generally twenty years, required leaseholders to maintain and improve the buildings following the Secretary of the Interior’s "Standards for Rehabilitation" and specific conditions of the lease, including a requirement for a compost toilet if a flush toilet was not installed.\footnote{33. Ellen Fulcher Cloud interview, April 26, 2014 Homecoming.} A typical rental amount was about $5,000 per year.\footnote{34. For example, the lease of January 3, 1990 made to Charles Jackson Gilley and Jacob Eli Fisher, Jr. for the Henry Pigott House.} Some were leased to fishermen and many to families with a connection to Portsmouth, who used the houses for weekends and summer vacations. The program was successful for many years in putting the houses to use and helping with their maintenance.\footnote{35. Cloud interview, 2014 Homecoming.}

\section*{NPS Planning Efforts}

The first planning document for the park that addresses Portsmouth is the 1971 Master Plan, compiled from studies carried out from the 1966 authorization of the park to 1970.\footnote{36. Cape Lookout National Seashore, \textit{Master Plan}, Cape Lookout National Seashore (Harkers Island NC: Cape Lookout National Seashore, 1971).} One of the studies for the plan was a preliminary Historic Resource Study (HRS), produced by NPS historian George Olszewski in a 1970 draft "to satisfy the research needs specified in the Historical Resource Study Proposal CALO-H-1, Historic Resource Study, Portsmouth Village. " The area’s historic sites were identified, evaluated, and plotted on an historical base map.\footnote{37. Olszewski, "Historic Resource Study," p. 1.} The HRS examined a large number of primary documents not previously researched, and may be the first academic study of the island’s history.

The Study recommended the "theme" that should guide the National Seashore’s treatment of Portsmouth. The village "should be restored to accent the cultural and economic life of the Bankers. At Portsmouth the story could be told of how the people lived, earned their daily bread, raised their children and adapted to their environment. Economic activity centering around Ocracoke Inlet should be emphasized since it relates so closely to the life of the Portsmouthers."\footnote{38. Ibid., p. 77.}
The 1971 Master Plan repeated earlier informal proposals in focusing on the natural environment. It introduces historic resources only generally, loosely stating an intention to “restore the historical scene” at Portsmouth Village.39

The Park Service did address immediate issues at Portsmouth. Vegetation had grown up on the island since the 1950s when the state of North Carolina outlawed free-range grazing on the Outer Banks (Fig. 13). In the following years, trees and low vegetation took over much of the open land in the village when only a tiny and elderly population lived on island. In the late 1970s and early 1980s after the Seashore was established, NPS began clearing the trees and overgrown brush and began an as-needed program of repair to buildings.

In response to requirements of the National Parks and Recreation Act of 1978, NPS completed a more comprehensive General Management Plan (GMP) in 1982 (printed in 1983).40 The plan reflects additional research on Portsmouth, for which a National Register nomination had been completed. The plan incorporated historic resources planning and introduced interpretive themes for the village, mostly taken from Ross Holland’s 1968 Survey History of Cape Lookout National Seashore.

The GMP was preceded by a draft released in August 1978. Work at this time is explained in an undated article:

According to its proposed management plan, released in August of 1978, the National Park Service intends to preserve the exterior of the buildings remaining on Portsmouth. Work has already started on some of the buildings. The Coast Guard Station has been reshingled and both the church and the post office-general store have been painted.

The Park Service hopes to provide transportation to the island for 150 visitors a day. These visitors will receive guided tours during the busy season and may go on self-guided tours in the off-season. Also planned for the village is a dock, water and sanitation facilities, a ranger station, and a maintenance area.

According to Portsmouth district ranger Kevin Kacer, in The News-Times, a half-million dollars has been appropriated by Congress for restoration of the buildings over the next five years. However, it will be ten years before restoration is finished.41

40. General Management Plan / Development Concept Plan, 1982-83
The early history of Portsmouth is compelling, and is reflected in planning documents as it supersedes the more recent history of the town. Economics and hurricanes destroyed all eighteenth century and all but two nineteenth-century buildings, yet the documents do not address an interpretive plan for the buildings actually on site.

In 1982 the park finalized the Historic Resource Study on Portsmouth Village, many years in the making. The 1970 draft was delayed by the park’s work on the 1976 American Bicentennial. When picked up again it was revised and updated by three other historians before its 1982 publication.42

The park completed a Resources Management Plan and Environmental Assessment in 1984 that more explicitly addresses historic resources. This was the first indication of a systematic look at cultural resources by the park, mainly to comply with Section 106 of the National Historic Preservation Act of 1966. Its emphasis is on preventing deterioration; the plan places historic resources as the park’s third priority, behind recreation and natural resources. Recommendations for cultural resources management, focus largely on Portsmouth and the Cape Lookout Light Station (because both were listed in the National Register), the park museum, archives, and archaeological sites.43 Portions of this plan apparently were written some years earlier and state in one place that Portsmouth was not yet listed in the National Register, though the listing was effective in 1978.44

The Resources Management Plan recommended detailed HSRs, necessary to conduct proper stabilization as well as management of rampant overgrowth around the buildings of the village. At that time, work in the village was unprogrammed and reactive, without benefit of historic research to guide decisions. No interpretive themes were proposed in the plan, but the report recommended hiring a full-time park historian.45

In December 1983, NPS staff led by Rene Cote, Southeast Region Historical Architect, inspected the buildings of Portsmouth and prepared a report in January 1984, its purpose “to establish areas of priority which can later be systematically

42. Olson, Portsmouth HRS, preface.
43. Resources Management Plan and Environmental Assessment, (Cape Lookout National Seashore, 1984), pp. 8-9, 115-16; the plan includes a chronology of archaeological work in the park.
44. Ibid, Archaeological Data Section.
programmed into budget proposals.” The report first recognizes the inalterable geographical conditions of Portsmouth that affect its buildings: the limited natural horizontal drainage, the aggressive marine environment (wind, salt, sun, flooding, humidity), the high water table, and the saline soil.46

The geography of the waterways surrounding the island was also noted as a preservation issue, their shallow channels limiting the size of boats and transport of equipment, materials and crews to the buildings. The shoaling that contributed to Portsmouth’s economic decline was now affecting its preservation.

After their inspections, Cote and his team addressed factors that could be improved.

- crews (carpenters, painters, roofers) who had conducted repairs and maintenance were not adequately qualified;
- crews were using incompatible paints on structures, applying oil-based primer coat and one latex finish coat;
- water was ponding under and around structures, and sand buildup had caused some structures to sit below grade, leading to moisture deterioration and insect infestation;
- these conditions were causing structural settlement, in turn restricting the operation of windows and doors for interior ventilation.

NPS completed Structure Survey forms in the field to assess conditions at Portsmouth’s buildings. These are dated 1984 in CALO files, but are more likely the field notes that Cote’s team made in December 1983 to create the January 1984 report cited above.

A management plan completed in 1990 includes brief historical information on Portsmouth. A 1997 plan addresses interpretive themes, not mentioned in the 1984 plan, but a repeat of the “sea” theme in the General Management Plan. The focus for Portsmouth was its early development associated with shipping at Ocracoke Inlet. The plan gave some emphasis to the need for in-depth historical study of Portsmouth’s buildings.47

In the early and mid-2000s, four Historic Structure Reports (HSRs) were completed by Tommy Jones of the NPS Southeast Regional Office. These in-depth studies of the physical histories of buildings are invaluable to the park’s decisions for repair.

The park’s first comprehensive study of Portsmouth was not until 2007, when the Cultural Landscape Report provided a lengthy history of the island and specific recommendations. The CLR endorsed the finding of the 1978 National Register nomination that Portsmouth was over 200 years old, and “the only existing village on the Core Banks south of Ocracoke Inlet.” It recommended an extension of the period of significance to the 1971 end of permanent residency.48

In 2010, David and Anne Whisnant submitted their excellent draft Historic Resource Study for CALO, which includes a comprehensive history of the lands within the park, including Portsmouth, and recommendations for interpretation.

The Long-Range Interpretive Plan of 2011 addresses the difficulties of providing adequate sanitary facilities for leasing Portsmouth’s buildings for residential use. Other daytime, administrative uses might be found, since such facilities for non-residential uses may be feasible. Compost toilets can be housed in the village’s outbuildings with minimal impact on historical fabric.

Hurricanes have continued to flood and damage Portsmouth’s buildings during NPS ownership. During Hurricane Sandy in October 2012, the village was flooded by storm tides. The Post Office received approximately eight inches of water and the Portsmouth School lost some windows. The Methodist Church was damaged by the heavy winds, loosing roof shingles and developing a significant structural tilt.49

Documented changes in climate are projected to produce larger and more violent storms. Sea levels are rising as predicted, and the dangers affecting the buildings of Portsmouth Village are expected to increase. Faced with these threats, the National Park Service (NPS) recognized the need to record the buildings of the village. The impact of sea level rise is addressed in the Foundation Document of 2012. Eight properties are extensively documented

in HSRs; NPS selected thirteen other building complexes to be documented in a new approach to create a permanent visual and descriptive record of the buildings. *The Portsmouth Village Documentation Project* was completed in August 2015, with thirteen stand-alone reports bound in two large volumes.

Portsmouth is celebrated and not forgotten. In 1992 the first Portsmouth Homecoming was held, and has continued to be held in April every other year. In 2000, only nine people were living who were born on Portsmouth; two of them attended the homecoming, including Jesse Lee who was reputedly the last baby born on the island.50

The 2014 Homecoming was held on April 26. Over 400 people attended, arriving over several hours in small groups as shallow-draft boats made the rounds from Ocracoke, Core Banks, and Cedar Island. From many states and as far away as California, nineteen Portsmouth families were represented by their descendants, many of whom had spent summers and vacations in Portsmouth houses through NPS leases. The Homecomings are important to the people and beneficial to the village, helping retain an attachment to place. Planning for the 2016 Homecoming is underway.

Map of Portsmouth Village showing location of the Portsmouth Methodist Church. (CALO base map)
I.B Chronology of Development and Use

The church faces south-southwest; for the purposes of this report the building is described as facing south.

Religious services were held in Portsmouth Village from the earliest years of the community. In 1760, John Tolson was appointed Anglican Lay Reader for the island by St. John’s Parish in Beaufort. It was Tolson who had purchased the first property lot in Portsmouth in 1756.51 This first reference to religious services gives no indication of a church building either proposed or already present.

Early history of religious activities at Portsmouth is scant, though it is certain that some level of organized worship took place and that ministers visited the island. The earliest record is from 1766, when the Reverend Alexander Stewart, in poor health and seeking relief for his lameness, visited the “little town of Portsmouth—Inlett [sic] a few days for the bathing in the salt water and have baptized twenty seven children from the different islands round me.”52 A decade later, Henry

Figure 16. The village showing the steepled church and the Pamlico Sound beyond, October 1978. (CALO Acc.
Mouzon’s 1775 map of North and South Carolina depicts a churchlike structure in the Portsmouth community (Fig. 17).

Although the next known reference to a church was half a century later, it is unlikely the island was without a church. Portsmouth was flourishing in the 1780s and 1790s, and with a population of 200 or 250 in 1800 was the largest settlement on the Outer Banks. An 1806 map of the village depicts several houses, a two-story “academy” and a windmill, but no structure identified as a church (Fig. 18).53 But clearly all buildings of 200 residents are not shown, and a community with a two-story academy by 1806 and warranting a customs house the same year certainly had at least one church structure.54 The first text record of a church building is from 1828, when the Journal of the Methodist Protestant Church, a spinoff Methodist denomination formed that year, mentions a church at Portsmouth.55

The next record of a church building is an 1840 deed from Dr. Samuel Dudley and his wife Susan D. Dudley to the trustees of the “religious Society or Congregation of the Methodist Episcopal Church,” one of whom was Dr. Dudley himself. Other trustees included men whose family names continued on Portsmouth for generations: Wallas Whitehurst, William Dixon, Wallis Styron and Thomas W. Styron.56

The deed was drawn on March 7, 1840 and recorded at the courthouse in Beaufort on July 2 of that year, transferring for $750 “the whole lot…in the island of Portsmouth…lying about one hundred yards Northeast of Mrs. Abigail Whitehurst in Portsmouth aforesaid where she now resides, on which land is a house built for a Church, two stories high and on the ground thirty six feet by thirty” (Fig. 19). The boundary description mentions “the above named Church house” within the boundaries, and describes a lot 70 feet by 76 feet, its lines parallel with the walls of the church already in place.57

54. Olson, Portsmouth HRS, p. 68. Interpretations of the 1800 census vary from about 200 to closer to 250 Portsmouth residents.
56. Carteret County Deed Book Y, p. 50.
57. Ibid.
PART I.B CHRONOLOGY OF DEVELOPMENT AND USE

The Dudleys stipulate in the deed that the land and improvements are “for the use and benefit of the religious Society or Congregation of the Methodist E. Church on the Island of Portsmouth… and in trust for the house thereon erected for a place of worship.”

The deed continues, “and in further trust and confidence that they [trustees] shall at all times hereafter and forever hereafter, permit such Ministers and Preachers belonging to the said Methodist Episcopal Church…and also they shall at all times forever hereafter permit all persons hereafter to assemble and meet therein for worship.”

The deed confirms that a church building was on the land in 1840, though it is not known whether it was the same building mentioned in 1828. The next reference to a church building is the 1852 Coast Survey map of Ocracoke Inlet, which depicts two churches at Portsmouth and two at Ocracoke (Fig. 20). The word Steeple is written in large letters to the south.58

A list of ministers prepared by local historian Ben Salter suggests not only that a Methodist church was present at Portsmouth by 1828 when statewide reports began, but that it was the building referenced in the 1840 deed, and stood for many years thereafter.59 From various sources, including Methodist journals, it appears that some of the ministers were resident on Portsmouth, but how many, and when, is not known.

1828 Irvin Atkinson and Alfred Norman; Joseph Carson as presiding elder
1829 John Keer
1830 Raymond R. Minor
1831-32 Thompson Garrard
1833 Jinius W. Jackson
1834 Thomas Garrard [perhaps Thompson again?]
1835-36 Henry Wood and James M. Darden
1837 William M. Jordan

1838 Jinius W. Jackson again
1839 W.W. Turner
1840 W.M. Walsh
1841 John R. McIntosh
1842 J.B. Corn
1843 N.A. Hooker
1844 W.S. Chaffin
1845 R.A. Claughton
1846 Charles Parker
1847 Bird S. Turner
1848-50 supply ministers
1851 Rev. J.M. Sharpe
1852 James J. Hines
1853 Alexander Gattis
1854 Thomas R. McRae.

In 1854 the church was transferred from the Roanoke Washington district to the Atlantic district (Methodist Episcopal districts).

1855 Isham H. Hill
1856 J.L. Newby
1857-58 supply ministers
1859-60 W.H. Wheeler.

The church returned to the Washington district in 1859. The 1860 census lists Wheeler, a 22-year-old Methodist minister, native of South Carolina, residing in the house of Collector of Customs O.S. Dewey. Oliver S. Dewey was collector at Ocracoke in 1858-59, and presumably in 1860, which suggests that Wheeler lived not in Portsmouth, but across the inlet in Ocracoke.60

Ministers continued at the church in the early years of the Civil War, but no appointments were made while Portsmouth was under Union occupation, and as the list below indicates, none was recorded until 1867.

1861-62, A.R. Raven
1863 C.P. Jones
1867 George E. Wyche
1868-69 supply minister
1870 Caswell W. King (1870 census lists no minister on Portsmouth)
1871 W.M.D. Moore
1872-73 W.B. Maness
1874-75 J.M. Lumley
1876 J.C. Smith
1877-78 N.A. Hooker

1879 J.M. Lumley again
1880-83 E.D. Hoover
1883-95 supply ministers
1896 R.L. Warwick; died 2 weeks after January arrival; no replacement until December.
1897 F. Taylor
1898 S.T. Mayle
1899 B. Humble, who was minister when the 1899 hurricane destroyed the church.61

The uninterrupted flow of ministers shown above suggests that a building, apparently in place by 1828, may have survived for at least 70 years through the numerous storms of the nineteenth century, although it is also possible that the church was destroyed and these ministers held services in other buildings while a new church was built. An 1842 hurricane was particularly powerful. Either way, a church building was destroyed in the last year of the century by the Great Hurricane of August 1899, the devastating hurricane that blew down many houses and outbuildings and swept away others.62

No photographs of the nineteenth-century church have been found, and those interviewed for this report do not remember any drawing or photograph of that church.

Undeterred, the people of Portsmouth repaired and rebuilt. A new church was built by 1901 with funds from the Methodist Conference and from the islanders, who provided both time and money (Fig. 21).63 In the CALO collection is an oblique photograph of the 1901 church showing the front façade and the east side. The church is wood-sided and front-gabled, with its three-stage steeple tower appended to the front gable end rather than rising from the roof. The lowest and largest stage is rectangular with a central residential-sized door; a flat-arch window is visible on the east face. Above this stage is a wood-shingled apron roof. The next level appears square in plan with a horizontal band giving the appearance of a third stage with

60. House Documents, Otherwise Publ. as Executive Documents: 13th Congress, 2d Session-49th Congress, 1st Session, 1860 (Google eBook).

61. Salter, Portsmouth: Short Stories, pp. 35-36.
62. Life-Saving Station Log, August 17-18, 1899, excerpted by Tommy Jones, NPS.
63. Salter, Portsmouth: Short Stories, p. 36. The first minister of the 1901 church was the Reverend Black, who remained until 1904. The church was then taken into the New Bern district and supplied by E.W. Read. Ministers who followed were Watson, Boone, Daniels, Webster, Pittman, Eure, Ipock, and Hocutt.
louvered vents. Above is the octagonal spire covered with wood shingles of alternating pattern. The side elevation is three bays wide with flat-arch windows. The church appears to be white with darker trim.

The 1901 church was short-lived. Both it and the island’s Primitive Baptist Church were destroyed in the 1913 hurricane. The daily log of the Portsmouth Life-Saving Station reports simply, “Sep 2-3: Cat 1 hurricane [damaged Life-Saving Station], washed away part of sand fences and jetty at creek; two wrecks; destroyed Methodist church.”\(^{64}\) The Carteret County Times announced dramatically, “During the gale, Ocracoke and Portsmouth were reported to have been swept off the map.”\(^{65}\) The Parson family Bible records a wedding performed in the church in 1913, no doubt the last wedding before the church was destroyed.\(^{66}\)

A New Church

Although the Primitive Baptist Church was not rebuilt, the community was determined to build a new Methodist church. Life-Saving Station Keeper Charlie McWilliams spearheaded the effort to raise funds for the new church, spreading the news well beyond Portsmouth, asking for materials, nails, paint, shingles (Fig. 22). Joe Robinson of Atlantic is said to have “cut every shingle for the steeple using his pocketknife.”\(^{67}\)

Construction of the new church may have begun in 1914, though it is more likely that it was started in 1915 and completed late that year or even in 1916. Significant deliveries of lumber were made in the late summer and fall of 1915. The Life-Saving Station Log records that the men, on August 10, 1915, “unloaded lumber for church.” Additional materials were brought in on the afternoon of of Portsmouth Village proper, perhaps in the building constructed as the academy.

\(^{64}\) Life-Saving Station Log, September 2-3, 1913, excerpted by Tommy Jones, NPS. The Primitive Baptist Church was located in the “Middle Community” southwest

\(^{66}\) From Parson Family Bible, excerpted in Doctor’s Creek Journal, Fall 2011, p.8.

The steeple above is unusual, a variation of a Rhenish helm or helm roof, but octagonal with its four lower gables resting on the apron roof of the belfry rather than integral to the wall.70

Double doors at the front are glazed, though the crowd of people blocks the lower portion. The first two stages of the tower are sheathed in German siding, and all three apron roofs, the gable ends at the steeple, and the steeple itself are covered with wood shingles that appear hexagonal or diamond-shaped. An arrow weathervane, perhaps the one in place today, tops the spire. These shingled areas are painted a dark color, possibly similar to the green now present. As contrast, the spire’s gable faces appear white.

70 Rhenish helm roofs were once common in the Rhineland of Germany, and a small number were built in England in the last half of the nineteenth century. They are uncommon in the United States.
Figure 25. Aerial view of church looking north towards Doctor’s Creek and showing heavy vegetation, 1978. (CALO Coll. C17a)

Figure 26. Aerial view of the village looking south, 1969. Church is circled. (CALO Coll. C9)
A photograph taken when the church was under construction shows similar features within a web of wooden scaffolding. Though the photograph is blurry, the front doors are half-glazed sash doors (Fig. 23).

The pews in the church are in the Eastlake style. Though the style was popular in the late nineteenth century, its use continued into the early twentieth century, particularly in Gothic-influenced churches (Fig. 27). The pews may have been reused from the 1901 church, or perhaps McWilliams and others found pews from a church on the mainland. Those interviewed for this report did not recall conversations about the pews, though they have heard that salvaged pieces of the 1901 church were used in the new building. The large girder for sanctuary floor joists is clearly a reused timber.

Lighting
The progression of lighting systems in the church began with kerosene lamps, the fuel brought from the mainland by boat. Lamps “without mantles,” probably meaning wick lamps, are reported to have hung from the ceiling, and “in the center were three large lamps which held about six quarts of kerosene. They had a tremendous large copper shade over them.” Portsmouth houses at that time were also lit with kerosene lamps and lanterns. Kerosene had also been used in the previous church, as reported in a description of a 1911 wedding held in the 1901 church that mentions “illumination from the kerosene wall lamps.”

The kerosene lamps in the new church were updated to electric lighting when Jesse Babb, who lived next door to the east, acquired a World War II surplus generator and set it up in an outbuilding behind his house. He lit his own house, and ran a

71. James E. White interviewed by the authors at April 26, 2014 Homecoming (Gilgo descendant).

wire from the generator to the church on Sundays to power new electric lights there. It was the first electricity in Portsmouth. Kerosene lamps continued to be used to supplement the electric lights (Fig. 28).

Some years later the generator failed. Jesse’s wife Lillian Babb provided funds for the installation of gaslights in the church. Like other rural communities not served by electrification, many Portsmouthers used carbide gas for lighting. The process has been described briefly in interviews. Calcium carbide pellets were placed in a container outside; water dripped onto the pellets released acetylene gas, which was piped to the lighting fixtures inside the house.74

The church may have used this system, but it is more likely at that date that the church’s gaslights were fueled by propane, brought over in tanks from the mainland. A photograph, undated but taken after 1956 when church services ended, shows tanks leaning against the front of the church (Fig. 29).

Portsmouthers enjoy telling of the sequence of lighting, which is the reverse of the more typical progression from gaslights to electricity.75 Fixtures from both systems remain in the church.

The Village Church

The church was the center of community life at Portsmouth Village. Lucy Beacham Gilgo recalled “While living on Portsmouth one couldn’t get around to do anything….You had church services, and that was all. There was nothing else to go to.”76

Descendants of Portsmouth residents recall in interviews their families’ stories about church services and Sunday School in the first half of the twentieth century. At that time, and probably for several decades of the late nineteenth century, neither church had a resident pastor, so both denominations attended the church where a visiting minister was present. One former resident

74 Ellen Fulcher Cloud and Delores Gaskins interviewed by the authors at April 26, 2014 Portsmouth Homecoming.

75 Several Portsmouth families interviewed together by the authors at April 26, 2014 Homecoming.

organized program and assigned teachers for children and for adults.

Some remembered Christmas traditions at the church. “We had Christmas trees, two Christmas trees in the church… Mothers put their gifts on the trees, and they were taken off by Santa Claus, and our names called, and the gifts taken home.”

Ministers also came to Portsmouth on short notice for funerals. Typically, the family notified the Coast Guard, (former Life-Saving Service), who passed the information on. The next morning a minister came over on the mailboat, held the funeral, and went back on the mailboat that afternoon.

Services were held at the Life-Saving Station as well. In June 1926, “Rev. Geo Willis was transferred down the beach from Core Bank, held service at this station.” He was taken to Ocracoke the next morning. And in December, the station “sent boat to Ocracoke for Rev. Willis,” and the next day “transferred Rev Willis to Core Bank via automobile.”

Young ministers also served the church. Jesse Bookhardt was from the mountains of Virginia. In the 1930s while a student at Duke Divinity School, he travelled to the distant and unfamiliar coast to spend the summer serving at both Portsmouth and Ocracoke. He later married a Byrum descendant of Portsmouth and bought the Tom and Lucy Gilgo House.

In 1939 the church at Portsmouth changed from Methodist Episcopal to Methodist Protestant when branches of Methodist denominations were unified.

Alterations and Repairs

The earliest changes to the church are not known, but the ca. 1916 and ca. 1918 images showing original features help identify later alterations. The

77. Elma Dixon, quoted in Portsmouth Visitor Center exhibit.
79. Ada Roberts Styron interviewed by her daughter Rosalee Styron Dondarro, 19 January 1979, CALO transcript #007?
81. LSS Log, June 1, December 9 & 10, 1926, excerpted by Tommy Jones, NPS.
82. Carolyn Bookhardt Erwin, interviewed by the authors at April 26, 2014 Homecoming; deed.
original features help identify later alterations. The half-glazed doors with a glazed Gothic-arched transom above were to change.

Certainly the deadly 1933 hurricane caused at least some damage to the church, but no documentation was found in available records. A ca. 1930 photograph shows the damaged or destroyed glazed transom infilled with siding boards. If the date of the photograph is correct, the transom had been damaged before the 1933 storm. This and a 1947 photograph show the concrete steps and landing that remain in place today (Figs 30, 34).

More is known of the changes caused by the Great Atlantic Hurricane of 1944, which brought several feet of water onto the island and wind gusts that damaged the church roof and caused the church to shift on its foundation and the tower to lean to the east. A new roof was donated by the Taylor Brothers of Sea Level on the mainland. The brothers were successful in the shipping and salt industries and well known for their generous support of Down East communities. Among their larger projects was a hospital in Sea Level, only the second hospital in the region after the Marine Hospital in Portsmouth. In 1959 they established the first car and passenger ferry service between the mainland and Ocracoke.

The church apparently was closed for some years while repairs were made. In 1956 the state Conference of the Methodist Church made changes to its district boundaries, explaining: Take the Cedar Island and the Sea Level churches from the Atlantic Charge and place them with the re-opened Portsmouth Island Church to form a new Charge to be called the Sea Level [emphasis added].

A minister was making monthly visits to Portsmouth, but when those services returned to the church building is not stated:

Thanks to the generous help of laymen and women of the district, our church on Portsmouth Island has been repaired, and an assistant pastor employed for the Atlantic Circuit, whose ministry has included regular services every month at Portsmouth.

86. Taylor obituary, The Danville Register, August 19, 1967.

86. Ibid., p. 118.
corroborating the Methodist Conference’s report of lengthy repairs. The rear elevation is weathered and almost paint-free. The side elevation appears to have a fresh coat of paint to a level just above the windows, though the pattern is unusual. The new paint carefully follows a siding board, leaving the top seven rows of boards unpainted (Fig. 33).

The series of photographs shows that the doors of the church have been replaced several times. The original sash doors had been replaced by about 1930, though the pattern is indistinguishable in the photograph. By 1949, a family photograph shows the interior of the doors with vertical beaded or V-groove boards. And in a post-1956 photograph, five-panel doors are in place (Figs. 23, 24, 30, 34, 29).

Church services at Portsmouth were discontinued in 1956, which seems odd after the Methodist Conference’s report that the church had been repaired and reopened. However, the population was not only decreasing, but aging, and residents were described as too feeble to attend regular services. Of the seventeen people who remained on the island in 1956, the youngest was Henry Pigott at 59 years old. Because “most of the residents are ailing,” instead of services in the church, a minister...
As the state assembled land for the National Seashore, the Methodist Conference Board of Trustees in 1972 voted to sell the church to the state for $6,500, but retained a permit allowing services to be conducted.90 The provision was consistent with the stipulations of the 1840 deed, which required that the land and church were “for the use and benefit of the religious Society or Congregation of the Methodist E. Church…and [trustees shall] permit … all persons hereafter to assemble and meet therein for worship.”91 Although regular services were no longer held at the church and the last residents left the island in 1971, a wedding was held there in 1978 after the church came under NPS ownership. Margaret Wallace, who became an unofficial Portsmouth caretaker, “stayed in the old schoolhouse for weeks at a time.” On Portsmouth she met Dallas Willis who had a lease on a Portsmouth house. They were married in the Portsmouth church in September 1978. The tower bell was rung, and an elderly Murray Spencer of Ocracoke recalled, “I helped to put that bell back in the steeple once,” though the date and circumstances were not reported.92 The church was the setting for the baptism of a baby in 1992 during the first Portsmouth Homecoming.93

90. Eubanks and Salsi, Portsmouth Island, p. 47.
91. Carteret County Deed Book Y, p. 50.
The National Seashore was formally established in 1976 after many studies and assessments of the new park’s resources. Dense vegetation still covered Portsmouth, interspersed with paths between roads and buildings (Figs. 25, 36). The church was one of the first buildings assessed. In January 1977, the cost of its stabilization was estimated at $15,000; the undefined “Approved Treatment” was estimated at $60,000. Available park records show that the first work on the church was the 1979 repainting of the exterior (Figs. 37, 43). Whether the work was done by in-house staff or by an outside contractor is unclear; a later NPS memo is titled “Work Completed by Cape Lookout Maintenance Staff,” but at the same time lists this project as contracted. Other work that year is not indicated.

NPS continued its efforts to document the historic properties of the new National Seashore. In 1981, architect John L. Thompson produced drawings of several Portsmouth buildings, including two sheets of interior and exterior elevations of the church. A few elements of the drawings are inaccurate. The most noticeable is the proportional system of the tower structure. The proportions of the second,

95. From handwritten form prepared by NPS in 1987 or later.
Figure 39. John Thompson drawing, sheet 1 of 2, 1981. Some measurements and proportions are inaccurate. See larger drawing in Appendix B.

Figure 40. John Thompson drawing, sheet 2 of 2, 1981. Some measurements and proportions are inaccurate. See larger drawing in Appendix B.
third, and steeple stages depict a tower that is taller and narrower than the actual tower. The roof of the second stage is drawn at a level higher than its actual position, making that stage taller; the lancet window is drawn accordingly taller than actual to fit the space. The windows on the front wall flanking the entrance bay are drawn larger than actual. The side elevation of the tower shows corresponding discrepancies (Figs. 39-40 and larger drawings in Appendix).

Similarly, the shingled third stage shows a narrower and more pronounced telescoping than found on the physical building. This proportional change continues in the small gable above, and is particularly true of the steeple, which is shown as an elongated spire. The junction of the shingled gable and apron roof is misplaced, and the spire is shown in a conical shape rather than its actual octagonal form.

The foundation and floor plans are helpful, and the drawings show the two known alterations made to the building after its construction and documented in earlier photographs. At the front entrance is the pair of five-panel doors seen in the post-1956 magazine photograph, and which replaced the half-glazed doors seen in the ca. 1916 and ca. 1918 photographs. Above the doors, the transom in 1981 remains boarded.

In 1982-83, NPS replaced the roof and installed a lightning arrestor system.97 Drawings completed in 1982 by NPS Southeast Region Historical Architect John Garner show details of the project.98 The roof of the sanctuary was to be covered with “new square-pattern wood shingles” with five-inch exposure and quarter-inch joints, nailed onto the existing sheathing (noted as 1” x 4¼” with 3” spacing). The width of the shingles is not indicated. A double-layer starter course was to have a 1½” overhang at the eaves and one inch at the gable ends (Fig. 41).

The ridge cap, also of square-end wood shingles, shows an alternate overlap as shingles meet. Metal valley flashing was to be placed directly on the existing sheathing with the wood shingles directly on the metal. (A handwritten note in another document states that the metal was galvanized.)

Figure 41. Plans for the 1982 reroofing of the church. (CALO Coll.)
electrodes. At the top of the steeple, the base of the existing weathervane was to be grounded to the new lightning protection system, topped by a new six-inch copper ball (specified as #6057 by Kenneth Lynch & Sons, Inc. or equal).

An associated repair was the replacement of a damaged stud in the west wall of the tower’s entrance level. Interior siding was to be replaced “to match existing;” however, the location and extent of the interior work is not given.

According to local ferry captain Rudy Austin, among those who worked on the roofing project was a crew from the North Carolina mountains who often worked on the Blue Ridge Parkway. Austin ferried them from Ocracoke to Portsmouth, where they stayed for two to three days at a time (Fig. 42).

The three apron roofs and two upper stages of the steeple tower were also to be reshingled, the roofs with the same square-pattern shingles as the sanctuary roof, flashed at the wall junctions. Boston ridge caps with alternating overlap were specified.

The walls of the third stage and the steeple and its gables were specified to be reshingled with new hexagonal wood shingles. The lower and second stages of the tower were to remain unchanged.

Only the tower, and only its three upper stages, was to be painted, the German-sided second stage white, the apron roofs, third stage, and spire green, and the gable faces and trim boards white. Garner notes that colors were to match existing and be selected by the contracting officer.

Lightning protection was added. A new ten-inch-long air terminal lightning protector was installed on the north side of the steeple near the peak, its conductor running down the northwest side of the steeple and the northwest junction of sanctuary and steeple, then underground to attach to ground
- Structure is out of plumb due to varying settlement of foundation system;
- Bulges in walls, walls out of plumb, caused by displacement of brick piers; entire structure is shifting;
- Drainage found defective, exacerbated by flooding;
- The disposal of water from the roof drainage system also defective;
- New shingled roof installed in 1982-83 was sound;
- Weatherboards and trim were brittle and weather-beaten;
- Windows, doors, stairs were in sound condition.

Most interior elements listed on the form were checked as defective: rot, decay, insects in framing and windows; settlement and cracks; paint; and vapor barrier. At that time the church doors were left unlocked for public access, with no incidents of theft or vandalism. (Portsmouth buildings continue to be respected by visitors.)

Figure 46. Diagonal wood bracing supports the east and west walls for the pre-Dennis stabilization project. By this time the five-panel doors have been replaced with new six-panel doors. The transom remains boarded. (Eubanks and Salsi, p. 82)
A few years later, a 1987 property list states that, like other structures in Portsmouth, the church was under “Management Category A: Must Be Preserved,” with the Approved Ultimate Treatment noted as Preservation. A project conducted that year is recorded among others in an undated handwritten list of work on the church. The entry reads: “NPS scraped--tighten windows and caulk exterior--1987.” No further information on the 1987 project was found, and no work between 1987 and 1999 is documented in available records at CALO offices, although a significant change was made during that time. A photograph shows that the pair of five-panel doors visible in earlier photographs were replaced with a pair of six-panel doors. The new pattern changed the size and proportions of the panels and their spacing, with each panel shorter in height than the earlier configuration, itself a replacement of earlier designs. The door hinges, doorknobs, and foot and head latches were also replaced (Figs. 38, 44-46).

This was at least the fourth door design for the church. The earliest photographs show half-glazed doors; by 1930 replaced with solid doors; seen in 1949 as vertical beaded or V-groove boards; by the late 1950s with five-panel doors; and in the 1980s or 1990s replaced again with six-panel doors.

A year or so before Hurricane Dennis struck in 1999, NPS braced the church, then jacked it up to stabilize and level the tilting structure. The foundation piers were modified accordingly, the back wall was stabilized, damaged wood was replaced and the exterior painted (Fig. 47). The earlier drawings of 1981 might identify some of the work on the piers. The number of piers in place today remains the same as those in the 1981 drawings, but the current sizes of piers and the spacing between do not match those drawings.

101. List prepared by NPS 1987 or later.
102. Dave Frum, interviewed by the authors September 2013 and April 2014.
It was in association with this project that the early or original window sash were repaired. Local websites reported that “the church has been stabilized and the windows have been restored.”103 All sash were removed and taken to Ocracoke, where Mark Justice removed the glazing and cleaned and repaired the sash. The considerable number of broken or cracked panes were replaced with a matching clear textured starburst novelty glass, and unbroken panes were replaced. The work was funded by the Friends of Portsmouth Island organization (Fig. 48).104

The sanctuary was reroofed in about 2000 after sustaining damage from Hurricane Dennis. A few years later, the steeple was scaffolded and reshingled by a CALO maintenance crew out of the Harkers Island office, using shingles from a large NPS supply stored at Harkers Island.105

In 2003 or 2004, the skirt board and water table were replaced. At the same time or later, much of the lower siding was replaced, as well as all exterior window sills and most of the window casings. Unfortunately, the water table is not sloped to direct water away from the walls of the building, and much of the replacement siding has considerable checking and gouges.

104 Dave Frum, interviewed by the authors September 2013 and April 2014.
105 Ibid.
In 2005, repairs were made to the interior of the church after Hurricane Isabel in 2003 and Alex in 2004 flooded the church with salt water. Pews and the piano were treated (method and materials not defined in project sheet), and 112 square feet of flooring were replaced with three-inch tongue-and-groove heart pine boards, though the locations are not specified (Fig. 51). This work was conducted by a CALO crew during a two-year period of work on many Portsmouth buildings. In his 2006 Historic Structure Report on the Life-Saving Station, Tommy Jones notes that some artifacts stored in the station attic may have come from the church.107

In 2011 NPS painted the church.108 At this time the Friends of Portsmouth Island made another significant contribution to the church when they replaced the transom, which had been clad with German siding for over half a century. The group reintroduced a glazed double-lancet transom similar to that shown in the earliest photographs.

However, although Hurricane Irene in 2011 caused only minor overall damage to Portsmouth, it was less kind to the church (Figs. 49-50). The storm blew out the glass of the new replacement transom, damaged some windows, and caused some buckling of the back wall. Repairs were made by NPS and Friends of Portsmouth Island, and the transom was reglazed.109

The most recent hurricane at the time of this HSR was Hurricane Sandy, which struck hard in late October 2012. A damage assessment performed in November by Tim Bemisderfer and Rene Cote of the NPS Southeast office revealed that the church sustained additional structural damage. The inspection discovered that the building, “whose structural integrity had already been weakened by previous storms, shifted slightly on its foundation causing noticeable cracks in window framing, interior wall finishes, window frames, and interior wall finishes.109

106. PMIS Project Detail Sheet 108564.
107. Jones, Life-Saving Station HSR, p. 91.
108. PMIS Project Detail Sheet 148043.
The new cracks in the window trim and interior finishes suggested that Sandy’s high winds caused the previous lean to become slightly more pronounced. Approximately 25% to 40% of the wood roof shingles were displaced by high winds or pierced by windborne projectiles during the storm. The Assessment recommended the church be closed to the public until a structural evaluation could be completed (Fig. 55).

Figure 53. Tent in front of the church for ceremonies, another for lunch, Portsmouth Homecoming, April 26, 2014.

Figure 54. Doors open and church decorated by Friends of Portsmouth Island during Homecoming 2014.

Figure 55. Sign placed at church entrance after structural damage caused by Hurricane Sandy.
In the fall of 2014, NPS crews from the Williamsport Preservation Training Center removed exterior German siding, pulled wall framing back into vertical alignment, made repairs to damaged framing members, and installed sheets of plywood against the wall framing for additional lateral support (Fig. 56). After repair, the siding was reinstalled.

A year later, a Williamsport crew replaced in-kind the hexagonal cedar roofing shingles of the steeple and the damaged diamond-shaped shingles on the wall sections. According to the NPS ranger, the roofing material is Certigrade Blue Label Number 1 Grade Red Cedar Shingle.

The lightning rod at the steeple and the weathervane were removed during repairs. The modern six-panel front doors were replaced with reproduction historic doors.

111. CALO Chief of Maintenance Mike Baker, telephone interviews by the authors, 2015.
Timeline

1753 Portsmouth established by bill “appointing and laying out a Town on Core Banks, near Ocacock [sic] Inlet, in Carteret County” passes in the North Carolina colonial assembly.

1756 First lots in Portsmouth Village are sold.

1760s 1760, Anglican lay reader appointed to Portsmouth. 1766, first reference to religious services.

1770s 1770, Collet map of North Carolina shows Portsmouth and winding channel of inlet. 1775, Mouzon map depicts churchlike structure on Portsmouth.

1800 White population 165, slaves 98.

1806 Customs Office established. Coles and Price map shows windmill and two-story “academy” at Portsmouth.

1810 White population 226, slaves 121.

1820s 1827, Marine Hospital authorized. 1828, Currituck Inlet closes, sending more shipping to Portsmouth.

1828 The first Journal of the Methodist Protestant Church mentions a church at Portsmouth.

1836-37 1,400 vessels pass through Ocracoke Inlet.

1840 Deed indicates a church building is on the property.

1842 U.S. House Committee on Commerce states “Ocracoke Inlet is the outlet for all commerce of the state of North Carolina, from the ports of Newbern [sic], Washington, Plymouth, Edenton, and Elizabeth City…more than two thirds of the exports of the State of North Carolina pass out to sea at this point.”

1842 Congress appropriates funds for new Marine Hospital.

1846 Storms create an inlet at Hatteras. The new, deeper inlet draws trade from Ocracoke Inlet and Portsmouth.

1850 Portsmouth population is 463; Hatteras has grown to 661.

1852 Coast Survey of Ocracoke Inlet shows two churches at Portsmouth.

1860 Population is over 600 residents with 109 dwellings.

1870 Census records 59 dwellings.

1880 Census records 44 dwellings.

1883 Ocracoke Inlet no longer navigable for lightering.
1894 Portsmouth Life-Saving Station (LSS) is established.
1899 Great Hurricane of August 1899, the San Ciriacio Hurricane, submerges Portsmouth and destroys church and other buildings.
1901 New Methodist church is built.
1913 Hurricane destroys the island’s two churches.
1915-16 Current Methodist church is built.
ca. 1930 Photograph shows original sash doors replaced by solid doors; details not visible.
1933 Damage from major hurricane causes many families to relocate to the mainland. Hurricane opens new inlet through Core Banks south of Portsmouth, creating Portsmouth Island.
1937-38 Coast Guard Station is deactivated.
1940 Census lists 42 residents.
1943 School closes.
1944 Great Atlantic Hurricane brings major flooding and damage; many residents leave for mainland. Storm damages church roof, causes building to shift and tower to lean.
1940s Electricity provided to church for Sunday services from generator at neighbor’s house. Gaslights installed later after generator fails.
1949 Photograph shows interior of vertical-board doors.
1956 Regular church services discontinued; visiting ministers hold services in houses monthly; 17 permanent residents at Portsmouth, the youngest is 59.
1959 Post Office closes.
1960 Census lists 14 residents on Portsmouth; only 4 permanent residents reported in 1962. Many buildings now used as vacation houses or hunting and fishing clubs.
1968 Survey History of Cape Lookout National Seashore is prepared.
1971 One of the three remaining residents dies; the others leave. Portsmouth now home only to seasonal visitors.
1971 Master Plan focuses on the natural environment, suggests “restor[ing] the historical scene” at Portsmouth.
1970s NPS begins clearing overgrowth.
1972 Methodist Conference sells church to NPS consistent with provisions of 1840 deed for use of the church.

1976 Cape Lookout National Seashore (CALO) is established; state transfers properties including those on Portsmouth. Church is one of first buildings assessed.

1978 Wedding held in church.

1979 Portsmouth Village Historic District listed in the National Register of Historic Places.

1979 Church exterior is painted.

1982 First Historic Resource Study of Portsmouth is finalized.

1982-83 Roof replaced and lightning protection system installed.

1982-83 General Management Plan states intent to preserve exterior of all buildings.

1983-84 Portsmouth buildings inspected by NPS team; condition of church assessed.

1987 NPS Property List places church under Management Category A: Must be Preserved.

1989 Friends of Portsmouth Island is organized.

1981-1999 Between these years, five-panel doors replaced with six-pantel doors.

1990 Management plan repeats the “sea” theme of the 1982 plan. Emphasizes the need for in-depth historical study of Portsmouth buildings.

1992 First Homecoming, sponsored by Friends of Portsmouth Island. Seven people born in Portsmouth are present. Homecoming celebrations continue biennially.

ca 1998-99 NPS stabilizes and levels the church, modifies foundation piers, stabilizes back wall, replaces damaged wood, and paints. Friends of Portsmouth Island remove, repair, and replace early or original sash.

1999 Hurricane Dennis damages some of the recent work.

2000-05 Sanctuary reroofed; steeple reshingled; skirt board and water table replaced.

2003 & 04 Hurricanes Isabel and Alex flood church with salt water.

2005 CALO crew spends two years repairing Portsmouth buildings. Repairs made to interior, pews and piano treated, sections of flooring replaced. Some church artifacts possibly stored in attic of Life-Saving Station.

2004-06 Historic Structure Reports completed for Life-Saving Station and three Portsmouth houses.

2010 Cape Lookout National Seashore Historic Resource Study and recommendations are prepared in draft form for the Organization of American Historians under cooperative agreement with NPS.

2011 Church painted. Transom installed by Friends of Portsmouth Island.

2011 Hurricane Irene blows out transom glass, damages windows, and buckles back walls. Repairs made.

2011 CALO Long-Range Interpretive Plan.

2012 CALO Foundation Document.

2012 Hurricane Sandy damages church. Church closed pending structural evaluation.

spring 2014 Over 400 attend eleventh Homecoming celebration; tents erected near church. Though church is closed for safety, doors are opened and nave is decorated with flowers.

fall 2014 Exterior siding removed, wall framing pulled into alignment, plywood attached to wall framing, siding reinstalled.

2015 Church included in new Portsmouth brochure.

2015 Portsmouth Documentation Project documents 28 buildings, including 15 outbuildings, to create thorough recordation in the face of rising sea levels.

fall 2015 Tower roof and wall shingles repaired and replaced. Lightning rod and weathervane repaired and replaced. Six-panel doors replaced with new doors of compatible design.

2015 Historic Structure Reports completed for Portsmouth Methodist Church, Tom and Lucy Gilgo House, Henry Pigott House, and Mason-Willis-Dixon House.
I.C Physical Description

General Description

Locale
Portsmouth Village is located on the north end of Portsmouth Island. Once separate from the North Core Banks to its south, the island is now attached by sand banks except during times of very high tide. Though its boundaries depend on the tide and currents, the total area is only about 250 acres.

Portsmouth Island and North Core Banks are part of the long chain of narrow sand reefs that fringe the southern Atlantic coast of the United States. In North Carolina they form an eastern barrier to a series of almost land-locked bays and sounds.

Portsmouth Village is on the south shore of Ocracoke Inlet, a two-mile-wide passage connecting the Atlantic Ocean to the broad and shallow Pamlico Sound. Across the inlet to the north is Ocracoke Island with the small community of Ocracoke at its south end.

Climate
The climate is temperate and seasonal. Summers are hot and humid with cooler evenings. The warmest month is July with an average high temperature of 85°F and average nighttime lows of 74°F. The hottest temperature on record is 97°F recorded in 1988.

The coldest month is January with an average high of 53°F and low of 40°F. The coldest temperature on record is 6°F recorded in 1985.

The wettest seasons are spring and summer, though the annual rainfall of almost 53 inches is fairly evenly divided throughout the year. The maximum average monthly rainfall is 5.43 inches in August. The minimum average monthly rainfall is 3.19 inches in April.

The humidity, laden with salt, is high through the year, typically staying between 80 and 85 percent RH.

Figure 57. Village Road with wood bridges over Doctor’s Creek, and Methodist Church near center of Portsmouth Village. Unless otherwise stated, all photographs taken by JKOA in 2013-14.
Daily breezes range from 10 to 12 mph but wind gusts can reach two or three times that amount. Winter breezes typically come from the north; summer breezes typically are from slightly west of south.

Rising Sea Levels
The land of Portsmouth Village is but two feet above sea level, making the village especially vulnerable to damage from storms. The soil is sandy. The water table is just a few feet below grade. There are no freshwater wells.

From early summer through fall, tropical disturbances are typical, with hurricanes the most powerful, causing damage from both wind and flood. Strong winter storms called Nor’easters are also common. The location of the Outer Banks so far from the mainland makes it the most hurricane-prone area north of Florida. The buildings of the Outer Banks have suffered repeated devastation from these storms, which with climate change and resultant sea level rise are projected to be more severe and more frequent.

Estimates of sea level rise have been published by a variety of sources. Global estimates from the Intergovernmental Panel on Climate Change, used by several parks in their Foundation Documents, make estimates for 2100; however, projections for the next several decades are more pertinent for current planning and decision making. The National Oceanic and Atmospheric Administration (NOAA) has published sea level rise scenarios for the United States, but these are not readily useful for localized decisions.

The National Climate Assessment makes estimates for 2100; however, projections for the next several decades are more pertinent for current planning and decision making. The CCRP has collaborated with the University of Colorado at Boulder to develop scenarios of sea level rise based on local tide gauges and near-term timeframes. UC Boulder scientists used the U.S. Army Corps of Engineers (USACE) Sea-Level Change Curve Calculator to develop high, intermediate, and low scenarios for 2030, 2050, and 2100.

In general, a “high” scenario reflects current rate of increase of greenhouse gases, or “no change.” “Intermediate” scenarios reflect a reduction in greenhouse gases through changes in human behavior and choices. “Low” scenarios reflect historic rates of sea level rise, achieved by dramatic changes in human behavior and choices. This level of change is not anticipated in the near future; therefore, the NPS Southeast Region does not recommend the use of “low” scenario predictions for current planning or decision-making. More details about the scenarios can be found at http://www.corpsclimate.us/ccaceslcurves.cfm.

The Ocracoke Light Station is vulnerable to sea level rise and storm surge. Scenarios based on the Beaufort NC tide gauge predict, under current rates of increase in greenhouse gas emissions, that Ocracoke will experience a little less than a foot of sea level rise by 2030, approximately 1½ ft. sea level rise by 2050, and about 5¼ ft. of sea level rise by 2100.

If the rate of greenhouse gas emission increase slows, and renewable energy technologies are embraced, it is projected that an intermediate scenario of sea level rise could unfold at the Beaufort tide gauge, the closest point of reference for Ocracoke. With the intermediate scenario applied for all projections, results show about ½ ft. of sea level rise by 2030, approximately ¾ ft. of sea level rise by 2050, and almost 2 ft. sea level rise by 2100. A high, or no-change, scenario shows a rise of 0.86 feet by 2030.

Storm surge is also expected to increase with sea level rise. The CCRP and UC Boulder scientists have modeled storm surge under a low and high tide scenario. In general, tomorrow’s low tide
Their research indicates that the current no-change trajectory or “high” scenario and the high tide scenarios of storm surge are the most realistic for near-term planning, because dramatic changes in global behavior are unlikely in 15 years. In contrast, the intermediate scenario is suggested for 2050 planning.

These figures are projections and the future may or may not unfold according to these estimates, additionally, the science surrounding the projection of climate change and sea level rise is rapidly advancing, and the Climate Change Response Program is already working to revise and update these figures.

Seismic Zone

The site is close to an active seismic zone near Charleston, South Carolina. The last major quake, recorded by the lightkeeper at the Cape Hatteras Lighthouse, was in 1886.

Vegetation

Salt marshes are prevalent. Vegetation includes mostly salt-resilient grasses and low, wind-swept trees and shrubs.

Inhabitants

The last two permanent residents left Portsmouth Village in 1971. During the tour season, NPS volunteers stay usually for two weeks at a time to serve as guides for the day visitors arriving primarily by private tour boats. Occasionally, visitors camp on the beach for a few days.

The volunteers typically begin arriving about mid-April and leave about the first of November. An NPS staff person is on site a couple of days each week throughout the year to maintain the buildings and grounds.

Raccoons live on the island but not the deer or ponies found on some barrier islands. The most renowned inhabitants, however, are the mosquitos. They are present most of the year and can be so thick at times that the tour boats cease operation. It is not uncommon for visitors and work crews to don hooded net suits while on the island.

The Village

The extant buildings of Portsmouth Village are grouped at the northwest end of the island. Some 21 historic building sites are fairly evenly scattered on both sides of Village Road, a major sand road that runs roughly east-west. Two of the village’s largest buildings are close to the two ends of this road, forming visual termini. At the east terminus is the two-story Jody Styron and Tom Bragg House; at the west is the U.S. Life-Saving Station. The Methodist Church is a focal point near the center of the village. All three of these buildings are wood frame clad with wood siding.

Doctor’s Creek extends from Ocracoke Inlet southwestward near the center of the village, bisecting the settlement into east and west sections, with small wooden bridges connecting the two.

Another sand road, Haulover Point Road, extends from the ferry dock at the northwest tip of the island southeastward to Portsmouth School, the southernmost building in the Village.

The Church Site

Constructed in 1914-16, the Methodist Church is situated near the center of Portsmouth Village. Its central location and distinctive steeple make it visible from many parts of the island, and as such, it serves as the principal focal point of the community. It also is quite arguably the most sophisticated architectural design on the island as well as the most important building in the village for the role it played in the community of Portsmouth.

Sited on a flat grassy clearing, the church is set back about 175 feet from the east bank of Doctor’s Creek, a brackish tidal creek off Ocracoke Inlet that quickly ends in the marshy interior of the island. To the west, a dense shrub thicket separates the church from the creek’s bank. The grassy clearing
extends to north, east, and south of the building. Farther to the northeast is one of the island’s many cemeteries, with Ocracoke Inlet beyond.

The Portsmouth Methodist Church faces south-southwest, but for the clarity of this report it is assumed to face south. The long dimension of the building runs north-south with the entrance facing southward towards Village Road, Portsmouth’s principal east-west roadway.

The unmarked grounds of the church are regularly mowed. Most people approach the church by the road, turning northward and traversing some forty yards of the grassy lawn to the steps that lead up to the church’s only entrance, located at its south end.

To the east on the same side of the road as the church are several frame-and-board houses: the closest is the small Ed, Nora, and Elma Dixon House (NPS 507). The Marian Gray Babb House (NPS 504) is next along the road, followed by the Harry and Lida Dixon House (NPS 503). Directly across from the church, on the south side of Village Road, is the Washington Roberts House (NPS 509).

The Architecture Description

From the exterior, the church is composed of two distinct architectural components. One is the large, broad sanctuary topped with a gable roof. The second component is the tall and narrow bell tower attached to the south gable end of the sanctuary.

Both building components are wood framed, set on low brick piers, and clad with wood siding. The sanctuary floor level is just 2’-9” above finished grade.

The weather-exposed sections of the four exterior elevations of the sanctuary are clad in a version of novelty siding known as German siding (Figs. 65 & 82). The three weather-exposed elevations of the first and second levels or stages of the bell tower are clad in the same German siding; the four weather-exposed elevations of the third stage or belfry and fourth or steeple stage are clad in a hexagonal-shaped wood shingle.

The gable roof of the sanctuary, the two intermediate apron roofs of the tower and the roofs of the steeple are all finished with sawn wood.
Figure 61. Front (south) elevation.

Figure 62. North elevation.

Figure 63. East elevation.
shingles. Atop the steeple is a metal weathervane in the shape of an arrow.

All four exterior walls of the sanctuary are pierced with double-sash, wood lancet windows. Three evenly-spaced windows are on each of the long-dimension east and west elevations, with two windows on the narrow-dimension north or rear elevation. On the south or front elevation, one window is on each side of the bell tower. All windows have an operable, two-vertical-light bottom sash and a fixed, double-lancet upper sash.

At the first level of the bell tower, a single window is on the east and west elevations only. These windows are the same overall design as those on the sanctuary but are smaller in dimension. An even smaller lancet window of the same design is on the south elevation of the second level of the bell tower.

At the third level, or belfry—the structure housing the bell chamber within the tower—there are three, wood, fixed-louvered vents set in lancet-shaped frames. A single louvered vent is centered on each of the east, south, and west elevations, serving both to ventilate the tower and amplify the sound of the bell.

Four wide masonry steps at the front or south side of the bell tower lead to the church entrance. Paired six-panel doors open to the entrance vestibule and the sanctuary beyond. Above the doors is a large double lancet transom.

Architectural Style

The style of the architectural design is most commonly known as “Carpenter Gothic” which incorporates design elements associated with Gothic architecture (pointed or ogival arches, steep roofs with deep overhangs, exposed decorative rafters, finials, and window tracery) yet is executed in wood and exhibits the grace and skill of an experienced carpenter.

Carpenter Gothic is a variation of the Gothic Revival style that became popular in the United States in the 1840s, and remains a favorite style for buildings of religious institutions.
Design Organization

Form & Function

The two major architectural components, the sanctuary and the bell tower, are visually and functionally complementary. The large, sanctuary is rectangular in plan. It is the destination, the place for the people to assemble in group worship. It is visually balanced by the tall, slender tower reaching high above, centered on the small gable end of the sanctuary, holding a bell to call the faithful and marking entry to this place of worship.

The bell tower and the long dimension of the sanctuary are aligned on an axis that runs roughly south to north; the front entrance to the building is at the center of the south wall of the tower. The tower has one room at entry level, a relatively-small, square narthex.

Above the entrance level, the tower telescopes an additional three stages or levels, each with a progressively smaller footprint. The third stage or belfry, contains the bell chamber. The fourth and final stage is the steeple.

The interior of the church is composed in three traditional parts. Worshipers pass through the small narthex, under an arched opening, and into
the large open sanctuary. The sanctuary, too, consists of complementary parts. While it is one, large, open room, the space is functionally divided into a nave and a chancel. The large nave is at the south end of the sanctuary, with ten rows of paired pews for the congregants. The chancel, at the north end of the sanctuary is raised and further made separate by a low wood communion or kneeling rail. The chancel, too, is subdivided: the central portion is raised still higher behind the central pulpit for clergy or choir seating.

The central pulpit serves also as the lectern, from which lay members of the congregation may speak.

Bilateral Symmetry

There is a visual balance, both inside and out, that is achieved in large part by the arrangement of architectural elements based on a bilateral symmetry.

A north-south axis extends through the center of both the sanctuary and bell tower. The south terminus is the entrance doorway. The north terminus is the pulpit with an expanse of wall immediately behind it, flanked by a single lancet window on each side, allowing the pulpit to be the visual focus point.

To the east and west of this axis, all major architectural elements (windows, wall and ceiling cladding, etc.) are mirrored.

Repetition, Rhythm, & Harmony

There is a unity achieved by the repetition the same design elements, sometimes of different sizes. The lancet form occurs in the frame of the windows, the louvered vents, and the transom above the main entrance doorway. Roofs, regardless of location, have the same decorative rafter tail detail.

There is a flow, a visual rhythm to experiencing the interior spaces. Medium-sized lancet windows flank the passage from entrance doorway to sanctuary through the narthex; large lancet windows light the sanctuary. Three-inch, beveled-edged boards arranged vertically form the wall pattern above each window of the narthex and sanctuary. The same beveled boards arranged in a chevron pattern fill the wall spaces.

Figure 67. Floor plan of narthex and sanctuary. A larger version is included in Appendix A.
And there is a hierarchy of the spaces. Upon entering, one gets a glimpse of something special ahead. One passes through the small antechamber and enters a place of importance emphasized by the broadness and height of the space, the large architectural features, and the richness of the details. There is a sense of arrival and a sense of importance of the place.

As a result of the many components relating to and complementing one another, there is a strong visual harmony of design, both inside and out.

This seemingly simple building is in reality not so simple. The Carpenter Gothic architectural style is distinctive and well crafted; the massing of the composition has visual balance; the repetition of elements provides visual harmony; and the assembly of spaces reinforces the sense of arrival and underscores the importance of the destination.
Construction Characteristics

Structural Systems
Type
The construction type is wood frame.

Foundation
Low piers of mortared bricks support the wood frame structural systems of the sanctuary and bell tower. Under the sanctuary, three rows of piers run north-south, one row each under the east and west perimeter walls, with a central row supporting a central north-south girder. A single row of piers supports the north and south perimeter walls. A single row of piers supports each perimeter wall of the bell tower, with an additional row at the centerline running east-west.

Sanctuary Floor Framing
The wall sills measure 8” by 8” and are half-lapped at the corners and at same-wall connections.

A clearly reused girder, perhaps salvaged from the previous church destroyed in 1913, measures approximately 8” by 12” and extends north-south at mid-section of the building width. This girder has been flipped, the notching for an earlier set of floor joists now located on the bottom instead of the top.

Floor joists run east-west, measure 2” by 12”, and are spaced 18” to 22” on center (o.c.). Joists overlap the central girder by a third of their length; overlapped sections are nailed together.
Sanctuary Wall Framing

Walls studs and wall plates are assumed to have the same dimensions and spacing as those visible in the east wall of the bell tower, the studs measuring 3” by 4” and spaced 20” o.c., and nailed to a 3” by 4” wall plate.

Attic joists vary in size and spacing. The following joist sizes were noted:

- 3¼” by 8½”
- 1½” by 7”
- 2¼” by 7”
- 2¼” by 7”
- 3” by 9”
- 2½” by 7¾”

The spacing for the attic joists ranged from 22” o.c. to 24” o.c.

Modern plywood sheets are applied to the exterior face of the perimeter wall studs for additional lateral bracing.

North Sanctuary Gable Wall Framing

There are nine studs all measuring 2” by 4” with four studs reinforced with a sister stud. One sister stud measures 1½” by 3½” and the other three measure 1½” by 3½”.

Shared Wall Framing: Sanctuary and Bell Tower

The studs measure 4” by 4” and are spaced from 23” o.c. to 26” o.c. Wall plate measures 3” by 7½”.
Bell Tower Wall Framing
At second level where accessible, the studs measure 3” by 4” and are spaced 20” o.c. The wall plates measures 3” by 4” and are half-lapped at the corners. Joists at this level measure 3” by 7½” and are spaced 21” o.c.

Modern plywood sheets are applied to the exterior face of the perimeter wall studs for additional lateral bracing.

Sanctuary Roof Framing
The rafters measure 2” by 9½” and are spaced between 22” and 24” o.c. The ridge pole measures 2” by 6”. The roof deck boards measure 5/4” by 4” and are spaced 7” o.c.

Utility Systems

Heating & Cooling
Site orientation for sun angles, presumably combined with shading from vegetation, and passive ventilation are the only means of heating and cooling that have been identified.

The church is oriented north-south with small gable end of the sanctuary facing south, the direction most susceptible to heat gain. The church’s bell tower was also placed on the south side of the sanctuary, blocking direct sun light and further reducing heat gain. Presumably, this configuration was purposeful to minimize heat gain in the predominantly warm climate.

It was not determined whether trees and other tall vegetation were used as a winter wind break. This was a common tactic to block northerly winter winds.

The church is on piers as was typical to promote cooling ventilation in the summertime. In this locale, piers were also desirable because of the frequency of flooding.

The double-sash windows were designed for the lower sash to be opened and closed for the comfort of the occupants.

Louvered vents on three sides of the third stage of the bell tower were placed to create a “chimney effect” to draw warmer air from the sanctuary attic and exhaust it through the tower.

Kerosene Lighting
Kerosene lighting is reported to have been used in both the previous church destroyed in 1913 and in the current building. No physical evidence of such lighting was identified during the preparation of this report.

Electrical Lighting
Electricity reportedly first came to the church from a World War II-surplus generator that arrived on the island shortly after the war. Housed in a shed behind the nearby house of Jesse Babb (NPS 504) to the east, a cable was connected to the church. The four electric ceiling lights of the sanctuary and one in the entrance vestibule, all of same design, are probably the light fixtures installed when the electrical power was introduced.
Propane Gas Lighting
When the electrical generator ceased operation, a gas fuel, probably propane, was introduced. Two brass-plated gas wall scones remain along the north wall and one on the west wall of the entrance vestibule. In addition, six chrome-plated gas wall scones of same design remain in the sanctuary; three are on the east wall and three on the west. A single exterior gas sconce was located above the front door. All are believed to be associated with this gas source.

Plumbing
No evidence of a plumbing system was identified and no accounts were found that made reference to one.

Security
The building is secured with a mortise door lock, foot bolt, and head bolt.

Fire Detection
There is no fire detection system in place.

Fire Suppression
There is no automated fire suppression system in place. A ten-pound, ABC Type, hand-held fire extinguisher is mounted on the wall just inside the front doors.

Exterior Features
Piers
At the sanctuary are three rows of low brick piers running north-south. Each row has seven regularly-spaced piers. At the four corners, the piers are ell-shaped, measuring 2’-8” along each side and 1’-0” deep. Between the corners, the piers measure 2’-0” long by 1’-0” deep. Regularly spaced between the north and south perimeter walls of the sanctuary are an additional three piers. The north end pier of the center row is T-shaped. Measuring 2’-8” by 1’-0” east-west, with a short 1’-0” deep extension centered and projecting 8” to the south. The south end pier of the center row matches the north end pier except that it is cross-shaped rather than T-shaped, with an additional 1’-0” deep 8” projection to the north. The exposed height of the brickwork is 1’-8”.

The bell tower shares the same center three piers as the south sanctuary wall. In total, nine piers serve to support the tower, one pier at each corner, one
pier centered on each side, and one pier under the center of the tower. These piers are more or less consistent in size, shape, and regular spacing with the piers of the sanctuary. Between the piers of the east and west elevations of the bell tower, bricks one wythe thick are arranged in a checkerboard “pierced” pattern.

The bricks measure 7¾” long by 3½” deep by 2 1/8” high. The predominant color is orange with lesser numbers of red-orange.

The mortar is tan. The joint profile is not discernible due to weathering; an early joint profile could not be located.

The bricks and mortar were extensively reworked by NPS crews in the late 1990s. It is noteworthy that while the current number of brick piers match the number in the John Thompson measured drawings of 1981, the current sizes of the piers and the spaces between them do not match.

Siding & Trim
Running along the bottom of all exterior wall surfaces is a skirt board measuring ¼” by 11¼” with a square piece of stock 7/8” tall serving as the water table; the top is not beveled for positive drainage away from the siding. All the skirt and water table sections are recent replacements installed in 2003 or 2004.

The German siding that clads the walls of the sanctuary and those of the first two levels of the bell tower is ¾” thick with a 5½” exposure, 1½” of which is the scallop. The siding boards of the lower half of most walls are recent replacements; much of this siding has excessive checking and gouges.

Figure 81. Layout and sizing of foundation piers. A larger version is included in Appendix A.

Figure 82. Detail of German siding.
Figure 83. Skirt board with water table, multi-part corner board, and one of several lightning rods attached to the church.

Figure 84. Typical double-sash lancet-shaped wood window and exterior window casing.

Figure 85. Louvered lancet-shaped vent of belfry. Decorative shingle siding of third and fourth stages of bell tower.

Figure 86. Novelty starburst pattern glazing. Operable lower and double-lancet upper sash.
The corner boards are comprised of three pieces: two plank boards that measure \(\frac{5}{4}'' \) by 3\(\frac{3}{4}'' \), one on each exterior wall, with a 1\(\frac{1}{4}'' \) quarter round set between the two.

Decorative hexagonal cedar shingles clad the walls of the third stage or belfry of the bell tower, as well as the gable end walls of the steeple stage. A further description can be found in the ensuing description of the roof.

Bell Tower Vents
Centered on each of the three fully-exposed elevations of the third stage of the bell tower is a lancet-shaped opening with fixed louvers and a plank panel at the arch. These vents are part of the passive ventilation system. In addition, these vents mark the location of the belfry and enhance the sound of the bell.

Windows
The 10 double-sash lancet windows of the sanctuary measure 2'-10" wide by 6'-6" tall. The two lancet windows on first level of the bell tower measure 2'-4" wide by 5'-6" tall; the one lancet window at the second stage of the bell tower measures approximately 2'-0" wide by 4'-0" tall.
All windows have an operable, two-vertical-light bottom sash and a fixed, double-lancet upper sash. Muntins measure 2" wide. The glass is a clear textured novelty glass in a starburst pattern.

The exterior casing is made up of sections of plank boards that measure \(\frac{5}{4}'' \) by 5" resting on a 1\(\frac{1}{2}'' \) sill. All of the sills and most sections of the exterior casing, mostly at the lower locations, were recently replaced.

Front Entrance Doors & Transom
As of the time this report is being written, new entry doors are being manufactured for the church. According to the NPS ranger, the new doors will replicate the original 1916 door design (Figs. 23-24).

The front entrance doorway is on the south elevation of the bell tower. The opening measures 4'-10" wide by 6'-10" tall and presently holds a pair of six-panel doors, replacements of the previous five-panel doors. Each door measures 1\(\frac{3}{4}'' \) thick by 2'-6" wide by 6'-11" tall.

Each door is hung with four 4" stainless steel butt hinges. The east door has a mortise lock. The two beveled escutcheons for the glass doorknobs...
Part I.C Physical Description

measure 2¼” wide by 7” tall. The west door has two 2” brass barrel bolts, one a head bolt and the other a foot bolt.

The threshold is made up of two boards. One is a plank board that measures 7/8” by 2 7/8” and the other a portion of the exterior siding measuring 7/8” by 4¾”.

Above the door is a recently installed lancet-shaped transom of three lights of novelty glass matching the glass of the windows. The transom sash measures 4'-10” wide by 4'-0” tall.

The casing on the exterior and the interior wraps around both the door and transom. The casing is made up of plank boards that measure 1” by 5”.

Entrance Landing & Steps
At grade is a poured-in-place concrete landing. It is the width of the bell tower and extends 9'-0” from the south elevation of the bell tower.

Four masonry steps lead from the concrete landing at grade to the entrance doorway of the church. The base for these steps is cast-in-place concrete. The major aggregate appears to be sections of broken brick with some small shells. Sand gives the concrete a tan color.

Figure 89. Reused door plates and mortise lock with more recent glass doorknobs.

No evidence exists of a railing at the entrance stairs.

The 1½” thick concrete treads appear to have been cast separately. The top two have a gray tint while the bottom two are closer in color to the base. The treads have substantial cracking. Broken sections of two treads were recently patched. These stairs measure 5'-10” wide with 7½” risers and 1’-1¼” treads.

Figure 90. Cracks appear in the cement treads of all four steps. The missing section the tread second from top has been repaired.

Roofs
The sanctuary has a gable roof which engages the north exterior wall of the bell tower. The four-stage tower has two intermediate levels, each with an apron roof, and an eight-sided steeple with four projecting gables and an apron base matching the two intermediate stages. The steeple roof is a variation of Rhenish helm design. The roofing material for the sanctuary gable roof and the shed roofs of the bell tower is Certigrade Blue Label Number 1 Grade Red Cedar Shingle installed in 2015.

The steeple and the roofs of the four projecting gables are sheathed with the decorative half-diamond shingle that also sheathes the four gable faces and four third-stage steeple walls. These roof sections were repaired in 2015 also using Certigrade Blue Label Number 1 Grade Red Cedar Shingle.

Present at all roof eaves are decoratively-cut rafter tails, molded cornice, and molded fascia. Sections of cornice as fascia are missing or damaged.
Lightning Rods
There are three lightning rods on the church. Two are on the roof ridge of the sanctuary, at the north end and at midsection, and the third is atop the steeple.

There are three grounding cables. One is at the northwest corner of sanctuary. Two are on each side of the bell tower adjacent to the sanctuary wall.

Weathervane
Atop the steeple is a metal weathervane with ball and directional arrow.

Interior Features
Narthex
The room measures 9'-2" wide by 9'-0" deep and has a floor-to-ceiling height of 13'-6". The top of the floor is just 2'-9" above outside grade. The room has always served as the narthex of the church, leading to the sanctuary. The doors, door casing, window sash and glass are reportedly in-kind replacements. Except for the addition of lighting fixtures and a fire extinguisher, and the possible changes in color/finish coating, the room retains its original appearance.

Flooring
The original 3½”-wide, tongue-and-groove flooring runs north-south without interruption through the nave to the step leading to the communion or kneeling rail and chancel at the north end of the sanctuary.

Baseboard and Cap
The original baseboard is made of two parts, the base, which is a plank board measuring 7/8” by 4½” with a decorative cove-and-ovalo cap with overall dimensions of 7/8” by 7/8”. This design encircles this room, extends through the cased archway, and encircles the sanctuary.

Figure 91. Square-cut cedar shingles of gable roof and hipped aprons, and decorative hexagonal cedar shingles of belfry and steeple. Photo taken before 2015 roof repairs.

Figure 92. Decoratively-cut rafter tails, molded cornice, and molded fascia. The design is replicated in a hierarchy of scales like the windows.

Figure 93. Typical narthex and sanctuary baseboard.
Figure 94. Narthex ceiling, showing geometric patterns of wall and ceiling cladding.

Figure 95. Narthex, southeast oblique.

Figure 96. Narthex, southwest oblique.
Walls
The walls are covered with original bevel-edged, ¾” by 3” tongue-and-groove boards arranged to form a regular geometric pattern. Below the chair rail on all four walls, these boards are positioned vertically. Above the fenestration of the east (window), west (window), and south wall (entrance doorway), they are also positioned vertically.

Chair Rail
The original chair rail remains in place. It is a composite design of multiple parts including the cove-and-ovolo detail repeated in numerous architectural elements in the church. The top of the chair rail is 2’-6” above the top of the finished floor and aligns with the base of the windows; at the windows, the chair rail is uninterrupted, forming the window apron as it encircles the room. The continuous chair rail extends through the cased archway, and encircles the sanctuary.

Figure 97. Narthex, northwest oblique.

Figure 98. Narthex, northeast oblique.

Figure 99. Typical cove-and-ovolo molding in section. (Appendix A - Sheet 6)

Figure 100. Typical narthex and sanctuary bevel-edge wall and ceiling board. (Appendix A - Sheet 6)
Doorways

The entrance doorway to the church is on the south wall and is discussed in the Exterior Features section above.

On the north wall is a cased opening that leads into the sanctuary. The dimensions of the opening are 7’-6” wide by 9’-11” tall. The top of the opening is a half-circle arch. The walls on both sides of the arch are sheathed with beveled-edged, tongue-and-groove boards measuring ¾” by 3” and placed vertically. On the underside of the arch and on the jambs of the opening, these boards are placed horizontally. At the spring line of the arch, as at the window openings, a cornice is represented using a ¾” bull nose set atop the typical cove-and-ovolo trim.

Windows

There are two original wood lancet-style double-sash windows in this room. Each measures 2’-4” wide by 5’-6” tall, a foot shorter and a half-foot narrower than the windows of the sanctuary, but of the same design, described in the Exterior Features section above. One window is on the east wall and the other is opposite on the west wall. All windows have 2” wide muntins and are glazed with the same clear textured novelty glass in a starburst pattern.

Of the window hardware, the early metal pulley wheels for the sash cords remain. Also, the brass window pulls remain, two pulls per window, on the interior face of the bottom rail. The pulls measure 1½” tall by 3” wide.

The interior casing rests atop the chair rail and has three distinct components. One casing component is the casing below the spring line of the lancet arch that form the top of each window. These
sections of casing are decoratively planed boards measuring \(7/8\)" deep by \(4\frac{7}{8}\)" wide. Above the spring line, the sections of casing are comprised of the second casing component, plank boards measuring \(7/8\)" deep by \(4\frac{7}{8}\)" wide. The two casing designs transition at the spring line for the lancet arch that forms the top of the window opening. The spring line is marked by the third casing component, a board \(3/4\)" tall and \(4\frac{7}{8}\)" wide with a bull nose edge.

Cornice

Encircling the room is the original cornice. A plank board \(7\)" wide forms the frieze which at its bottom edge is marked by a crown molding \(2\frac{1}{2}\)" tall and \(2\frac{1}{2}\)" deep. The soffit along the ceiling measures \(7\frac{1}{2}\)" wide and its outer edge is marked by a small trim piece. The meeting of the cornice at room corners is marked by a multi-orbed trim piece, similar to a quarter-cut newel post and filling the full height of the cornice.

Ceiling

The typical beveled-edge, \(3/4\)" by \(3\)" tongue-and-groove board is placed on the diagonal running southwest to northeast, filling the ceiling between the sections of cornice. The bell cord hangs through a hole in the ceiling.

Finishes

The flooring is painted a light gray. The flush base of the baseboards is painted a dark gray. The baseboard caps, walls, ceiling, doors, window sash, and all other trim are painted white.

Heating & Cooling

The two double-sash windows provide passive ventilation.

Electrical System

At the center of the ceiling is the base for an electrical light, the same design as the four in the sanctuary, all five probably dating to the earliest installation of electrical lighting. The base is painted white and the globe is missing.

Gas System

On the west wall is a gas-powered but currently inoperable brass-plated wall sconce presumably dating to the 1940s.

Above the entrance door on the south wall is a small hole just large enough for a gas line, presumably for an exterior gas light fixture.
Plumbing System
There is no evidence of a plumbing system.

Security System
Door lock and bolts provide a measure of security. There is no system to monitor intrusion.

Fire Detection & Suppression
There is no system to detect the presence of heat or smoke. A ten-pound, ABC Type, hand-held manually operated fire extinguisher is mounted on the wall just to the west of the entrance doorway.

Ladder and Attic Hatch
On the east wall close to a cased opening is the original wood ladder attached to the wall for access to the sanctuary attic and upper levels of the bell tower. The ladder rails measure $1\frac{5}{8}''$ by $3\frac{1}{2}''$ and the nine rungs, measuring $7/8''$ by $2\frac{1}{2}''$ are inset to be flush with the rails. The hatch opening measures $1'-4''$ by $1'-6''$.

Sanctuary
The room measures 24'-3'' wide by 39'-3'' long and has a floor-to-ceiling height of approximately 13'-6''. The room has always served as the sanctuary. The window sash have been repaired and broken glass replaced in-kind. Except for the addition of lighting fixtures and the possible changes in color/finish coating, the room retains its original appearance.

Figure 106. Sanctuary viewed from south end of nave looking north towards the raised chancel. Sophisticated geometric patterning of wall and ceiling boards.
Figure 107. Southwest oblique of sanctuary.

Figure 108. Southeast oblique of sanctuary, viewed from raised chancel.
Flooring
The original 3½”-wide, tongue-and-groove flooring runs north-south without interruption through the sanctuary and narthex to the church steps.

Baseboard and Cap
As in the narthex, the original sanctuary baseboard is made of two parts, the base which is a plank board measuring 7/8” by 4½” and a decorative cove-and-ovolo cap, with overall dimensions of 7/8” by 7/8”. This design encircles this room, extends through the cased archway, and encircles the narthex (Fig. 93 & 109).

Walls
Original beveled-edged, ¾” by 3” tongue-and-groove boards are arranged on the walls to form a regular geometric pattern. Below the chair rail on all four walls, these boards are positioned vertically. Above the fenestration of the east (windows), west (windows), north (windows), and south walls (windows and cased door opening to the narthex) they are also positioned vertically (Fig. 100).

Above the chair rail on each side of the windows, these boards are set on the diagonal, extending up away from the windows. On each side of the windows of the long east and west walls, and at the center of the north wall, a chevron pattern is formed by two panels of opposing diagonals.

Each wall panel is divided by an astragal molding measuring 2” wide by 7/8” deep. Bull’s-eye corner blocks measuring 2” by 2” by 1⅛” are used to punctuate the intersections of the dividing astragal trim with the frieze and the chair rail (Figs. 110-111).
Chair Rail
The chair rail, an original feature of the church, is a composite design of multiple parts including the cove-and-ovolo detail that is repeated in numerous interior architectural elements of the church. The top of the chair rail is 2’-6” above the top of the finished floor and aligns with the bottom of the windows; at the windows, the chair rail is uninterrupted forming the apron at each window as it encircles the room.

Doorways
On the south wall is a cased opening that leads into the Entrance Vestibule. The dimensions of the opening are 7'-6” wide by 9'-11” tall. The top of the opening is a half-circle arch. As on the opposite wall in the Entrance Vestibule, this section of the wall is sheathed with the original beveled-edged, tongue-and-groove board measuring ¾” by 3” placed vertically. On the underside of the arch and on the jambs of the opening, these boards are placed horizontally. At the spring line of the arch, as at the window openings, a cornice is represented using a ¾” bull nose set atop the typical cove-and-ovolo trim.

Windows
There are 10 original wood lancet-style double-sash windows in this room. Each measures 2’-10” wide by 6’-6” tall, a foot taller and a half-foot wider than the matching but smaller scaled windows of the narthex. A description of these windows can be found in the Exterior Features section above.

Three windows are arranged along both the east and west walls in an a-b-b-a pattern where wall section a measures 7’-2” and wall section b measures 8’-4”. As noted above in the Sanctuary...
Wall description, each section of wall is subdivided into two panels of beveled-edged boards arranged to create a chevron.

On the north wall, are two windows, arranged in an a-b-a pattern where a measures 4’-9” and b measures 8’-9”.

On the south wall, the large cased doorway that connects with the narthex is flanked by a single window on each side.

The windows are glazed with clear textured starburst pattern of novelty glass.

Of the window hardware, the metal pulley wheels for the sash cords remain as they do in the narthex. Also, the brass window pulls remain, two pulls per window, on the interior face of the bottom rail. The pulls measure 1½” tall by 3” wide.

The interior casing rests atop the chair rail and has three distinct components. One casing component is the casing below the spring line of the lancet arch that forms the top of each window. These sections of casing are decoratively planed boards measuring 7/8” deep by 4 7/8” wide. Above the spring line, the sections of casing are comprised of the second casing component, plank boards measuring 7/8” deep by 4 7/8” wide. The two casing designs transition at the spring line for the lancet arch that forms the top of the window opening. The spring line is marked by the third casing component, a board ¾” tall and 4 7/8” wide with a bull nose edge (Fig. 104).

Cornice
Encircling the room is the original cornice. A plank board 7” wide forms the frieze. Its bottom edge is bordered by a small 7/8” by 7/8” cove-and-ovalo molding, of the same design as the baseboard cap and the trim at the top of the chair rail.

The soffit along the ceiling measures 7½” wide and its outer edge is marked by the ubiquitous cove-and-ovalo trim board (Fig. 99). The meeting of the cornice at room corners is marked by a multi-orbed trim piece, most likely a quarter-cut newel post, that extends the full height of the cornice.

Ceiling
The ceiling area is subdivided into an original configuration of 15 equal-sized panels, three rows wide (east-west) by five rows long (north-south). The typical beveled-edge, ¾” by 3”
Figure 117. Detail of 1981 NPS drawing, showing geometric chevron patterns of sanctuary ceiling.

Figure 118. Patterned ceiling design of sanctuary viewed from arched opening from narthex.
tongue-and-groove board is placed on the diagonal in each panel, with panels of opposing diagonals set adjacent to one another forming a chevron pattern (Figs. 100, 113, 117).

The perimeter of each ceiling panel is edged with an astragal molding measuring 2” wide by $1\frac{1}{4}$” deep (Fig. 110). At the corners of the ceiling panels, 2” by 2” by $7\frac{7}{8}$” bull’s-eye corner blocks are used to punctuate the intersections of the dividing trim.

Finishes
The flooring is painted a light gray. The baseboard bases are painted a dark gray; the cap is painted white. The walls, ceiling, doors, window sash, and trim are painted white. The church pews are varnished.

Heating & Cooling
The double-sash windows provide passive ventilation.

Electrical System
On the ceiling above the center of the chancel is a single ceiling fixture, probably dating to the late 1940s when electrical service was installed.

Four additional electrical fixtures are arranged in a rectangular pattern on the ceiling of the sanctuary. All five sanctuary fixtures appear to match the fixture base that survives on the ceiling of the narthex.

Gas System
Evenly spaced along the north wall are three gas-powered but now inoperative, brass-plated wall sconces of the same design as the fixture in the narthex.

Three gas-powered but now inoperative fixtures, chrome-plated wall sconces are evenly placed on both the east and west walls. These six sconces are the same design as the brass-plated sconces elsewhere in the church and presumably date to the same period.

Plumbing System
There is no evidence of a plumbing system.

Security System
Lock and bolts at the front door provide a measure of security. There is no system to monitor intrusion.

Fire Detection & Suppression
There is no system to detect the presence of heat or smoke in the church. There is neither an automatic fire suppression system nor a manual fire extinguisher in the sanctuary.
passage from the nave to the chancel. Each newel post measure 5½” by 5½” in plan and stands 2'-5” tall. The balusters measure 2¼” by 1'-5½” tall. The handrail measures 4½” wide by 2½” tall and the top of the rail is 1-8¼” above the floor.

On the south side of the communion rail is a single wood step/kneeler extending continuously from the east wall to the west wall. The feature is 11¾” deep, 8” above the floor of the nave, and 7” below the floor of the chancel. The feature serves both as a kneeler for communicants and as a step to the chancel area.

A wood platform, 4¼” tall by 8'-1” wide by 5'-2” deep, is centrally located against the back or north wall and holds the pulpit and seating for the clergy.

Pews

Though unattached furnishings are not normally discussed in an HSR, the pews of this church are especially noteworthy. The varnished wood pews are arranged in ten rows, two pews per row, one on each side of the center aisle.

Each pew is 10'-0” long, is 1'-10” deep, and stands 3'-2½” tall. The pews are a prominent feature of the church. They are constructed in the Eastlake Style, which was popular in the late-Victorian period but continued for use in churches into the 20th century. The apparent difference in age of the church and pews, raises the question of the origin of the pews, a question that remains unanswered.

Several of the pews have extensive insect damage.
Character-Defining Features

Distinctive Characteristics of the Site:

- Level grade.
- Mowed grass lawn surrounding the Church and the approach leading to church from the road immediately to the south.
- Sand road adjacent to church.
- Absence of yard developments.
- Tall grasses and low shrubs forming a barrier between the mowed lawn and Doctors Creek.
- Long vistas of Doctors Creek to the west and Ocracoke Inlet to the north.
- Views of nearby cemetery to the north.
- Views of nearby residences on the north and south sides of Village Road.

Distinctive Characteristics of the Building Exterior:

- Unadorned cast-in-place cement landing for entrance steps.
- Two-part cast-in-place cement steps with separately cast treads.
- Free-standing, brick-pier foundation. Bricks and mortar as described above.
- Pierced brickwork between masonry piers on east and west sides of the bell tower.
- Deep skirt board around sanctuary and bell tower.
- German siding on the sanctuary and first two levels of the bell tower.
- Three-part corner boards of two $\frac{5}{4}$" by $\frac{5}{2}$" plank boards with a center quarter-round trim measuring $\frac{1}{4}$" on the exposed corners of the sanctuary and the bell tower.
- Step-backed tiers of the third and fourth levels of the bell tower.
- Clipped-shingle siding of the upper levels of the bell tower.
- Multi-faceted steeple with weathervane.
- Exposed, decoratively-cut roof rafters.
- Gable roof of sanctuary.
Distinctive roof design of steeple (variant of Rhenish Helm roof).

Wood shingle roofing.

Double-sash lancet window sash and tracery, and novelty clear starburst-patterned glazing

Lancet-shaped tower vents with fixed louvers.

Hierarchy of window sizes.

Lancet-shaped transom with tracery above entrance doorway with paired doors.

Composite chair rail that forms the apron at the windows and encircles both rooms.

The distinctive patterns of beveled-edge, ¾” by 3”, tongue-and-grooved, wall boards arranged vertically and on the diagonal in trimmed panels. The cased opening between narthex and sanctuary.

The window surrounds.

The room cornices.

The distinctive patterns of ceiling boards set on the diagonal in trimmed panels.

The ladder and hatch.

The exposed bell cord.

The low wood communion or kneeling rail and step separating the nave from the raised chancel.

The raised chancel.

The raised pulpit platform.

The Eastlake style pews.

Distinctive Characteristics of the Building Interior:

- Tongue-and-groove, 3½” wide, wood flooring.
- Baseboard and cap that encircles both rooms.
Summary of Physical Conditions and Other Concerns

Highest Priority: Immediate Threat to Life/Safety of Occupants Or Immediate and Serious Threat to Building
- Cracks in the cast-cement treads of the entrance steps.

High Priority: High Potential for Becoming a Threat to Occupants or Building
- Damage to weathervane and connection to roof.
- Advanced deterioration of bricks and mortar of foundation piers.
- Scattered instances of rot in exterior siding and trim.

Medium Priority: Delayed Threat to Occupants or Building
- Absence of positive slope beneath the building and the perimeter grounds to direct rainwater away from the building.
- Absence of a positive slope on the top surface of the water table.
- Abundance of checking and gouges in the recently installed German siding and trim.
- Insect damage of pews.

Figure 125. Eroded bricks and mortar joints, open seams in carpentry, water table without positive slope, damaging splash from roof runoff, and negative slope at building perimeter.

Figure 126. (A) Scattered instances of rot, (B) checking of wood boards, (C) gouges, (D) open seams, and knots in exterior siding and trim.
II.A Ultimate Treatment and Use

On the east bank of Doctor’s Creek is a group of historic structures that provide a popular iconic image of Portsmouth Village. Anchored by the Methodist Church near the center of the village, this concentration of residences, outbuildings, community buildings, and cemeteries provides visitors a sense of the village in the early twentieth century when it was still a thriving community. Any treatment and use of the Methodist Church should be predicated on preserving its place in that ensemble of buildings.

The church is one in a succession of Methodist church buildings on Portsmouth Island; the first was recorded in the 1820s. In 1913 a hurricane destroyed the two churches on the island, including a Methodist church. The congregation of the Primitive Baptist Church did not rebuild; however, the current church was soon begun and completed in late 1915 or early 1916, and since that time has been the only church on the island.

Although regular services ceased in 1956, Portsmouth residents continued to maintain the building. The last full-time residents left the island in 1971, bringing to a close two centuries of residency at Portsmouth Village. In 1976, the Cape Lookout National Seashore was established and buildings of Portsmouth, including the Methodist Church, became part of the park.

The Portsmouth Methodist Church is a major component of the historic identity of Portsmouth during the twentieth century. It is historically important for its role in the evolution of the community, not only as a place of worship, but as a center of community life.

The church is architecturally significant as an outstanding example of the Carpenter Gothic style of architecture, a variation of Gothic Revival popularized in the United States in the 1840s. And it is an iconic symbol of Portsmouth Village.

The General Management Plan prepared for the park in 1982-83 promotes the preservation of the exteriors of Portsmouth’s historic buildings, including the Methodist Church, in order to maintain the character of the community.

The Long-Range Interpretive Plan of 2011 goes further, recommending that several important buildings, including the church, remain open to the public as interpretive venues. Accordingly, the church is open year-round. It is one of the most popular destinations in the village and the site of the Portsmouth Homecoming, a celebration conducted every other year that draws several hundred attendees, many of whom are descendants of Portsmouth Village citizens.

For these reasons, the Recommended Ultimate Treatment can only be the Preservation of the exterior to continue its prominent role in the district’s cultural landscape, and Preservation of the interior in its uncompromised historic state. The Recommended Ultimate Use, in keeping with its historic use, is for the church to remain a venue for community events both secular and religious, and open daily to all.
This approach would have the following advantages:

- promotes the preservation of a contributing property of the National Register Historic District;
- is consistent with the park’s General Management Plan by preserving one of the most important buildings of the island and the historic character of the community in general;
- enhances the public’s understanding of the central role the church played in the social life of the community of Portsmouth.
- leaves open the option of other uses in the future;

This approach would have the following disadvantages:

- use of the building as an event space open daily to the public requires a higher level of maintenance and upkeep.
- use of the building as an event space increases the importance of regularly checking the foundation and framing for structural stability due to increased occupancy loads.

Figure 127. Portsmouth Methodist Church seen from the waters of Ocracoke Inlet.
II.B Requirements for Treatment

Treatment and use of all historic properties maintained by the National Park Service are guided by a number of Federal laws and regulations, as well as by NPS policy, directives, and functional requirements. In addition to protecting cultural resources, these requirements address issues of life safety, fire protection, energy conservation, abatement of hazardous materials, and handicapped accessibility.

Some of these requirements may contradict or be at cross purposes with another if they are rigidly interpreted. Any treatment must be carefully considered with a goal of maximizing the preservation of historic features and materials.

National Historic Preservation Act

The National Historic Preservation Act of 1966 as amended (NHPA) mandates Federal protection of significant cultural resources, including buildings, landscapes, and archeological sites. In implementing the act, a number of laws and authorities have been established that are binding on the NPS.

Section 106

A routine step in the park’s planning process for the treatment of cultural resources is compliance with Section 106 of NHPA. This requires that, prior to any undertaking involving National Register or National Register-eligible historic properties, Federal agencies “take into account the effect” of the undertaking on the property and give the Advisory Council on Historic Preservation “a reasonable opportunity to comment with regard to such undertaking.”

To satisfy the requirements of Section 106, regulations have been published (36 CFR Part 800, “Protection of Historic Properties”) that require, among other things, consultation with local governments, State Historic Preservation Officers, and Indian tribal representatives. They also establish criteria under which the Advisory Council may comment, but as a practical matter, the vast majority of Federal undertakings do not involve review by the Advisory Council. The purpose of Section 106 review is to ensure that all interested parties have a voice in the preservation of our nation’s cultural heritage, and that historic properties are protected.

To expedite the review process, a programmatic agreement (PMOA) has been developed among the Advisory Council on Historic Preservation, the National Council of State Historic Preservation Officers, and the NPS to allow for a streamlined Section 106 review process. With certain conditions, routine repairs and maintenance that do not alter the appearance of the historic structure or involve widespread or total replacement of historic features or materials are reviewed by cultural resource specialists within the NPS.

The Secretary’s Standards

The Secretary of the Interior’s Standards for the Treatment of Historic Properties are the Secretary’s best advice to everyone on how to protect a wide range of historic properties. They provide a philosophy to underpin historic preservation that is widely understood and almost universally accepted in the United States. They are intended to be applied to a wide variety of resource types, including buildings, sites, structures, objects, and districts. The Standards, revised in 1992, are codified at 36 CFR Part 68.

The Standards describe four broad approaches to the treatment and use of historic properties. These are, in hierarchical order:

- Preservation, which places a high premium on the retention of all historic fabric through conservation, maintenance and repair. It reflects a building’s continuum over time,
through successive occupancies, and the respectful changes and alterations that are made.

- Rehabilitation, which emphasizes the retention and repair of historic materials, but provides more latitude for replacement because it is assumed the property is more deteriorated prior to work. (Both Preservation and Rehabilitation standards focus attention on the preservation of those materials, features, finishes, spaces, and spatial relationships that, together, give a property its historic character.)

- Restoration, which focuses on the retention of materials from the most significant time in a property’s history, while permitting the removal of materials from other periods.

- Reconstruction, which establishes limited opportunities to recreate a non-surviving site, landscape, building, structure, or object in all new materials.

Regardless of treatment approach, the Standards put a high priority on preservation of existing historic materials and features and not just the architectural form and style. The Standards also require that any alterations, additions, or other modifications be reversible, i.e., be designed and constructed in such a way that they can be removed or reversed in the future without the loss of existing historic materials, features, or character.

Americans With Disabilities Act of 1990

The Americans With Disabilities Act of 1990 (ADA) establishes comprehensive civil rights protection for disabled Americans, both in employment and in their right to free, unaided access to public buildings. While people with restricted mobility have most frequently benefited from ADA, protection also extends to those with other disabilities, including those with impaired vision or hearing.

Requirements for full compliance with ADA regulations are extensive and easiest to apply to new construction. Full compliance for historic buildings is more difficult and sometimes would require significant alterations to the historic character of the property. Where that is the case, ADA authorizes a process for arriving at alternatives to full compliance that can preserve historic character while maximizing a disabled visitor’s access to the historic building.

International Building Code

As a matter of policy, the NPS is guided by the International Building Code, which includes this statement regarding code compliance in historic buildings:

3406.1 Historic Buildings. The provisions of this code related to the construction, repair, alteration, addition, restoration and movement of structures, and change of occupancy shall not be mandatory for historic buildings where such buildings are judged by the building official to not constitute a distinct life safety hazard [emphasis added].

Threats to public health and safety should always be eliminated, but because this applies to historic buildings, alternatives to full code compliance are always sought where compliance would needlessly compromise the integrity of historic buildings.

NFPA Code 914

NPS Management Policies

The NPS General Management Policies (2006) guide overall management of historic properties, especially Chapter 5 “Cultural Resource Management.” Based upon the authority of some nineteen Acts of Congress and many more Executive orders and regulations, these policies require planning to ensure that management processes for making decisions and setting priorities integrate information about cultural resources, and provide for consultation and collaboration with outside entities. These policies
also support good stewardship to ensure that cultural resources are preserved and protected, receive appropriate treatments (including maintenance), and are made available for public understanding and enjoyment.

Section 5.3.5, “Treatment of Cultural Resources”

This section of the management policies provides specific directives, including a directive that “the preservation of cultural resources in their existing states will always receive first consideration.” The section also states that “treatments entailing greater intervention will not proceed without the consideration of interpretive alternatives.... Pending treatment decisions reached through the planning process, all resources will be protected and preserved in their existing states. Except for emergencies that threaten irreparable loss without immediate action, no treatment project will be undertaken unless supported by an approved planning document appropriate to the proposed action.”

The present HSR is that approved planning document.

Park Planning

The 1982 General Management Plan (GMP) divided the park into management zones, with a 250-acre “historic zone” identified around Portsmouth where preservation and adaptive use of the historic structures was envisioned. Beyond that, the GMP recommended restoration of Portsmouth “to the turn-of-the-century period, but without the replacement of now-missing buildings” and removal of “later buildings of non-historic character.” Those recommendations were based on a narrow understanding of the history and significance of Portsmouth that has since been broadened by additional research and the numerous studies that have been completed since the turn of the present century. We concur with the recommendations of the recently completed Cultural Landscape Report, which suggests the period of significance be extended to 1971, when the island’s last year-round residents decamped for the mainland.

The GMP further envisioned the interiors of some buildings being used for interpretation, and others “adapted for contemporary administrative functions.”

The park’s subsequent Long-Range Interpretive Plan of 2011 expanded on the role of the Church in the interpretation of Portsmouth Village with the following assessments and recommendations:

Existing Conditions:

- “Portsmouth Church. The church is a historically furnished space with original and introduced furnishings. It includes the pews, pulpit, reed pump organ, and other furnishings that are original to the church. The one addition is the piano, which came from the Jesse and Lillian Babb House in the 1980s through the will of their daughter. There are also several monument-style plaques on the wall behind the pulpit. The church did not receive any new exhibits from the 2009 exhibit plan because: 1) the church is furnished with mostly original furnishings, 2) the use of exhibits in this structure was considered intrusive to its historic character, and 3) exhibits would conflict with the religious significance of the church.”

Long-Term Recommendations:

- “Maintain five buildings as interpretive venues, and keep open to the public: Theodore and Annie Salter House Visitor Center, Post Office/Store, School, Church, and the Life-Saving Station.” In addition, the Friends of Portsmouth Island preservation group was given a special lease permit to maintain the Henry Pigott House as an interpretive venue. Several areas for wayside interpretations were also identified.

115. NPS, Cape Lookout National Seashore GMP, 1982, p. 43.
116. Ibid., p. 42.
117. Ibid., p. 73
II.C Recommendations for Treatment and Use

Significant damage to the church was attributed to Hurricane Sandy of 2012 including a more pronounced lean of bell tower and sanctuary, open joints in siding and trim from racked wall framing, roof leaks, bent weathervane and broken siding shingles on the tower.

Repairs conducted in late 2014 addressed several of these conditions. These included the removal of the exterior German siding to pull the framing back into vertical alignment, repair of damaged framing and installation of plywood sheets for additional lateral support, and reinstallation of siding after repair. With wall realignment, the paired front doors no longer fit the doorway; the modern multi-panel doors are being replaced with reproduction historic doors.

Additional repairs were completed in late 2015 including the patching of wall shingles on the bell tower, replacement of the wood shingle roofs of the sanctuary and tower, and installation of new entry doors. Less serious maintenance issues remain to be addressed.

The recommendations that follow are intended to achieve the Ultimate Treatment and Use described in Part IIA above for the Portsmouth Methodist Church: Preservation of the exterior to continue its prominent role in the district’s cultural landscape, and Preservation of the interior in its uncompromised historic state. The Recommended Ultimate Use is for the church to remain a venue for community events both secular and religious, and open daily to all.

The suggestions below are compatible with a variety of uses and are intended to incorporate routine maintenance, repairs and, if necessary, replacement in-kind, as well as routine inspections to minimize and prevent damage to historic fabric.

HSR recommendations are not intended to provide the specific guidance that architectural/engineering plans and specifications or other specialized professional documents would provide. However, A/E plans and specifications or other professional documents may not be needed for many of the recommended actions. Some of the in-kind repairs and maintenance tasks can be performed by skilled craftsmen, if properly guided by cultural resource specialists.

Portsmouth Village - General

Barrier islands, such as Portsmouth, will be especially vulnerable to the effects of climate change and sea-level rise, which may negatively affect cultural resources on these islands.

General Recommendations for Portsmouth Village
- Consult with Janet Cakir PhD, NPS SER Climate Change, Socioeconomics, and Adaptation Coordinator to guide management policies.
- Use results from the climate change study “Identify Cultural Resources Sites Affected by Sea-Level Rise at Cape Hatteras National Seashore” to guide management policies. This study is also applicable to Portsmouth Island.
- Prepare or update a Topographic Survey for the site.
- Prepare a Log of Flood Occurrences. Record at a minimum the dates of occurrences and approximate extent and severity (e.g. depth at specific locations). Correlate recordings with Topographic Survey. Maintain data so that they can be correlated with conditions such as tide, moon phase, etc.
- Evaluate site for flood avoidance potential including the introduction of dams and/or swales to divert or direct flooding waters.
- Evaluate each building, structure, and significant site feature for flood avoidance.
potential and/or enhancement potential for better withstanding the projected threatening events.

- Identify critical services (fresh water supply, waste disposal, energy sources, etc.), evaluate options, and develop contingency plans for each.
- Strive to maintain for all buildings a sound structural system and a weather-tight exterior envelope, especially the roof.
- Use maintenance activities as opportunities to enhance the resistive capacities of the buildings and structures whenever feasible.
- Prepare minimum level of record documentation (overall view photographs and text descriptions) for all undocumented cultural resources in the community that are at risk; prepare more extensive documentation (including scaled record drawings with descriptions) for the more significant resources at risk.

The Church Site

Portsmouth’s coastal climate with its regularly strong winds, high humidity levels and high salt content of the air, is especially damaging to many construction materials, especially ferrous-based metals. Left unprotected, such materials deteriorate quickly.

Poor drainage is also a characteristic of Portsmouth, created in part by the natural process of decay of vegetation and generation of new humus. The process eventually creates a bowl-like depression beneath buildings that traps water and keeps the area damp for extended periods of time. This not only exacerbates deterioration of the masonry piers, but also creates conditions conducive to termites.

General Recommendation

- Avoid use of ferrous-based fasteners in all construction and repairs.

Recommendations for Site

- Keep lawn grasses mowed and regularly remove volunteer plants and shrubs close to the church.
- Observe drainage patterns during periods of significant rainfall and flooding; determine the feasibility of creating shallow swales to promote drainage away from the building.

Structural Systems

The one-story sanctuary and attached multi-stage bell tower are constructed largely of conventional stick framing, covered on the exterior with German siding and on the interior with beveled-edge tongue-and-groove wall and ceiling boards. The foundation is comprised of brick piers.

Recommendations for Brick Piers and Entrance Steps

- Keep vegetation closely trimmed.
- Investigate conditions on a regular basis.
- Keep mortar joints pointed, bricks in sound condition.
- Inspect termite shields regularly.

Recommendations for Floor, Wall and Roof Framing

- Conduct regular inspections for the presence of wood-damaging plants and insects; treat accordingly.
- Conduct routine inspections, some preferably during rainstorms and after all tropical storms and flooding events, for evidence of water intrusion and instances of damage.
- Periodically review for evidence of deflection across planes of framing, framing members out of square or plumb, or heightened vibration in framing members.
- Avoid use of ferrous-based fasteners in all construction and repairs.

Church Exterior

Much of the church exterior is finished with materials typical of the early twentieth century. Replacements are typically in-kind.

Doorway

There is one exterior doorway, at the south face of the bell tower.
Recommendations for Doors
- Ensure all hardware remains operable. Apply lubricant on a regular basis.
- Maintain sound paint finish at all exposed surfaces.
- Monitor condition and operation on a regular basis.
- Avoid use of ferrous-based fasteners in all construction and repairs.
- Conduct paint and finish analyses to document the sequence and types of historic paints and finishes.

Windows
Though repaired at multiple times, the wood frame sash are believed to be largely original.

Recommendations for Windows
- Ensure sash are in working order; reglaze as needed to keep a sound exterior surface.
- Maintain sound paint finish at all exposed surfaces.
- Monitor condition and operation on a regular basis.
- Avoid use of ferrous-based fasteners in all construction and repairs.
- Conduct paint and finish analyses to document the sequence and types of historic paints and finishes.

Roofing
The cedar shingle roofing was replaced in late 2015. As with most Portsmouth buildings, no gutters are present.

Recommendations for Roofing
- Routinely inspect for missing, damaged, displaced or loose shingles; replace or repair as necessary.
- Routinely inspect for leaks, especially at roof ridge and connection of bell tower to sanctuary, especially during rainstorms.
- Avoid use of ferrous-based fasteners in all construction and repairs.
Siding and Trim
A significant amount of exterior siding and trim was replaced in 2003-04. Much of the replacement material is checking, splitting and developing pockets of rot.

Recommendations for Siding and Trim
- Monitor regularly for open joints, displaced or loose elements, or other evidence of movement; renail loose pieces.
- Monitor checking, splitting, and instances of rot, and plan remedial actions accordingly.
- Avoid use of ferrous-based fasteners in all construction and repairs.
- Conduct paint and finish analyses to document the sequence and types of historic paints and finishes.

Interior Features
The church’s interior walls and ceilings are elaborately decorated using only a few typical twentieth-century boards and trim pieces, but arranged in combinations and organized in various geometric patterns. The interior designs appear to be largely intact as originally constructed.

Recommendations for Church Interior
- Keep rooms broom-swept of dirt and other materials to facilitate inspections.
- Conduct paint and finish analyses to document the sequence and types of paints and finishes.
- An Historic Furnishings Plan (HFP) may be appropriate to substantiate the provenance of the furnishings and objects thought to be original, especially the church pews.

Remedial Action by Priority

Highest Priority
Remedial actions of highest priority are those that address immediate threats to life and safety of persons, closely followed by immediate and serious threats to the building.

- Monitor cracks in cast-cement treads of front entrance steps.

High Priority
Remedial actions of high priority are those that address conditions that have a high potential for serious threat to persons or the building.

- Monitor deterioration of bricks and mortar of foundation piers.
- Monitor checking and splitting and scattered instances of rot in exterior siding and trim.

Medium Priority
Remedial actions of medium priority address conditions that have a medium potential for serious threat to persons or the building.

- Add sterile fill material beneath church and at roof dripline to promote positive drainage away from building.
- Monitor water table on all sides for evidence of rot.
- Monitor checks and gouges in siding and trim.
- Monitor pews for evidence of insect activity and treat accordingly.
Bibliography

Cape Lookout National Seashore, Foundation Document, October 2012.

Cape Lookout National Seashore, Long-Range Interpretive Plan, June 2011

Carteret County Deed Books.

Ehrenhard, John E. Cape Lookout National Seashore: Assessment of Archeological and Historical Resources. SEAC, NPS, 1976.

Interviews by the authors, 2013 and 2014.

Life-Saving Station Logs, excerpted by Tommy Jones, NPS.

NPS files including drawings, maps, memos, images and administrative files.

Selected Maps

Mouzon, Henry. *An Accurate Map of North and South Carolina, 1775.*

Thomas Coles and Jonathan Price, both civilian surveyors employed by the federal government. “A Chart of the Coast of North Carolina between Cape Hatteras and Cape Fear from a Survey taken in the Year 1806.” National Archives, Washington, D.C., Records of the Office of Chief of Engineers, RG 77, Map H22.

Appendix A: Documentation Drawings

Sheet 1: Foundation Plan
Sheet 2: Floor Plan
Sheet 3: North and South Elevations
Sheet 4: East Elevation
Sheet 5: West Elevation
Sheet 6: Details
FOUNDATION PLAN

SCALE: 3/16" = 1'-0"
FLOOR PLAN

SCALE: 3/16" = 1'-0"
1. V-GROOVE WALL BOARD
 SCALE: FULL SIZE

2. COVE-AND-OVALO MOLDING
 SCALE: FULL SIZE

3. GERMAN SIDING
 SCALE: FULL SIZE

4. ASTRAGAL MOLDING
 SCALE: FULL SIZE
Appendix B:
John Thompson’s 1981 Drawings

NOTE: Some measurements and proportions are inaccurate

Sheet 1: Foundation plan, floor plan, south elevation, pulpit and communion rail details
Sheet 2: East elevation, wall elevation and reflected ceiling plan of sanctuary, pew and molding details
Some measurements and proportions inaccurate.