HISTORIC STRUCTURES REPORT

ENGINEERING STUDY
OF
CENTRAL BLOCK ROOF SUPPORT SYSTEM

ARLINGTON HOUSE

GEORGE WASHINGTON MEMORIAL PARKWAY

August 1982

prepared by

U.S. DEPARTMENT OF THE INTERIOR
NATIONAL PARK SERVICE
DENVER SERVICE CENTER
NATIONAL CAPITAL TEAM
CONTENTS

INTRODUCTION 1
ANALYSIS 1
RECOMMENDED ARLINGTON HOUSE IMPROVEMENTS 6
DRAWINGS 9
PHOTOGRAPHS 26
COST ESTIMATE 33
APPENDICES
 APPENDIX A - CALCULATIONS 37
 APPENDIX B - CORRESPONDENCE 150
ACKNOWLEDGEMENTS 154
ENGINEERING STUDY – ARLINGTON HOUSE

INTRODUCTION

The intention of this report is to assess the overall long and short-range capabilities of the roof's support system in the central block of the Arlington House, describe problems which might affect its performance, and propose an approach to correct these shortcomings and ensure a sound structure capable of protecting this resource. The remarks are based on findings culminating from both a visual investigation of the various structural elements and an analysis of its design. Recommended corrective actions would not adversely affect this structure, which is listed on the National Register of Historic Places.

Concurrent related studies undertaken by the National Capital Team of the Denver Service Center to be published in FY 1983 are as follows:

A. Historical Data Section for Arlington House (The Custis-Lee Mansion), Virginia, by Charles W. Snell;

B. A Summary of the Physical History of Arlington House, 1802-1933, by Charles W. Snell;

C. Arlington House, Historic Structures Report, Architectural Data Section (Phase I), by H. Lee Arnest III;

D. Historic Structures Report, Architectural Data Section (Phase II), The Arlington House, by H. Lee Arnest III and John D. Sligh;

ANALYSIS

The structural analysis of the roof support system (Appendix A) was based on BOCA Basic Building Code (1978) snow and wind design load
<table>
<thead>
<tr>
<th>MEMBER</th>
<th>TRUSS "A"</th>
<th>TRUSSES "B" THROUGH "E"</th>
<th>TRUSS "F"</th>
<th>ARMY TRUSSES</th>
<th>PURLINS</th>
<th>RAFTERS</th>
<th>CEILING JOISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top Chord, Upper Section</td>
<td>4 1/2" x 9"</td>
<td>4 1/2" x 9"</td>
<td>3 1/2" x 8"</td>
<td>5 1/2" x 6"</td>
<td>2 1/4" x 3 1/4"</td>
<td>3" x 3 1/2"</td>
</tr>
<tr>
<td></td>
<td>Top Chord, Lower Section</td>
<td>4 1/2" x 9"</td>
<td>4 1/2" x 9"</td>
<td>3 1/2" x 8"</td>
<td>6" x 6"</td>
<td>2 1/4" x 3 1/4"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom Chord</td>
<td>6" x 9"</td>
<td>6" x 9"</td>
<td>4 3/4" x 8 5/8"</td>
<td>6" x 6"</td>
<td>2 1/4" x 3 1/4"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>King Post</td>
<td>6" x 9"</td>
<td></td>
<td>2" x 6 1/2"</td>
<td>6" x 6"</td>
<td>2 1/4" x 3 1/4"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagonal Brace</td>
<td>5 1/2" x 5 1/2"</td>
<td>6" x 7"</td>
<td></td>
<td>5 1/2" x 6"</td>
<td>6" x 6"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical Braces</td>
<td>3" x 6" to 6" x 6"</td>
<td></td>
<td></td>
<td>2" x 6 1/2"</td>
<td>2 1/4" x 3 1/4"</td>
<td></td>
</tr>
</tbody>
</table>

| SIZE USED IN ANALYSIS DETERMINATION | SIZE USED IN ANALYSIS DETERMINATION | SIZE USED IN ANALYSIS DETERMINATION | SIZE USED IN ANALYSIS DETERMINATION
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>o.k.</td>
<td>Seriously Undersized</td>
<td>Marginally Undersized</td>
<td>o.k.</td>
</tr>
<tr>
<td>Moderately Undersized</td>
<td>Seriously Undersized</td>
<td>o.k.</td>
<td>o.k.</td>
</tr>
<tr>
<td>o.k.</td>
<td>o.k.</td>
<td>o.k.</td>
<td>o.k.</td>
</tr>
<tr>
<td>o.k.</td>
<td>o.k.</td>
<td>Serious Undersized</td>
<td>o.k.</td>
</tr>
<tr>
<td>o.k.</td>
<td>o.k.</td>
<td>o.k.</td>
<td>o.k.</td>
</tr>
</tbody>
</table>
recommendations for 100-year mean recurrence interval, and on material strength values for Eastern White Pine, No. 1 (Grade) for beams and stringers. Listed in Table 1 is a summary of the results of this structural analysis. As shown, the results derived from this analysis indicate a condition of high overstress in the members. This problem is particularly serious in the case of the bottom chords of all trusses, as these members are significantly overloaded when supporting just the dead loads. The problem is aggravated by the location of interior bearing walls which act as added truss supports. Instead of coinciding with the truss joints, these walls support the bottom chords at several intermediate points between the joints. This misalignment of forces induces excessive bending stresses in these members, which has resulted in extreme undulation and deflection along these members. Although this system has existed with only localized failures, it must not be assumed that the roof structure is therefore safe. In summation, the existing trusses lack deeply in any real engineering design. Not only are individual members of too small a cross-section to safely carry design loads, but their weak methods of interconnection and overall poor truss geometry result in an ill-defined support system through which load transfer is very ambiguous.

Other considerations which should be taken into account for structural systems built with wood and which probably apply to the attic of the Arlington House are:
1. prolonged heating to temperatures in excess of 150°F can cause permanent loss of strength, and
2. when wooden members are fully stressed to the maximum design stress or a joint is fully loaded to the maximum design load for a total of more than ten years, the allowable design load is reduced by 10 percent.

The visual inspection phase of this study produced other indications that the roof support system is in a borderline category as regards structural stability. Following is an outline of specific failures or types of conditions which exist and illustrate the need for repair and reinforcement.
1. Heel joint on south side of truss "B" (Photo 1).

The failure of this connection was the result of a design characteristic unique to this truss - it spanned the entire width of the portico/main block. All the other trusses were, in addition to bearing on the end (N & S) walls, supported by either interior load bearing walls approximately 6 feet on each side of the king post or by a series of brick columns as exist along the east side of the Arlington House. To correct this problem, the Corps of Engineers installed two additional trusses (running east to west) to provide support to truss "B" at interior points. In addition, the failed heel joint was stabilized by inserting a metal pin through the top and bottom chords at the mortise and tenon type connection and by wrapping a heavy link chain around the members at this point to hold them together. Although this stabilization effort has functioned since its completion in the 1930s, its design strength cannot be accurately calculated. It is safe to assume, though, that it does not exceed the capacity of the other heel joints which were determined to be underdesigned.

2. Checks, shakes, knots, and twists.

Natural wood defects such as checks, shakes, knots, or twists are fairly prevalent in the roof support structure, particularly the truss members, resulting in an unquantifiable reduction of its load-carrying capabilities. Examples of such defects are shown in Photos 2 through 4. While bolting, strapping, and other strengthening procedures might be employed on the existing trusses and other framing members, this alone would be insufficient to insure structural safety.

3. Insect and moisture damage.

Isolated or low level cases of moisture and insect damage are visible in various members of the roof support system. In general, those members which experienced serious deterioration due to these elements have been replaced, all infested areas made insect-free, and all leaks sealed. One area where a problem still exists, however, is at the south side chimney through which truss "D" passes. Faulty flashing around the chimney allowed water to accumulate around the top and bottom chords of this truss, creating a suitable habitat for powder post beetle colonies.
and contributing to brown rot decay. Although the roof no longer leaks in this area, the deterioration and subsequent loss of section that has already occurred has significantly reduced the strength of this truss. (See Appendix B and Photos 5 and 6.)

4. Structural failure.
Isolated member or joint failure due to overstressing has occurred primarily in the truss members where the grain is twisted or contains knots. (See Photos 2 and 3). Other cases include several purlins which have split at their end bearing points between trusses "C" and "D" (Photo 7), the heel joint of truss "C" (Photo 8) and several purlin tenons which have been damaged and lost their pegs (Photo 9).

Two other conditions which, although not affecting the roof’s load-supporting capabilities, do warrant discussion are:

a. the lack of bearing support for the ceiling joists, and
b. the eastward lean of the trusses.

The frequent lack of support provided to the ceiling joists in this attic was diagnosed and partially treated during the investigative phase of the Historic Structure Report. Shrinkage and sagging of the joists had caused their notched ends to move away from the small ledger strip to the point where many joists had lost contact with their support system. To remedy this problem, bent strap connectors were fastened from the bottom chord of the adjacent truss to the tops of the joists which appeared to have insufficient bearing contacts with a ledger strip. (Photos 10 and 11.) A similar type of treatment should be used to secure support for the remaining joists, with the only modification being that the straps be fastened to the sides of the joists instead of their tops.

The second condition mentioned involves the horizontal movement of the peaks of all the roof trusses 6" to 8" to the east. By all visible indications, this movement occurred prior to the installation of the existing sheathing and roof cover and has since ceased. It therefore represents no threat to the soundness of the roof structure.
RECOMMENDED ARLINGTON HOUSE IMPROVEMENTS:

1. Roof Truss Reinforcement.

Based on the observed member and joint failures and the loading conditions described in the previous section of this report, it is judged that the roof support system should be regarded as in a borderline category in terms of its stability and safety. Considering the historical and architectural importance of this building, such a precarious position is not acceptable. A supplemental roof support system is therefore needed to provide adequate and safe load-carrying capability.

The primary components of the proposed reinforcement system are double-angle "Fink" trusses to be installed adjacent to the existing wood trusses, as well as lateral bracing between them to prevent further horizontal movement. These trusses would be installed to pick up any live loads while allowing existing trusses to carry the dead loads. However, the proposed trusses are designed so that, should the wood trusses fail, the new steel trusses could support both the dead and live roof loads. The rationale behind this approach is:

a. since the trusses have supported both dead and live loads for some time now, an acceptable margin of safety could be achieved by removing the live load they carry;

b. installation of the proposed trusses could be accomplished with a minimal amount of damage or alteration to the historic members as the loads would be transferred directly to the four support points; and

c. as each existing truss has its own unique features and problems, it is impractical to calculate their supporting capacity based on actual individual conditions. Therefore, for simplicity and safety, the proposed trusses were designed to support both dead and live roof loads.

The design of the proposed trusses (Drawings 4 thru 16) reflects the most typical conditions encountered. Although this general approach can be used in all cases, the member lengths and certain details will need to be modified to account for the differences between the trusses.
Installation of the proposed reinforcement systems will require extensive field measuring to determine member lengths at each truss location and some adaptation of the design details to account for these varying conditions. Examples of the anomalies in the existing roof support system which will require adjustment of the proposed design are: the masonry chimneys through which truss "D" passes; the metal link chain at the south-end of truss "B"; and the presence of headers at the heel joints which support the outriggers. In these situations, isolated modification of the proposed trusses will be necessary to accommodate installation and fit. For the most part, these adjustments will only entail notching non-essential portions of wood members or modifying the lengths of members and locations of joints.

Of the two end trusses ("A" and "F"), only truss "F" requires reinforcement. Because a significant portion of truss "F" is bordered by the "finished" interior of the stairwell, the supplemental support system should be installed directly under the top chord and over the bottom chord. This will therefore require the temporary removal of the existing diagonal braces, removal of several floor boards, and the notching of wall studs to accommodate installation of the new truss.

2. Attic Ventilation

In the case of truss "D" (whose ends pass through the brick chimneys), partial disassembly of the masonry will be required. As ventilation in the attic is poor, causing possibly damaging temperatures in this area during summer months, air exchange/circulation should be increased. This could best be accomplished in conjunction with the reinforcement of this truss by capping the chimneys when disassembled and installing fans within the flues. This should be an integral facet of any project undertaken in the attic.

3. Energy Conservation

In compliance with NPS energy conservation guidelines, it is also recommended that Kraft unfaced fiberglass roll type insulation of thermal resistance R=19 and 6 inches thick, be installed following the completion of all other elements of the roof stabilization effort.
4. Wood Member Repair/Replacement
Miscellaneous areas where wood repair or replacement is required are as follows:

a. 5\(\frac{1}{2}\)" x 6" purlins to be added at the lower sections of roof to ensure a maximum span by the rafters of 5 feet;

b. split purlins to be repaired by use of straps or through bolts and reinforced by the introduction of new members.

c. the deteriorated portion of truss "D" in the vicinity of the (south-side) chimney to be repaired as suggested in Appendix B.

5. Attic Use
Use of the attic area should be restricted to small-scale activities, such as light object storage and controlled demonstrations for children.

6. Method of Completion
The completion of this work should be accomplished by means of day labor forces instead of by contract. This approach would more easily accommodate the time and labor intensive requirements of this project, provide greater flexibility in addressing the known and unknown differences between the trusses, and enable the government to avoid unnecessary extra costs due to likely "change-in-conditions" claims.

7. Statement of Effects
The goal of the recommended treatment is to stabilize the attic structure of the Arlington House main block. The results will increase the life of the building and alleviate the possibility of danger to park visitors.

In applying the criteria of effect, 36 CFR Park 800.3(a), the National Park Service has determined that the proposed undertaking will have an effect on the Arlington House.

In applying the criteria of adverse effect, 36 CFR 800.3(b), the National Park Service has found the effect not to be adverse because:
a. The proposed undertaking will not result in the destruction of the significant features of the property, even though substantial alterations are planned. No historic fabric will be removed or irreversibly modified.

b. The proposed undertaking will not result in the isolation of the property from, or alteration of, its surrounding environment.

c. The proposed undertaking will introduce visual elements that are out of character with the historic fabric of the attic. However, the attic is off-limits to the public, so the visual impact will be insignificant.

d. The proposed undertaking will not result in the transfer, sale, deterioration, or destruction of federally owned property.
MAIN BLOCK MASONRY BEARING WALLS

STORAGE STAIRWELL

2X9 FLOOR JOISTS 16" O.C.

3'X3'X TO 6" CEILING JOISTS 16" O.C. (TYP.)

CHIMNEYS

ARMY TRUSSES

5'X 3'X TO 6'/2" CEILING JOISTS 16" O.C. (TYP.)

COLUMNS

TRUSS "E"

TRUSS "D"

TRUSS "C"

TRUSS "B"

TRUSS "A"

TRUSS AND ATTIC FLOOR FRAMING PLAN

TO SCALE
3\%2 by 3\%2 Rafter 2' O.C.
Purling 5\%2 by 6" (Min.)

2\%9 Floor Joists or Ceiling Joists Varying in Size from 3\%2 to 6\%2 by 3"

6\%9 King Post
5\%2 by 5\%2 Diagonal Web Member
4\%2 by 9" Top Chord Continuous from Heel Joint to Ridge Board
6\%7 Vert. Web Mem.
6\%9 Bottom Chord

Elevation: Main Truss Type & Roof Framing

Scale: 1/8" = 1'-0"

Sheet 2 of 16
3½" x 3½" RAFTERS (2' O.C.)

PURLINS 5½" x 6" (MIN.)

2" x 6½" CRIPPLE

3½" x 8" TOP CHORD

4½" x 8½" BOTTOM CHORD

2" x 9' FLOOR JOISTS OR
CEILING JOISTS VARYING IN SIZE
FROM 3½" TO 6½" x 3".

MORTISE & TENON CONNECTION

OUTRIGGERS FOR HORIZONTAL CORNICE
OF PEDIMENT EXTEND FROM AND ARE SUPPORTED BY BOTTOM CHORD AND WEST MASONRY WALL.

ELEVATION - TRUSS "F" & ROOF FRAMING

SCALE: 1/8" = 1'-0"
ELEVATION - PROPOSAL FOR STABILIZATION OF TRUSSES "D" & "E"

SCALE: 1/8" = 1'-0"
ELEVATION - PROPOSAL FOR STABILIZATION OF TRUSSES "B" & "C"

Scale: 1/8" = 1'-0"
ELEVATION: JOINT DETAIL FOR PROPOSED TRUSSES

NOT TO SCALE

PURLINS 5½" x 6" (MIN.)

4½" x 9" TOP CHORD

SECTION - JOINT DETAIL

NOT TO SCALE
RIDGE BOARD
6"x9" KING POST
4 1/2"x9" TOP CHORD

2LS 7x4x3/4

TWO 3/8" FS W/ 6" (THICK) WOOD BLOCKING AS REQ'D.

2LS 6x4x1/2
W/ 3/4" Ø BOLTS (A 325 F)

ELEVATION: JOINT DETAIL FOR PROPOSED TRUSSES
NOT TO SCALE
ELEVATION: JOINT DETAIL FOR PROPOSED TRUSSES
NOT TO SCALE

SECTION: JOINT DETAIL
NOT TO SCALE
ELEVATION: JOINT DETAIL FOR PROPOSED TRUSSES
NOT TO SCALE

SECTION - JOINT DETAIL
NOT TO SCALE
EXISTING MASONRY WALL OR SUPPORT TO BE BUILT-UP FROM TOP OF BRICK COLUMNS

ELEVATION: JOINT DETAIL FOR PROPOSED TRUSSES

SECTION - JOINT DETAIL

NOT TO SCALE
CUT WOOD BLOCK AND 3/8" PEE FOR SNUG FIT AROUND 6"X 8" BOTTOM CHORD OF ARMY TRUSS.
INSTALL SHIMS BETWEEN BOTTOM CHORDS OF ARMY TRUSS AND KINGPOST TRUSS FOR SOLID BEARING CONTACT.

MASONRY WALL

WOOD BLOCKING AS REQD.

6"X 8" BOTTOM CHORD OF ARMY TRUSS.

3/8" PL

NEW FRAMING ANGLES

CEILING JOISTS

NOTCH TOPS OF JOISTS WHERE NEEDED TO ACCOMODATE FIT OF BOTTOM LS.
ELEVATION: PROPOSAL FOR STABILIZATION OF TRUSS "F"

SCALE: 1/8" = 1'-0"
ELEVATION: JOINT DETAIL FOR PROPOSED TRUSS
NOT TO SCALE

PURLIN (3/4" x 6" MIN)

3 1/2" x 8" TOP CHORD

OUTRIGGER

ALIGN TRUSS OFF-CENTER TO PROVIDE MAX. BEARING CONTACT W/ EXIST. WOOD TRUSS MEMBERS YET MINIMAL DAMAGE TO STAIRWELL WALL STUDS.

SECTION - JOINT DETAIL
NOT TO SCALE
ELEVATION: JOINT DETAIL FOR PROPOSED TRUSS

3½" X 8" TOP CHORDS

INSTALL SHIMS TO PROVIDE SUPPORT TO EXIST. TRUSS TOP CHORDS.

2LS 6 X 3 X 3/4

2LS 3½ X 3½ X 3/16
W/ 3/4" Ø BOLTS (A 325 F)

5/16" GUSSET P2

NOT TO SCALE
ELEVATION: JOINT DETAIL FOR PROPOSED TRUSS
NOT TO SCALE

SECTION: JOINT DETAIL
NOT TO SCALE
3/16" GUSSET PL

2 LS 3 1/2 x 3 1/2 x 3/16
W/ 3/4" O BOLTS AND

5/8" BOTTOM CHORD
BLOCKING
LEDGER STRIP

MASONRY WALL

ELEVATION: JOINT DETAIL FOR PROPOSED TRUSS
NOT TO SCALE

INSTALL SHIMS AT BEARING POINTS/ MASONRY WALL LOCATIONS TO PROVIDE SUPPORT TO PROPOSED TRUSS

2" x 9" FLOOR JOISTS

SECTION - JOINT DETAIL
NOT TO SCALE

OUTRIGGER

SHEET 16 OF 16
Photo 1. Truss heel joint, south end of truss "B".

Photo 2. Partial failure of top chord of truss along twisted grain.
Photo 3. Failure of extreme fibers in bending, top chord, truss "E".

Photo 4. Example of checking in truss members (kingpost) due to seasoning.
Photo 5. South end of truss "D" on north side of masonry chimney.

Photo 6. Portion of bottom chord of truss "D" exposed by partial dismantling of masonry chimney. Note extensive level of deterioration due to powder post beetle and brown rot.
Photo 7. Purlin failure due to excessive loading. Recommended action - repair using metal straps or through bolts.

Photo 8. Truss heel joint, north end of truss "C".
Photo 9. Tenon of purlin on right damaged and peg is missing, reducing ability of roof to resist lateral movement.

Photo 10. View of ceiling joists fastened to bottom chord by bent bar connectors.
Photo 11. Close-up of ceiling joist showing loss of bearing support/contact w/ledger strip.

Photo 12. Top of brick column under south side of truss "B".
COST ESTIMATE FOR NEEDED REPAIRS AND IMPROVEMENTS IN ATTIC OF CENTRAL BLOCK OF ARLINGTON HOUSE

Labor costs to transport and erect steel angles, plates, etc. for trusses (No O&P costs included).

TRANSPORTATION/DELIVERY

<table>
<thead>
<tr>
<th>Laborer</th>
<th>Days</th>
<th>Rate per Day</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreman</td>
<td>1</td>
<td>$164.75</td>
<td>$164.75</td>
</tr>
<tr>
<td>Truck Driver</td>
<td>1</td>
<td>$163.60</td>
<td>$163.60</td>
</tr>
<tr>
<td>Truck (w/power equipment)</td>
<td>1</td>
<td>$109.60</td>
<td>$109.60</td>
</tr>
<tr>
<td>Laborers/Steel Workers</td>
<td>2</td>
<td>$295.20</td>
<td>$733.15</td>
</tr>
</tbody>
</table>

MOBILIZATION/SETTING UP LABOR COSTS

<table>
<thead>
<tr>
<th>Laborer</th>
<th>Days</th>
<th>Rate per Day</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreman</td>
<td>5</td>
<td>$163.60</td>
<td>$818.00</td>
</tr>
<tr>
<td>Carpenters</td>
<td>2</td>
<td>$272.00</td>
<td>$1,360.00</td>
</tr>
<tr>
<td>Laborer</td>
<td>5</td>
<td>$108.40</td>
<td>$542.00</td>
</tr>
</tbody>
</table>

ERECTING STEEL TRUSSES LABOR COSTS (ONE PER WEEK)

<table>
<thead>
<tr>
<th>Laborer</th>
<th>Days</th>
<th>Rate per Day</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreman</td>
<td>25</td>
<td>$163.60</td>
<td>$4090.00</td>
</tr>
<tr>
<td>Steel Workers</td>
<td>25</td>
<td>$295.20</td>
<td>$7380.00</td>
</tr>
<tr>
<td>Carpenter</td>
<td>25</td>
<td>$136.00</td>
<td>$3400.00</td>
</tr>
<tr>
<td>Laborer</td>
<td>25</td>
<td>$108.40</td>
<td>$2700.00</td>
</tr>
</tbody>
</table>

MATERIAL COSTS FOR FIVE TRUSSES

PROPOSED TRUSS MEMBERS

<table>
<thead>
<tr>
<th>Material</th>
<th>Length</th>
<th>Quantity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS 7X4 X 3/4</td>
<td>31.5 ft.</td>
<td>@ 52.4 lbs/ft x 2 = 3301.2 lbs.</td>
<td></td>
</tr>
<tr>
<td>LS 6X4 X 1/2</td>
<td>13.25 ft.</td>
<td>@ 32.4 lbs/ft x 2 = 858.6 lbs.</td>
<td></td>
</tr>
<tr>
<td>LS 3X3 X 3/8</td>
<td>10.00 ft.</td>
<td>@ 14.4 lbs/ft x 2 = 288.0 lbs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.5 ft.</td>
<td>@ 14.4 lbs/ft x 2 = 734.4 lbs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.0 ft.</td>
<td>@ 14.4 lbs/ft x 1 = 172.9 lbs.</td>
<td></td>
</tr>
</tbody>
</table>

WITH PLATES AND BOLTS, ETC., CALL IT 3 TONS

COST OF MATERIALS (BARE COST ONLY) FOR STEEL TRUSSES

\[3 \text{ Tons} \times \$1,255/\text{ton} \times 5 = \$18,825.00 \]

LABOR COSTS TO INSTALL VENTILATING EQUIPMENT IN MASONRY CHIMNEYS (No O&P Costs Included)

<table>
<thead>
<tr>
<th>Laborer</th>
<th>Days</th>
<th>Rate per Day</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick Mason</td>
<td>5</td>
<td>$140.80</td>
<td>$704.00</td>
</tr>
<tr>
<td>Electrician</td>
<td>3</td>
<td>$155.20</td>
<td>$465.60</td>
</tr>
<tr>
<td>Laborer</td>
<td>5</td>
<td>$108.40</td>
<td>$542.00</td>
</tr>
</tbody>
</table>

MATERIAL COSTS FOR VENTILATING EQUIPMENT

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Rate per Unit</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Units</td>
<td>$250/unit</td>
<td>$1,000.00</td>
</tr>
</tbody>
</table>
LABOR COSTS TO INSTALL ADDITIONAL PURLINS, CLIPS TO SUPPORT CEILING JOISTS, STRAPS, THROUGH BOLTS, PLATES, ETC.

<table>
<thead>
<tr>
<th>Role</th>
<th>Days</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Foreman</td>
<td>8</td>
<td>$163.60/day</td>
<td>$1,308.80</td>
</tr>
<tr>
<td>2 Carpenters</td>
<td>8</td>
<td>$272.00/day</td>
<td>$2,176.00</td>
</tr>
<tr>
<td>2 Laborers</td>
<td>8</td>
<td>$216.80/day</td>
<td>$1,734.40</td>
</tr>
</tbody>
</table>

$5,219.20

MATERIAL COSTS FOR MISCELLANEOUS REPAIRS TO ROOF FRAMING $500.00

LABOR AND MATERIAL COST TO INSTALL 6" INSULATION IN ATTIC

2300 SF @ $0.36/SF $828.00

PLUS COST TO REMOVE AND REINSTALL FLOOR BOARDS BETWEEN TRUSSES "E" & "F" - LABOR COSTS ONLY

<table>
<thead>
<tr>
<th>Role</th>
<th>Days</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Carpenters</td>
<td>2</td>
<td>$272.00/day</td>
<td>$544.00</td>
</tr>
</tbody>
</table>

LABOR AND MATERIAL COSTS TO REPAIR DECAYED TIMBER ENDS USING EPOXY WHERE PASSING THROUGH CHIMNEYS

$3,000.00

SUB-TOTAL $52,650.95

Plus 25% For O&P $13,162.74

TOTAL $65,813.69
LOADS :-

DEAD LOADS :

- SLATE SHINGLES 10 PSF
- ROOF SHEATHING 2.5 "
 (3/4" THICK)
- 3½" x 3½" RAFTERS 1.7 "
 @ 2'-0 O.C.
- 5½" x 6" PURLENS 9.1 PLF
- 6½" x 3" CEILING JOISTS 4.1 PSF
 @ 16" O.C.
- PLASTER CEILING 10 PSF
- 4½" x 9" UPPER CHORD 11.25 PLF
 TRUSS MEMBER
- 6" x 9" BOTTOM CHORD 15.0 "
- 6" x 9" KING POST 15.0 "
- 6", x 7" VERT. WEB MEM. 11.7 "
- 5½" x 5½" DIAGONAL WEB MEMBER 8.9 "

LIVE LOADS :

- SNOW 160 OR .20 PSF
- ATTIC FLOOR LOAD ON WEST SIDE 30 "
- WIND LOAD
 FOR ROOF SLOPE = 23.63° AND
 RATIO OF SIDEWALL HEIGHT TO BLDG.
 WIDTH = 0.468, WIND PRESSURE
 ON WINDWARD SIDE = 12 PSF (SUCTION)
 ON LEEWARD SIDE = 10 PSF ("")
Roof Loads

- **Truss**
 - 3.75 psf

- **Shingles**
 - 10-

- **Sheathing**
 - 2.5-'

- **Rafters**
 - 1.7-

- **Purlins**
 - 1.8-

 total: 19.75 psf

- **Snow**
 - 16 or 20 psf

- **Wind**
 - Windward Side - 12 psf
 - Leeward Side - 10-

Floor Loads

- **Ceiling Joists**
 - 4 psf

- **Plaster Ceiling**
 - 10-

- **Attic Live Floor**
 - 30-

 Load on one side of one truss plus floor boards

- **Board Flooring**
 - 3-

Loading Combinations to Analyze for:

1. **Dead Load** plus **Snow Load** (I) plus **Attic Floor Load**
2. " " " " (II) " " "
 plus **Wind Load**
3. **Dead Load** plus **Snow Load** (I)
4. " " " " " (II) plus **Wind Load**

Drawing:

- 205.3 PLF (Snow)
- 183.96 PLF (Wind)
- 256.6 PLF (PL)
- 372 PLF (PL + LL)
LOADING CONDITION 1

\[
P_1 = \frac{(13.25)(205.3)}{2} + \frac{(14.55)(256.6)}{2} + \frac{32}{2}(372) = 9.179k
\]

\[
P_2 = \frac{(13.25 + 9.5)(205.3)}{2} + \frac{24.85}{2}(256.6) = 5.524k
\]

\[
P_3 = \frac{(9.5 + 9.25)(205.3)}{2} + \frac{(20.39)(256.6)}{2} = 4.541k
\]

\[
P_4 = (9.25)(205.3) + 11.03(256.6) = 4.729k
\]

\[
P_5 = (64)(372)/2 = 11.904k
\]

Note: Although bottom chord of truss is not connected at "J", assume \(R_L = R_K \) and \(R_{LL} = R_{IV} \). Actual locations where bottom chord members are connected varies, however they are never over a support or where met. By truss web members.

\[
R_L + R_{LL} = P_1 + P_2 + P_3 + \frac{1}{2}(P_4 + P_5) = 27.560k
\]
TAKING THE MOMENT ABOUT "E" FOR THE LEFT HALF OF THE TRUSS.

\[\Sigma M_E = 7.25 P_A + \frac{9.25 P_5}{2} + 18.5 P_3 + 28 P_2 + 41.25 P_1 - 37.75 R_L - 15.25 R_{IL} + 10 F_{FL} \]

\[F_{FL} = \frac{F_{ED}}{1.092} + \frac{F_{IE}}{1.271} \]

Assume \(F_{FL} = 1.0 \) K

\[\Sigma M_E = 726.113 - 37.75 (27.560 - R_{IL}) - 15.25 R_{IL} \leq 0 \]

\[22.5 R_{IL} = 314.277 \]

\[R_{IL} = 13.968 \text{K} \]

\[R_L = 13.592 \text{K} \]
JOINT "C"

\[\Sigma F_H = \frac{E_I - F_{BC} + F_{CD}}{1.271} = 0 \]

\[\Sigma F_V = 0.6168 \frac{F_{EI}}{E_I} + 0.401 F_{BC} - P_3 - 0.401 F_{CD} = 0 \]

\[F_{AB} = F_{BC} \quad F_{CD} = F_{DE} \quad F_{CI} = F_{EI} \]

\[F_{BC} = F_{CD} + \frac{1.092 F_{CI}}{1.271} \]

\[\Sigma F_V = 0.6168 \frac{F_{CE}}{E_I} + 0.401 F_{CD} + (0.401)(1.092) F_{CE} \]

- \[P_3 - 0.401 F_{CD} = 0 \]

\[0.9613 F_{CE} = P_3 \]

\[F_{CI} = 4.724 kN \]

\[F_{FL} = 3.717 + \frac{F_{ED}}{1.092} \]

\[= 3.717 + 0.916 F_{ED} \]

\[\therefore \text{If } F_{FL} = 1.0 kN \]

\[F_{ED} = -2.966 \quad F_{ED} = 2.966 kN (CT) \]

\[\Sigma M_a = 3.5 R_L + 26 R_{IL} - 32 \left(\frac{P_5 - 32 P_4 - 22.75 P_3}{1.092} - 0.401 (F_{DE}) - 1.4 (F_{DE}) - 32 (0.418) (4.724) \right) + 2.25 \left(\frac{1.724}{1.271} \right) = 410.74 - 190.464 - 151.328 - 103.308 \]

\[- 73.193 - 32 (0.401) F_{DE} - 14 (F_{DE}) - 93.24 + 9.734 = -267.144 \]
ASSUMPTION THAT $F_{Fl} = 1.0K$ NO GOOD

TO ADJUST, ...

$F_{Ed} = 2492K (C)$

$\Sigma Me = 716.113 + 60 - 1043.788 + 22.5R_{IL}$

$R_{IL} = 11.897K$

$R_{L} = 15.753K$

CHECK:

$\Sigma Ma = 364.458 - 190.464 - 151.328 - 102.308$

$= -173.415 \text{ ft-K}$

$F_{Fl} = 9.0K$

$F_{Ed} = 5.767K (C)$

$\Sigma Me = 716.113 + 90 - 1043.788 + 22.5R_{IL}$

$R_{IL} = 10.563K$

$R_{L} = 16.997K$

CHECK:

$\Sigma Ma = 334.126 - 518.292 + 74.002 + 73.936 - 93.24 + 9.734$

$= -119.733 \text{ ft-K}$

$F_{Fl} = 9.0K$ NO GOOD
Assume \(F_{FL} = 16.0\, k \)

\(F_{ED} = 13.409\, k \) (C)

\(\Sigma M_E = 716.113 + 160 - 1043.788 + 22.5\, R_{IL} \)

\(R_{IL} = \frac{167.675}{22.5} = 7.452\, k \)

\(R_L = 20.108\, k \)

Check:

\(\Sigma M_A = 264.13 - 518.292 + 172.064 + 171.910 - 93.24 + 9.734 \)

\[= +6.306\, ft-k \]

\(\sum M_A = 267.664 - 518.292 + 167.137 + 166.987 - 93.24 + 9.734 \)

\[= -0.010\, ft-k \]
\[F_{DI} = 2(0.401)F_{ED} - P_1 = 5.717 \text{ K (T)} \]
\[F_{IJ} = 2(0.0169)F_{CD} - F_{DI} = 0.111 \text{ K (c)} \]
\[F_{BC} = F_{AB} = F_{CD} + \frac{1.092}{11.271} F_{CE} = 17.084 \text{ K (c)} \]
\[F_{AJ} = 15.636 \text{ K} \]

CHECK:
\[\Sigma M_A \text{ for bottom chord AJ} = 3.5(19.951) + 26(7.609) \]
\[- 13.25(5.524) - \frac{32}{2}(11.904) - \frac{32}{2}(0.111) \]
\[= 2.230 \text{ ft-k} \]

\[\Sigma M_J = 6(7.609) + 28.5(19.951) - 18.75(5.524) \]
\[- \frac{32}{2}(11.904) - 32(0.401)(17.084) - 32(3.227) \]
\[= -2.267 \text{ ft-k} \]
MEMBER STRESS ANALYSIS:

ALLOWABLE STRESSES - EASTERN WHITE PINE

\[F_b = 1050 \text{ psi} \]
\[F_e = 700 '' \]
\[F_{tr} = 65 '' \] INCREASE BY 1.25 FOR SNOW LOADS
\[F_{ct} = 220 '' \]
\[F_c = 675 '' \]
\[E = 1100 \text{ ksi} \]

MEMBER PROPERTIES:

\[b \times d \]
\[5\frac{1}{2}'' \times 6'' \] PURLINS
\[3'' \times 6\frac{1}{2}'' \] CEILING JOISTS
\[3\frac{1}{2}'' \times 3\frac{1}{2}'' \] RAFTERS
\[4\frac{1}{2}'' \times 9'' \] TOP CHORD
\[6'' \times 9'' \] BOTTOM CHORD
\[6'' \times 9'' \] KING POST
\[6'' \times 7'' \] VERT. WEB MEMB
\[5\frac{1}{2}'' \times 5\frac{1}{2}'' \] DIAG. " "

FOR MEMBERS UNDER COMBINED LOADING:

1. FLEXURE & AXIAL TENSION

\[\frac{f_t}{F_t} + \frac{f_b}{F_b} \leq 1 \]
2. FLEXURE & AXIAL COMPRESSION

\[\frac{f_c}{f'_c} + \frac{f_b}{f'_b} \leq 1 \quad \text{(SHORT COLUMN, } l/d \leq 11) \]

or \[\frac{f_c}{f'_c} + \frac{f_b}{f'_b} \quad \text{where } J = \left(\frac{l}{d} \right) - 11 \quad \text{and } K = 0.167 \sqrt{\frac{E}{f_c}} \]

for \(l/d > 11 \)

WEB MEMBERS - AXIAL LOADS ONLY

- MEMBERS BK & FH - 6" x 7"; \(L = 6 \); \(P = 5.524 \text{k} \)

\[f_c = \frac{5524}{(6)(7)} = 131.5 \text{ psi} < 633 \text{ psi} \]

\[\frac{l}{d} = \frac{6 \times 12}{12} = 6 \]

\[K = 0.671 \sqrt{\frac{E}{f_c}} \]

\[= 27.1 > 12 \]

\[f'_c = f_c \left[1 - \frac{1}{3} \left(\frac{l}{d} \right)^4 \right] \]

\[= 840(0.9877) \]

\[= 833 \text{ psi} \]

- MEMBERS CI & EI \(L = \sqrt{(9.23)^2 + (7.75)^2} = 12.07 \)

\[P = 4.724 \text{k} \]

\[\frac{l}{d} = \frac{12.07 \times 12}{26.33} = 5.5 \]

\[K = 27.1 > 26.33 \]

\[f'_c = f_c \left[1 - \frac{1}{3} \left(\frac{l}{d} \right)^4 \right] \]

\[= 590.5 \text{ psi} \]
MEMBERS SUBJECTED TO AXIAL LOADS & FLEXURE

- TOP CHORD MEMBERS AB & FG; 4½" x 9"; L = 14.5'
 (LATERAL SUPPORT PROVIDED BY PURLINS) \(P = 17,084 \text{ K} \)

\[
\frac{L}{d} = \frac{(14.5 \times 12)}{4} = 45.3
\]

\[
F_c' = F_c \left[1 - \frac{1}{3} \left(\frac{L}{d} \right)^\frac{4}{3} \right]
\]

\[
F_c' = 616.76 \text{ psi}
\]

\[
J = \frac{L/d}{K - 11} = 0.52
\]
\[P = \left[(14.5)(12.83)(20) + (13.25)(12.83)(16) \right] / 2 = 3220.33 \] \\
\[\Sigma M_L = 9.5 P - 14.5 R_L = 0 \]
\[R_L = 2109.9 \text{ lbs} \]
\[R_L = 1110.4 \text{ lbs} \]
\[M_{\text{MAX}} = (5)(2109.9) = 10,549 \text{ ft-lbs} \]
\[f_b = \frac{10,549 (12)}{60.75} = 2,083.75 \text{ psi} \]
\[f_b = \frac{1,310 \text{ PSI}}{12} \approx 108.33 \text{ psi} \]
\[f_c = \frac{17084}{4.5(9)} = 421.83 \text{ psi} \]
\[f_c + f_b = \frac{421.83 + 2083.75}{614.76} = 2.59 \]
\[F_c = F_b - J_c \]
\[J = \frac{\ell/d - 11}{K - 11} \]

\[\ell/d = \frac{10(12)}{29} = 3.33 \]
\[F_c = \left[1 - \frac{1}{3} \left(\frac{\ell/d}{K} \right) \right] F_b \]
\[= 661.83 \text{ psi} \]
\[J = \frac{\ell/d - 11}{K - 11} = 0.145 \]

Top chord members BC & EF; 4\% x 9\%; L = 10\'; lateral support provided by purlins; \[P = 17,084 \text{ kips} \]
GWMP

<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARLINGTON HOUSE</td>
<td>DENVER SERVICE CENTER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>Feature</th>
<th>Date</th>
<th>Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINEERING STUDY</td>
<td>ROOF TRUSS ANAL.</td>
<td>11/30/81</td>
<td>Pkg. 506</td>
</tr>
</tbody>
</table>

\[
R_L = R_R = \frac{1}{2} P_0 = 1116.21 \text{ lbs}
\]

\[
M_{\text{MAX}} = 5 (1116.21) = 5581.05 \text{ ft-lbs}
\]

\[
f_0 = \frac{5581.05}{(12)} = 460.75 \text{ psi}
\]

\[
f_c = \frac{17084}{4.5} = 3797.33 \text{ psi}
\]

\[
\frac{f_e'}{f_e} + \frac{f_b}{f_b - Jf_c} = \frac{321.605}{661} + \frac{1102.43}{1310 - 61.17} = 1.37 > 1
\]

Top Chord Members CD & DE: 4\frac{1}{2}'' \times 9''; L = 10.08'

Lateral Support provided by purlins; \(P = 13,025 \text{ kN} \)

\[
P = 2232.42 \text{ lbs}
\]

\[
\gamma_d = 13.33
\]

\[
R_L = R_R = 1116.21 \text{ lbs}
\]

\[
M_{\text{MAX}} = 5 (1116.21) = 5581.05 \text{ ft-lbs}
\]

\[
j = 0.145
\]

\[
f_b = 1102.43 \text{ lbs}
\]

\[
f_c = \frac{13025}{(4.5)(4)} = 321.605 \text{ psi}
\]

\[
\frac{f_e'}{f_e} + \frac{f_b}{f_b - Jf_c} = \frac{321.6}{661} + \frac{1102.43}{1310 - 61.17} = 1.37 > 1
\]

NO GOOD
Bottom Chord Member AJ & JG; \(F_c = 15.636 \text{kips} \)

\[
\begin{align*}
\Sigma F_v &= 10.078 + 5.524 + 0.056 + 0.372 (32) - 19.951 - 7.609 \\
&= 0.002 \text{kips}
\end{align*}
\]

\[
\begin{align*}
\Sigma M_a &= -3.5 (19.951) + 13.25 (5.524) + \frac{(0.372)(32)^2 + (0.056)(32)}{2} \\
&- 2w (7.609) = -
\end{align*}
\]

Shear Diagram

Moment Diagram

\(-5.323 \)

\(-9.398 \)
<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARlington House</td>
<td>DENVER SERVICE CENTER</td>
</tr>
<tr>
<td>Project</td>
<td>Engineering Study</td>
<td>By MACDONALD</td>
</tr>
<tr>
<td>Feature</td>
<td>Roof Truss Analysis</td>
<td>Checked</td>
</tr>
<tr>
<td>Date</td>
<td>11/30/81</td>
<td>Pkg. 506</td>
</tr>
</tbody>
</table>

\[M_{\text{max}} = 37.552 \text{ ft} \cdot \text{ ft} \cdot \text{k} \quad f_b = 1310 \text{ psi} \]

\[f_b = \frac{37.552 \text{ (12)}}{81} = 5563.26 \text{ psi} \]

\[f_t = \frac{15636}{54} = 287.6 \text{ psi} \]

\[\frac{f_t + f_b}{f_t / f_b} = \frac{287.6 + 5563.26}{1310} = 4.58 > 1 \]

No Good

Member is 358% undersized.
LOADING CONDITION 2:

\[P_1 = \frac{14.55(256.6)}{2} + \frac{(13.25)(256.6)}{2} + \frac{(32)(372.0)}{2} - \frac{(14.55)(128.3)(1.0)}{(2)(1.092)} \]

\[= 8.664 \text{ kN} \]

\[P_{1h} = \frac{(14.55)(128.3)(0.401)}{(2)(1.092)} = 0.343 \text{ kN} \]

\[P_2 = \frac{(24.85)(256.6)}{2} + \frac{(13.25 + 9.5)(256.6)}{2} - \frac{(24.85)(128.3)(1.0)}{(2)(1.092)} \]

\[= 4.047 \text{ kN} \]

\[P_{2h} = \frac{(24.85)(128.3)(0.401)}{(2)(1.092)} = 0.585 \text{ kN} \]

\[P_3 = \frac{(20.39)(256.6)}{2} + \frac{(9.5 + 9.25)(256.6)}{2} - \frac{(20.39)(128.3)(1.0)}{(2)(1.092)} \]

\[= 3.824 \text{ kN} \]

\[P_{3h} = \frac{(20.39)(128.3)(0.401)}{(2)(1.092)} = 0.480 \text{ kN} \]
\[
P_4 = \frac{(11.03)(256.6) + (9.25)(256.6)}{2} - \frac{(11.03)(128.3 + 153.96)(1.0)}{(2)(1.092)}
\]

\[
P_4 = 2.592 \text{ K}
\]

\[
P_4^* = \frac{(11.03)(128.3)(0.401)}{(2)(1.092)} - \frac{(11.03)(153.96)(0.401)}{(2)(1.092)} = 0.052 \text{ K}
\]

\[
P_5 = \frac{(20.39)(256.6)}{2} - \frac{(20.39)(153.96)(1.0)}{(2)(1.092)} = 1.179 \text{ K}
\]

\[
P_5^* = \frac{(20.39)(153.96)(0.401)}{(2)(1.092)} = 0.576 \text{ K}
\]

\[
P_6 = \frac{(24.85)(256.6)}{2} - \frac{(24.85)(153.96)(1.0)}{(2)(1.092)} = 1.436 \text{ K}
\]

\[
P_6^* = \frac{(24.85)(153.96)(0.401)}{(2)(1.092)} = 0.702 \text{ K}
\]

\[
P_7 = \frac{(14.55)(256.6)}{2} + \frac{(32)(372.0)}{2} - \frac{(14.55)(153.96)(1.0)}{(2)(1.092)}
\]

\[
P_7 = 6.793 \text{ K}
\]

\[
P_7^* = \frac{(14.55)(153.96)(0.401)}{(2)(1.092)} = 0.911 \text{ K}
\]

\[
P_8 = \frac{(64)(372)}{2} = 11.904 \text{ K}
\]
\[F_{CD_H} + P_{4H} = F_{DE_H} \quad \Rightarrow \quad \frac{F_{CD}}{1.092} + 0.052 = \frac{F_{DE}}{1.092} \]

\[F_{CD} = F_{DE} - 0.057 \]

\[F_{CI} = F_{EI} \]

Assume: \((R_L + R_{1L})\) support \(\frac{1}{2} F_{Iu}\) and \(F_{FL}\) includes all friction forces along bottom chord. \(F_{FL} = \frac{F_{CD}}{1.092} + \frac{F_{EI}}{1.271} + P_{3H} + P_{2H} + P_{1u} - P_{4H}\)

\[\Sigma M_E = \frac{1}{2} (9.25) P_8 + (9.25) P_4 + 18.5 P_3 + 28 P_2 \]

\[+ 41.25 P_1 - 15.25 R_{1L} - 37.75 R_L - 4 P_{4H} \]

\[- 4 P_{2H} - 10 P_{1H} + 10 F_{FL} \]

\[= 55.056 + 23.976 + 70.744 + 130.116 + 357.39 \]

\[- 15.25 R_{1L} - 37.75 R_L - 0.208 - 2.340 - 3.430 \]

\[+ 10 F_{FL} \]
USING THE METHOD OF JOINTS, THE FOLLOWING
RELATIONSHIPS WERE DERIVED:

\[F_{bc} = F_{ab} - 1.092 \left(P_{zh} \right) \]

\[F_{cd} = F_{bc} - 0.70065 P_{zh} - 0.8937 P_{p} \]

\[F_{de} = F_{cd} + 1.092 P_{zh} = F_{ef} - 0.70065 P_{zh} - 0.8937 P_{p} \]

\[F_{ef} = F_{de} + 0.70065 P_{zh} + 0.8937 P_{p} = F_{fg} - 1.092 P_{p} \]

\[F_{fg} = F_{ef} + 1.092 P_{p} \]

\[\begin{align*}
F_{fg} &= 1.092 P_{p} + 0.70065 P_{zh} + 0.8937 P_{p} + 1.092 P_{p} \\
&\quad - 0.70065 P_{zh} - 0.8937 P_{p} - 1.092 P_{p} + F_{ab} \\
&= F_{ab} - 2.112 K
\end{align*} \]

\[F_{gh} = \frac{1}{1.092} F_{fg} + P_{bh} = \frac{1}{1.092} \left(F_{ab} \right) - 1.523 K \]

\[F_{aj} = \frac{1}{1.092} F_{ab} + P_{ih} = \frac{1}{1.092} F_{ab} + 0.343 K \]

\[\therefore F_{aj} - F_{gh} = 1.066 K \]

ASSUME \(F_{fl} = 5.000 K = \frac{F_{ed} + F_{ee} + P_{zh} + P_{zh} + P_{p} - P_{zh}}{1.092} \)

\[\Sigma M_{e} = 681.204 - 15.25 R_{L} - 37.75 R_{L} \]

\[\Sigma F_{v} = P_{1} + P_{2} + P_{3} + \frac{1}{2} P_{4} + \frac{1}{2} P_{5} - R_{L} - R_{L} = 0 \]
\[\Sigma F_v = 24.383 - R_l - R_{Il} \]

\[R_l = 24.383 - R_{Il} \]

\[\Sigma M_E = 681.104 - 15.25 R_{Il} - 37.75 (24.383 - R_{Il}) \]

\[22.5 R_{Il} = 239.154 \]

\[R_{Il} = 10.629 \text{ k} \]

\[R_l = 13.754 \text{ k} \]

For Right Side of Truss ...

\[\Sigma M_E = \frac{1}{2} (9.25) P_8 + (9.25) P_4 + 18.5 P_5 + 128 P_6 + 41.25 P_7 - 15.25 R_{Ir} - 37.75 R_R + 4 P_{4h} + 4 P_{7h} + 10 F_{Fr} = 0 \]

Assume \(F_{Fr} = 5,000 - 1.866 = 3.134 \text{ k} \)

\[F_{Fr} = \frac{F_{Ed}}{1.92} + \frac{F_{Rd}}{1.371} + P_{5h} + P_{6h} + P_{7h} + P_{4h} \]

\[\Sigma M_c = 451.508 - 15.25 R_{Ir} - 37.75 R_R \]

\[\Sigma F_v = \frac{1}{2} P_4 + \frac{1}{2} P_8 + P_5 + P_6 + P_7 - R_{Ir} - R_R = 0 \]

\[22.5 R_{Ir} = 177.254 \]

\[R_{Ir} = 7.878 \text{ k} \]

\[R_R = 8.778 \text{ k} \]
TO CHECK ASSUMPTIONS, TAKE MOMENT ABOUT "A" FOR PORTION OF TRUSS SHOWN BELOW.

\[
\begin{align*}
\sum M_A &= 3.5 R_L + 26 R_{1L} - \frac{1}{2} (32) P_6 - 32 P_4 - 22.75 P_3 \\
&\quad - 13.25 P_2 + 14 (F_{ED}) + 32 (0.401) F_{ED} - 32 (0.6168) F_{IE} \\
&\quad + \frac{2.25}{1.092} F_{IE} + 6 P_{2H} + 10 P_{3H} - 14 P_{4H} \\
\end{align*}
\]

JOINT "E" \[
\begin{align*}
\sum F_v &= P_S - 0.401 F_{EF} + 0.401 F_{DE} - 0.6168 F_{IE} \\
F_{EF} &= \frac{P_S}{0.401} + F_{DE} - 0.6168 F_{IE} \\
F_{EH} &= \frac{F_{EF}}{1.092} - \frac{F_{DE} - F_{IE} - P_{5H}}{1.271} \\
&= \frac{P_S}{1.092} \left(\frac{0.401 + F_{DE} - 1.5382 F_{IE}}{1.092} \right) - \frac{F_{DE} - F_{IE}}{1.271} \\
&\quad - P_{5H}
\end{align*}
\]
<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
<th>NATIONAL PARK SERVICE</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
<td>DENVER SERVICE CENTER</td>
<td>22</td>
</tr>
<tr>
<td>Project</td>
<td>ENGINEERING STUDY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>ROOF TRUSS ANAL.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature Description</th>
<th>Mathematical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma F)</td>
<td>(= 2.2837 , P_5 - 1.4086 , F_{IE} - 0.7868 , F_{IE} - P_{SH})</td>
</tr>
<tr>
<td>(F_{IE})</td>
<td>(= 0.964 , K)</td>
</tr>
<tr>
<td>(\Sigma M_A)</td>
<td>(= 324.493 - 190.464 - 82.944 - 86.996 - 61.573)</td>
</tr>
<tr>
<td></td>
<td>(+ 25.6525 , F_{ED} - 19.027 + 1.707 + 3.51 + 4.8 - 0.728)</td>
</tr>
<tr>
<td>(25.6525 , F_{ED})</td>
<td>(= -107.228)</td>
</tr>
<tr>
<td>(F_{DE})</td>
<td>(= 4.180 , K)</td>
</tr>
<tr>
<td>(F_{DE})</td>
<td>(= 1.092 , P_{4H} - 0.70065 , P_{3H} - 0.8937 , P_{3} - 1.092 , P_{2H} + F_{AB})</td>
</tr>
<tr>
<td>(F_{FL})</td>
<td>(= \frac{F_{DE} + F_{IE} + P_{3H} + P_{2H} + P_{1H} - P_{4H}}{1.092})</td>
</tr>
<tr>
<td>(\text{Assumed Value of } F_{AJ})</td>
<td>(= 5.000 , K)</td>
</tr>
<tr>
<td>(\text{Assume } F_{FL})</td>
<td>(= 7.000 , K)</td>
</tr>
<tr>
<td>(\Sigma M_E)</td>
<td>(= 701.304 - 15.25 , R_{IL} - 37.75 , R_L)</td>
</tr>
<tr>
<td>(22.5 , R_{IL})</td>
<td>(= 219.154)</td>
</tr>
<tr>
<td>(R_{IL})</td>
<td>(= 9.740 , K)</td>
</tr>
<tr>
<td>(R_L)</td>
<td>(= 14.643 , K)</td>
</tr>
</tbody>
</table>

Check:

<table>
<thead>
<tr>
<th>Feature Description</th>
<th>Mathematical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma M_A)</td>
<td>(= 304.490 - 190.464 - 82.944 - 86.996 - 61.573)</td>
</tr>
<tr>
<td></td>
<td>(+ 25.6525 , F_{ED} - 19.027 + 1.707 + 3.51 + 4.8 - 0.728)</td>
</tr>
<tr>
<td>(F_{ED})</td>
<td>(= 4.966 , K)</td>
</tr>
<tr>
<td>Park</td>
<td>GWMP</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
</tr>
<tr>
<td>Project</td>
<td>ENGINEERING STUDY</td>
</tr>
<tr>
<td>Feature</td>
<td>ROOF TRUSS ANAL.</td>
</tr>
<tr>
<td>FORM OS C</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATIONAL PARK SERVICE</th>
<th>DENVER SERVICE CENTER</th>
<th>Sheet 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>By</td>
<td>Macdonald</td>
<td></td>
</tr>
<tr>
<td>Checked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>12/2/81</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pkg.</td>
<td>506</td>
<td></td>
</tr>
<tr>
<td>Account</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[F_{pl} = 6.708 \text{k} \]

Assume \(F_{pl} = 6.5 \)

\[\sum M_E = 696.304 \ - 15.25 R_{IL} \ - 37.75 R_L \]
\[22.5 R_L = 224.154 \]
\[R_L = 9.962 \text{k} \]
\[R_L = 14.421 \text{k} \]

CHECK:
\[\sum M_A = 309.484 \ - 190.464 \ - 82.944 \ - 86.996 \ - 61.573 \]
\[+ 25.6525 F_{Ed} \ - 19.027 + 1.707 + 3.51 + 4.8 - 0.728 \]
\[F_{Ed} = 4.765 \text{k} \]
\[F_{pl} = 6.477 \text{k} \quad \text{Assumed Value = 6.50 k} \]

Assume \(F_{pl} = 6.450 \text{k} \)

\[\sum M_E = 695.804 \ - 15.25 R_{IL} \ - 37.75 R_L \]
\[R_{IL} = 9.985 \text{k} \]
\[R_L = 14.398 \text{k} \]

CHECK:
\[\sum M_A = 310.004 - 190.464 - 82.944 - 86.996 - 61.573 \]
\[+ 25.6525 F_{Ed} - 19.027 + 1.707 + 3.51 + 4.8 - 0.728 \]
\[F_{Ed} = 4.744 \text{k} \]
\[F_{pl} = 6.459 \text{k} \quad \text{Assumed Value = 6.450 k} \]

\[F_{DI} = 1.213 \text{k}(T) \]
\[F_{IJ} = 1.700 \text{k}(C) \]
Right Side of Truss

\[\sum M_c = \frac{1}{2} (9.25) P_0 + 9.25 P_4 + 18.5 P_5 + 28 P_6 + 14.25 P_7 - 15.25 R_{1R} - 37.75 R_R + 4 P_{4H} + 4 P_{7H} - 10 P_{7H} + 10 F_{FR} = 0 \]

\[F_{FR} = \frac{F_{CD}}{1.092} + \frac{F_{EI}}{1.271} + P_5 + P_6 + P_{4H} + P_{7H} + P_{4H} \]

\[F_{EI} = \frac{1}{2.1954} \left[2.25837 P_3 - P_{3H} \right] \quad \text{SEE SH 722} \]

\[F_{CD} = F_{DE} - 0.057 \quad (\text{SH 7.18}) \]

\[= 4.687 \text{k} \]

\[F_{FR} = 8.991 \text{k} \]

\[\sum M_c = 420.169 - 15.25 R_{1R} - 37.75 R_R + 10 F_{FR} \]

\[22.5 R_{1R} = 118.686 \]

\[R_{1R} = 5.275 \text{k} \]

\[R_R = 11.381 \text{k} \]

CHECK:

\[\sum M_c = 176.984 \quad - 190.464 - 82.944 - 24.822 \]

\[- 19.027 + 25.6525 F_{CD} - 74.198 + 0.655 + 4.212 - 3.76 + 0.72 \]

\[25.6525 F_{CD} = 8.209 \text{k} \]
Although this problem is statically indeterminate, it is apparent, based on the above calculations, that to compensate for the unsymmetrical loading on the truss, members DI and I will support greater loads than calculated (and shown on SH 26), while the top and bottom chord members will be subject to smaller axial forces. Based on a comparison of SH 8 and 26, it is clear that loading condition no. 1 is more severe for all members except possibly ID and the bottom chords.
MEMBER ANALYSIS:

- **WEB (KING POST) MEMBER**

 \[L = 2.25', 6'' \times 15'' ; \]

 \[P_c (\text{assumed worst cond.}) = 2.592 + (0.6168)(0.944 + 3.759) = 5.50 \]

 \[f_c = \frac{P_c}{6 \times 15} = 61.2 \text{ psi} \ll 840 \text{ psi} ; \quad \frac{L}{d} = 4.5 \]

 \[\frac{L}{d} < 11 \]

 \[F_c = F_c = 840 \]

 \[\text{OK} \]

- **BOTTOM CHORD MEMBER**

 \[L = 6'' \times 9'' ; P_T (\text{MAX}) = 8.710k \]

 WHEN \(P_T \) INCREASES TO COMPENSATE FOR THE UNSYMMETRICAL TRUSS LOADING, \(R_{1L} \) WILL INCREASE AND \(R_2 \) WILL DECREASE, COMPARING THE BOTTOM CHORD LOADING FOR CASE NO. 1 (-SHIT 14) AND THE PROJECTED LOADING FOR CASE NO. 2, IT IS APPARENT CASE NO. 1 IS MORE SEVERE AND SHOULD BE USED IN THE DESIGN OF A SOLUTION.
LOADING CONDITION 3: D.L. PLUS SNOW LOAD (I)

\[P_1 = \frac{(13.25)(205.3)}{2} + \frac{(14.55)(256.6)}{2} + \frac{32}{2}(14)(12.93) \]
\[= 6.101 K \]

\[P_2 = (13.25 + 9.5)(205.3)/2 + 24.85(256.6)/2 = 5.524 K \]

\[P_3 = (9.5 + 9.25)(205.3)/2 + 20.39(256.6)/2 = 4.541 K \]

\[P_4 = (9.25)(205.3) + 11.03(256.6) = 4.729 K \]

\[P_5 = (64)(14)(12.93)/2 = 5.748 K \]

\[R_L + R_{JL} = P_1 + P_2 + P_3 + \frac{1}{2}(P_4 + P_5) \]
\[= 21.404 K \]

Note: Axial loads for loading condition 3 identical to those for loading condition no. 1. (See sheet 8)
\[\sum M_A \text{ (for floor live load)} = \frac{0.1924(32)^2}{2} - 3.5 R_L - 26 R_{IL} \]

\[R_L + R_{IL} = (0.1924)(32) = 6.157 \text{ k} \]

\[\sum M_A = 98.509 - 3.5 (6.157 - R_{IL}) - 26 R_{IL} \]

\[22.5 R_{IL} = 76.96 \]

\[R_{IL} = 3.420 \text{ k} \]

\[R_L = 21.737 \text{ k} \]

\[R_L \text{ for loading condition 3} = 7.786 \text{ k} \]

\[R_{IL} \text{ for loading condition 3} = 13.618 \text{ k} \]

- **BOTTOM CHORD MEMBERS** AJ & JG; \(p = 0.344 \text{ k} \)

\[L = 32', \ 6'' \times 9'' \]

- \[3.378 \text{ k} \]
- \[5.524 \text{ k} \]
- \[0.1796 \text{ PLF} \]
- \[6.755 \text{ k} \]
- \[R_L = 7.786 \text{ k} \]
- \[R_{IL} = 13.618 \text{ k} \]
\[
M_{\text{MAX}} = 43.787 \text{ ft-k}
\]
\[
f_b = \frac{43.787 \times 12}{81} = 6.487 \text{ psi}
\]
\[
f_e = 0.344 \times 10^3 =
\]
\[
f_e + f_b = 4.96 > 1
\]

Loading Condition 4: Dead Loads plus Snow Loads (II) plus Wind Load.

This loading condition results in identical member loading as exists for loading condition 2 with the exception that bottom chord members AJ & JG are subject to less flexure. They still, however, would be overloaded.
<table>
<thead>
<tr>
<th>Park</th>
<th>FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWMP</td>
<td>ROOF TRUSS ANALYSIS</td>
</tr>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
</tr>
<tr>
<td>Project</td>
<td>ENGINEERING STUDY</td>
</tr>
<tr>
<td>Feature</td>
<td>FLOOR LOADS</td>
</tr>
</tbody>
</table>

FLOOR LOADS

- **Ceiling/Floor Joists** (2x9s @ 16" O.C.)
- **Plaster Ceiling**
- **Floor Boards**
- **Attic Live Load (This Area Only)**

<table>
<thead>
<tr>
<th>Load Type</th>
<th>PSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling/Floor Joists</td>
<td>5.0</td>
</tr>
<tr>
<td>Plaster Ceiling</td>
<td>10.0</td>
</tr>
<tr>
<td>Floor Boards</td>
<td>3.0</td>
</tr>
<tr>
<td>Attic Live Load</td>
<td>30.0</td>
</tr>
<tr>
<td>Total</td>
<td>48.0</td>
</tr>
</tbody>
</table>

See Table II, pg 49, Simplified Design of Roof Trusses, Parker

ROOF LOADS

<table>
<thead>
<tr>
<th>Load Type</th>
<th>PSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truss *</td>
<td>3.75</td>
</tr>
<tr>
<td>Slate Shingles</td>
<td>1.0</td>
</tr>
<tr>
<td>Sheathing</td>
<td>1.75</td>
</tr>
<tr>
<td>Rafters</td>
<td>1.7</td>
</tr>
<tr>
<td>Purlins</td>
<td>1.8</td>
</tr>
<tr>
<td>Total</td>
<td>19.75</td>
</tr>
</tbody>
</table>

- **Snow**

<table>
<thead>
<tr>
<th>Load Type</th>
<th>PSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow</td>
<td>16</td>
</tr>
</tbody>
</table>

- **Wind**

<table>
<thead>
<tr>
<th>Load Type</th>
<th>PSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windward</td>
<td>12</td>
</tr>
<tr>
<td>Leeward</td>
<td>10</td>
</tr>
</tbody>
</table>

Reaction due to Outrigger

Loading on West Wall Truss Less Effects due to Outriggers

![Diagram of roof truss analysis](image-url)
LOADS ON OUTRIGGERS AND THE SUBSEQUENT EFFECTS ON WEST WALL TRUSS.

ASSUME OUTRIGGERS SUPPORTING HORIZ. CORNICE AND RAKING CORNICE OF P EDIMENT SUBJECT TO EQUAL DEAD & LIVE LOADS.

DEAD LOADS
- 2x9s 16" O.C. 4'-2" Long 3.75 psf
- Sheathing 2.5"
- Shingles 100"
- Misc. 3.75"

SUB-TOTAL
- 20 psf

LIVE LOAD
- Snow Load 20"
- OR for Overhanging Eaves (71.4"

WIND LOAD (714.4 - OVERHANG UPLIFT SHALL BE DESIGNED TO WITHSTAND AN UPWARD PRESSURE OF TWO TIMES THE WIND PRES GIVEN IN TABLE 712.1 = 28 psf

LOAD COMBINATIONS ON OUTRIGGERS:

1. **DEAD LOAD**
2. **DEAD LOAD** plus **LIVE LOAD** *(NO SNOW)*
3. **DEAD LOAD** plus **WIND LOAD**
4. **DEAD LOAD** **LIVE LOAD** plus **WIND LOAD**
5. **DEAD LOAD** **LIVE LOAD** *(SNOW)*
6. **DEAD LOAD** **WIND**

DETERMINE EFFECTS OF OUTRIGGER LOADING COMBINATIONS ON WEST END TRUSS.

LIVE LOAD ON OUTRIGGER ONLY OF 60 PSF (710.3 BOCA)
- WOULDN'T BE CONCURRENT WITH MAJOR SNOW LOAD ON REST OF ROOF
LOADING COMBINATION 2 (NO SNOW ON MAJOR PART OF ROOF)

\[\Sigma F_v = (80)(4.25) + R_T - R_w \]
\[\Sigma M_T = (80)(4.25)^\frac{1}{2} - R_w(0.09') = 0 \]
\[R_w = 963.33 \text{ lbs/ft} \]
\[R_T = 623.3'' / '' \]

LOADING CONDITION 3

\[\Sigma F_v = (8.0)(3) + R_T - R_w \]
\[\Sigma M_T = (8.0)(3)(4.25)^\frac{1}{2} - R_w(0.9') \]
\[R_w = 56.7 \text{ PLF} \]
\[R_T = 32.7 \text{ PLF} \]

LOADING CONDITION 5 (SNOW)

(SAME DWG. AS # 2)

\[\Sigma F_v = (40)(4.25) + R_T - R_w \]
\[\Sigma M_T = (40)(4.25)^\frac{1}{2} - R_w(0.75') \]
\[R_w = 481.67 \text{ lbs/ft} \]
\[R_T = 311.67'' / '' \]

LOADING CONDITION 6 - (SNOW + WIND)

\[\Sigma F_v = (12)(3.5) + (20)(1.75) - R_w + R_w \]
\[\Sigma M_T = (12)(3.5)(4.25)^\frac{1}{2} + (0.75')^\frac{2}{2}(20) - (0.75)R_w \]
\[R_w = 126.5 \text{ lbs/ft} \]
\[R_T = 69.5'' / '' \]
WEST END TRUSS ANALYSIS - D.L. PLUS SNOW LOAD PLUS WIND LOAD

\[
(109.1 + 192.6 - 69.5) \text{ PLF} = \text{D.L. + LL. + OUTRIGGER SNOW FLOOR + D.L.}
\]

\[
P_1 = \frac{18.75}{2} (102.6) + \frac{32}{2} (232.1) + \frac{20.475}{2} (58.8) = 5277.44 \text{ #}
\]

\[
P_2 = \frac{32}{2} (102.6) + \frac{34.944}{2} (128.3 - 69.5) = 2668.95 \text{ #}
\]

\[
P_3 = \frac{26.5}{2} (102.6) + \frac{28.938}{2} (128.3 - 69.5) = 2210.23 \text{ #}
\]

\[
P_4 = \frac{64}{2} (232.1) = 7427.1 \text{ lb}
\]

\[
R_L + R_H = P_1 + P_2 + \frac{1}{2} (P_3 + P_4)
\]

\[
= 12.765 \text{ k}
\]
FORM DSC - 44

<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE</th>
<th>Sheet 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>DENVER SERVICE CENTER</td>
<td>of</td>
</tr>
<tr>
<td>Project</td>
<td>ENGINEERING STUDY</td>
<td>By MACDONALD</td>
</tr>
<tr>
<td>Feature</td>
<td>ROOF TRUSS ANAL.</td>
<td>Checked</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pkg. 506</td>
</tr>
</tbody>
</table>

\[
F_{bc} = F_{cd} = \frac{P_3}{(2)(0.401)} = 2.756k
\]

TAKING THE MoMENT ABOUT "A" FOR HALF THE TRUSS.

\[
\Sigma F_v = P_1 + P_2 + \frac{1}{2} P_3 + \frac{1}{2} P_4 - R_L - R_{1L}
\]

\[
= 12,765.06 - R_L - R_{1L}
\]

\[
\Sigma M_a = 18.75 P_2 + 32 P_3 + \frac{32}{2} P_4 - 32(0.401)(2.756)
\]

\[
= -14(2.756) - 3.5 R_L - 26 R_{1L} = 0
\]

22.5 R_{1L} = 129.227

R_{1L} = 5.521 k = R_{1E}

R_L = 7.244 k = R_R

MEMBER BY MEMBER ANALYSIS BY

METHOD OF JOINTS.

JOINT "A"

\[
\Sigma F_v = 0.401(F_{bc} + F_{cd}) - P_3 = 0
\]

\[
F_{bc} = \frac{P_3}{(2)(0.401)} = 2.756 k
\]

\[
F_{cd} = 2.756 k
\]
Joint "B"

\[\Sigma F_y = P_2 + 0.401 F_{BC} - 0.401 F_{AB} \]

\[= \frac{1}{1.018} F_{BH} = 0 \]

\[\Sigma F_H = 0.9158 F_{BC} - 0.9158 F_{AB} \]

\[+ 0.188 \frac{F_{BH}}{1.018} = 0 \]

\[\Sigma F_v = 3.774 - 0.401 F_{AB} - 0.9823 F_{BH} \]

\[\Sigma F_H = 2.524 - 0.9158 F_{AB} + 0.1847 F_{BH} \]

\[F_{AB} = 9.411 - 2.450 F_{BH} \]

\[\Sigma F_H = 2.524 - 0.9158 (9.411 - 2.450 F_{BH}) \]

\[+ 0.1847 F_{BH} \]

\[F_{BH} = 2.428 \]

\[F_{BH} = 6.095 \]

\[F_{AB} = 2.510 \text{ kN} \]

\[F_{AB} = 3.261 \text{ kN} \]

Joint "A"

\[F_{AHG} = F_{ABH} = \frac{F_{AB}}{1.012} \]

\[= 2.986 \text{ kN} \]
CHECK:

\[P_f + F_{a1} = F_{bh} \]

\[5.673 + 7.092 = \frac{1}{2} P_f \]

\[\sum F_y = 5.277 + (0.401)(3.261) + \frac{2.510}{1.018} + 3.714 - 5.521 - 7.244 = 0 \]

\[0.001 = 0 \]

MEMBER STRESS ANALYSIS:

MEMBER PROPERTIES:

<table>
<thead>
<tr>
<th>b x d</th>
<th>A (in²)</th>
<th>S (in³)</th>
<th>I (in⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 3/4</td>
<td>8 5/8</td>
<td>BOTTOM CHORD</td>
<td>40.97</td>
</tr>
<tr>
<td>3 1/2</td>
<td>8</td>
<td>TOP CHORD</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>5 1/2</td>
<td>WEB MEMBER</td>
<td>16.5</td>
</tr>
</tbody>
</table>
National Park Service

- **Project:** ENGR. STUDY
- **Feature:** ROOF TRUSS ANAL.
- **Date Accounted For:** 12/7/81
- **Checked:**
- **Pkg.:** 506

Web Members BH & DF (Axial Load Only)

- **L** = 836\(^\prime\) \(P = 4329\) kN
- **F\(_C\)** = \(\frac{2510}{(3)(5\frac{1}{2})} = 152.12 \text{ psi} \)
- **L/d** = \(\frac{8.36}{12} \times 38.44 \)
- **K** = 0.471 \(\sqrt{\frac{E}{F_c}} = 27.1 \)
- **F\(_C'\)** = 0.3 \(E / (L/d)^2 \) = 0.3 \(E / (L/d)^2 \)

Top Chord Members AB & DE; \(P = 3.26 \text{ kN} \)

- **L/d** = \(\frac{20.45}{12} = 30.75 \)
- **F\(_C'\)** = 0.3 \(E / (L/d)^2 \) = 436.25

\[
\begin{align*}
P_1 &= \left[(8.27 + 4.12)(102.6)/2 + (9 + 4.5)(128.3 - 69.5)/2 \right] = 1032.51 \text{ lbs} \\
P_2 &= \left[(4.12 + 5.04)(102.6)/2 + (4.5 + 5.5)(128.3 - 69.5)/2 \right] = 763.91 \text{ lbs} \\
P_3 &= \left[(5.04 + 4.58)(102.6)/2 + (5.5 + 5.5)(128.3 - 69.5)/2 \right] = 802.21 \text{ lbs} \\
\end{align*}
\]

\[
\begin{align*}
\sum M_x &= 8.27 P_1 + 12.39 P_2 + 17.43 P_3 - 18.35 R_x = 0 \\
R_R &= 31.186.15/18.35 = 1743.11 \text{ lbs} \\
R_L &= P_1 + P_2 + P_3 - R_R = 855.52 \text{ lbs}
\end{align*}
\]
\[M_{\text{MAV}} = 7.075 \text{k-ft} \]

\[f_b = \frac{(7075)(12)}{37.33} = 2274.31 \text{ psi} \]

\[f_e = \frac{324.1}{(3.5)(8)} = 116.46 \text{ psi} \]

\[\frac{f_b}{f_e} + \frac{f_e}{f_c} = \frac{116.46 + 2274.3}{436.25} = 2.17 > 1 \]

\[\frac{f_b}{f_c} = \frac{1310 - 116.5}{1310 - 116.5} = 1 \]

\[\text{MEMBER IS UNDERDESIGNED} \]
- **TOP CHORD MEMBERS BC & CD**: \(L = 14.47' \), \(P = 2756 \) kN

\[
\frac{L}{d} = \frac{(14.5)(12)}{8} = 21.75
\]

\[
F'_c = F_0 \left[1 - \frac{1}{3} \left(\frac{L}{d} \right)^4 \right] = 723.8
\]

\[
J = \frac{21.75 - 11}{27.1 - 11} = 0.67
\]

\[
P_1 = \left[(4.58 + 5.04)(102.6)/2 + (5.0 + 5.5)(58.8)/2 \right] = 802.21 \text{kips}
\]

\[
P_2 = 11
\]

\[
R_L = R_R = 802.21 \text{ kips}
\]

\[
M_{\text{MAX}} = 5(802.21) = 4011.03 \text{ ft-lb}
\]

\[
f_b = \frac{(4011.03)(12)}{37.33} = 128.49 \text{ psi}
\]

\[
f_0 = \frac{2756}{(3x12)} = 98.43 \text{ psi}
\]

\[
\frac{f_b + f_0}{f_b - f_0} = \frac{128.49 + 98.43}{128.49 - 98.43} = 1.17 \leq 1
\]

No Good

- **BOTTOM CHORD MEMBERS AG & EG**: \(P = 2986 \) kN

\(4\frac{3}{4}'' \times 8\frac{5}{8}'' \), \(L = 32 \)
GWMP

AREA

ENGINEERING STUDY

POISE TRUSS ANAL.

2.872 K

2.466 K

0.232 KLF

7.244

5.521

3.56

1.395

-2.872

-2.802

4.126

M_a = 3.6 (5.673) - (0.232)(32)/2 - 2.466 (20.292) + 20 (7.092) - M_c = 0

M_c = 35.423 FL-K

MOMENT

-11.475

-4.176

15.841

15.597

-11.475
\[M_{\text{max}} = 15.841 \text{ k-ft} \]

\[f_b = \frac{15.841 \times (12)}{58.89} = 322.8 \text{ psi} \]

\[f_t = \frac{2986}{40.97} = 72.88 \]

\[\frac{f_b}{f_t} + \frac{f_t}{f_t} = \frac{322.8}{1310} + \frac{72.88}{875} = 2.55 > 1 \]

MEMBER IS UNDERDESIGNED

WEST END TRUSS - LOADING CONDITION II:
- D.L. + W.L. (ON ROOF AND OUTVIGGERS)
- SNOW ON ONE SIDE OF BLDG.
Problem:

Given:
- 128.3 PLF (Snow)
- 64.2 PLF (Wind)
- 69.5 PLF (Outrigger)
- 32.7 PLF (Outrigger)

Calculations:

\[P_1 = \frac{16.75}{2} (128.3) + \frac{32}{2} (232.1) + \frac{20.475}{2} (128.3 - 69.5 - 64.2) \]

\[P_2 = \frac{32}{2} (128.3) + \frac{34.944}{2} (128.3 - 69.5 - 64.2) \]

\[P_3 = \frac{13.25}{2} (128.3) + \frac{28.938}{2} \left[128.3 - (69.5 - 32.7) - \frac{64.2 + 76.98}{2} \right] \]

\[P_4 = \frac{34.944}{2} (128.3 + 32.7 - \frac{76.98}{1.092}) \]

\[P_5 = \frac{32}{2} (232.1) + \frac{20.475}{2} (32.7 + 128.3 - \frac{76.98}{1.092}) \]

\[P_6 = \frac{64}{2} (232.1) \]

Results:

\[P_1 = 4916.4 \text{ lbs} \]

\[P_2 = 2052.8 \text{ lbs} \]

\[P_3 = 1329.5 \text{ lbs} \]

\[P_4 = 1581.3 \text{ lbs} \]

\[P_5 = 4642.1 \text{ lbs} \]

\[P_6 = 7427.2 \text{ lbs} \]
\[P_{1H} = \frac{20.475(64.2)(0.401)}{2} = 0.204 \text{ kN} \]
\[P_{2H} = \frac{34.944(64.2)(0.401)}{2} = 0.450 \text{ kN} \]
\[P_{3H} = \frac{(26.5)(76.98 - 64.2)(0.401)}{2} = 0.068 \text{ kN} \]
\[P_{4H} = \frac{(34.944)(76.98)(0.401)}{2} = 0.539 \text{ kN} \]
\[P_{5H} = \frac{20.475(76.98)(0.401)}{2} = 0.316 \text{ kN} \]

Joint "C"

\[\Sigma F_V = P_3 - F_{BC} (0.401) - F_{CD} (0.401) \]
\[\Sigma F_H = F_{CD} - F_{BC} - P_{3H} \]

\[F_{BC} = 3088.73 - F_{CD} \]
\[\Sigma F_H = \frac{F_{CD} - \frac{F_{BC}}{1.092}}{1.092} - 67.9 = 0 \]
\[F_{CD} - 3088.73 + F_{CD} = 74.15 = 0 \]
\[2F_{CD} = 3162.88 \]
\[F_{CD} = 1581.44 \text{ kN} \]
\[F_{BC} = 1507.29 \text{ kN} \]
Joint "B"

\[\Sigma F_V = 0.401 F_{BC} + P_2 - F_{BH} - 0.401 F_{AB} \]
\[= 2.657 - 0.9823 F_{BH} - 0.401 F_{AB} \]
\[\Sigma F_H = \frac{F_{BC}}{1.018} - \frac{F_{AB}}{1.092} + \frac{0.188 F_{BH} + P_2}{1.018} \]
\[F_{BH} = 1.998 + 0.2017 F_{BH} \]
\[\Sigma F_V = 2.657 - 0.9823 F_{BH} - 0.401 (1.998 + 0.2017 F_{BH}) \]
\[= 1.0632 F_{BH} = 1.856 K \]
\[F_{BH} = 1.746 K \]
\[F_{AB} = 2.350 K \]
\[F_{AH} = F_{AB} + P_{1H} \]
\[= 2.416 K \]

Joint "D"

\[\Sigma F_V = 0.401 F_{CD} + P_4 - 0.401 F_{DE} \]
\[= 2.215 - 0.401 F_{DE} - 0.9823 F_{DF} \]
\[
\begin{align*}
\Sigma F_H &= P_{4H} + F_{EP} - \frac{F_{DE}}{1.092} + 0.188 F_{DE} \\
F_{DE} &= 1.987 + 0.2017 F_{DF} \\
\Sigma F_V &= 2.215 - 0.401(1.987 + 0.2017 F_{DF}) \\
&- 0.9823 F_{DF} \\
1.003 F_{DF} &= 1.418 \\
F_{DF} &= 1.334 K \\
F_{DE} &= 2.256 K \\
R_{K} &= 10.554 K - R_{1K} \\
\Sigma M_E &= 18.25 P_4 + 32 P_3 - 26 R_{1K} \\
&- 3.5 R_K + 16 P_6 - 22 \left(0.1401\right)\left(1.5073\right) \\
&- 14 \left(0.068 + 1.5073\right) - 8.21 \left(0.539\right) \\
R_{1K} &= 4.727 K \\
R_K &= 5.827 K
\end{align*}
\]

Difference between \(F_{E4H} \) and \(F_{FG} \) to be made up in friction forces or restraints at the various supports.
- Web members O.K. as axial loads less than safe loading of case I

- Top chord member AB; $3\frac{1}{2} \times 8$; $F = 2.350 K$ (C)

\[
L = 20.475' \\
8.27 + 4.12' + 5.04' \rightarrow 4.58' \quad \text{Horz. Dist.} \\
9' + 4.5' + 5.5' \rightarrow 4' \quad \text{Act Dist.}
\]

\[
\begin{align*}
P_1 &= \left[(8.27 + 4.12)(128.3)/2 + (9 + 4.5)(128.3 - 69.5 - 64.2)/2 \right] = 794.82# \\
P_2 &= \left[(4.12 + 5.04)(128.3)/2 + (4.5 + 5.5)(128.3 - 69.5 - 64.2)/2 \right] = 587.61# \\
P_3 &= \left[(5.04 + 4.58)(128.3)/2 + (5.5 + 5)(128.3 - 69.5 - 64.2)/2 \right] = 617.12#
\end{align*}
\]

\[
\Sigma M_x = 8.27 P_1 + 12.39 P_2 + 17.43 P_3 - 18.35 R_L = 0
\]

\[
R_L = 1341.15#
\]

\[
R_R = P_1 + P_2 + P_3 - R_L = 658.40#
\]

\[
M_{\text{max}} = 658.4 (9) \approx 5924 \text{ K-FT}
\]

\[
f_b = \frac{(5924)(12)}{37.33} = 1904.83 \text{ psi}
\]

\[
F_b = 1310
\]

\[
J = 1.0
\]
\[
\begin{align*}
\sigma_c &= \frac{2.350}{3.5 \times 8} = 83.43 \text{ psi} \\
\frac{f_c}{f'_c} + \frac{f_b}{f_b - f'_c} &= \frac{89.73}{436.25} + \frac{190.5}{1220.1} = 1.76 > 1 \\
\end{align*}
\]

- **TOP CHORD MEMBER BC**

\[P = 11507 \text{ kN}\]

\[
\begin{align*}
P_1 + P_2 &= P \\
R_1 - R_2 &= 0
\end{align*}
\]

\[P_1 = \left[(4.58 + 5.04) \times 128.3/2 + (5.0 + 5.5) \times (128.3 - 69.5 - 64.2)/2 \right] / 11092
\]

\[= 1617.12 \text{ kN} = P_2
\]

\[M_{\text{max}} = 5 \times (617.12) = 3085.6 \text{ kN-m}
\]

\[f_b = \frac{3085.6 \times 12}{37.33} = 991.89 \text{ psi}
\]

\[f_c = \frac{1507}{3.5 \times 8} = 53.82
\]

\[\frac{f_b}{f'_c} + \frac{f_c}{f_b - f'_c} = 0.853 < 1
\]

\[\text{OK}
\]
TOP CHORD MEMBER CD; \(P = 1581 \text{ k} \); \(L = 14.47 \text{ ft} \)

SAME DWG. AS MEMBER RC

\[
P_1 = \left[\frac{(5 + 5.5)(128.3 + 32.7 - 76.98)}{1.092} \right] = 475.15 \text{ lbs} = P_2
\]

\[
M_{\text{MAX}} = 5 \times (475.15) = 2375.77 \text{ ft-lbs}
\]

\[
f_b = \frac{2375.77 (12)}{37.33} = 763.71 \text{ psi}
\]

\[
f_c = \frac{1581}{3/8} = 56.46 \text{ psi}
\]

\[
\frac{f_b}{f_c} + \frac{f_c}{F_c} = \frac{763.71}{1272.3} + \frac{56.46}{723.8} = 0.678 < 1 \quad \text{SOK}
\]

TOP CHORD MEMBER DE; \(P = 2256 \text{ k} \)

SAME DWG. AS FOR MEMBER AB

\[
P_1 = \left[\frac{(4 + 4.5)(128.3 + 32.7 - 76.98)}{1.092} \right] = 1221.82 \text{ lbs}
\]

\[
P_2 = \left[\frac{(4.5 + 5.5)(128.3 + 32.7 - 76.98)}{1.092} \right] = 905.05 \text{ lbs}
\]

\[
P_3 = \left[\frac{(5.5 + 5.0)(128.3 + 32.7 - 76.98)}{1.092} \right] = 859.80 \text{ lbs}
\]
\[\sum M_L = 8.27P_1 + 12.39P_2 + 17.43P_3 - 18.35R_R = 0 \]
\[R_R = 19.78 \text{ k} \]
\[P_L = P_1 + P_2 + P_3 - R_R = 10.96 \text{ k} \]
\[M_{\text{max}} = 9(10.96) = 97.64 \text{ ft-k} \]
\[f_0 = \frac{(97.64)(12)}{37.33} = 29.16 \text{ psi} \]
\[F_b = 1310 \text{ psi} \]

NO GOOD - MEMBER UNDERDESIGNED

- **BOTTOM CHORD MEMBER AG**
 - 43/4" x 9 3/8"
 - \(L = 32' \)

\[2.145 \text{ k} \]
\[1.715 \text{ k} \]
\[0.232 \text{ klf} \]
\[0.277 \text{ k} \]
\[5.025 \text{ k} \]

SHEAR

- 1.408
- 0.576
- 14.826
- 5.615
- 14.111

\[1.478 \text{ M} \text{OMENT} \]

CLOSE
ENOUGH
NATIONAL PARK SERVICE
DENVER SERVICE CENTER

<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE DENVER SERVICE CENTER</th>
<th>Sheet 53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>ENGR. STUDY</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>ROOF TRUSS ANAL.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>By</th>
<th>MACDONALD</th>
<th>Checked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>12/8/81</td>
<td>Pkg. 506</td>
</tr>
<tr>
<td>Date</td>
<td>Account</td>
<td></td>
</tr>
</tbody>
</table>

\[
M_{\text{max}} = 14,826 \, k\text{-ft} \\
F_{\text{u}} = \frac{14,826 \times (12)}{58.89} = 3021.1 \, \text{ksi} \\
F_{\text{c}} = \frac{2416}{40.97} = 58.97 \, \text{ksi} \\
F_{\text{c}} + F_{\text{c}} = \frac{3021.1}{1310} + \frac{58.97}{875} = 2.37 > 1 \\
\]

EAST-END TRUSS - SIMILAR TO MAJORITY OF TRUSSES EXCEPT 1:
1. SUPPORTED AT BRICK COLUMNS
2. HAS OUTRIGGER LOADING ON ONE SIDE

91
EAST END TRUSS - LOADING CONDITION 1

LOADING CONDITIONS - SAME AS FOR WEST END TRUSS
SEE SHEETS 31 - 34

\[P_1 = (13.25)(102.6) + (4.55)(128.3 - 69.5)/2 + \frac{37}{2} (109.1 - 69.5) = 1741 \text{ kN} \]

\[P_2 = (13.25 + 9.5)(102.6)/2 + \frac{24.85}{2} (128.3 - 69.5) = 1898 \text{ kN} \]

\[P_3 = (9.5 + 9.25)(102.6)/2 + \frac{20.29}{2} (128.3 - 69.5) = 1561 \text{ kN} \]

\[P_4 = (9.25)(102.6) + 11.03 (128.3 - 69.5) = 1598 \text{ kN} \]

\[P_5 = (64)(109.1 - 69.5) = 1267 \text{ kN} \]

\[R_1 + R_2 + R_3 = P_1 + P_2 + P_3 + \frac{1}{2} (P_4 + P_5) = 6632 \text{ kN} \]
<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>DENVER SERVICE CENTER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
<th>Feature</th>
<th>DATE ACCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR. STUDY</td>
<td>ROOF TRUSS ANALYSIS</td>
<td>12/18/81</td>
</tr>
</tbody>
</table>

ASSUME $R_1 = R_2 = R_3 = 2.211$ k

USING THE METHOD OF SECTIONS, TAKE MOMENT ABOUT "A" FOR AEIUJA.

$$
\Sigma M_a = 4.5 R_1 + 15.5 R_2 + 20.5 R_3 - \frac{1}{2} (32) P_3 - 32 P_4 = 41.25 P_3 - 22.75 P_3 - 13.25 P_2 + 41.25 F_{EF} + 10 F_{EF_H} = 0
$$

$$
25.703 F_{EF} = 61.453
$$

$$
F_{EF} = 2.391 \text{ k}
$$

$$
F_{H} = P_2 = 1.898 \text{ k}
$$

$$
F_{FG} = F_{EF} = 2.391 \text{ k}
$$

$$
F_{HG} = \frac{F_{FG}}{1.012} = 2.189 \text{ k}
$$

JOINT "E"

$$
\Sigma F_v = 1.561 + 0.401 F_{DE} - 0.958 F_{IE} - 0.6168 F_{IE} = 0
$$

$$
\Sigma F_H = 2.1896 - 0.9158 F_{DE} - 0.7808 F_{IE} = 0
$$

$$
F_{DE} = 1.538 F_{IE} - 1.502
$$

$$
\Sigma F_H = 2.1896 - 0.9158 (1.538 F_{IE} - 1.502) - 0.7868 F_{IE} = 0
$$

$$
1.1953 F_{IE} = 3.565
$$

$$
F_{IE} = 1.624 \text{ k}
$$

$$
F_{DE} = 0.996 \text{ k}
$$
FORM D'SC - 44

<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>DENVER SERVICE CENTER</td>
</tr>
<tr>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td></td>
</tr>
</tbody>
</table>

ARLINGTON HOUSE

ENGRT. STUDY

ROOF TRUSS ANALYSIS

<table>
<thead>
<tr>
<th>Date</th>
<th>Account</th>
<th>Pkg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/16/81</td>
<td></td>
<td>506</td>
</tr>
</tbody>
</table>

- $F_{CD} = F_{DE} = 0.996$
- $F_{DI} = P - 0.401(0.996^2 - 0.800K)$
- $F_{IU} = 2(0.401)(1.024) + F_{DI} = 2.102$

MEMBER BY MEMBER ANALYSIS

BOTTOM CHORD MEMBERS AK & HG: $P = 2.139K$

$L = 32', 6'' x 9''$

\[\Sigma F_V = 2.066 + 1.898 + 1.051 + 0.04(32) - 0.032 = 0.338K \]

Although this means that the assumption that $R_1 = R_2 = R_3$ is incorrect, for the purposes of this analysis and because it wasn't too far off, the bottom chord will be evaluated for the loading conditions just derived.
Note: Upon closer inspection, it is apparent that the bottom chord is supported by other more closely spaced posts which rest on a second (lower) beam. These posts lie in direct line with the vertical braces within the east-end truss. Because of this almost continuous-type support, flexure is reduced to an appreciably lower amount and, as the axial loads are small, the bottom chord is O.K.
ARMY TRUSS - CIRCA 1930

MEMBERS

TOP CHORD AB & BC 6" x 6" 14.134' 10 PLF
BOT. ' AC 8" x 6" 24.167' 13.33" wt of (wgt. of AB & BC) rod
P (from calcs for main roof truss) = \(P_{\text{max}} = \frac{15.575 \, \text{k}}{11.697} \) (= 1.333 PLF)

MEMBER BY MEMBER ANALYSIS BY METHOD OF JOINTS.

JOINT "B"

\[\Sigma F_V = P = (F_{AB} + F_{BC}) \]
\[F_{AB} = F_{BC} \]
\[F_{AB} = \frac{(11.697)P}{0.6068(2)} = 15.012 \, \text{k} = F_{BC} \, (C) \]
\[F_{BC} = 2F_{ABH} = 25.668 \, \text{k} \, (T) \]
MEMBER STRESS ANALYSIS:

ALLOWABLE STRESSES - ASSUME SOUTHERN PINE (No. 252)

\[F_b = 1200 \text{ psi} \]
\[F_c = 650'' \]
\[F_r = 85'' \]
\[F_{c1} = 390'' \text{ INCREASE 1.25 FOR SNOW LOADS} \]
\[F_c = 900'' \]
\[E = 1500 \text{ ksi} \]

MEMBER PROPERTIES

\[b \times d \]
\[6'' \times 6'' \text{ top chord} \]
\[6'' \times 8'' \text{ bottom } \]

\[\frac{A}{(in^2)} \quad \frac{S}{(in^3)} \quad \frac{I}{(in^4)} \]
\[36.0 \quad 36.0 \quad 108.0 \]
\[48.0 \quad 64.0 \quad 256.0 \]
<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
<th>NATIONAL PARK SERVICE</th>
<th>Sheet 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
<td>DENVER SERVICE CENTER</td>
<td>of</td>
</tr>
<tr>
<td>Project</td>
<td>ENGINEERING STUDY</td>
<td>By MACDONALD</td>
<td>Checked</td>
</tr>
<tr>
<td>Feature</td>
<td>ARMY TRUSS</td>
<td>Date 12/10/81</td>
<td>Pkg. 50G</td>
</tr>
</tbody>
</table>

Top Chord Members

AB & BC - \(P = 15.012 \text{k} \)

\[
L = 14.134' \quad 6'' \times 6''
\]

\[
f_c = \frac{15012}{(6)(6)} = 417 \text{ psi} < 637.5 \times 1.25
\]

\[
l = 13.3 \quad \frac{l}{b} = 13.25 \times 1.2 = 26.5
\]

\[
k = 0.1671 \sqrt{\frac{E}{f_c}}
\]

\[
= 27.4 > 26.5
\]

\[
F_c = F_c \left[1 - \frac{1}{3} \left(\frac{l}{b} \right)^{4.7} \right]
\]

\[
= 900 (0.708)
\]

\[
= 637 \text{ psi}
\]

Bottom Chord Member

AC - \(P = 25.668 \text{k} \)

\[
L = 24' - 2''
\]

\[
6'' \times 8'' \text{ minus notch of } 2''
\]

\[
f_r = \frac{25668}{(6)(6)} = 713 \text{ psi} < 845 \text{ psi}
\]

\[
F_r = 845 \text{ psi}
\]

Analysis of 1'' Rod Supporting 15.384 \text{k} + \text{wgt}

\[
\text{Area} = 0.7854 \text{in}^2
\]

For \(F_r = 20 \text{ksi} \), allowable load in kips = 15.71 \text{k}

\[
F_r = 27'' \quad \text{'''''''''''''''''''} = 21.21 \text{k}
\]
<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DENVER SERVICE CENTER</td>
</tr>
<tr>
<td></td>
<td>Sheet G1</td>
</tr>
<tr>
<td></td>
<td>of 0</td>
</tr>
<tr>
<td></td>
<td>Checked Pkg. 506</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>ARLINGTON HOUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By MACDONALD</td>
</tr>
<tr>
<td>Project</td>
<td>ENGINEERING STUDY</td>
</tr>
<tr>
<td>Feature</td>
<td>ARMY TRUSS</td>
</tr>
<tr>
<td>Date</td>
<td>12/10/81</td>
</tr>
<tr>
<td>Date</td>
<td>Pkg. 506</td>
</tr>
<tr>
<td>Account</td>
<td></td>
</tr>
</tbody>
</table>

For $F_t = 40$ ksi (A325), allow. load = 31.42 kips.

Note: Tension values for unthreaded shanks of bolts and other unthreaded parts.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Analysis of Purlins</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG. DIMENSIONS</td>
<td>- 5½" x 6"</td>
</tr>
<tr>
<td>AVG LENGTH</td>
<td>- 12.83'</td>
</tr>
<tr>
<td>SPACING (AVG)</td>
<td>- 5' O.C.</td>
</tr>
<tr>
<td>(MAX)</td>
<td>- 9½" (first purlin from bottom)</td>
</tr>
<tr>
<td>S (142 PSF x 14.25/2 = 101.2 PLF)</td>
<td>- 33 in³</td>
</tr>
</tbody>
</table>

LOADS:

- SLATE SHINGLES: 10 PSF
- ROOF SHEATHING: 2.5 "
- RAFTERS: 1.7 "

PURLINS

- LIVE (SNOW): 20 PSF x 14.25/2 = 142.5 PLF

\[F_L = F_R = 12.83 \times (252.8) / 2 = 1621.7 \text{ lbs} \]
\[M_{max} = (252.8)(12.83)^2 / 8 = 5201.6 \text{ ft}^\text{2} \text{ lbs} \]
\[f_b = (5201.6)(12) / 330 = 1891.5 \text{ psi} \]
\[f_b / f_d = 1891.5 / 1310 = 1.44 \]

MEMBER UNDERDESIGNED
<table>
<thead>
<tr>
<th>Feature</th>
<th>Loads:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slate shingles 10 PSF</td>
</tr>
<tr>
<td></td>
<td>SHEATHING 2.5"</td>
</tr>
<tr>
<td></td>
<td>RAFTERS 1.7"</td>
</tr>
<tr>
<td></td>
<td>14.2 x 5' = 71 P.L.F.</td>
</tr>
<tr>
<td>PURLINS</td>
<td>9.1"</td>
</tr>
<tr>
<td>LIVE (SNOW)</td>
<td>20 x 5 100.0"</td>
</tr>
<tr>
<td></td>
<td>TOTAL 180.1"</td>
</tr>
</tbody>
</table>

\[R_x = R_y = 12.83 \times (180.1)/2 = 1155.3 \text{ lbs} \]
\[M_{max} = (180.1)(12.83)^2/8 = 3705.8 \text{ Ft-lbs} \]
\[f_0 = (3705.8)(12)/33 = 1347.5 \text{ psi} \]
\[\frac{f_0}{F_o} = \frac{1347.5}{1310} = 1.028 < 1 \]

\[\text{GOOD} \]
ANALYSIS OF RAFTERS

AVG DIMENSIONS
- 3\(\frac{1}{2}''\) x 3\(\frac{1}{2}''\) to 2\(\frac{1}{4}''\) x 3\(\frac{1}{4}''\)

SPACING
- 2' - 4''

AVG UNSUPPORTED LENGTH
- MAX: 5' - 0
- MIN: 9' - 0

\[L(\text{MIN}) = 3.96 \text{ in}^3 \]

LOADS
- FOR AVG. CONDITIONS - 5' UNSUPPORTED

SLATE SHINGLES
- 10 PSF

ROOF SHEATHING
- 2' - 5''

RAFTERS
- 12' 5'' x 2.5' = 31.25 PLF

LIVE (SNOW)
- 20 x 2.5

\[\text{TOTAL LOAD} = 84.65 \text{ PLF} \]

\[R_r = R_x = \frac{3wL}{8} = 158.7 \text{#} \]

\[R_M = \frac{5wL^2}{8} = 204.53 \text{#} \]

\[M_{\text{MAX}} = \frac{wL^2}{8} = 204.53 \text{ Ft-lb} \]

\[(F \text{OR SIMPLY \textit{SUPP}},) \]

\[f_0 = \frac{(204.53)(12)}{3.96} = 801.61 \text{ psi} \]

\[F_b = 1310 \text{ psi} \]

\[\text{OK} \]
FOR MOST CRITICAL LOADING CONDITION:

9'-6" LENGTH SIMPLY SUPPORTED, W/ UNIFORM LOAD OF 84.65 PLF

\[M_{\text{max}} = \frac{Wl^2}{8} = \frac{(84.65)(9.5)^2}{8} = 954.96 \text{ Ft-Lbs} \]

\[f_0 = \frac{954.96(12)}{2.96} = 3894 \text{ psi}; \quad f_0 = 1310 \text{ psi} \]

NO GOOD

Check in field to see if rafters for 9'-5" span are greater in dimension than 2\(\frac{1}{4}\)" x 3\(\frac{1}{4}\)".

\[f_0 \text{ (for the above loading condition for) } 3\frac{1}{2} \times 3\frac{1}{2} \text{ rafters} = \frac{954.96(12)}{7.15} \]

\[= 1603.67 \text{ psi} \]

Still NO GOOD BUT IN THE BALLPARK
ANALYSIS OF CEILING JOISTS

AVG DIMENSIONS - VARIES FROM 3 x 3½ TO 3 x 6½
SPACING - 16" O.C.
AVG SPAN - 12.83'

\[S_{\text{MIN}} = 6.125 \text{ in}^3 \]
\[S_{\text{MAX}} = 21.125 \text{ in}^3 \]

\[I = 10.72 \text{ in}^4 \]
\[E = 1.0 \times 10^6 \text{ psi} \]

LOADS:

PLASTER CEILING

\[10 \text{ PSF} \times 1.33 = 13.33 \text{ PLF} \]

JOISTS

ASSUME 10 PSF LIVE LOAD

13.33 PLF

32.1 PSF

FOR BENDING:

\[M_{\text{MAX}} = \frac{Wl^2}{8} = \frac{(32.1)(12.83)^2}{8} = 660.22 \text{ ft-lb} \]

\[f_b = \frac{(660.22)(12)}{6.125} = 1293.5 \text{ psi} \]

\[f_b = 1310 \text{ psi} \]

OK

FOR DEFLECTION:

\[D_{\text{MAX}} = \frac{5 \cdot Wl^4}{384 \cdot ET} = \frac{(5)(32.1)(12.83)^4 (10)^3}{(384)(1.375 \times 10^6)(10.72)} = 0.77'' \]

\[D_{\text{MIN}} = \frac{l}{240} = \frac{1}{240} \times (12.83)(12) = 0.6415'' \]
NOTE: ALTHOUGH D_{max} IS SLIGHTLY GREATER THAN D_{all} FOR THE CEILING JOISTS, THESE CALCULATIONS ARE BASED ON THE ASSUMPTIONS THAT ALL JOISTS ARE 3 x 3 1/2, THAT A LIVE LOAD OF 10 PSF WOULD BE CARRIED BY THESE MEMBERS, AND THAT NO COOPERATIVE ACTION TAKES PLACE FOR THESE MEMBERS IN SERIES.
Truss #1 - Analysis of ability to support dead loads only.

Roof Loads

- Truss: 3.75 psf
- Shingles: 10 ''
- Sheathing: 2.5 ''
- Rafter: 1.7 ''
- Purlin: 1.8 ''

Total Roof: 19.75 psf

Say 20 psf

Floor Loads

- Ceiling Joists: 4 psf
- Plaster Ceiling: 10 ''
- Board Flooring: 3 ''

Total Floor: 17 psf

* Pg. 49, Parker's Simplified Design of Roof Trusses for Architects & Builders.
\[
P_1 = (14.45)(256.6)/2 + \frac{22}{2}(218.11) = 5350.525 \text{ #}
\]
\[
P_2 = (256.6)(24.85)/2 = 3188.26 \text{ #}
\]
\[
P_3 = (20.39)(256.6)/2 = 2616.04 \text{ #}
\]
\[
P_4 = (11.03)(256.6) = 2830.30 \text{ #}
\]
\[
P_5 = (0.4)(218.11)/2 = 697.952 \text{ #}
\]

Assume \(R_L = R_R \) & \(R_{IL} = R_{IR} \) (SEE SHT. 3 OF PREVIOUS TRUSS CALCS)

\[
R_L + R_{IL} = P_1 + P_2 + P_3 + \frac{1}{2}(P_4 + P_5) = 16.066 K
\]
\[\Sigma M_e = 9.25 P_4 + \frac{9.25}{2} P_5 + 18.5 P_3 + 28 P_2 + 41.25 P_1 - 37.75 R_L - 15.25 R_{IL} + 10 F_{EL} \]

\[F_{EL} = \frac{F_{ED}}{1.092} + \frac{F_{IE}}{1.271} \]

\[\text{Assume} = 1.0K \]

\[\Sigma M_e = 20.180 + 32.280 + 48.397 + 59.271 + 220.957 - 37.75 R_L - 15.25 R_{IL} + 10 \]

\[\Sigma F_V = P_1 + P_2 + P_3 + \frac{1}{K} (P_4 + P_5) = 16.006 K \]

\[\Sigma M_e = 427.085 - 37.75 (16.006 - R_{IL}) - 15.25 R_{IL} = 0 \]

\[22.5 R_{IL} = 179.396 \]

\[R_{IL} = 7.973 \]

\[R_L = 8.093 \]

Joint "C"

\[\Sigma F_H = \frac{F_{CE}}{1.271} - \frac{D_{BC}}{1.092} + \frac{F_{ED}}{1.092} = 0 \]

\[\Sigma F_V = 0.0168 F_{CE} + 0.401 F_{BC} - P_3 - 0.401 F_{CD} = 0 \]

\[F_{BC} = F_{CD} + \frac{1.092}{1.271} F_{CE} \]
\[
\Sigma F_x = 0.6168 F_{CI} + 0.401 F_{CD} + (0.401)(1.092) F_{CI} \\
- P_3 - 0.401 F_{CD} \\
0.9013 F_{CI} = P_3 \\
F_{CI} = 2.721 K = F_{EI} \\
F_{FL} = 2.141 + 0.910 F_{ED} \\
\text{If } F_{FL} = 1.0 K \\
F_{ED} = -1.246 K = 1.246 K (T) \\
\]

\[
\Sigma M_a = 3.5 R_L + 2.6 R_{IL} - \frac{3.2}{2} P_5 - 32 P_4 - 22.75 P_3 \\
- 12.25 P_2 - 32 (0.401) F_{PE} - \frac{14}{1.092} F_{PE} - 32 (0.6168)(2.721) \\
+ \frac{2.25}{1.271} \\
= 28.326 + 207.298 - 111.672 - 90.570 - 59.515 \\
- 42.244 - 15.989 - 15.974 - 53.706 + 4.817 \\
= -149.230 FT-K \\
\]
\[R_L = 10.315 \text{k} \]

CHECK:
\[\Sigma M_k = 36.102 + 149.526 - 111.672 - 90.570 - 59.515 - 42.244 + 54.061 + 54.013 - 53.700 + 4.817 \]
\[= -59.188 \text{ ft-k} \]

Assume \(F_{KL} = 9.0 \text{k} \)

FED
\[F_{ED} = 7.488 \text{k} \]

\(\Sigma M_E = 417.085 + 90 - 606.492 + 221.5 R_L \)
\[221.5 R_L = 99.407 \]
\[R_L = 4.418 \text{k} \]
\[R_L = 11.648 \text{k} \]

CHECK:
\[\Sigma M_A = 40.768 + 114.868 - 111.672 - 90.570 - 59.515 - 42.244 + 96.086 + 96 - 53.700 + 4.817 \]
\[= -5.168 \text{ ft-k} \]

<table>
<thead>
<tr>
<th>(F_{KL})</th>
<th>(F_{ED})</th>
<th>(\Sigma M_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.246 \text{k (T)}</td>
<td>-149.230</td>
</tr>
<tr>
<td>6</td>
<td>4.213 \text{k (C)}</td>
<td>-59.188</td>
</tr>
<tr>
<td>9</td>
<td>7.488 \text{k (C)}</td>
<td>-5.168</td>
</tr>
</tbody>
</table>
\[\Delta F_{FL} = \frac{3}{54.024} = 0.0555 \]

For \(\Delta \Sigma M_a = 5.168 \), \(\Delta F_{FL} = 0.287K \)

Assume \(F_{FL} = 9.287K \)
\(F_{ED} = 7.801K \) (c)

\[\Sigma M_e = 417.085 + 92.87 - 106.492 + 22.5R_{IL} \]
\[22.5R_{IL} = 96.537 \]
\[R_{IL} = 4.291K \]
\[R_{LL} = 11.775K \]

CHECK:
\[\Sigma M_a = 417.244 + 111.565 - 111.672 - 90.570 - 59.515 \]
\[- 42.244 + 100.102 + 100.013 - 53.706 + 4.817 \]
\[= 0.004 \text{ ft.-k} \]

MEMBER BY MEMBER ANALYSIS

\[F_{BK} = F_{FH} = P_2 = 3.188K \]
\[F_{ED} = F_{CD} = 7.801K \]
<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
<th>NATIONAL PARK SERVICE</th>
<th>Sheet</th>
<th>of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
<td>DENVER SERVICE CENTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td>ENGINEERING STUDY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>ROOF TRUSS ANALYSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
F_{BC} = F_{EF} = F_{CD} + \frac{1.072}{1.271} F_{CI} = 10.139 \text{ k}
\]

\[
F_{AB} = F_{EG} = 10.139 \text{ k} \quad \text{(C)}
\]

\[
F_{AD} = F_{EJ} = 9.285 \text{ k} \quad \text{(T)}
\]

\[
F_{DI} = 2(0.401)(7.801) - 2.830 = 3.426 \text{ k} \quad \text{(T)}
\]

\[
F_{JE} = 2(0.6168)(2.721) - 3.426 = -0.070 \text{ k} = 0.070 \text{ k} \quad \text{(T)}
\]
MEMBER STRESS ANALYSIS: ALLOWABLE STRESSES FOR EASTERN WHITE PINE SELECT STRUCT. NO. 1 (BEAMS)

\[
\begin{align*}
F_0 &= 1050 \text{ psi} \\
F_t &= 700 \text{ "} \\
F_r &= 65 \text{ " INCREASE 1.25 FOR SNOW LOADS} \\
F_{cl} &= 220 \text{ " FOR SNOW LOADS} \\
F_c &= 675 \\
E &= 1100 \text{ KSI}
\end{align*}
\]

\[
\begin{align*}
F_0 &= 1312 \text{ psi} \\
F_t &= 875 \text{ "} \\
F_r &= 8125 \text{ "} \\
F_{cl} &= 275 \text{ "} \\
F_c &= 844 \text{ "} \\
E &= 1375 \text{ KSI}
\end{align*}
\]

MEMBER PROPERTIES:

<table>
<thead>
<tr>
<th>b \times d</th>
<th>A (in^2)</th>
<th>S (in^3)</th>
<th>I (in^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1/2 \times 6</td>
<td>PURLIN</td>
<td>33.0</td>
<td>33.0</td>
</tr>
<tr>
<td>3 \times 6 1/2</td>
<td>CEILING JOIST</td>
<td>19.5</td>
<td>21.12</td>
</tr>
<tr>
<td>3 1/2 \times 3 1/2</td>
<td>RAFTERS</td>
<td>12.25</td>
<td>7.14</td>
</tr>
<tr>
<td>4 1/2 \times 9</td>
<td>TOP CHORD</td>
<td>40.5</td>
<td>60.75</td>
</tr>
<tr>
<td>6 \times 9</td>
<td>BOTTOM CHORD</td>
<td>54.0</td>
<td>81.00</td>
</tr>
<tr>
<td>6 \times 9</td>
<td>KING POST</td>
<td>54.0</td>
<td>81.00</td>
</tr>
<tr>
<td>6 \times 7</td>
<td>VERT. WEB MEMB</td>
<td>42.0</td>
<td>49.00</td>
</tr>
<tr>
<td>5 1/2 \times 5 1/2</td>
<td>DIAG. " "</td>
<td>30.25</td>
<td>27.73</td>
</tr>
</tbody>
</table>
Web Members - Axial Loads Only

- **Members BK & FH: 6" x 7"; L = 6'**; P = 31.88

 \[
 f_c = \frac{31.88}{6 \times 7} = 75.9 < 666.3 \text{ psi}
 \]

 ![OK](image)

- **Members CT & EI: L = 12.07'**; P = 2721 K

 \[
 f_c = \frac{2721}{6.5^2} = 89.95 \text{ psi}
 \]

 89.95 < 474.21 psi

 ![OK](image)

- **Member DI: L = 11.75' 6" x 9"**; P = 3246 K

 \[
 f_c = \frac{3246}{6 \times 7} = 60.1 \text{ psi}
 \]

 \[
 \frac{L}{d} = \frac{11.75 \times 12}{6} = 23.5
 \]

 60.1 < 875 psi

 ![OK](image)
MEMBERS SUBJECTED TO AXIAL LOADS & FLEXURE

- TOP CHORD MEMBERS AB & FG 9½" x 9"; L = 9.5
 (LATERAL SUPPORT PROVIDED BY PURLINS) $P_a = 10.139 \text{kN}$

\[
\frac{l}{d} = \frac{(14.5)(12)}{9} = 19.33
\]
\[
F_c' = F_c \left[1 - \frac{1}{3} \left(\frac{2}{E} \right)^4 \right]
\]
\[
E_c' = F_c \left[1 - \frac{1}{3} \left(\frac{2}{E} \right)^4 \right] = 616.76 \text{ psi}
\]
\[
J = \frac{l/d - 1}{K - 1} = 0.52
\]
\[
P = \left[(14.5)(12.83)(20) \right] / 2 = 1860.4 \text{ lb}
\]
\[
\sum M = 9.5 P - 14.5 R = 0
\]
\[
R_R = 1218.5 \text{ lb},
\]
\[
R_L = 641.55 \text{ in}
\]
\[
M_{\text{max}} = (5.0)(1218.85) = 6094.25 \text{ ft-lb}
\]
\[
f_6 = \frac{6094.25 (12)}{60.75} = 1203.8 \text{ psi} > 1050 \text{ psi}
\]
TOP CHORD MEMBERS BC & EF; 4½" x 9"; L = 10′

- \(P_{\text{ax}} = 10,139 \text{ kN} \)

- \(\frac{l}{d} = \frac{(10)(12)}{10} = 13.33 \)

- \(F_e' = F_e \left[1 - \frac{1}{3} \left(\frac{l}{d} \right)^2 \right] \)

- \(F_e = 661.83 \text{ psi} \)

- \(J = \frac{l}{d} - 11 = 0.145 \)

- \(P = (10)(12.83)(20)/2 = 1283 \text{ lbs.} \)

- \(R_L = R_R = 641.5 \text{ lbs} \)

- \(M_{\text{max}} = (5)(641.5) = 3207.5 \text{ ft-lbs} \)

- \(F_b = 3207.5/60.75 = 52.36 \text{ psi} \)

- \(F_e = 10139/4.5 = 2251.2 \text{ psi} \)

- \(F_e' + \frac{F_e}{F_b} = 250.3 + \frac{633.6}{60.75} = 1.00 \)

- **TOP CHORD MEMBERS CD & DE; 4½" x 9"; L = 10′**

- \(P_{\text{ax}} = 7.801 \text{ kN} \)

- \(\frac{l}{d} = 13.33 \)

- \(F_e' = 661.83 \text{ psi} \)

- \(J = 0.145 \)
FORM DSC· 44

<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
</tr>
<tr>
<td>Project</td>
<td>ENGINEERING STUDY</td>
</tr>
<tr>
<td>Feature</td>
<td>ROOF TRUSS ANAL.</td>
</tr>
</tbody>
</table>

NATIONAL PARK SERVICE

<table>
<thead>
<tr>
<th>By</th>
<th>MACDONALD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>1/13/82</td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>Pkg.</td>
<td>506</td>
</tr>
<tr>
<td>Account</td>
<td></td>
</tr>
</tbody>
</table>

\[
P = (10)(12.83)(20)/2 = 1283 \text{ lbs}
\]

\[
R = R_L = 641.5 \text{ lbs.}
\]

\[
M_{\text{max}} = (5)(641.5) = 3207.5 \text{ ft-lbs}
\]

\[
f_b = \frac{3207.5}{60.17} (12) = 633.6 \text{ psi, } f_c = 192.96 \text{ psi}
\]

\[
\frac{f_c}{f_c} + \frac{f_b}{f_b} = 192.96 + \frac{633.6}{1013.71} = 0.91 < 1
\]

- **BOTTOM CHORD MEMBERS**

 \[
 6" \times 9"
 \]

 \[
 5.933^k \quad 3.188^k \quad 0.21811 \text{ PLF} - 0.035^k
 \]

 \[
 11.775^k \quad 4.291^k
 \]

\[
\Sigma M_A = (0.21811)(32)^2/2 + 13.25 (3.1883) - 32 (0.035)
\]

\[
- 3.5 (11.775) - 26 (4.291) = 0.048 \text{ ft-lbs}
\]

118
Area
ARLINGTON HOUSE

Project
ENGR. STUDY

Feature
ROOF TRUSS ANAL

NATIONAL PARK SERVICE
DENVER SERVICE CENTER

By
MACDONALD

Checked

Date
1/13/82

Account

M_{\text{MAX}} = 22100 \text{ ft-lbs}

f_b = 3274 \text{ psi}

f_c = \frac{9285}{54} = 171.94 \text{ psi}

\frac{f_c}{f_c} + \frac{f_b}{f_b} = 2.70

No Good - MEMBER UNDERSIZED
DETERMINE ADEQUACY OF PURLINS (NEW & EXIST.) SPACED 2.5 ft OC.

LOADS

SHINGLES 10 PSF
SHEATHING 2.5 "
RAFTERS 1.7 "

14.2 PSF x 2.5 = 35.5 PLF

PURLINS

SUB-TOTAL

LIVE (SNOW) 20 x 2.5 = 50

9.1 "

44.6 "

94.6 "

\[R_e = R_v = 12.83 \left(\frac{94.6}{2} \right) = 606.86 \text{ lbs} \]

\[M_{\text{max}} = (94.6)(12.83)^2/8 = 1946.50 \text{ ft-lbs} \]

\[f_b = (1946.50)(12)/33 = 707.82 \text{ psi} \]

\[f_d/f_b = \frac{707.82}{1050} = 0.67 \]

OK
DETERMINE MAX. SPAN OF TOP CHORD TO SUPPORT DESIGN LIVE AND DEAD LOADS.

WGT. OF TOP CHORD = 11.25 PLF

WGT. OF PURLINS, RAFTERS, SHEATHING, SHINGLES, AND 20 PSF LIVE LOAD

\[M_{\text{max.}} = 7.5 \left(\frac{606.82}{2} \right) + \left(\frac{11.25 \times 5}{2} \right) = 899.15 \text{ ft.-lbs} \]

\[f_b = \frac{899.15}{60.75} = 177.61 \text{ psi} \]

\[f_c = \frac{9328}{(4.5)(9)} = 230.32 \text{ psi} \]

\[\frac{f_c}{f_b} = \frac{230}{177.61} = 0.409 \]

* SHT 23 - LOADING COND. 2

OK

TRY
\[M_{\text{max}} = 2.5 \times (606.82) + 5.0 \times (303.41) + \frac{(11.25)(10)}{2} \]
\[= 3596.6 \text{ ft}-\text{lbs} \]

\[f_b = \frac{3596.6}{60.75} = 710.44 \text{ psi} \]

\[f_c = 230.32 \text{ psi} \]

\[f_c + f_b = 230.3 + 710.44 = 940.74 \text{ psi} \]

\[F_c - F_b = 823.6 - 1310 - 33.33 = 823.61 \text{ psi} \]

\[\frac{F_c}{F_b} = 0.836 < 1 \]

\[\text{OK} \]

Top chord of truss to be supported by vert. braces a min of ten feet apart. Purlins (5/12" x 6" or greater) to be spaced 2.5' on center.

Determine adequacy of rafters.

Assume worst conditions.

\[A = 7.3125 \text{ in}^2 \]
\[S = 3.96 \text{ in}^3 \]
\[I = 6.44 \text{ in}^4 \]

84.65 plf (SHT. 62)
<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWMP</td>
<td>DENVER SERVICE CENTER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Project</th>
<th>Feature</th>
<th>By</th>
<th>Checked</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARLINGTON HOUSE</td>
<td>ENGR STUDY</td>
<td>ROOF TRUSS ANAL.</td>
<td>MACDONALD</td>
<td>Pkg. 506</td>
<td>1/13/82</td>
</tr>
</tbody>
</table>

\[
M_{\text{MAX}} = 0.1071 \text{w} \ell^2 = 56.66 \text{ ft}-\text{lbs}
\]

\[
f_o = \frac{56.66}{3.96} = 171.7 \text{ psi}
\]

\[
f_o = 1310 \text{ psi} \leftarrow \text{OK}
\]

Rafters o.k. for a span of 9 ft between supports.

Determine adequacy of bottom chord to support:

A) Just floor dead load

B) Just roof dead load

\[
R_L + R_{IL} = wL = (0.218)(32) = 6.98 \text{ k}
\]

\[
\sum M_A = 3.5R_L + 26R_{IL} - wL^2/k
\]

\[
= 3.5(6.98 - R_{IL}) + 26R_{IL} = 111.67
\]

\[
22.5R_{IL} = 87.24
\]

\[
R_{IL} = 3.88 \text{ k}
\]

218.11 PLF

Diagram:

A

\[
R_L
\]

\[
R_{IL}
\]
<table>
<thead>
<tr>
<th>Park</th>
<th>G-WMP</th>
<th>AREA</th>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Arlington House</td>
<td>ENGR. STUDY</td>
<td>DENVER SERVICE CENTER</td>
</tr>
<tr>
<td>Feature</td>
<td>ROOF TRUSS ANAL.</td>
<td>By</td>
<td>MACDONALD</td>
</tr>
<tr>
<td>Checked</td>
<td>Fecha</td>
<td>Date</td>
<td>1/13/82</td>
</tr>
<tr>
<td>Pkg.</td>
<td>Account</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[P_L = 6.98 - P_{Ax} = 3.10 \text{ k} \]

\[\begin{align*}
2.34 \\
-0.763 \\
+1.22 \\
-2.57 \\
\end{align*} \]

\[\begin{align*}
1.31 \\
-1.335 \\
\end{align*} \]

\[\text{SHEAR} \]

\[\begin{align*}
M_{\text{max}} &= 11,220 \text{ ft-lbs} \\
F_0 &= 11,220 / 81 = 166.2 \text{ psi} > 1050 \text{ psi} \]

\[\text{DOES NOT INCLUDE AXIAL LOADS.} \]

\[\text{No. Good} \]
R.) ROOF DEAD LOADS ONLY

\[R_A + R_{id} = 5.933 + 3.188 - 0.035 = 9.086 \text{ k} \]

\[\Sigma M_A = 3.5R_A + 26R_{id} = 13.25 (3.188) + 22(0.035) \]

\[= 2.5 (9.086 - R_{id}) + 26R_{id} = 41.121 \]

\[22.5R_{id} = 9.32 \]

\[R_{id} = 0.414 \text{ k} \]

\[R_A = 8.672 \text{ k} \]
M_{\text{max}} = 20766 \text{ ft-lbs}

f_{\text{c}} = \frac{(20766)(12)}{81} = 3076.44 > 1050 \text{ psi}

\text{NO GOOD}

\text{Adequacy of Bottom Chord Splices}

\text{Net Section} = 2 \times 9 - (2)(1) = 16 \text{ in}^2

\text{Max. Tensile} = 15,636 \text{ K}

\text{Actual tensile stress} = 977 \text{ psi}

\text{F_t} = 875 \text{ psi}

\text{Bending}

\text{Force on pins producing bending} = \frac{15,636}{2} = 7818 \text{ lbs}

\text{Bending Moment} = 7818 \times 2 = 15,635 \text{ in-lbs}

F_{\text{b}} = 1310 \text{ psi}

\frac{15,635}{1310} = 11.936 \text{ in}^3 = S_{\text{req'd}}

\text{S_{act}} = 2(\pi)(1)^3 = 0.196 \text{ in}^3

\text{NO GOOD}
THESE FIGURES ARE BASED ON THE ASSUMPTION THAT THE ENTIRE TENSILE FORCE AT "A" EXISTS AT THE SPLICE. IN REALITY, FRICTION AT THE SUPPORTS WILL REDUCE THE TENSILE STRESS SIGNIFICANTLY. HOWEVER, THE TWO WOOD DOWELS SEEM TO BE TOO SMALL.

For Shear

Shear area = \(\pi \left(\frac{1}{4} \right)^2 = 0.785 \text{ in}^2 \)

\(F_T = 80 \text{ psi} \)

allowable shear stress for one pin, single shear

\(= (80)(0.785) = 62.83 \text{ lbs} \)

in double shear

\(= (2)(62.83) = 125.66 \text{ lbs} \)

for two dowels,

\(= (2)(125.66) = 251.32 \text{ lbs} \)

Max. force = 15.636 k \(\rightarrow \) No Good
Adequacy of Heel Joint

Force to be resisted by horz. shear = 15.645 k
allowable horz. shear = 85 psi

\[
\text{Reqd. Surface Area} = \frac{15.645}{85} = 0.184 \text{ in}^2
\]

Assuming the whole bottom chord acts in shear, the reqd. length is

\[
\frac{184.055}{6} = 30.675 \text{ in}
\]

Say 31" = L_{\text{reqd}}

No way this occurs

\[
\therefore \text{no need to calculate 'b' as even if the lower chord could provide adequate compression, it would fail in shear and possibly in tension.}
\]
Design Fink Truss to Support Roof Loads for Loading Condition No 1

\[P_1 = \frac{18 \times 205.3}{2} + \frac{18 \times 1.092 \times 256.6}{2} = 4369.6 \text{kN} \]
\[P_2 = \frac{32 \times 205.3}{2} + \frac{32 \times 1.092 \times 256.6}{2} = 7768.1 \text{kN} \]
\[P_3 = \frac{14 \times 205.3}{2} + \frac{14 \times 1.092 \times 256.6}{2} = 6797.1 \text{kN} \]

\[R_L + R_{IL} = P_1 + P_2 + \frac{1}{2} P_3 = 15536 \text{kN} \]

\[\Sigma M_E = 6R_{IL} - 14P_2 - 32P_1 + 28.5R_L - 14F_{FG} \]

For ABECA

\[\Sigma F_H = F_{CD}/1.092 + F_{CF}/2.5386 + F_{FG}/2.5386 - F_{FG} = 0 \]

For ABECA

\[F_{FG} = F_{AB}/1.092 - F_{BG}/1.4023 - F_{CG}/2.5386 \] (From SHT. 2)

Table: Design Fink Truss to Support Roof Loads for Loading Condition No 1

<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>DENVER SERVICE CENTER</td>
</tr>
<tr>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>Account</td>
<td></td>
</tr>
</tbody>
</table>
Joint "B"

\[\sum F_H = F_{BG}/1.4028 + F_{BC}/1.092 - F_{AB}/1.092 \]

\[\sum F_V = \frac{-0.9838}{1.4028} F_{BG} + 0.401 F_{ab} - 0.401 F_{BC} - F_2 \]

\[F_{AB} = F_{BC} + 1.092 \]

\[F_{BG} = F_{BC} + 0.7784 F_{BG} \]

\[\sum F_V = \frac{-0.9838}{1.4028} F_{BG} + 0.401 F_{BG} + 0.401 F_{BC} - 0.401 F_{BC} - F_2 \]

\[= 1.0135 F_{BG} - F_2 = 0 \]

\[F_{BG} = 7.6649 k \]

\[F_{AB} = F_{BC} + 5.967 k \]

Joint "G"

\[\sum F_V = \frac{-0.9838}{1.4028} F_{BG} - R_{IL} - \frac{2.3333 F_{CG}}{2.5386} \]

\[= 5.3755 - R_{IL} - 0.9199 F_{CG} \]

\[F_{CG} = +5.8439 \]

\[\sum M_A = 18 F_2 + 32 F_3 - 3.5 R_L - 26 R_{IL} + 32 \left(\frac{2.3333}{2.5386} \right) F_{CG} \]

\[+ \frac{14}{2.5386} F_{CF} - 32 \left(\frac{0.401}{1.092} \right) F_{CD} - \frac{14}{1.092} F_{CD} = 0 \]

\[= 139.826 + 217.507 + 34.927 F_{CF} - 25.0525 F_{CD} - 3.5 R_L - 26 R_{IL} = 0 \]

\[= 139.826 + 217.507 + 34.927 (5.8439 - 1.0871 R_{IL}) - 25.0525 F_{CD} - 3.5 (15.536 - R_{IL}) - 26 R_{IL} = 0 \]
<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
</tr>
<tr>
<td>Project</td>
<td>ENGINEERING STUDY</td>
</tr>
<tr>
<td>Feature</td>
<td>ROOF TRUSS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATIONAL PARK SERVICE DENVER SERVICE CENTER</th>
<th>Sheet 93</th>
</tr>
</thead>
<tbody>
<tr>
<td>By: MACDONALD Checked: Pkg. 506</td>
<td></td>
</tr>
</tbody>
</table>

Date: 1/29/82

\[
\begin{align*}
\Sigma M_A &= 507.067 - 60.469 R_L - 25.6525 F_{CD} = 0 \\
\Sigma M_C &= 6(15.536 - R_L) - 108.7534 - 139.8272 + 28.5 R_L - 14 F_{CG} \\
&= 22.5 R_L - 155.365 - 14\left[F_{AB}/1.092 - F_{BC}/1.4028 - F_{CG}/2.5356\right] \\
\text{Joint "C"} & \quad \Sigma F_V = \frac{1}{2} P_3 - 0.401 F_{BC} + \frac{2.3333}{2.5356} F_{CG} = 0 \\
&= 3.39855 - 0.401 F_{AB} + 0.0401 (5.9667) + 0.9191 F_{CG} \\
&= F_{AB} = 5.7912/0.401 + 7.2921 F_{CG} = 14.442 + 7.2921 F_{CG} \\
\Sigma M_C &= 22.5 R_L - 155.365 - 14(14.442) - 14(2.2921) F_{CG} + 76.496 \\
&= 22.5 R_L - 23.871 F_{CG} - 264.023 \\
\Sigma M_A &= 507.067 - 60.469 (15.536 - R_L) - 25.6525 [F_{AB} - 5.9667] \\
&= -279.318 + 60.469 R_L - 25.6525 (14.442 + 7.2921 F_{CG}) \\
&= -649.792 + 60.469 R_L - 58.7981 F_{CG} \\
\therefore R_L &= +0.9724 F_{CG} + 10.746 \\
\therefore \Sigma M_C &= 22.5 (40.9724 F_{CG} + 10.746) - 23.871 F_{CG} - 264.023 \\
&= -22.238 F_{CG} = -11.164 K = 11.164 K \cdot (C)
\end{align*}
\]
<table>
<thead>
<tr>
<th>Feature</th>
<th>Joint "C"</th>
<th>Check:</th>
<th>Check:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_L = -0.110 \text{ kN}$</td>
<td>$\Sigma F_V = \frac{1}{2} P_3 + \frac{27333}{205586} F_{BG} - 0.1401 F_{BC} = 0$</td>
<td>$\Sigma F_H = -15.672 + 11.274 + 4.3977 = 0$</td>
<td>$\Sigma M_A = 139.824 + 217.507 + 34.927 F_E - 25.6525 F_{EP} - 3.5 R_L - 26 R_{IL}$</td>
</tr>
<tr>
<td>$R_{IL} = 15.646 \text{ kN}$</td>
<td>$F_{BC} = 17.114 \text{ kN}$ (T)</td>
<td>$= 0.76 \text{ k-Ft}$</td>
<td>$= 95.7333 - 389.925 + 439.016 - 0.385 - 406.796$</td>
</tr>
<tr>
<td></td>
<td>$F_{AB} = 11.147 \text{ kN}$ (T)</td>
<td>$\Sigma M_A = 18 P_2 + 32 P_3 + 46 P_2 + 64 P_1 - 3.5 R_L - 26 R_{IL} - 38 P_{12}$</td>
<td>$= 0.16 \text{ k-Ft}$</td>
</tr>
<tr>
<td></td>
<td>$F_{AG} = +10.208 \text{ kN}$ (C)</td>
<td>$- 61.5 R_L$</td>
<td>$= 64 (1.7681) + 32 (6.7971) + 64 (4.3696) - 64 (-0.110)$</td>
</tr>
<tr>
<td></td>
<td>$F_{EG} = 11.274 \text{ kN}$ (C)</td>
<td>$- 64 (15.646)$</td>
<td>$= 0.016 \text{ k-Ft}$</td>
</tr>
<tr>
<td>Feature</td>
<td>Design Fink Truss for loads shown on SHEET 7.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web Members</td>
<td>$E = 76649$ k (c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Try Double Angles</td>
<td>$W/ 3/8" BS & 4 1/2" wood block for spacing: $l = 8.75'$, $f_y = 36$ ksi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = (1.0)(8.75) = 8.75'$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Try $2 \leq 3 \times 3 \times 3/8$</td>
<td>(STRUCT. ENGR. HANDBOOK p. 6-13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = 0.31$, $h = 0.93$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_y = (4.5 + 0.75 + 6)(0.21 + 0.02(4.5 + 0.75)) = 3.544$ in</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Good for 44 k w/ an effective length of $9'$ (x-x axis)

- $V_x/V_y = 0.93/3.544 = 0.262$

- EQUIV. EFFECTIVE LENGTH FOR Y-Y AXIS = $9'/(0.262)$

- $X-AXIS$ CONTROLS: $3 \times 3 \times 3/8$ (OK)

- Check: $b/l = 3/3.8 = 0.766 < 12.67$ for $44 + K$

- Web Members CG & CF, $P_a = 11.164$ k (C')

- $l = 15.25'$
KL = 15.25

TRY CS 4 x 4 x 1/2

GOOD FOR 99 K w/ an effective length of 19' (X-X AXIS)

\[\begin{align*}
\lambda_x &= 0.32 \frac{h}{l} = 1.92 \\
\lambda_y &= b \left(0.19 + 0.02 s \right) = (4.5 + 0.75 + 8)(0.19 + 0.02(0.75+4.5)) \\
&= 3.909
\end{align*} \]

EQUIV. EFFECTIVE LENGTH FOR Y-Y AXIS = \(19/1.92/3.909 = 38.7'\)

CHECK \(6/l = 4/12 = 8.0 < 12.67 \)

- BOTTOM CHORDS AG & EF; \(P = 10,208 \) K (C)
 \[l = 26' \]

BRACING AT INTERVALS OF < 9' (esp. in X-X AXIS),
CS 3 x 3 x 3/8 WOULD BE O.K.

- BOTTOM CHORD FG — SAME AS ABOVE

- TOP CHORDS AB & DE; \(\lambda = 19' \) \(P = 11,147 \) K
 ASSUME 3/4" BOLTS
 AREA TO BE DEDUCTED FOR BOLT HOLE = \(3/8 \times 7/8 = 0.32811 \text{in}^2\)
\[M = (3.84)(5) + (1.28)(5) = 25.62 \text{ k'-ft} \]

\[\text{TRY} \ 2 \leq s \ 5 \times 3 \times \frac{1}{2} \]

\[f = \frac{P}{A} + \left(M + Pd \right) \frac{c}{I} \]

\[d = d_0 \frac{1 - (P/P_e)}{0.893} \]

\[d = 3.06'' \]

\[f = \frac{11.147 \times 10^3 + \left[\frac{(25.624)(12) - 11.147(3.06)}{18.9} \right] \times 3.25 \times 10^3}{7.50 - 0.328} = 2.73'' \]

\[= 48.659.55 \quad \text{psi} \]

\[f_{\text{all}} = 20 \text{ ksi} \quad \begin{cases} \text{No Good} \end{cases} \]
<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
<th>Area</th>
<th>Arlington House</th>
<th>National Park Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>talking</td>
<td>Feature</td>
<td>Roof Truss (Fink)</td>
<td>Denver Service Center</td>
</tr>
</tbody>
</table>

Try 2 CS 7X4 X 3/4"

\[
S = 16.8 \text{ in}^3
\]

\[
A = 15.4 \text{ in}^2
\]

\[
WGT = 5214 \text{ PLF}
\]

\[
I = 75.6 \text{ in}^4
\]

\[
d = \frac{d_0}{1 - \left(\frac{P}{P_c}\right)} = 0.989''
\]

\[
f = \frac{11.147}{15.4 - 0.328} + \left[\left(26.897 \times 12\right) - 11.147 \times 0.989 \times 75.6 \right]
\]

\[
= 19.25 \text{ ksi} < 20 \text{ ksi}
\]

\[\text{OK}\]

- Top Chord Members BC & CD: \(l = 16' \)

\[
P = 17.114 \text{ k}
\]

\[\text{Use 2 CS 7X4 X 3/4"} (\text{Larger Axial Force})\]

\[\text{Smaller Moment - OK}\]
Threaded fasteners

\[A_s = \frac{\pi}{4} (D - \frac{D}{9})^2 \]

Gaylord 4
Gaylord 4-5

FOR WEB MEMBERS BG & DF - AXIAL LOAD = 7.66 k
USING FECTION TYPE BOLTS (-A 325) W/ SHORT SLOTTED HOLES - Fv = 15.0 ksi

FOR 3/4" bolts - All. load in kips for single shear = 6.6 k
Use two 3/4" bolts - total allowable = 13.2 k

FOR WEB MEMBERS CG & CF - AXIAL LOADS = 11.164 k
Use three 3/4" bolts - All. load = 3 x 6.6 = 19.8 k

FOR BOTTOM CHORD MEMBERS AG & FE, AXIAL LOAD = 10.208 k
Use three 3/4" bolts - All. load (shear) = 19.8 k

BOTTOM CHORD FG, AXIAL LOAD = 11.274 k
Use three 3/4" bolts - All. load (shear) = 19.8 k

FOR TOP CHORDS AB & DE, AXIAL LOAD = 11.147 k plus
FOR TRUSS SYSTEM OF DOUBLE ANGLES W/ DOUBLE 3/8" RBS AND WOOD BLOCK SPACER, WE HAVE THE FOLLOWING CONDITIONS:

a) BOLTS IN SINGLE SHEAR (CONSERVATIVE ASSUMP.)

b) GUSSET RBS IN SINGLE BEARING

c) LEGS OF L'S IN SINGLE BEARING

B.) FOR 3/4" Ø BOLTS, 3/8" RBS, THE BEARING AREA = (0.75)(0.375) = 0.28125 in²

FOR ALL, UNIT BEARING STRESS = 22 ksi, WORKING VALUE = 0.875 ksi

FOR TWO RBS, WORKING VALUE = 12,375 ksi

...TWO BOLTS WOULD BE O.K. FOR ANY JOINT IN OUR TRUSS USING THE GUSSET RBS IN SINGLE SHEAR AS OUR PARAMETER.

C.) FOR LEGS OF L'S IN SINGLE BEARING W/ MIN. THICKNESS OF 3/8"), CONDITIONS SAME AS FOR (B.)
<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
</tr>
<tr>
<td>Project</td>
<td>ENGR. STUDY</td>
</tr>
<tr>
<td>Feature</td>
<td>TOP CHORD CONNECTIONS</td>
</tr>
</tbody>
</table>

| NATIONAL PARK SERVICE |
| DENVER SERVICE CENTER |

<table>
<thead>
<tr>
<th>Sheet</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>of</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>By</th>
<th>MACDONALD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>Pkg.</td>
<td>506</td>
</tr>
<tr>
<td>Date</td>
<td>4/9/82</td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>Account</td>
<td></td>
</tr>
</tbody>
</table>

- **MEMBERS AB & DE, AXIAL LOAD = 11,147 k**
 - USE THREE 3/4" Ø BOLTS A325 F
 - GOOD FOR 19.8 k

- **MEMBERS BC & DE, AXIAL LOAD = 17,114 k**
 - USE THREE 3/4" Ø BOLTS A325 F
 - GOOD FOR AT LEAST 19.8 k

NOTE: THIS ASSUMES NO ECCENTRICITY OR MOMENT AT CONNECTION.

SHOULD VERIFY W/ MAURY
Design Fink Truss to Support Roof Loads on Truss "F" for Loading Condition No. 1

- **Snow:** 102.6 PLF

Equations

- \(P_1 = \frac{(18)(102.6)}{2} + \frac{(18)(1.092)(128.3 + 69.5)}{2} = 2867.4 \text{ kN} \)
- \(P_2 = \frac{(32)(102.6)}{2} + \frac{(18)(1.092)(128.3 + 69.5)}{2} = 3585.6 \text{ kN} \)
- \(P_3 = (14)(102.6) + (14)(1.092)(128.3 + 69.5) = 4460.4 \text{ kN} \)

\[
R_L + R_{LL} = P_1 + P_2 + \frac{1}{2} P_3 = 8683.2 \text{ kN}
\]

\[
\Sigma M_c = 6R_{LL} - 14P_2 - 32P_1 + 28.5R_L - 14F_E = 0
\]

Forces

- \(\Sigma F_H = F_{CD}/1.092 - F_{EF}/2.3586 - F_{GF} = 0 \)
FORM DSC - 44

National Park Service
Denver Service Center

<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
<th>Area</th>
<th>Arlington House</th>
<th>Project</th>
<th>ENGR. STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td>Fink Truss for "F"</td>
<td>Date</td>
<td>4/20/82</td>
<td>Date</td>
<td>Account</td>
</tr>
</tbody>
</table>

From Sheet 91 (SHT. 92)

Joint "P"

\[
\begin{align*}
F_{BG} &= F_{AB}/1.092 - F_{BS}/1.4028 - F_{CG}/2.5386 \quad (SHT. 92) \\
F_{BS} &= F_{BC} + 1.092 F_{BG} = F_{BC} + 0.7784 F_{BG} \\
\Sigma F_V &= 1.0135 F_{BG} - P_2 = 0 \\
F_{BG} &= 3585.6/1.0135 = 3537.84 \text{ lbs.} \\
F_{AB} &= (F_{BC} + 2753.85) \text{ lbs} \\
Joint "G" \quad \Sigma M_A &= 18 P_2 + 32 P_3 - 3.5 R_L - 20 R_{IL} + \frac{32(23333)}{2.5386} F_{CD} \\
&+ \frac{14 (1)}{2.5386} F_{CE} - 32 (0.401) F_{CD} - \frac{14 (1.0)}{1.092} F_{CD} = 0 \\
&= 64,540.0 + 142,732.8 + 34,927 F_{CE} - 25,6525 F_{CD} \\
&- 3.5 R_L - 20 R_{IL} = 0 \\
&= 207,273.6 + 34,927 F_{CE} - 25,6525 F_{CD} - 3.5 R_L \\
&- 20 R_{IL} = 0 \\
&= 207,273.6 + 34,927 (8017.2 - 10871 R_{IL}) \\
&- 25,6525 F_{CD} - 3.5 (8083.2 - R_{IL}) - 20 R_{IL} = 0
\end{align*}
\]
\[\Sigma M_a = 271.087.5 - 60.469 R_L - 25.6525 F_G = 0 \]
\[\Sigma M_c = 6(3683.2 - R_L) - 50198.4 - 11756.8 + 22.5 R_L \]
\[\quad - 14 F_{FG} \]
\[\quad = -89,856 + 22.5 R_L - 14\left[F_{AB}/1.092 - F_{FG}/1.4028 \right] \]
\[\quad \quad - F_{FG}/2.5386 \]

Joint "C"
\[\Sigma F_v = \frac{1}{2} P_3 - 0.401 F_{BC} + 2.3333 \frac{F_{CG}}{2.5386} = 0 \]
\[= 2230.2 - 0.401 F_{AB} + 0.401 (2617.2) \]
\[\quad + 0.9191 F_{CG} \]
\[\quad F_{AB} = 2.2921 F_{CG} + \frac{2311.78}{0.401} \]
\[= 2.2921 F_{CG} + 5758.80 \]
\[\Sigma M_c = 22.5 R_L - 89,856 - 105,882 - 29,3859 F_{CG} \]
\[\quad + 35307.8 + 0.5199 F_{CG} = 0 \]
\[= 22.5 R_L - 23,071 F_{CG} - 160,430.2 \]
\[\Sigma M_a = 271.087.5 - 60.469 (3683.2 - R_L) \]
\[\quad - 25.6525 \left[F_{AB} - 2753.85 \right] \]
\[= -183,333.784 + 60.469 R_L - 25.6525 \left[5758.80 \right] \]
\[\quad \quad - 2.2921 F_{CG} \]
\[= -395.192.65 + 60.469 R_L - 58,798.1 F_{CG} \]
\[F_L = 0.9724 \, F_{CG} + 6535.46 \]
\[\sum M_C = 22.5 \left(0.9724 \, F_{CG} + 6535.46\right) - 23.871 \, F_{CG} - 160,430.2 \]
\[0.972 \, F_{CG} = -13,382.4 \]
\[F_{CG} = -6718.1 \, \text{lb} \]
\[= 6718.1 \, \text{lb} \, (C) \]
\[R_L = 2.02 \, \text{lb} \]
\[P_{IL} = 8683.2 - 2.02 \]
\[= 8680.4 \, \text{lb} \]

Joint "C"

\[\sum F_Y = \frac{1}{2} P_3 + \frac{2333.3}{2.5386} F_{CG} - 0.401 F_{BC} = 0 \]
\[F_{BC} = \left[\frac{2230.2 + 2333.3 (-6718.1)}{2.5386} \right] / 0.401 \]
\[= 9836.9 \, \text{lb} \, (T) \]
\[F_{AB} = -9836.9 + 2753.85 \]
\[= -7083.05 \, \text{lb} = 7083.05 \, \text{lb} \, (T) \]
\[F_{AG} = 10486.3 \, \text{lb} \, (C) \]
\[F_{CG} = 2646.4 - 2522.0 - 10486.3 = 6761.9 \, \text{lb} \, (C) \]
\[F_{BG} = 3537.84 \, \text{lb} \, (C) \]
FORM D S C - 44

<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DENVER SERVICE CENTER</td>
<td>106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Project</th>
<th>Feature</th>
<th>By</th>
<th>Checked</th>
<th>Date</th>
<th>Date</th>
<th>Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARLINGTON HOUSE</td>
<td>ENGR. STUDY</td>
<td>FINK TRUSS FOR "F"</td>
<td>MACDONALD</td>
<td></td>
<td>4/20/82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"CHECK"

\[\Sigma F_h = -9008.2 + 6321.9 + 2646.38 = 0 \]

"CHECK"

\[\Sigma M_A = \text{207,273.6} - \text{234,643.1} + \text{252,341.1} - 9.37 - 225,690.40 = 0.729 \text{ ft.k} \]

"CHECK"

\[\Sigma M_A = 18 P_2 + 32 P_3 + 46 P_2 + 64 P_1 - 3.5 L - 26 R_1 \]

\[-38 R_1 - 61.5 R_2 = 0 \]

\[= 229,478.4 + 142,732.8 + 183,513.6 - 180.5 - 555,545.6 \]

\[= -113 \text{ft}-16 \text{in} \]

OK
<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARLINGTON HOUSE</td>
</tr>
<tr>
<td>Project</td>
<td>ENGR. STUDY</td>
</tr>
<tr>
<td>Feature</td>
<td>FINK TRUSS FOR "F"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENVER SERVICE CENTER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>By</th>
<th>MacDonald</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>9/20/82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheet</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>of</td>
<td></td>
</tr>
<tr>
<td>Pkg.</td>
<td>506</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Account</th>
</tr>
</thead>
</table>

Diagram with various points labeled A, B, C, D, etc., connected by lines and numbers.
<table>
<thead>
<tr>
<th>Park</th>
<th>NATIONAL PARK SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWMT</td>
<td>DENVER SERVICE CENTER</td>
</tr>
<tr>
<td>Area</td>
<td>AZELINGTON HOUSE</td>
</tr>
<tr>
<td>Project</td>
<td>ENGR STUDY</td>
</tr>
<tr>
<td>Feature</td>
<td>PINK TRUSS FOR "F"</td>
</tr>
</tbody>
</table>

Web Members D6 & DF

- \(P = 3577.8 \text{ lbs} \) (C)
- \(l = 8.75' \)
- \(f_y = 30 \text{ ksi} \)
- \(K_L = (1.0)(8.75) = 8.75' \)

Use 2 LS 3\(\times 3 \times \frac{1}{4} \)

- Good for 11k with an effective length of 15 ft. (X-X Axis)

CHECK: \(\frac{b}{t} = \frac{3}{\frac{1}{4}} = 12 \leq 70\sqrt{f_y} = 12.67 \) **OK**

Web Members CG & CF

- \(P = 6718.1 \text{ lbs} \) (C)
- \(l = 15.25' \)
- \(K_L = 15.25' \)

Use 2 LS 3\(\frac{1}{2} \times 3\frac{1}{2} \times \frac{1}{4} \)

- Good for 13k with an effective length of 13 ft (X-X Axis)

CHECK: \(\frac{b}{t} = \frac{3.5}{\frac{1}{4}} = 14 \times 12.67 \) **NO GOOD**

TRY 2 LS 3\(\frac{1}{2} \times 3\frac{1}{2} \times \frac{5}{16} \)

- \(\frac{b}{t} = \frac{3.5}{\frac{5}{16}} = 11.2 \leq 12.67 \) **OK**
- Bottom chord AG & EF; \(P = 64.06.3 \text{ lbs.} \) (c); \(L = 26' \) W/ Bracing at intervals of 15 ft. (Max.), Good for 11k

- Bottom chord FG - Same as for AG & EF

- Top chords AB & DE; \(L = 19' \) - KL = 19; \(P = 7003.1 \) k# Assume use of \(\frac{3}{4}'' \) bolts holes. Area to be deducted for bolt holes; \(\frac{1}{4} x \frac{7}{8} = 0.3281 \text{ in}^2 \)

\[
M_{\text{May}} = \frac{W L^2}{6} = \frac{(358.6)(19)^2}{6} = 16,182 \text{ ft-lbs}
\]

\[
I = 18.9 \text{ in}^4 \\
S = 5.42 \text{ in}^3 \\
A = 7.50 \text{ in}^2
\]

\[
P_c = \frac{\pi^2 EI}{L^2}
\]

\[
= 1.041 \times 10^5 \text{ lbs}
\]

\[
P = 7,083 \text{ k}
\]

\[
d_0 = \frac{5WL^4}{384EI}
\]

\[
= 1.92
\]

\[
c = 3.25''
\]

\[
W = 102.6 + (1.012)(126.3 + 69.5)
\]

\[
+ \text{WGT of } \frac{\pi}{40} \text{ kcs/cf}
\]

\[
= 758.6 \text{ k}
\]
<table>
<thead>
<tr>
<th>Park</th>
<th>GWMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>ARZLINGTON HOUSE</td>
</tr>
<tr>
<td>Project</td>
<td>ENGR STUDY</td>
</tr>
<tr>
<td>Feature</td>
<td>FINE TRUSS FOR "E"</td>
</tr>
<tr>
<td>Date</td>
<td>4/20/82</td>
</tr>
<tr>
<td>Checked</td>
<td>Pkg. 506</td>
</tr>
</tbody>
</table>

\[
f = \frac{7.083 \times 10^3}{13.9 - 0.328} + \left[\frac{(16.182)(12) - (7.083)(2.15)}{3.92 \times 10^3} \right] 3.92 \times 10^3 \]

\[
= 5.219 \times 10^2 + 1.554 \times 10^4 = 1.6062 \times 10^4
\]

\[
f = \text{OK} < 20 \text{ ksi}
\]

- TOP CHOICE MEMBERS BC & CD; \(l = 16' \)
- \(P = 98.36 \text{ lbs.} \)
- USE 2 LS 6x4 x 3/4 (larger axial force, smaller moment)
Memorandum

To: Superintendent, George Washington Memorial Parkway

From: Chief, Branch of Cultural Resources, National Capital Team, DSC

Subject: Engineering Study of Central Section Roof

As part of the engineering study of the roof support structure in the main block of the Arlington House, an investigation was conducted on February 11 to determine the condition of the truss members which pass through two masonry chimneys. Participating in this investigation were Jim Askins, Bill Hose, and Jim Gilbert of the Williamsport Training Center and Pat Macdonald of this office. Working in the attic, they removed the brick on the interior side of the chimneys in the area surrounding the truss members. Exposed was one truss end in satisfactory condition (south side) and the other (north side) seriously damaged by no longer active powder-post beetle and brown rot. The wood deterioration problems stem from moisture intrusion from around the flashing which has since been brought under control.

Because of the extent of the damage already incurred, it was necessary that they install a temporary heel brace to distribute the loads beyond the points of damage and provide additional strength to compensate for the section loss. This measure, however, is only a temporary solution. It is therefore recommended that structural repairs be undertaken as soon as possible to reinforce the remaining sound wood to enable a load-supporting capability equal to the original full sections.

One technique which could be used to accomplish this would be by application of epoxies such as the Beta materials manufactured by the Dell Corporation. This method would return the truss members to their original dimensions and to at least their original strength. This method is suggested as it would be compatible with the general design to be proposed for a system to reinforce all trusses. Also, the expertise to accomplish this undertaking is readily available at the Williamsport Training Center. If you are interested in pursuing this type of solution to the problem described, please contact Jim Askins at 301-223-7872 for a cost estimate and time schedule.

/5/

Charles F. Bohannon

TNC:PSMacdonald:hds:2/18/82:2224

cc: NCR, Mr. Goeldner
Memorandum

To: Assistant Manager, National Capital Team, Denver Service Center

From: Branch Chief, Williamsport Preservation Training Center, National Capital Team, Denver Service Center

Subject: Field Investigation: Central Roof Section

In response to a request from Structural Engineer Pat Macdonald, Denver Service Center, National Capital Team (DSC-TNC), to assist with an ongoing structural investigation of the central roof section, a site visit was conducted on February 10 and 11, 1982. Present were Mr. Macdonald, W. Hose, J. Gilbert and, J. Askins from the Williamsport Preservation Training Center (WPTC).

The purpose of this request was to assist Pat with a limited destructive investigation of the historic fabric to determine, if possible, their current condition. Various methods and techniques to correct obvious deficiencies in the original design and, to identify the extent of damage caused by fungal attack or insect damage to structural members were also discussed.

The findings of our investigation are recorded in a memorandum dated February 18, 1982 to the Superintendent, George Washington Memorial Parkway from the Branch Chief, Cultural Resources, DSC-TNC.

While carrying out this assignment and in indepth discussions, Pat revealed a preliminary design concept for strengthening the existing trusses. This concept, the use of a "fink truss" to provide supplemental support for the live load is an excellent idea.

This concept, I believe is a positive solution to a most difficult problem. After reviewing the preliminary design and accompanying recommendations, I support Pat's recommendations completely. It is a very well thought out design and demonstrates a keen awareness and appreciation for the value of the existing historic fabric and the need for its preservation.
The sensitivity of the Arlington House site and the complexity of the proposed design supports Pat's recommendation of the planned work to be accomplished by day labor. I support this recommendation completely.

I feel Pat should be recognized for the superior engineering work he produced as part of this project. His design concept for the stabilization of the central roof section clearly demonstrates an outstanding structural engineering ability and great sensitivity toward the preservation of historic fabric.

James S. Askins

cc:
DSC-TNC-F. Bohannon
DSC-TNC-P. Macdonald
File
ACKNOWLEDGEMENTS
Team Members

1. Patrick Macdonald, Civil Engineer, DSC-TNC
2. Maury Paul, Structural Engineer, Professional Support, Denver Service Center
3. John Sligh, Architect, DSC-TNC
4. Karen Sporn, Editor
5. Hilde DeSouza, Secretary

Acknowledgements

1. For cooperation and assistance provided, special thanks to Ann Fuqua, Agnes Mullins, and the entire Arlington House staff.
2. For technical consultation, thanks to Jim Akins, Bill Hose, and Jim Gilbert of the Williamsport Training Center, DSC-TNC.